WO2019098228A1 - 液晶ポリエステル組成物および樹脂成形体 - Google Patents

液晶ポリエステル組成物および樹脂成形体 Download PDF

Info

Publication number
WO2019098228A1
WO2019098228A1 PCT/JP2018/042107 JP2018042107W WO2019098228A1 WO 2019098228 A1 WO2019098228 A1 WO 2019098228A1 JP 2018042107 W JP2018042107 W JP 2018042107W WO 2019098228 A1 WO2019098228 A1 WO 2019098228A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
fibrous filler
less
parts
Prior art date
Application number
PCT/JP2018/042107
Other languages
English (en)
French (fr)
Inventor
宏充 枌
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201880072947.XA priority Critical patent/CN111417680A/zh
Priority to JP2019554251A priority patent/JPWO2019098228A1/ja
Priority to US16/763,155 priority patent/US20200308487A1/en
Priority to KR1020207012946A priority patent/KR20200078523A/ko
Publication of WO2019098228A1 publication Critical patent/WO2019098228A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Definitions

  • the present invention relates to a liquid crystal polyester composition and a resin molded product.
  • Priority is claimed on Japanese Patent Application No. 2017-220365, filed Nov. 15, 2017, the content of which is incorporated herein by reference.
  • Liquid crystal polyester is a material that is easy to mold and process and has high heat resistance, high mechanical strength, or excellent insulation. In addition, liquid crystal polyester has high flame retardancy. Taking advantage of these features, liquid crystal polyester is applied to various applications including parts for electric and electronic parts and parts for optical devices.
  • the liquid crystalline polyester is usually not used alone, and is used as a liquid crystalline polyester composition in which a filler is contained in LCP (liquid crystalline polyester) in order to satisfy the required characteristics (for example, bending strength) in various applications. There is.
  • the electric / electronic part or optical may be caused due to foreign matter generated from the molded article.
  • the yield in the assembly process of equipment parts may be reduced.
  • malfunction may be caused due to foreign matter generated from the molded products. Then, the molded object by which generation
  • Patent Document 1 describes a liquid crystal polyester resin composition that can prevent the generation of surface particles (foreign matter).
  • the liquid crystal polyester resin composition described in Patent Document 1 contains 0.01 to 10 parts by weight of activated carbon, 5 to 50 parts by weight of glass fiber, and 1 to 50 parts by weight of flaky mica with respect to 100 parts by weight of liquid crystal polyester. ing.
  • liquid crystal polyester resin composition described in Patent Document 1 can not necessarily suppress the generation of foreign matter, and further improvement is required.
  • This invention is made in view of such a situation, Comprising: It aims at providing the liquid-crystal polyester composition and resin molded object by which generation
  • one mode of the present invention contains liquid crystalline polyester and a fibrous filler, and the fibrous filler is a long fiber having a fiber length of 80 ⁇ m or more, 30 for the number of the fibrous filler. %, And the number average fiber diameter of the fibrous filler is 12 ⁇ m or less.
  • One aspect of the present invention includes a liquid crystalline polyester and a fibrous filler, the number average fiber length of the fibrous filler is 15 ⁇ m or more and 60 ⁇ m or less, and the number average fiber diameter of the fibrous filler is 12 ⁇ m or less Liquid crystalline polyester composition is provided.
  • the fibrous filler may have a number average fiber diameter of 6 ⁇ m or less.
  • the content of the fibrous filler may be 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
  • One aspect of the present invention provides a resin molded product using the above-mentioned liquid crystal polyester composition as a forming material.
  • the present invention includes the following aspects.
  • the "foreign matter” is a component derived from the liquid crystal polyester composition which is generated when assembling or using an electric / electronic device or an optical device using the resin molded body formed from the liquid crystal polyester composition as a component.
  • it means fibrous fillers, liquid crystal polyester resins, and mixtures thereof.
  • the liquid crystal polyester composition of the present embodiment is used as a forming material of a resin molded body described later.
  • the liquid crystal polyester composition of the present embodiment contains a liquid crystal polyester and a fibrous filler.
  • the liquid crystal polyester according to the liquid crystal polyester composition of the present embodiment is a material exhibiting liquid crystallinity in a molten state.
  • the liquid crystalline polyester may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, or a liquid crystalline polyester imide.
  • the flow start temperature of the liquid crystal polyester according to the present embodiment is preferably 330 ° C. or more.
  • the flow start temperature of the liquid crystalline polyester is more preferably 330 ° C. or more and 450 ° C. or less, still more preferably 330 ° C. or more and 400 ° C. or less, and particularly preferably 330 ° C. or more and 390 ° C. or less.
  • the flow start temperature may be 340 ° C. or higher, 350 ° C. or higher, or 360 ° C. or higher.
  • the flow start temperature may be 340 ° C. or more and 450 ° C. or less, may be 350 ° C. or more and 400 ° C. or less, and may be 360 ° C. or more and 390 ° C. or less.
  • the liquid crystal polyester With the flow start temperature, the liquid crystal polyester is melted while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer (capillary rheometer), and the inner diameter is The temperature at which a viscosity of 4800 Pa ⁇ s (48000 poises) is exhibited when extruded from a nozzle of 1 mm and a length of 10 mm, and serves as a measure of the molecular weight of liquid crystalline polyesters -Application-", CMC Co., Ltd., June 5, 1987, p. 95).
  • the liquid crystal polyester according to the present embodiment is preferably a wholly aromatic liquid crystal polyester in which only an aromatic compound is polymerized as a raw material monomer.
  • the liquid crystal polyester As a typical example of the liquid crystal polyester according to the present embodiment, at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine, an aromatic hydroxycarboxylic acid, and an aromatic dicarboxylic acid
  • aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine and aromatic diamine are each independently substituted for part or all of them, using its polymerizable derivative It is also good.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids include those in which a carboxyl group is substituted with an alkoxycarbonyl group or an aryloxycarbonyl group (ie, an ester), Those in which a carboxyl group is substituted by a haloformyl group (that is, an acid halide) and those in which a carboxyl group is substituted by an acyloxycarbonyl group (that is, an acid anhydride) can be mentioned.
  • hydroxylated group is acylated to be substituted by acyloxyl group (ie, hydroxylated group) (Acylated compounds of
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines include those wherein the amino group is acylated and substituted with an acylamino group (that is, the acylated product of the amino group) .
  • the liquid crystal polyester according to the present embodiment preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and the repeating unit (1):
  • the repeating unit represented by the formula (2) hereinafter sometimes referred to as “repeating unit (2)”
  • the repeating unit represented by the following formula (3) hereinafter referred to as “repeating unit (3)” It is more preferable to have and.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (-NH-).
  • the hydrogen atoms in the groups represented by Ar 1 , Ar 2 or Ar 3 may be each independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • Hydrogen atoms contained in the group represented by a Ar 4 or Ar 5 independently of one another, a halogen atom, an alkyl group or an aryl group which may be substituted.
  • halogen atom which can be substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are mentioned.
  • the alkyl group which can be substituted with a hydrogen atom is preferably an alkyl group having 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and an s-butyl group. And t-butyl, n-hexyl, 2-ethylhexyl, n-octyl and n-decyl groups.
  • aryl group which can be substituted with a hydrogen atom
  • at least one of the hydrogen atoms constituting the above-mentioned aryl group may be substituted, and an aryl group having a total carbon number of 6 to 20 including the above-mentioned substituent is Preferred examples include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
  • the number of substitution is the same as that of the group represented by Ar 1 , Ar 2 or Ar 3 In each case, the number is usually 2 or less, preferably 1 or less.
  • the alkylidene group is preferably an alkylidene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group and a 2-ethylhexylidene group.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • the repeating unit (1) those in which Ar 1 is a p-phenylene group (for example, repeating units derived from p-hydroxybenzoic acid) and those in which Ar 1 is a 2,6-naphthylene group (for example, 6 Preferred is a repeating unit derived from -hydroxy-2-naphthoic acid.
  • derived from means that the chemical structure changes due to the polymerization of the raw material monomer and no other structural change occurs.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • the repeating unit (2) one in which Ar 2 is a p-phenylene group (for example, a repeating unit derived from terephthalic acid), one in which Ar 2 is a m-phenylene group (for example, a repeating unit derived from isophthalic acid ), Ar 2 is a 2,6-naphthylene group (eg, a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenylether-4,4′-diyl group (For example, a repeating unit derived from diphenyl ether-4,4'-dicarboxylic acid) is preferred.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • the repeating unit (3) those in which Ar 3 is a p-phenylene group (for example, repeating units derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group (For example, repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • the content of the repeating unit (1) in the liquid crystal polyester is usually 30 mol% or more, preferably 30 to 80 mol%, more preferably 40 to 70 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. More preferably, it is 45 to 65 mol%.
  • the total amount of all repeating units constituting liquid crystalline polyester is obtained by dividing the mass of each repeating unit constituting liquid crystalline polyester by the formula weight of each repeating unit to determine the equivalent amount (mole) of each repeating unit. , It is the value which totaled them.
  • the mass of each repeating unit which comprises liquid crystalline polyester is computed from the usage-amount of the raw material monomer to be used, and this becomes a numerical value when all raw material monomers react.
  • the content of the repeating unit (2) in the liquid crystal polyester is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 15 to 35 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. It is preferably 30 mol%, more preferably 17.5 to 27.5 mol%.
  • the content of the returning unit (3) in the liquid crystal polyester is usually 35 mol% or less, preferably 10 to 35 mol%, more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. More preferably, it is 17.5 to 27.5 mol%.
  • the content ratio of the repeating unit (1) in the liquid crystal polyester is increased, the melt flowability, the heat resistance, the strength and the rigidity are easily improved. However, if the content of the repeating unit (1) is more than 80 mol%, the melting temperature and the melt viscosity tend to be high, and the temperature required for molding tends to be high.
  • the ratio of the content of the repeating unit (2) to the content of the repeating unit (3) is [content of repeating unit (2)] / [content of repeating unit (3) ] (Mol% / mol%) It calculates from the formula represented.
  • the ratio of the content of the repeating unit (2) to the content of the repeating unit (3) is usually 0.9 to 1.11, preferably 0.95 to 1.05, and more preferably 0.98 to 1. It is 02.
  • the repeating units (1) to (3) possessed by the liquid crystal polyester may be each independently derived from one type of raw material monomer, or may be derived from two or more types of raw material monomers.
  • the liquid crystalline polyester may also have repeating units other than the repeating units (1) to (3).
  • the content of repeating units other than the repeating units (1) to (3) is usually 0 mol% or more and 10 mol% or less, preferably 0 mol% or more, based on the total amount of all the repeating units constituting the liquid crystal polyester. It is less than mol%.
  • the liquid crystalline polyester preferably has a repeating unit (3) in which each of X and Y is an oxygen atom. That is, it is preferable to have a repeating unit derived from a predetermined aromatic diol because the melt viscosity tends to be low. Moreover, it is more preferable to have only what has X and Y each an oxygen atom as a repeating unit (3).
  • the liquid crystal polyester according to the method for producing a liquid crystal polyester composition of the present embodiment may be one commercially available, or may be one synthesized from a raw material monomer corresponding to a repeating unit constituting the liquid crystal polyester. .
  • liquid crystalline polyester When liquid crystalline polyester is synthesized, it is preferable to manufacture by melt-polymerizing the raw material monomers and solid-phase polymerizing the obtained polymer (hereinafter sometimes referred to as "prepolymer"). Thereby, for example, a liquid crystal polyester having a flow start temperature of 330 ° C. or higher and a high flow start temperature can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • catalysts that may be used for melt polymerization include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide and 4- (dimethylamino) pyridine
  • nitrogen-containing heterocyclic compounds such as 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystalline polyester may have the same repeating unit in the above-mentioned range, and one having a different content of the repeating unit may be used in combination.
  • Fibrous filler As a material which comprises the fibrous filler which concerns on this embodiment, an inorganic substance is preferable from a viewpoint from which a high-strength resin molding is obtained.
  • the fibrous filler according to the present embodiment glass fibers, ceramic fibers, PAN carbon fibers, pitch carbon fibers, alumina fibers, silica fibers, silica alumina fibers can be mentioned.
  • the fibrous filler glass fiber is more preferable because the wear load given to the device at the time of molding is small and it is easy to obtain.
  • the fibrous filler which concerns on this embodiment does not contain a whisker filler.
  • whiskers refer to whisker-like single crystal fibers formed by crystal growth.
  • the number average fiber diameter of the fibrous filler in the liquid crystal polyester composition of the present embodiment is 12 ⁇ m or less, and the number average fiber length of the fibrous filler is 15 ⁇ m to 60 ⁇ m.
  • the resin molded product molded from the liquid crystal polyester composition of the present embodiment can suppress the generation of foreign matter during assembly and use.
  • the number average fiber length of the fibrous filler may be 26 ⁇ m or more and 59 ⁇ m or less.
  • the number average fiber diameter of the fibrous filler is preferably 11 ⁇ m or less. Moreover, 6 micrometers or less are more preferable, and, as for the number average fiber diameter of the said fibrous filler, 5 micrometers or less are more preferable. Although the cause is unclear when the number average fiber diameter of the fibrous filler is 5 ⁇ m or less, the strength of the resin molded product is improved.
  • the lower limit of the number average fiber diameter of the fibrous filler is not particularly limited, but is practically 2 ⁇ m or more for the convenience of melt-kneading at the time of production of the liquid crystal polyester composition.
  • the number average fiber diameter of the fibrous filler is 2 ⁇ m to 12 ⁇ m, preferably 2 ⁇ m to 11 ⁇ m, more preferably 2 ⁇ m to 6 ⁇ m, and still more preferably 2 ⁇ m to 5 ⁇ m.
  • the fibrous filler in the liquid crystal polyester composition of the present embodiment has a fiber length of 80 ⁇ m or more and the number of long fibers contained in the fibrous filler is 0% with respect to the number of fibrous fillers. More than 30%.
  • the content of the long fibers in the liquid crystal polyester composition of the present embodiment is 0% or more and 30% or less, it is possible to mold a resin molded body in which the generation of foreign matter is suppressed.
  • the content of the long fibers is preferably 0% or more and 25% or less with respect to the number of fibrous fillers.
  • the content of the long fibers may be 0 or more and 22% or less, or 1% or more and 11% or less, with respect to the number of fibrous fillers.
  • the number average fiber diameter of the fibrous filler in the liquid crystal polyester composition is contained in the liquid crystal polyester composition. It can be determined from a photomicrograph of fibrous filler. Specifically, these measurement methods will be described. In the following measurement method, the number of observations (the number of fibrous fillers) in the micrograph is 400.
  • the liquid crystalline polyester composition is incinerated at 600 ° C. or higher.
  • the obtained residue is dispersed in methanol, and while being spread on a slide glass, a photomicrograph is taken at a magnification of 100 times.
