WO2022163862A1 - 樹脂組成物及び成形体 - Google Patents

樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2022163862A1
WO2022163862A1 PCT/JP2022/003773 JP2022003773W WO2022163862A1 WO 2022163862 A1 WO2022163862 A1 WO 2022163862A1 JP 2022003773 W JP2022003773 W JP 2022003773W WO 2022163862 A1 WO2022163862 A1 WO 2022163862A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
group
fluororesin
less
Prior art date
Application number
PCT/JP2022/003773
Other languages
English (en)
French (fr)
Inventor
悠太 菊地
慎太郎 齊藤
健典 前川
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237028980A priority Critical patent/KR20230135648A/ko
Priority to CN202280012232.1A priority patent/CN116802235A/zh
Priority to JP2022578541A priority patent/JPWO2022163862A1/ja
Priority to US18/262,306 priority patent/US20240067818A1/en
Publication of WO2022163862A1 publication Critical patent/WO2022163862A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/12Polymer mixtures characterised by other features containing additives being liquid crystalline or anisotropic in the melt

Definitions

  • the present invention relates to resin compositions and molded articles. This application claims priority based on Japanese Patent Application No. 2021-014344 filed in Japan on February 1, 2021, the content of which is incorporated herein.
  • Polymer materials are used in various fields due to their ease of molding and lightness. Among them, in recent years, high-performance polymer materials (engineering materials) that can replace metals and ceramics have been used in various fields such as electrical, electronic, mechanical, optical equipment, automobiles, aircraft, and medical fields.
  • liquid crystalline polymer in the electric/electronic parts, further miniaturization of the parts is being promoted in the trend toward lighter, thinner, shorter and smaller parts.
  • the components tend to require higher performance such as thermal stability suitable for surface mounting technology that applies lead-free solder.
  • the liquid crystalline polymer can be said to be a particularly excellent material among the engineering materials.
  • Liquid crystalline polymer is a material with good molding processability such as thin wall fluidity and low burr performance, high thermal stability, high mechanical strength, and excellent insulation properties, and does not use additives that have a high environmental impact. , has high flame resistance.
  • Patent Document 1 discloses a liquid crystalline resin composition containing at least 100 parts by weight of a liquid crystalline polyester resin and 10 to 100 parts by weight of a glass fiber, wherein the glass fiber A pellet-shaped liquid crystalline polyester resin composition characterized by having a weight average fiber length of 30 to 100 ⁇ m and containing 0.1 to 5.0% by weight of glass fibers having a fiber length of 300 to 500 ⁇ m in all glass fibers. is disclosed.
  • the occurrence of die swell may be a problem.
  • the die swell is a phenomenon in which the molten resin expands after exiting the extrusion die.
  • the particle size of the obtained pellets becomes non-uniform, resulting in a decrease in productivity.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a resin composition having a good effect of suppressing the occurrence of die swell and a molded article produced using the resin composition. .
  • a liquid crystalline polymer and a fluororesin are contained, and the fluororesin has a CF 3 group content relative to the CF 2 group content in the fluororesin, which is determined by the following [Method for measuring CF 3 group content].
  • Method for measuring CF 3 group content The CF 3 group content relative to the CF 2 group content in the fluororesin is obtained from the peak area ICF 3 corresponding to the CF 3 group measured by 19 F solid-state NMR and the peak area ICF 2 corresponding to the CF 2 group. It is calculated as an area percentage and determined by the following formula (f1).
  • CF 3 group content (%) ⁇ (ICF 3 )/3/(ICF 2 )/2 ⁇ 100 (f1)
  • the resin composition of this embodiment contains a liquid crystalline polymer and a fluororesin.
  • the liquid crystalline polymer in the resin composition of the present embodiment is a thermoplastic resin exhibiting a liquid crystal-like property in which straight chains of molecules are regularly arranged in a molten state.
  • the resin composition containing a liquid crystalline polymer also preferably exhibits liquid crystallinity in a molten state, and the resin composition of the present embodiment preferably melts at a temperature of 450° C. or less.
  • the resin composition of the present embodiment has high strength, high heat resistance, and high dimensional accuracy.
  • the liquid crystalline polymer in the resin composition of the present embodiment may be a liquid crystalline polyester, a liquid crystalline polyester amide, a liquid crystalline polyester ether, or a liquid crystalline polyester carbonate. Alternatively, it may be a liquid crystalline polyester imide.
  • a liquid crystalline polyester is preferable, and a wholly aromatic liquid crystalline polyester using only an aromatic compound as a raw material monomer is more preferable.
  • Typical examples of the liquid crystalline polymer in the resin composition of the present embodiment include at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxylamines and aromatic diamines.
  • the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines and aromatic diamines are each independently partly or wholly replaced by polymerizable derivatives thereof. good too.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids include those obtained by converting the carboxyl group to an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxyl Examples include those obtained by converting a group to a haloformyl group (acid halides) and those obtained by converting a carboxyl group to an acyloxycarbonyl group (acid anhydrides).
  • polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxylamines include those obtained by acylating the hydroxyl group to convert it to an acyloxyl group (acylated products ).
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxylamines and aromatic diamines include those obtained by acylating the amino group to convert it to an acylamino group (acylated product).
  • the liquid crystalline polymer in the resin composition of the present embodiment preferably has a flow initiation temperature of, for example, 280° C. or higher, more preferably 280° C. or higher and 420° C. or lower, and 300° C. or higher and 400° C. or lower. is more preferred.
  • Heat resistance and strength/rigidity tend to improve as the flow initiation temperature of the liquid crystalline polymer in the resin composition of the present embodiment increases.
  • the flow initiation temperature of the liquid crystalline polymer exceeds 420° C., the melting temperature and melt viscosity of the resin composition containing the liquid crystalline polymer tend to increase. Therefore, the temperature required for molding the resin composition tends to increase.
  • the flow initiation temperature is also referred to as flow temperature or flow temperature.
  • the liquid crystalline polymer is heated at a rate of 4° C./min under a load of 9.8 MPa (100 kg/cm 2 ). It is the temperature at which a viscosity of 4800 Pa s (48000 poise) is exhibited when melted and extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm, and serves as a measure of the molecular weight of liquid crystalline polymers (edited by Naoyuki Koide, " Liquid Crystal Polymer -Synthesis/Molding/Application-", CMC Co., Ltd., June 5, 1987, p.95).
  • a repeating unit (u1) represented by the following formula (1) (hereinafter also referred to as “repeating unit (u1)”), and a repeating unit (u1) represented by the following formula (2) (hereinafter also referred to as “repeating unit (u2)”), and a repeating unit (u3) represented by the following formula (3) (hereinafter also referred to as “repeating unit (u3)”)
  • u1 a repeating unit represented by the following formula (1)
  • a repeating unit (u2) represented by the following formula (2)
  • a repeating unit (u3) represented by the following formula (3) (hereinafter also referred to as “repeating unit (u3))
  • Liquid crystalline polyesters are particularly preferred.
  • Ar 1 represents a phenylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group or a biphenylylene group.
  • X and Y each independently represent an oxygen atom or an imino group (—NH).
  • the hydrogen atoms of the groups represented by Ar 1 , Ar 2 and Ar 3 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. may be substituted.
  • the repeating unit (u1) is a repeating unit derived from monohydroxybenzoic acid.
  • Ar 1 is a phenylene group, and the hydrogen atom of the phenylene group is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. good too.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl and n-decyl groups are included.
  • aryl group examples include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
  • repeating units (u1) those in which Ar 1 is a p-phenylene group (repeating units derived from p-hydroxybenzoic acid) are preferable.
  • a repeating unit (u2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 represents a phenylene group or a biphenylene group, and the hydrogen atoms of the phenylene group and the biphenylene group are substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms; good too.
  • the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms a halogen atom optionally substituted for the hydrogen atom of the above group represented by Ar 1 , and the same alkyl groups and aryl groups having 6 to 20 carbon atoms.
  • repeating unit (u2) among the above, those in which Ar 2 is a p-phenylene group (repeating units derived from terephthalic acid), those in which Ar 2 is an m-phenylene group (repeating units derived from isophthalic acid) ), and Ar 2 is a diphenyl ether-4,4′-diyl group (a repeating unit derived from diphenyl ether-4,4′-dicarboxylic acid), and Ar 2 is a p-phenylene group (repeating unit derived from terephthalic acid), and Ar 2 is an m-phenylene group (repeating unit derived from isophthalic acid).
  • the repeating unit (u3) is a repeating unit derived from a given aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Ar 3 represents a phenylene group or a biphenylene group, and the hydrogen atoms of the phenylene group and the biphenylene group may be substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. good.
  • halogen atom the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms, a halogen atom optionally substituted for the hydrogen atom of the above group represented by Ar 1 , and the same alkyl groups and aryl groups having 6 to 20 carbon atoms.
  • X and Y are each independently an oxygen atom or an imino group (--NH--), both of which are preferably oxygen atoms.
  • repeating unit (u3) among the above, those in which Ar 3 is a p-phenylene group (repeating units derived from hydroquinone, p-aminophenol or p-phenylenediamine), and those in which Ar 3 is 4,4′- A biphenylylene group (a repeating unit derived from 4,4'-dihydroxybiphenyl, 4-amino-4'-hydroxybiphenyl or 4,4'-diaminobiphenyl) is preferred, and Ar 3 is a 4,4'-biphenylylene group and X and Y are oxygen atoms (repeating units derived from 4,4'-dihydroxybiphenyl) are more preferred.
  • the number of repeating units (u1) is preferably 30% or more, more preferably 40% or more, and further preferably 50% or more of the total number (100%) of all repeating units. preferable.
  • the number of repeating units (u1) is preferably 80% or less, more preferably 70% or less, and even more preferably 65% or less of the total number of all repeating units.
  • the number of repeating units (u1) in the liquid crystal polyester is preferably 30% or more and 80% or less, more preferably 40% or more and 70% or less, and further preferably 50% or more and 65% or less. preferable.
  • the number of repeating units (u2) is preferably 7% or more, more preferably 10% or more, and even more preferably 15% or more of the total number of all repeating units.
  • the number of repeating units (u2) is preferably 35% or less, more preferably 30% or less, and even more preferably 25% or less of the total number of all repeating units.
  • the number of repeating units (u2) in the liquid crystal polyester is preferably 7% or more and 35% or less, more preferably 10% or more and 30% or less, and further preferably 15% or more and 25% or less. preferable.
  • the number of repeating units (u3) is preferably 7% or more, more preferably 10% or more, and even more preferably 15% or more of the total number of all repeating units.
  • the number of repeating units (u3) is preferably 35% or less, more preferably 30% or less, and even more preferably 25% or less of the total number of all repeating units.
  • the number of repeating units (u3) in the liquid crystal polyester is preferably 7% or more and 35% or less, more preferably 10% or more and 30% or less, and further preferably 15% or more and 25% or less. preferable.
  • the number of each repeating unit can be determined by the analytical method described in JP-A-2000-19168, for example. Specifically, the liquid crystalline polyester resin is reacted with a lower alcohol (alcohol having 1 to 3 carbon atoms) in a supercritical state to depolymerize the liquid crystalline polyester resin to a monomer that derives its repeating unit, and a depolymerization product is obtained. The number of each repeating unit can be calculated by quantifying the monomer deriving each repeating unit obtained as by liquid chromatography.
  • the number of repeating units (u1) can be determined by measuring the molar concentration of the monomers that induce the repeating units (u1) to (u3), respectively, by liquid chromatography.
  • the ratio of the molar concentration of the monomers that induce the repeating unit (u1) when the total molar concentration of the monomers that induce the repeating units (u1) to (u3) is 100% can ask.
  • a liquid crystalline polyester having such a predetermined repeating unit composition is excellent in heat resistance and thermal stability.
  • the number of repeating units (u2) and the number of repeating units (u3) in the liquid crystalline polyester are preferably substantially equal.
  • the ratio between the number of repeating units (u2) and the number of repeating units (u3) is represented by [number of repeating units (u2)]/[number of repeating units (u3)], for example 0 .9/1 to 1/0.9, preferably 0.95/1 to 1/0.95, more preferably 0.98/1 to 1/0.98.
  • the liquid crystalline polyester may have two or more types of repeating units (u1) to (u3) each independently.
  • the liquid crystalline polyester may have repeating units other than the repeating units (u1) to (u3), but the number thereof is, for example, 10% or less, preferably 5%, relative to the total number of all repeating units. It is below.
  • liquid crystalline polymer having high heat resistance and thermal stability as the liquid crystalline polymer in the resin composition of the present embodiment include: (i) repeating units (u1) in which Ar 1 is a p-phenylene group (that is, repeating units derived from p-hydroxybenzoic acid), preferably 40% or more and 80% of the total number of all repeating units; Below, more preferably 45% or more and 75% or less, more preferably 50% or more and 70% or less, (ii) a repeating unit (u2) in which Ar 2 is a p-phenylene group (that is, a repeating unit derived from terephthalic acid) is preferably 1% or more and 30% or less, more preferably 10% or more and 25% or less, and preferably 15% or more and 20% or less, (iii) the repeating unit (u2) in which Ar 2 is an m-phenylene group (that is, the repeating unit derived from isophthalic acid) is preferably 1% or more and 15% or less, more preferably
  • each repeating unit described above is a value approximate to the ratio (% by mole) of each repeating unit calculated from the charged amount of raw material monomers. Therefore, the preferred ratio (% by mol) of each repeating unit calculated from the charged amount of the raw material monomers is the same value as the preferred number (%) of each repeating unit described above.
  • the liquid crystalline polymer in the present embodiment is preferably produced by melt-polymerizing raw material monomers corresponding to repeating units constituting the polymer and solid-phase polymerizing the resulting polymer.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, 4-(dimethylamino)pyridine, 1-methylimidazole, and the like. Nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystalline polymer in the present embodiment is preferably melt-kneaded using an extruder and then molded into pellets.
  • the extruder one having a cylinder, one or more screws arranged in the cylinder, and one or more supply ports provided in the cylinder is preferably used. Furthermore, as the extruder, one having one or more vents provided in the cylinder is more preferable. In addition, it is preferable to use an extruder equipped with a kneading section downstream of the supply port (in the case where a plurality of supply ports are provided, downstream of each supply port).
  • the kneading portion refers to a portion provided in a part of the screw for efficiently performing melt-kneading.
  • kneading portion examples include a kneading disc (a forward kneading disc, a neutral kneading disc, and a reverse kneading disc), a mixing screw, and the like.
  • a kneading disc a forward kneading disc, a neutral kneading disc, and a reverse kneading disc
  • a mixing screw and the like.
  • the extruder is connected to a decompression facility at a location having one or more vents.
  • a decompression facility By degassing the inside of the cylinder of the extruder using vacuum equipment during melt kneading of the liquid crystalline polymer, residual low molecular weight components can be removed from the liquid crystalline polymer.
  • liquid crystalline polymer in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of the liquid crystalline polymer in the resin composition of the present embodiment is preferably 30% by mass or more, more preferably 40% by mass or more, and 55% by mass or more relative to the total amount of the resin composition. It is even more preferable to have On the other hand, the content of the liquid crystalline polymer is preferably 95% by mass or less, more preferably 70% by mass or less, and even more preferably 65% by mass or less, relative to the total amount of the resin composition. .
  • the content of the liquid crystalline polymer is preferably 30% by mass or more and 95% by mass or less, more preferably 40% by mass or more and 70% by mass or less, and 55% by mass with respect to the total amount of the resin composition. It is more preferable that the content is 65% by mass or more.
  • the fluororesin in the resin composition of the present embodiment has a peak area percentage of 0.05% of the CF 3 group content relative to the CF 2 group content in the fluororesin, which is determined by the following [Method for measuring CF 3 group content]. That's it. [Method for measuring CF 3 group content]
