WO2014171029A1 - 耐光性樹脂組成物およびその成形体 - Google Patents

耐光性樹脂組成物およびその成形体 Download PDF

Info

Publication number
WO2014171029A1
WO2014171029A1 PCT/JP2013/078190 JP2013078190W WO2014171029A1 WO 2014171029 A1 WO2014171029 A1 WO 2014171029A1 JP 2013078190 W JP2013078190 W JP 2013078190W WO 2014171029 A1 WO2014171029 A1 WO 2014171029A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fluorine
resin composition
weight
fluorinated
Prior art date
Application number
PCT/JP2013/078190
Other languages
English (en)
French (fr)
Inventor
達樹 明石
六田 充輝
Original Assignee
ダイセル・エボニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・エボニック株式会社 filed Critical ダイセル・エボニック株式会社
Priority to US14/779,218 priority Critical patent/US9644080B2/en
Priority to CN201380075701.5A priority patent/CN105324440B/zh
Priority to KR1020157032458A priority patent/KR102104303B1/ko
Priority to JP2015512277A priority patent/JP6211602B2/ja
Priority to EP19154665.4A priority patent/EP3502193B1/en
Priority to EP13882345.5A priority patent/EP2987833B1/en
Publication of WO2014171029A1 publication Critical patent/WO2014171029A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention is composed of a non-fluorinated thermoplastic resin (for example, super engineering plastic such as aromatic polyamide, liquid crystal polyester, aromatic polyetherketone resin) and has excellent light resistance (or improved light resistance).
  • a non-fluorinated thermoplastic resin for example, super engineering plastic such as aromatic polyamide, liquid crystal polyester, aromatic polyetherketone resin
  • the present invention relates to a resin composition and a molded body thereof.
  • thermoplastic resins with excellent heat resistance and mechanical strength, but may have poor light resistance. . For this reason, alterations are often observed in various resin properties in an environment where light acts.
  • Patent Document 1 contains (A) 70 to 99% by mass of a polyaryl ketone resin and (B) 30 to 1% by mass of a fluororesin, and is dispersed in the resin composition. (B) A resin composition in which the fluororesin has an average particle size of 0.1 to 30 ⁇ m is disclosed. And in this document, it is described that such a resin composition gives a resin molded article excellent in slidability, solvent resistance and heat resistance.
  • Patent Document 2 includes an aromatic polyetherketone resin and a fluororesin for the purpose of improving slidability and impact resistance, and the fluororesins are tetrafluoroethylene and perfluoroethylene. Copolymer with an aromatic unsaturated compound, the mass ratio of the aromatic polyetherketone resin to the fluororesin is 95: 5 to 50:50, and the fluororesin is particulate in the aromatic polyetherketone resin. Dispersed, a resin composition having an average dispersed particle size of fluororesin of 3 ⁇ m or less is disclosed.
  • LED Light Emitting Diode
  • the LED is generally composed of a semiconductor part that emits light, a lead wire, a reflector that also serves as a housing, and a transparent sealing agent that seals the semiconductor.
  • the reflector part has been commercialized with various materials such as ceramics and heat-resistant plastics, but in the case of ceramics, productivity is a problem, while in the case of heat-resistant plastics, the injection molding process ( 330 ° C, several minutes), heat curing process for conductive adhesive and sealant (100-200 ° C, several hours), soldering process (especially lead-free solder in surface mount technology (SMT) (tin-silver-copper) In the case of alloy solder, etc.), the peak temperature at the time of use of 260 ° C. or more for several minutes) or in the actual use environment, there is a problem of a decrease in light reflectance due to discoloration. In particular, heat-resistant polyamides that are widely used are easily discolored by heating, and a decrease in light reflectance cannot be ignored.
  • SMT surface mount technology
  • polyamide resin compositions for LED reflectors in which various additives are blended with a polyamide resin have been proposed [for example, Japanese Patent Laid-Open No. 2-288274 (Patent Document 3) and Japanese Patent No. 4892140 (Patent Document 4). No. 4,525,917 (Patent Document 5), Japanese Patent Application Laid-Open No. 2011-21128 (Patent Document 6), etc.].
  • High-power LEDs are required to have high durability, including packages that generate heat strongly with higher output, in addition to higher brightness.
  • existing reflector compositions have difficulty in long-term durability at high temperatures (particularly 150 ° C. or higher), and are not suitable for high-power LEDs.
  • ceramic substrates generally used for high-power LED applications have heat resistance, but have a problem in productivity compared to resin substrates that can be injection-molded.
  • aromatic polyetherketone resins having higher heat resistance than polyamide resins are poor in light resistance as described above, and it is easily predicted that physical properties will be deteriorated or discolored (yellowing, etc.). Because of this, it has not been used in the past for LED reflector applications.
  • JP 2006-274073 A (claims, paragraph [0005]) WO2012 / 005133 (Claims, Examples) JP-A-2-288274 (Claims), Japanese Patent No. 4892140 (Claims) Japanese Patent No. 4525917 (Claims) JP2011-21128 (Claims)
  • an object of the present invention is to provide a thermoplastic resin (particularly, super engineering plastic) composition having excellent light resistance (or improving light resistance).
  • Another object of the present invention is to provide a resin composition capable of maintaining whiteness (or reflectance) even in an environment where light acts.
  • Patent Documents 1 and 2 As described in Patent Documents 1 and 2, a technique for dispersing a fluororesin in an aromatic polyetherketone resin is known, but it has been aimed at improving slidability.
  • paragraph [0049] of Patent Document 2 has a description that it is excellent in weather resistance, but only describes general characteristics as a fluororesin, and a concept in which weather resistance and light resistance are different. It is.
  • the fluorine-containing resin is surprisingly light-resistant with respect to non-fluorinated thermoplastic resins (for example, super engineering plastics). It is possible to impart an improvement function, and even if an inorganic white pigment is added to such a fluorine-containing resin together with a non-fluorinated thermoplastic resin, it has an excellent light resistance improvement function or is further synergistically excellent.
  • the whiteness (or reflectance) of the non-fluorinated thermoplastic resin (or its organism) can be maintained over a long period of time in an environment where light (and heat) acts.
  • a resin composition containing these components is particularly suitable for reflector applications. It was completed a light.
  • the resin composition of the present invention is a resin composition containing a non-fluorinated thermoplastic resin, a fluorine-containing resin, and an inorganic white pigment.
  • the non-fluorinated thermoplastic resin may be a super engineering plastic (for example, a super engineering plastic having a glass transition temperature of 100 ° C. or higher), and is particularly selected from aromatic polyamide, liquid crystal polyester, and aromatic polyether ketone resin. Alternatively, it may be at least one [for example, aromatic polyetherketone resin (for example, polyetheretherketone)].
  • a super engineering plastic for example, a super engineering plastic having a glass transition temperature of 100 ° C. or higher
  • aromatic polyetherketone resin for example, polyetheretherketone
  • the fluorine-containing resin may be a fluorine-containing resin having tetrafluoroethylene as a polymerization component.
  • the fluorine-containing resin may be a thermoplastic fluororesin (or a heat-meltable fluororesin).
  • the fluorine-containing resin may typically be a tetrafluoroethylene copolymer, in particular, a copolymer of tetrafluoroethylene and other fluorinated olefins (for example, tetrafluoroethylene and other perfluoroolefins).
  • a copolymer of tetrafluoroethylene and fluorinated vinyl ether for example, a copolymer of tetrafluoroethylene and perfluoro (alkyl vinyl ether)
  • tetrafluoroethylene and other fluorinated olefins It may be at least one selected from a copolymer with a fluorinated vinyl ether (for example, a copolymer of tetrafluoroethylene, another perfluoroolefin, and perfluoro (alkyl vinyl ether)).
  • the dispersion form of each component is not particularly limited.
  • the dispersed phase composed (or formed) with a fluorine-containing resin is composed (or formed) with a non-fluorine-based thermoplastic resin. It may be in a form dispersed in a continuous phase.
  • the average particle diameter (or average dispersion diameter) of the dispersed phase may be, for example, 3 ⁇ m or less.
  • the average interparticle distance of the dispersed phase may be, for example, 5 ⁇ m or less.
  • the inorganic white pigment may be composed of, for example, titanium oxide (for example, surface-treated rutile titanium oxide).
  • the proportion of each component may be, for example, about 1 to 150 parts by weight of the fluorine-containing resin with respect to 100 parts by weight of the non-fluorinated thermoplastic resin.
  • the ratio of the pigment may be about 3 to 150 parts by weight.
  • the proportion of the inorganic white pigment may be about 0.1 to 20 parts by weight with respect to 1 part by weight of the fluorine-containing resin.
  • the resin composition of the present invention may contain a reinforcing material (for example, a fibrous filler and / or an acicular filler). Moreover, the resin composition of the present invention may contain magnesium hydroxide.
  • the resin composition of the present invention has excellent light resistance and whiteness (or whiteness), the resin composition for a reflector (reflector, reflector) [particularly, a light emitting diode element (LED ) Reflector resin composition].
  • the present invention also includes a molded body formed from the resin composition.
  • a molded body may be a reflector (in particular, a reflector of an LED).
  • the light resistance (or light resistance stability) of the non-fluorinated thermoplastic resin can be improved or improved by adding a combination of a fluorine-containing resin and an inorganic white pigment to the non-fluorinated thermoplastic resin.
  • the whiteness (or whiteness) in the non-fluorine-diameter thermoplastic resin can also be improved or improved.
  • the present invention provides an additive for improving or improving the light resistance (or whiteness) of a non-fluorine-based thermoplastic resin, which is composed of a fluorine-containing resin and an inorganic white pigment. (Light-resistant stabilizer or whiteness improver) is also included.
  • the present invention also includes a method for improving the light resistance (or whiteness) of a non-fluorinated thermoplastic resin by adding this light resistance improver (or whiteness improver) to the non-fluorinated thermoplastic resin. included.
  • the present invention provides a colorant for coloring a non-fluorine-based thermoplastic resin white, which is composed of an inorganic white pigment and a fluorine-containing resin (white colorant, colorant composition). ) Is also included. Furthermore, the present invention includes a method of adding this colorant (colorant composition) to a non-fluorinated thermoplastic resin and coloring the non-fluorinated thermoplastic resin white.
  • the ratio and usage ratio of each component are the same as in the resin composition.
  • the resin composition of the present invention is a thermoplastic resin composition (non-fluorinated thermoplastic resin composition) excellent in light resistance (or capable of improving light resistance).
  • a resin composition does not cause decomposition or thickening associated therewith even after undergoing a melt mixing process at a high temperature, so that the light resistance can be improved or improved. Therefore, in particular, the resin composition of the present invention is a thermoplastic resin that requires molding or processing at a high temperature, such as aromatic polyamide, liquid crystal polyester, aromatic polyether ketone resin, etc., among non-fluorinated thermoplastic resins. It is suitable as a resin composition containing super engineering plastic as a resin component.
  • the resin composition of the present invention even when a fluorine-containing resin and an inorganic white pigment are combined, light resistance can be improved or improved (or light resistance can be further improved or improved).
  • the whiteness and reflectance derived from inorganic white pigments can also be maintained. Therefore, it is suitable as a reflector application.
  • the resin composition of the present invention can suppress a decrease in the resin properties of the non-fluorinated thermoplastic resin, and depending on the resin properties Further, it is possible to impart excellent characteristics derived from a fluorine-containing resin (and excellent characteristics derived from a white pigment) to a non-fluorinated thermoplastic resin. In addition, bleeding and the like can be suppressed at a high level. Therefore, the resin composition of the present invention is very useful and practical.
  • the resin composition of the present invention is composed of a non-fluorinated thermoplastic resin, a fluorine-containing resin, and an inorganic white pigment.
  • Non-fluorinated thermoplastic resins (sometimes referred to as fluorine-free thermoplastic resins, simply thermoplastic resins, resins, etc.) are not particularly fluorine-containing resins (resins that do not belong to the category of fluorine-containing resins).
  • non-fluorine-based halogen-containing resins for example, chlorine-containing resins such as polyvinyl chloride and polyvinylidene polyene
  • styrene-based resins for example, styrene copolymers such as polystyrene and AS resin
  • acrylic resins for example, polymethyl methacrylate
  • olefin resin for example, chain olefin resin (polyethylene, polypropylene, polymethylpentene, etc.), cyclic olefin resin (so-called COP, COC, etc.)]
  • polyacetal resin for example, polycarbonate resin (for example, , Aromatic polycarbonate, etc.)
  • polyester Resin eg, aliphatic polyester resin (eg, polylactic acid), aromatic polyester resin (eg, polyarylate, liquid crystal polyester)
  • polyamide resin eg, aliphatic polyamide (eg, polyamide 6, polyamide 66, polyamide 610, polyamide) 11, poly
  • thermoplastic resin may be a crystalline resin or an amorphous resin.
  • thermoplastic resins may be used alone or in combination of two or more.
  • thermoplastic resins resins classified as engineering plastics (particularly super engineering plastics), such as polyarylate (PAR), liquid crystal polyester (or liquid crystal polymer, LCP), aromatic polyamide [for example, semi-aromatic polyamide (Polyamide etc. using aromatic dicarboxylic acid component or aromatic diamine component as polymerization component), wholly aromatic polyamide etc.], aromatic polyether ketone resin, polysulfone (PSU), polyether sulfone (PES), polyimide (PI) , Polyamideimide (PAI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyketone sulfide, polybenzimidazole (PBI) and the like.
  • PAR polyarylate
  • LCP liquid crystal polyester
  • aromatic polyamide for example, semi-aromatic polyamide (Polyamide etc. using aromatic dicarboxylic acid component or aromatic diamine component as polymerization component), wholly aromatic polyamide etc.
  • aromatic polyether ketone resin polysulfone (P
  • aromatic polyamide, liquid crystal polyester, and aromatic polyetherketone resin are preferable, and aromatic polyetherketone resin can be preferably used from the viewpoint of dispersibility of the fluorine-containing resin.
  • aromatic polyamide, the liquid crystal polyester, and the aromatic polyether ketone resin will be described in detail.
  • aromatic polyamide examples include polyamides in which at least one component (for example, dicarboxylic acid component) is an aromatic component among a diamine component and a dicarboxylic acid component which are polymerization components.
  • an aromatic polyamide may be a wholly aromatic polyamide [for example, a polyamide having an aromatic diamine component (such as a component described below) and an aromatic dicarboxylic acid component (such as a component described below) as a polymerization component]
  • Semi-aromatic polyamides for example, one of the diamine component and dicarboxylic acid component (for example, an aromatic dicarboxylic acid component) a polyamide containing an aromatic component
  • a semi-aromatic polyamide is particularly suitable. May be used.
  • diamine component constituting the aromatic polyamide examples include aliphatic diamine components [alkane diamine (eg, ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, methyl pentane diamine, 2-methyl propane diamine, 3-methyl propane diamine). , Octamethylene diamine, nonamethylene diamine, decane diamine, dodecane diamine etc.
  • alkane diamine eg, ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, methyl pentane diamine, 2-methyl propane diamine, 3-methyl propane diamine.
  • Octamethylene diamine nonamethylene diamine
  • decane diamine dodecane diamine etc.
  • alicyclic diamine components eg 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1 , 2-diamino-C 5-8 cycloalkane such as diaminocyclohexane; 1,3-di (aminomethyl) cyclohexane, 1,4-di (aminomethyl) cyclohexane, 1,2-di (aminomethyl) Shikurohe Di include San (amino C 1-4 alkyl) C 5-8 cycloalkane; 4,4'-diamino-di-cyclohexylene methane, 4,4'-diamino-3,3'-dimethyl-cyclohexylene methane, 4, Di (amino C 5-8 cycloalkyl) C 1-4 alkanes such as 4′-diaminodicyclohexylenepropane;
  • dicarboxylic acid component constituting the aromatic polyamide examples include aliphatic dicarboxylic acid components (for example, succinic acid, propanenic acid, butanenic acid, pentatanic acid, adipic acid, heptanenic acid, octatannic acid, nonannic acid, decannic acid, dodecanniic acid, Acids, C 2-20 alkane dicarboxylic acids such as undecanoic acid), alicyclic dicarboxylic acids (eg, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, hexahydrophthalic anhydride Acid, 3-methyl-hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic acid, C- 5-10 cycloalkanedicarboxylic acid such as 4-methylhexahydrophthalic acid),
  • Typical semi-aromatic polyamides include dicarboxylic acid components including an aromatic dicarboxylic acid component (particularly, an aromatic dicarboxylic acid component including at least a terephthalic acid component) and a diamine component [an aliphatic diamine component (for example, hexamethylenediamine). And diamine components containing at least a non-aromatic diamine component such as nonamethylene diamine] and the like, and polyamides such as polyphthalamide (PPA).
  • PPA polyphthalamide
  • the aromatic dicarboxylic acid component and / or the diamine component may be used alone or in combination of two or more.
  • the aromatic dicarboxylic acid component may be a combination of a terephthalic acid component and another aromatic dicarboxylic acid component (such as an isophthalic acid component).
  • an aromatic dicarboxylic acid component and a non-aromatic dicarboxylic acid component may be combined.
  • the ratio of the aromatic dicarboxylic acid component to the entire dicarboxylic acid component is, for example, 30 mol% or more (for example, 35 to 99 mol%), preferably May be 40 mol% or more (for example, 45 to 97 mol%), more preferably 50 mol% or more (for example, 60 to 95 mol%).
  • the liquid crystal polyester (liquid crystal polymer) may be a wholly aromatic liquid crystal polymer or a semi-aromatic liquid crystal polymer, and particularly preferably a wholly aromatic liquid crystal polymer.
  • liquid crystal polyester only needs to have at least a liquid crystal polyester unit, and a liquid crystal polyester (for example, liquid crystal polyester ether, liquid crystal polyester) having other units (or bonds such as an ether unit, an amide unit, and a carbonate unit). Amide, liquid crystal polyester carbonate, etc.).
  • a liquid crystal polyester for example, liquid crystal polyester ether, liquid crystal polyester having other units (or bonds such as an ether unit, an amide unit, and a carbonate unit). Amide, liquid crystal polyester carbonate, etc.).
  • an aromatic hydroxycarboxylic acid component for example, hydroxybenzoic acid (p-hydroxybenzoic acid, m-hydroxybenzoic acid, o-hydroxybenzoic acid) Hydroxyarenecarboxylic acids such as hydroxynaphthoic acid (eg 6-hydroxy-2-naphthoic acid, 5-hydroxy-2-naphthoic acid), hydroxyphenylbenzoic acid (eg 4′-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid) etc.], aromatic dicarboxylic acid component [eg benzene diol (eg terephthalic acid, isophthalic acid etc.), naphthalene dicarboxylic acid (eg 2,6-naphthalenedicarboxylic acid, etc.