  • the length (fiber length) of the fibrous filler is read from the obtained photograph, and the number average fiber length of the fibrous filler is determined by calculating the average value of the number (400) of fibrous fillers.
  • the number average fiber diameter of the above fibrous filler is obtained by taking a photomicrograph at a magnification of 500, reading the fiber diameter of the fibrous filler from the obtained photograph, and calculating the average value of the number (400) of fibrous fillers. It can be determined by
  • the content of long fibers having a fiber length of 80 ⁇ m or more is obtained by dividing the number of long fibers having a fiber length of 80 ⁇ m or more by the number of fibrous fillers (400) using the measurement value of the fiber length obtained by the above measurement. It can be calculated by
  • fiber length means the largest length in the fibrous filler.
  • the “fiber diameter” means, for example, the maximum diameter (length) in the direction orthogonal to the longitudinal direction of the fibrous filler.
  • the upper limit of the length of the long fibers contained in the fibrous filler is usually 1000 ⁇ m or less.
  • the fibrous filler which concerns on this embodiment is not giving the surface coating process.
  • the generated gas from the surface coating agent attached to the fibrous filler of the resin molding obtained can be prevented, and the chemical stability of the resin molding can be improved.
  • the gas generated from the resin molded body is less likely to contaminate the peripheral members.
  • the surface coating treatment includes a surface coating treatment with a coupling agent such as a silane coupling agent or a titanium coupling agent, or a surface coating treatment with a thermoplastic resin or a thermosetting resin other than liquid crystal polyester. .
  • the liquid crystal polyester composition of the present embodiment preferably contains 10 parts by mass or more and 150 parts by mass or less of the fibrous filler with respect to 100 parts by mass of the liquid crystal polyester.
  • the amount of the fibrous filler exceeds 150 parts by mass, the resulting resin molded product tends to easily generate foreign matter during assembly or use.
  • the content of the fibrous filler is less than 10 parts by mass, the dimensional stability of the obtained resin molded product tends to be reduced, and it tends to be difficult to obtain a resin molded product of a desired size.
  • the anisotropy of the liquid crystal polyester is strongly developed, and the resin molded product may be warped or the like. Furthermore, when there are few fibrous fillers, the effect of mechanical strength improvement may fall.
  • the content of the fibrous filler in the liquid crystal polyester composition of the present embodiment is 100 parts by mass of the liquid crystal polyester in consideration of the balance of characteristics such as generation of foreign matter, dimensional stability, warp and mechanical strength of the resin molded body described above.
  • 15 parts by mass or more is more preferable, 20 parts by mass or more is more preferable, 25 parts by mass or more is particularly preferable, and 30 parts by mass or more is particularly preferable.
  • 140 mass parts or less are more preferable with respect to 100 mass parts of liquid crystal polyester, and, as for content of the fibrous filler in the liquid-crystal polyester composition of this embodiment, 70 mass parts or less are more preferable.
  • the content of the fibrous filler in the liquid crystal polyester composition of the present embodiment is more preferably 15 parts by mass or more and 140 parts by mass or less, and 20 parts by mass or more and 140 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the following is more preferable, 20 to 70 parts by mass is more preferable, 25 to 70 parts by mass is particularly preferable, and 30 to 70 parts by mass is particularly preferable.
  • the content of the liquid crystal polyester in the liquid crystal polyester composition of the present embodiment is preferably 42 to 87% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the content of the fibrous filler in the liquid crystal polyester composition of the present embodiment is preferably 13 to 58% by mass with respect to the total mass of the liquid crystal polyester composition.
  • additives may be contained in the liquid crystal polyester composition of the present embodiment as long as the effects of the present invention are not impaired.
  • additives include plate-like fillers, coloring components, lubricants, stabilizers and the like.
  • the content of the other components is preferably 0.0001 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the content of the other components in the liquid crystal polyester composition of the present embodiment is preferably 0.01 to 5% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the liquid crystalline polyester and the fibrous filler are melt-kneaded in advance to produce a pellet-like liquid crystalline polyester composition (hereinafter sometimes referred to as a "composition"). It is preferable to keep it.
  • the additive and the like may be combined together with the liquid crystalline polyester and the fibrous filler and melt-kneaded to obtain a composition.
  • the resin molding of this embodiment uses the above-mentioned liquid crystal polyester composition as a forming material. According to the resin molded product of the present embodiment, the generation of foreign substances is suppressed at the time of assembly or use of the resin molded product (that is, at the time of assembly or use of electric / electronic equipment or optical equipment using the resin molded product as parts). it can. The effect of suppressing the generation of such foreign matter can be confirmed by the following test.
  • injection molding is carried out using an injection molding machine (PS40E-5ASE type manufactured by Nissei Resin Co., Ltd.) at a cylinder temperature of 350 ° C., a mold temperature of 130 ° C. and an injection speed of 60%.
  • the test piece (resin molding) of length 64 mm, width 64 mm, and thickness 1 mm is obtained.
  • the film gate of 64 mm x 1 mm is provided in the edge side of the cavity of the metal mold
  • a tape (Sellotape (registered trademark) No. 405 manufactured by Nichiban Co., Ltd.) is attached to the upper surface of the test piece along the flow direction of the liquid crystal polyester in the test piece over the entire length of the test piece, and the above-mentioned flow direction The tape is quickly pulled off from one end to the other end of the tape. This operation is performed once, and a tape peeling test repeated 20 times is performed.
  • the surface roughness Sa is measured using a 3D shape measuring machine ("VR3000" manufactured by Keyence Corporation) at the place where the above test was performed on the test piece.
  • the surface roughness Sa of the resin molded product of the present embodiment is preferably 0 ⁇ m or more and 0.55 ⁇ m or less, and more preferably 0.50 ⁇ m or less.
  • the resin molded product can suppress the generation of foreign matter at the time of assembly or production.
  • the said tape peeling test can be considered as an accelerated test which generate
  • the number average fiber diameter of the fibrous filler according to the present embodiment is 2 ⁇ m or more and 6 ⁇ m or less, the Izod impact strength of the resin molded body can be improved.
  • the Izod impact strength of a resin molded body is measured as follows. First, after the composition is dried, injection molding is carried out using an injection molding machine (PS40E-5ASE type manufactured by Nissei Resin Co., Ltd.) at a cylinder temperature of 350 ° C., a mold temperature of 130 ° C. and an injection speed of 60%. Conduct to obtain a test piece 64 mm long, 12.7 mm wide, 6.4 mm thick.
  • PS40E-5ASE type manufactured by Nissei Resin Co., Ltd. an injection molding machine
  • Izod impact strength is measured about the obtained test piece based on ASTMD256.
  • composition obtained by the above-mentioned method is injection-molded to obtain a resin molded product.
  • the flow start temperature FT (° C.) of the composition to be used is determined.
  • the composition described above at a temperature of [FT + 30] ° C. or more and [FT + 80] ° C. or less with respect to the flow start temperature FT (° C.)
  • the composition is preferably dried before injection molding.
  • the resin melt temperature is injection molded at a temperature of [FT + 80] ° C. or less
  • the liquid crystal polyester stagnating inside the molding machine is not easily decomposed.
  • the resulting resin molded product is less likely to generate gas or the like, and can be applied to, for example, applications of electric and electronic parts and optical parts.
  • the resin melting temperature is injection molding at a temperature of [FT + 80] ° C. or less
  • the molten resin hardly flows out from the nozzle when the mold is opened and the resin molded body is taken out after the injection molding. As a result, it is not necessary to cope with the outflow of the molten resin, and the productivity of the resin molded product is improved.
  • the mold temperature to be used is preferably 80 ° C. or more. If the mold temperature is 80 ° C. or higher, the surface of the resulting resin molded product tends to be smooth, and the amount of foreign matter generated tends to be suppressed.
  • the higher the temperature of the mold used the more advantageous, but if it is too high, the cooling effect is reduced and the time required for the cooling step becomes longer.
  • the productivity of the resin molded product may be reduced, and problems such as deformation of the resin molded product may occur due to the difficulty in releasing the resin molded product after molding.
  • the temperature of the mold used is too high, the meshing between the molds may be impaired, and the resin molded product may be damaged when the mold is opened and closed. Therefore, it is preferable to appropriately optimize the upper limit of the mold temperature to be used according to the type of the composition to be used. Thereby, the decomposition of the liquid crystal polyester contained in the composition can be suppressed.
  • the mold temperature used is preferably 100 ° C. or more and 220 ° C. or less. 130 degreeC or more and 200 degrees C or less are more preferable.
  • a tape peeling test is performed to determine a surface roughness Sa of the standard molded body after the test.
  • the injection molding conditions can be optimized as follows.
  • the composition is first melted and injection molded into a mold set at 80 ° C. to produce a standard molded body.
  • the resin melting temperature is set in the range of approximately the center value [FT + 40] to [FT + 50] ° C. of the preferable resin melting temperature with respect to the flow start temperature FT (° C.) obtained in advance.
  • a tape peeling test is performed on the obtained standard molded body to determine the surface roughness Sa of the standard molded body after the test.
  • the temperature of the mold to be used is gradually raised, each standard molded body is molded, and the surface roughness Sa of the standard molded body after the test is similarly determined.
  • the mold temperature and the resin melting temperature can be optimized respectively.
  • the injection speed of the above composition may be set in various suitable ranges depending on the molding machine to be used, but 50 mm / sec or more is preferable. A higher injection speed of the composition is preferable because the productivity of the resin molded product can be enhanced, and is preferably 100 mm / sec or more, and more preferably 200 mm / sec or more.
  • the injection molding conditions are optimized in the preliminary experiment for forming the standard molded body, and the mold for obtaining the standard molded body is changed to a mold for obtaining the target resin molded body to mold the composition. Do. By doing this, it is possible to obtain a resin molded body that can further suppress the generation of foreign matter.
  • the resin molded product of the present embodiment can be suitably used, for example, as a component for an electric / electronic device or an optical device.
  • the tape peeling test was implemented about the resin molded object of the target shape, and the surface of the resin molded object after a test is carried out.
  • the molding conditions can be optimized by means of determining the roughness Sa.
  • Specific examples of members to which the resin molded product of the present embodiment can be suitably applied include, for example, connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, printed wiring boards, circuit boards, semiconductor packages, computer related parts, etc.
  • Electric and electronic parts such as IC tray or wafer carrier, VTR, TV, iron, air conditioner, stereo, vacuum cleaner, refrigerator, household appliance parts such as rice cooker or lighting equipment, lamp reflector or lamp Luminaire parts such as holders, compact disc, acoustic product parts such as laser disc (registered trademark) or speakers, ferrules for optical cables, telephone parts, communication parts such as facsimile parts or modems, multiple parts such as separation claws or heater holders Machine parts, machine parts such as impellers, fan gears, gears, bearings, motor parts or cases, mechanical parts for vehicles, engine parts, parts in engine room, parts for automobile parts such as electrical parts or interior parts, microwaves Cooking utensils such as cooking pots or heat-resistant dishes, materials for heat insulation and sound insulation such as flooring or wall materials, building materials such as support materials (beams, columns, etc.) or roofing materials, parts for aircraft, spacecraft, space equipment Radiation facility members such as nuclear reactors, marine facility members, cleaning jigs, optical components, or optical fiber
  • the resin molding of this embodiment can be used for various uses.
  • the resin molded product of the present embodiment has an extremely small amount of foreign matter generated during assembly or use. Therefore, when using the resin molding of this embodiment for these uses, the reliability of a resin molding improves.
  • the resin molded product of the present embodiment is useful for switches, relays, image sensors and various other sensors, light emitting diodes (also referred to as LEDs), and optical mechanism systems.
  • the liquid crystal polyester composition of the present embodiment has, as one aspect, A liquid crystal polyester composition comprising a liquid crystal polyester and a fibrous filler,
  • the liquid crystalline polyester is a liquid crystalline polyester having a repeating unit derived from p-hydroxybenzoic acid, a repeating unit derived from terephthalic acid, and a repeating unit derived from isophthalic acid, or a repeat derived from 6-hydroxy-2-naphthoic acid
  • a liquid crystal polyester having a unit, a repeating unit derived from 2,6-naphthalenedicarboxylic acid, a repeating unit derived from terephthalic acid and a repeating unit derived from hydroquinone;
  • the fibrous filler is at least one selected from the group consisting of ceramic fibers and glass fibers, and the ceramic fibers are preferably alkaline earth silicate fibers;
  • the number average fiber length of the fibrous filler is 15 ⁇ m or more and 60 ⁇ m or less, preferably 26 ⁇ m
  • the Izod impact strength of the test piece is preferably 250 J / m or more and 1030 or less J / m. May be 700 J / m or more and 1030 J / m or less;
  • the surface roughness Sa of the test piece is 0.55 ⁇ m or less, preferably 0.50 ⁇ m or less It may be.
  • the temperature was raised to 320 ° C. over 2 hours and 50 minutes while distilling off the by-product acetic acid distilled off and the unreacted acetic anhydride, and the prepolymer was obtained with the point in time where the increase in torque was observed as the reaction completion.
  • the obtained prepolymer is cooled to room temperature and crushed by a coarse crusher to obtain a liquid crystalline polyester powder (particle diameter: about 0.1 mm to about 1 mm), and then from room temperature to 250 ° C. under a nitrogen atmosphere 1
  • the temperature was raised over time, and the temperature was raised from 250 ° C. to 285 ° C. over 5 hours, held at 285 ° C. for 3 hours, and the polymerization reaction was advanced in the solid phase.
  • the flow start temperature of the obtained liquid crystal polyester (1) was 327 ° C.
  • the temperature is raised from 145 ° C. to 310 ° C. over 3 hours and 30 minutes while distilling off by-product acetic acid and unreacted acetic anhydride, and maintained at 310 ° C. for 3 hours, then the contents are removed from the reactor It cooled to room temperature.
  • the obtained solid was crushed by a grinder to obtain a powdery prepolymer.
  • This prepolymer is heated in a nitrogen gas atmosphere from room temperature to 250 ° C. in 1 hour, heated from 250 ° C. to 293 ° C. in 5 hours, and maintained at 293 ° C. for 5 hours to perform solid phase polymerization.
  • the reaction product was cooled to obtain a powdery liquid crystal polyester 2.
  • the flow start temperature of the obtained liquid crystal polyester (2) was 319 ° C.
  • the content rate was calculated by dividing the number of long fibers having a fiber length of 80 ⁇ m or more by the number (400) of fibrous fillers.
  • a tape (Sellotape (registered trademark) No. 405 manufactured by Nichiban Co., Ltd.) is attached to the upper surface of the test piece along the flow direction of the liquid crystal polyester in the test piece over the entire length of the test piece, and the above-mentioned flow direction The tape was quickly pulled off from one end to the other end of the tape. This operation was performed once, and a tape peeling test was repeated 20 times in all.
  • the Izod impact strength of the obtained test piece was measured in accordance with ASTM D256. The results are shown in Tables 1 to 3.