  • the CF 3 group content relative to the CF 2 group content in the fluororesin is obtained from the peak area ICF 3 corresponding to the CF 3 group measured by 19 F solid-state NMR and the peak area ICF 2 corresponding to the CF 2 group. It is calculated as an area percentage and determined by the following formula (f1).
  • CF 3 group content (%) ⁇ (ICF 3 )/3/(ICF 2 )/2 ⁇ 100 (f1)
  • the peak area percentage of the CF 3 group content was determined with reference to the content described in Macromolecules 2001, 34, 66-75.
  • NMR devices for measuring solid samples include 400 MHz NMR devices (manufactured by JEOL, Bruker, Agilent, Varian, etc.).
  • 19 F solid-state NMR measurement for calculating the CF 3 group content is performed, for example, by a single pulse method under the following measurement conditions.
  • Measuring device PS400WB (manufactured by Varian) Static magnetic field strength: 9.4 Tesla (resonance frequency: 400 MHz (1H)) Magic angle rotation: 35 kHz (35000 rotations per second) Repeat time: 15s Accumulation times: 128 times Temperature: 26°C Chemical shift reference material: hexafluorobenzene
  • the fluororesin in the resin composition of the present embodiment has a peak area percentage of 0.05 for the CF 3 group content relative to the CF 2 group content in the fluororesin, determined by the above [Method for measuring CF 3 group content]. % or more, preferably 0.05% or more and 1.0% or less, more preferably 0.05% or more and 0.20% or less, still more preferably 0.05% or more and 0.15% or less and particularly preferably 0.05% or more and 0.10% or less.
  • the fluororesin in the resin composition of the present embodiment has a peak area percentage of the CF 3 group content of 0.05% or more, the resin composition of the present embodiment containing the fluororesin is less susceptible to die swell. The effect of suppressing is good. On the other hand, if the peak area percentage of the CF 3 group content is equal to or less than the preferable upper limit, the thermal stability is further improved.
  • the fluororesin in the resin composition of the present embodiment preferably has a resin decomposition initiation temperature of 450° C. or higher, more preferably 470° C. or higher, and even more preferably 473° C. or higher.
  • the resin decomposition initiation temperature is the temperature of the fluororesin from 25 ° C. (room temperature) to 800 ° C. using a thermogravimetry device (product name: TGA-50, manufactured by Shimadzu Corporation) under the condition of 10 ° C./min. is the temperature at which the weight reduction rate becomes 0.1% when heated at .
  • the upper limit of the resin decomposition initiation temperature of the fluororesin in the resin composition of the present embodiment is not particularly limited, and is, for example, 600° C. or less.
  • the resin decomposition temperature of the fluororesin in the resin composition of the present embodiment is preferably 450° C. or higher and 600° C. or lower, more preferably 470° C. or higher and 600° C. or lower, and even more preferably 473° C. or higher and 600° C. or lower.
  • the number average molecular weight (Mn) of the fluororesin in the resin composition of the present embodiment is preferably 100 to 5,000,000, more preferably 200 to 1,000,000, even more preferably 300 to 50,000, and 10,000 to 30,000 is particularly preferred.
  • the number average molecular weight (Mn) is defined in J. Am. Appl. Polym. Sci. 1973, 17, 3253, which is the number average molecular weight (Mn). Specifically, it is calculated by the following formula (m-1) from the heat of crystallization ( ⁇ Hc: cal/g) obtained using a differential scanning calorimeter (product name: DSC-50, manufactured by Shimadzu Corporation). value.
  • the amount of heat of crystallization ( ⁇ Hc) is the amount of heat obtained from the area of the crystallization peak in the DSC curve.
  • Number average molecular weight (Mn) 2.1 ⁇ 10 10 ⁇ Hc -5.16 (m-1)
  • the thermal stability and the effect of suppressing the occurrence of die swell are further improved.
  • the above-mentioned peak area percentage of CF 3 group content, resin decomposition initiation temperature, and number average molecular weight (Mn) of the fluororesin can be controlled by changing the production method of the fluororesin.
  • Mn number average molecular weight
  • CF A fluororesin having a peak area percentage of 3 -group content of 0.05% or more can be obtained.
  • fluororesin in the resin composition of the present embodiment include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), ethylene- Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA), and the like.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PTFE is preferable as the fluororesin in the resin composition of the present embodiment from the viewpoint of improving thermal stability and the effect of suppressing the occurrence of die swell.
  • the peak area percentage of the CF 3 group content with respect to the CF 2 group content in PTFE determined by the above [Method for measuring CF 3 group content] is 0.5. 05% or more, more preferably PTFE having a peak area percentage of the CF 3 group content of 0.05% or more and 1.0% or less, and a peak area percentage of the CF 3 group content of 0.05% or more and 1.0% or less.
  • PTFE with a content of 05% or more and 0.20% or less is more preferable, and PTFE with a peak area percentage of the CF 3 group content of 0.05% or more and 0.10% or less is even more preferable.
  • PTFE having a resin decomposition initiation temperature of 450° C. or higher and 600° C. or lower is preferable, and PTFE having a resin decomposition initiation temperature of 470° C. or higher and 600° C. or lower is more preferable.
  • PTFE having a decomposition initiation temperature of 473° C. or higher and 600° C. or lower is more preferable.
  • the fluororesin in the resin composition of the present embodiment preferably has a number average molecular weight (Mn) of 100 to 5,000,000, more preferably 200 to 1,000,000, and more preferably 300 to 50,000.
  • Mn number average molecular weight
  • PTFE with 10,000 to 30,000 is particularly preferred.
  • the fluororesin in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of the fluororesin in the resin composition of the present embodiment is preferably 0.05% by mass or more, more preferably 0.10% by mass or more, and 0.05% by mass or more, based on the total amount of the resin composition. More preferably, it is 50% by mass or more.
  • the content of the fluororesin is preferably 5.0% by mass or less, more preferably 1.5% by mass or less, and 1.0% by mass or less with respect to the total amount of the resin composition. It is even more preferable to have
  • the content of the fluororesin is preferably 0.05% by mass or more and 5.0% by mass or less, and 0.10% by mass or more and 1.5% by mass or less with respect to the total amount of the resin composition. is more preferable, and more preferably 0.50% by mass or more and 1.0% by mass or less.
  • the content of the fluororesin in the resin composition of the present embodiment with respect to the total amount of the resin composition is within the above preferable range, the effect of suppressing the occurrence of die swell is further improved.
  • the content of the fluororesin in the resin composition of the present embodiment is preferably 0.1 parts by mass or more, and 0.5 parts by mass or more with respect to 100 parts by mass of the liquid crystalline polymer. is more preferable, and 1.0 parts by mass or more is even more preferable.
  • the content of the fluororesin is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and 2.0 parts by mass with respect to 100 parts by mass of the liquid crystalline polymer.
  • the content of the fluororesin is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, more preferably 0.5 parts by mass or more and 3.0 parts by mass or less, and 1.0 parts by mass Part or more and 2.0 parts by mass or less is more preferable.
  • the content of the fluororesin in the resin composition of the present embodiment with respect to 100 parts by mass of the liquid crystalline polymer is within the above preferable range, the thermal stability and the effect of suppressing the occurrence of die swell are further improved.
  • the fluororesin in the resin composition of the present embodiment can be produced, for example, by the following method (manufacturing method (i) or (ii)). can.
  • Production method (i) is a method for producing polytetrafluoroethylene (PTFE) using both emulsion polymerization and suspension polymerization. Specifically, tetrafluoroethylene is polymerized to produce emulsified particles in the presence of a polymerization initiator (water-soluble peroxide) and an aqueous medium (eg, deionized high-purity pure water). The emulsified particles are then aggregated to produce an aggregated powder.
  • a polymerization initiator water-soluble peroxide
  • aqueous medium eg, deionized high-purity pure water
  • polytetrafluoroethylene having a peak area percentage of the CF 3 group content in the above range is obtained by polymerizing tetrafluoroethylene. can be manufactured.
  • Process (ii) is a process in which tetrafluoroethylene and at least one optional comonomer are polymerized in an aqueous polymerization medium.
  • tetrafluoroethylene and at least one copolymerizable fluorinated ethylenically unsaturated comonomer e.g., perfluoro(propyl vinyl ether) (PPVE)
  • PPVE perfluoro(propyl vinyl ether)
  • PPVE perfluoro(propyl vinyl ether)
  • PPVE perfluoro(propyl vinyl ether)
  • PPVE perfluoro(propyl vinyl ether)
  • a particular dispersant e.g., perfluoroalkyl (C 4 to C 16
  • the fluororesin produced by the production method (ii) is preferable as the fluororesin in the resin composition of the present embodiment.
  • the resin composition of the present embodiment contains the above-described liquid crystalline polymer and fluororesin, and may further contain components (optional components) other than these components within the range in which the effects of the present invention are exhibited.
  • optional components include glass fibers, inorganic fillers other than glass fibers, pigments, and additives.
  • the type of glass fiber in the resin composition of the present embodiment is not particularly limited, and known ones can be used. , AR glass (ie, glass for alkali resistant applications), S glass or T glass, and the like. Among them, the glass fiber is preferably E glass.
  • the glass fibers may be untreated or treated.
  • the glass fiber can be treated with a sizing agent, a silane coupling agent, a boron compound, or the like.
  • sizing agents include aromatic urethane sizing agents, aliphatic urethane sizing agents, and acrylic sizing agents.
  • the fiber diameter of the glass fiber in the resin composition of the present embodiment is not particularly limited, but for example, it is preferably 1 to 40 ⁇ m, more preferably 3 to 35 ⁇ m, even more preferably 5 to 15 ⁇ m. .
  • the fiber length of the glass fiber in the resin composition of the present embodiment is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 30 to 125 ⁇ m, and even more preferably 50 to 100 ⁇ m. .
  • the fiber diameter and fiber length of the glass fiber in the resin composition of this embodiment can be measured, for example, with a scanning electron microscope, an optical microscope, or the like.
  • the glass fibers in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of the glass fiber in the resin composition of the present embodiment is preferably 10% by mass or more, more preferably 20% by mass or more, and 35% by mass or more, relative to the total amount of the resin composition. is more preferred.
  • the glass fiber content is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 45% by mass or less, relative to the total amount of the resin composition.
  • the glass fiber content is preferably 10% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 60% by mass or less, and 35% by mass or more, relative to the total amount of the resin composition. It is more preferably 45% by mass or less.
  • the mechanical strength of the molded body can be further improved in addition to the effect of suppressing the occurrence of die swell.
  • the content of the above-mentioned fluororesin is 0.05 parts by mass or more with respect to 100 parts by mass of the above-mentioned liquid crystalline polymer and glass fiber. is preferred, 0.10 parts by mass or more is more preferred, and 0.50 parts by mass or more is even more preferred.
  • the content of the fluororesin is preferably 5.0 parts by mass or less, more preferably 1.5 parts by mass or less, relative to 100 parts by mass of the liquid crystalline polymer and the glass fiber. It is more preferably 1.0 parts by mass or less.
  • the content of the fluororesin is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, and 0.10 parts by mass or more and 1.0 parts by mass, based on 100 parts by mass of the liquid crystalline polymer and the glass fiber. It is more preferably 5 parts by mass or less, and even more preferably 0.50 parts by mass or more and 1.0 parts by mass or less.
  • the content of the fluororesin with respect to the liquid crystalline polymer and the glass fiber in the resin composition of the present embodiment is within the above preferable range, the thermal stability, the effect of suppressing the occurrence of die swell, and the mechanical strength are well balanced. Become.
  • the inorganic filler other than glass fiber in the resin composition of the present embodiment may be a fibrous filler, a plate-like filler, or a particulate filler other than fibrous and plate-like fillers. There may be.
  • the inorganic filler in the resin composition of the present embodiment is preferably a plate-like filler among those described above.
  • plate-like fillers include talc and mica.
  • the talc in the resin composition of the present embodiment is preferably pulverized hydrated magnesium silicate.
  • the crystal structure of the hydrous magnesium silicate molecule is a pyrophyllite-type three-layered structure, and talc has this structure stacked up.
  • the talc is more preferably tabular talc obtained by finely pulverizing crystals of hydrated magnesium silicate molecules to about a unit layer.
  • Talc may be untreated or treated.
  • Treated talc includes those surface-treated with known surfactants.
  • the surfactant include silane coupling agents, titanium coupling agents, higher fatty acids, higher fatty acid esters, higher fatty acid amides, and higher fatty acid salts.
  • the median diameter (D50) of talc is preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the median diameter (D50) of talc can be measured, for example, with a known laser diffraction particle size distribution analyzer or the like.
  • the talc in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of talc in the resin composition of the present embodiment is preferably 5% by mass or more, more preferably 15% by mass or more, and 25% by mass or more relative to the total amount of the resin composition. is more preferred.
  • the content of talc is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, relative to the total amount of the resin composition.
  • the content of talc is preferably 5% by mass or more and 80% by mass or less, more preferably 15% by mass or more and 70% by mass or less, and 25% by mass or more and 60% by mass, based on the total amount of the resin composition. % by mass or less is more preferable.
  • Mica is a pulverized silicate mineral containing aluminum, potassium, magnesium, sodium, iron and the like.
  • An octahedral structure composed of two or three metal oxides/hydroxides is sandwiched between four tetrahedral structures formed by oxides of three atoms of silicon (Si) and one atom of aluminum (Al). It forms a structure.
  • the mica in the present embodiment may be natural mica such as muscovite, phlogopite, fluorine phlogopite, tetrasilisic mica, or synthetic mica that is artificially produced.
  • Mica may be untreated or treated.
  • the treated mica include those surface-treated with known surfactants.
  • the surfactant include silane coupling agents, titanium coupling agents, higher fatty acids, higher fatty acid esters, higher fatty acid amides, and higher fatty acid salts.
  • the median diameter (D50) of mica is preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the median diameter (D50) of mica can be measured, for example, with a known laser diffraction particle size distribution analyzer or the like.
  • the mica in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of mica in the resin composition of the present embodiment is preferably 5% by mass or more, more preferably 15% by mass or more, and 25% by mass or more with respect to the total amount of the resin composition. is more preferred.
  • the mica content is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, relative to the total amount of the resin composition.
  • the mica content is preferably 5% by mass or more and 80% by mass or less, more preferably 15% by mass or more and 70% by mass or less, and 25% by mass or more and 60% by mass or less, based on the total amount of the resin composition. % by mass or less is more preferable.
  • the content of mica in the resin composition of the present embodiment is within the above range, the mechanical strength of the molded article produced using the resin composition can be further improved.
  • pigments include alumina, iron oxide, cobalt oxide, chromium oxide, manganese oxide, titanium oxide, carbon black, and titanium yellow. Among them, carbon black and titanium oxide are preferred.
  • the pigments in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of the pigment in the resin composition of the present embodiment is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, relative to the total amount of the resin composition, and 0.5% by mass or more. % by mass or more is more preferable.
  • the pigment content is preferably 10% by mass or less, more preferably 7% by mass or less, and even more preferably 5% by mass or less, relative to the total amount of the resin composition.
  • the content of the pigment is preferably 0.05% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 7% by mass or less, relative to the total amount of the resin composition. More preferably, it is 5% by mass or more and 5% by mass or less.
  • the content of carbon black in the resin composition of the present embodiment is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, relative to the total amount of the resin composition. , more preferably 0.5% by mass or more.
  • the content of carbon black is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1.5% by mass or less with respect to the total amount of the resin composition.
  • the content of carbon black is preferably 0.05% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, relative to the total amount of the resin composition. More preferably, it is 0.5% by mass or more and 1.5% by mass or less.
  • the average particle size of primary particles of carbon black may be, for example, 20 to 50 nm, or 20 to 40 nm.