  • aromatic dicarboxylic acid component eg benzene diol (eg terephthalic acid, isophthalic acid etc.), naphthalene dicarbox
  • aromatic diol component eg, benzene diol (eg, hydroquinone, etc.) ), Dihydroxynaphthalene (eg, 2,6-dihydroxynaphthalene, etc.), dihydroxybiphenyl (eg, 4,4′-hydroxybiphenyl, etc.), dihydroxydiphenyl ether (eg, 4,4′-dihydroxydiphenyl ether), etc.], aromatic hydroxy An amine component [eg, aminophenol (eg, p-aminophenol), aminonaphthol (eg, 4-amino-1-naphthol), aminohydroxybiphenyl (eg, 4-
  • aromatic component may have a substituent (for example, an alkyl group, an alkoxy group, a halogen atom, etc.).
  • aromatic components include reactive derivatives [eg, compounds in which a hydroxyl group is substituted with an acyloxy group, carboxyl groups in an ester group (eg, alkylcarbonyl group, aryloxycarbonyl group, etc.) or acid halide groups (eg, chloro And a compound substituted with an acylamino group).
  • aromatic components may be used alone or in combination of two or more.
  • the polymerization component usually only needs to contain at least these aromatic components.
  • Non-aromatic components ⁇ for example, aliphatic diol components (for example, C 2-10 such as ethylene glycol and 1,4-butanediol) Alkanediol), polyester components [eg, polyester components containing an aliphatic skeleton such as polyalkylene arylates (eg, poly C 2-4 alkylene C 6-10 arylates such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate), A trifunctional or higher functional component [for example, an aromatic hydroxydicarboxylic acid component (for example, hydroxyisophthalic acid, hydroxynaphthalenedicarboxylic acid, etc.), etc.] may be included. These components may be used alone or in combination of two or more.
  • liquid crystal polyester examples include (i) an aromatic hydroxycarboxylic acid component (for example, hydroxybenzoic acid component), an aromatic dicarboxylic acid component (for example, benzenedicarboxylic acid component, naphthalenedicarboxylic acid, etc.), An aromatic diol component (eg, dihydroxybiphenyl), a polycondensate with at least one component selected from aromatic hydroxyamines and aromatic diamines, (ii) two or more aromatic hydroxycarboxylic acid components [eg, A polycondensation product of a hydroxybenzoic acid component and another aromatic hydroxycarboxylic acid component (for example, a hydroxynaphthoic acid component), (iii) an aromatic hydroxycarboxylic acid component (for example, a hydroxybenzoic acid component), and an aromatic A dicarboxylic acid component (for example, a benzene dicarboxylic acid component, A cover such as dicarboxylic acid) include liquid crystal polyester and
  • the liquid crystal polyester may be usually a liquid crystal polyester having at least a hydroxybenzoic acid component as a polymerization component, and in particular, a liquid crystal polyester having a hydroxybenzoic acid component and another polymerization component as a polymerization component.
  • the ratio of the hydroxybenzoic acid component (4-hydroxybenzoic acid component, etc.) to the entire polymerization component is, for example, 10 to 95 mol%, preferably 20 to 90%. It may be about mol%, more preferably about 30 to 80 mol%.
  • Aromatic polyether ketone resins (polyaryl ether ketone resins) usually contain repeating units composed of an arylene group, an ether group [—O—], and a carbonyl group [—C ( ⁇ O) —]. There are many cases. Such a resin is not particularly limited, and may contain, for example, a repeating unit represented by any of the following formulas (a1) to (a5).
  • Ar represents a divalent aromatic hydrocarbon ring group which may have a substituent
  • Examples of the divalent aromatic hydrocarbon ring group represented by Ar include C 6-10 arylene groups such as phenylene groups (such as o-, m- or p-phenylene groups) and naphthylene groups, biphenylene groups (2 , 2'-biphen
  • aromatic hydrocarbon ring groups are substituted with, for example, a halogen atom, an alkyl group (a linear or branched C 1-4 alkyl group such as a methyl group), a haloalkyl group, a hydroxyl group, an alkoxy group ( Linear or branched C 1-4 alkoxy group such as methoxy group), mercapto group, alkylthio group, carboxyl group, sulfo group, amino group, N-substituted amino group, cyano group, etc. Good.
  • the types of Ar may be the same as or different from each other.
  • Desirable Ar is a phenylene group (for example, p-phenylene group) or a biphenylene group (for example, 4,4'-biphenylene group).
  • Examples of the resin having the repeating unit (a1) include polyether ketone (for example, “PEEK-HT” manufactured by Victrex).
  • Examples of the resin having the repeating unit (a2) include polyether ketone ketone (for example, “PEKK” manufactured by Arkema + Oxford Performance Material).
  • polyether ether ketone for example, “VICTREX PEEK” manufactured by Victrex, “Vestakeep (registered trademark)” manufactured by Evonik, “Vestakeep-J” manufactured by Daicel-Evonik, Solvay®Advanced Examples include “Ketaspire (registered trademark)” manufactured by Polymers, and polyether-diphenyl-ether-phenyl-ketone-phenyl (for example, “Kadel (registered trademark)” manufactured by Solvay Advanced Polymers).
  • the resin having the repeating unit (a4) include polyether ketone ether ketone ketone (for example, “VICTREX ST” manufactured by Victrex).
  • resin having the repeating unit (a5) include polyether ether ketone ketone.
  • the ether segment imparts flexibility to the molecular chain
  • the ketone segment imparts rigidity to the molecular chain, so the more the ether segment, the faster the crystallization rate and the higher the crystallinity that can ultimately be reached. As the number of segments increases, the glass transition temperature and melting point tend to increase.
  • aromatic polyetherketone resins having any one of the repeating units (a1) to (a3), particularly the balance between the high glass transition temperature and the melting point and the high crystallization rate. From the viewpoint of superiority, an aromatic polyetherketone resin (for example, polyetheretherketone) having a repeating unit (a3) is preferable.
  • aromatic polyether ketone resin commercially available products as described above may be used, and a conventional method (for example, a method of condensing an aromatic diol component and an aromatic dihalide component, an aromatic monohalide monool, or the like). You may utilize what was synthesize
  • aromatic diol component examples include dihydroxybenzene (such as hydroquinone) and dihydroxybenzophenone (such as 4,4'-dihydroxybenzophenone).
  • aromatic dihalide component examples include dihalobenzophenone (such as 4,4'-difluorobenzophenone and 4,4'-dichlorobenzophenone).
  • aromatic monohalide monool component examples include halo-hydroxybenzophenone (such as 4-fluoro-4'-hydroxybenzophenone).
  • the condensation reaction may be performed in the presence of a base and / or a solvent.
  • the base include alkali metal salts such as alkali metal carbonates such as (anhydrous) potassium carbonate.
  • the solvent include high boiling point solvents such as diphenyl sulfone and sulfolane.
  • the reaction temperature may be, for example, about 150 to 400 ° C., preferably about 200 to 350 ° C.
  • the reaction product can be separated and purified by conventional separation means such as filtration, concentration, crystallization, chromatography and the like.
  • the reaction product may be washed and dried as necessary.
  • the cleaning solvent include water, alcohols (such as methanol and ethanol), ketones (such as acetone), and mixed solvents thereof.
  • the solid reaction product may be pulverized or classified to adjust the particle size.
  • the terminal group (such as a halogen atom) of the reaction product may be modified with, for example, an alkali sulfonate group (such as a lithium sulfonate group, a sodium sulfonate group, or a potassium sulfonate group) from the viewpoint of adjusting the crystallization temperature.
  • an alkali sulfonate group such as a lithium sulfonate group, a sodium sulfonate group, or a potassium sulfonate group
  • the number average molecular weight of the thermoplastic resin is not particularly limited.
  • it is 5,000 or more (for example, 5,000 to 1,000,000), preferably 8 in terms of polystyrene.
  • 5,000 or more for example, 10,000 to 500,000
  • more preferably 15,000 or more for example, 20,000 to 100,000.
  • the glass transition temperature (Tg) and melting point of the thermoplastic resin are not particularly limited and can be appropriately selected according to the type of the resin.
  • the glass transition temperature is 60 ° C. or higher (for example, 65 to 250 ° C.), preferably 70 ° C. or higher ( For example, it may be 85 to 230 ° C.), more preferably 80 ° C. or higher (for example, 85 to 200 ° C.), particularly 100 ° C. or higher.
  • the glass transition temperature (Tg) of the aromatic polyetherketone resin may be, for example, 100 ° C. or higher, preferably 120 to 200 ° C., more preferably about 140 to 180 ° C.
  • the melting point is selected from the range of 150 ° C. or higher (eg, 180 to 450 ° C.). Preferably, it may be 200 ° C. or higher (for example, 230 to 430 ° C.), more preferably 250 ° C. or higher (for example, 270 to 400 ° C.).
  • the melting point of the aromatic polyetherketone resin may be, for example, about 300 ° C. or more, preferably about 310 to 400 ° C., more preferably about 320 to 380 ° C.
  • Glass transition temperature and melting point can be measured by, for example, differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the melt viscosity of the thermoplastic resin is not particularly limited, it may be preferable that the thermoplastic resin has an appropriate viscosity from the viewpoint of efficiently dispersing the fluorine-containing resin and obtaining a sufficient light resistance improvement function. is there.
  • Va is, for example, 50 to 4000 Pa ⁇ s, preferably 100 to 3000 Pa ⁇ s. More preferably, it may be about 150 to 2500 Pa ⁇ s, particularly about 200 to 2000 Pa ⁇ s.
  • the melt viscosity can be measured using a conventional apparatus such as a capillary rheometer.
  • thermoplastic resin and the fluorine-containing resin it may be preferable to appropriately adjust the melt viscosity ratio between the thermoplastic resin and the fluorine-containing resin.
  • a predetermined temperature of the fluorine-containing resin for example, a temperature at the time of melt mixing such as a cylinder temperature in an extruder (eg, 390 ° C.)] and a melt viscosity at a shear rate of 60 s ⁇ 1 is Vb
  • the combination of both components may be selected so as to be about 0.3 / 1 to 6/1 (for example, 0.3 / 1 to 5/1).
  • the fluorine-containing resin is not particularly limited as long as it is a fluorine-containing resin (or fluorine-substituted resin), and examples thereof include a resin (polymer) having a fluorine-containing monomer as a polymerization component.
  • resin having a fluorine-containing monomer as a polymerization component include a fluorine-containing monomer alone or a copolymer, a copolymer of a fluorine-containing monomer and a copolymerizable monomer, and the like.
  • fluorine-containing monomers examples include fluorinated olefins [or fluorine-containing olefins or fluorine-substituted olefins such as fluorinated chain olefins such as vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
  • fluorinated vinyl ethers [or fluorine-containing vinyl ethers or fluorine-substituted vinyl ethers, such as Fluorinated alkyl vinyl ethers such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether) (eg, fluorinated C 1-6 alkyl vinyl ether, preferred Or fluorinated C 1-4 alkyl vinyl ether, more preferably perfluoro C 1-4 alkyl vinyl ether)], fluorinated allyl ether [or fluorine-containing allyl ether or fluorine-substituted allyl ether such as perfluoro (alkyl allyl ether).
  • Fluorinated alkyl allyl ethers such as fluorinated C 1-6 alkyl allyl ether, preferably fluorinated C 1-4 alkyl allyl ether, more preferably perfluoro C 1-4 alkyl allyl ether]], fluorine And dioxole-containing monomers [for example, 2,2-bis (trifluoromethyl) -4,5-difluoro-1,3-dioxole and the like] and the like.
  • Fluorine-containing monomers may be used alone or in combination of two or more.
  • perfluorinated monomers such as perfluoroolefins (e.g., tetrafluoroethylene, perfluoro C 2-4 olefin such as hexafluoropropylene), perfluorovinyl ethers [e.g., perfluoro (propyl vinyl) Perfluoro (C 1-6 alkyl vinyl ether) and the like].
  • perfluoroolefins e.g., tetrafluoroethylene, perfluoro C 2-4 olefin such as hexafluoropropylene
  • perfluorovinyl ethers e.g., perfluoro (propyl vinyl) Perfluoro (C 1-6 alkyl vinyl ether) and the like.
  • the fluorine-containing monomer may be composed of a perfluoromonomer.
  • the ratio of the perfluoromonomer to the whole fluorine-containing monomer can be selected from the range of 10% by weight or more (for example, 20% by weight or more), for example, 30% by weight or more (for example, 40% by weight or more), Preferably, it may be 50% by weight or more (eg, 60% by weight or more), more preferably 70% by weight or more (eg, 75% by weight or more), particularly 80% by weight or more (eg, 90% by weight or more).
  • the copolymerizable monomer (other copolymerizable monomer, copolymerizable monomer not containing fluorine) is not particularly limited as long as it can be copolymerized.
  • olefins for example, chain olefins such as ethylene and propylene, etc. (For example, C 2-6 olefin, preferably C 2-4 olefin)], halogenated olefins other than fluorine (for example, chloride or bromide C 2-4 olefins such as vinyl chloride and vinyl bromide), and the like.
  • the copolymerizable monomers may be used alone or in combination of two or more.
  • the ratio of the copolymerizable monomer is, for example, 30 parts by weight or less (for example, 0.01 to 30 parts by weight) with respect to 100 parts by weight of the fluorine-containing monomer. Part), preferably 20 parts by weight or less (for example, 0.03 to 15 parts by weight), more preferably 10 parts by weight or less (for example, 0.05 to 5 parts by weight).
  • Typical fluorine-containing resins include polyfluorinated olefins (eg, polytetrafluoroethylene), fluorinated olefin copolymers ⁇ eg, fluorinated olefin copolymers [eg, tetrafluoroethylene and hexafluoropropylene Copolymers of tetrafluoroethylene and other fluorinated olefins (particularly perfluoroolefins, preferably perfluoroC 3-4 olefins) such as copolymers], copolymers of fluorinated olefins and fluorinated vinyl ethers [For example, tetrafluoroethylene and fluorinated vinyl ether such as a copolymer of tetrafluoroethylene and perfluoro (propyl vinyl ether) (particularly perfluoro (alkyl vinyl ether), preferably perfluoro (C 1-6 alkyl vinyl ether))
  • fluorine-containing resins containing tetrafluoroethylene as a polymerization component such as polytetrafluoroethylene, tetrafluoroethylene and other fluorinated olefins (particularly perfluoroolefin, preferably perfluoroC 3-4 olefin)
  • a copolymer of tetrafluoroethylene and a fluorinated vinyl ether particularly perfluoro (alkyl vinyl ether), preferably perfluoro (C 1-6 alkyl vinyl ether)
  • tetrafluoroethylene and other fluorinated olefins Copolymer of (especially perfluoroolefin, preferably perfluoro C 3-4 olefin) and fluorinated vinyl ether (particularly perfluoro (alkyl vinyl ether), preferably perfluoro (C 1-6 alkyl vinyl ether))
  • preferable fluorine-containing resins include thermoplastic fluorine-containing resins (or heat-meltable fluorine resins). Such thermoplastic fluororesin does not contain polytetrafluoroethylene. The thermoplastic fluorine-containing resin is easily dispersed (finely dispersed) in a non-fluorinated thermoplastic resin with a relatively small particle size, or the light resistance improving function is efficiently imparted to the non-fluorinated thermoplastic resin (or Expression).
  • particularly preferred fluorine-containing resins include tetrafluoroethylene copolymers such as copolymers of tetrafluoroethylene and other fluorinated olefins, copolymers of tetrafluoroethylene and fluorinated vinyl ethers. And copolymers of tetrafluoroethylene, other fluorinated olefins, and fluorinated vinyl ethers.
  • the proportion of tetrafluoroethylene is 30% by weight or more (for example, the total amount of tetrafluoroethylene copolymer (or the total amount of tetrafluoroethylene and non-tetrafluoroethylene monomer) (for example, 40 to 99.9% by weight), for example, 50% by weight or more (eg 55 to 99.5% by weight), preferably 60% by weight or more (eg 65 to 99% by weight), more preferably May be 70% by weight or more (for example, 75 to 98% by weight), particularly 80% by weight or more (for example, 85 to 95% by weight).
  • the fluorine-containing resin may be a surface-treated resin (for example, plasma treatment, fluorine gas treatment, ammonia treatment, etc.).
  • the melting point is not particularly limited, but is, for example, about 400 ° C. or less (eg, 200 to 380 ° C.), preferably about 230 to 350 ° C. (eg, 250 to 300 ° C.). Also good.
  • the fluorine-containing resin may be a resin that melts at the melting temperature of the non-fluorinated thermoplastic resin.
  • the ratio (addition ratio) of the fluorine-containing resin can be selected from a range of about 0.1 to 300 parts by weight (for example, 0.5 to 200 parts by weight) with respect to 100 parts by weight of the thermoplastic resin.
  • the amount may be about 150 parts by weight, preferably 3 to 100 parts by weight, more preferably 5 to 90 parts by weight, particularly 7 to 80 parts by weight (for example, 10 to 70 parts by weight).
  • the ratio (addition ratio) of the fluorine-containing resin is, for example, 20 parts per 100 parts by weight of the thermoplastic resin. Or less (eg 1 to 18 parts by weight), preferably 15 parts by weight or less (eg 2 to 12 parts by weight), more preferably 10 parts by weight or less (eg 3 to 8 parts by weight). it can.
  • the fluorine-containing resin is in the form of a resin, even if it is in a relatively large proportion, the light resistance improving effect can be obtained efficiently without causing bleeding. Therefore, in the case where it is preferable to positively impart the properties derived from the fluorine-containing resin to the thermoplastic resin, the use ratio of the fluorine-containing resin is 20 parts by weight or more (for example, 100 parts by weight of the thermoplastic resin). 20 to 200 parts by weight), preferably 25 parts by weight or more (for example, 27 to 150 parts by weight), more preferably about 30 parts by weight or less (for example, 35 to 100 parts by weight).
  • the volume ratio of the fluorine-containing resin is based on the total amount of the non-fluorinated thermoplastic resin (or the continuous phase described later), the fluorine-containing resin (or the dispersed phase described later) and the inorganic white pigment. And can be selected from the range of about 0.1 to 90% (for example, 0.3 to 80%), for example, 0.5 to 70% (for example, 0.7 to 60%), preferably 1 to 50%. (For example, 1.5 to 40%), more preferably about 2 to 35% (for example, 3 to 30%).
  • the resin composition of the present invention may have a phase separation structure.
  • any of the thermoplastic resin and the fluorine-containing resin may form a continuous phase or a dispersed phase. Whether to form a continuous phase or a dispersed phase is determined by the type of thermoplastic resin and the addition ratio (mixing ratio) of the fluorine-containing resin.
  • the thermoplastic resin forms the continuous phase. (Or configuration), and the fluorine-containing resin may form (or configure) a dispersed phase.
  • the dispersed phase may have an isotropic shape or an anisotropic shape.
  • the average particle size of the dispersed phase is, for example, 300 ⁇ m or less (for example, 0.01 to 250 ⁇ m), preferably 200 ⁇ m or less (for example, 0.03 to 150 ⁇ m), and more preferably 100 ⁇ m or less (for example, 0.05 to 70 ⁇ m). It may be. In particular, depending on the type of resin, it may be preferable to reduce (that is, finely disperse) the average particle size of the dispersed phase in order to obtain an effect of improving light resistance efficiently.
  • the average particle size of the dispersed phase can be selected from a range of 30 ⁇ m or less (for example, 10 ⁇ m or less), 5 ⁇ m or less, for example, 3 ⁇ m or less (for example, 2 ⁇ m or less), preferably 1 ⁇ m or less (for example, 0.1 ⁇ m or less). 7 ⁇ m or less), more preferably 0.6 ⁇ m or less (eg, about 0.01 to 0.5 ⁇ m), 0.5 ⁇ m or less, preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less. May be.
  • the maximum particle size of the dispersed phase is, for example, 4 ⁇ m or less, preferably 3 ⁇ m or less (for example, 2 ⁇ m or less), more preferably 1 ⁇ m or less (for example, 0.8 ⁇ m or less). There may be.