Abstract

液晶ポリエステルと、繊維状フィラーと、を含み、この繊維状フィラーにおいて、繊維状フィラーに含まれる繊維長が80μm以上の長繊維の本数がこの繊維状フィラーの本数に対して30%以下であり、この繊維状フィラーの数平均繊維径は12μm以下である液晶ポリエステル組成物。

Description

液晶ポリエステル組成物および樹脂成形体
 本発明は、液晶ポリエステル組成物および樹脂成形体に関するものである。
 本願は、2017年11月15日に、日本に出願された特願2017-220365号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルは、成形加工しやすく、高耐熱性、高機械強度、または絶縁性に優れた材料である。また、液晶ポリエステルは、高い難燃性を有している。これらの特長を活かして、液晶ポリエステルは、電気・電子用部品および光学機器用部品などをはじめ、様々な用途に適用されている。液晶ポリエステルは、通常、単体で用いられることは少なく、各種用途における要求特性(例えば、曲げ強度)を満たすために、LCP(液晶ポリエステル)に充填材を含有させた液晶ポリエステル組成物として用いられている。
 ところで、上述したような液晶ポリエステル組成物を用いて、電気・電子用部品または光学機器用部品などの成形体を製造すると、成形体から発生した異物に起因して、電気・電子用部品または光学機器用部品の組立工程での歩留まりが低下することがある。また、上記部品(成形体)を用いた電気・電子機器や光学機器を経時的に使用することにより、成形体から発生した異物に起因して、誤作動を引き起こすことがある。そこで、異物の発生が抑制された成形体が検討されている。
 例えば、特許文献1には、表面パーティクル(異物)発生を防止し得る液晶ポリエステル樹脂組成物が記載されている。特許文献1に記載の液晶ポリエステル樹脂組成物は、液晶ポリエステル100重量部に対し、活性炭0.01~10重量部、ガラス繊維5~50重量部、および薄片状マイカ1~50重量部を含有している。
特開2008-239950号公報
 しかしながら、特許文献1に記載の液晶ポリエステル樹脂組成物は、必ずしも異物の発生を抑制できるわけではなく、さらなる改善が求められている。
 本発明はこのような事情に鑑みてなされたものであって、異物の発生が抑制された液晶ポリエステル組成物および樹脂成形体を提供することを目的とする。
 上記の課題を解決するため、本発明の一態様は、液晶ポリエステルと、繊維状フィラーと、を含み、繊維状フィラーは、繊維長が80μm以上の長繊維を繊維状フィラーの本数に対して30%以下含み、繊維状フィラーの数平均繊維径は12μm以下である液晶ポリエステル組成物を提供する。
 本発明の一態様は、液晶ポリエステルと、繊維状フィラーと、を含み、繊維状フィラーの数平均繊維長は、15μm以上60μm以下であり、繊維状フィラーの数平均繊維径は、12μm以下である液晶ポリエステル組成物を提供する。
 本発明の一態様においては、繊維状フィラーの数平均繊維径が6μm以下である構成としてもよい。
 本発明の一態様においては、繊維状フィラーの含有量が、液晶ポリエステル100質量部に対して、10質量部以上150質量部以下である構成としてもよい。
 本発明の一態様は、上記の液晶ポリエステル組成物を形成材料とする樹脂成形体を提供する。
 すなわち、本発明は以下の態様を含む。
[1] 液晶ポリエステルと、繊維状フィラーと、を含み、
 前記繊維状フィラーにおいて、繊維状フィラーに含まれる繊維長が80μm以上の長繊維の本数が前記繊維状フィラーの本数に対して30%以下であり、
 前記繊維状フィラーの数平均繊維径は12μm以下である液晶ポリエステル組成物。
[2] 液晶ポリエステルと、繊維状フィラーと、を含み、
 前記繊維状フィラーの数平均繊維長は、15μm以上60μm以下であり、
 前記繊維状フィラーの数平均繊維径は、12μm以下である液晶ポリエステル組成物。
[3] 前記繊維状フィラーの数平均繊維径が6μm以下である[1]または[2]に記載の液晶ポリエステル組成物。
 