  • the primary particle size of carbon black is determined by the Carbon Black Yearbook No. 2 published by the Carbon Black Association. 48 (1998) p. 114 can be obtained. Specifically, carbon black is observed at a magnification of 20,000 using a transmission electron microscope, the diameters of the primary particles of arbitrary 1,000 carbon black particles are measured, and the number average value thereof is calculated.
  • the specific surface area of carbon black may be, for example, 30-200 m 2 /g, and may be 50-160 m 2 /g.
  • the specific surface area of carbon black refers to the nitrogen adsorption specific surface area.
  • the nitrogen adsorption specific surface area can be measured by removing gas adhering to the sample surface in advance, adsorbing nitrogen onto the sample at liquid nitrogen temperature, and calculating the specific surface area from the amount of adsorption. Specifically, according to JIS K6217-2: 2001, using a BET specific surface area measuring device (eg AccuSorb 2100E manufactured by Micromeritics), nitrogen gas is adsorbed under liquid nitrogen temperature, the adsorption amount is measured, and the BET method can be calculated by
  • the oil absorption of carbon black may be 30 mL/100 g or more and 120 mL/100 g or less, and may be 40 mL/100 g or more and 80 mL/100 g or less.
  • the oil absorption of carbon black can be determined by the method described in JIS K6217-4:2001 using a dibutyl phthalate absorption meter.
  • Titanium oxide The titanium oxide in the resin composition of the present embodiment is not particularly limited, and any known titanium oxide can be used.
  • the crystal structure of titanium oxide is not particularly limited, and may be rutile type, anatase type, or a mixture of both.
  • Titanium oxide may be surface-treated.
  • properties such as dispersibility can be improved by subjecting titanium oxide to a surface treatment using an inorganic metal oxide.
  • inorganic metal oxides include aluminum oxide.
  • the average particle size of titanium oxide is preferably 0.1 to 1 ⁇ m, more preferably 0.15 to 0.25 ⁇ m.
  • the average particle size of titanium oxide can be measured, for example, with a known laser diffraction particle size distribution analyzer.
  • the titanium oxide in the resin composition of the present embodiment may be used singly or in combination of two or more.
  • the content of titanium oxide in the resin composition of the present embodiment is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 2% by mass or more, relative to the total amount of the resin composition. is more preferable.
  • the content of titanium oxide is preferably 10% by mass or less, more preferably 7% by mass or less, and even more preferably 5% by mass or less, relative to the total amount of the resin composition.
  • the content of titanium oxide is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 7% by mass or less, relative to the total amount of the resin composition, and 2% by mass. % or more and 5 mass % or less.
  • Additives include flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, and release agents. , antistatic agents, plasticizers, lubricants, dyes, foaming agents, foam control agents, viscosity modifiers, and surfactants.
  • the resin composition of the present embodiment described above contains a liquid crystalline polymer and a fluororesin , and the fluororesin is the CF
  • the peak area percentage of CF 3 group content to 2 group content is 0.05% or more.
  • the resin composition of the present embodiment further improves the effect of suppressing the occurrence of die swell by using a liquid crystalline polymer and a fluororesin having a peak area percentage of the CF 3 group content of 0.05% or more.
  • the resin composition of the present embodiment further improves the thermal stability by using a liquid crystalline polymer and a fluororesin having a peak area percentage of the CF 3 group content of 0.05% or more. be able to.
  • the present invention has the following aspects.
  • the fluororesin has a peak area percentage of 0.05% or more of the CF 3 group content relative to the CF 2 group content in the fluororesin, determined by the following [Method for measuring CF 3 group content], preferably
  • the resin composition is 0.05% or more and 1.0% or less, more preferably 0.05% or more and 0.20% or less, and still more preferably 0.05% or more and 0.10% or less.
  • CF 3 group content relative to the CF 2 group content in the fluororesin is obtained from the peak area ICF 3 corresponding to the CF 3 group measured by 19F solid-state NMR and the peak area ICF 2 corresponding to the CF 2 group. It is calculated as a percentage and obtained by the following formula (f1).
  • CF 3 group content (%) ⁇ (ICF 3 )/3/(ICF 2 )/2 ⁇ 100 (f1)
  • the liquid crystalline polymer comprises a repeating unit (u1) represented by the following formula (1), a repeating unit (u2) represented by the following formula (2), and a repeating unit represented by the following formula (3)
  • the resin composition according to "1" which is a liquid crystalline polyester having units (u3).
  • Ar 1 represents a phenylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group or a biphenylylene group.
  • X and Y each independently represent an oxygen atom or an imino group (—NH
  • the hydrogen atoms of the groups represented by Ar 1 , Ar 2 and Ar 3 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. may be substituted.
  • the content of the liquid crystalline polymer is preferably 30% by mass or more and 95% by mass or less, more preferably 40% by mass or more and 70% by mass or less, and still more preferably 55% by mass or more and 65% by mass or less,
  • the content of the fluororesin is preferably 0.05% by mass or more and 5.0% by mass or less, more preferably 0.10% by mass or more and 1.5% by mass or less, relative to the total amount of the resin composition. , more preferably 0.50% by mass or more and 1.0% by mass or less, the resin composition according to "1" or "2".
  • the content of the glass fiber is preferably 10% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 60% by mass or less, and still more preferably 35% by mass, based on the total amount of the resin composition.
  • a resin composition having characteristics such that the rate of change in b * after heating is preferably 12% or less, more preferably 9% or less, still more preferably 5% or less, and particularly preferably less than 3.3%.
  • the peak area percentage of the CF 3 group content with respect to the CF 2 group content in the fluororesin is 0.05. % or more, a step of producing a fluororesin, and a step of mixing the fluororesin and a liquid crystalline polymer.
  • the CF 3 group content relative to the CF 2 group content in the fluororesin is obtained from the peak area ICF 3 corresponding to the CF 3 group measured by 19 F solid-state NMR and the peak area ICF 2 corresponding to the CF 2 group. It is calculated as an area percentage and determined by the following formula (f1).
  • CF 3 group content (%) ⁇ (ICF 3 )/3/(ICF 2 )/2 ⁇ 100 (f1)
  • the molded article of this embodiment is a molded article produced using the resin composition described above.
  • the molded article of this embodiment can be obtained by a known molding method using a resin composition.
  • a melt molding method is preferable, and examples thereof include an injection molding method, an extrusion molding method such as a T-die method and an inflation method, a compression molding method, a blow molding method, and a vacuum molding method. methods and press molding. Among them, the injection molding method is preferable.
  • the resin composition described above when used as a molding material and molded by an injection molding method, the resin composition is melted using a known injection molding machine, and the melted resin composition is injected into a mold. Molded by Here, when the resin composition is charged into the injection molding machine, each component may be charged separately into the injection molding machine, or some or all of the components may be mixed in advance and charged into the injection molding machine as a mixture.
  • Known injection molding machines include, for example, TR450EH3 manufactured by Sodick Co., Ltd., hydraulic horizontal molding machine PS40E5ASE manufactured by Nissei Plastic Industry Co., Ltd., and the like.
  • the temperature conditions for injection molding are appropriately determined according to the type of liquid crystalline polymer, and it is preferable to set the cylinder temperature of the injection molding machine to a temperature 10 to 80°C higher than the flow start temperature of the liquid crystalline polymer to be used.
  • the temperature of the mold is preferably set in the range of room temperature (25° C.) to 180° C. from the viewpoint of the cooling rate of the resin composition and productivity.
  • Other injection conditions such as screw rotation speed, back pressure, injection speed, holding pressure, holding pressure time, etc., may be appropriately adjusted.
  • the molded article of the present embodiment can be applied to all uses to which liquid crystalline polymers are generally applicable.
  • the molded article of the present embodiment includes, for example, electric and electronic parts such as connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, printed wiring boards, circuit boards, semiconductor packages, and computer-related parts; IC trays and wafer carriers. , Semiconductor manufacturing process related parts; VTRs, TVs, irons, air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting equipment parts; Lamp reflectors, lamp holders, etc.
  • Compact discs, lasers Discs (registered trademark), speakers, and other audio product parts ferrules for optical cables, telephone parts, facsimile parts, modems, and other communications equipment parts; separation claws, heater holders, and other parts related to copiers and printers; impellers, fans Machine parts such as gears, gears, bearings, motor parts and cases; automobile parts such as mechanical parts for automobiles, engine parts, parts in the engine room, electrical parts, interior parts, pots for microwave cooking, heat-resistant tableware, etc.
  • Cooking utensils heat insulation and soundproofing materials such as flooring and wall materials; support materials such as beams and columns; building materials such as roofing materials; Radiation facility parts, marine facility parts, cleaning jigs, optical equipment parts, valves, pipes, nozzles, filters, membranes, medical equipment parts and medical materials, sensor parts, sanitary equipment, sports Goods, leisure goods.
  • the molded article of the present embodiment is preferably used as a coil bobbin.
  • a coil bobbin which is a suitable application, will be described in detail below.
  • FIG. 1 is a schematic diagram showing the coil bobbin of this embodiment. As shown in the figure, the coil bobbin 1A has a body portion 2 and a pair of flange portions 3 .
  • the extending direction of the main body 2 is the x-axis direction
  • the direction orthogonal to the x-axis direction in the horizontal plane is the y-axis direction
  • the direction orthogonal to each of the x-axis direction and the y-axis direction is z Axial direction.
  • the body part 2 is a tubular member.
  • the body portion 2 has a shaft hole 29 passing through the body portion 2 in the x-axis direction.
  • a winding is wound around the outer surface 2 b of the body portion 2 in the circumferential direction of the body portion 2 .
  • the windings wound on the outer surface 2b form a coil.
  • the flanges 3 are provided at both ends in the extending direction of the shaft hole 29 of the main body 2 .
  • the collar portion 3 has an annular shape extending in the yz plane direction.
  • the collar portion 3 may have a through hole through which the winding is inserted.
  • a coil bobbin which is an electric/electronic component such as the coil bobbin 1A described above, is used as a core of a coil formed by winding a wire.
  • a coil wound around a bobbin is likely to reach a high temperature due to the use environment or heating due to energization. Therefore, the molded article of the present embodiment, which has high thermal stability, is useful as a coil bobbin.
  • the pellets obtained from the resin composition are unlikely to have an irregular shape, and the pellets are put into a molding machine and plasticized. Defects are less likely to occur due to reduced variability in weighing.
  • the temperature was raised to 320°C over 2 hours and 50 minutes while distilling off the by-product acetic acid and unreacted acetic anhydride, and the reaction was terminated when an increase in torque was observed to obtain a prepolymer.
  • the flow initiation temperature of the prepolymer was 263°C.
  • the resulting prepolymer is cooled to room temperature (25° C.) and pulverized with a coarse pulverizer to obtain a liquid crystalline polymer (liquid crystal polyester) powder (particle diameter is about 0.1 to 1 mm), followed by a nitrogen atmosphere. Then, the temperature was raised from room temperature (25° C.) to 250° C. over 1 hour, then from 250° C. to 300° C. over 5 hours, and held at 300° C. for 3 hours to proceed with the polymerization reaction in a solid phase.
  • the obtained liquid crystalline polymer (liquid crystal polyester; resin A) had a flow initiation temperature of 361°C.
  • each repeating unit in Resin A calculated from the charged amount of raw material monomers is the repeating unit (u1) in which Ar 1 is a p-phenylene group (that is, p-hydroxybenzoin acid) is 60 mol%, the repeating unit (u2) in which Ar 2 is a p-phenylene group (that is, the repeating unit derived from terephthalic acid) is 18 mol%, and Ar 2 is an m-phenylene group.
  • a certain repeating unit (u2) (that is, repeating units derived from isophthalic acid) is 2 mol %
  • Ar 3 is a 4,4'-biphenylylene group
  • X and Y are oxygen atoms (i.e., repeating units (u3) , a repeating unit derived from 4,4′-dihydroxybiphenyl) was 20 mol %.
  • the temperature was raised from 150° C. to 320° C. over 2 hours and 50 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and when an increase in torque was observed, the contents were removed from the reactor. It was taken out and cooled to room temperature to obtain a solid prepolymer.
  • the prepolymer was pulverized using a pulverizer, and the resulting pulverized product was heated from room temperature to 250° C. over 1 hour and then from 250° C. to 295° C. over 5 hours under a nitrogen atmosphere. , and 295° C. for 3 hours to carry out solid state polymerization.
  • the resulting solid-phase polymer was cooled to room temperature to obtain a powdery liquid crystalline polyester (L3).
  • the obtained liquid crystalline polymer liquid crystal polyester; resin B) had a flow initiation temperature of 327°C.
  • each repeating unit in Resin B calculated from the charged amount of raw material monomers is the repeating unit (u1) in which Ar 1 is a p-phenylene group (that is, p-hydroxybenzoin acid) is 60 mol%, the repeating unit (u2) in which Ar 2 is a p-phenylene group (that is, the repeating unit derived from terephthalic acid) is 15 mol%, and Ar 2 is an m-phenylene group.
  • a certain repeating unit (u2) (that is, repeating units derived from isophthalic acid) is 5 mol %
  • Ar 3 is a 4,4'-biphenylylene group
  • X and Y are oxygen atoms (i.e., repeating units (u3) , a repeating unit derived from 4,4′-dihydroxybiphenyl) was 20 mol %.
  • an aqueous solution prepared by dissolving 700 mg of disuccinic acid peroxide (DSP) in 20 g of deionized water and an aqueous solution prepared by dissolving 700 mg of ammonium persulfate (APS) in 20 g of deionized water were pressurized into the tank using TFE. . Since the pressure inside the tank was lowered due to the decomposition of the polymerization initiator, TFE was continuously supplied to maintain the pressure inside the tank at 0.80 ⁇ 0.05 MPa. During the polymerization reaction, the temperature in the tank was adjusted to 85 ⁇ 1° C., and the stirring rotation speed was controlled to 350 rpm.
  • DSP disuccinic acid peroxide
  • APS ammonium persulfate
  • the CF 3 group content relative to the CF 2 group content in the resins F1 to F5 is the peak area ICF 3 corresponding to the CF 3 group measured by 19 F solid-state NMR, and the peak area ICF 2 corresponding to the CF 2 group. It was calculated as an area percentage from , and obtained by the following formula (f1).
  • CF 3 group content (%) ⁇ (ICF 3 )/3/(ICF 2 )/2 ⁇ 100 (f1)
  • Measuring device PS400WB (manufactured by Varian) Static magnetic field strength: 9.4 Tesla (resonance frequency: 400 MHz (1H)) Magic angle rotation: 35 kHz (35000 rotations per second) Repeat time: 15s Accumulation times: 128 times Temperature: 26°C Chemical shift reference material: hexafluorobenzene
  • Resin A a liquid crystalline polymer (liquid crystal polyester; resin A) obtained by the production method described above
  • G1 glass fiber (product name: milled fiber EFH75-01, manufactured by Central Glass Co., Ltd., fiber diameter 11 ⁇ m, fiber length 75 ⁇ m)
  • Resins F1 to F5 fluororesins obtained by the respective production methods described above
  • M1 carbon black (product name: #45LB, manufactured by Mitsubishi Chemical Corporation, primary particle diameter 24 nm, specific surface area 125 m 2 /g, oil absorption 45 mL/100 g)
  • the resin compositions of Examples 1 to 4 which contain resins F1 to F4 having a peak area percentage of CF 3 group content of 0.05% or more, are superior to the resin composition of Comparative Example 1. Therefore, the effect of suppressing the occurrence of die swell was good.
  • the resin compositions of Examples 1 to 4 containing a liquid crystalline polymer and resins F1 to F4 having a CF 3 group content peak area percentage of 0.05% or more were used.
  • the molded product had a low b * rate of change and was less likely to yellow. From this, it was confirmed that the molded articles produced using the resin compositions of Examples 1 to 4 had high thermal stability. Further, among the examples, the molded articles produced using the resin compositions of Examples 2 to 4 containing the resins F2 to F4 had a particularly low b * rate of change and suppressed yellowing.
  • Resin B a liquid crystalline polymer (liquid crystal polyester; resin B) obtained by the production method described above
  • T1 Talc (product name: MS-KY, manufactured by Nippon Talc Co., Ltd., median diameter (D50) 21 ⁇ m)
  • Resins F1 to F4 fluororesins obtained by the respective production methods described above
  • M2 Titanium Yellow (product name: TY-70S, manufactured by Ishihara Sangyo Co., Ltd., average particle size 1.00 ⁇ m)
  • M3 Carbon black (product name: BP4350, manufactured by Cabot Corporation, oil absorption 66-77 mL/100 g)
  • M4 Titanium oxide (product name: CR-60, manufactured by Ishihara Sangyo Co., Ltd., average particle size 0.21 ⁇ m)
  • the resin compositions of Examples 5 to 8 were also good in the effect of suppressing the occurrence of die swell, like the resin compositions of Examples 1 to 4 described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