  • the average interparticle distance of the dispersed phase (for example, fluorine-containing resin) can be selected from a range of about 200 ⁇ m or less (for example, 150 ⁇ m or less, preferably 100 ⁇ m or less), usually 30 ⁇ m or less (for example, 20 ⁇ m or less). 10 ⁇ m or less (for example, 7 ⁇ m or less), preferably 5 ⁇ m or less (for example, 0.01 to 4 ⁇ m), more preferably 3 ⁇ m or less (for example, 0.1 to 2.5 ⁇ m), particularly 2 ⁇ m or less (for example, 0.2 to 0.2 ⁇ m). 1.5 ⁇ m).
  • the effect of improving the light scattering property also acts, so it is even more efficient. In some cases, an effect of improving light resistance may be obtained.
  • the particle size and interparticle distance (and volume ratio) of the dispersed phase are determined by using a sheet formed of the resin composition in a conventional apparatus [transmission electron microscope (TEM), scanning electron microscope (SEM), laser microscope. , Atomic force microscope (AFM), etc.], and the obtained image can be measured by binarizing with an optical analyzer.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • AFM Atomic force microscope
  • inorganic white pigments examples include, for example, oxides [for example, metal oxides containing at least a Group 4 metal of the periodic table as a metal component (for example, titanium oxide) , Zirconium oxide, etc.), metal oxides such as zinc oxide], sulfides (eg, metals such as zinc sulfide), carbonates (eg, calcium carbonate, barium carbonate, etc.), sulfates (eg, barium sulfate, etc.), A composite white pigment (such as lithopone) may be used. These inorganic white pigments may be used alone or in combination of two or more.
  • oxides for example, metal oxides containing at least a Group 4 metal of the periodic table as a metal component (for example, titanium oxide) , Zirconium oxide, etc.), metal oxides such as zinc oxide], sulfides (eg, metals such as zinc sulfide), carbonates (eg, calcium carbonate, barium carbonate, etc.), sulfates
  • titanium oxide is particularly preferable. Titanium oxide seems to have a particularly high effect of improving light resistance when combined with a fluorine-containing resin. Therefore, the inorganic white pigment may be composed of at least titanium oxide.
  • titanium oxide examples include titanium monoxide (TiO), titanium dioxide (TiO 2 ), and dititanium trioxide (Ti 2 O 3 ). In the present invention, different titanium oxides may be combined.
  • the crystal form (crystal form) of titanium oxide may be any of rutile, anatase, and brookite.
  • rutile type titanium oxide may be suitably used.
  • An inorganic white pigment for example, an oxide such as titanium oxide
  • a surface treatment agent for example, an oxide such as titanium oxide
  • Surface treatment can suppress the reactivity (or activity) of titanium oxide, improve dispersibility in thermoplastic resins, and as a white pigment, and more efficiently as a light resistance improver in combination with fluorine-containing resins Easy to function.
  • the surface treatment agent examples include metal oxides [for example, silica, alumina, zinc oxide and the like (in the case of titanium oxide surface treatment agents, non-titanium metal oxides)], organic surface treatment agents [for example, coupling agents ( For example, silane coupling agents, titanium coupling agents, etc.), organic acids, alcohols, siloxane compounds, etc.]. These surface treatment agents may be used alone or in combination of two or more. In particular, the surface treatment agent may be composed of at least a metal oxide (such as silica).
  • the ratio of the surface treatment agent is preferably 30% by weight or less (eg, 0.1 to 25% by weight), preferably May be about 20% by weight or less (eg, 0.5 to 18% by weight), more preferably about 15% by weight or less (eg, 1 to 12% by weight). 15% by weight, preferably about 3 to 10% by weight).
  • the shape of the inorganic white pigment is not particularly limited, and may be particulate (including spherical), fibrous (or needle or rod), plate, or the like. A preferred shape is particulate.
  • the average particle size (average primary particle size) can be selected from a range of, for example, about 5 to 5000 nm (for example, 10 to 3000 nm), preferably 30 to 1000 nm. May be about 50 to 800 nm (for example, 80 to 750 nm), more preferably about 100 to 700 nm, particularly about 150 to 500 nm, and usually about 100 to 1000 nm (for example, 200 to 700 nm).
  • the ratio of the inorganic white pigment can be selected from a range of about 0.5 to 300 parts by weight (for example, 0.7 to 250 parts by weight) with respect to 100 parts by weight of the thermoplastic resin. 3 to 150 parts by weight, more preferably 5 to 120 parts by weight, particularly 10 to 100 parts by weight (eg 12 to 80 parts by weight), or 15 to 200 parts by weight (eg 20 to 20 parts by weight). 150 parts by weight, preferably 25 to 100 parts by weight). In addition, it is easy to maintain the viscosity of a composition moderately by making addition amount into such a range, and it is advantageous at the point of moldability.
  • the ratio of the inorganic white pigment can be selected from a range of about 0.1 to 250 parts by weight (for example, 0.3 to 200 parts by weight) with respect to 100 parts by weight of the total amount of the thermoplastic resin and the fluorine-containing resin.
  • 0.5 to 200 parts by weight preferably 1 to 150 parts by weight, more preferably 3 to 120 parts by weight, especially 5 to 100 parts by weight (for example, 7 to 80 parts by weight). It may be about 200 parts by weight (for example, 15 to 150 parts by weight, preferably 20 to 100 parts by weight).
  • the proportion of the inorganic white pigment is, for example, 0.05 to 30 parts by weight (for example, 0.07 to 25 parts by weight), preferably 0.1 to 20 parts by weight with respect to 1 part by weight of the fluorine-containing resin. Further, it may be 0.2 to 15 parts by weight (for example, 0.3 to 12 parts by weight), particularly 0.5 to 10 parts by weight (for example, 0.7 to 8 parts by weight).
  • the volume ratio of the inorganic white pigment is, for example, 0.1 to 50% (for example, 0.5 to 45%) with respect to the total amount of the non-fluorinated thermoplastic resin, the fluorine-containing resin, and the inorganic pigment, Preferably, it may be about 1 to 40% (for example, 1.5 to 35%), more preferably about 2 to 30% (for example, 3 to 25%).
  • the resin composition of the present invention may further contain a reinforcing material (reinforcing agent).
  • the reinforcing material may be any of a fibrous shape, a needle shape (whisker), a particle shape, a plate shape, and the like, and particularly preferably a fibrous shape or a needle shape.
  • fibrous filler examples include inorganic fibers (for example, glass fibers, carbon fibers, boron fibers, activated carbon fibers, aluminosilicate fibers, aluminum oxide fibers, silicon carbide fibers, metal fibers, potassium titanate fibers, etc.), organic Examples thereof include fibers (for example, aramid fibers, liquid crystal polyester fibers, etc.).
  • acicular filler examples include silicate (such as wollastonite), potassium titanate whisker, aluminum borate whisker, aluminum oxide whisker, and calcium carbonate whisker.
  • glass fibers and needle fillers may be suitably used.
  • glass fiber from the viewpoint of maintaining whiteness, glass fiber, wollastonite (calcium metasilicate), potassium titanate whisker, aluminum borate whisker, or the like may be preferably used.
  • wollastonite calcium metasilicate
  • potassium titanate whisker aluminum borate whisker, or the like
  • These reinforcing materials are particularly suitable from the viewpoint of light resistance in a combination with a non-fluorinated thermoplastic resin, a fluorine-containing resin and an inorganic white pigment. These reinforcing materials are also suitable from the viewpoint of maintaining the rigidity and strength of the thin-walled portion.
  • the reinforcing material may be surface-treated with a surface treatment agent for the purpose of improving dispersibility with respect to the thermoplastic resin.
  • a surface treatment agent for the purpose of improving dispersibility with respect to the thermoplastic resin.
  • the surface treatment agent include the same surface treatment agents as described above ⁇ for example, organic surface treatment agents [for example, coupling agents (for example, silane coupling agents, titanium coupling agents, etc.)], resins (for example, acrylic resins). , Urethane resin, epoxy resin, etc.)] and the like ⁇ .
  • the surface treatment agents may be used alone or in combination of two or more.
  • Enhancers may be used alone or in combination of two or more.
  • the ratio of the reinforcing material can be selected from a range of about 0.5 to 200 parts by weight (for example, 0.7 to 150 parts by weight) with respect to 100 parts by weight of the thermoplastic resin, for example, 1 to 100 parts by weight, preferably May be from 3 to 80 parts by weight, more preferably from 5 to 60 parts by weight, especially from about 10 to 50 parts by weight.
  • the ratio of the reinforcing agent can be selected from a range of about 0.3 to 150 parts by weight (for example, 0.5 to 120 parts by weight) with respect to 100 parts by weight of the total amount of the thermoplastic resin and the fluorine-containing resin. It may be about 100 to 100 parts by weight, preferably 2 to 80 parts by weight, more preferably 3 to 60 parts by weight, particularly about 5 to 50 parts by weight (for example, 8 to 40 parts by weight).
  • the resin composition of the present invention may further contain magnesium hydroxide.
  • magnesium hydroxide By using magnesium hydroxide in combination, discoloration (yellowing, etc.), decrease in whiteness, etc. can be effectively suppressed.
  • the shape of magnesium hydroxide is not limited, but may be in particular particulate.
  • the average particle diameter (average primary particle diameter) of the particulate magnesium hydroxide is not particularly limited, but is, for example, about 0.01 to 100 ⁇ m, preferably 0.05 to 50 ⁇ m, and more preferably about 0.1 to 30 ⁇ m. Usually, it may be about 0.1 to 5 ⁇ m.
  • the proportion of magnesium hydroxide is, for example, from 0.1 to 50 parts by weight, preferably from 0.3 to 40 parts by weight, more preferably from 0.5 to 30 parts by weight, particularly 1 to 100 parts by weight of the thermoplastic resin. It may be about 20 parts by weight.
  • the proportion of magnesium hydroxide is, for example, 0.05 to 40 parts by weight, preferably 0.1 to 30 parts by weight, and more preferably 0.1 to 100 parts by weight of the total amount of the thermoplastic resin and the fluorine-containing resin. It may be 3 to 25 parts by weight, particularly about 0.5 to 20 parts by weight.
  • the resin composition of the present invention may contain other additives as long as the effects of the present invention are not impaired.
  • other additives include stabilizers (heat stabilizers, light stabilizers, etc.), plasticizers, lubricants, and the like. These other additives can be used alone or in combination of two or more.
  • the manufacturing method of the resin composition of this invention is not specifically limited, Thermoplastic resin, fluorine-containing resin, an inorganic white pigment, [Further, other components (reinforcing material, magnesium hydroxide, etc.) ] And can be manufactured.
  • the fluorine-containing resin may be mixed and dispersed in the thermoplastic resin.
  • the resin composition may be usually prepared by melt-kneading each component.
  • each component is premixed by a mixer (a tumbler, a V-type blender, a Henschel mixer, a Nauta mixer, a ribbon mixer, a mechanochemical device, an extrusion mixer, etc.) as necessary, and then various kneaders (for example, melt kneading (or melt mixing) is often performed with a kneader, a single or twin screw extruder, a Banbury mixer, a mixing roll, and the like.
  • the method to supply to a kneading machine is not specifically limited, All the structural components may be supplied to the same supply port at once, and you may supply a structural component from a different supply port, respectively.
  • white inorganic pigments and reinforcing materials, magnesium hydroxide, etc. are added (mixed and blended) from one or more side feeders to a mixture (mixed system) of a thermoplastic resin and a fluorine-containing resin. May be.
  • the mixing or kneading temperature may be at least a temperature at which the thermoplastic resin can be melted (particularly, a temperature at which the thermoplastic resin and the fluorine-containing resin can be melted). It can be selected from the range above (for example, 130 to 500 ° C.), preferably 150 ° C. or more (for example, 180 to 450 ° C.), more preferably 200 ° C. or more (for example, 250 to 400 ° C.).
  • the mixing temperature may be, for example, about 300 to 450 ° C., preferably about 350 to 400 ° C.
  • the stirring speed may be, for example, about 150 to 500 rpm, preferably about 200 to 400 rpm (for example, 250 to 350 rpm).
  • the melt mixing (melt kneading) time is not particularly limited, but may be, for example, about 0.5 to 5 minutes.
  • the molten mixture (melt kneaded product) may be pelletized by conventional pelletizing means (such as a pelletizer).
  • the present invention also includes a molded body formed from the resin composition.
  • the shape of the molded body may be, for example, a two-dimensional shape such as a film shape or a sheet shape, or a three-dimensional shape such as a rod shape, a pipe shape, or a plate shape.
  • the molded body is formed by a conventional method, for example, extrusion molding, injection molding, press molding, or the like.
  • the cylinder temperature can be selected from a range equivalent to the melt mixing temperature.
  • Titanium oxide Titanium dioxide, manufactured by DuPont, Ti-Pure (R) Titanium Dioxide Pigment-Paint Coatings-DryGrades R-105, surface treatment (silica, alumina dimethylsiloxane treatment) (reinforcing material)
  • Glass fiber manufactured by Nippon Electric Glass Co., Ltd., ECS03T-779H (fiber length 3 mm, fiber diameter 10 ⁇ m) [Tensile strength, tensile fracture strain] Tensile strength and tensile fracture strain were measured according to JIS K7113.
  • Light resistance test Using a metal halide light resistance tester (Super Winmini SWM-03FS manufactured by Daipura Wintes Co., Ltd.) for 200 hours, 120 ° C, irradiation intensity of 160 W / m 2 (strength at 300 to 400 nm) Light irradiation was performed.
  • a metal halide light resistance tester Super Winmini SWM-03FS manufactured by Daipura Wintes Co., Ltd.
  • Heat resistance test The heat discoloration test was performed in an oven in air at 180 ° C. for 6 hours.
  • the reflectivity was measured at 500 nm with the same colorimeter.
  • a press sheet formed from the resin composition by hot pressing at a predetermined temperature (380 ° C. for PEEK, 340 ° C. for PPA, 350 ° C. for LCP) is fixed to a sample holder of an ultramicrotome (manufactured by Leica Corporation, ULTRACUT S).
  • the inside of the chamber was cooled to ⁇ 80 ° C. with liquid nitrogen, and a thin slice having a thickness of 90 nm was cut out.
  • the obtained thin slice was collected with a platinum ring to which a 20% ethanol solution was attached, and attached to a copper sheet mesh (200A manufactured by Oken Shoji Co., Ltd.).
  • Examples 1 to 5 and Comparative Example 1 After pre-mixing PEEK and fluorine-containing resin at the blending ratio (weight ratio, volume ratio) shown in the following table, the mixture was put into the main hopper of a twin-screw kneading extruder, and the conditions were a cylinder temperature of 370 ° C. and a screw rotation speed of 300 rpm. The mixture was melt-kneaded below, and added with titanium oxide from the side feeder and extruded to obtain a pellet-shaped resin composition.
  • the obtained resin composition pellets were put into an injection molding machine (cylinder temperature 380 ° C.) equipped with a JIS test piece preparation mold (die temperature 200 ° C.), injection molded, and various JIS test pieces. And various characteristics were measured.
  • Example 6 and Comparative Example 2 After pre-mixing PEEK and fluorine-containing resin at the blending ratios (weight ratio, volume ratio) shown in the following table, the mixture was put into the main hopper of a twin-screw kneading extruder, and the conditions were a cylinder temperature of 370 ° C. and a screw rotation speed of 300 rpm. Under melt melting and kneading, titanium oxide and glass fiber were added from the side feeder and extruded to obtain a pellet-shaped resin composition.
  • the obtained resin composition pellets were put into an injection molding machine (cylinder temperature 380 ° C.) equipped with a JIS test piece preparation mold (die temperature 200 ° C.), injection molded, and various JIS test pieces. And various characteristics were measured.
  • Example 7 and Comparative Example 3 After pre-mixing PPA and fluorine-containing resin at the blending ratios (weight ratio, volume ratio) shown in the table below, the mixture is put into the main hopper of the twin-screw kneading extruder, and the cylinder temperature is 340 ° C. and the screw rotation speed is 300 rpm. Under melt melting and kneading, titanium oxide and glass fiber were added from the side feeder and extruded to obtain a pellet-shaped resin composition.
  • the pellets of the resin composition thus obtained were put into an injection molding machine (cylinder temperature 340 ° C.) equipped with a JIS test piece preparation mold (mold temperature 140 ° C.) and injection molded, and various JIS test pieces. And various characteristics were measured.
  • Example 8 and Comparative Example 4 After preliminarily mixing LCP and fluorine-containing resin at the blending ratios (weight ratio, volume ratio) shown in the table below, the mixture was put into the main hopper of the twin-screw kneading extruder, and the conditions were a cylinder temperature of 370 ° C. and a screw rotation speed of 300 rpm. The mixture was melt-kneaded below, and added with titanium oxide from the side feeder and extruded to obtain a pellet-shaped resin composition.
  • the obtained resin composition pellets were put into an injection molding machine (cylinder temperature 350 ° C.) equipped with a JIS test piece preparation mold (mold temperature 80 ° C.) and injection molded, and various JIS test pieces were obtained. And various characteristics were measured.
  • the volume ratio is a volume ratio relative to the total amount of the non-fluorinated thermoplastic resin (PEEK, PPA, LCP) fluorine-containing resin (FEP or PFA) and the inorganic white pigment (titanium oxide).
  • the whiteness degree can be increased by adding an inorganic white pigment (titanium oxide) and a fluorine-containing resin (FEP or PFA) to a non-fluorinated thermoplastic resin (PEEK, PPA, LCP).
  • an inorganic white pigment titanium oxide
  • FEP or PFA fluorine-containing resin
  • PEEK, PPA, LCP non-fluorinated thermoplastic resin
  • a resin composition having a high reflectance was obtained. And it turned out that this composition is maintaining the high whiteness and reflectance even after a light resistance test (and also after a heat test), and is excellent in light resistance (further heat stability). Further, the obtained composition was excellent in mechanical properties.
  • the resin composition of the present invention is composed of a non-fluorinated thermoplastic resin and is excellent in light resistance (or light resistance stability).
  • the resin composition of the present invention can maintain the light resistance improving function even after undergoing a melt mixing process at a high temperature, super engineering plastics (for example, aromatic polyamide, liquid crystal polyester, aromatic polyaryl ketone resin) ) As a resin component.
  • the resin composition (or a molded product thereof) of the present invention can be used for various applications depending on the type of the resin.
  • components such as home appliances, office automation (OA) devices, and mobile devices It can utilize suitably as.
  • OA office automation
  • thin switches such as smartphones, personal computers (notebook type, tablet type, etc.), electronic book readers, digital cameras, etc. Etc. are also suitable.
  • the resin composition (or a molded product thereof) of the present invention has excellent light resistance and can maintain whiteness or reflectance over a long period of time, and therefore is suitable for reflector (or reflector) applications.
  • it is suitable as a reflector application for LEDs that require high heat resistance and light resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 非フッ素系熱可塑性樹脂(例えば、芳香族ポリアミド、液晶ポリエステル、芳香族ポリエーテルケトン樹脂などのスーパーエンジニアリングプラスチック)の耐光性(又は白色度)を向上又は改善する添加剤を提供する。この添加剤を、フッ素含有樹脂と無機系白色顔料(例えば、酸化チタン)で構成する。このようなフッ素含有樹脂は、例えば、テトラフルオロエチレンを重合成分とするフッ素含有樹脂であってもよく、特にテトラフルオロエチレン共重合体(例えば、テトラフルオロエチレンと他のフッ化オレフィンとの共重合体、テトラフルオロエチレンとフッ化ビニルエーテルとの共重合体、テトラフルオロエチレンと他のフッ化オレフィンとフッ化ビニルエーテルとの共重合体から選択された少なくとも1種)であってもよい。