[4] 前記繊維状フィラーの含有量が、前記液晶ポリエステル100質量部に対して、10質量部以上150質量部以下である[1]~[3]のいずれか1つに記載の液晶ポリエステル組成物。
[5] [1]~[4]のいずれか1つに記載の液晶ポリエステル組成物から形成される樹脂成形体。
 本発明の一態様によれば、異物の発生が抑制された液晶ポリエステル組成物および樹脂成形体が提供される。
 本明細書において「異物」とは、液晶ポリエステル組成物から形成される樹脂成形体を部品とした電気・電子機器や光学機器の組立時や使用時に発生する前記液晶ポリエステル組成物由来の成分である。例えば繊維状フィラーや液晶ポリエステル樹脂やそれらの混合物を意味する。
 本実施形態の液晶ポリエステル組成物は、後述する樹脂成形体の形成材料として用いられる。本実施形態の液晶ポリエステル組成物は、液晶ポリエステルと、繊維状フィラーとを含む。
 なお、本明細書においては、液晶ポリエステルと繊維状フィラーとを混合して得られる混合物を「組成物」とする。また、得られた混合物をペレット状に成形した材料も、同様に「組成物」とする。
[液晶ポリエステル]
 本実施形態の液晶ポリエステル組成物に係る液晶ポリエステルは、溶融状態で液晶性を示す材料である。前記液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。
 本実施形態に係る液晶ポリエステルの流動開始温度は、好ましくは330℃以上である。液晶ポリエステルの流動開始温度は、より好ましくは330℃以上450℃以下であり、さらに好ましくは330℃以上400℃以下であり、とりわけ好ましくは330℃以上390℃以下である。また、前記流動開始温度は340℃以上であってもよく、350℃以上であってもよく、360℃以上であってもよい。
 1つの側面として、前記流動開始温度は340℃以上450℃以下であってもよく、350℃以上400℃以下であってもよく、360℃以上390℃以下であってもよい。
 流動開始温度とは、毛細管レオメーター(キャピラリーレオメーター)を用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示すときの温度であり、液晶ポリエステルの分子量の目安となる(小出直之編、「液晶ポリマー-合成・成形・応用-」、(株)シーエムシー、1987年6月5日、p.95参照)。
 本実施形態に係る液晶ポリエステルは、原料モノマーとして芳香族化合物のみが重合している全芳香族液晶ポリエステルであることが好ましい。
 本実施形態に係る液晶ポリエステルの典型的な例としては、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、を重合(重縮合)させたもの;複数種の芳香族ヒドロキシカルボン酸を重合させたもの;芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、芳香族ジカルボン酸と、芳香族ジオールと、を重合させたもの;およびポリエチレンテレフタレートなどのポリエステルと芳香族ヒドロキシカルボン酸とを重合させたものが挙げられる。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、それぞれ独立に、それらの一部または全部に代えてその重合可能な誘導体を使用してもよい。
 芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基がアルコキシカルボニル基またはアリールオキシカルボニル基に置換されたもの(すなわち、エステル)、カルボキシル基がハロホルミル基に置換されたもの(すなわち、酸ハロゲン化物)、およびカルボキシル基がアシルオキシカルボニル基に置換されたもの(すなわち、酸無水物)が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に置換したもの(すなわち、ヒドロキシル基のアシル化物)が挙げられる。
 芳香族ヒドロキシアミンおよび芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に置換したもの(すなわち、アミノ基のアシル化物)が挙げられる。
 本実施形態に係る液晶ポリエステルは、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
 上記式(1)~(3)において、Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。
(4)-Ar-Z-Ar
 式(4)において、ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。
 Ar又はArで表される前記基に含まれる水素原子は、互いに独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。
 水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
 水素原子と置換可能な前記アルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基およびn-デシル基が挙げられる。
 水素原子と置換可能な前記アリール基の例としては、前記アリール基を構成する水素原子の少なくとも一つが置換されていてもよく、前記置換基を含めた総炭素数が6~20のアリール基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。
 Ar、ArまたはArで表される前記基にある前記水素原子がこれらの基で置換されている場合、その置換数は、Ar、ArまたはArで表される前記基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個である。
 前記アルキリデン基としては、炭素数1~10のアルキリデン基が好ましく、例えば、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基および2-エチルヘキシリデン基が挙げられる。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arがp-フェニレン基であるもの(例えば、p-ヒドロキシ安息香酸に由来する繰返し単位)、およびArが2,6-ナフチレン基であるもの(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 なお、本明細書において「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp-フェニレン基であるもの(例えば、テレフタル酸に由来する繰返し単位)、Arがm-フェニレン基であるもの(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、およびArがジフェニルエ-テル-4,4’-ジイル基であるもの(例えば、ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミンまたは芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp-フェニレン基であるもの(例えば、ヒドロキノン、p-アミノフェノールまたはp-フェニレンジアミンに由来する繰返し単位)、およびArが4,4’-ビフェニリレン基であるもの(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルまたは4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 液晶ポリエステルにおける繰返し単位(1)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、通常30モル%以上、好ましくは30~80モル%、より好ましくは40~70モル%、さらに好ましくは45~65モル%である。
 液晶ポリエステルを構成する全繰返し単位の合計量とは、液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値である。液晶ポリエステルを構成する各繰返し単位の質量は、使用する原料モノマーの使用量から算出され、これは原料モノマーが全て反応すると仮定したときの数値となる。
 同様に、液晶ポリエステルにおける繰返し単位(2)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10~35モル%、より好ましくは15~30モル%、さらに好ましくは17.5~27.5モル%である。
 液晶ポリエステルにおける返し単位(3)の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10~35モル%、より好ましくは15~30モル%、さらに好ましくは17.5~27.5モル%である。
 液晶ポリエステルは、繰返し単位(1)の含有率が多いほど、溶融流動性や耐熱性や強度・剛性が向上し易い。しかしながら、繰返し単位(1)の含有率が80モル%より多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 本実施形態の液晶ポリエステルにおいて、繰返し単位(2)の含有率と繰返し単位(3)の含有率との割合は、[繰返し単位(2)の含有率]/[繰返し単位(3)の含有率](モル%/モル%)で表される式から算出される。繰返し単位(2)の含有率と繰返し単位(3)の含有率との割合は、通常0.9~1.11、好ましくは0.95~1.05、より好ましくは0.98~1.02である。
 なお、液晶ポリエステルが有する繰返し単位(1)~(3)は、それぞれ独立に、1種の原料モノマーに由来するものでもよいし、2種以上の原料モノマーに由来するものでもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよい。繰返し単位(1)~(3)以外の繰返し単位の含有率は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、通常0モル%以上10モル%以下、好ましくは0モル%以上5モル%以下である。
 液晶ポリエステルは、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるものを有することが好ましい。すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが、溶融粘度が低くなり易いので好ましい。また、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるもののみを有することが、より好ましい。
 本実施形態の液晶ポリエステル組成物の製造方法に係る液晶ポリエステルは、市販されているものであってもよいし、液晶ポリエステルを構成する繰返し単位に対応する原料モノマーから合成したものであってもよい。
 液晶ポリエステルを合成する場合、原料モノマーを溶融重合させ、得られた重合物(以下、「プレポリマー」ということがある。)を固相重合させることにより製造することが好ましい。これにより、例えば、流動開始温度が330℃以上の、流動開始温度が高い液晶ポリエステルを操作性良く製造することができる。
 溶融重合は、触媒の存在下に行ってもよい。溶融重合に用いてもよい触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾールなどの含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。
 液晶ポリエステルは、上記の範囲において、同じ繰返し単位を有するものであって、繰返し単位の含有率が異なるものを併用してもよい。
[繊維状フィラー]
 本実施形態に係る繊維状フィラーを構成する材料としては、より高強度の樹脂成形体が得られる観点から無機物質が好ましい。具体的に例示すると、本実施形態に係る繊維状フィラーとしては、ガラス繊維、セラミック繊維、PAN系炭素繊維、ピッチ系炭素繊維、アルミナ繊維、シリカ繊維、シリカアルミナ繊維が挙げられる。なかでも、繊維状フィラーとしては、成形加工時の装置に与える摩耗負荷が少なく、かつ入手しやすいことから、ガラス繊維がより好ましい。なお、本実施形態に係る繊維状フィラーは、ウィスカフィラーを含まない。一般に、ウィスカとは結晶成長でできるヒゲ状の単結晶繊維を指す。
 本実施形態の液晶ポリエステル組成物中の繊維状フィラーの数平均繊維径は、12μm以下であり、かつ繊維状フィラーの数平均繊維長が15μm以上60μm以下である。これらの条件を満たすことにより、本実施形態の液晶ポリエステル組成物から成形される樹脂成形体は、組立時や使用時において異物の発生を抑制できる。
 1つの側面として、前記繊維状フィラーの数平均繊維長は、26μm以上59μm以下であってもよい。
