WO2014171014A1 - 半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
WO2014171014A1
WO2014171014A1 PCT/JP2013/061653 JP2013061653W WO2014171014A1 WO 2014171014 A1 WO2014171014 A1 WO 2014171014A1 JP 2013061653 W JP2013061653 W JP 2013061653W WO 2014171014 A1 WO2014171014 A1 WO 2014171014A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
columnar
layer
film
type diffusion
Prior art date
Application number
PCT/JP2013/061653
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
原田 望
広記 中村
イーソ リ,
アシット ラマチャンドラ カマス,
ツィシャン ツェン,
テン スン プア,
キンペン ワン,
パトリック グオチャン ロー,
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to JP2014520854A priority Critical patent/JP5692886B1/ja
Priority to PCT/JP2013/061653 priority patent/WO2014171014A1/ja
Priority to SG11201504337QA priority patent/SG11201504337QA/en
Publication of WO2014171014A1 publication Critical patent/WO2014171014A1/ja
Priority to US14/744,890 priority patent/US9490362B2/en
Priority to US15/263,535 priority patent/US9666688B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28238Making the insulator with sacrificial oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device.
  • SGT Surrounding Gate Transistor
  • a silicon pillar with a nitride film hard mask formed in a columnar shape is formed, a diffusion layer is formed under the silicon pillar, and then a gate material is deposited. Thereafter, the gate material is planarized and etched back to form insulating film sidewalls on the sidewalls of the silicon pillars and nitride hard mask. Thereafter, a resist pattern for gate wiring is formed, the gate material is etched, the nitride film hard mask is removed, and a diffusion layer is formed on top of the silicon pillar (for example, Patent Document 4). See).
  • a gate oxide film is formed after forming the silicon pillar. Then, after depositing thin polysilicon, a resist for forming a gate wiring is formed so as to cover the upper part of the silicon pillar. Further, the gate wiring is etched, and then a thick oxide film is deposited to expose the upper part of the silicon pillar, and the thin polysilicon on the upper part of the silicon pillar is removed. Finally, a technique for removing a thick oxide film by wet etching is disclosed (for example, see Non-Patent Document 1).
  • JP-A-2-71556 Japanese Patent Laid-Open No. 2-188966 Japanese Patent Laid-Open No. 3-145761 JP 2009-182317 A
  • the present invention provides a method for manufacturing a semiconductor device having an SGT structure in which a gate electrode made of a metal material is formed by a self-alignment process by using a thin gate material, and an SGT obtained thereby.
  • the purpose is to provide a structure.
  • a method for manufacturing a semiconductor device includes: Forming a planar semiconductor layer on a semiconductor substrate, and forming a first columnar semiconductor layer and a second columnar semiconductor layer on the planar semiconductor layer; After the first step, Forming a gate insulating film around the first columnar semiconductor layer and the second columnar semiconductor layer; A metal film and a polysilicon film are formed around the gate insulating film, The thickness of the polysilicon film is made thinner than half the distance between the first columnar semiconductor layer and the second columnar semiconductor layer; A third resist is deposited, the polysilicon film on the upper sidewalls of the first columnar semiconductor layer and the second columnar semiconductor layer is exposed, the exposed polysilicon film is removed by etching, and the first columnar semiconductor layer is removed by etching.
  • a second step of removing the resist 3 and removing the metal film by etching After the second step, Forming a fourth resist for forming a gate wiring and performing anisotropic etching to form a gate wiring, a first gate electrode, and a second gate electrode; Having It is characterized by that.
  • the method further includes four steps.
  • Silicide is formed on the first n-type diffusion layer, the second n-type diffusion layer, the first p-type diffusion layer, the second p-type diffusion layer, and the gate wiring. It is preferable that the method further includes a sixth step.
  • a semiconductor device provides: A planar semiconductor layer formed on a semiconductor substrate; First and second columnar semiconductor layers formed on the planar semiconductor layer; A first gate insulating film formed around the first columnar semiconductor layer; A first gate electrode having a laminated structure of a metal film and a polysilicon film formed around the first gate insulating film; A second gate insulating film formed around the second columnar semiconductor layer; A second gate electrode having a laminated structure of a metal film and a polysilicon film formed around the second gate insulating film; A gate wiring connected to the first and second gate electrodes; An oxide film thicker than the gate insulating film formed between the gate wiring and the planar semiconductor layer; A first n-type diffusion layer formed on the first columnar semiconductor layer; A second n-type diffusion layer formed in a lower portion of the first columnar semiconductor layer and an upper portion of the planar semiconductor layer; A first p-type diffusion layer formed on the second columnar semiconductor layer; A second p-type diffusion layer formed on a lower portion
  • the gate wiring has a laminated structure of the metal film and silicide.
  • the center line of the gate wiring is offset by a predetermined amount with respect to a line connecting the center point of the first columnar semiconductor layer and the center point of the second columnar semiconductor layer.
  • a method for manufacturing a semiconductor device having an SGT structure in which a gate electrode made of a metal material is formed by a self-alignment process by using a thin gate material, and an SGT obtained thereby Structure can be provided.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device which concerns on this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device which concerns on this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment, (B) is sectional drawing in the XX 'line of (A), (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • (A) is a top view which shows the manufacturing method of the semiconductor device concerning this embodiment,
  • (B) is sectional drawing in the XX 'line of (A),
  • (C) is Y of (A).
  • FIG. 6 is a cross-sectional view taken along line ⁇ Y ′.
  • a semiconductor device having an SGT structure manufactured by the method for manufacturing a semiconductor device according to an embodiment of the present invention has the following structure.
  • the semiconductor device having the SGT structure includes a planar silicon layer 107 formed on a silicon substrate 101, and first and second planar layers formed on the planar silicon layer 107.
  • a gate insulating film 114, a second gate electrode 119a having a laminated structure of a metal film 115 and a polysilicon film 116 formed around the gate insulating film 114, and polysilicon A film 116 is formed.
  • the thickness of each of the gate insulating film 114, the second gate electrode 119a having a stacked structure of the metal film 115 and the polysilicon film 116 formed around the gate insulating film 114, and the polysilicon film 116 is set to The height of the upper surface of the metal film 115 is smaller than half the distance between the columnar silicon layer 104 and the second columnar silicon layer 105 and the height of the upper surface of the polysilicon film 116 is higher. It is in.
  • the height of the upper surface of the gate wiring 119c connected to the first and second gate electrodes 119b and 119a is lower than the height of the upper surface of the first and second gate electrodes 119b and 119a.
  • the second oxide film is thicker than the gate insulating films 113 and 114 formed between the gate wiring 119c and the planar silicon layer 107.
  • a first n-type diffusion layer 121 formed on the first columnar silicon layer 104 a second n-type diffusion layer 121 formed on the lower portion of the first columnar silicon layer 104 and the upper portion of the planar silicon layer 107.
  • the n-type diffusion layer 122, the first p-type diffusion layer 124 formed on the second columnar silicon layer 105, the lower portion of the second columnar silicon layer 105 and the upper portion of the planar silicon layer 107 are formed.
  • a second p-type diffusion layer 125 is formed.
  • planar silicon layer 107 (planar semiconductor layer) is formed on a silicon substrate 101 (semiconductor substrate), and a first columnar silicon layer 104 (first columnar semiconductor layer) is formed on the planar silicon layer 107. ) And the second columnar silicon layer 105 (second columnar semiconductor layer) will be described in detail.
  • first resists 102 and 103 for forming a first columnar silicon layer 104 and a second columnar silicon layer 105 are first formed on a silicon substrate 101.
  • the silicon substrate 101 is used as a substrate for creating a semiconductor device, but other substrates can be used as long as they are used for creating a semiconductor device.
  • a first columnar silicon layer 104 and a second columnar silicon layer 105 are formed below the first resists 102 and 103.
  • the columnar silicon layer is formed using a hard mask such as an oxide film or a nitride film.