液晶性ポリマーと、フッ素樹脂とを含有し、前記フッ素樹脂は、下記[CF3基含有量の測定方法]により求まる、前記フッ素樹脂中のCF2基含有量に対するCF3基含有量のピーク面積百分率が0.05%以上である、樹脂組成物。 [CF3基含有量の測定方法] 前記フッ素樹脂中のCF2基含有量に対するCF3基含有量は、19F固体NMRにより測定されたCF3基に対応するピーク面積ICF3と、CF2基に対応するピーク面積ICF2とから面積百分率として算出し、下記式(f1)により求まる。 CF3基含有量(%)={(ICF3)/3/(ICF2)/2}×100・・・(f1)

Description

樹脂組成物及び成形体
 本発明は、樹脂組成物及び成形体に関する。
 本願は、2021年2月1日に日本に出願された、特願2021-014344号に基づき優先権主張し、その内容をここに援用する。
 高分子材料は、その成形加工の容易さと軽量性から、様々な分野で利用されている。その中でも、近年、金属やセラミックスを代替し得る高性能高分子材料(エンジニアリング材料)が、電気、電子、機械、光学機器、自動車、航空機、及び医療分野等の様々な分野で利用されている。
 これらの中でも、電気・電子用部品においては、軽薄短小化する流れの中、当該部品のより一層の小型化が進められている。加えて、当該部品は鉛フリーはんだを適用する表面実装技術に適合する程度の熱安定性など、より高度な性能が要求される傾向にある。
 これらの要求を満たす観点からは、前記エンジニアリング材料の中でも、液晶性ポリマーは特に優れた材料といえる。液晶性ポリマーは、薄肉流動性や低バリ性能等の成形加工性が良好であり、高熱安定性、高機械強度、及び絶縁性に優れた材料であり、環境負荷が高い添加剤を用いることなく、高い難燃性を有している。
 液晶性ポリマーを含有する樹脂組成物として、例えば、特許文献1には、液晶性ポリエステル樹脂100重量部およびガラス繊維10~100重量部を少なくとも含有する液晶性樹脂組成物であって、前記ガラス繊維の重量平均繊維長が30~100μmであり、繊維長300~500μmのガラス繊維を全ガラス繊維中0.1~5.0重量%含有することを特徴とするペレット形状の液晶性ポリエステル樹脂組成物が開示されている。
国際公開第2012/090410号
 しかしながら、特許文献1に記載されたような従来の樹脂組成物では、ダイスウェルの発生が問題となる場合がある。ここで、ダイスウェルとは、溶融樹脂が押出成形ダイを出た後に膨張する現象である。ダイスウェルが発生すると、得られるペレットの粒径が不均一となるため、生産性が低下してしまう。
 本発明はこのような事情に鑑みてなされたものであって、ダイスウェル発生の抑制効果が良好な樹脂組成物及び当該樹脂組成物を用いて作製された成形体を提供することを目的とする。
 上記の課題を解決するために、本発明は以下の構成を採用した。
 [1]液晶性ポリマーと、フッ素樹脂とを含有し、前記フッ素樹脂は、下記[CF基含有量の測定方法]により求まる、前記フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上である、樹脂組成物。
 [CF基含有量の測定方法]
 前記フッ素樹脂中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求まる。
 CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
 [2]さらに、ガラス繊維を含有する、[1]に記載の樹脂組成物。
 [3]さらに、板状充填剤を含有する、[1]又は[2]に記載の樹脂組成物。
 [4]前記フッ素樹脂の樹脂分解開始温度は、473℃以上である、[1]~[3]のいずれか一項に記載の樹脂組成物。
 [5][1]~[4]のいずれか一項に記載の樹脂組成物を用いて作製された成形体。
 本発明によれば、ダイスウェル発生の抑制効果が良好な樹脂組成物及び当該樹脂組成物を用いて作製された成形体を提供することができる。
本実施形態のコイル用ボビンを示す模式図である。
 (樹脂組成物)
 本実施形態の樹脂組成物は、液晶性ポリマーと、フッ素樹脂とを含有する。
 <液晶性ポリマー>
 本実施形態の樹脂組成物における液晶性ポリマーとは、溶融状態で分子の直鎖が規則正しく並んだ液晶様性質を示す熱可塑性樹脂である。なお、液晶性ポリマーを含有する樹脂組成物も、溶融状態で液晶性を示すことが好ましく、本実施形態の樹脂組成物は、450℃以下の温度で溶融することが好ましい。
 本実施形態の樹脂組成物は、液晶性ポリマーを含有することにより、高強度であり耐熱性が高く、また寸法精度が高い。
 本実施形態の樹脂組成物における液晶性ポリマーとしては、液晶ポリエステルであってもよいし、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。
 本実施形態の樹脂組成物における液晶性ポリマーとしては、液晶ポリエステルが好ましく、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることがより好ましい。
 本実施形態の樹脂組成物における液晶性ポリマーの典型的な例としては、芳香族ヒドロキシカルボン酸と芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合(重縮合)させてなるもの、複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの、芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなるもの、およびポリエチレンテレフタレートなどのポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなるものが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、それぞれ独立に、その一部または全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシル基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、およびカルボキシル基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるもの(アシル化物)が挙げられる。芳香族ヒドロキシアミンおよび芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 本実施形態の樹脂組成物における液晶性ポリマーは、流動開始温度が、例えば、280℃以上であることが好ましく、280℃以上420℃以下であることがより好ましく、300℃以上400℃以下であることがさらに好ましい。
 本実施形態の樹脂組成物における液晶性ポリマーの流動開始温度が高いほど、耐熱性や強度・剛性が向上する傾向がある。一方で、液晶性ポリマーの流動開始温度が420℃を超えると、液晶性ポリマーを含有する樹脂組成物の溶融温度や溶融粘度が高くなる傾向がある。そのため、該樹脂組成物の成形に必要な温度が高くなる傾向がある。
 流動開始温度は、フロー温度または流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶性ポリマーを溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶性ポリマーの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 本実施形態の樹脂組成物における液晶性ポリマーとしては、下記式(1)で表される繰返し単位(u1)(以下、「繰返し単位(u1)」ともいう)、下記式(2)で表される繰返し単位(u2)(以下、「繰返し単位(u2)」ともいう)、及び下記式(3)で表される繰返し単位(u3)(以下、「繰返し単位(u3)」ともいう)を有する液晶ポリエステルが特に好ましい。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
 (式中、Arは、フェニレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、又はビフェニリレン基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基(-NH-)を表す。Ar、Ar及びArで表される前記基が有する水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。)
 ・繰返し単位(u1)
 繰返し単位(u1)は、モノヒドロキシ安息香酸に由来する繰返し単位である。
 上記式(1)中、Arは、フェニレン基であり、該フェニレン基が有する水素原子は、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
 前記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられる。
 前記アリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。
 繰り返し単位(u1)としては、上記の中でも、Arがp-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位)が好ましい。
 ・繰返し単位(u2)
 繰返し単位(u2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。
 Arは、フェニレン基、又はビフェニリレン基を表し、該フェニレン基及びビフェニリレン基が有する水素原子は、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。該ハロゲン原子、炭素数1~10のアルキル基及び炭素数6~20のアリール基としては、Arで表される前記基の水素原子と置換されていてもよいハロゲン原子、炭素数1~10のアルキル基及び炭素数6~20のアリール基と同様のものが挙げられる。
 繰り返し単位(u2)としては、上記の中でも、Arがp-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arがm-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、及びArがジフェニルエ-テル-4,4’-ジイル基であるもの(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましく、Arがp-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arがm-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)がより好ましい。
 ・繰返し単位(u3)
 繰返し単位(u3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。
 Arは、フェニレン基又はビフェニリレン基を表し、該フェニレン基及びビフェニリレン基が有する水素原子は、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。該ハロゲン原子、炭素数1~10のアルキル基及び炭素数6~20のアリール基としては、Arで表される前記基の水素原子と置換されていてもよいハロゲン原子、炭素数1~10のアルキル基及び炭素数6~20のアリール基と同様のものが挙げられる。
 X及びYは、それぞれ独立に、酸素原子又はイミノ基(-NH-)であり、いずれも酸素原子であることが好ましい。
 繰り返し単位(u3)としては、上記の中でも、Arがp-フェニレン基であるもの(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましく、Arが4,4’-ビフェニリレン基であり、X及びYが酸素原子であるもの(4,4’-ジヒドロキシビフェニルに由来する繰返し単位)がより好ましい。
 繰返し単位(u1)の数は、全繰返し単位の合計数(100%)に対して、30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。
 一方で、繰返し単位(u1)の数は、全繰返し単位の合計数に対して、80%以下であることが好ましく、70%以下であることがより好ましく、65%以下であることがさらに好ましい。
 例えば、液晶ポリエステルにおける繰返し単位(u1)の数は、30%以上80%以下であることが好ましく、40%以上70%以下であることがより好ましく、50%以上65%以下であることがさらに好ましい。
 繰返し単位(u2)の数は、全繰返し単位の合計数に対して、7%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。
 一方で、繰返し単位(u2)の数は、全繰返し単位の合計数に対して、35%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることがさらに好ましい。
 例えば、液晶ポリエステルにおける繰返し単位(u2)の数は、7%以上35%以下であることが好ましく、10%以上30%以下であることがより好ましく、15%以上25%以下であることがさらに好ましい。
 繰返し単位(u3)の数は、全繰返し単位の合計数に対して、7%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。
 一方で、繰返し単位(u3)の数は、全繰返し単位の合計数に対して、35%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることがさらに好ましい。
 例えば、液晶ポリエステルにおける繰返し単位(u3)の数は、7%以上35%以下であることが好ましく、10%以上30%以下であることがより好ましく、15%以上25%以下であることがさらに好ましい。
 繰返し単位(u1)、繰返し単位(u2)、及び繰返し単位(u3)を有する液晶ポリエステルにおいて、繰返し単位(1)の数、繰返し単位(2)の数、及び繰返し単位(3)の数の和は、100%を超えない。
 本明細書において、各繰返し単位の数は、例えば、特開2000-19168号公報に記載の分析方法によって求めることができる。
 具体的には、液晶ポリエステル樹脂を超臨界状態の低級アルコール(炭素数1~3のアルコール)と反応させて、前記液晶ポリエステル樹脂をその繰返し単位を誘導するモノマーまで解重合し、解重合生成物として得られる各繰返し単位を誘導するモノマーを液体クロマトグラフィーによって定量することで、各繰返し単位の数を算出することができる。
 例えば、液晶ポリエステル樹脂が、繰返し単位(u1)~(u3)からなる場合の繰返し単位(u1)の数は、繰返し単位(u1)~(u3)をそれぞれ誘導するモノマーのモル濃度を液体クロマトグラフィーによって算出し、繰返し単位(u1)~(u3)をそれぞれ誘導するモノマーのモル濃度の合計を100%とした際の繰返し単位(u1)を誘導するモノマーのモル濃度の割合を算出することによって、求めることができる。
 このような所定の繰返し単位組成を有する液晶ポリエステルは、耐熱性・熱安定性に優れる。繰返し単位(u1)の数が多いほど、溶融流動性や耐熱性・熱安定性や強度・剛性が向上しやすいが、あまり多いと、溶融温度や溶融粘度が高くなりやすく、成形に必要な温度が高くなりやすい。
 液晶ポリエステルにおける繰返し単位(u2)の数と繰返し単位(u3)の数とは、実質的に等しいことが好ましい。
 具体的には、繰返し単位(u2)の数と繰返し単位(u3)の数との割合は、[繰返し単位(u2)の数]/[繰返し単位(u3)の数]で表して、例えば0.9/1~1/0.9、好ましくは0.95/1~1/0.95、より好ましくは0.98/1~1/0.98である。
 液晶ポリエステルは、繰返し単位(u1)~(u3)を、それぞれ独立に、2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(u1)~(u3)以外の繰返し単位を有してもよいが、その数は、全繰返し単位の合計数に対して、例えば10%以下、好ましくは5%以下である。
 本実施形態の樹脂組成物における液晶性ポリマーとして、耐熱性・熱安定性が高い液晶性ポリマーの具体例としては、
 (i)全繰返し単位の合計数に対して、Arがp-フェニレン基である繰返し単位(u1)(すなわち、p-ヒドロキシ安息香酸に由来する繰返し単位)を、好ましくは40%以上80%以下、より好ましくは45%以上75%以下、さらに好ましくは50%以上70%以下有し、
 (ii)Arがp-フェニレン基である繰返し単位(u2)(すなわち、テレフタル酸に由来する繰返し単位)を、好ましくは1%以上30%以下、より好ましくは10%以上25%以下、さらに好ましくは15%以上20%以下有し、
