WO2014163198A1 - 積層構造体およびその製造方法と、物品 - Google Patents

積層構造体およびその製造方法と、物品 Download PDF

Info

Publication number
WO2014163198A1
WO2014163198A1 PCT/JP2014/060016 JP2014060016W WO2014163198A1 WO 2014163198 A1 WO2014163198 A1 WO 2014163198A1 JP 2014060016 W JP2014060016 W JP 2014060016W WO 2014163198 A1 WO2014163198 A1 WO 2014163198A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
resin composition
layer
laminated structure
outermost layer
Prior art date
Application number
PCT/JP2014/060016
Other languages
English (en)
French (fr)
Inventor
祐介 中井
大谷 剛
小澤 覚
哲哉 地紙
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP14779531.4A priority Critical patent/EP2982502A4/en
Priority to US14/781,141 priority patent/US20160082688A1/en
Priority to JP2014519322A priority patent/JP5716868B2/ja
Priority to KR1020157027057A priority patent/KR20150125704A/ko
Priority to CN201480016549.8A priority patent/CN105377542B/zh
Publication of WO2014163198A1 publication Critical patent/WO2014163198A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/148Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable

Definitions

  • the present invention relates to a laminated structure, a manufacturing method thereof, and an article.
  • This application claims priority based on Japanese Patent Application No. 2013-077968 filed in Japan on April 5, 2013 and Japanese Patent Application No. 2013-167825 filed on August 12, 2013 in Japan. And the contents thereof are incorporated herein.
  • an article having a fine concavo-convex structure with a period shorter than the wavelength of visible light on the surface has antireflection performance due to a continuous change in refractive index in the fine concavo-convex structure. It is also known that the fine concavo-convex structure exhibits super water-repellent performance due to the lotus effect. However, on the surface of the fine concavo-convex structure, the nanoscale convex portions are easily broken, and the scratch resistance and durability are low as compared to the smooth surface formed of the same resin.
  • the following method has been proposed as a method for producing an article having a fine concavo-convex structure on the surface.
  • the active energy ray-curable resin composition is filled between the mold having the inverted structure of the fine concavo-convex structure on the surface and the substrate, cured by irradiation with active energy rays, and then the mold is released. The method of transferring the fine relief structure to the cured product.
  • a photocurable resin composition containing an acrylate oligomer such as urethane acrylate, an acrylic resin having a radical polymerizable functional group, a release agent, and a photopolymerization initiator (Patent Document 1).
  • a polyfunctional (meth) acrylate having a very high number of double bonds per molecular weight such as trimethylolpropane tri (meth) acrylate, a photopolymerization initiator, and a leveling agent such as polyether-modified silicone oil
  • An ultraviolet curable resin composition Patent Document 2 describes that a fine concavo-convex structure having a wavelength equal to or smaller than the wavelength of visible light is produced using a silica sol that is closely packed as a template.
  • the optical performance, adhesion to the substrate, mechanical properties (scratch resistance, pencil hardness, etc.), etc. are on a practical level for the layer (fine concavo-convex structure layer) made of a cured product of the active energy ray-curable resin composition. It was difficult to give all.
  • scratch resistance and pencil hardness which are regarded as important mechanical properties, have different scratch generation mechanisms as described below, and it has been difficult to increase both. Scratch resistance is a scratch when scratches occur due to the fact that a horizontal external force is applied to the surface with a fine concavo-convex structure, and the concavo-convex structure cannot be maintained because the convex part is broken or falls. It shows the difficulty.
  • Pencil hardness exerts an external force mainly in the vertical direction (indentation direction) with respect to the surface having a fine concavo-convex structure, and the dent is transmitted to the base material, leaving indentations on the base material and the fine concavo-convex structure layer, and scratches. This indicates the degree of scratching when it occurs.
  • Patent Document 4 describes that the hard coat layer having fine irregularities is desirably a resin having a hardness of “H” or higher in a pencil hardness test according to JIS K5600-5-4.
  • polyfunctional monomers having an extremely high number of double bonds per molecular weight such as dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and pentaerythritol tetraacrylate, are used.
  • Patent Documents 4 and 5 disclose an intermediate layer for improving the adhesion and adhesion between the base film and the nano uneven structure surface layer.
  • Patent Document 6 discloses a laminate including a refractive index adjusting layer as a lower layer on the surface of the nano uneven structure in order to enhance the antireflection effect.