  • the first resists 102 and 103 are stripped and removed.
  • a second resist 106 for forming the planar silicon layer 107 is formed.
  • the planar silicon layer 107 is formed below the second resist 106 by etching the silicon substrate 101.
  • the second resist 106 is stripped and removed.
  • an element isolation film 108 is formed around the planar silicon layer 107.
  • a first oxide film 109 is deposited so as to cover the first columnar silicon layer 104, the second columnar silicon layer 105, and the planar silicon layer 107.
  • CVD chemical vapor deposition
  • the first pillar-shaped silicon layer 104, the second pillar-shaped silicon layer 105, and the planar silicon layer 107 are thickly formed on the first pillar-shaped silicon layer 104.
  • a thin first oxide film 109 is deposited on the sidewalls of the oxide film 109, the columnar silicon layer 104, and the second columnar silicon layer 105.
  • the thickness of the first oxide film 109 deposited on the first columnar silicon layer 104 and the second columnar silicon layer 105 is deposited on the planar silicon layer 107. The thickness of the first oxide film 109 becomes thicker.
  • the first oxide film 109 is removed by using isotropic etching, whereby an oxide film hard layer is formed on the first columnar silicon layer 104 and the second columnar silicon layer 105.
  • Masks 111 and 112 are formed.
  • a second oxide film 110 having a thickness greater than that of the gate insulating films 113 and 114 (see FIG. 11) is formed on the planar silicon layer 107.
  • planar silicon layer 107 (planar semiconductor layer) is formed on the silicon substrate 101 (semiconductor substrate), and the first columnar silicon layer 104 (first columnar semiconductor layer) is formed on the planar silicon layer 107. ) And the second columnar silicon layer 105 (second columnar semiconductor layer) are shown.
  • gate insulating films 113 and 114 are formed around the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second columnar semiconductor layer). Then, a metal film 115 and a thin polysilicon film 116 are formed around the gate insulating films 113 and 114.
  • the thickness of the polysilicon film 116 is half the distance between the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second columnar semiconductor layer). Try to be thinner than the length.
  • a third resist 117 is deposited on the polysilicon film 116, and the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second layer) are deposited from the third resist 117.
  • the polysilicon film 116 on the upper side wall of the columnar semiconductor layer) is exposed.
  • the second step of removing the polysilicon film 116 exposed from the third resist 117 by etching, removing the third resist 117, and removing the metal film 115 by etching will be described in detail.
  • gate insulating films 113 and 114 are formed around the first columnar silicon layer 104 and the second columnar silicon layer 105, and a metal film 115 is formed around the gate insulating films 113 and 114. Then, a thin polysilicon film 116 is formed. Since thin polysilicon is used, generation of voids in the polysilicon film 116 is prevented.
  • titanium nitride is used as the material of the metal film 115.
  • any metal that can be used in the semiconductor manufacturing process and can set the threshold voltage of the transistor is used as the material of the metal film 115. it can.
  • As the gate insulating films 113 and 114 for example, an oxide film, an oxynitride film, a high dielectric film, or the like that is used in a semiconductor process can be used.
  • a third resist 117 is deposited, and the polysilicon film 116 on the upper sidewalls of the first columnar silicon layer 104 and the second columnar silicon layer 105 is exposed from the third resist 117.
  • resist etch back it is preferable to use resist etch back in order to expose the polysilicon film 116 on the upper side wall.
  • the polysilicon film 116 on the upper sidewall may be exposed using a coating film such as spin-on-glass.
  • the polysilicon film 116 exposed from the third resist 117 is removed by etching.
  • the third resist 117 is removed.
  • the metal film 115 is removed by etching.
  • wet etching is used between the polysilicon film 116 and the columnar silicon layers 104 and 105.
  • a certain metal film 115 is etched, and a void may be generated between the polysilicon film 116 and the columnar silicon layers 104 and 105.
  • the gate insulating films 113 and 114 are formed around the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second columnar semiconductor layer), and the gate insulating film A metal film 115 and a thin polysilicon film 116 are formed around 113 and 114.
  • the thickness of the polysilicon film 116 is half the distance between the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second columnar semiconductor layer). Try to be thinner than the length.
  • a third resist 117 is deposited on the polysilicon film 116, and the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second layer) are deposited from the third resist 117.
  • the polysilicon film 116 on the upper side wall of the columnar semiconductor layer) is exposed.
  • a second step was shown in which the polysilicon film 116 exposed from the third resist 117 was removed by etching, the third resist 117 was removed, and the metal film 115 was removed by etching.
  • a fourth resist 118 for forming the gate wiring 119c is formed, and anisotropic etching is performed to form the gate wiring 119c, the first gate electrode 119b, and the second gate electrode 119a.
  • anisotropic etching is performed to form the gate wiring 119c, the first gate electrode 119b, and the second gate electrode 119a. The third step will be described in detail.
  • a fourth resist 118 for forming the gate wiring 119c (see FIG. 17) is formed.
  • the height of the upper surface of the fourth resist 118 is preferably lower than the height of the upper surface of the polysilicon film 116 after the second step.
  • the gate wiring 119c if anisotropic etching is used, the polysilicon film 116 above the first and second gate electrodes 119b and 119a (see FIG. 17) is removed.
  • the height of the upper surface can be made higher than the height of the upper surface of the polysilicon film 116.
  • the center line of the fourth resist 118 for the gate wiring 119c connects the center point of the first columnar silicon layer 104 and the center point of the second columnar silicon layer 105.
  • the third resist 117 is preferably formed so as to be offset by a predetermined amount (see FIG. 17). By offsetting by a predetermined amount in this way, it becomes easy to form a silicide 135 (see FIG. 28) that connects the second n-type diffusion layer 122 and the second p-type diffusion layer 125.
  • the polysilicon film 116 and the metal film 115 are etched to form the first and second gate electrodes 119b and 119a and the gate wiring 119c.
  • the fourth resist 118 for forming the gate wiring 119c may be brought into contact with the gate electrodes 119a and 119b formed around the silicon pillar.
  • the alignment margin of the gate wiring 119c is increased, so that a self-alignment process is realized.
  • the upper portions of the first columnar silicon layer 104 and the second columnar silicon layer 105 are protected by the oxide film hard masks 111 and 112.
  • the height of the upper surface of the metal film 115 is set to the upper surface of the polysilicon film 116.
  • the height can be higher.
  • the second oxide film 110 is removed by etching.
  • the fourth resist 118 is stripped and removed.
  • the fourth resist 118 for forming the gate wiring 119c is formed, and anisotropic etching is performed to form the gate wiring 119c, the first gate electrode 119b, and the second gate electrode 119a.
  • a third step was shown.
  • a first n-type diffusion layer 121 is formed on the upper portion of the first columnar silicon layer 104 (first columnar semiconductor layer), and the lower portion of the first columnar silicon layer 104 and the planar silicon layer 107 (planar surface).
  • a second n-type diffusion layer 122 is formed on the upper portion of the semiconductor layer.
  • a first p-type diffusion layer 124 is formed on the second columnar silicon layer 105 (second columnar semiconductor layer), and on the lower portion of the second columnar silicon layer 105 and the upper portion of the planar silicon layer 107.
  • the fourth step for forming the second p-type diffusion layer 125 will be described in detail.
  • a fifth resist 120 is formed in order to form the first n-type diffusion layer 121 and the second n-type diffusion layer 122.
  • a thin oxide film may be deposited on the upper surface of the planar silicon layer 107 or the like before the fifth resist 120 is formed.
  • arsenic (As) is implanted into the upper and lower portions of the first columnar silicon layer 104, respectively, so that the first n-type diffusion layer 121 and the second n-type diffusion layer are injected. 122 is formed.
  • the fifth resist 120 is stripped and removed.
  • a sixth resist 123 for forming the first p-type diffusion layer 124 and the second p-type diffusion layer 125 is formed.
  • boron or fluorine fluoride is implanted into the upper and lower portions of the second columnar silicon layer 105, respectively, so that the first p-type diffusion layer 124 and the second p-type diffusion layer are implanted.