 (iii)Arがm-フェニレン基である繰返し単位(u2)(すなわち、イソフタル酸に由来する繰返し単位)を、好ましくは1%以上15%以下、より好ましくは1%以上10%以下、さらに好ましくは1%以上5%以下有し、
 (iv)Arが4,4’-ビフェニリレン基であり、X及びYが酸素原子である繰返し単位(u3)(すなわち、4,4’-ジヒドロキシビフェニルに由来する繰返し単位)を、好ましくは5%以上40%以下、より好ましくは10%以上30%以下、さらに好ましくは15%以上25%以下有する液晶ポリエステルが挙げられる。
 該液晶ポリエステルにおいて、繰返し単位(u1)、繰返し単位(u2)、及び繰返し単位(u3)を有する液晶ポリエステルにおいて、繰返し単位(1)の数、繰返し単位(2)の数、及び繰返し単位(3)の数の和は、100%を超えない。
 上述した各繰返し単位の数は、原料モノマーの仕込み量から算出される各繰返し単位の割合(モル%)と近似した値となる。
 したがって、原料モノマーの仕込み量から算出される各繰返し単位の好ましい割合(モル%)は、上述した各繰返し単位の好ましい数(%)とそれぞれ同様の値となる。
 本実施形態における液晶性ポリマーは、それを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物を固相重合させることにより、それぞれ製造することが好ましい。これにより、耐熱性・熱安定性や強度・剛性が高い高分子量の液晶性ポリマーを操作性良く製造することができる。
 溶融重合は、触媒の存在下に行ってもよい。この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾールなどの含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。
 本実施形態における液晶性ポリマーは、押出機を用いて溶融混練した後、ペレット状に成形することが好ましい。
 押出機としては、シリンダーと、シリンダー内に配置された1本以上のスクリューと、シリンダーに設けられた1箇所以上の供給口と、を有するものが好ましく用いられる。さらに、押出機としては、シリンダーに設けられた1箇所以上のベント部を有するものがより好ましい。また、供給口の下流側には(複数の供給口が設けられている場合には、各供給口の下流側にそれぞれ)、ニーディング部を備えた押出機を用いることが好ましい。ここでニーディング部とは、スクリューの一部に設けられて溶融混練を効率的に行うための部分をいう。該ニーディング部としては、ニーディングディスク(順ニーディングディスク、ニュートラルニーディングディスク、逆ニーディングディスク)、ミキシングスクリュー等を挙げることができる。
 押出機は、1箇所以上のベント部を有する箇所に減圧設備が接続されていることが好ましい。液晶性ポリマーの溶融混練時に減圧設備を用いて押出機のシリンダー内を脱気することで、液晶性ポリマーから残存する低分子量成分を除去することができる。
 本実施形態の樹脂組成物における液晶性ポリマーは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物における液晶性ポリマーの含有量は、樹脂組成物全量に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。
 一方で、液晶性ポリマーの含有量は、樹脂組成物全量に対して、95質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。
 例えば、液晶性ポリマーの含有量は、樹脂組成物全量に対して、30質量%以上95質量%以下であることが好ましく、40質量%以上70質量%以下であることがより好ましく、55質量%以上65質量%以下であることがさらに好ましい。
 <フッ素樹脂>
 本実施形態の樹脂組成物におけるフッ素樹脂は下記[CF基含有量の測定方法]により求まる、前記フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上である。
 [CF基含有量の測定方法]
 前記フッ素樹脂中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求まる。
  CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
 上記CF基含有量のピーク面積百分率は、Macromolecules2001,34,66-75に記載された内容を参考に求めた。
 固体試料測定用のNMR装置としては、例えば、400MHz NMR装置(日本電子社製、ブルカー社製、アジレント社製、バリアン社製等)が挙げられる。
 CF基含有量を算出する19F固体NMR測定は、例えば、シングルパルス法により行い、測定条件は以下の条件である。
 測定装置:PS400WB(バリアン社製)
 静磁場強度:9.4テスラ(共鳴周波数:400MHz(1H))
 マジック角回転:35kHz(毎秒35000回転)
 繰り返し時間:15s
 積算回数:128回
 温度:26℃
 化学シフト標準物質:ヘキサフルオロベンゼン
 本実施形態の樹脂組成物におけるフッ素樹脂は、上記[CF基含有量の測定方法]により求まる、前記フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上であり、好ましくは0.05%以上1.0%以下であり、より好ましくは0.05%以上0.20%以下であり、さらに好ましくは0.05%以上0.15%以下であり、特に好ましくは0.05%以上0.10%以下である。
 本実施形態の樹脂組成物におけるフッ素樹脂は、上記CF基含有量のピーク面積百分率が0.05%以上であるため、該フッ素樹脂を含有する本実施形態の樹脂組成物は、ダイスウェル発生の抑制効果が良好となる。
 一方で、上記CF基含有量のピーク面積百分率が上記の好ましい上限値以下であれば、熱安定性がより向上する。
 本実施形態の樹脂組成物におけるフッ素樹脂は、樹脂分解開始温度が、450℃以上が好ましく、470℃以上がより好ましく、473℃以上がさらに好ましい。
 ここで、樹脂分解開始温度とは、熱重量測定装置(製品名;TGA-50、島津製作所社製)を用いて、フッ素樹脂を25℃(室温)から800℃まで昇温条件10℃/minで加熱した際に、重量減少率が0.1%となった際の温度である。
 本実施形態の樹脂組成物におけるフッ素樹脂の樹脂分解開始温度の上限値は特に限定されず、例えば、600℃以下である。
 例えば、本実施形態の樹脂組成物におけるフッ素樹脂の樹脂分解温度は、450℃以上600℃以下が好ましく、470℃以上600℃以下がより好ましく、473℃以上600℃以下がさらに好ましい。
 本実施形態の樹脂組成物におけるフッ素樹脂の数平均分子量(Mn)が、100~5000000であることが好ましく、200~1000000であることがより好ましく、300~50000であることがさらに好ましく、10000~30000であることが特に好ましい。
 本明細書において、数平均分子量(Mn)は、J.Appl.Polym.Sci.1973,17,3253に記載の方法で求められる数平均分子量(Mn)である。具体的には、示差走査熱量測定装置(製品名;DSC-50、島津製作所社製)を用いて求められる結晶化熱量(ΔHc:cal/g)より、以下の式(m-1)で算出した値を意味する。ここで、結晶化熱量(ΔHc)は、DSC曲線における結晶化ピークの面積から求められる熱量である。
  数平均分子量(Mn)=2.1×1010ΔHc-5.16・・・(m-1)
 本実施形態の樹脂組成物におけるフッ素樹脂の数平均分子量(Mn)が、上記の好ましい範囲内であれば、熱安定性、及び、ダイスウェル発生の抑制効果がより向上する。
 上述したフッ素樹脂のCF基含有量のピーク面積百分率、樹脂分解開始温度、及び、数平均分子量(Mn)は、フッ素樹脂の製造方法を変更することにより制御することができる。
 例えば、フッ素樹脂のCF基含有量のピーク面積百分率については、フッ素樹脂の分岐鎖を増やしたり、フッ素樹脂の重合度を制御したり、原料モノマーの混合比率を制御したりすることにより、CF基含有量のピーク面積百分率が0.05%以上であるフッ素樹脂を得ることができる。
 本実施形態の樹脂組成物におけるフッ素樹脂として、具体的には、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)等が挙げられる。
 本実施形態の樹脂組成物におけるフッ素樹脂としては、上記の中でも、熱安定性、及び、ダイスウェル発生の抑制効果の向上の観点から、PTFEが好ましい。
 すなわち、本実施形態の樹脂組成物におけるフッ素樹脂としては、上記[CF基含有量の測定方法]により求まる、PTFE中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上であるPTFEが好ましく、該CF基含有量のピーク面積百分率が0.05%以上1.0%以下であるPTFEがより好ましく、該CF基含有量のピーク面積百分率が0.05%以上0.20%以下であるPTFEがより好ましく、該CF基含有量のピーク面積百分率が0.05%以上0.10%以下であるPTFEがさらに好ましい。
 また、本実施形態の樹脂組成物におけるフッ素樹脂としては、樹脂分解開始温度が、450℃以上600℃以下のPTFEが好ましく、樹脂分解開始温度が470℃以上600℃以下のPTFEがより好ましく、樹脂分解開始温度が473℃以上600℃以下のPTFEがさらに好ましい。
 また、本実施形態の樹脂組成物におけるフッ素樹脂としては、数平均分子量(Mn)が、100~5000000であるPTFEが好ましく、200~1000000であるPTFEがより好ましく、300~50000であるPTFEがさらに好ましく、10000~30000であるPTFEが特に好ましい。
 本実施形態の樹脂組成物におけるフッ素樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物におけるフッ素樹脂の含有量は、樹脂組成物全量に対して、0.05質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、0.50質量%以上であることがさらに好ましい。
 一方で、フッ素樹脂の含有量は、樹脂組成物全量に対して、5.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。
 例えば、フッ素樹脂の含有量は、樹脂組成物全量に対して、0.05質量%以上5.0質量%以下であることが好ましく、0.10質量%以上1.5質量%以下であることがより好ましく、0.50質量%以上1.0質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物におけるフッ素樹脂の樹脂組成物全量に対する含有量が、上記の好ましい範囲内であれば、ダイスウェル発生の抑制効果がより向上する。
 また、本実施形態の樹脂組成物におけるフッ素樹脂の含有量は、上述した液晶性ポリマー100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1.0質量部以上であることがさらに好ましい。
 一方で、フッ素樹脂の含有量は、液晶性ポリマー100質量部に対して、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましく、2.0質量部以下であることがさらに好ましい。
 例えば、フッ素樹脂の含有量は、0.1質量部以上5.0質量部以下であることが好ましく、0.5質量部以上3.0質量部以下であることがより好ましく、1.0質量部以上2.0質量部以下であることがさらに好ましい。
 本実施形態の樹脂組成物におけるフッ素樹脂の液晶性ポリマー100質量部に対する含有量が、上記の好ましい範囲内であれば、熱安定性およびダイスウェル発生の抑制効果がより向上する。
 本実施形態の樹脂組成物において、PTFEをフッ素樹脂として用いる場合、本実施形態の樹脂組成物におけるフッ素樹脂は、例えば、以下の方法(製造方法(i)又は(ii))で製造することができる。
 製造方法(i)
 製造方法(i)は、乳化重合と懸濁重合を併用したポリテトラフルオロエチレン(PTFE)の製造方法である。具体的には、重合開始剤(水溶性過酸化物)及び水性媒体(例えば、脱イオンされた高純度の純水)の存在下で、テトラフルオロエチレンを重合して乳化粒子を生成する。次いで、該乳化粒子を凝集させて凝集粉末を生成する。次いで、該凝集粉末、重合開始剤及び水性媒体の存在下に、テトラフルオロエチレンを重合することにより、上述したCF基含有量のピーク面積百分率が上記の範囲となるポリテトラフルオロエチレン(PTFE)を製造することができる。
 製造方法(ii)
 製造方法(ii)は、テトラフルオロエチレンおよび少なくとも1つの任意のコモノマーを水性重合媒体中で重合する製造方法である。
 具体的には、テトラフルオロエチレンおよび少なくとも1つの共重合可能なフッ素化エチレン性不飽和コモノマー(例えば、パーフルオロ(プロピルビニルエーテル)(PPVE))を、特定の分散剤(例えば、パーフルオロアルキル(C~C16)エタンスルホン酸アンモニウムの混合物)下で、各モノマーの混合比率を調製して重合させることにより、上述したCF基含有量のピーク面積百分率が上記の範囲となるポリテトラフルオロエチレン(PTFE)を製造することができる。
 例えば、該PTFE中の該コモノマーの含有量は、0.005モル%から20モル%であることが好ましい。
 本実施形態の樹脂組成物におけるフッ素樹脂は、上記の中でも、製造方法(ii)で製造したフッ素樹脂が好ましい。
 <任意成分>
 本実施形態の樹脂組成物は、上述した液晶性ポリマー及びフッ素樹脂を含有し、本発明の効果を奏する範囲で、これらの成分以外の成分(任意成分)をさらに含有してもよい。
 かかる任意成分としては、例えば、ガラス繊維、ガラス繊維以外の無機充填剤、顔料、添加剤等が挙げられる。
 ≪ガラス繊維≫
 本実施形態の樹脂組成物におけるガラス繊維の種類は、特に制限はなく、公知のものを用いることができ、例えば、Eガラス(すなわち、無アルカリガラス)、Cガラス(すなわち、耐酸用途向けガラス)、ARガラス(すなわち、耐アルカリ用途向けガラス)、Sガラス又はTガラスなどを挙げることができる。
 その中でも、ガラス繊維は、Eガラスであることが好ましい。
 ガラス繊維は、未処理のものでもよく、処理されたものでもよい。
 ガラス繊維の処理は、収束剤、シランカップリング剤、ホウ素化合物などで行うことができる。収束剤としては、芳香族ウレタン系収束剤、脂肪族ウレタン系収束剤、アクリル系収束剤等が挙げられる。
 本実施形態の樹脂組成物におけるガラス繊維の繊維径は、特に限定されないが、例えば、1~40μmであることが好ましく、3~35μmであることがより好ましく、5~15μmであることがさらに好ましい。
 本実施形態の樹脂組成物におけるガラス繊維の繊維長は、特に限定されないが、例えば、10~150μmであることが好ましく、30~125μmであることがより好ましく、50~100μmであることがさらに好ましい。
 本実施形態の樹脂組成物におけるガラス繊維の繊維径及び繊維長は、例えば、走査型電子顕微鏡、光学顕微鏡等で測定することができる。
 本実施形態の樹脂組成物におけるガラス繊維は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物におけるガラス繊維の含有量は、樹脂組成物全量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、35質量%以上であることがさらに好ましい。
 一方で、ガラス繊維の含有量は、樹脂組成物全量に対して、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、45質量%以下であることがさらに好ましい。
 例えば、ガラス繊維の含有量は、樹脂組成物全量に対して、10質量%以上70質量%以下であることが好ましく、20質量%以上60質量%以下であることがより好ましく、35質量%以上45質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物におけるガラス繊維の含有量が上記の好ましい範囲内であれば、ダイスウェル発生の抑制効果に加えて、成形体の機械的強度をより向上させることができる。
 また、本実施形態の樹脂組成物がガラス繊維を含有する場合、上述したフッ素樹脂の含有量は、上述した液晶性ポリマー及びガラス繊維100質量部に対して、0.05質量部以上であることが好ましく、0.10質量部以上であることがより好ましく、0.50質量部以上であることがさらに好ましい。
 一方で、フッ素樹脂の含有量は、上述した液晶性ポリマー及びガラス繊維100質量部に対して、5.0質量部以下であることが好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることがさらに好ましい。