Description

耐光性樹脂組成物およびその成形体
 本発明は、非フッ素系熱可塑性樹脂(例えば、芳香族ポリアミド、液晶ポリエステル、芳香族ポリエーテルケトン樹脂などのスーパーエンジニアリングプラスチック)で構成され、耐光性に優れた(又は耐光性が改善された)樹脂組成物およびその成形体に関する。
 芳香族ポリエーテルケトン樹脂(ポリアリールエーテルケトン樹脂)などのスーパーエンジニアプラスチックは、耐熱性、機械的強度などにおいて、非常に優れた熱可塑性樹脂として知られているが、耐光性に乏しい場合がある。そのため、光が作用する環境下において、種々の樹脂特性において変質が見られる場合が多い。
 このような耐光性を改善する方法としては、汎用の安定剤(光安定剤、酸化防止剤など)の添加などが検討されてきたが、スーパーエンジニアリングプラスチックの融点や成形温度(成形加工温度)は非常に高いため、成形加工の過程において、このような汎用の安定剤が熱分解してしまい、十分な耐光性の改善効果が得られない場合があった。また、単なる熱分解のみならず、安定剤の分解物が樹脂の増粘を引き起こし、熱安定性を低下させることもあった。
 なお、特開2006-274073号公報(特許文献1)には、(A)ポリアリールケトン樹脂70~99質量%および(B)フッ素樹脂30~1質量%を含有し、樹脂組成物中に分散した(B)フッ素樹脂の平均粒子径が0.1~30μmである樹脂組成物が開示されている。そして、この文献には、このような樹脂組成物が、摺動性、耐溶剤性、耐熱性において優れた樹脂成形体を与えると記載されている。
 また、WO2012/005133号公報(特許文献2)には、摺動性及び耐衝撃性の改善を目的として、芳香族ポリエーテルケトン樹脂及びフッ素樹脂を含み、フッ素樹脂がテトラフルオロエチレンとパーフルオロエチレン性不飽和化合物との共重合体であり、芳香族ポリエーテルケトン樹脂とフッ素樹脂との質量比が95:5~50:50であり、フッ素樹脂が芳香族ポリエーテルケトン樹脂中に粒子状に分散しており、フッ素樹脂の平均分散粒子径が3μm以下である樹脂組成物が開示されている。
 一方、発光ダイオード素子(LED:Light Emitting Diode)などの新しい光源が、低電力、高寿命などのメリットを活かして、照明、表示素子などとして需要を拡大しつつある。LEDは、一般に、発光する半導体部、リード線、ハウジングを兼ねたリフレクタ、半導体を封止する透明な封止剤で構成されている。このうち、リフレクタ部分についてはセラミックや耐熱プラスチックなど種々の材料で製品化されているが、セラミックの場合には生産性が問題とされており、一方、耐熱プラスチックの場合には、射出成形工程(330℃、数分間)、導電接着剤や封止剤の熱硬化工程(100~200℃、数時間)、ハンダ付け工程(特に、表面実装技術(SMT)における鉛フリーハンダ(錫-銀-銅アロイ系ハンダなど)使用時のピーク温度260℃以上、数分間)や実際の使用環境下において、変色による光反射率の低下が問題となっている。特に、汎用されている耐熱ポリアミドは加熱により変色しやすく、その光反射率の低下が無視できない。
 そこで、ポリアミド樹脂に、各種添加剤を配合したLEDリフレクタ用ポリアミド樹脂組成物が提案されている[例えば、特開平2-288274号公報(特許文献3)、特許第4892140号公報(特許文献4)、特許第4525917号公報(特許文献5)、特開2011-21128号公報(特許文献6)など]。
 しかし、これまでのLEDの用途は、液晶テレビや室内照明などの極めて出力の小さい製品向けが中心であり、今後は3Dテレビ、ヘッドライトなどの車載用照明、屋外用照明など、より明るさが必要とされる高出力LEDの需要が見込まれる。
 高出力LEDは、こうした高輝度化に加え、高出力化に伴い強く発熱するパッケージも含めたLEDの高耐久性も要求される。このような要請に対し、既存のリフレクタ用組成物では高温下(特に150℃以上)での長期耐久性に難があり、高出力LEDには不向きとされている。
 また、一方で、高出力LED用途で一般的に使用されてきたセラミックス基板は耐熱性があるものの、射出成形できる樹脂基板に比べて生産性に問題があった。
 なお、通常、ポリアミド樹脂よりも耐熱性の高い芳香族ポリエーテルケトン樹脂などは、前記の通り、耐光性に乏しく、物性低下や変色(黄変など)が見られるであろうことが容易に予測できるためか、従来、LEDのリフレクタ用途に用いられていない。
特開2006-274073号公報(特許請求の範囲、段落[0005]) WO2012/005133号公報(請求の範囲、実施例) 特開平2-288274号公報(特許請求の範囲)、 特許第4892140号公報(特許請求の範囲) 特許第4525917号公報(特許請求の範囲) 特開2011-21128号公報(特許請求の範囲)
 従って、本発明の目的は、耐光性に優れた(又は耐光性を改善できる)熱可塑性樹脂(特に、スーパーエンジニアリングプラスチック)組成物を提供することにある。
 本発明の他の目的は、光が作用する環境下においても、白色度(又は反射率)を維持できる樹脂組成物を提供することにある。
 前記特許文献1および2のように、芳香族ポリエーテルケトン樹脂中にフッ素樹脂を分散させる技術が知られているが、摺動性の改善などを目的とするものであった。なお、特許文献2の段落[0049]には、耐候性に優れる旨の記載があるが、フッ素樹脂としての一般的な特性を記載したに過ぎず、また、耐候性と耐光性とは異なる概念である。
 このような中、本発明者らは、前記課題を達成するため鋭意検討した結果、フッ素含有樹脂が、非フッ素系熱可塑性樹脂(例えば、スーパーエンジニアリングプラスチック)に対して、意外なことに耐光性改善機能を付与できること、また、非フッ素系熱可塑性樹脂に、このようなフッ素含有樹脂とともに無機系白色顔料を添加しても、優れた耐光性改善機能を有しているか又はさらに相乗的に優れた耐光性改善機能を付与できるため、光(さらには熱)が作用する環境下において、非フッ素系熱可塑性樹脂(又はその生物)の白色度(又は反射率)を長期に亘って維持できること、さらにはこのような長期に亘る耐光性と白色度を維持できるため、これらの成分を含む樹脂組成物が、特に、リフレクタ用途に好適であることを見出し、本発明を完成した。
 すなわち、本発明の樹脂組成物は、非フッ素系熱可塑性樹脂と、フッ素含有樹脂と、無機系白色顔料とを含む樹脂組成物である。
 非フッ素系熱可塑性樹脂は、スーパーエンジニアリングプラスチック(例えば、ガラス転移温度100℃以上のスーパーエンジニアリングプラスチック)であってもよく、特に、芳香族ポリアミド、液晶ポリエステル、および芳香族ポリエーテルケトン樹脂から選択された少なくとも1種[例えば、芳香族ポリエーテルケトン樹脂(例えば、ポリエーテルエーテルケトン)]であってもよい。
 また、フッ素含有樹脂は、テトラフルオロエチレンを重合成分とするフッ素含有樹脂であってもよい。また、フッ素含有樹脂は、熱可塑性フッ素樹脂(又は熱溶融可能なフッ素樹脂)であってもよい。フッ素含有樹脂は、代表的には、テトラフルオロエチレン共重合体であってもよく、特に、テトラフルオロエチレンと他のフッ化オレフィンとの共重合体(例えば、テトラフルオロエチレンと他のパーフルオロオレフィンとの共重合体)、テトラフルオロエチレンとフッ化ビニルエーテルとの共重合体(例えば、テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重合体)、およびテトラフルオロエチレンと他のフッ化オレフィンとフッ化ビニルエーテルとの共重合体(例えば、テトラフルオロエチレンと他のパーフルオロオレフィンとパーフルオロ(アルキルビニルエーテル)との共重合体)から選択された少なくとも1種であってもよい。
 本発明の樹脂組成物において、各成分の分散形態は特に限定されないが、例えば、フッ素含有樹脂で構成(又は形成)された分散相が、非フッ素系熱可塑性樹脂で構成(又は形成)された連続相に分散した形態であってもよい。このような分散形態において、分散相の平均粒子径(又は平均分散径)は、例えば、3μm以下であってもよい。また、分散相の平均粒子間距離は、例えば、5μm以下であってもよい。
 無機系白色顔料は、例えば、酸化チタン(例えば、表面処理されたルチル型酸化チタン)で構成されていてもよい。
 本発明の樹脂組成物において、各成分の割合は、例えば、非フッ素系熱可塑性樹脂100重量部に対して、フッ素含有樹脂の割合が1~150重量部程度であってもよく、無機系白色顔料の割合が3~150重量部程度であってもよい。また、無機系白色顔料の割合は、フッ素含有樹脂1重量部に対して、0.1~20重量部程度であってもよい。
 本発明の樹脂組成物は、強化材(例えば、繊維状充填剤及び/又は針状充填剤)を含んでいてもよい。また、本発明の樹脂組成物は、水酸化マグネシウムを含んでいてもよい。
 本発明の樹脂組成物は、優れた耐光性と白色度(又は白度)を有しているため、特に、リフレクタ(反射板、反射器)用の樹脂組成物[特に、発光ダイオード素子(LED)のリフレクタ用の樹脂組成物]であってもよい。
 本発明には、前記樹脂組成物で形成された成形体も含まれる。このような成形体は、リフレクタ(特に、LEDのリフレクタ)であってもよい。
 本発明では、非フッ素系熱可塑性樹脂に、フッ素含有樹脂と無機系白色顔料とを組み合わせて添加することにより、非フッ素系熱可塑性樹脂の耐光性(又は耐光安定性)を向上又は改善できる。また、耐光性の向上又は改善に伴い、非フッ素径熱可塑性樹脂における白色度(又は白度)も向上又は改善できる。
 そのため、本発明には、非フッ素系熱可塑性樹脂の耐光性(又は白色度)を向上又は改善するための添加剤であって、フッ素含有樹脂および無機系白色顔料で構成された耐光性向上剤(耐光安定剤又は白色度改善剤)も含まれる。また、本発明には、非フッ素系熱可塑性樹脂に、この耐光性向上剤(又は白色度向上剤)を添加し、非フッ素系熱可塑性樹脂の耐光性(又は白色度)を向上する方法も含まれる。
 さらに、本発明には、非フッ素系熱可塑性樹脂を白色に着色するための着色剤であって、無機系白色顔料とフッ素含有樹脂とで構成された着色剤(白色着色剤、着色剤組成物)も含まれる。さらにまた、本発明には、非フッ素系熱可塑性樹脂に、この着色剤(着色剤組成物)を添加し、非フッ素系熱可塑性樹脂を白色に着色する方法も含まれる。
 なお、このような耐光性向上剤、着色剤およびこれらを用いる方法において、各成分の割合や使用割合は、樹脂組成物における場合と同様である。
 本発明の樹脂組成物は、耐光性に優れた(又は耐光性を改善できる)熱可塑性樹脂組成物(非フッ素系熱可塑性樹脂組成物)である。しかも、このような樹脂組成物は、高温での溶融混合過程を経ても、分解やそれに伴う増粘を引き起こすことがないため、耐光性の向上又は改善機能を維持することができる。そのため、特に、本発明の樹脂組成物は、非フッ素系熱可塑性樹脂の中でも、高温での成形又は加工を要する熱可塑性樹脂、例えば、芳香族ポリアミド、液晶ポリエステル、芳香族ポリエーテルケトン樹脂などのスーパーエンジニアリングプラスチックを樹脂成分とする樹脂組成物として好適である。
 また、本発明の樹脂組成物では、フッ素含有樹脂と無機系白色顔料とを組み合わせても、耐光性を向上又は改善(又はより一層耐光性を向上又は改善)できるため、光が作用する環境下においても、無機系白色顔料由来の白色度や反射率を維持できる。そのため、リフレクタ用途などとして好適である。
 さらに、本発明の樹脂組成物は、非フッ素系熱可塑性樹脂とともに混合するフッ素含有樹脂が樹脂状であるため、非フッ素系熱可塑性樹脂の樹脂特性の低下を抑えることができ、樹脂特性によっては、フッ素含有樹脂由来の優れた特性(さらには白色顔料由来の優れた特性)を非フッ素系熱可塑性樹脂に付与することもできる。しかも、ブリードなどを高いレベルで抑制できる。そのため、本発明の樹脂組成物は、非常に有用性および実用性が高い。
 本発明の樹脂組成物は、非フッ素系熱可塑性樹脂と、フッ素含有樹脂と、無機系白色顔料とで構成されている。
 (非フッ素系熱可塑性樹脂)
 非フッ素系熱可塑性樹脂(フッ素を含有しない熱可塑性樹脂、単に熱可塑性樹脂、樹脂などということがある)としては、フッ素を含有しない樹脂(フッ素含有樹脂の範疇に属しない樹脂)であれば特に限定されず、例えば、非フッ素系ハロゲン含有樹脂(例えば、ポリ塩化ビニル、ポリエン化ビニリデンなどの塩素含有樹脂)、スチレン系樹脂(例えば、ポリスチレン、AS樹脂などのスチレン共重合体)、アクリル系樹脂(例えば、ポリメタクリル酸メチルなど)、オレフィン樹脂[例えば、鎖状オレフィン樹脂(ポリエチレン、ポリプロピレン、ポリメチルペンテンなど)、環状オレフィン樹脂(いわゆるCOP、COCなど)など]、ポリアセタール樹脂、ポリカーボネート樹脂(例えば、芳香族ポリカーボネートなど)、ポリエステル樹脂[例えば、脂肪族ポリエステル樹脂(例えば、ポリ乳酸など)、芳香族ポリエステル樹脂(ポリアリレート、液晶ポリエステルなど)]、ポリアミド樹脂[例えば、脂肪族ポリアミド(ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド11、ポリアミド12など)、芳香族ポリアミドなど]、ポリフェニレンエーテル樹脂(ポリフェニレンエーテル、変性ポリフェニレンエーテルなど)、ポリエーテルケトン樹脂(ポリアリールエーテルケトン樹脂又は芳香族ポリエーテルケトン樹脂など)、ポリスルホン樹脂(ポリスルホン、ポリエーテルスルホンなど)、ポリイミド樹脂(ポリイミド、ポリアミドイミド、ポリエーテルイミドなど)、ポリフェニレンスルフィド樹脂(ポリフェニレンスルフィドなど)、ポリケトンスルフィド樹脂(ポリケトンスルフィドなど)、ポリベンゾイミダゾール樹脂(ポリベンゾイミダゾールなど)などが挙げられる。
 なお、熱可塑性樹脂は、結晶性樹脂であってもよく、非晶性樹脂であってもよい。
 熱可塑性樹脂は、単独で又は2種以上組み合わせてもよい。
 これらの熱可塑性樹脂のうち、エンジニアリングプラスチック(特にスーパーエンジニアリングプラスチック)に分類される樹脂、例えば、ポリアリレート(PAR)、液晶ポリエステル(又は液晶ポリマー、LCP)、芳香族ポリアミド[例えば、半芳香族ポリアミド(芳香族ジカルボン酸成分又は芳香族ジアミン成分を重合成分とするポリアミドなど)、全芳香族ポリアミドなど]、芳香族ポリエーテルケトン樹脂、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリフェニレンスルフィド(PPS)、ポリケトンスルフィド、ポリベンゾイミダゾール(PBI)などが挙げられる。
 これらの中でも、本発明では、芳香族ポリアミド、液晶ポリエステル、および芳香族ポリエーテルケトン樹脂が好ましく、特に、フッ素含有樹脂の分散性の観点から、芳香族ポリエーテルケトン樹脂を好適に使用できる。以下、芳香族ポリアミド、液晶ポリエステル、および芳香族ポリエーテルケトン樹脂について詳述する。
 (芳香族ポリアミド)
 芳香族ポリアミドとしては、重合成分であるジアミン成分およびジカルボン酸成分のうち、少なくとも一方の成分(例えば、ジカルボン酸成分)が芳香族成分であるポリアミドなどが挙げられる。このような芳香族ポリアミドは、全芳香族ポリアミド[例えば、芳香族ジアミン成分(後述の成分など)および芳香族ジカルボン酸成分(後述の成分など)を重合成分とするポリアミド]であってもよく、半芳香族ポリアミド[例えば、ジアミン成分およびジカルボン酸成分のうち、一方の成分(例えば、芳香族ジカルボン酸成分)が芳香族成分を含むポリアミド]であってもよく、特に半芳香族ポリアミドを好適に使用してもよい。