 さらに、組立時や使用時において異物の発生をより抑制するためには、上記繊維状フィラーの数平均繊維径は、11μm以下が好ましい。また、上記繊維状フィラーの数平均繊維径は、6μm以下がより好ましく、5μm以下がさらに好ましい。上記繊維状フィラーの数平均繊維径が5μm以下であると、原因は不明であるが、樹脂成形体の強度が向上する。上記繊維状フィラーの数平均繊維径の下限については、限定されるものではないが、液晶ポリエステル組成物の製造時における溶融混練の都合上、現実的には2μm以上である。
 1つの側面として、上記繊維状フィラーの数平均繊維径は2μm以上12μm以下であり、2μm以上11μm以下が好ましく、2μm以上6μm以下がより好ましく、2μm以上5μm以下がさらに好ましい。
 本実施形態の液晶ポリエステル組成物中の繊維状フィラーは、別の見方をすれば、繊維状フィラーに含まれる繊維長が80μm以上の長繊維の本数は、繊維状フィラーの本数に対して0%以上30%以下である。本実施形態の液晶ポリエステル組成物における長繊維の含有率が0%以上30%以下であると、異物の発生が抑制された樹脂成形体を成形可能である。
 また、組立時や使用時において異物の発生をより抑制できる樹脂成形体を得るためには、上記長繊維の含有率は、繊維状フィラーの本数に対して0%以上25%以下が好ましい。別の側面として、上記長繊維の含有率は、繊維状フィラーの本数に対して0以上22%以下であってもよく、1%以上11%以下であってもよい。
 本明細書において、液晶ポリエステル組成物中の繊維状フィラーの数平均繊維径、数平均繊維長および上記長繊維の繊維状フィラーの本数に対する割合(含有率)は、液晶ポリエステル組成物中に含まれる繊維状フィラーの顕微鏡写真から求めることができる。
 具体的に、これらの測定方法について説明する。なお、以下の測定方法では、顕微鏡写真における観測本数(繊維状フィラーの本数)を400本とする。
 まず、液晶ポリエステル組成物を600℃以上で灰化させる。次に、得られた残渣をメタノールに分散させ、スライドガラス上に展開させた状態で顕微鏡写真を100倍の倍率で撮影する。次に、得られた写真から繊維状フィラーの長さ(繊維長)を読み取って、繊維状フィラーの本数(400本)における平均値を算出することにより繊維状フィラーの数平均繊維長を求めることができる。
 上記繊維状フィラーの数平均繊維径は、顕微鏡写真を500倍の倍率で撮影し、得られた写真から繊維状フィラーの繊維径を読み取り、繊維状フィラーの本数(400本)における平均値を算出することにより求めることができる。
 繊維長が80μm以上である長繊維の含有率は、上記測定で得られた繊維長の測定値を用い、繊維長が80μm以上の長繊維の本数を繊維状フィラーの本数(400本)で除することにより算出することができる。
 なお、「繊維長」とは、その繊維状フィラーにおける最大長を意味する。
 「繊維径」とは、例えば、その繊維状フィラーの長さ方向に直交する方向における最大径(長さ)を意味する。
 繊維状フィラー中に含まれる長繊維の長さの上限は、通常1000μm以下である。
 また、本実施形態に係る繊維状フィラーは、表面コーティング処理を施していないことが好ましい。これにより、得られる樹脂成形体の繊維状フィラーに付着した表面コーティング剤からの発生ガスを防止して、樹脂成形体の化学的安定性を向上させることができる。また、樹脂成形体の組立時に、樹脂成形体からの発生ガスが周辺部材を汚染しにくい。本実施形態において、表面コーティング処理とは、シランカップリング剤やチタンカップリング剤などのカップリング剤による表面コーティング処理や、液晶ポリエステル以外の熱可塑性樹脂または熱硬化性樹脂による表面コーティング処理が挙げられる。
 本実施形態の液晶ポリエステル組成物は、液晶ポリエステル100質量部に対して繊維状フィラーを10質量部以上150質量部以下含むことが好ましい。繊維状フィラーが150質量部を越えると、得られる樹脂成形体では組立時または使用時において異物が発生しやすくなる傾向がある。一方、繊維状フィラーが10質量部を下回ると、得られる樹脂成形体の寸法安定性が低下して所望の寸法の樹脂成形体が得られにくい傾向がある。また、繊維状フィラーが10質量部を下回ると、液晶ポリエステルの異方性が強く発現して、樹脂成形体に反りなどが発生するおそれがある。さらに、繊維状フィラーが少ないと、機械強度向上の効果が低下することがある。
 本実施形態の液晶ポリエステル組成物における繊維状フィラーの含有量は、上述した樹脂成形体の異物の発生、寸法安定性、反り、機械強度などの特性のバランスを考慮すると、液晶ポリエステル100質量部に対して、15質量部以上がより好ましく、20質量部以上がさらに好ましく、25質量部以上がとりわけ好ましく、30質量部以上が特に好ましい。また、本実施形態の液晶ポリエステル組成物における繊維状フィラーの含有量は、液晶ポリエステル100質量部に対して、140質量部以下がより好ましく、70質量部以下がさらに好ましい。
 1つの側面として、本実施形態の液晶ポリエステル組成物における繊維状フィラーの含有量は、液晶ポリエステル100質量部に対して、15質量部以上140質量部以下がより好ましく、20質量部以上140質量部以下がさらに好ましく、20質量部以上70質量部以下がよりさらに好ましく、25質量部以上70質量部以下がとりわけ好ましく、30質量部以上70質量部以下が特に好ましい。
 1つの側面として、本実施形態の液晶ポリエステル組成物における液晶ポリエステルの含有量は、液晶ポリエステル組成物の総質量に対して、42~87質量%が好ましい。
 1つの側面として、本実施形態の液晶ポリエステル組成物における繊維状フィラーの含有量は、液晶ポリエステル組成物の総質量に対して、13~58質量%が好ましい。
 本実施形態の液晶ポリエステル組成物には、本発明の効果を損なわない範囲で、その他の成分(添加剤など)が含まれても構わない。そのような添加剤としては、板状フィラー、着色成分、潤滑剤、安定剤などが挙げられる。
 1つの側面として、前記その他の成分の含有量は、液晶ポリエステル100質量部に対して、0.0001~5質量部が好ましい。
 別の側面として、本実施形態の液晶ポリエステル組成物におけるその他の成分の含有量は、液晶ポリエステル組成物の総質量に対して、0.01~5質量%が好ましい。
<液晶ポリエステル組成物の製造方法>
 本実施形態の樹脂成形体を得るには、予め液晶ポリエステルと、繊維状フィラーとを溶融混練して、ペレット状の液晶ポリエステル組成物(以下、「組成物」と呼ぶことがある。)を製造しておくことが好ましい。なお、上述の液晶ポリエステル、および繊維状フィラー以外の添加剤などを用いる場合は、液晶ポリエステルおよび繊維状フィラーとともに、前記添加剤なども合わせて溶融混練して組成物とすればよい。
<樹脂成形体>
 本実施形態の樹脂成形体は、上述の液晶ポリエステル組成物を形成材料とする。本実施形態の樹脂成形体によれば、樹脂成形体の組立時または使用時(すなわち、樹脂成形体を部品とした電気・電子機器や光学機器の組立時や使用時)における異物の発生を抑制できる。このような異物の発生を抑制する効果は、以下のような試験で確認することができる。
 まず、組成物を乾燥後、射出成形機(日精樹脂工業株式会社製のPS40E-5ASE型)を用い、シリンダー温度350℃、金型温度130℃、射出速度60%の成形条件で、射出成形を行い、長さ64mm、幅64mm、厚さ1mmの試験片(樹脂成形体)を得る。なお、射出成形に用いる金型のキャビティの端辺には、64mm×1mmのフィルムゲートが設けられている。
 上記試験片の上面部に、テープ(ニチバン株式会社製セロテープ(登録商標)No.405)を、試験片における液晶ポリエステルの流動方向に沿って試験片の全長にわたって貼り、上記流動方向に沿って上記テープの一端側から他端側に向かって素早く引き剥がす操作を行う。この操作を1回とし、全20回繰り返すテープ剥離試験を行う。
 次に、試験片の上記試験を行った箇所に対して、3D形状測定機(キーエンス社製、「VR3000」)を用い、表面粗さSaを測定する。
 本実施形態の樹脂成形体の表面粗さSaは、0μm以上0.55μm以下が好ましく、0.50μm以下がより好ましい。本実施形態の樹脂成形体の表面粗さSaが0.55μm以下であると、樹脂成形体は、組立時または製造時において異物の発生を抑制できる。
 このような試験では、樹脂成形体へのテープ剥離を繰り返し行うことで、樹脂成形体の表面を荒らし、繊維状フィラーの脱落を促進している。つまり、上記テープ剥離試験は、樹脂成形体から異物を発生させる加速試験として考えることができる。
 特に、本実施形態に係る繊維状フィラーの数平均繊維径が2μm以上6μm以下の場合、樹脂成形体のアイゾット衝撃強度を向上させることができる。
 本明細書において、樹脂成形体のアイゾット衝撃強度は、以下のようにして測定される。まず、組成物を乾燥後、射出成形機(日精樹脂工業株式会社製のPS40E-5ASE型)を用い、シリンダー温度350℃、金型温度130℃、射出速度60%の成形条件で、射出成形を行い、長さ64mm、幅12.7mm、厚さ6.4mmの試験片を得る。
 次に、得られた試験片について、ASTM D256に準拠してアイゾット衝撃強度を測定する。
<樹脂成形体の製造方法>
 上述の方法で得られた組成物を射出成形して、樹脂成形体を得る。
 まず、用いる組成物の流動開始温度FT(℃)を求める。樹脂成形体の異物の発生を抑制する上で、好適な射出成形方法としては、組成物の流動開始温度FT(℃)に対して、[FT+30]℃以上[FT+80]℃以下の温度で前記組成物を溶融させ、80℃以上の温度に設定された金型に射出成形する方法が挙げられる。なお、上記組成物は射出成形する前に乾燥させておくことが好ましい。
 樹脂溶融温度が[FT+30]℃以上の温度で上記組成物を射出成形すると、得られる樹脂成形体の表面強度が向上して異物の発生を抑えられる傾向がある。さらには、樹脂溶融温度が[FT+30]℃以上の温度で上記組成物を射出成形すると、組成物の成形時における樹脂の流動性が向上する。
 一方、樹脂溶融温度が[FT+80]℃以下の温度で射出成形すると、成形機の内部で滞留する液晶ポリエステルが分解しにくい。その結果、得られる樹脂成形体はガスなどが発生しにくくなり、例えば電気・電子部品や光学部品の用途に適用することができる。また、樹脂溶融温度が[FT+80]℃以下の温度で射出成形すると、射出成形後、金型を開いて樹脂成形体を取り出す際にノズルから溶融樹脂が流れ出にくい。その結果、溶融樹脂の流出に対処する必要が無くなり、樹脂成形体の生産性が向上する。
 樹脂成形体を安定的に成形できることから、樹脂溶融温度が[FT+30]℃以上[FT+60]℃以下の温度で射出成形することがさらに好ましい。
 一方、用いる金型温度は80℃以上が好適である。この金型温度が80℃以上であると、得られる樹脂成形体の表面が平滑になり、異物の発生量を抑えられる傾向がある。
 なお、異物の発生量を低減する観点からは、用いる金型温度は高いほど有利であるが、高すぎると冷却効果が低下して冷却工程に要する時間が長くなる。その結果、樹脂成形体の生産性が低下したり、成形後に樹脂成形体の離型をしにくくなることで樹脂成形体が変形したりするなどの問題が生じることがある。さらにいえば、用いる金型温度が高すぎると、金型同士の噛み合いが悪くなり、金型開閉時に樹脂成形体が破損するおそれもある。
したがって、用いる金型温度の上限を使用する組成物の種類に応じて適宜最適化することが好ましい。これにより、組成物に含まれる液晶ポリエステルの分解を抑制することができる。
 なお、上述したように、本実施形態の製造方法で用いられる液晶ポリエステルが、特に好適な液晶ポリエステルである全芳香族液晶ポリエステルである場合、用いる金型温度は100℃以上220℃以下が好ましく、130℃以上200℃以下がより好ましい。
 上記組成物のより実用的な射出成形条件を決定するためには、成形条件を変えて種々の予備実験を行うとよい。具体的には、上述のテープ剥離試験に用いる試験片を標準成形体として用い、テープ剥離試験を行って、試験後の標準成形体の表面粗さSaを求めるといった一連の操作の予備実験を行い、以下のようにして射出成形条件を最適化することができる。
 一例を挙げると、まず組成物を溶融させ、80℃に設定された金型に射出成形して標準成形体を作製する。このとき、樹脂溶融温度は、予め求めておいた流動開始温度FT(℃)に対して、好適な樹脂溶融温度のほぼ中心値[FT+40]~[FT+50]℃の範囲に設定する。次に、得られた標準成形体についてテープ剥離試験を行って、試験後の標準成形体の表面粗さSaを求める。次いで、用いる金型温度を徐々に上昇させ、それぞれ標準成形体を成形し、同様に試験後の標準成形体の表面粗さSaを求める。さらに、樹脂溶融温度を順次下げることで同様に試験後の標準成形体の表面粗さSaを求めていけば、金型温度と樹脂溶融温度を各々最適化することができる。
 また、得られる標準成形体について、上記テープ剥離試験に加えて、ウェルド強度などの機械強度測定を実施すれば、上記組成物のより好適な射出成形条件を求めることも可能である。