 例えば、フッ素樹脂の含有量は、上述した液晶性ポリマー及びガラス繊維100質量部に対して、0.05質量部以上5.0質量部以下であることが好ましく、0.10質量部以上1.5質量部以下であることがより好ましく、0.50質量部以上1.0質量部以下であることがさらに好ましい。
 本実施形態の樹脂組成物における液晶性ポリマー及びガラス繊維に対するフッ素樹脂の含有量が上記の好ましい範囲内であれば、熱安定性、ダイスウェル発生の抑制効果、及び機械的強度のバランスが良好となる。
 ≪ガラス繊維以外の無機充填剤≫
 本実施形態の樹脂組成物におけるガラス繊維以外の無機充填剤は、繊維状充填剤であってもよいし、板状充填剤であってもよいし、繊維状及び板状以外の粒状充填剤であってもよい。
 本実施形態の樹脂組成物における無機充填剤は、上記の中でも、板状充填剤であることが好ましい。
 板状充填剤として、具体的には、タルク、マイカ等が挙げられる。
 ・タルク
 本実施形態の樹脂組成物におけるタルクとしては、含水ケイ酸マグネシウムを粉砕したものが好ましい。
 含水ケイ酸マグネシウムの分子の結晶構造は、パイロフィライト型三層構造であり、タルクはこの構造が積み重なっている。
 タルクとしては、含水ケイ酸マグネシウムの分子の結晶を単位層程度にまで微粉砕した平板状のタルクがより好ましい。
 タルクは、未処理のものでもよく、処理されたものでもよい。
 処理されたタルクとしては、公知の界面活性剤で表面処理したものが挙げられる。該界面活性剤としては、例えば、シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類等が挙げられる。
 タルクのメジアン径(D50)としては、5~30μmが好ましく、10~25μmがより好ましい。
 タルクのメジアン径(D50)は、例えば、公知のレーザー回折式粒度分布測定装置等で測定することができる。
 本実施形態の樹脂組成物におけるタルクは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物におけるタルクの含有量は、樹脂組成物全量に対して、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。
 一方で、タルクの含有量は、樹脂組成物全量に対して、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
 例えば、タルクの含有量は、樹脂組成物全量に対して、5質量%以上80質量%以下であることが好ましく、15質量%以上70質量%以下であることがより好ましく、25質量%以上60質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物におけるタルクの含有量が上記範囲内であると、該樹脂組成物を用いて作製された成形体の機械的強度をより向上させることができる。
 ・マイカ
 マイカは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。3原子のケイ素(Si)と1原子のアルミニウム(Al)の酸化物が形成する4個の四面体構造間に、2個もしくは3個の金属酸化・水酸化物が構成する八面体構造を挟み込んだ構造を形成したものである。
 本実施形態におけるマイカとしては、白雲母、金雲母、フッ素金雲母、四ケイ素雲母等の天然マイカ、人工的に製造される合成マイカのいずれであってもよい。
 マイカは、未処理のものでもよく、処理されたものでもよい。
 処理されたマイカとしては、公知の界面活性剤で表面処理したものが挙げられる。該界面活性剤としては、例えば、シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類等が挙げられる。
 マイカのメジアン径(D50)としては、5~30μmが好ましく、10~25μmがより好ましい。
 マイカのメジアン径(D50)は、例えば、公知のレーザー回折式粒度分布測定装置等で測定することができる。
 本実施形態の樹脂組成物におけるマイカは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物におけるマイカの含有量は、樹脂組成物全量に対して、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。
 一方で、マイカの含有量は、樹脂組成物全量に対して、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。
 例えば、マイカの含有量は、樹脂組成物全量に対して、5質量%以上80質量%以下であることが好ましく、15質量%以上70質量%以下であることがより好ましく、25質量%以上60質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物におけるマイカの含有量が上記範囲内であると、該樹脂組成物を用いて作製された成形体の機械的強度をより向上させることができる。
 ≪顔料≫
 顔料としては、アルミナ、酸化鉄、酸化コバルト、酸化クロム、酸化マンガン、酸化チタン、カーボンブラック、チタンイエロー等が挙げられる。その中でも、カーボンブラック、酸化チタンが好ましい。
 本実施形態の樹脂組成物における顔料は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物における顔料の含有量は、樹脂組成物全量に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。
 一方で、顔料の含有量は、樹脂組成物全量に対して、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 例えば、顔料の含有量は、樹脂組成物全量に対して、0.05質量%以上10質量%以下であることが好ましく、0.1質量%以上7質量%以下であることがより好ましく、0.5質量%以上5質量%以下であることがさらに好ましい。
 ・カーボンブラック
 本実施形態の樹脂組成物におけるカーボンブラックの含有量は、樹脂組成物全量に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。
 一方で、カーボンブラックの含有量は、樹脂組成物全量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
 例えば、カーボンブラックの含有量は、樹脂組成物全量に対して、0.05質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましく、0.5質量%以上1.5質量%以下であることがさらに好ましい。
 カーボンブラックの一次粒子の平均粒子径は、例えば、20~50nmであってよく、20~40nmであってよい。
 カーボンブラックの一次粒子径は、カーボンブラック協会発行のCarbon Black年鑑No.48(1998)p.114に記載の方法で求めることができる。
 具体的には、透過型電子顕微鏡を用いて、カーボンブラックを倍率20000倍で観察し、任意のカーボンブラック粒子1000個の一次粒子の直径を測定し、その数平均値を求めることにより算出できる。
 カーボンブラックの比表面積は、例えば、30~200m/gであってよく、50~160m2/gであってよい。
 カーボンブラックの比表面積とは、窒素吸着比表面積をいう。この窒素吸着比表面積の測定は、試料表面に付着したガスなどを事前に取り除き、この試料に、液体窒素温度で窒素を吸着して、この吸着量から比表面積を算出できる。
 具体的には、JIS K6217-2:2001に従い、BET比表面積測定器(例えばMicromeritics社製のAccuSorb 2100E)を用いて、液体窒素温度下で窒素ガスを吸着させ、吸着量を測定し、BET法で算出できる。
 カーボンブラックの吸油量は、30mL/100g以上120mL/100g以下であってよく、40mL/100g以上80mL/100g以下であってよい。
 カーボンブラックの吸油量は、ジブチルフタレートアブソーブドメーターによって、JIS K6217-4:2001に記載の方法で求めることができる。
 ・酸化チタン
 本実施形態の樹脂組成物における酸化チタンとしては、特に限定されず、公知のものを使用することができる。
 酸化チタンの結晶構造は、特に限定されず、ルチル型であってもよく、アナターゼ型であってもよく、両者を混合したものであってもよい。
 また、酸化チタンは、表面処理を施したものを用いてもよい。
 例えば、無機金属酸化物を用いて酸化チタンに表面処理を施すことにより、分散性等の特性を向上できる。無機金属酸化物としては、例えば、酸化アルミニウムが挙げられる。
 酸化チタンの平均粒子径は、好ましくは0.1~1μmであり、より好ましくは0.15~0.25μmである。
 酸化チタンの平均粒子径は、例えば、公知のレーザー回折式粒度分布測定装置等で測定することができる。
 本実施形態の樹脂組成物における酸化チタンは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態の樹脂組成物における酸化チタンの含有量は、樹脂組成物全量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。
 一方で、酸化チタンの含有量は、樹脂組成物全量に対して、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 例えば、酸化チタンの含有量は、樹脂組成物全量に対して、0.5質量%以上10質量%以下であることが好ましく、1質量%以上7質量%以下であることがより好ましく、2質量%以上5質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物における酸化チタンの含有量が上記範囲内であると、該樹脂組成物を用いて作製された成形体の機械的強度をより向上させることができる。
 ≪添加剤≫
 添加剤としては、難燃剤、導電性付与材剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、染料、発泡剤、制泡剤、粘度調整剤、界面活性剤が挙げられる。
 以上説明した本実施形態の樹脂組成物は、液晶性ポリマーと、フッ素樹脂とを含有し、該フッ素樹脂は、上述した[CF基含有量の測定方法]により求まる、該フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上である。
 本実施形態の樹脂組成物は、液晶性ポリマーと、該CF基含有量のピーク面積百分率が0.05%以上であるフッ素樹脂とを併用することにより、ダイスウェル発生の抑制効果をより向上させることができる。
 また、本実施形態の樹脂組成物は、液晶性ポリマーと、該CF基含有量のピーク面積百分率が0.05%以上であるフッ素樹脂とを併用することにより、熱安定性をより向上させることができる。
 本発明は以下の側面を有する。
 「1」液晶性ポリマーと、フッ素樹脂とを含有し、
 前記フッ素樹脂は、下記[CF基含有量の測定方法]により求まる、前記フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上であり、好ましくは0.05%以上1.0%以下であり、より好ましくは0.05%以上0.20%以下であり、さらに好ましくは0.05%以上0.10%以下である、樹脂組成物。
 [CF基含有量の測定方法]
 前記フッ素樹脂中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求まる。
 CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
 「2」前記液晶性ポリマーは、下記式(1)で表される繰返し単位(u1)、下記式(2)で表される繰返し単位(u2)、及び下記式(3)で表される繰返し単位(u3)を有する液晶ポリエステルである、「1」に記載の樹脂組成物。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
 (式中、Arは、フェニレン基を表す。Ar及びArは、それぞれ独立に、フェニレン基、又はビフェニリレン基を表す。X及びYは、それぞれ独立に、酸素原子又はイミノ基(-NH-)を表す。Ar、Ar及びArで表される前記基が有する水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。)
 「3」前記液晶性ポリマーの含有量は、樹脂組成物全量に対して、好ましくは30質量%以上95質量%以下であり、より好ましくは40質量%以上70質量%以下であり、さらに好ましくは55質量%以上65質量%以下であり、
 前記フッ素樹脂の含有量は、樹脂組成物全量に対して、好ましくは0.05質量%以上5.0質量%以下であり、より好ましくは0.10質量%以上1.5質量%以下であり、さらに好ましくは0.50質量%以上1.0質量%以下である、「1」又は「2」に記載の樹脂組成物。
 「4」前記フッ素樹脂は、ポリテトラフルオロエチレン(PTFE)である、「1」~「3」のいずれか1つに記載の樹脂組成物。
 「5」さらに、ガラス繊維を含有する、「1」~「4」のいずれか1つに記載の樹脂組成物。
 「6」前記ガラス繊維の含有量は、樹脂組成物全量に対して、好ましくは10質量%以上70質量%以下であり、より好ましくは20質量%以上60質量%以下であり、さらに好ましくは35質量%以上45質量%以下である、「5」に記載の樹脂組成物。
 「7」さらに、板状充填剤を含有する、「1」~「6」のいずれか1つに記載の樹脂組成物。
 「8」前記フッ素樹脂の樹脂分解開始温度は、473℃以上である、「1」~「7」のいずれか1つに記載の樹脂組成物。
 「9」「1」~「8」のいずれか1つに記載の樹脂組成物を用いて、射出成形により幅64mm×長さ64mm×厚さ3mmの試験片を作製し、測色計を用いて、試験片作製直後のbと、該試験片を300℃で2時間加熱した後のbとを測定した場合、試験片作製直後のbと、該試験片を300℃で2時間加熱した後のbとの変化率が、好ましくは12%以下、より好ましくは9%以下、さらに好ましくは5%以下、特に好ましくは3.3%未満となる特性を有する、樹脂組成物。
 (樹脂組成物の製造方法)
 本実施形態の樹脂組成物の製造方法としては、下記[CF基含有量の測定方法]により求まる、フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上となるフッ素樹脂を製造する工程と、
 前記フッ素樹脂、及び液晶性ポリマーを混合する工程とを有する、樹脂組成物の製造方法が挙げられる。
 [CF基含有量の測定方法]
 前記フッ素樹脂中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求まる。
 CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
 上記CF基含有量のピーク面積百分率が0.05%以上となるフッ素樹脂を製造する工程として、具体的には、上述した製造方法(i)~(iv)が挙げられ、その中でも、製造方法(ii)~(iv)が好ましい。
 (成形体)
 本実施形態の成形体は、上述した樹脂組成物を用いて作製された成形体である。
 本実施形態の成形体は、樹脂組成物を用いて、公知の成形方法により得ることができる。本実施形態の樹脂組成物の成形方法としては、溶融成形法が好ましく、その例としては、射出成形法、Tダイ法やインフレーション法などの押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形が挙げられる。中でも射出成形法が好ましい。
 例えば、上述した樹脂組成物を成形材料とし、射出成形法により成形する場合、公知の射出成形機を用いて、樹脂組成物を溶融させ、溶融した樹脂組成物を、金型内に射出することにより成形する。
 ここで、樹脂組成物を射出成形機に投入する際に、各成分を別々に射出成形機に投入してもよいし、予め一部又は全部の成分を混合し、混合物として射出成形機に投入してもよい。
 公知の射出成形機としては、例えば、株式会社ソディック製のTR450EH3、日精樹脂工業社製の油圧式横型成形機PS40E5ASE型などが挙げられる。
 射出成形の温度条件は、液晶性ポリマーの種類に応じて適宜決定され、射出成形機のシリンダー温度を、用いる液晶性ポリマーの流動開始温度より10~80℃高い温度に設定することが好ましい。
 金型の温度は、樹脂組成物の冷却速度と生産性の点から、室温(25℃)から180℃の範囲に設定することが好ましい。
 その他射出条件として、スクリュー回転数、背圧、射出速度、保圧、保圧時間などを適宜調節すればよい。
 本実施形態の成形体は、一般に液晶性ポリマーが適用し得るあらゆる用途に適用可能である。