  • Patent Document 7 discloses an antireflection film in which an intermediate layer having a function of restoring dents (self-healing function) and a hard coat layer having a different refractive index are provided thereon.
  • the nano uneven structures described in Patent Documents 2, 4 to 6 do not necessarily satisfy the scratch resistance.
  • the resin that forms the nano concavo-convex structure is hardened, the nano concavo-convex structure becomes brittle, and when the abrasion test is performed with steel wool or the like, the nano concavo-convex structure is destroyed and the antireflection performance is easily lost. End up. Also in the pencil hardness test, the problem is that the nano uneven structure is destroyed and the antireflection performance is lost.
  • the intermediate layers described in Patent Documents 4 to 6 are intended to improve adhesiveness and antireflection performance.
  • the antireflection film described in Patent Document 7 has an intermediate layer having a self-repair function against depression caused by pressing, but this intermediate layer does not necessarily have a function of improving pencil hardness.
  • the present invention has been made in view of the above circumstances, a laminated structure having excellent optical performance and scratch resistance, exhibiting high pencil hardness, and a method for producing the same, and excellent in optical performance and scratch resistance, and exhibiting high pencil hardness. Providing goods is an issue.
  • the present inventors have determined the physical properties of the cured layer and intermediate layer having a fine concavo-convex structure, thereby improving both scratch resistance and pencil hardness without impairing optical performance such as antireflection performance. As a result, the present invention has been completed. Furthermore, the present inventors have found that a laminated structure having an intermediate layer (second layer) that satisfies a specific condition can solve the problem of achieving both scratch resistance and pencil hardness, thereby completing the present invention.
  • this invention has the following aspects.
  • ⁇ 1> A laminated structure in which a base material, an intermediate layer, and an outermost layer are sequentially laminated, wherein the Martens hardness of the intermediate layer is 120 N / mm 2 or more, and the elastic recovery rate of the outermost layer is 70. %, And the outermost surface layer has a fine concavo-convex structure with a period equal to or shorter than the wavelength of visible light on the surface.
  • ⁇ 2> The laminated structure according to ⁇ 1>, wherein a period of the fine uneven structure on the surface of the outermost layer is 400 nm or less.
  • ⁇ 3> The laminated structure according to ⁇ 1> or ⁇ 2>, wherein the elastic recovery rate of the outermost layer is 80% or more.
  • ⁇ 4> The laminated structure according to ⁇ 1> or ⁇ 2>, wherein the intermediate layer has a Martens hardness of 180 N / mm 2 or more.
  • ⁇ 5> The laminated structure according to any one of ⁇ 1> to ⁇ 4>, wherein the intermediate layer has an elastic recovery rate of 60% or more.
  • ⁇ 6> The laminated structure according to any one of ⁇ 1> to ⁇ 5>, wherein the intermediate layer has a fine concavo-convex structure with a period of 1000 nm or less on a surface.
  • ⁇ 7> The multilayer structure according to ⁇ 6>, wherein a period of the fine uneven structure on the surface of the intermediate layer is different from a period of the fine uneven structure on the surface of the outermost layer.
  • ⁇ 8> The laminated structure according to any one of ⁇ 1> to ⁇ 7>, wherein the intermediate layer is a cured product of a resin composition containing a polyfunctional (meth) acrylate.
  • An article comprising the laminated structure according to any one of ⁇ 1> to ⁇ 8> on a surface.
  • Step (1) After placing an active energy ray-curable resin composition (X) containing a compound having a polymerizable functional group on a light-transmitting substrate, the surface is subjected to first active energy ray irradiation, Forming an intermediate layer in which the reaction rate of the polymerizable functional group is 35 to 85 mol%.
  • Step (2) A step of disposing an active energy ray-curable resin composition (Y) between the intermediate layer formed in the step (1) and a mold for transferring a fine relief structure.
  • Step (3) Laminate in which the second active energy ray is irradiated from the substrate side, the resin composition (Y) is cured to form the outermost layer, and the substrate, the intermediate layer, and the outermost layer are sequentially laminated.
  • Step (1) After placing an active energy ray-curable resin composition (X) containing a compound having a polymerizable functional group on a light-transmitting substrate, the surface is subjected to first active energy ray irradiation, Forming an intermediate layer in which the reaction rate of the polymerizable functional group is 35 to 85 mol%.
  • Step (2) A step of disposing an active energy ray-curable resin composition (Y) between the intermediate layer formed in the step (1) and a mold for transferring a fine relief structure.