 なお、上記組成物の射出速度は、使用する成形機によって種々好適な範囲に設定すればよいが、50mm/秒以上が好ましい。上記組成物の射出速度はより速い方が、樹脂成形体の生産性を高めることができるので好ましく、100mm/秒以上であればより好ましく、200mm/秒以上であるとさらに好ましい。
 このようにして標準成形体を成形する予備実験で射出成形条件を最適化し、標準成形体が得られる金型を、目的とする樹脂成形体が得られる金型に変更して、組成物を成形する。このようにすることで、異物の発生をより抑制できる樹脂成形体を得ることができる。
 本実施形態の樹脂成形体は、例えば電気・電子用機器あるいは光学機器用の部品に好適に使用することができる。
 なお、前述の射出成形においては、標準成形体を用いた予備実験を行う例について説明したが、目的とする形状の樹脂成形体について、テープ剥離試験を実施し、試験後の樹脂成形体の表面粗さSaを求めるといった手段で成形条件を最適化できることはいうまでもない。
<樹脂成形体の用途>
 本実施形態の樹脂成形体を好適に適用できる部材としては、具体的に例えば、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、プリント配線板、回路基板、半導体パッケージまたはコンピュータ関連部品などの電気・電子部品、ICトレーまたはウエハーキャリヤーなどの半導体製造プロセス関連部品、VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器または照明器具などの家庭電気製品部品、ランプリフレクターまたはランプホルダーなどの照明器具部品、コンパクトディスク、レーザーディスク(登録商標)またはスピーカーなどの音響製品部品、光ケーブル用フェルール、電話機部品、ファクシミリ部品またはモデムなどの通信機器部品、分離爪またはヒータホルダーなどの複写機・印刷機関連部品、インペラー、ファン歯車、ギヤ、軸受け、モーター部品またはケースなどの機械部品、自動車用機構部品、エンジン部品、エンジンルーム内部品、電装部品または内装部品などの自動車部品、マイクロ波調理用鍋または耐熱食器などの調理用器具、床材または壁材などの断熱・防音用材料、支持材料(梁、柱など)または屋根材などの建築資材、航空機、宇宙機、宇宙機器用部品、原子炉などの放射線施設部材、海洋施設部材、洗浄用治具、光学機器部品、バルブ類、パイプ類、ノズル類、フィルター類、医療用機器部品、医療用材料、センサー類部品、サニタリー備品、スポーツ用品、レジャー用品が挙げられる。
 このように、様々な用途に本実施形態の樹脂成形体を使用することができる。本実施形態の樹脂成形体は組立時または使用時における異物の発生量が極めて少ない。そのため、本実施形態の樹脂成形体をこれらの用途に使用する際に、樹脂成形体の信頼性が向上する。本実施形態の樹脂成形体は、具体的には、スイッチ、リレー、イメージセンサー他各種センサー、発行ダイオード(LEDともいう)、光学機構系に有用である。
 本実施形態の液晶ポリエステル組成物は、1つの側面として、
 液晶ポリエステルと、繊維状フィラーと、を含む液晶ポリエステル組成物であって、
 前記液晶ポリエステルは、p-ヒドロキシ安息香酸に由来する繰返し単位、テレフタル酸に由来する繰返し単位、およびイソフタル酸に由来する繰返し単位を有する液晶ポリエステル、または6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位、2,6-ナフタレンジカルボン酸に由来する繰返し単位、テレフタル酸に由来する繰返し単位およびヒドロキノンに由来する繰返し単位を有する液晶ポリエステルであり;
 前記繊維状フィラーは、セラミック繊維およびガラス繊維からなる群から選択される少なくとも1つであり、セラミック繊維は、アルカリ土類シリケートファイバーであることが好ましく;
 前記繊維状フィラーの数平均繊維長は、15μm以上60μm以下、好ましくは26μm以上59μm以下であり;
 前記繊維状フィラーの数平均繊維径は、2μm以上12μm以下、好ましくは2μm以上11μm以下、より好ましくは2μm以上6μm以下、特に好ましくは2μm以上5μm以下であり;
 繊維長が80μm以上の長繊維の含有率は、前記繊維状フィラーの本数に対して0%以上30%以下、好ましくは0%以上25%以下、より好ましくは0以上22%以下、さらに好ましくは1%以上11%以下である、
液晶ポリエステル組成物が挙げられる。
 さらに、前記液晶ポリエステル組成物は、後述の実施例に記載の条件で試験片を作成しアイゾット衝撃強度を測定したとき、前記試験片のアイゾット衝撃強度は250J/m以上1030以下J/m、好ましくは700J/m以上1030J/m以下であってもよく;
 後述の実施例に記載の条件で試験片を作成しテープ剥離試験後の表面粗さSaを測定したとき、前記試験片の表面粗さSaは、0.55μm以下、好ましくは0.50μm以下であってもよい。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<液晶ポリエステルの流動開始温度の測定>
 フローテスター(株式会社島津製作所の「CFT-500型」)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm2)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度を測定した。
<液晶ポリエステルの製造>
[製造例1]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、パラヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)および無水酢酸1347.6g(13.2モル)および触媒として1-メチルイミダゾール0.194gを添加し、室温で15分間攪拌して反応器内を十分に窒素ガスで置換した後、攪拌しながら昇温した。内温が145℃となったところで、同温度を保持したまま1時間攪拌した。
 その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて320℃まで昇温し、トルクの上昇が認められる時点を反応終了としてプレポリマーを得た。
 得られたプレポリマーは室温まで冷却し、粗粉砕機で粉砕して、液晶ポリエステルの粉末(粒子径は約0.1mm~約1mm)を得た後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、285℃で3時間保持し、固層で重合反応を進めた。得られた液晶ポリエステル(1)の流動開始温度は327℃であった。
[製造例2]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル:2,6-ナフタレンジカルボン酸およびテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)および触媒として1-メチルイミダゾール0.17gを入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで30分かけて昇温し、145℃で1時間還流させた。
 次いで、副生酢酸および未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、反応器から内容物を取り出し、室温まで冷却した。
 得られた固形物を、粉砕機で粉砕して、粉末状のプレポリマーを得た。このプレポリマーを、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から293℃まで5時間かけて昇温し、293℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル2を得た。得られた液晶ポリエステル(2)の流動開始温度は319℃であった。
<液晶ポリエステル組成物の製造>
[実施例1~6、比較例1~11]
 製造例1および2で得られた、液晶ポリエステル、および下記の成分(繊維状フィラー)を、表1~3に示す組成で二軸押出機(池貝鉄工株式会社製、「PCM-30」)を用いて、シリンダー温度340℃で造粒し、ペレット状の組成物を得た。なお、繊維状フィラーの平均繊維長および数平均繊維径は、繊維状フィラーのメーカーの公称値である。
(繊維状フィラー)
 フィラー(1):BS20/99(株式会社ITM製、アルカリ土類シリケートファイバー、平均繊維長20μm、数平均繊維径3μm)
 フィラー(2):BS50/99(株式会社ITM製、アルカリ土類シリケートファイバー、平均繊維長50μm、数平均繊維径3μm)
 フィラー(3):BS100/99(株式会社ITM製、アルカリ土類シリケートファイバー、平均繊維長100μm、数平均繊維径3μm)
 フィラー(4):PF20E-001(日東紡績株式会社製、ガラス繊維、平均繊維長20μm、数平均繊維径11μm)
 フィラー(5):EFH75-01(セントラルグラスファイバー株式会社製、ガラス繊維、平均繊維長75μm、数平均繊維径11μm)
 フィラー(6):PF40E-001(日東紡績株式会社製、ガラス繊維、平均繊維長40μm、数平均繊維径11μm)
 フィラー(7):EFDE50-01(セントラルグラスファイバー株式会社製、ガラス繊維、平均繊維長50μm、数平均繊維径6μm)
 フィラー(8):EFH50-01(セントラルグラスファイバー株式会社製、ガラス繊維、平均繊維長50μm、数平均繊維径11μm)
 フィラー(9):EFK80-31(セントラルグラスファイバー株式会社製、ガラス繊維、平均繊維長80μm、数平均繊維径13μm)
 本実施例において、各フィラーの数平均繊維径は、上記押出機を用いる混練前後で変化しないことを確認した。
<液晶ポリエステル組成物における繊維状フィラーの分析>
 上述の方法で得られた組成物の一部を該ペレットに含まれる繊維状フィラーの分析に用いた。なお、以下の分析では、顕微鏡写真における観測本数(繊維状フィラーの本数)を400本とした。
[繊維状フィラーの数平均繊維長]
 まず、ペレット1gをるつぼにとり、電気炉内600℃で6時間処理して灰化させた。
 次に、得られた残渣をメタノールに分散させ、スライドガラス上に展開させた状態で100倍の倍率で顕微鏡写真を撮影した。得られた写真から繊維状フィラーの長さを読み取り、繊維状フィラーの本数(400本)における平均値を算出した。
[繊維長が80μm以上である長繊維の含有率]
 上記測定で得られた繊維長の測定値を用い、繊維長が80μm以上である長繊維の本数を繊維状フィラーの本数(400本)で除して含有率を算出した。
<表面テープ剥離試験(評価1)>
 上述の方法で得られた組成物を乾燥後、射出成形機(日精樹脂工業株式会社製のPS40E-5ASE型)を用い、シリンダー温度350℃、金型温度130℃、射出速度60%の成形条件で、射出成形を行い、長さ64mm、幅64mm、厚さ1mmの試験片(樹脂成形体)を得た。なお、用いた金型のキャビティの端辺には64mm×1mmのフィルムゲートが設けられている。
 上記試験片の上面部に、テープ(ニチバン株式会社製セロテープ(登録商標)No.405)を、試験片における液晶ポリエステルの流動方向に沿って試験片の全長にわたって貼り、上記流動方向に沿って上記テープの一端側から他端側に向かって素早く引き剥がす操作を行った。この操作を1回とし、全20回繰り返すテープ剥離試験を行った。
 次に、試験片の上記試験を行った箇所に対して、3D形状測定機(キーエンス社製、「VR3000」)を用い、表面粗さSaを測定した。結果を表1~3に示す。
<アイゾット衝撃強度(評価2)>
 上述の方法で得られた組成物を乾燥後、射出成形機(日精樹脂工業株式会社製のPS40E-5ASE型)を用い、シリンダー温度350℃、金型温度130℃、射出速度60%の成形条件で、射出成形を行い、長さ64mm、幅12.7mm、厚さ6.4mmの試験片を得た。
 得られた試験片について、ASTM D256に準拠してアイゾット衝撃強度を測定した。結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および表3に示すとおり、本発明を適用した実施例1~10の液晶ポリエステル組成物を成形した樹脂成形体は、比較例1~6の液晶ポリエステル組成物を成形した樹脂成形体と比べて、テープ剥離試験後の表面粗さSaが小さかった。したがって、実施例1~10の樹脂成形体では、繊維状フィラーが脱落しにくく、異物の発生が抑制されると推測される。また、本発明を適用した実施例の中でも、繊維状フィラーの数平均繊維径が5μm以下である実施例1~3の樹脂成形体は、繊維状フィラーの充填量が同じ比較例2、比較例4および比較例5と比較してアイゾット強度が高かった。
 以上のことから本発明が有用であることが示された。
 本発明によれば、異物の発生が抑制された液晶ポリエステル組成物および樹脂成形体を提供できるので産業上極めて有用である。