 本実施形態の成形体は、例えば、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、プリント配線板、回路基板、半導体パッケージ、コンピュータ関連部品等の電気・電子部品;ICトレー、ウエハーキャリヤー、等の半導体製造プロセス関連部品;VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具等の家庭電気製品部品;ランプリフレクター、ランプホルダー等照明器具部品;コンパクトディスク、レーザーディスク(登録商標)、スピーカー、等の音響製品部品;光ケーブル用フェルール、電話機部品、ファクシミリ部品、モデム等の通信機器部品;分離爪、ヒータホルダー、等の複写機、印刷機関連部品;インペラー、ファン歯車、ギヤ、軸受け、モーター部品及びケース、等の機械部品;自動車用機構部品、エンジン部品、エンジンルーム内部品、電装部品、内装部品等の自動車部品、マイクロ波調理用鍋、耐熱食器、等の調理用器具;床材、壁材などの断熱、防音用材料、梁、柱などの支持材料、屋根材等の建築資材、または土木建築用材料;航空機、宇宙機、宇宙機器用部品;原子炉等の放射線施設部材、海洋施設部材、洗浄用治具、光学機器部品、バルブ類、パイプ類、ノズル類、フィルター類、膜、医療用機器部品及び医療用材料、センサー類部品、サニタリー備品、スポーツ用品、レジャー用品が挙げられる。
 本実施形態の成形体は、上記の中でも、コイルボビンとして用いられることが好ましい。
 以下、好適な用途であるコイルボビンについて詳述する。
 図1は、本実施形態のコイル用ボビンを示す模式図である。図に示すように、コイル用ボビン1Aは、本体部2と、一対の鍔部3と、を有する。
 以下の説明においては、xyz直交座標系を設定し、このxyz直交座標系を参照しつつ各部材の位置関係について説明する。ここでは、本体部2の延在方向をx軸方向、水平面内においてx軸方向と直交する方向をy軸方向、x軸方向及びy軸方向のそれぞれと直交する方向(すなわち鉛直方向)をz軸方向とする。
 本体部2は、筒状を呈する部材である。本体部2は、本体部2をx軸方向に貫通する軸穴29を有している。本体部2の外面2bには、本体部2の周方向に巻線が巻かれる。外面2bに巻かれた巻線は、コイルを形成する。
 鍔部3は、本体部2の軸穴29の延在方向の両端に設けられている。鍔部3は、yz平面方向に広がる環状を呈している。鍔部3は、巻線を挿通する通し穴を有していてもよい。
 以上説明したコイル用ボビン1Aのような電気電子部品であるコイル用ボビンは、巻線が巻かれて形成されるコイルの芯として用いられている。ボビンに巻かれたコイルは、使用環境や通電による加熱によって高温になりやすいため、熱安定性の高い本実施形態の成形体は、コイル用ボビンとして有用である。
 以上説明した本実施形態の成形体は、上述した樹脂組成物が用いられているため、該樹脂組成物から得られるペレット形状が不揃いになりにくく、成形機にペレットを投入し、可塑化させ、計量する際のばらつきが減少するため、不良がより発生しにくい。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 [液晶性ポリマーの流動開始温度の測定]
 液晶性ポリマーの流動開始温度は、流動特性評価装置(島津製作所社製;製品名「フローテスターCFT-500型」)を用いて測定した。
 試料約2gを内径1mm、長さ10mmのダイスを取り付けた毛細管型レオメーターに充填し、9.8MPa(100kgf/cm)の荷重下において昇温速度4℃/分で液晶性ポリマーをノズルから押し出すときに、溶融粘度が4800Pa・s(48000ポアズ)を示す温度を流動開始温度とした。その結果を、「流動開始温度(℃)」として、表1に示す。
 [液晶性ポリマー(樹脂A)の製造例]
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸365.4g(2.2モル)、イソフタル酸33.2g(0.2モル)及び無水酢酸1347.6g(13.2モル)および触媒として1-メチルイミダゾール0.194gを添加し、室温で15分間撹拌して反応器内を十分に窒素ガスで置換した後、撹拌しながら昇温した。内温が145℃となったところで、同温度を保持したまま1時間撹拌した。
 その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了としてプレポリマーを得た。プレポリマーの流動開始温度は263℃であった。
 得られたプレポリマーを室温(25℃)まで冷却し、粗粉砕機で粉砕して、液晶性ポリマー(液晶ポリエステル)の粉末(粒子径は約0.1~1mm)を得た後、窒素雰囲気下、室温(25℃)から250℃まで1時間かけて昇温し、250℃から300℃まで5時間かけて昇温し、300℃で3時間保持し、固層で重合反応を進めた。得られた液晶性ポリマー(液晶ポリエステル;樹脂A)の流動開始温度は361℃であった。
 原料モノマーの仕込み量から算出される樹脂Aの各繰返し単位の割合は、全繰返し単位の合計量に対して、Arがp-フェニレン基である繰返し単位(u1)(すなわち、p-ヒドロキシ安息香酸に由来する繰返し単位)が60モル%、Arがp-フェニレン基である繰返し単位(u2)(すなわち、テレフタル酸に由来する繰返し単位)が18モル%、Arがm-フェニレン基である繰返し単位(u2)(すなわち、イソフタル酸に由来する繰返し単位)が2モル%、Arが4,4’-ビフェニリレン基であり、X及びYが酸素原子である繰返し単位(u3)(すなわち、4,4’-ジヒドロキシビフェニルに由来する繰返し単位)が20モル%であった。
 [液晶性ポリマー(樹脂B)の製造例]
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)、及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(L3)を得た。得られた液晶性ポリマー(液晶ポリエステル;樹脂B)の流動開始温度は、327℃であった。
 原料モノマーの仕込み量から算出される樹脂Bの各繰返し単位の割合は、全繰返し単位の合計量に対して、Arがp-フェニレン基である繰返し単位(u1)(すなわち、p-ヒドロキシ安息香酸に由来する繰返し単位)が60モル%、Arがp-フェニレン基である繰返し単位(u2)(すなわち、テレフタル酸に由来する繰返し単位)が15モル%、Arがm-フェニレン基である繰返し単位(u2)(すなわち、イソフタル酸に由来する繰返し単位)が5モル%、Arが4,4’-ビフェニリレン基であり、X及びYが酸素原子である繰返し単位(u3)(すなわち、4,4’-ジヒドロキシビフェニルに由来する繰返し単位)が20モル%であった。
 [フッ素樹脂の製造例]
 <樹脂F1の製造例>
 2枚のステンレス製平板型撹拌翼と温度調節用ジャケットとを備えた内容積6Lのステンレス製オートクレーブに、脱イオン水2760gを仕込み、密閉した。窒素ガスの圧入、脱気を複数回繰り返すことにより、系内の酸素を除去した後、連鎖移動剤として1.8gのエタンをテトラフルオロエチレン(TFE)で圧入し、槽内圧力を0.10MPaとした。700rpmでの撹拌下において槽内を昇温し、槽内温度が85℃に達したら、再度TFEを圧入し、槽内圧力を0.80MPaに調整した。
 重合開始剤として、脱イオン水20gにジコハク酸パーオキサイド(DSP)700mgを溶解させた水溶液と、脱イオン水20gに過硫酸アンモニウム(APS)700mgを溶解させた水溶液を、TFEで槽内へ圧入した。重合開始剤の分解により槽内圧力が低下するので、TFEを連続的に供給し、槽内圧力を0.80±0.05MPaに維持した。重合反応中は、槽内温度を85±1℃に調節し、撹拌回転数を350rpmに制御した。
 次いで、TFEの消費量が175gの時点で撹拌回転数を700rpmに変更し、さらに525gのTFEが消費するまで重合反応を実施した。
 TFEの総消費量が700gの時点で撹拌を停止し、槽内を脱圧した。重合後の液面及び液中の湿潤状態のフッ素樹脂を脱イオン水で洗浄した上でろ別した。ろ別したフッ素樹脂を、160℃の熱風循環式乾燥機にて18時間乾燥させることにより、フッ素樹脂(樹脂F1)を得た。
 <樹脂F2の製造例>
 容量36Lのステンレス鋼の撹拌翼付きオートクレーブに、脱イオン水21.8kg、炭酸アンモニウム緩衝剤50g及びパーフルオロアルキル(C~C16)エタンスルホン酸アンモニウムの混合物(平均C)45gを加えた。このオートクレーブを閉じ、排気後、テトラフルオロエチレン(TFE)を3回吹込み、そして再び排気した。圧力が16.9kPaに上昇するまでエタンをオートクレーブ中に導入した後、パーフルオロ(プロピルビニルエーテル)(PPVE)98mL及びFreon(登録商標)F-113(CClFCClF)350mLをオートクレーブ中に注入した。TFEを用いてオートクレーブを2.1MPaに加圧し、同時に脱イオン水500mLに過硫酸アンモニウム(APS)を1.5g溶解させた溶液をオートクレーブ中にポンプで導入した。重合が開始した後(圧力が0.07MPa降下)、追加のPPVE及び脱イオン水1000mL中にAPS1.2g溶解させた溶液を重合の残留物に対して、それぞれ1.10mL/min及び10mL/minの割合でオートクレーブへポンプで導入した。圧力を2.2MPaに一定に保持するのに必要な追加のTFEが1分当り50gである様に反応を調整するために撹拌機の回転数を調整した。反応開始からTFEを7kg加えた後、TFE及びPPVEの供給と撹拌機を停止させた。未反応物をオートクレーブから廃棄するまでに開始剤溶液(APS)をポンプで送り続けた。凝集した重合体をオートクレーブから取り出し、脱イオン水で洗浄し、150℃で乾燥した後、フッ素樹脂(樹脂F2)を得た。
 <樹脂F3の製造例>
 反応開始前にオートクレーブ中に注入するパーフルオロ(プロピルビニルエーテル)(PPVE)及びFreon(登録商標)F-113(CClFCClF)の注入量を、パーフルオロ(プロピルビニルエーテル)(PPVE)45mL、及びFreon(登録商標)F-113(CClFCClF)350mLに変更したこと以外は、樹脂F2と同様に製造し、フッ素樹脂(樹脂F3)を得た。
 <樹脂F4の製造例>
 反応開始前にオートクレーブ中に注入するパーフルオロ(プロピルビニルエーテル)(PPVE)及びFreon(登録商標)F-113(CClFCClF)の注入量を、パーフルオロ(プロピルビニルエーテル)(PPVE)75mL、及びFreon(登録商標)F-113(CClFCClF)350mLに変更したこと以外は、樹脂F2と同様に製造し、フッ素樹脂(樹脂F4)得た。
 <樹脂F5の製造例>
 反応開始前にオートクレーブ中に注入するパーフルオロ(プロピルビニルエーテル)(PPVE)及びFreon(登録商標)F-113(CClFCClF)の注入量を、パーフルオロ(プロピルビニルエーテル)(PPVE)165mL、及びFreon(登録商標)F-113(CClFCClF)345mLに変更したこと以外は、樹脂F2と同様に製造し、フッ素樹脂(樹脂F5)得た。
 [フッ素樹脂の物性評価]
 上記の製造例により得られた樹脂F1~F5について、後述する方法により、CF基含有量、樹脂分解開始温度、及び数平均分子量(Mn)を測定した。その結果を表1に示した。
 [CF基含有量の測定]
 樹脂F1~F5中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求めた。
 CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
 CF基含有量を算出した19F固体NMR測定は、シングルパルス法により行い、以下の条件で測定した。
 測定装置:PS400WB(バリアン社製)
 静磁場強度:9.4テスラ(共鳴周波数:400MHz(1H))
 マジック角回転:35kHz(毎秒35000回転)
 繰り返し時間:15s
 積算回数:128回
 温度:26℃
 化学シフト標準物質:ヘキサフルオロベンゼン
 [樹脂分解開始温度の測定]
 樹脂F1~F5をアルミニウムセルにそれぞれ20mg充填した。次いで、熱重量測定装置(製品名;TGA-50、島津製作所社製)を用いて、窒素ガス流量50mL/minで、25℃(室温)から800℃まで昇温条件10℃/minで加熱した際に、重量減少率が0.1%となった際の温度を測定し、その温度を樹脂分解開始温度とした。
 [数平均分子量(Mn)の測定]
 樹脂F1~F5の数平均分子量(Mn)は、J.Appl.Polym.Sci.1973,17,3253に記載の方法で求められる数平均分子量(Mn)であり、示差走査熱量測定装置(製品名:DSC-50、島津製作所社製)を用いて結晶化熱量(J/g)を求め、結晶化熱量(ΔHc;cal/g)に換算し、以下の式(m-1)で算出した。
  数平均分子量(Mn)=2.1×1010ΔHc-5.16・・・(m-1)
Figure JPOXMLDOC01-appb-T000001
 [樹脂組成物の製造例1]
 (実施例1~4、比較例1)
 下記表2に示す配合比にて、液晶性ポリマーとガラス繊維とフッ素樹脂と顔料とを2軸押出機(池貝社製、PCM-30)を用いて、シリンダー温度340℃で造粒し、各例の樹脂組成物(ペレット)を得た。
 [ダイスウェルの発生状況の評価1]
 上記樹脂組成物の製造例において、上記2軸押出機のダイ孔の直径と、該ダイ孔から押し出された各例の樹脂組成物(ペレット)の断面の直径とを目視で比較し、以下の基準でダイスウェルの発生状況を評価した。
 A:ダイ孔の直径と、ペレットの断面の直径とがほぼ同等であった
 B:ダイ孔の直径よりも、ペレットの断面の直径の方が大きく、後工程であるペレットカット工程においてカット不良を引き起こす
Figure JPOXMLDOC01-appb-T000002
 表2中、各略号はそれぞれ以下の意味を有する。[ ]内の数値は含有量(質量%)である。
 樹脂A:上述した製造方法により得られる液晶性ポリマー(液晶ポリエステル;樹脂A)
 G1:ガラス繊維(製品名:ミルドファイバー EFH75-01、セントラル硝子社製、繊維径11μm、繊維長75μm)
 樹脂F1~F5:上述したそれぞれの製造方法により得られるフッ素樹脂
 M1:カーボンブラック(製品名:#45LB、三菱ケミカル社製、一次粒子径24nm、比表面積125m/g、吸油量45mL/100g)
 表2に示す通り、CF基含有量のピーク面積百分率が0.05%以上である樹脂F1~F4を含有する実施例1~4の樹脂組成物は、比較例1の樹脂組成物に比べて、ダイスウェル発生の抑制効果が良好であった。
 [熱安定性の評価]
 <b変化率の測定>
 実施例の樹脂組成物を用いて、射出成形により幅64mm×長さ64mm×厚さ3mmの試験片を作製した。作製した試験片について、分光測色計(製品名:CM-3600d、コニカミノルタ社製)を用いて、試験片作製直後のbと、該試験片を300℃で2時間加熱した後のbとをそれぞれ測定した。その変化率をそれぞれ表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、液晶性ポリマーと、CF基含有量のピーク面積百分率が0.05%以上である樹脂F1~F4を含有する実施例1~4の樹脂組成物を用いて作製された成形体は、b変化率が低く、黄変が抑えられていた。このことから、実施例1~4の樹脂組成物を用いて作製された成形体は、熱安定性が高いことが確認できた。
 また、実施例の中でも、樹脂F2~F4を含有する実施例2~4の樹脂組成物を用いて作製された成形体は、特にb変化率が低く、黄変が抑えられていた。
 表2及び3に示す通り、実施例の樹脂組成物は、熱安定性が高く、かつ、ダイスウェル発生の抑制効果が良好であることが確認できる。
 [樹脂組成物の製造例2]
 (実施例5~8)
 下記表4に示す配合比にて、液晶性ポリマーと板状充填剤とフッ素樹脂と顔料とを2軸押出機(池貝社製、PCM-30)を用いて、シリンダー温度340℃で造粒し、各例の樹脂組成物(ペレット)を得た。
 [ダイスウェルの発生状況の評価2]
 上述した[ダイスウェルの発生状況の評価1]と同様の方法で、実施例5~8の樹脂組成物について、ダイスウェルの発生状況を評価した。
Figure JPOXMLDOC01-appb-T000004
 表4中、各略号はそれぞれ以下の意味を有する。[ ]内の数値は含有量(質量%)である。
 樹脂B:上述した製造方法により得られる液晶性ポリマー(液晶ポリエステル;樹脂B)
 T1:タルク(製品名:MS-KY、日本タルク社製、メジアン径(D50)21μm)
 樹脂F1~F4:上述したそれぞれの製造方法により得られるフッ素樹脂
 M2:チタンイエロー(製品名:TY-70S、石原産業社製、平均粒子径1.00μm)
 M3:カーボンブラック(製品名:BP4350、キャボット社製、吸油量66~77mL/100g)
 M4:酸化チタン(製品名:CR-60、石原産業社製、平均粒子径0.21μm)
 表4に示す通り、実施例5~8の樹脂組成物についても、上述した実施例1~4の樹脂組成物と同様にダイスウェル発生の抑制効果が良好であった。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 1A・・・コイル用ボビン
 2・・・本体部
 3・・・鍔部