  • Step (3) Laminate in which the second active energy ray is irradiated from the substrate side, the resin composition (Y) is cured to form the outermost layer, and the substrate, the intermediate layer, and the outermost layer are sequentially laminated.
  • the integrated light quantity of the first active energy ray irradiation in the step (1) is 50 to 1000 mJ / cm. 2
  • the integrated light quantity of the first active energy ray irradiation in the step (1) is 100 to 500 mJ / cm.
  • the intermediate layer is a semi-cured product of (poly) pentaerythritol (poly) acrylate and a resin composition (X) containing a reaction product of (poly) pentaerythritol (poly) acrylate and hexamethylene diisocyanate.
  • ⁇ 16> A laminate structure obtained by the method for producing a laminate structure according to any one of ⁇ 11> to ⁇ 15>, wherein the polymerizability on the surface of the intermediate layer after the first active energy ray irradiation
  • the laminated structure of the present invention is excellent in optical performance and scratch resistance, and exhibits high pencil hardness. According to the method for producing a laminated structure of the present invention, a laminated structure having excellent optical performance and scratch resistance and high pencil hardness can be produced.
  • the article of the present invention is excellent in optical performance and scratch resistance, and exhibits high pencil hardness.
  • a laminated structure excellent in light antireflection performance, light transmission performance, mechanical properties, and the like.
  • the mechanical properties include “steel wool resistance” reflecting scratch resistance and the like, and “pencil hardness” which is different from it. Both properties are in contradiction, but according to the present invention, both properties are good. And can be sufficiently put to practical use.
  • a laminated structure having excellent mechanical properties can be provided for applications such as antireflection for FPD, light transmission improvement, surface protection, and the like.
  • the uppermost layer of the laminated structure is referred to as the “outermost layer”, the lowermost layer is referred to as the “base material” or the “base material layer”, and the layer is disposed between the outermost layer and the base material. Is called “middle layer”.
  • active energy rays in the present specification means visible light, ultraviolet rays, electron beams, plasma, heat rays (infrared rays, etc.) and the like.
  • (meth) acrylate is a generic term for acrylate and methacrylate
  • (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid
  • (meth) acrylonitrile is acrylonitrile
  • (meth) acrylamide is a generic name for acrylamide and methacrylamide.
  • FIG. 1 the scale is different for each layer in order to make each layer recognizable on the drawing. 2 to 6, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the laminated structure according to the first aspect of the present invention is configured by laminating at least a base material, an intermediate layer, and an outermost layer in this order, and has a fine uneven structure on the surface of the outermost layer.
  • FIG. 1 is a cross-sectional view showing an example of a laminated structure according to the first aspect of the present invention.
  • the laminated structure 10 in this example is configured by sequentially laminating a base material 12, an intermediate layer 14, and an outermost layer 16, and a fine uneven structure is also formed on the surface of the intermediate layer 14.
  • the “surface of the outermost layer” is the surface of the outermost layer 16 that is not in contact with the intermediate layer 14.
  • the “surface of the intermediate layer” is the surface of the intermediate layer 14 on the side in contact with the outermost layer 16.
  • substrate surface the surface of the substrate 12 that is in contact with the intermediate layer 14
  • substrate back surface the surface that is not in contact with the intermediate layer 14
  • the surface of the outermost layer 16 corresponds to the surface of the laminated structure 10
  • the back surface of the substrate 12 corresponds to the back surface of the laminated structure.
  • the concave and convex portions of the fine uneven structure of the outermost layer 16 are arranged differently from the concave and convex portions of the fine uneven structure of the intermediate layer 14.
  • “differently arranged” means that the concavo-convex shape of a fine concavo-convex structure of an arbitrary layer (for example, the outermost layer) in one or more cut surfaces obtained by cutting a plurality of laminated structures in the lamination direction (longitudinal direction), This means that when the laminated structure is translated in the thickness direction, it does not overlap with the shape of the fine uneven structure of the remaining layer (for example, the intermediate layer).
  • this arrangement state is also referred to as “arrangement”.
  • the shape of the concave and convex portions of the fine concavo-convex structure is not particularly limited, but a so-called moth-eye structure in which a plurality of projections (convex portions) such as a substantially conical shape and a pyramid shape are arranged or its inverted structure is preferable.