Claims (5)

  1.  液晶ポリエステルと、繊維状フィラーと、を含み、
     前記繊維状フィラーにおいて、繊維状フィラーに含まれる繊維長が80μm以上の長繊維の本数が前記繊維状フィラーの本数に対して30%以下であり、
     前記繊維状フィラーの数平均繊維径は12μm以下である液晶ポリエステル組成物。
  2.  液晶ポリエステルと、繊維状フィラーと、を含み、
     前記繊維状フィラーの数平均繊維長は、15μm以上60μm以下であり、
     前記繊維状フィラーの数平均繊維径は、12μm以下である液晶ポリエステル組成物。
  3.  前記繊維状フィラーの数平均繊維径が6μm以下である請求項1または2に記載の液晶ポリエステル組成物。
  4.  前記繊維状フィラーの含有量が、前記液晶ポリエステル100質量部に対して、10質量部以上150質量部以下である請求項1~3のいずれか1項に記載の液晶ポリエステル組成物。
  5.  請求項1~4のいずれか1項に記載の液晶ポリエステル組成物から形成される樹脂成形体。
PCT/JP2018/042107 2017-11-15 2018-11-14 液晶ポリエステル組成物および樹脂成形体 WO2019098228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880072947.XA CN111417680A (zh) 2017-11-15 2018-11-14 液晶聚酯组合物和树脂成型体
JP2019554251A JPWO2019098228A1 (ja) 2017-11-15 2018-11-14 液晶ポリエステル組成物および樹脂成形体
US16/763,155 US20200308487A1 (en) 2017-11-15 2018-11-14 Liquid crystal polyester composition and resin molded body
KR1020207012946A KR20200078523A (ko) 2017-11-15 2018-11-14 액정 폴리에스테르 조성물 및 수지 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220365 2017-11-15
JP2017-220365 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098228A1 true WO2019098228A1 (ja) 2019-05-23