  • Layer 125 is formed.
  • the sixth resist 123 is stripped and removed.
  • an oxide film 126 and a nitride film 127 are deposited in a layered and uniform manner, followed by heat treatment.
  • the first n-type diffusion layer 121 is formed on the upper portion of the first columnar silicon layer 104 (first columnar semiconductor layer), and the lower portion of the first columnar silicon layer 104 and the planar silicon layer 107 (planar surface).
  • a second n-type diffusion layer 122 is formed on the upper portion of the semiconductor layer.
  • a first p-type diffusion layer 124 is formed on the second columnar silicon layer 105 (second columnar semiconductor layer), and on the lower portion of the second columnar silicon layer 105 and the upper portion of the planar silicon layer 107.
  • a fourth step of forming the second p-type diffusion layer 125 is shown.
  • the silicide 131, the first n-type diffusion layer 121, the second n-type diffusion layer 122, the first p-type diffusion layer 124, the second p-type diffusion layer 125, and the gate wiring 119 c are formed on the silicide 131,
  • the fifth step of forming 135, 132, 134, 130, 133 will be described in detail.
  • insulating film sidewalls 128a, 128b, 129a, 129b, and 129c are formed.
  • a metal material is deposited, heat treatment is performed, and unreacted metal material is removed, whereby the second n-type diffusion layer 122 is formed on the first n-type diffusion layer 121.
  • Silicides 131, 135, 132, 134, 130, 133 are formed on the first p-type diffusion layer 124, the second p-type diffusion layer 125, and the gate wiring 119c, respectively.
  • the insulating film sidewall can be a nitride film sidewall.
  • the second n-type diffusion layer 122 is connected to the second p-type diffusion layer 125 via the silicide 135.
  • the center line of the gate wiring 119c is offset by a predetermined amount with respect to the line connecting the center point of the first columnar silicon layer 104 and the center point of the second columnar silicon layer 105. Therefore, it becomes easy to form the silicide 135. Thereby, high integration of the semiconductor device is realized.
  • the gate wiring 119 c is easily formed from a laminated structure including the metal film 115 and the silicide 130.
  • the silicide 130 and the metal film 115 are in direct contact, the resistance of the gate wiring 119c can be reduced.
  • silicide is formed on the first n-type diffusion layer 121, the second n-type diffusion layer 122, the first p-type diffusion layer 124, the second p-type diffusion layer 125, and the gate wiring 119c.
  • a fifth step of forming 131, 135, 132, 134, 130, 133 was shown.
  • a contact stopper 136 such as a nitride film is formed in layers so as to cover the entire structure, and an interlayer insulating film 137 is formed.
  • a seventh resist 138 for forming contact holes 139 and 140 is formed.
  • the interlayer insulating film 137 is etched to form contact holes 139 and 140 in the opening of the seventh resist 138.
  • the seventh resist 138 is removed and removed.
  • an eighth resist 141 for forming contact holes 142 and 143 is formed.
  • the interlayer insulating film 137 is etched to form contact holes 142 and 143 in the openings of the eighth resist 141.
  • the eighth resist 141 is stripped and removed.
  • the contact stopper 136 is etched to remove the contact stopper 136 under the contact holes 139 and 140 and the contact holes 142 and 143.
  • a metal material is deposited to form a metal layer 148, thereby forming contacts 144, 145, 146, and 147 connected to the lower conductor layer.
  • ninth resists 149, 150, 151, 152 for forming metal wirings 153, 154, 155, 156 are formed.
  • the metal layer 148 is etched to form metal wirings 153, 154, 155, and 156.
  • the ninth resists 149, 150, 151, and 152 are stripped and removed.
  • a method for manufacturing a semiconductor device having an SGT structure in which a gate electrode made of a metal material is formed by a self-alignment process using a thin gate material (polysilicon) has been shown.
  • the height of the upper surface of the metal film 115 is higher than the height of the upper surface of the polysilicon film 116, a void may be generated between the polysilicon film 116 and the first and second columnar silicon layers 104 and 105.
  • a decrease in capacitance between the gate electrodes 119a and 119b and the first and second columnar silicon layers 104 and 105 can be prevented.
  • the semiconductor device having SGT manufactured according to the present embodiment includes the second oxide film 110 having a thickness greater than that of the gate insulating films 113 and 114 formed between the gate wiring 119c and the planar silicon layer 107. Have. Therefore, the capacity between the gate wiring 119c and the silicon substrate 101 can be reduced, and insulation between the gate wiring 119c and the silicon substrate 101 is ensured.
  • the gate wiring 119c is formed from a laminated structure including the metal film 115 and the silicide 130.
  • the silicide 130 and the metal film 115 are in direct contact with each other, so that the resistance of the gate wiring 119c is reduced.
  • the center line of the gate wiring 119c is offset by a predetermined amount with respect to the line connecting the center point of the first columnar silicon layer 104 and the center point of the second columnar silicon layer 105 ( FIG. 17). Therefore, the silicide 135 that connects the second n-type diffusion layer 122 and the second p-type diffusion layer 125 can be easily formed. As a result, high integration of semiconductor devices on a mass production basis is realized.
  • gate insulation is provided around the first columnar silicon layer 104 (first columnar semiconductor layer) and the second columnar silicon layer 105 (second columnar semiconductor layer).
  • Films 113 and 114 are formed.
  • a metal film 115 and a thin polysilicon film 116 are formed around the gate insulating films 113 and 114.
  • the film thickness of the polysilicon film 116 is set to be thinner than half the distance between the first columnar silicon layer 104 and the second columnar silicon layer 105.
  • a third resist 117 is deposited to expose the polysilicon film 116 on the upper sidewalls of the first and second columnar silicon layers 104 and 105.
  • the exposed polysilicon film 116 is removed by etching, the third resist 117 is stripped, and the metal film 115 is removed by etching.
  • a fourth resist 118 for forming the gate wiring 119c is formed, anisotropic etching is performed, and the gate wiring 119c, the first gate electrode 119b, and the second gate electrode 119a are formed.
  • a self-alignment process is realized by the third step to be formed. According to this embodiment, since the semiconductor device is manufactured by the self-alignment process as described above, it is not necessary to use a mask made of another member, and high integration of the semiconductor device is realized.
  • the wet etching is used to remove the polysilicon film 116 and the first and second columnar silicon layers 104 and 105.
  • the metal film 115 between them is etched.
  • voids may occur between the polysilicon film 116 and the first and second columnar silicon layers 104 and 105.
  • the capacitance between the electrodes 119a and 119b and the first and second columnar silicon layers 104 and 105 is reduced.
  • the gate wiring 119c is formed by anisotropic etching.
  • the height of the upper surface of the metal film 115 is set to the height of the upper surface of the polysilicon film 116. Can be higher than the height. This prevents a void from being generated between the polysilicon film 116 and the first and second columnar silicon layers 104 and 105.
  • the present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for describing an example of the present invention, and does not limit the scope of the present invention. The said Example and modification can be combined arbitrarily. Further, even if a part of the configuration of the above embodiment is removed as necessary, it is within the scope of the technical idea of the present invention.
  • a highly integrated semiconductor device having SGT can be manufactured.
  • Nitride film 128a Insulating film sidewall 128b. Insulating film side wall 129a. Insulating film sidewall 129b. Insulating film sidewall 129c. Insulating film sidewall 130. Silicide 131. Silicide 132. Silicide 133. Silicide 134. Silicide 135. Silicide 136. Contact stopper 137. Interlayer insulating film 138. Seventh resist 139. Contact hole 140. Contact hole 141. Eighth resist 142. Contact hole 143. Contact hole 144. Contact 145. Contact 146. Contact 147. Contact 148. Metal layer 149. Ninth resist 150. Ninth resist 151. Ninth resist 152. Ninth resist 153. Metal wiring 154. Metal wiring 155. Metal wiring 156. Metal wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 半導体装置の製造方法は、シリコン基板(101)上に平面状シリコン層(107)を形成し、平面状シリコン層上に第1及び第2の柱状シリコン層(104,105)とを形成する第1の工程と、第1及び第2の柱状シリコン層の周囲にゲート絶縁膜(113)を形成し、ゲート絶縁膜の周囲に金属膜(115)及びポリシリコン膜(116)を成膜し、ポリシリコン膜の膜厚を第1及び第2の柱状シリコン層との間の間隔の半分の長さよりも薄くし、第3のレジスト(117)を堆積し、第1及び第2の柱状半導体層の上部側壁のポリシリコン膜を露出させ、露出したポリシリコン膜をエッチングにより除去し、第3のレジストを剥離し、金属膜をエッチングにより除去する第2の工程と、ゲート配線(119c)を形成するための第4のレジスト(118)を形成し、異方性エッチングを行い、ゲート配線、第1のゲート電極、及び第2のゲート電極を形成する第3の工程と、を有する。