Claims (5)

  1.  液晶性ポリマーと、フッ素樹脂とを含有し、
     前記フッ素樹脂は、下記[CF基含有量の測定方法]により求まる、前記フッ素樹脂中のCF基含有量に対するCF基含有量のピーク面積百分率が0.05%以上である、樹脂組成物。
     [CF基含有量の測定方法]
     前記フッ素樹脂中のCF基含有量に対するCF基含有量は、19F固体NMRにより測定されたCF基に対応するピーク面積ICFと、CF基に対応するピーク面積ICFとから面積百分率として算出し、下記式(f1)により求まる。
     CF基含有量(%)={(ICF)/3/(ICF)/2}×100・・・(f1)
  2.  さらに、ガラス繊維を含有する、請求項1に記載の樹脂組成物。
  3.  さらに、板状充填剤を含有する、請求項1又は2に記載の樹脂組成物。
  4.  前記フッ素樹脂の樹脂分解開始温度は、473℃以上である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  請求項1~4のいずれか一項に記載の樹脂組成物を用いて作製された成形体。
PCT/JP2022/003773 2021-02-01 2022-02-01 樹脂組成物及び成形体 WO2022163862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237028980A KR20230135648A (ko) 2021-02-01 2022-02-01 수지 조성물 및 성형체
CN202280012232.1A CN116802235A (zh) 2021-02-01 2022-02-01 树脂组合物及成型体
JP2022578541A JPWO2022163862A1 (ja) 2021-02-01 2022-02-01
US18/262,306 US20240067818A1 (en) 2021-02-01 2022-02-01 Resin composition and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021014344 2021-02-01
JP2021-014344 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022163862A1 true WO2022163862A1 (ja) 2022-08-04

Family

ID=82654669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003773 WO2022163862A1 (ja) 2021-02-01 2022-02-01 樹脂組成物及び成形体

Country Status (5)

Country Link
US (1) US20240067818A1 (ja)
JP (1) JPWO2022163862A1 (ja)
KR (1) KR20230135648A (ja)
CN (1) CN116802235A (ja)
WO (1) WO2022163862A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178830A (ja) * 2010-02-26 2011-09-15 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物及びその成形体
JP2012116907A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物
WO2012090410A1 (ja) * 2010-12-28 2012-07-05 東レ株式会社 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP2012149127A (ja) * 2011-01-17 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステル含有液状組成物
JP2013032484A (ja) * 2011-06-27 2013-02-14 Sumitomo Chemical Co Ltd 樹脂組成物、成形体および摺動用部材
JP2013032485A (ja) * 2011-06-27 2013-02-14 Sumitomo Chemical Co Ltd 樹脂組成物、成形体および摺動用部材
WO2014171029A1 (ja) * 2013-04-17 2014-10-23 ダイセル・エボニック株式会社 耐光性樹脂組成物およびその成形体
JP2018177931A (ja) * 2017-04-11 2018-11-15 Agc株式会社 樹脂組成物および成形品
JP2019014787A (ja) * 2017-07-04 2019-01-31 Jxtgエネルギー株式会社 液晶ポリエステル組成物およびその成形品
WO2020059261A1 (ja) * 2018-09-19 2020-03-26 オイレス工業株式会社 複層摺動部材及びそれを用いた自動車のラックピニオン式舵取装置
WO2020226034A1 (ja) * 2019-05-08 2020-11-12 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178830A (ja) * 2010-02-26 2011-09-15 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物及びその成形体
JP2012116907A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物
WO2012090410A1 (ja) * 2010-12-28 2012-07-05 東レ株式会社 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP2012149127A (ja) * 2011-01-17 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステル含有液状組成物
JP2013032484A (ja) * 2011-06-27 2013-02-14 Sumitomo Chemical Co Ltd 樹脂組成物、成形体および摺動用部材
JP2013032485A (ja) * 2011-06-27 2013-02-14 Sumitomo Chemical Co Ltd 樹脂組成物、成形体および摺動用部材
WO2014171029A1 (ja) * 2013-04-17 2014-10-23 ダイセル・エボニック株式会社 耐光性樹脂組成物およびその成形体
JP2018177931A (ja) * 2017-04-11 2018-11-15 Agc株式会社 樹脂組成物および成形品
JP2019014787A (ja) * 2017-07-04 2019-01-31 Jxtgエネルギー株式会社 液晶ポリエステル組成物およびその成形品
WO2020059261A1 (ja) * 2018-09-19 2020-03-26 オイレス工業株式会社 複層摺動部材及びそれを用いた自動車のラックピニオン式舵取装置
WO2020226034A1 (ja) * 2019-05-08 2020-11-12 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
US20240067818A1 (en) 2024-02-29
CN116802235A (zh) 2023-09-22
JPWO2022163862A1 (ja) 2022-08-04
KR20230135648A (ko) 2023-09-25

Similar Documents

Publication Publication Date Title
TWI762742B (zh) 液晶聚酯樹脂組成物及成形體
TWI773853B (zh) 液晶聚酯樹脂組成物及成形體
JP5556223B2 (ja) 液晶高分子組成物、その製造方法及び成形体
TWI573682B (zh) 樹脂組成物之製造方法
CN110168018B (zh) 液晶聚酯树脂组合物
WO2019098228A1 (ja) 液晶ポリエステル組成物および樹脂成形体
JP2009001639A (ja) 耐熱性に優れた樹脂組成物及びその製造方法
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
JP7256759B2 (ja) 樹脂組成物
JP5447440B2 (ja) 液晶ポリエステル樹脂組成物の製造方法
US9168675B2 (en) Method for producing resin composition
JP5197553B2 (ja) 液晶性樹脂組成物及びその成形体
JP2011202062A (ja) 摺動用熱可塑性樹脂組成物、摺動用熱可塑性樹脂組成物の製造方法および摺動部品
WO2022163862A1 (ja) 樹脂組成物及び成形体
JP2008019428A (ja) 液晶ポリマー組成物およびその用途
JP2011157533A (ja) 液晶ポリエステル組成物及びそのフィルム
JP7269920B2 (ja) 液晶ポリエステル組成物および成形品
JP5407988B2 (ja) 液晶性樹脂組成物及びその成形体
WO2011071003A1 (ja) 電磁コイル用絶縁フィルムおよびそれを備えたモーターおよびトランス
JP2011207055A (ja) 液晶ポリエステル樹脂ペレットの製造方法および押出機
WO2023276902A1 (ja) 樹脂組成物及び成形体
KR20240045323A (ko) 액정 폴리에스테르 펠릿 조성물 및 사출 성형품
WO2023127734A1 (ja) 樹脂組成物及び成形体
KR20240045324A (ko) 액정 폴리에스테르 펠릿 조성물 및 사출 성형품
JP2004182748A (ja) 液晶ポリエステル樹脂混合物およびそれを用いた成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262306

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022578541

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012232.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746081

Country of ref document: EP

Kind code of ref document: A1