  • a moth-eye structure in which the fine concavo-convex structure of the outermost layer 16 has a period equal to or less than the wavelength of visible light (an average interval between adjacent convex portions or concave portions), it continues from the refractive index of air to the refractive index of the material. Since the refractive index increases, it is effective as a means for preventing reflection.
  • the fine concavo-convex structure of the intermediate layer 14 is a moth-eye structure
  • the reflection at the interface can be suppressed even if the refractive indexes of adjacent layers are different, which is effective in reducing the reflectance and suppressing interference fringes.
  • the adhesion with the outermost layer 16 is improved.
  • the period of the fine concavo-convex structure of the outermost layer 16 (the average interval between adjacent convex portions or concave portions) is not more than the wavelength of visible light, specifically 400 nm or less, more preferably 300 nm or less, and more preferably 250 nm or less. Further preferred. When the period is 400 nm or less, the reflectance is low and the wavelength dependence of the reflectance is small. The period is preferably 25 nm or more, and more preferably 80 nm or more, from the viewpoint of easy formation of the convex structure.
  • the period of the fine relief structure of the intermediate layer 14 is preferably 1000 nm or less.
  • the period is 1000 nm or less, even if the refractive index of the intermediate layer 14 and the outermost layer 16 are different, the fine uneven structure is difficult to see and becomes inconspicuous, and the appearance is good. Further, it becomes easy to obtain adhesion with the outermost layer 16.
  • the period is equal to or less than the wavelength of visible light, it is effective for reducing reflectance and suppressing interference fringes as described above. In addition, the adhesion with the outermost layer 16 is improved.
  • the period is preferably 25 nm or more, and more preferably 80 nm or more, from the viewpoint of easy formation of the convex structure.
  • the outermost layer 16 can improve the scratch resistance by increasing the period of the fine uneven structure, and the intermediate layer 14 can improve the adhesiveness by reducing the period of the fine uneven structure, or can be unnecessary.
  • the period of the fine uneven structure on the surface of the intermediate layer 14 is preferably different from the period of the fine uneven structure on the surface of the outermost layer 16.
  • a period is a space
  • the average height of the protrusions is preferably 400 nm or less, and more preferably 300 nm or less, from the viewpoint of easy formation of the protrusion structure.
  • the average height of the convex portion was measured by measuring the distance between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions when observed with the electron microscope at a magnification of 30000 times. The average of these values.
  • the aspect ratio of the protrusions (average height of the protrusions / average interval between adjacent protrusions) is preferably 0.8 to 5, more preferably 1.2 to 4, and further preferably 1.5 to 3 preferable. If the aspect ratio of the convex portion is 0.8 or more, the reflectance is sufficiently low. When the aspect ratio of the convex portion is 5 or less, the scratch resistance of the convex portion is good.
  • the Martens hardness of the intermediate layer 14 is 120 N / mm 2 or more, the intermediate layer 14 is not too soft, and the dent of the intermediate layer 14 does not easily increase even when an external force is applied in the pencil hardness test. Therefore, since the dent hardly reaches the base material 12 and the base material 12 is hardly plastically deformed, high pencil hardness can be maintained. On the other hand, if the Martens hardness of the intermediate layer 14 is 400 N / mm 2 or less, the intermediate layer 14 is hardly cracked even if a force is applied from the outside.
  • the elastic recovery rate of the intermediate layer 14 is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more. If the elastic recovery rate of the intermediate layer 14 is 50% or more, the intermediate layer 14 is difficult to be plastically deformed. Therefore, the depression of the intermediate layer 14 when an external force is applied in the pencil hardness test easily returns after the test. . Therefore, since this dent hardly remains as an indentation, higher pencil hardness can be maintained.
  • the elastic recovery rate of the outermost layer 16 is 70% or more, preferably 80% or more, and more preferably 85% or more. If the elastic recovery rate of the outermost layer 16 is 70% or more, the convex portion is not easily broken or scraped even when a lateral external force is applied to the concave and convex in the scratch resistance test, and the original state can be easily recovered. Scratches are hardly formed, and scratch resistance is improved. Further, if the elastic recovery rate is 70% or more, the outermost layer 16 is difficult to be plastically deformed, so that the dent of the outermost layer 16 when an external force is applied in the pencil hardness test easily returns after the test. Therefore, since this dent hardly remains as an indentation, higher pencil hardness can be maintained.
  • the laminated structure 10 in the first aspect of the present invention is characterized in that the Martens hardness of the intermediate layer 14 is 120 N / mm 2 or more and the elastic recovery rate of the outermost layer 16 is 70% or more.