Description

半導体装置の製造方法、及び、半導体装置
 本発明は半導体装置の製造方法、及び、半導体装置に関する。
 半導体集積回路、特にMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。このようにMOSトランジスタの微細化が進むと、リーク電流の抑制が困難となり、必要な電流量を確保する必要があるために回路の占有面積を小さくすることが難しい、といった問題がある。このような問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造である、Surrounding Gate Transistor(以下、「SGT」という。)が提案されている(例えば、特許文献1、特許文献2、特許文献3を参照)。
 従来のSGTの製造方法では、窒化膜ハードマスクが柱状に形成されたシリコン柱を形成し、シリコン柱の下部に拡散層を形成した後、ゲート材料を堆積する。その後、ゲート材料を平坦化、エッチバックすることで、シリコン柱及び窒化膜ハードマスクの側壁に絶縁膜サイドウォールを形成する。その後、ゲート配線のためのレジストパターンを形成し、ゲート材料をエッチングした後、窒化膜ハードマスクを除去し、シリコン柱の上部に拡散層を形成する方法により製造されている(例えば、特許文献4を参照)。
 このような方法では、隣接するシリコン柱の間隔が狭くなったときに、厚さの厚いゲート材料をシリコン柱の間に堆積することが必要となり、シリコン柱の間にボイドと呼ばれる微小な孔が形成されることがある。このようにボイドが形成されると、エッチバック後にゲート材料に孔が形成される。その後、絶縁膜サイドウォールを形成するためにシリコン柱の間に絶縁膜を堆積すると、このボイド内にこの絶縁膜が堆積する。このため、シリコン柱の間に存在するゲート材料の加工が難しくなる。
 そこで、シリコン柱を形成した後、ゲート酸化膜を形成する。そして、厚さの薄いポリシリコンを堆積した後、シリコン柱の上部を覆うようにゲート配線を形成するためのレジストを形成する。さらにゲート配線をエッチングし、その後、酸化膜を厚く堆積し、シリコン柱の上部を露出させ、シリコン柱の上部の厚さの薄いポリシリコンを除去する。最後に、厚さの厚い酸化膜をウエットエッチングにて除去する技術が開示されている(例えば、非特許文献1を参照)。
 しかしながら、このような従来技術では、ゲート電極に金属を用いる技術は示されていない。また、シリコン柱の上部を覆うゲート配線を形成するためにレジストを形成することが必要となり、そのレジストがシリコン柱の上部を覆うことになり、結果的に自己整合プロセスとはならない。
特開平2-71556号公報 特開平2-188966号公報 特開平3-145761号公報 特開2009-182317号公報
B.Yang, K.D.Buddharaju, S.H.G.Teo, N.Singh, G.D.Lo,and D.L.Kwong, "Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET", IEEE Electron Device Letters, VOL.29, No.7, July 2008, pp791-794.
 そこで、本発明は、厚さの薄いゲート材料を用いることで、自己整合プロセスによって、金属材料からなるゲート電極が形成される、SGTの構造を有する半導体装置の製造方法と、それにより得られるSGTの構造を提供することを目的とする。
 本発明の第1の観点に係る半導体装置の製造方法は、
 半導体基板上に平面状半導体層を形成し、前記平面状半導体層上に第1の柱状半導体層と第2の柱状半導体層とを形成する第1の工程と、
 前記第1工程の後、
 前記第1の柱状半導体層及び前記第2の柱状半導体層の周囲にゲート絶縁膜を形成し、
 前記ゲート絶縁膜の周囲に金属膜及びポリシリコン膜を成膜し、
 前記ポリシリコン膜の膜厚を前記第1の柱状半導体層及び前記第2の柱状半導体層の間の間隔の半分の長さよりも薄くし、
 第3のレジストを堆積し、前記第1の柱状半導体層及び前記第2の柱状半導体層の上部側壁の前記ポリシリコン膜を露出させ、この露出した前記ポリシリコン膜をエッチングによって除去し、前記第3のレジストを剥離し、前記金属膜をエッチングにより除去する第2の工程と、
 前記第2の工程の後、
 ゲート配線を形成するための第4のレジストを形成し、異方性エッチングを行うことにより、ゲート配線と、第1のゲート電極と、第2のゲート電極と、を形成する第3の工程と、を有する、
 ことを特徴とする。
 前記第1の工程の後、
 前記第1の柱状シリコン層及び前記第2の柱状シリコン層の上に酸化膜ハードマスクを形成し、前記平面状シリコン層上にゲート絶縁膜よりも厚さの厚い酸化膜を形成する工程をさらに含む、ことが好ましい。
 前記第4のレジストの上面の高さは、前記第2工程を経た後のポリシリコン膜の上面の高さよりも低い、ことが好ましい。
 前記第1の柱状半導体層の上部に第1のn型拡散層を形成し、前記第1の柱状半導体層の下部及び前記平面状半導体層の上部に第2のn型拡散層を形成し、前記第2の柱状半導体層の上部に第1のp型拡散層を形成し、前記第2の柱状半導体層の下部及び前記平面状半導体層の上部に第2のp型拡散層を形成する第4の工程をさらに含む、ことが好ましい。
 前記第1のn型拡散層上、前記第2のn型拡散層上、前記第1のp型拡散層上、前記第2のp型拡散層上、及び前記ゲート配線上にシリサイドを形成する第6の工程をさらに含む、ことが好ましい。
 本発明の第2の観点に係る半導体装置は、
 半導体基板上に形成された平面状半導体層と、
 前記平面状半導体層上に形成された第1及び第2の柱状半導体層と、
 前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、
 前記第1のゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第1のゲート電極と、
 前記第2の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、
 前記第2のゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第2のゲート電極と、
 前記第1及び前記第2のゲート電極に接続されたゲート配線と、
 前記ゲート配線と前記平面状半導体層との間に形成された前記ゲート絶縁膜よりも厚さが厚い酸化膜と、
 前記第1の柱状半導体層の上部に形成された第1のn型拡散層と、
 前記第1の柱状半導体層の下部と前記平面状半導体層の上部とに形成された第2のn型拡散層と、
 前記第2の柱状半導体層の上部に形成された第1のp型拡散層と、
 前記第2の柱状半導体層の下部及び前記平面状半導体層の上部に形成された第2のp型拡散層と、を備え、
 前記ポリシリコン膜の膜厚は前記第1の柱状半導体層と前記第2の柱状半導体層との間の間隔の半分の長さよりも薄く形成されており、
 前記金属膜の上面の高さは、前記ポリシリコン膜の上面の高さよりも高くされており、
 前記ゲート配線の上面の高さは、前記第1及び第2のゲート電極の上面の高さよりも低くされている、ことが好ましい。
 前記ゲート配線は、前記金属膜及びシリサイドの積層構造からなる、ことが好ましい。
 前記ゲート配線の中心線が、前記第1の柱状半導体層の中心点と前記第2の柱状半導体層の中心点とを結ぶ線に対して所定量オフセットしている、ことが好ましい。
 前記第1及び前記第2のn型拡散層上と、前記第1及び前記第2のp型拡散層上とに形成されたシリサイドをさらに備える、ことが好ましい。
 本発明によれば、厚さが薄いゲート材料を用いることで、自己整合プロセスによって金属材料からなるゲート電極が形成される、SGTの構造を有する半導体装置の製造方法と、それにより得られるSGTの構造を提供することができる。
(A)は本発明の実施形態に係る半導体装置の平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。 (A)は本実施形態に係る半導体装置の製造方法を示す平面図であり、(B)は(A)のX-X’線での断面図であり、(C)は(A)のY-Y’線での断面図である。
 本発明の実施形態に係る半導体装置の製造方法により製造される、SGTの構造を有する半導体装置は、以下の構造を有する。
 図1に示すように、本実施形態に係る、SGTの構造を有する半導体装置は、シリコン基板101上に形成された平面状シリコン層107と、平面状シリコン層107上に形成された第1及び第2の柱状シリコン層104、105と、第1の柱状シリコン層104の周囲に形成されたゲート絶縁膜113と、ゲート絶縁膜113の周囲に形成された金属膜115及びポリシリコン膜116の積層構造からなる第1のゲート電極119bとを備えている。
 第2の柱状シリコン層105の周囲に、ゲート絶縁膜114と、ゲート絶縁膜114の周囲に形成された金属膜115及びポリシリコン膜116の積層構造からなる第2のゲート電極119aと、ポリシリコン膜116が形成されている。
 ゲート絶縁膜114と、ゲート絶縁膜114の周囲に形成された金属膜115及びポリシリコン膜116の積層構造からなる第2のゲート電極119aと、ポリシリコン膜116のそれぞれの厚さは、第1の柱状シリコン層104と第2の柱状シリコン層105との間の間隔の半分の長さよりも薄く、かつ、金属膜115の上面の高さは、ポリシリコン膜116の上面の高さよりも高い位置にある。
 第1及び第2のゲート電極119b、119aに接続されたゲート配線119cの上面の高さは、第1及び第2のゲート電極119b、119aの上面の高さよりも低い位置にある。
 本実施形態に係る、SGTの構造を有する半導体装置は、さらに、ゲート配線119cと平面状シリコン層107との間に形成されたゲート絶縁膜113、114よりも厚さが厚い第2の酸化膜110と、第1の柱状シリコン層104の上部に形成された第1のn型拡散層121と、第1の柱状シリコン層104の下部及び平面状シリコン層107の上部に形成された第2のn型拡散層122と、第2の柱状シリコン層105の上部に形成された第1のp型拡散層124と、第2の柱状シリコン層105の下部及び平面状シリコン層107の上部に形成された第2のp型拡散層125と、を有する。
 以下、本発明の実施形態に係る、SGTの構造を有する半導体装置の製造方法について、図2~図40を参照しながら説明する。
 以下に、シリコン基板101(半導体基板)上に平面状シリコン層107(平面状半導体層)を形成し、この平面状シリコン層107上に、第1の柱状シリコン層104(第1の柱状半導体層)と、第2の柱状シリコン層105(第2の柱状半導体層)と、を形成する第1の工程を詳細に説明する。