 芳香族ポリアミドを構成するジアミン成分としては、例えば、脂肪族ジアミン成分[アルカンジアミン(例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、メチルペンタンジアミン、2-メチルプロパンジアミン、3-メチルプロパンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ドデカンジアミンなどのC2-14アルカンジアミンなど)など]、脂環族ジアミン成分[例えば、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサンなどのジアミノC5-8シクロアルカン;1,3-ジ(アミノメチル)シクロヘキサン、1,4-ジ(アミノメチル)シクロヘキサン、1,2-ジ(アミノメチル)シクロヘキサンなどのジ(アミノC1-4アルキル)C5-8シクロアルカン;4,4’-ジアミノジシクロヘキシレンメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシレンメタン、4,4’-ジアミノジシクロヘキシレンプロパンなどのジ(アミノC5-8シクロアルキル)C1-4アルカン;イソホロンジアミンなど]、芳香族ジアミン成分[例えば、ベンゼンジアミン(例えば、p-フェニレンジアミンなど)、ナフタレンジアミン(例えば、1,5-ジアミノナフタレンなど)、ジアミノビフェニル(例えば、4,4’-ジアミノビフェニル)、ジ(アミノアルキル)アレーン(例えば、キシリレンジアミンなどのジ(アミノC1-4アルキル)ベンゼンなど]などが挙げられる。ジアミン成分は、単独で又は2種以上組み合わせてもよい。
 芳香族ポリアミドを構成するジカルボン酸成分としては、例えば、脂肪族ジカルボン酸成分(例えば、コハク酸、プロパンニ酸、ブタンニ酸、ペンタンニ酸、アジピン酸、ヘプタンニ酸、オクタンニ酸、ノナンニ酸、デカンニ酸、ドデカンニ酸、ウンデカンニ酸などのC2-20アルカンジカルボン酸)、脂環族ジカルボン酸(例えば、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸などのC5-10シクロアルカンジカルボン酸など)、芳香族ジカルボン酸成分(例えば、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などのC6-10アレーンジカルボン酸など)などが挙げられる。これらのジカルボン酸成分は、単独で又は2種以上組み合わせてもよい。
 代表的な半芳香族ポリアミドとしては、芳香族ジカルボン酸成分(特に、テレフタル酸成分を少なくとも含む芳香族ジカルボン酸成分)を含むジカルボン酸成分と、ジアミン成分[脂肪族ジアミン成分(例えば、ヘキサメチレンジアミン、ノナメチレンジアミンなど)などの非芳香族ジアミン成分を少なくとも含むジアミン成分]とを重合成分とするポリアミド[例えば、ポリフタルアミド(PPA)など]などが含まれる。
 なお、このような半芳香族ポリアミドにおいて、芳香族ジカルボン酸成分及び/又はジアミン成分は単独で又は2種以上組み合わせてもよい。例えば、芳香族ジカルボン酸成分は、テレフタル酸成分と、他の芳香族ジカルボン酸成分(例えば、イソフタル酸成分など)とを組み合わせてもよい。また、芳香族ジカルボン酸成分と非芳香族ジカルボン酸成分(例えば、アジピン酸などの脂肪族ジカルボン酸成分)とを組み合わせてもよい。さらに、芳香族ジカルボン酸成分と非芳香族ジカルボン酸成分とを組み合わせる場合、ジカルボン酸成分全体に対する芳香族ジカルボン酸成分の割合は、例えば、30モル%以上(例えば、35~99モル%)、好ましくは40モル%以上(例えば、45~97モル%)、さらに好ましくは50モル%以上(例えば、60~95モル%)であってもよい。
 (液晶ポリエステル)
 液晶ポリエステル(液晶ポリマー)としては、全芳香族液晶ポリマー、半芳香族液晶ポリマーのいずれであってもよく、特に全芳香族液晶ポリマーを好適に使用してもよい。
 また、液晶ポリエステルは、液晶ポリエステル単位を少なくとも有していればよく、他の単位(又は結合、例えば、エーテル単位、アミド単位、カーボネート単位など)を有する液晶ポリエステル(例えば、液晶ポリエステルエーテル、液晶ポリエステルアミド、液晶ポリエステルカーボネートなど)であってもよい。
 液晶ポリエステルを構成する重合成分(重縮合成分、モノマー)としては、例えば、芳香族ヒドロキシカルボン酸成分[例えば、ヒドロキシ安息香酸(p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、o-ヒドロキシ安息香酸)、ヒドロキシナフトエ酸(例えば、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-2-ナフトエ酸)などのヒドロキシアレーンカルボン酸、ヒドロキシフェニル安息香酸(例えば、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸)など]、芳香族ジカルボン酸成分[例えば、ベンゼンジオール(例えば、テレフタル酸、イソフタル酸など)、ナフタレンジカルボン酸(例えば、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸など)、ジカルボキシビフェニル(例えば、4,4’-ジカルボキシフェニルなど)、ジフェニルエーテルジカルボン酸(例えば、ジフェニルエーテル-4,4’-ジカルボン酸など)など]、芳香族ジオール成分[例えば、ベンゼンジオール(例えば、ハイドロキノンなど)、ジヒドロキシナフタレン(例えば、2,6-ジヒドロキシナフタレンなど)、ジヒドロキシビフェニル(例えば、4,4’-ヒドロキシビフェニルなど)、ジヒドロキシジフェニルエーテル(例えば、4,4’-ジヒドロキシジフェニルエーテル)など]、芳香族ヒドロキシアミン成分[例えば、アミノフェノール(例えば、p-アミノフェノールなど)、アミノナフトール(例えば、4-アミノ-1-ナフトールなど)、アミノヒドロキシビフェニル(例えば、4-アミノ-4’-ヒドロキシビフェニルなど)など]、芳香族ジアミン成分[例えば、ベンゼンジアミン(例えば、p-フェニレンジアミンなど)、ナフタレンジアミン(例えば、1,5-ジアミノナフタレンなど)、ジアミノビフェニル(例えば、4,4’-ジアミノビフェニル)など]、芳香族アミノカルボン酸成分[例えば、アミノ安息香酸(例えば、p-アミノ安息香酸など)、アミノナフトエ酸(例えば、6-アミノナフトエ酸など)など]などの芳香族成分(二官能芳香族成分)が挙げられる。
 芳香族成分は、置換基(例えば、アルキル基、アルコキシ基、ハロゲン原子など)を有していてもよい。また、芳香族成分には、反応性誘導体[例えば、ヒドロキシル基をアシルオキシ基に置換した化合物、カルボキシル基をエステル基(例えば、アルキルカルボニル基、アリールオキシカルボニル基など)や酸ハライド基(例えば、クロロホルミル基)に置換した化合物、アミノ基をアシルアミノ基に置換した化合物)など]も含まれる。
 これらの芳香族成分は、単独で又は2種以上組み合わせてもよい。
 また、重合成分は、通常、これらの芳香族成分を少なくとも含んでいればよく、非芳香族成分{例えば、脂肪族ジオール成分(例えば、エチレングリコール、1,4-ブタンジオールなどのC2-10アルカンジオール)、ポリエステル成分[例えば、ポリアルキレンアリレート(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリC2-4アルキレンC6-10アリレート)などの脂肪族骨格を含むポリエステル成分}、3官能以上の成分[例えば、芳香族ヒドロキシジカルボン酸成分(例えば、ヒドロキシイソフタル酸、ヒドロキシナフタレンジカルボン酸など)など]を含んでいてもよい。これらの成分は、単独で又は2種以上組み合わせてもよい。
 具体的な液晶ポリエステルとしては、例えば、(i)芳香族ヒドロキシカルボン酸成分(例えば、ヒドロキシ安息香酸成分など)と、芳香族ジカルボン酸成分(例えば、ベンゼンジカルボン酸成分、ナフタレンジカルボン酸など)と、芳香族ジオール成分(例えば、ジヒドロキシビフェニルなど)、芳香族ヒドロキシアミンおよび芳香族ジアミンから選択された少なくとも1種の成分との重縮合物、(ii)2以上の芳香族ヒドロキシカルボン酸成分[例えば、ヒドロキシ安息香酸成分と他の芳香族ヒドロキシカルボン酸成分(例えば、ヒドロキシナフトエ酸成分など)と]の重縮合物、(iii)芳香族ヒドロキシカルボン酸成分(例えば、ヒドロキシ安息香酸成分)と、芳香族ジカルボン酸成分(例えば、ベンゼンジカルボン酸成分、ナフタレンジカルボン酸など)と、ポリエステル成分(例えば、ポリアルキレンアリレートなど)との重縮合物などの芳香族ヒドロキシカルボン酸成分を少なくとも重合成分とする液晶ポリエステルが含まれる。
 液晶ポリエステルは、通常、少なくともヒドロキシ安息香酸成分を重合成分とする液晶ポリエステルであってもよく、特に、ヒドロキシ安息香酸成分および他の重合成分を重合成分とする液晶ポリエステルであってもよい。このような他の重合成分を重合成分として含む液晶ポリエステルにおいて、重合成分全体に対するヒドロキシ安息香酸成分(4-ヒドロキシ安息香酸成分など)の割合は、例えば、10~95モル%、好ましくは20~90モル%、さらに好ましくは30~80モル%程度であってもよい。
 (芳香族ポリエーテルケトン樹脂)
 芳香族ポリエーテルケトン樹脂(ポリアリールエーテルケトン樹脂)は、通常、アリーレン基とエーテル基[-O-]とカルボニル基[-C(=O)-]とで構成された繰り返し単位を含んでいる場合が多い。このような樹脂としては、特に制限されないが、例えば、下記式(a1)~(a5)のいずれかで表される繰り返し単位を含んでいてもよい。
[-Ar-O-Ar-C(=O)-] (a1)
[-Ar-O-Ar-C(=O)-Ar-C(=O)-] (a2)
[-Ar-O-Ar-O-Ar-C(=O)-] (a3)
[-Ar-O-Ar-C(=O)-Ar-O-Ar-C(=O)-Ar-C(=O)-] (a4)
[-Ar-O-Ar-O-Ar-C(=O)-Ar-C(=O)-] (a5)
(式中、Arは置換基を有していてもよい2価の芳香族炭化水素環基を表す)
 Arで表される2価の芳香族炭化水素環基としては、例えば、フェニレン基(o-、m-又はp-フェニレン基など)、ナフチレン基などのC6-10アリーレン基、ビフェニレン基(2,2’-ビフェニレン基、3,3’-ビフェニレン基、4,4’-ビフェニレン基など)などのビC6-10アリーレン基、o-、m-又はp-ターフェニレン基などのターC6-10アリーレン基などが例示できる。これらの芳香族炭化水素環基は、置換基、例えば、ハロゲン原子、アルキル基(メチル基などの直鎖状又は分岐鎖状C1-4アルキル基など)、ハロアルキル基、ヒドロキシル基、アルコキシ基(メトキシ基などの直鎖状又は分岐鎖状C1-4アルコキシ基など)、メルカプト基、アルキルチオ基、カルボキシル基、スルホ基、アミノ基、N-置換アミノ基、シアノ基などを有していてもよい。なお、繰り返し単位(a1)~(a5)において、各Arの種類は、互いに同一であってもよく、異なっていてもよい。
 好ましいArは、フェニレン基(例えば、p-フェニレン基)、ビフェニレン基(例えば、4,4’-ビフェニレン基)である。
 繰り返し単位(a1)を有する樹脂としては、ポリエーテルケトン(例えば、Victrex社製「PEEK-HT」)などが例示できる。繰り返し単位(a2)を有する樹脂としては、ポリエーテルケトンケトン(例えば、Arkema+Oxford Performance Material社製「PEKK」)などが例示できる。繰り返し単位(a3)を有する樹脂としては、ポリエーテルエーテルケトン(例えば、Victrex社製「VICTREX PEEK」、Evonik社製「Vestakeep(登録商標)」、ダイセル・エボニック社製「Vestakeep-J」、Solvay Advanced Polymers社製「Ketaspire(登録商標)」)、ポリエーテル-ジフェニル-エーテル-フェニル-ケトン-フェニル(例えば、Solvay Advanced Polymers社製「Kadel(登録商標)」)などが例示できる。繰り返し単位(a4)を有する樹脂としては、ポリエーテルケトンエーテルケトンケトン(例えば、Victrex社製「VICTREX ST」)などが例示できる。繰り返し単位(a5)を有する樹脂としては、ポリエーテルエーテルケトンケトンなどが例示できる。
 アリーレン基とエーテル基とカルボニル基とで構成された繰り返し単位において、エーテルセグメント(E)とケトンセグメント(K)との割合は、例えば、前者/後者(E/K)=0.5/1~2/1、好ましくは1/1~2/1程度である。エーテルセグメントは分子鎖に柔軟性を付与し、ケトンセグメントは分子鎖に剛直性を付与するため、エーテルセグメントが多いほど結晶化速度は速く、最終的に到達可能な結晶化度も高くなり、ケトンセグメントが多いほどガラス転移温度及び融点が高くなる傾向にある。
 芳香族ポリエーテルケトン樹脂の中でも、繰り返し単位(a1)~(a3)のいずれかを有する芳香族ポリエーテルケトン樹脂、特に、ガラス転移温度及び融点の高さと、結晶化速度の速さとのバランスに優れる点から、繰り返し単位(a3)を有する芳香族ポリエーテルケトン樹脂(例えば、ポリエーテルエーテルケトン)が好ましい。
 なお、芳香族ポリエーテルケトン樹脂は、前記のような市販品を利用してもよく、慣用の方法(例えば、芳香族ジオール成分と芳香族ジハライド成分とを縮合させる方法、芳香族モノハライドモノオール成分を自己縮合させる方法などの求核置換反応を利用した方法)により合成したものを利用してもよい。
 芳香族ジオール成分としては、ジヒドロキシベンゼン(ハイドロキノンなど)、ジヒドロキシベンゾフェノン(4,4’-ジヒドロキシベンゾフェノンなど)などが例示できる。芳香族ジハライド成分としては、ジハロベンゾフェノン(4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノンなど)などが例示できる。芳香族モノハライドモノオール成分としては、ハロ-ヒドロキシベンゾフェノン(4-フルオロ-4’-ヒドロキシベンゾフェノンなど)などが例示できる。
 縮合反応は、塩基及び/又は溶媒の存在下で行ってもよい。塩基としては、アルカリ金属塩、例えば、(無水)炭酸カリウムなどのアルカリ金属炭酸塩などが例示できる。溶媒としては、高沸点溶媒、例えば、ジフェニルスルホン、スルホランなどが例示できる。反応温度は、例えば、150~400℃、好ましくは200~350℃程度であってもよい。
 なお、反応生成物は、慣用の分離手段、例えば、濾過、濃縮、晶析、クロマトグラフィーなどにより分離精製できる。また、反応生成物は、必要により洗浄し、乾燥してもよい。洗浄溶媒としては、水、アルコール類(メタノール、エタノールなど)、ケトン類(アセトンなど)、これらの混合溶媒などが例示できる。さらに、固形状の反応生成物は、粒度を調整するため、粉砕してもよく、分級してもよい。
 反応生成物の末端基(ハロゲン原子など)は、結晶化温度の調整などの点から、例えば、アルカリスルホネート基(リチウムスルホネート基、ナトリウムスルホネート基、カリウムスルホネート基など)などで修飾されていてもよい。
 熱可塑性樹脂の数平均分子量は、特に制限されないが、例えば、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、5,000以上(例えば、5,000~1,000,000)、好ましくは8,000以上(例えば、10,000~500,000)、さらに好ましくは15,000以上(例えば、20,000~100,000)であってもよい。
 熱可塑性樹脂のガラス転移温度(Tg)や融点は、特に限定されず、樹脂の種類に応じて適宜選択できる。例えば、熱可塑性樹脂が、エンジニアリングプラスチック(特にスーパーエンジニアリングプラスチック)のような高耐熱性の樹脂である場合、ガラス転移温度は、60℃以上(例えば、65~250℃)、好ましくは70℃以上(例えば、85~230℃)、さらに好ましくは80℃以上(例えば、85~200℃)であってもよく、特に100℃以上であってもよい。特に、芳香族ポリエーテルケトン樹脂のガラス転移温度(Tg)は、例えば、100℃以上、好ましくは120~200℃、さらに好ましくは140~180℃程度であってもよい。
 また、熱可塑性樹脂が、エンジニアリングプラスチック(特にスーパーエンジニアリングプラスチック)のような高耐熱性の樹脂(結晶性樹脂)である場合、融点は、150℃以上(例えば、180~450℃)の範囲から選択でき、好ましくは200℃以上(例えば、230~430℃)、さらに好ましくは250℃以上(例えば、270~400℃)であってもよい。特に、芳香族ポリエーテルケトン樹脂の融点は、例えば、300℃以上、好ましくは310~400℃、さらに好ましくは320~380℃程度であってもよい。
 ガラス転移温度及び融点は、例えば、示差走査熱量分析(DSC)により測定できる。