Family

ID=66539573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042107 WO2019098228A1 (ja) 2017-11-15 2018-11-14 液晶ポリエステル組成物および樹脂成形体

Country Status (6)

Country Link
US (1) US20200308487A1 (ja)
JP (1) JPWO2019098228A1 (ja)
KR (1) KR20200078523A (ja)
CN (1) CN111417680A (ja)
TW (1) TW201922862A (ja)
WO (1) WO2019098228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029267A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂成形体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
CN113527844A (zh) * 2021-08-31 2021-10-22 重庆沃特智成新材料科技有限公司 一种低表面粗度液晶聚酯复合物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198256A (ja) * 1990-11-27 1992-07-17 Nippon Petrochem Co Ltd サーモトロピック液晶ポリマー組成物
JPH08134263A (ja) * 1994-11-16 1996-05-28 Otsuka Chem Co Ltd 高周波電子部品用樹脂組成物
JP2003321598A (ja) * 2002-04-26 2003-11-14 Toray Ind Inc 液晶性樹脂組成物、それからなる長尺成形品およびその製造方法
JP2006328141A (ja) * 2005-05-24 2006-12-07 Ueno Technology:Kk 液晶ポリエステル樹脂組成物
JP2007197716A (ja) * 2005-12-28 2007-08-09 Nippon Talc Co Ltd 液晶性樹脂組成物及びその成形品
JP2009191088A (ja) * 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品
JP2011190461A (ja) * 2011-06-08 2011-09-29 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物
JP2012116942A (ja) * 2010-11-30 2012-06-21 Omron Corp 液晶性樹脂組成物を射出成形してなる成形品、有接点電子部品用の液晶性樹脂組成物および有接点電子部品
WO2013129338A1 (ja) * 2012-02-29 2013-09-06 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294038A (ja) * 2001-03-28 2002-10-09 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JP5332188B2 (ja) 2007-02-26 2013-11-06 住友化学株式会社 樹脂成形体及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198256A (ja) * 1990-11-27 1992-07-17 Nippon Petrochem Co Ltd サーモトロピック液晶ポリマー組成物
JPH08134263A (ja) * 1994-11-16 1996-05-28 Otsuka Chem Co Ltd 高周波電子部品用樹脂組成物
JP2003321598A (ja) * 2002-04-26 2003-11-14 Toray Ind Inc 液晶性樹脂組成物、それからなる長尺成形品およびその製造方法
JP2006328141A (ja) * 2005-05-24 2006-12-07 Ueno Technology:Kk 液晶ポリエステル樹脂組成物
JP2007197716A (ja) * 2005-12-28 2007-08-09 Nippon Talc Co Ltd 液晶性樹脂組成物及びその成形品
JP2009191088A (ja) * 2008-02-12 2009-08-27 Toray Ind Inc 液晶性樹脂組成物および成形品
JP2012116942A (ja) * 2010-11-30 2012-06-21 Omron Corp 液晶性樹脂組成物を射出成形してなる成形品、有接点電子部品用の液晶性樹脂組成物および有接点電子部品
JP2011190461A (ja) * 2011-06-08 2011-09-29 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物
WO2013129338A1 (ja) * 2012-02-29 2013-09-06 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029267A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂成形体

Also Published As

Publication number Publication date
JPWO2019098228A1 (ja) 2020-11-19
KR20200078523A (ko) 2020-07-01
TW201922862A (zh) 2019-06-16
CN111417680A (zh) 2020-07-14
US20200308487A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019098228A1 (ja) 液晶ポリエステル組成物および樹脂成形体
JP5721217B2 (ja) 液晶ポリエステル樹脂組成物および成形体
JP5332188B2 (ja) 樹脂成形体及びその製造方法
JP5771860B2 (ja) 樹脂組成物の製造方法
JP5556223B2 (ja) 液晶高分子組成物、その製造方法及び成形体
JP6025241B2 (ja) 発泡成形体の製造方法及び樹脂組成物
JP2019014785A (ja) 液晶ポリエステル樹脂組成物および成形体
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
KR20200115502A (ko) 수지 조성물
JP5197553B2 (ja) 液晶性樹脂組成物及びその成形体
JP5885520B2 (ja) 樹脂組成物の製造方法
WO2013114787A1 (ja) 樹脂組成物の製造方法
JP2011202062A (ja) 摺動用熱可塑性樹脂組成物、摺動用熱可塑性樹脂組成物の製造方法および摺動部品
JP2008019428A (ja) 液晶ポリマー組成物およびその用途
KR20120059382A (ko) 액정 폴리에스테르 조성물
TW201843020A (zh) 液晶聚酯組成物的製造方法及液晶聚酯組成物
JP5407988B2 (ja) 液晶性樹脂組成物及びその成形体
JP7359596B2 (ja) 樹脂組成物の製造方法、樹脂成形体の製造方法
JP2004351860A (ja) ペレットの製造方法
TW202409201A (zh) 芳香族聚碸組合物、成形體、及成形體之製造方法
JP2012193304A (ja) 液晶ポリエステル樹脂組成物、成形体
CN117580910A (zh) 树脂组合物及成形体
JP2004182748A (ja) 液晶ポリエステル樹脂混合物およびそれを用いた成形方法
JP2012193271A (ja) 樹脂組成物および成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554251

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207012946

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878956

Country of ref document: EP

Kind code of ref document: A1