 図2に示すように、まず、シリコン基板101上に、第1の柱状シリコン層104と第2の柱状シリコン層105とを形成するための第1のレジスト102、103を形成する。本実施形態において、半導体装置作成用の基板としてシリコン基板101を用いるが、半導体装置作成用に使用される基板であればその他の基板であっても使用できる。
 次に、図3に示すように、シリコン基板101をエッチングすることで、第1のレジスト102、103の下方に、第1の柱状シリコン層104と第2の柱状シリコン層105とを形成する。ここでは、酸化膜、窒化膜といったハードマスクを用いて柱状シリコン層を形成する。
 続いて、図4に示すように、第1のレジスト102、103を剥離、除去する。
 続いて、図5に示すように、平面状シリコン層107を形成するための第2のレジスト106を形成する。
 続いて、図6に示すように、シリコン基板101をエッチングすることで、第2のレジスト106の下方に、平面状シリコン層107を形成する。
 続いて、図7に示すように、第2のレジスト106を剥離、除去する。
 続いて、図8に示すように、平面状シリコン層107の周囲に、素子分離膜108を形成する。
 続いて、図9に示すように、第1の柱状シリコン層104と第2の柱状シリコン層105と平面状シリコン層107とを覆うように、第1の酸化膜109を堆積する。ここでは、第1の酸化膜109を常圧CVD(化学気相堆積)を用いて堆積することが好ましい。このように、常圧CVDによって第1の酸化膜109を堆積すると、第1の柱状シリコン層104と第2の柱状シリコン層105及び平面状シリコン層107の上には、厚さの厚い第1の酸化膜109、柱状シリコン層104及び第2の柱状シリコン層105の側壁には、厚さの薄い第1の酸化膜109がそれぞれ堆積される。さらに、常圧CVDによれば、第1の柱状シリコン層104及び第2の柱状シリコン層105の上に堆積される第1の酸化膜109の厚さが、平面状シリコン層107上に堆積される第1の酸化膜109の厚さよりも厚くなる。
 続いて、図10に示すように、第1の酸化膜109を等方性エッチングを用いて除去することによって、第1の柱状シリコン層104及び第2の柱状シリコン層105の上に酸化膜ハードマスク111、112を形成する。さらに、平面状シリコン層107上にゲート絶縁膜113、114(図11参照)よりも厚さの厚い第2の酸化膜110を形成する。
 以上により、シリコン基板101(半導体基板)上に平面状シリコン層107(平面状半導体層)を形成し、この平面状シリコン層107上に、第1の柱状シリコン層104(第1の柱状半導体層)と、第2の柱状シリコン層105(第2の柱状半導体層)と、を形成する第1の工程が示された。
 次に、第1の柱状シリコン層104(第1の柱状半導体層)と第2の柱状シリコン層105(第2の柱状半導体層)の周囲にゲート絶縁膜113、114(図11参照)を形成し、ゲート絶縁膜113、114の周囲に金属膜115及び厚さの薄いポリシリコン膜116を成膜する。ここで、ポリシリコン膜116の膜厚が第1の柱状シリコン層104(第1の柱状半導体層)と第2の柱状シリコン層105(第2の柱状半導体層)との間の間隔の半分の長さよりも薄くなるようにする。その後、ポリシリコン膜116上から第3のレジスト117を堆積し、第3のレジスト117から第1の柱状シリコン層104(第1の柱状半導体層)及び第2の柱状シリコン層105(第2の柱状半導体層)の上部側壁のポリシリコン膜116を露出させる。その後、第3のレジスト117から露出したポリシリコン膜116をエッチングにより除去し、第3のレジスト117を剥離し、金属膜115をエッチングにより除去する第2の工程を詳細に説明する。
 図11に示すように、まず、第1の柱状シリコン層104と第2の柱状シリコン層105の周囲にゲート絶縁膜113、114を形成し、さらにゲート絶縁膜113、114の周囲に金属膜115及び厚さの薄いポリシリコン膜116を成膜する。薄いポリシリコンを使用するため、ポリシリコン膜116中にボイドが生じることが防止される。ここでは、金属膜115の材料に窒化チタンを使用するが、窒化チタンと同様に、半導体製造工程に用いられ、トランジスタのしきい値電圧を設定し得る金属であれば金属膜115の材料として使用できる。ゲート絶縁膜113、114は、例えば酸化膜、酸窒化膜、高誘電体膜などの、半導体工程に用いられるものが使用できる。
 続いて、図12に示すように、第3のレジスト117を堆積し、第3のレジスト117から第1の柱状シリコン層104及び第2の柱状シリコン層105の上部側壁のポリシリコン膜116を露出させる。ここで、上部側壁のポリシリコン膜116を露出させるために、レジストエッチバックを用いることが好ましい。また、スピンオングラスといった塗布膜を用いて上部側壁のポリシリコン膜116を露出させてもよい。
 続いて、図13に示すように、第3のレジスト117から露出したポリシリコン膜116をエッチングにより除去する。ここでは、等方性ドライエッチングを用いてポリシリコン膜116の除去することが好ましい。
 続いて、図14に示すように、第3のレジスト117を除去する。
 続いて、図15に示すように、金属膜115をエッチングにより除去する。ここで、第1及び第2の柱状シリコン層104、105の上方にある金属膜115をエッチングにより除去する際、ウエットエッチングを用いると、ポリシリコン膜116と柱状シリコン層104、105との間にある金属膜115がエッチングされてしまい、ポリシリコン膜116と柱状シリコン層104、105との間にボイドが生じることがある。
 以上により、第1の柱状シリコン層104(第1の柱状半導体層)と第2の柱状シリコン層105(第2の柱状半導体層)の周囲にゲート絶縁膜113、114を形成し、ゲート絶縁膜113、114の周囲に金属膜115及び厚さの薄いポリシリコン膜116を成膜する。ここで、ポリシリコン膜116の膜厚が第1の柱状シリコン層104(第1の柱状半導体層)と第2の柱状シリコン層105(第2の柱状半導体層)との間の間隔の半分の長さよりも薄くなるようにする。その後、ポリシリコン膜116上から第3のレジスト117を堆積し、第3のレジスト117から第1の柱状シリコン層104(第1の柱状半導体層)及び第2の柱状シリコン層105(第2の柱状半導体層)の上部側壁のポリシリコン膜116を露出させる。その後、第3のレジスト117から露出したポリシリコン膜116をエッチングにより除去し、第3のレジスト117を剥離し、金属膜115をエッチングにより除去する第2の工程が示された。
 次に、ゲート配線119cを形成するための第4のレジスト118を形成し、異方性エッチングを行うことにより、ゲート配線119c、第1のゲート電極119b、及び第2のゲート電極119aを形成する第3の工程を詳細に説明する。
 続いて、図16に示すように、まず、ゲート配線119c(図17参照)を形成するための第4のレジスト118を形成する。第4のレジスト118の上面の高さは、第2工程を終えた後のポリシリコン膜116の上面の高さよりも低くすることが好ましい。ゲート配線119cを形成する際、異方性エッチングを用いると、第1及び第2のゲート電極119b、119a(図17参照)の上方にあるポリシリコン膜116が除去されるため、金属膜115の上面の高さを、ポリシリコン膜116の上面の高さより高くすることができる。
 また、図16に示す工程において、ゲート配線119cのための第4のレジスト118の中心線が、第1の柱状シリコン層104の中心点と第2の柱状シリコン層105の中心点とを結ぶ線に対して所定量オフセット(図17参照)するように、第3のレジスト117を形成することが好ましい。このように所定量オフセットさせることで、第2のn型拡散層122と第2のp型拡散層125とを接続するシリサイド135(図28参照)を形成することが容易になる。
 続いて、図17に示すように、ポリシリコン膜116と金属膜115とをエッチングすることで、第1及び第2のゲート電極119b、119a、ゲート配線119cが形成される。これにより、自己整合プロセスが実現される。本実施形態では、シリコン柱の周囲に形成されたゲート電極119a、119bに、ゲート配線119cの形成のための第4のレジスト118を接触させればよい。これによりゲート配線119cの位置合わせマージンが大きくなるので、自己整合プロセスが実現される。このとき、酸化膜ハードマスク111、112によって、第1の柱状シリコン層104、第2の柱状シリコン層105の上部が保護される。また、第1のゲート電極119b及び第2のゲート電極119aの上方にあるポリシリコン膜116が異方性エッチングにより除去されるため、金属膜115の上面の高さを、ポリシリコン膜116の上面の高さよりも高くすることができる。
 続いて、図18に示すように、第2の酸化膜110をエッチングにより除去する。
 続いて、図19に示すように、第4のレジスト118を剥離し、除去する。
 以上により、ゲート配線119cを形成するための第4のレジスト118を形成し、異方性エッチングを行うことにより、ゲート配線119c、第1のゲート電極119b、及び第2のゲート電極119aを形成する第3の工程が示された。
 次に、第1の柱状シリコン層104(第1の柱状半導体層)の上部に第1のn型拡散層121を形成し、第1の柱状シリコン層104の下部及び平面状シリコン層107(平面状半導体層)の上部に第2のn型拡散層122を形成する。その後、第2の柱状シリコン層105(第2の柱状半導体層)の上部に第1のp型拡散層124を形成し、第2の柱状シリコン層105の下部及び平面状シリコン層107の上部に第2のp型拡散層125を形成する第4の工程を詳細に説明する。
 図20に示すように、まず、第1のn型拡散層121及び第2のn型拡散層122を形成するために、第5のレジスト120を形成する。なお、第5のレジスト120を形成する前に、平面状シリコン層107の上表面などに、厚さの薄い酸化膜を堆積してもよい。
 続いて、図21に示すように、第1の柱状シリコン層104の上部及び下部に、それぞれ砒素(As)を注入することで、第1のn型拡散層121と第2のn型拡散層122を形成する。
 続いて、図22に示すように、第5のレジスト120を剥離、除去する。
 続いて、図23に示すように、第1のp型拡散層124と第2のp型拡散層125(図24参照)とを形成するための第6のレジスト123を形成する。
 続いて、図24に示すように、第2の柱状シリコン層105の上部及び下部に、それぞれボロンまたは弗化ボロンを注入することで、第1のp型拡散層124と第2のp型拡散層125とを形成する。