 なお、熱可塑性樹脂の溶融粘度は、特に限定されないが、フッ素含有樹脂を効率よく分散し、十分な耐光性改善機能を得るという観点からは、適度な粘度を有しているのが好ましい場合がある。
 このような観点から、例えば、芳香族ポリエーテルケトン樹脂の400℃、剪断速度60s-1における溶融粘度をVaとするとき、Vaは、例えば、50~4000Pa・s、好ましくは100~3000Pa・s、さらに好ましくは150~2500Pa・s、特に200~2000Pa・s程度であってもよい。溶融粘度は、慣用の装置、例えば、キャピラリーレオメーターを用いて測定できる。
 また、分散性の観点からは、熱可塑性樹脂とフッ素含有樹脂との溶融粘度比も適度に調整するのが好ましい場合がある。例えば、フッ素含有樹脂の所定温度[例えば、押出機におけるシリンダー温度などの溶融混合時の温度(例えば、390℃)]、剪断速度60s-1における溶融粘度をVbとするとき、熱可塑性樹脂とフッ素含有樹脂との溶融粘度比が、例えば、Va/Vb=0.05/1~10/1、好ましくは0.1/1~8/1、さらに好ましくは0.2/1~7/1、特に0.3/1~6/1(例えば、0.3/1~5/1)程度となるように、両成分の組み合わせを選択してもよい。
 (フッ素含有樹脂)
 フッ素含有樹脂(フッ素樹脂)としては、フッ素を含有する(又はフッ素が置換した)樹脂である限り特に限定されないが、例えば、フッ素含有モノマーを重合成分とする樹脂(ポリマー)が挙げられる。
 具体的なフッ素含有モノマーを重合成分とする樹脂(フッ素含有樹脂)としては、フッ素含有モノマーの単独又は共重合体、フッ素含有モノマーと共重合性モノマーとの共重合体などが挙げられる。
 フッ素含有モノマーとしては、例えば、フッ化オレフィン[又はフッ素含有オレフィン又はフッ素置換オレフィン、例えば、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレンなどのフッ化鎖状オレフィン(例えば、フッ化C2-6オレフィン、好ましくはフッ化C2-4オレフィン、さらに好ましくはパーフルオロC2-4オレフィン)など]、フッ化ビニルエーテル[又はフッ素含有ビニルエーテル又はフッ素置換ビニルエーテル、例えば、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)などのフッ化アルキルビニルエーテル(例えば、フッ化C1-6アルキルビニルエーテル、好ましくはフッ化C1-4アルキルビニルエーテル、さらに好ましくはパーフルオロC1-4アルキルビニルエーテル)など]、フッ化アリルエーテル[又はフッ素含有アリルエーテル又はフッ素置換アリルエーテル、例えば、パーフルオロ(アルキルアリルエーテル)などのフッ化アルキルアリルエーテル(例えば、フッ化C1-6アルキルアリルエーテル、好ましくはフッ化C1-4アルキルアリルエーテル、さらに好ましくはパーフルオロC1-4アルキルアリルエーテル)など]、フッ素含有ジオキソール系モノマー[例えば、2,2-ビス(トリフルオロメチル)-4,5-ジフルオロ-1,3-ジオキソールなど]などが挙げられる。
 フッ素含有モノマーは、単独で又は2種以上組み合わせてもよい。
 これらのフッ素含有モノマーのうち、パーフルオロモノマー、例えば、パーフルオロオレフィン(例えば、テトラフルオロエチレン、ヘキサフルオロプロピレンなどのパーフルオロC2-4オレフィン)、パーフルオロビニルエーテル[例えば、パーフルオロ(プロピルビニル)エーテル)などのパーフルオロ(C1-6アルキルビニルエーテル)など]などが好ましい。
 そのため、フッ素含有モノマーは、パーフルオロモノマーで構成してもよい。このような場合、フッ素含有モノマー全体に対するパーフルオロモノマーの割合は、10重量%以上(例えば、20重量%以上)の範囲から選択でき、例えば、30重量%以上(例えば、40重量%以上)、好ましくは50重量%以上(例えば、60重量%以上)、さらに好ましくは70重量%以上(例えば、75重量%以上)、特に80重量%以上(例えば、90重量%以上)であってもよい。
 共重合性モノマー(他の共重合性モノマー、フッ素を含有しない共重合性モノマー)としては、共重合可能である限り、特に限定されないが、例えば、オレフィン[例えば、エチレン、プロピレンなどの鎖状オレフィン(例えば、C2-6オレフィン、好ましくはC2-4オレフィン)]、フッ素以外のハロゲン化オレフィン(例えば、塩化ビニル、臭化ビニルなどの塩化又は臭化C2-4オレフィン)などが挙げられる。共重合性モノマーは、単独で又は2種以上組み合わせてもよい。
 なお、フッ素含有モノマーと共重合性モノマーとの共重合体において、共重合性モノマーの割合は、フッ素含有モノマー100重量部に対して、例えば、30重量部以下(例えば、0.01~30重量部)、好ましくは20重量部以下(例えば、0.03~15重量部)、さらに好ましくは10重量部以下(例えば、0.05~5重量部)であってもよい。
 代表的なフッ素含有樹脂には、ポリフッ化オレフィン(例えば、ポリテトラフルオロエチレンなど)、フッ化オレフィン共重合体{例えば、フッ化オレフィンの共重合体[例えば、テトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体などのテトラフルオロエチレンと他のフッ化オレフィン(特に、パーフルオロオレフィン、好ましくはパーフルオロC3-4オレフィン)との共重合体]、フッ化オレフィンとフッ化ビニルエーテルとの共重合体[例えば、テトラフルオロエチレンとパーフルオロ(プロピルビニルエーテル)との共重合体などのテトラフルオロエチレンとフッ化ビニルエーテル(特に、パーフルオロ(アルキルビニルエーテル)、好ましくはパーフルオロ(C1-6アルキルビニルエーテル))との共重合体;テトラフルオロエチレンとヘキサフルオロプロピレンとパーフルオロ(プロピルビニルエーテル)との共重合体などのテトラフルオロエチレンと他のフッ化オレフィン(特に、パーフルオロオレフィン、好ましくはパーフルオロC3-4オレフィン)とフッ化ビニルエーテル(特に、パーフルオロ(アルキルビニルエーテル)、好ましくはパーフルオロ(C1-6アルキルビニルエーテル))との共重合体など]など}が挙げられる。
 これらの中でも、テトラフルオロエチレンを重合成分とするフッ素含有樹脂、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレンと他のフッ化オレフィン(特に、パーフルオロオレフィン、好ましくはパーフルオロC3-4オレフィン)との共重合体、テトラフルオロエチレンとフッ化ビニルエーテル(特に、パーフルオロ(アルキルビニルエーテル)、好ましくはパーフルオロ(C1-6アルキルビニルエーテル))との共重合体、テトラフルオロエチレンと他のフッ化オレフィン(特に、パーフルオロオレフィン、好ましくはパーフルオロC3-4オレフィン)とフッ化ビニルエーテル(特に、パーフルオロ(アルキルビニルエーテル)、好ましくはパーフルオロ(C1-6アルキルビニルエーテル))との共重合体などが好ましい。
 また、好ましいフッ素含有樹脂には、熱可塑性フッ素含有樹脂(又は熱溶融可能なフッ素樹脂)も含まれる。なお、このような熱可塑性フッ素樹脂には、ポリテトラフルオロエチレンは含まれない。熱可塑性フッ素含有樹脂は、非フッ素系熱可塑性樹脂中に、比較的小さい粒子径で分散(微分散)されやすいためか、耐光性向上機能を効率よく、非フッ素系熱可塑性樹脂に付与(又は発現)できるようである。
 このような観点から、特に好ましいフッ素含有樹脂には、テトラフルオロエチレン共重合体、例えば、テトラフルオロエチレンと他のフッ化オレフィンとの共重合体、テトラフルオロエチレンとフッ化ビニルエーテルとの共重合体、テトラフルオロエチレンと他のフッ化オレフィンとフッ化ビニルエーテルとの共重合体などが含まれる。
 なお、テトラフルオロエチレン共重合体において、テトラフルオロエチレンの割合は、テトラフルオロエチレン共重合体全体(又はテトラフルオロエチレンとテトラフルオロエチレンでないモノマーとの総量)に対して、30重量%以上(例えば、40~99.9重量%)の範囲から選択でき、例えば、50重量%以上(例えば、55~99.5重量%)、好ましくは60重量%以上(例えば、65~99重量%)、さらに好ましくは70重量%以上(例えば、75~98重量%)、特に80重量%以上(例えば、85~95重量%)であってもよい。
 なお、フッ素含有樹脂は、表面処理(例えば、プラズマ処理、フッ素ガス処理、アンモニア処理など)された樹脂であってもよい。
 フッ素含有樹脂が、融点を有する場合、その融点は特に制限されないが、例えば、400℃以下(例えば、200~380℃)、好ましくは230~350℃(例えば、250~300℃)程度であってもよい。また、フッ素含有樹脂は、非フッ素系熱可塑性樹脂の溶融温度において、溶融する樹脂であってもよい。
 フッ素含有樹脂の割合(添加割合)は、例えば、熱可塑性樹脂100重量部に対して、0.1~300重量部(例えば、0.5~200重量部)程度の範囲から選択でき、1~150重量部、好ましくは3~100重量部、さらに好ましくは5~90重量部、特に7~80重量部(例えば、10~70重量部)程度であってもよい。
 特に、フッ素含有樹脂は、少ない割合であっても十分な耐光性向上効果を得ることができるため、フッ素含有樹脂の割合(添加割合)を、例えば、熱可塑性樹脂100重量部に対して、20重量部以下(例えば、1~18重量部)、好ましくは15重量部以下(例えば、2~12重量部)、さらに好ましくは10重量部以下(例えば、3~8重量部)程度とすることもできる。
 一方、フッ素含有樹脂は、樹脂状であるため、比較的多い割合であっても、ブリードなどを生じることなく、効率よく耐光性向上効果を得ることができる。そのため、フッ素含有樹脂由来の特性を積極的に熱可塑性樹脂に付与するのが好ましい場合などにおいては、フッ素含有樹脂の使用割合を、熱可塑性樹脂100重量部に対して、20重量部以上(例えば、20~200重量部)、好ましくは25重量部以上(例えば、27~150重量部)、さらに好ましくは30重量部以下(例えば、35~100重量部)程度とすることもできる。
 なお、フッ素含有樹脂(又は後述の分散相)の体積割合は、非フッ素系熱可塑性樹脂(又は後述の連続相)、フッ素含有樹脂(又は後述の分散相)および無機系白色顔料の総量に対して、0.1~90%(例えば、0.3~80%)程度の範囲から選択でき、例えば、0.5~70%(例えば、0.7~60%)、好ましくは1~50%(例えば、1.5~40%)、さらに好ましくは2~35%(例えば、3~30%)程度であってもよい。
 なお、本発明の樹脂組成物は、相分離構造を有していてもよい。このような相分離構造を有する場合、熱可塑性樹脂およびフッ素含有樹脂のいずれが、連続相又は分散相を形成してもよい。なお、連続相を形成するか、分散相を形成するかは、熱可塑性樹脂の種類やフッ素含有樹脂の添加割合(混合割合)などにより決定されるが、通常、熱可塑性樹脂が連続相を形成(又は構成)し、フッ素含有樹脂が分散相を形成(又は構成)してもよい。分散相は、等方形状であってもよく、異方形状であってもよい。
 分散相の平均粒子径は、例えば、300μm以下(例えば、0.01~250μm)、好ましくは200μm以下(例えば、0.03~150μm)、さらに好ましくは100μm以下(例えば、0.05~70μm)であってもよい。特に、樹脂の種類によっては、効率よく耐光性向上効果を得るためには、分散相の平均粒子径を小さくする(すなわち、微分散させる)のが好ましい場合がある。このような場合、分散相の平均粒子径は、30μm以下(例えば、10μm以下)の範囲から選択でき、5μm以下、例えば、3μm以下(例えば、2μm以下)、好ましくは1μm以下(例えば、0.7μm以下)、さらに好ましくは0.6μm以下(例えば、0.01~0.5μm程度)であってもよく、0.5μm以下、好ましくは0.4μm以下、さらに好ましくは0.3μm以下であってもよい。このような3μm以下の平均粒子径の場合、分散相の最大粒子径は、例えば、4μm以下、好ましくは3μm以下(例えば、2μm以下)、さらに好ましくは1μm以下(例えば、0.8μm以下)であってもよい。
 また、分散相(例えば、フッ素含有樹脂)の平均粒子間距離は、200μm以下(例えば、150μm以下、好ましくは100μm以下)、通常30μm以下(例えば、20μm以下)程度の範囲から選択でき、例えば、10μm以下(例えば、7μm以下)、好ましくは5μm以下(例えば、0.01~4μm)、さらに好ましくは3μm以下(例えば、0.1~2.5μm)、特に2μm以下(例えば、0.2~1.5μm)であってもよい。
 このように分散相の粒子径や粒子間距離[さらには割合(重量割合及び/又は体積割合)]を調整することで、光散乱性が向上する効果も作用するためか、より一層効率よく高い耐光性向上効果が得られる場合がある。
 なお、分散相の粒子径や粒子間距離(さらには体積割合)は、樹脂組成物で形成されたシートを慣用の装置[透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、レーザー顕微鏡、原子間力顕微鏡(AFM)など]により顕微鏡観察を行い、得られた画像を光学解析装置において二値化処理することなどにより測定することができる。
 (無機系白色顔料)
 無機系白色顔料(又は白色無機顔料、単に、白色顔料などということがある)としては、例えば、酸化物[例えば、周期表第4族金属を少なくとも金属成分として含む金属酸化物(例えば、酸化チタン、酸化ジルコニウムなど)、酸化亜鉛などの金属酸化物]、硫化物(例えば、硫化亜鉛などの金属)、炭酸塩(例えば、炭酸カルシウム、炭酸バリウムなど)、硫酸塩(例えば、硫酸バリウムなど)、複合白色顔料(リトポンなど)などが挙げられる。これらの無機系白色顔料は、単独で又は2種以上組み合わせてもよい。
 これらのうち、特に、酸化チタンが好ましい。酸化チタンは、フッ素含有樹脂との組み合わせにおいて、特に、耐光性向上効果が高いようである。そのため、無機系白色顔料は少なくとも酸化チタンで構成してもよい。
 酸化チタンとしては、一酸化チタン(TiO)、二酸化チタン(TiO)、三酸化二チタン(Ti)などが挙げられる。本発明では、異なる酸化チタンを組み合わせてもよい。
 酸化チタンの結晶形(結晶型)は、ルチル型、アナターゼ型、ブルッカイト型のいずれであってもよい。特に、本発明では、ルチル型酸化チタンを好適に用いてもよい。
 無機系白色顔料(例えば、酸化チタンなどの酸化物など)は、表面処理剤で表面処理されていてもよい。表面処理により、酸化チタンなどの反応性(又は活性)を抑制したり、熱可塑性樹脂に対する分散性を向上でき、白色顔料として、さらには、フッ素含有樹脂との組み合わせにおいて耐光性向上剤として効率よく機能させやすい。
 表面処理剤としては、金属酸化物[例えば、シリカ、アルミナ、酸化亜鉛など(酸化チタンの表面処理剤においては、非チタン系金属酸化物)]、有機系表面処理剤[例えば、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、有機酸、アルコール、シロキサン系化合物など]などが挙げられる。これらの表面処理剤は、単独で又は2種以上組み合わせてもよい。特に、表面処理剤は、少なくとも金属酸化物(シリカなど)で構成してもよい。
 なお、表面処理されている場合(例えば、表面処理剤で表面処理された酸化チタン)において、表面処理剤の割合は、例えば、30重量%以下(例えば、0.1~25重量%)、好ましくは20重量%以下(例えば、0.5~18重量%)、さらに好ましくは15重量%以下(例えば、1~12重量%)程度であってもよく、1~20重量%(例えば、2~15重量%、好ましくは3~10重量%)程度であってもよい。
 無機系白色顔料の形状は、特に限定されず、粒子状(球状を含む)、繊維状(又は針状又は棒状)、板状などであってもよい。好ましい形状は、粒子状である。
 粒子状の無機系白色顔料(例えば、酸化チタン)において、平均粒子径(平均一次粒子径)は、例えば、5~5000nm(例えば、10~3000nm)程度の範囲から選択でき、30~1000nm、好ましくは50~800nm(例えば、80~750nm)、さらに好ましくは100~700nm、特に150~500nm程度であってもよく、通常100~1000nm(例えば、200~700nm)程度であってもよい。