 続いて、図25に示すように、第6のレジスト123を剥離、除去する。
 続いて、図26に示すように、酸化膜126と窒化膜127とを層状かつ均一に堆積し、引き続き、熱処理を行う。
 以上により、第1の柱状シリコン層104(第1の柱状半導体層)の上部に第1のn型拡散層121を形成し、第1の柱状シリコン層104の下部及び平面状シリコン層107(平面状半導体層)の上部に第2のn型拡散層122を形成する。その後、第2の柱状シリコン層105(第2の柱状半導体層)の上部に第1のp型拡散層124を形成し、第2の柱状シリコン層105の下部及び平面状シリコン層107の上部に第2のp型拡散層125を形成する第4の工程が示された。
 次に、第1のn型拡散層121上、第2のn型拡散層122上、第1のp型拡散層124、第2のp型拡散層125上、及びゲート配線119cにシリサイド131、135、132、134、130、133を形成する第5の工程を詳細に説明する。
 図27に示すように、まず、酸化膜126、窒化膜127をエッチングによってその一部を除去することで、絶縁膜サイドウォール128a、128b、129a、129b、129cを形成する。
 続いて、図28に示すように、金属材料を堆積し、さらに熱処理を行い、未反応の金属材料を除去することで、第1のn型拡散層121上、第2のn型拡散層122上、第1のp型拡散層124上、第2のp型拡散層125上、及びゲート配線119c上に、それぞれシリサイド131、135、132、134、130、133を形成する。ここで、絶縁膜サイドウォールは、窒化膜サイドウォールとすることができる。
 以上により、第2のn型拡散層122が、第2のp型拡散層125に、シリサイド135を介して接続される。また、図17に示すように、ゲート配線119cの中心線が、第1の柱状シリコン層104の中心点と第2の柱状シリコン層105の中心点とを結ぶ線に対して所定量オフセットしているので、シリサイド135を形成することが容易になる。これにより、半導体装置の高集積化が実現される。
 また、この構造では、ポリシリコン膜116の厚さが薄いため、ゲート配線119cが、金属膜115及びシリサイド130からなる積層構造から容易に形成される。このゲート配線119cでは、シリサイド130と金属膜115とが直接接触するため、ゲート配線119cの低抵抗化が実現される。
 以上により、第1のn型拡散層121上、第2のn型拡散層122上、第1のp型拡散層124上、第2のp型拡散層125上、及びゲート配線119c上にシリサイド131、135、132、134、130、133を形成する第5の工程が示された。
 第5の工程に続いて、図29に示すように、窒化膜などのコンタクトストッパー136を、構造体の全体を覆うように層状に成膜し、層間絶縁膜137を形成する。
 続いて、図30に示すように、コンタクト孔139、140(図31参照)を形成するための第7のレジスト138を形成する。
 続いて、図31に示すように、層間絶縁膜137をエッチングすることで、第7のレジスト138の開口部にコンタクト孔139、140を形成する。
 続いて、図32に示すように、第7のレジスト138を剥離、除去する。
 続いて、図33に示すように、コンタクト孔142、143(図34参照)を形成するための第8のレジスト141を形成する。
 続いて、図34に示すように、層間絶縁膜137をエッチングすることで、第8のレジスト141の開口部に、コンタクト孔142、143を形成する。
 続いて、図35に示すように、第8のレジスト141を剥離、除去する。
 続いて、図36に示すように、コンタクトストッパー136をエッチングすることで、コンタクト孔139、140、コンタクト孔142、143下のコンタクトストッパー136を除去する。
 続いて、図37に示すように、金属材料を堆積して金属層148を形成することで、下層の導体層と接続するコンタクト144、145、146、147とする。
 続いて、図38に示すように、金属配線153、154、155、156(図39参照)を形成するための第9のレジスト149、150、151、152を形成する。
 続いて、図39に示すように、金属層148をエッチングすることで、金属配線153、154、155、156を形成する。
 次に、図40に示すように、第9のレジスト149、150、151、152を剥離、除去する。
 以上により、厚さの薄いゲート材料(ポリシリコン)を用いることで、自己整合プロセスによって、金属材料からなるゲート電極が形成されるSGTの構造を有する半導体装置の製造方法が示された。
 金属膜115の上面の高さが、ポリシリコン膜116の上面の高さよりも高いため、ポリシリコン膜116と、第1及び第2の柱状シリコン層104、105との間にボイドが生じることがなく、ゲート電極119a、119bと、第1及び第2の柱状シリコン層104、105との間の容量の減少を防ぐことができる。
 本実施形態により製造される、SGTを有する半導体装置が、ゲート配線119cと平面状シリコン層107との間に形成されたゲート絶縁膜113、114よりも厚さが厚い第2の酸化膜110を有する。このため、ゲート配線119cとシリコン基板101との間の容量を低減することができ、ゲート配線119cとシリコン基板101間の絶縁性が確保される。
 本実施形態によれば、ゲート配線119cが、金属膜115及びシリサイド130からなる積層構造から形成される。このように、ゲート配線119cでは、シリサイド130と金属膜115とが直接接触するため、ゲート配線119cの低抵抗化が実現される。
 本実施形態によれば、ゲート配線119cの中心線が、第1の柱状シリコン層104の中心点と第2の柱状シリコン層105の中心点とを結ぶ線に対して所定量オフセットしている(図17参照)。このため、第2のn型拡散層122と、第2のp型拡散層125とを接続するシリサイド135を容易に形成できる。これにより、量産ベースでの半導体装置の高集積化が実現される。
 上述した実施形態によれば、第1工程の後、第1の柱状シリコン層104(第1の柱状半導体層)と第2の柱状シリコン層105(第2の柱状半導体層)の周囲にゲート絶縁膜113、114を形成する。その後、ゲート絶縁膜113、114の周囲に金属膜115及び厚さの薄いポリシリコン膜116を成膜する。ポリシリコン膜116の膜厚は第1の柱状シリコン層104と第2の柱状シリコン層105との間の間隔の半分の長さよりも薄くする。その後、第3のレジスト117を堆積し、第1及び第2の柱状シリコン層104、105の上部側壁のポリシリコン膜116を露出させる。その後、露出したポリシリコン膜116をエッチングにより除去し、第3のレジスト117を剥離し、金属膜115をエッチングにより除去する第2の工程を備える。第2の工程の後、ゲート配線119cを形成するための第4のレジスト118を形成し、異方性エッチングを行い、ゲート配線119c、第1のゲート電極119b、及び第2のゲート電極119aを形成する第3の工程により、自己整合プロセスが実現される。本実施形態によれば、このように自己整合プロセスによって半導体装置が製造されるため、別部材からなるマスクを使用する必要がなく、半導体装置の高集積化が実現される。
 第1及び第2の柱状シリコン層104、105の上方にある金属膜115をエッチングにより除去する際、ウエットエッチングを用いると、ポリシリコン膜116と第1及び第2の柱状シリコン層104、105との間にある金属膜115がエッチングされる。これにより、ポリシリコン膜116と、第1及び第2の柱状シリコン層104、105との間にボイドが生じることがある。このようにボイドが生じると、ボイドが生じた部分の比誘電率(媒質の誘電率と真空の誘電率の比ε/ε0=εr)が空気と同様の約1(1.00059)となるため、ゲート電極119a、119bと、第1及び第2の柱状シリコン層104、105との間の容量が減少してしまう。これに対して、本実施形態では、第1及び第2の柱状シリコン層104、105の上方にある金属膜115をエッチングにより除去した後、ゲート配線119cを異方性エッチングにより形成する。この際、第1及び第2のゲート電極119b、119aの上方にあるポリシリコン膜116が異方性エッチングにより除去されるため、金属膜115の上面の高さを、ポリシリコン膜116の上面の高さよりも高くすることができる。これにより、ポリシリコン膜116と、第1及び第2の柱状シリコン層104、105との間にボイドが生じることが防止される。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成の一部を除いても本発明の技術的思想の範囲内となる。
 例えば、上記実施例において、p型(p型を含む。)とn型(n型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。
 本発明に係る半導体装置の製造方法によれば、SGTを有する、高集積度な半導体装置を製造することができる。
101.シリコン基板
102.第1のレジスト
103.第1のレジスト
104.第1の柱状シリコン層
105.第2の柱状シリコン層
106.第2のレジスト
107.平面状シリコン層
108.素子分離膜
109.第1の酸化膜
110.第2の酸化膜
111.酸化膜ハードマスク
112.酸化膜ハードマスク
113.ゲート絶縁膜
114.ゲート絶縁膜
115.金属膜
116.ポリシリコン膜
117.第3のレジスト
118.第4のレジスト
119a.第2のゲート電極
119b.第1のゲート電極
119c.ゲート配線
120.第5のレジスト
121.第1のn型拡散層
122.第2のn型拡散層
123.第6のレジスト
124.第1のp型拡散層
125.第2のp型拡散層
126.酸化膜
127.窒化膜
128a.絶縁膜サイドウォール
128b.絶縁膜サイドウォール
129a.絶縁膜サイドウォール
129b.絶縁膜サイドウォール
129c.絶縁膜サイドウォール
130.シリサイド
131.シリサイド
132.シリサイド
133.シリサイド
134.シリサイド
135.シリサイド
136.コンタクトストッパー
137.層間絶縁膜
138.第7のレジスト
139.コンタクト孔
140.コンタクト孔
141.第8のレジスト
142.コンタクト孔
143.コンタクト孔
144.コンタクト
145.コンタクト
146.コンタクト
147.コンタクト
148.金属層
149.第9のレジスト
150.第9のレジスト
151.第9のレジスト
152.第9のレジスト
153.金属配線
154.金属配線
155.金属配線
156.金属配線

Claims (9)

  1.  半導体基板上に平面状半導体層を形成し、前記平面状半導体層上に第1の柱状半導体層と第2の柱状半導体層とを形成する第1の工程と、
     前記第1工程の後、
     前記第1の柱状半導体層及び前記第2の柱状半導体層の周囲にゲート絶縁膜を形成し、
     前記ゲート絶縁膜の周囲に金属膜及びポリシリコン膜を成膜し、
     前記ポリシリコン膜の膜厚を前記第1の柱状半導体層及び前記第2の柱状半導体層の間の間隔の半分の長さよりも薄くし、
     第3のレジストを堆積し、前記第1の柱状半導体層及び前記第2の柱状半導体層の上部側壁の前記ポリシリコン膜を露出させ、この露出した前記ポリシリコン膜をエッチングによって除去し、前記第3のレジストを剥離し、前記金属膜をエッチングにより除去する第2の工程と、
     前記第2の工程の後、
     ゲート配線を形成するための第4のレジストを形成し、異方性エッチングを行うことにより、ゲート配線と、第1のゲート電極と、第2のゲート電極と、を形成する第3の工程と、を有する、
     ことを特徴とする半導体装置の製造方法。
  2.  前記第1の工程の後、
     前記第1の柱状シリコン層及び前記第2の柱状シリコン層の上に酸化膜ハードマスクを形成し、前記平面状シリコン層上にゲート絶縁膜よりも厚さの厚い酸化膜を形成する工程をさらに含む、ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記第4のレジストの上面の高さは、前記第2工程を経た後のポリシリコン膜の上面の高さよりも低い、ことを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記第1の柱状半導体層の上部に第1のn型拡散層を形成し、前記第1の柱状半導体層の下部及び前記平面状半導体層の上部に第2のn型拡散層を形成し、前記第2の柱状半導体層の上部に第1のp型拡散層を形成し、前記第2の柱状半導体層の下部及び前記平面状半導体層の上部に第2のp型拡散層を形成する第4の工程をさらに含む、ことを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記第1のn型拡散層上、前記第2のn型拡散層上、前記第1のp型拡散層上、前記第2のp型拡散層上、及び前記ゲート配線上にシリサイドを形成する第6の工程をさらに含む、ことを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  半導体基板上に形成された平面状半導体層と、
     前記平面状半導体層上に形成された第1及び第2の柱状半導体層と、
     前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、
     前記第1のゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第1のゲート電極と、
     前記第2の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、
     前記第2のゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第2のゲート電極と、
     前記第1及び前記第2のゲート電極に接続されたゲート配線と、
     前記ゲート配線と前記平面状半導体層との間に形成された前記ゲート絶縁膜よりも厚さが厚い酸化膜と、
     前記第1の柱状半導体層の上部に形成された第1のn型拡散層と、
     前記第1の柱状半導体層の下部と前記平面状半導体層の上部とに形成された第2のn型拡散層と、
     前記第2の柱状半導体層の上部に形成された第1のp型拡散層と、
     前記第2の柱状半導体層の下部及び前記平面状半導体層の上部に形成された第2のp型拡散層と、を備え、
     前記ポリシリコン膜の膜厚は前記第1の柱状半導体層と前記第2の柱状半導体層との間の間隔の半分の長さよりも薄く形成されており、
     前記金属膜の上面の高さは、前記ポリシリコン膜の上面の高さよりも高くされており、
     前記ゲート配線の上面の高さは前記第1及び第2のゲート電極の上面の高さよりも低くされている、ことを特徴とする半導体装置。
  7.  前記ゲート配線は、前記金属膜及びシリサイドの積層構造からなる、ことを特徴とする請求項6に記載の半導体装置。
  8.  前記ゲート配線の中心線が、前記第1の柱状半導体層の中心点と前記第2の柱状半導体層の中心点とを結ぶ線に対して所定量オフセットしている、ことを特徴とする請求項7に記載の半導体装置。
  9.  前記第1及び前記第2のn型拡散層上と、前記第1及び前記第2のp型拡散層上とに形成されたシリサイドをさらに備える、ことを特徴とする請求項8に記載の半導体装置。
PCT/JP2013/061653 2013-04-19 2013-04-19 半導体装置の製造方法、及び、半導体装置 WO2014171014A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014520854A JP5692886B1 (ja) 2013-04-19 2013-04-19 半導体装置の製造方法、及び、半導体装置
PCT/JP2013/061653 WO2014171014A1 (ja) 2013-04-19 2013-04-19 半導体装置の製造方法、及び、半導体装置
SG11201504337QA SG11201504337QA (en) 2013-04-19 2013-04-19 Method for producing semiconductor device, and semiconductor device
US14/744,890 US9490362B2 (en) 2013-04-19 2015-06-19 Semiconductor device production method and semiconductor device
US15/263,535 US9666688B2 (en) 2013-04-19 2016-09-13 Semiconductor device production method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061653 WO2014171014A1 (ja) 2013-04-19 2013-04-19 半導体装置の製造方法、及び、半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/744,890 Continuation US9490362B2 (en) 2013-04-19 2015-06-19 Semiconductor device production method and semiconductor device