 無機系白色顔料の割合は、例えば、熱可塑性樹脂100重量部に対して、0.5~300重量部(例えば、0.7~250重量部)程度の範囲から選択でき、1~200重量部、好ましくは3~150重量部、さらに好ましくは5~120重量部、特に10~100重量部(例えば、12~80重量部)程度であってもよく、15~200重量部(例えば、20~150重量部、好ましくは25~100重量部)程度であってもよい。なお、添加量をこのような範囲とすることで、組成物の粘度を適度に保持しやすく、成形性の点で有利である。
 また、無機系白色顔料の割合は、熱可塑性樹脂およびフッ素含有樹脂の総量100重量部に対して、0.1~250重量部(例えば、0.3~200重量部)程度の範囲から選択でき、0.5~200重量部、好ましくは1~150重量部、さらに好ましくは3~120重量部、特に5~100重量部(例えば、7~80重量部)程度であってもよく、10~200重量部(例えば、15~150重量部、好ましくは20~100重量部)程度であってもよい。
 さらに、無機系白色顔料の割合は、フッ素含有樹脂1重量部に対して、例えば、0.05~30重量部(例えば、0.07~25重量部)、好ましくは0.1~20重量部、さらに好ましくは0.2~15重量部(例えば、0.3~12重量部)、特に0.5~10重量部(例えば、0.7~8重量部)であってもよい。
 なお、無機系白色顔料の体積割合は、非フッ素系熱可塑性樹脂、フッ素含有樹脂および無機系顔料の総量に対して、例えば、0.1~50%(例えば、0.5~45%)、好ましくは1~40%(例えば、1.5~35%)、さらに好ましくは2~30%(例えば、3~25%)程度であってもよい。
 (強化材)
 本発明の樹脂組成物は、さらに、強化材(強化剤)を含んでいてもよい。強化材(又は充填剤)は、繊維状、針状(ウィスカー)、粒子状、板状などのいずれであってもよいが、特に繊維状又は針状であるのが好ましい。
 繊維状充填剤としては、例えば、無機繊維(例えば、ガラス繊維、炭素繊維、ホウ素繊維、活性炭素繊維、アルミノケイ酸繊維、酸化アルミニウム繊維、炭化ケイ素繊維、金属繊維、チタン酸カリウム繊維など)、有機繊維(例えば、アラミド繊維、液晶ポリエステル繊維など)が挙げられる。針状充填剤としては、例えば、ケイ酸塩(ワラストナイトなど)、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化アルミニウムウィスカー、炭酸カルシウムウィスカーなどが挙げられる。
 これらの中でも、ガラス繊維、針状充填剤を好適に用いてもよい。特に、白色度を保持するという観点からは、ガラス繊維、ワラストナイト(メタケイ酸カルシウム)、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカーなどを好適に使用してもよい。これらの強化材は、特に、非フッ素系熱可塑性樹脂、フッ素含有樹脂および無機系白色顔料との組み合わせにおける耐光性の観点から好適である。また、これらの強化材は、薄肉部分の剛性や強度の保持という観点からも好適である。
 なお、強化材は、熱可塑性樹脂に対する分散性を向上させるなどの目的で、表面処理剤で表面処理されていてもよい。表面処理剤としては、例えば、前記と同様の表面処理剤{例えば、有機系表面処理剤[例えば、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、樹脂(例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂など)など]など}などが挙げられる。表面処理剤は、単独で又は2種以上組み合わせてもよい。
 強化材(充填剤)は、単独で又は2種以上組み合わせてもよい。
 強化材の割合は、例えば、熱可塑性樹脂100重量部に対して、0.5~200重量部(例えば、0.7~150重量部)程度の範囲から選択でき、1~100重量部、好ましくは3~80重量部、さらに好ましくは5~60重量部、特に10~50重量部程度であってもよい。
 また、強化剤の割合は、熱可塑性樹脂およびフッ素含有樹脂の総量100重量部に対して、0.3~150重量部(例えば、0.5~120重量部)程度の範囲から選択でき、1~100重量部、好ましくは2~80重量部、さらに好ましくは3~60重量部、特に5~50重量部(例えば、8~40重量部)程度であってもよい。
 (水酸化マグネシウム)
 本発明の樹脂組成物は、さらに、水酸化マグネシウムを含んでいてもよい。水酸化マグネシウムを併用することで、変色(黄変など)、白色度の低下などを効率よく抑えることができる場合がある。
 水酸化マグネシウムの形状は、限定されないが、特に、粒子状であってもよい。粒子状の水酸化マグネシウムの平均粒子径(平均一次粒子径)は、特に限定されないが、例えば、0.01~100μm、好ましくは0.05~50μm、さらに好ましくは0.1~30μm程度であってもよく、通常0.1~5μm程度であってもよい。
 水酸化マグネシウムの割合は、熱可塑性樹脂100重量部に対して、例えば、0.1~50重量部、好ましくは0.3~40重量部、さらに好ましくは0.5~30重量部、特に1~20重量部程度であってもよい。
 また、水酸化マグネシウムの割合は、熱可塑性樹脂およびフッ素含有樹脂の総量100重量部に対して、例えば、0.05~40重量部、好ましくは0.1~30重量部、さらに好ましくは0.3~25重量部、特に0.5~20重量部程度であってもよい。
 (他の添加剤)
 本発明の樹脂組成物は、さらに必要に応じて、本発明の効果を害しない範囲であれば、他の添加剤を含んでいてもよい。他の添加剤としては、例えば、安定剤(耐熱安定剤、耐光安定剤など)、可塑剤、滑剤などが例示できる。これらの他の添加剤は、それぞれ、単独で又は二種以上組み合わせて使用できる。
 なお、本発明の樹脂組成物の製造方法は、特に限定されないが、熱可塑性樹脂とフッ素含有樹脂と無機系白色顔料と[さらに必要に応じて他の成分(強化材、水酸化マグネシウムなど)と]とを混合することで製造できる。なお、フッ素含有樹脂は、前記の通り、混合とともに、熱可塑性樹脂中に分散させてもよい。具体的には、樹脂組成物は、通常、各成分を溶融混練することにより調製してもよい。より具体的には、各成分を、必要により混合機(タンブラー、V型ブレンダー、ヘンシェルミキサー、ナウタミキサー、リボンミキサー、メカノケミカル装置、押出混合機など)で予備混合した後、種々の混練機(例えば、ニーダー、一軸又は二軸押出し機、バンバリーミキサー、ミキシングロールなど)で溶融混練(又は溶融混合)する場合が多い。なお、混練機に供給する方法は、特に限定されず、すべての構成成分を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。特に、白色無機顔料(さらには強化材、水酸化マグネシウムなど)は、熱可塑性樹脂およびフッ素含有樹脂との混合物(混合系)に対して、1又は複数のサイドフィーダーから添加(混合、配合)してもよい。
 混合又は混練温度(溶融混練温度)は、少なくとも熱可塑性樹脂を溶融できる温度(特に、熱可塑性樹脂およびフッ素含有樹脂を溶融できる温度)であればよく、樹脂の種類に応じて、例えば、100℃以上(例えば、130~500℃)、好ましくは150℃以上(例えば、180~450℃)、さらに好ましくは200℃以上(例えば、250~400℃)の範囲から選択できる。特に、熱可塑性樹脂が、芳香族ポリエーテルケトン樹脂である場合、混合温度は、例えば、300~450℃、好ましくは350~400℃程度であってもよい。攪拌速度(回転速度)は、例えば、150~500rpm、好ましくは200~400rpm(例えば、250~350rpm)程度であってもよい。また、溶融混合(溶融混練)時間は、特に限定されないが、例えば、0.5~5分程度であってもよい。
 溶融混合物(溶融混練物)は、慣用のペレット化手段(ペレタイザーなど)により、ペレット化してもよい。
 このようにして樹脂組成物が得られる。樹脂組成物は、慣用の方法により成形して用いることもできる。そのため、本発明には、前記樹脂組成物で形成された成形体も含まれる。成形体の形状は、例えば、フィルム状又はシート状などの二次元的形状であってもよく、棒状、パイプ状、板状などの三次元的形状などであってもよい。
 成形体は、慣用の方法、例えば、押出成形、射出成形、プレス成形などにより形成される。射出成形などにおいて、シリンダー温度は溶融混合温度と同等の範囲から選択できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、用いた各種原料、各種物性の評価方法は以下の通りである。
 [原料]
 (非フッ素系熱可塑性樹脂)
 PEEK(ポリエーテルエーテルケトン):ダイセル・エボニック(株)製、ベスタキープ1000G
 PPA(半芳香族ポリアミド):ダイセル・エボニック(株)製、ベスタミド HT plus M1000
 LCP(液晶ポリエステル):ポリプラスチックス(株)製、ベクトラ A130(ガラス繊維30%含有品)
 (フッ素含有樹脂)
 テトラフルオロエチレン-ヘキサフルオロプロピレン系共重合体(組成重量比:テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロ(プロピルビニルエーテル)=87.5/11.5/1.0、MFR:27g/10分)、以下、「FEP」という。
 テトラフルオロエチレン-パーフルオロアルキルビニルエーテル系共重合体(組成重量比:テトラフルオロエチレン/パーフルオロ(プロピルビニルエーテル)=94.5/5.5、MFR;23g/10分)、以下、「PFA」という。
 (無機系白色顔料)
 酸化チタン:二酸化チタン、デュポン社製、Ti-Pure(R) Titanium Dioxide Pigment - Paint Coatings-DryGrades R-105、表面処理(シリカ、アルミナジメチルシロキサン処理)品
 (強化材)
 ガラス繊維:日本電気硝子(株)製、ECS03T-779H(繊維長3mm、繊維径10μm)
 [引張強さ、引張破壊歪み]
 引張強さおよび引張破壊歪みを、JIS K7113に準じて測定した。
 [曲げ弾性率]
 JIS K7271に準じて測定した。
 [耐光試験]
 メタルハライド式耐光性試験機(ダイプラ・ウィンテス製 スーパーウィンミニ SWM-03FS)を用い、200時間、120℃、照射強度160W/m(300~400nmでの強度)の条件下で、JIS試験片に光照射を行なった。
 [耐熱試験]
 耐熱変色試験は180℃×6時間空気中オーブンにて行った。
 [ハンター白色度および反射率]
 ハンター白色度は、測色計(コニカミノルタ製 SPECTROPHOTOMETER CM-5)を用いて測定した。
 反射率は、同じ測色計で、500nmにおける反射率を測定した。
 なお、測定は、成形後、耐光試験後、耐熱試験後のそれぞれについて行った。
 [分散相(フッ素含有樹脂)の平均粒径および平均粒子間距離]
 樹脂組成物から所定の温度(PEEKでは380℃、PPAでは340℃、LCPでは350℃)で熱プレスして成形したプレスシートを、ウルトラミクロトーム(ライカ社製、ULTRACUT S)の試料ホルダーに固定し、チャンバー内を液体窒素で-80℃に冷却し、厚み90nmの薄切片を切り出した。得られた薄切片を、20%エタノール溶液を付着させた白金リングにて回収し、銅製シートメッシュ(応研商事社製、200A)に付着させた。透過型電子顕微鏡(日立製作所社製、H7100FA)を用いて、銅製シートメッシュに付着した薄切片を観察してネガフィルムを作製し、このネガフィルムをスキャナー(EPSON社製、GT-9400UF)にて電子画像化し、光学解析装置(ニレコ社製、LUZEX AP)を用いて電子像の二値化処理を行い、分散相(フッ素含有樹脂)の平均粒子径および平均粒子間距離を算出した。
 (実施例1~5および比較例1)
 下記表に示す配合割合(重量割合、体積割合)で、PEEKとフッ素含有樹脂とを予備混合した後、二軸混練押出機のメインホッパーに投入し、シリンダー温度370℃、スクリュー回転数300rpmの条件下で溶融混練し、サイドフィーダーから、酸化チタンを加えて押出し、ペレット状の樹脂組成物を得た。
 そして、得られた樹脂組成物のペレットを、JIS試験片作製用金型(金型温度200℃)を装着した射出成形機(シリンダー温度380℃)に投入して射出成形し、各種JIS試験片を製造し、各種特性を測定した。
(実施例6および比較例2)
 下表に示す配合割合(重量割合、体積割合)で、PEEKとフッ素含有樹脂とを予備混合した後、二軸混練押出機のメインホッパーに投入し、シリンダー温度370℃、スクリュー回転数300rpmの条件下で溶融混練し、サイドフィーダーから、酸化チタンとガラス繊維を加えて押出し、ペレット状の樹脂組成物を得た。
 そして、得られた樹脂組成物のペレットを、JIS試験片作製用金型(金型温度200℃)を装着した射出成形機(シリンダー温度380℃)に投入して射出成形し、各種JIS試験片を製造し、各種特性を測定した。
(実施例7および比較例3)
 下表に示す配合割合(重量割合、体積割合)で、PPAとフッ素含有樹脂とを予備混合した後、二軸混練押出機のメインホッパーに投入し、シリンダー温度340℃、スクリュー回転数300rpmの条件下で溶融混練し、サイドフィーダーから、酸化チタンとガラス繊維を加えて押出し、ペレット状の樹脂組成物を得た。
 そして、得られた樹脂組成物のペレットを、JIS試験片作製用金型(金型温度140℃)を装着した射出成形機(シリンダー温度340℃)に投入して射出成形し、各種JIS試験片を製造し、各種特性を測定した。
(実施例8および比較例4)
 下表に示す配合割合(重量割合、体積割合)で、LCPとフッ素含有樹脂とを予備混合した後、二軸混練押出機のメインホッパーに投入し、シリンダー温度370℃、スクリュー回転数300rpmの条件下で溶融混練し、サイドフィーダーから、酸化チタンを加えて押出し、ペレット状の樹脂組成物を得た。
 そして、得られた樹脂組成物のペレットを、JIS試験片作製用金型(金型温度80℃)を装着した射出成形機(シリンダー温度350℃)に投入して射出成形し、各種JIS試験片を製造し、各種特性を測定した。
 結果を表に示す。なお、表において、体積割合は、非フッ素系熱可塑性樹脂(PEEK、PPA、LCP)フッ素含有樹脂(FEP又はPFA)および無機系白色顔料(酸化チタン)の総量に対する体積割合である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表の結果から明らかなように、非フッ素系熱可塑性樹脂(PEEK、PPA、LCP)に無機系白色顔料(酸化チタン)とフッ素含有樹脂(FEP又はPFA)と組み合わせて添加することで、白色度および反射率の高い樹脂組成物が得られた。そして、この組成物は、耐光試験後(さらには耐熱試験後)においても、高い白色度および反射率を維持しており、耐光性(さらには耐熱安定性)に優れていることがわかった。さらに、得られた組成物は、機械的特性においても優れていた。
 本発明の樹脂組成物では、非フッ素系熱可塑性樹脂で構成されており、耐光性(又は耐光安定性)に優れている。特に、本発明の樹脂組成物は、高温での溶融混合過程を経ても、耐光性改善機能を維持できるため、特に、スーパーエンジニアリングプラスチック(例えば、芳香族ポリアミド、液晶ポリエステル、芳香族ポリアリールケトン樹脂)を樹脂成分とする樹脂組成物として好適である。
 そして、このよう本発明の樹脂組成物(又はその成形体)は、樹脂の種類に応じて種々の用途に使用でき、例えば、家庭電化用品、オフィスオートメーション(OA)機器、モバイル機器などの構成部材などとして好適に利用できる。このような樹脂組成物(又はその成形体)は、機械的特性においても優れている場合が多いため、スマートフォン、パーソナルコンピュータ(ノート型、タブレット型など)、電子ブックリーダー、デジタルカメラなどの薄型スイッチなどとしても好適である。
 特に、本発明の樹脂組成物(又はその成形体)は、優れた耐光性を有しており、白色度又は反射率を長期に亘って維持できるため、リフレクタ(又は反射板)用途として好適であり、中でも、高い耐熱性と耐光性が要求されるLEDのリフレクタ用途として好適である。

Claims (23)

  1.  非フッ素系熱可塑性樹脂と、フッ素含有樹脂と、無機系白色顔料とを含む樹脂組成物。
  2.  非フッ素系熱可塑性樹脂が、スーパーエンジニアリングプラスチックである請求項1記載の樹脂組成物。
  3.  非フッ素系熱可塑性樹脂が、芳香族ポリアミド、液晶ポリエステル、および芳香族ポリエーテルケトン樹脂から選択された少なくとも1種である請求項1又は2記載の樹脂組成物。
  4.  非フッ素系熱可塑性樹脂が、ポリエーテルエーテルケトンである請求項1~3のいずれかに記載の樹脂組成物。
  5.  フッ素含有樹脂が、テトラフルオロエチレンを重合成分とするフッ素含有樹脂である請求項1~4のいずれかに記載の樹脂組成物。
  6.  フッ素含有樹脂が、熱可塑性フッ素樹脂である請求項1~5のいずれかに記載の樹脂組成物。
  7.  フッ素含有樹脂が、テトラフルオロエチレン共重合体である請求項1~6のいずれかに記載の樹脂組成物。
  8.  フッ素含有樹脂が、テトラフルオロエチレンと他のフッ化オレフィンとの共重合体、テトラフルオロエチレンとフッ化ビニルエーテルとの共重合体、およびテトラフルオロエチレンと他のフッ化オレフィンとフッ化ビニルエーテルとの共重合体から選択された少なくとも1種である請求項1~7のいずれかに記載の樹脂組成物。
  9.  フッ素含有樹脂が、テトラフルオロエチレンと他のパーフルオロオレフィンとの共重合体、テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重合体、およびテトラフルオロエチレンと他のパーフルオロオレフィンとパーフルオロ(アルキルビニルエーテル)との共重合体から選択された少なくとも1種である請求項1~8のいずれかに記載の樹脂組成物。
  10.  フッ素含有樹脂で構成された分散相が、平均粒子径3μm以下で、非フッ素系熱可塑性樹脂で構成された連続相に分散している請求項1~9のいずれかに記載の樹脂組成物。
  11.  フッ素含有樹脂で構成された分散相が、平均粒子間距離5μm以下で、非フッ素系熱可塑性樹脂で構成された連続相に分散している請求項1~10のいずれかに記載の樹脂組成物。
  12.  無機系白色顔料が酸化チタンで構成されている請求項1~11のいずれかに記載の樹脂組成物。
  13.  無機系白色顔料が、表面処理されたルチル型酸化チタンで構成されている請求項1~12のいずれかに記載の樹脂組成物。
  14.  非フッ素系熱可塑性樹脂100重量部に対して、フッ素含有樹脂の割合が1~150重量部、無機系白色顔料の割合が3~150重量部である請求項1~13のいずれかに記載の樹脂組成物。
  15.  無機系白色顔料の割合が、フッ素含有樹脂1重量部に対して、0.1~20重量部である請求項1~14のいずれかに記載の樹脂組成物。
  16.  さらに、強化材を含む請求項1~15のいずれかに記載の樹脂組成物。
  17.  リフレクタ用の樹脂組成物である請求項1~16のいずれかに記載の樹脂組成物。
  18.  発光ダイオード素子のリフレクタ用の樹脂組成物である請求項1~17のいずれかに記載の樹脂組成物。
  19.  請求項1~18のいずれかに記載の樹脂組成物で形成された成形体。
  20.  非フッ素系熱可塑性樹脂の耐光性を向上又は改善するための添加剤であって、フッ素含有樹脂および無機系白色顔料で構成された耐光性向上剤。
  21.  非フッ素系熱可塑性樹脂に、請求項20記載の耐光性向上剤を添加し、非フッ素系熱可塑性樹脂の耐光性を向上する方法。
  22.  非フッ素系熱可塑性樹脂を白色に着色するための着色剤であって、無機系白色顔料とフッ素含有樹脂とで構成された着色剤。
  23.  非フッ素系熱可塑性樹脂に、請求項22記載の着色剤を添加し、非フッ素系熱可塑性樹脂を白色に着色する方法。
PCT/JP2013/078190 2013-04-17 2013-10-17 耐光性樹脂組成物およびその成形体 WO2014171029A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/779,218 US9644080B2 (en) 2013-04-17 2013-10-17 Light-resistant resin composition, and moulded body thereof
CN201380075701.5A CN105324440B (zh) 2013-04-17 2013-10-17 耐光性树脂组合物及其成型体
KR1020157032458A KR102104303B1 (ko) 2013-04-17 2013-10-17 내광성 수지 조성물 및 그의 성형체
JP2015512277A JP6211602B2 (ja) 2013-04-17 2013-10-17 耐光性樹脂組成物およびその成形体
EP19154665.4A EP3502193B1 (en) 2013-04-17 2013-10-17 Moulded body comprising a light-resistant resin composition
EP13882345.5A EP2987833B1 (en) 2013-04-17 2013-10-17 Light-resistant resin composition, and moulded body thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086721 2013-04-17
JP2013086721 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014171029A1 true WO2014171029A1 (ja) 2014-10-23

Family

ID=51730996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078190 WO2014171029A1 (ja) 2013-04-17 2013-10-17 耐光性樹脂組成物およびその成形体

Country Status (7)

Country Link
US (1) US9644080B2 (ja)
EP (2) EP2987833B1 (ja)
JP (1) JP6211602B2 (ja)
KR (1) KR102104303B1 (ja)
CN (1) CN105324440B (ja)
TW (1) TWI607049B (ja)
WO (1) WO2014171029A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319867A1 (en) * 2013-12-27 2016-11-03 Federal-Mogul Wiesbaden Gmbh Plain bearing material and a plain bearing composite material, comprising zinc sulphide and barium sulphate
JP2018203979A (ja) * 2017-01-30 2018-12-27 Agc株式会社 組成物から作られる物品
JP2019508559A (ja) * 2016-03-04 2019-03-28 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 発光装置の構成部品のためのフルオロポリマー組成物
WO2021039181A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
WO2021095656A1 (ja) * 2019-11-11 2021-05-20 Agc株式会社 粉体組成物、フィルム、及びフィルムの製造方法
WO2022163862A1 (ja) * 2021-02-01 2022-08-04 住友化学株式会社 樹脂組成物及び成形体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117275B1 (ko) 2013-04-17 2020-06-01 다이셀에보닉 주식회사 내광성 향상제
JP6958546B2 (ja) 2016-04-28 2021-11-02 Agc株式会社 含フッ素共重合体組成物、その製造方法、および成形体
CN109312154B (zh) * 2016-07-04 2021-05-28 旭化成株式会社 聚酰胺树脂成型体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288274A (ja) 1989-04-27 1990-11-28 Unitika Ltd 耐ハンダ性発光ダイオード用リフレクター
WO2003044093A1 (fr) * 2001-11-21 2003-05-30 Daikin Industries, Ltd. Composition de resine et procede de fabrication de moules
JP2003213114A (ja) * 2000-12-21 2003-07-30 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物および成形品
JP2006274073A (ja) 2005-03-29 2006-10-12 Mitsubishi Plastics Ind Ltd 樹脂組成物、その樹脂成形体、及び樹脂組成物の製造方法
JP2010144165A (ja) * 2008-12-19 2010-07-01 Cheil Industries Inc 耐光性および難燃性に優れた熱可塑性ポリカーボネート樹脂組成物
JP4525917B2 (ja) 2005-03-18 2010-08-18 株式会社クラレ Ledリフレクタ成形用ポリアミド樹脂組成物およびledリフレクタ
JP2011021128A (ja) 2009-07-16 2011-02-03 Asahi Kasei Chemicals Corp Ledリフレクタ用ポリアミド組成物
JP2011195710A (ja) * 2010-03-19 2011-10-06 Sumitomo Electric Ind Ltd 白色樹脂成形体及びled用リフレクタ
WO2012005133A1 (ja) 2010-07-05 2012-01-12 清華大学 樹脂組成物および成形品
JP4892140B2 (ja) 2001-03-30 2012-03-07 大塚化学株式会社 Led反射板用樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9005872D0 (en) * 1990-03-15 1990-05-09 British Aerospace A laser markable white pigment composition
JP3007046B2 (ja) * 1996-07-25 2000-02-07 出光石油化学株式会社 難燃性ポリカーボネート樹脂組成物
JPH10204236A (ja) * 1997-01-17 1998-08-04 Idemitsu Petrochem Co Ltd 難燃性ポリスチレン系樹脂組成物及びそれを用いた電気又は電子機器製品用ハウジング
JP2001220486A (ja) * 2000-02-09 2001-08-14 Techno Polymer Co Ltd リサイクル性に優れた熱可塑性樹脂組成物および再生成形材料
JP4235938B2 (ja) * 2000-08-17 2009-03-11 ウイットフォ−ド コーポレーション 単層コートの非付着性コーティング系およびこれによるコーティング物
EP1217040B1 (en) 2000-12-21 2005-03-02 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and its molded articles
US20020123282A1 (en) * 2001-01-03 2002-09-05 Mccarthy Thomas F. Fluoropolymer composites
US7338995B2 (en) * 2004-03-06 2008-03-04 E.I. Du Pont De Nemours And Company Titanium dioxide—containing polymers and films with reduced melt fracture
JP4784136B2 (ja) * 2005-04-15 2011-10-05 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート系樹脂組成物の成形品
EP2337813B1 (en) * 2008-09-29 2013-04-24 E. I. du Pont de Nemours and Company Polymer-based products having improved solar reflectivity and uv protection
KR101737592B1 (ko) * 2010-04-07 2017-05-18 덴카 주식회사 Led조명 하우징용 방열성 수지 조성물 및 그 led조명용 방열성 하우징

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288274A (ja) 1989-04-27 1990-11-28 Unitika Ltd 耐ハンダ性発光ダイオード用リフレクター
JP2003213114A (ja) * 2000-12-21 2003-07-30 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物および成形品
JP4892140B2 (ja) 2001-03-30 2012-03-07 大塚化学株式会社 Led反射板用樹脂組成物
WO2003044093A1 (fr) * 2001-11-21 2003-05-30 Daikin Industries, Ltd. Composition de resine et procede de fabrication de moules
JP4525917B2 (ja) 2005-03-18 2010-08-18 株式会社クラレ Ledリフレクタ成形用ポリアミド樹脂組成物およびledリフレクタ
JP2006274073A (ja) 2005-03-29 2006-10-12 Mitsubishi Plastics Ind Ltd 樹脂組成物、その樹脂成形体、及び樹脂組成物の製造方法
JP2010144165A (ja) * 2008-12-19 2010-07-01 Cheil Industries Inc 耐光性および難燃性に優れた熱可塑性ポリカーボネート樹脂組成物
JP2011021128A (ja) 2009-07-16 2011-02-03 Asahi Kasei Chemicals Corp Ledリフレクタ用ポリアミド組成物
JP2011195710A (ja) * 2010-03-19 2011-10-06 Sumitomo Electric Ind Ltd 白色樹脂成形体及びled用リフレクタ
WO2012005133A1 (ja) 2010-07-05 2012-01-12 清華大学 樹脂組成物および成形品

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319867A1 (en) * 2013-12-27 2016-11-03 Federal-Mogul Wiesbaden Gmbh Plain bearing material and a plain bearing composite material, comprising zinc sulphide and barium sulphate
JP2019508559A (ja) * 2016-03-04 2019-03-28 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 発光装置の構成部品のためのフルオロポリマー組成物
JP2018203979A (ja) * 2017-01-30 2018-12-27 Agc株式会社 組成物から作られる物品
JP7234492B2 (ja) 2017-01-30 2023-03-08 Agc株式会社 組成物から作られる物品
WO2021039181A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
JP6844755B1 (ja) * 2019-08-27 2021-03-17 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
WO2021095656A1 (ja) * 2019-11-11 2021-05-20 Agc株式会社 粉体組成物、フィルム、及びフィルムの製造方法
WO2022163862A1 (ja) * 2021-02-01 2022-08-04 住友化学株式会社 樹脂組成物及び成形体

Also Published As

Publication number Publication date
US20160068652A1 (en) 2016-03-10
TWI607049B (zh) 2017-12-01
CN105324440A (zh) 2016-02-10
CN105324440B (zh) 2019-08-16
KR102104303B1 (ko) 2020-04-24
KR20150143692A (ko) 2015-12-23
EP2987833A1 (en) 2016-02-24
JP6211602B2 (ja) 2017-10-11
EP3502193B1 (en) 2020-03-18
US9644080B2 (en) 2017-05-09
JPWO2014171029A1 (ja) 2017-02-16
EP2987833A4 (en) 2016-11-23
EP2987833B1 (en) 2019-06-12
EP3502193A1 (en) 2019-06-26
TW201441290A (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
JP6211602B2 (ja) 耐光性樹脂組成物およびその成形体
JP6048833B2 (ja) 表面実装型led用反射板に使用するポリエステル樹脂組成物
JP6260085B2 (ja) Led反射板用ポリエステル樹脂組成物
JP5915948B2 (ja) ポリエステル樹脂、及びそれを使用した表面実装型led反射板用ポリエステル樹脂組成物
WO2014034493A1 (ja) 難燃性熱可塑性樹脂組成物
JP5564986B2 (ja) 熱可塑性樹脂組成物及びその成形体
JP6492078B2 (ja) 反射材用樹脂組成物およびそれを含む反射板
JP5246646B2 (ja) 樹脂組成物及びそれを成形してなる成形品
JP6211601B2 (ja) 耐光性向上剤
TWI628267B (zh) 液晶聚酯組成物
WO2016002193A1 (ja) 反射材用ポリエステル樹脂組成物およびそれを含む反射板
JP6042271B2 (ja) 反射材用ポリエステル樹脂組成物および反射板
WO2021065770A1 (ja) 芳香族ポリスルホン組成物、成形体、及び芳香族ポリスルホン組成物の製造方法
JP2014132053A (ja) Led光反射体成形用ポリエステル樹脂組成物およびled光反射体光反射体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075701.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512277

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779218

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013882345

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157032458

Country of ref document: KR

Kind code of ref document: A