Publications (1)

Publication Number Publication Date
WO2014171014A1 true WO2014171014A1 (ja) 2014-10-23

Family

ID=51730982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061653 WO2014171014A1 (ja) 2013-04-19 2013-04-19 半導体装置の製造方法、及び、半導体装置

Country Status (4)

Country Link
US (2) US9490362B2 (ja)
JP (1) JP5692886B1 (ja)
SG (1) SG11201504337QA (ja)
WO (1) WO2014171014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044560A1 (ja) * 2018-08-31 2020-03-05 株式会社ソシオネクスト 半導体装置及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639317B1 (ja) 2013-11-06 2014-12-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Sgtを有する半導体装置と、その製造方法
US9991267B1 (en) * 2017-01-25 2018-06-05 International Business Machines Corporation Forming eDRAM unit cell with VFET and via capacitance
US10211315B2 (en) * 2017-07-19 2019-02-19 Globalfoundries Inc. Vertical field-effect transistor having a dielectric spacer between a gate electrode edge and a self-aligned source/drain contact
US11011623B2 (en) * 2018-06-29 2021-05-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for increasing germanium concentration of FIN and resulting semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182317A (ja) * 2008-01-29 2009-08-13 Unisantis Electronics Japan Ltd 半導体装置の製造方法
JP2010272874A (ja) * 2010-06-29 2010-12-02 Unisantis Electronics Japan Ltd 半導体記憶装置
JP2011258780A (ja) * 2010-06-09 2011-12-22 Unisantis Electronics Japan Ltd 半導体装置とその製造方法
JP2012004244A (ja) * 2010-06-15 2012-01-05 Unisantis Electronics Singapore Pte Ltd 半導体装置及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057661B2 (ja) 1988-09-06 2000-07-04 株式会社東芝 半導体装置
JP2703970B2 (ja) 1989-01-17 1998-01-26 株式会社東芝 Mos型半導体装置
JP2950558B2 (ja) 1989-11-01 1999-09-20 株式会社東芝 半導体装置
JP3315429B2 (ja) * 1991-04-23 2002-08-19 キヤノン株式会社 半導体装置及びその製造方法
JP2009081163A (ja) * 2007-09-25 2009-04-16 Elpida Memory Inc 半導体装置およびその製造方法
US8598650B2 (en) 2008-01-29 2013-12-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8188537B2 (en) 2008-01-29 2012-05-29 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
JP2012094762A (ja) * 2010-10-28 2012-05-17 Elpida Memory Inc 半導体装置および半導体装置の製造方法
KR20140077499A (ko) * 2012-12-14 2014-06-24 에스케이하이닉스 주식회사 저항 변화 메모리 장치 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182317A (ja) * 2008-01-29 2009-08-13 Unisantis Electronics Japan Ltd 半導体装置の製造方法
JP2011258780A (ja) * 2010-06-09 2011-12-22 Unisantis Electronics Japan Ltd 半導体装置とその製造方法
JP2012004244A (ja) * 2010-06-15 2012-01-05 Unisantis Electronics Singapore Pte Ltd 半導体装置及びその製造方法
JP2010272874A (ja) * 2010-06-29 2010-12-02 Unisantis Electronics Japan Ltd 半導体記憶装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044560A1 (ja) * 2018-08-31 2020-03-05 株式会社ソシオネクスト 半導体装置及びその製造方法
JPWO2020044560A1 (ja) * 2018-08-31 2021-08-26 株式会社ソシオネクスト 半導体装置及びその製造方法
JP7185149B2 (ja) 2018-08-31 2022-12-07 株式会社ソシオネクスト 半導体装置

Also Published As

Publication number Publication date
US9490362B2 (en) 2016-11-08
SG11201504337QA (en) 2015-07-30
JPWO2014171014A1 (ja) 2017-02-16
US9666688B2 (en) 2017-05-30
JP5692886B1 (ja) 2015-04-01
US20150287822A1 (en) 2015-10-08
US20160380080A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
JP5595619B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5822326B1 (ja) 半導体装置の製造方法、及び、半導体装置
US8836051B2 (en) Method for producing semiconductor device and semiconductor device
JP5692886B1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2014203304A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5779739B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5604019B2 (ja) 半導体装置の製造方法、及び、半導体装置
WO2014170949A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5596245B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5903139B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5749818B2 (ja) 半導体装置の製造方法、及び、半導体装置
WO2015193939A1 (ja) 半導体装置の製造方法、及び、半導体装置
US9082838B2 (en) Method for producing a semiconductor device and semiconductor device
WO2014073103A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6114425B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5928566B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5685344B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6154051B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6033938B2 (ja) 半導体装置の製造方法、及び、半導体装置
TW201926702A (zh) 溝槽金氧半導體元件
JP2014207486A (ja) 半導体装置
JP2015213192A (ja) 半導体装置の製造方法、及び、半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520854

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882458

Country of ref document: EP

Kind code of ref document: A1