  • the elastic recovery rate of the outermost layer 16 is preferably 80% or more in that the pencil hardness is further improved.
  • the elastic recovery rate of the outermost layer 16 is preferably 70% or more.
  • the elastic modulus of the outermost layer 16 is preferably 50 MPa or more, more preferably 80 MPa or more, and further preferably 110 MPa or more. Further, the elastic modulus of the outermost layer 16 is preferably 3500 MPa or less, more preferably 3000 MPa or less, and further preferably 560 MPa or less. If the elastic modulus of the outermost layer 16 is 50 MPa or more, the outermost layer 16 is not too soft, and even if a force is applied from the outside, the outermost layer 16 is not greatly scraped or removed to a portion that is not a fine uneven structure, Excellent scratch resistance due to less scratching.
  • the Martens hardness, the elastic recovery rate, and the elastic modulus of each layer are obtained by measuring the Martens hardness, the elastic recovery rate, and the elastic modulus of the cured material of the material of each layer with a microhardness meter. Specifically, first, a test piece in which a cured product of the material of each layer is formed on a substrate such as a glass plate is prepared. Using a Vickers indenter and a micro hardness tester, the evaluation program of [Indentation (100 mN / 10 sec)] ⁇ [Creep (100 mN, 10 sec)] ⁇ [Unloading (100 mN / 10 sec)] Measure physical properties.
  • the Martens hardness, elastic modulus, and elastic recovery rate of the cured product are calculated by analysis software (for example, “WIN-HCU” manufactured by Fisher Instruments Co., Ltd.), and this is calculated for each layer.
  • analysis software for example, “WIN-HCU” manufactured by Fisher Instruments Co., Ltd.
  • the surface of the outermost layer 16 is 10 minutes of the film thickness of the outermost layer 16 with a microhardness meter. It can also be determined by measuring at a depth within one.
  • the intermediate layer 14 is obtained by measuring the surface of the intermediate layer 14 exposed by removing the outermost layer 16 at a depth within 1/10 of the film thickness of the intermediate layer 14 with a micro hardness meter. You can also.
  • the adhesion between the outermost layer 16 and the intermediate layer 14 is strong, it may be difficult to remove the outermost layer 16 and expose the intermediate layer 14.
  • the lower layer may be affected when measurement is performed with a micro hardness tester.
  • the Martens hardness, the elastic recovery rate, and the elastic modulus of each layer can also be measured by cutting the laminated structure 10 in the laminating direction and measuring the cut surface with a microhardness meter.
  • measurement is performed using an atomic force microscope (AFM).
  • the force curve measurement is a measurement in which the force is detected from the amount of warpage of the cantilever that is generated by pushing the sample surface while reciprocating the cantilever of the AFM in the direction normal to the sample surface. Since it has a spatial resolution of several nanometers, each film can be measured even when the film thickness is thin.
  • an elastic modulus having a correlation with the Martens hardness may be used. For example, the relationship between the Martens hardness and the elastic modulus of the resin composition used in the examples of the present invention is generally expressed by the following formula.
  • the laminated structure 10 is cut in the lamination direction to expose a smooth cut surface.
  • force curve measurement is performed using an AFM and a cantilever, for example, with a force of 200 nm for Rampsize, 4 Hz for Scanspeed, and 30 nN indentation load.
  • the appropriate value of the indentation load varies depending on the material, but in the case of a photocured film, about 10 to 50 nN is appropriate.
  • the spring constant of the cantilever is obtained by measuring sapphire or the like.
  • the deformation amount of the sample is obtained from the following formula (I), and a load deformation curve as shown in FIG. 7 is obtained.
  • Deformation Probe displacement-Cantilever warpage (I)
  • the elastic modulus is obtained by fitting a curve from ⁇ to ⁇ using the Hertz contact formula.
  • the radius of curvature of the tip of the cantilever may be measured or a nominal value may be used, and the Poisson's ratio of the sample may be measured or 0.35 if it is a polymer material.
  • the Martens hardness, elastic recovery rate, and elastic modulus of each layer can be adjusted by the composition of the material of each layer.
  • the active energy ray-curable resin composition described later is used as the material of the intermediate layer 14 or the outermost layer 16
  • the Martens hardness, elastic recovery rate, and elastic modulus are adjusted as follows. That is, in order to increase the Martens hardness and elastic modulus, for example, a monomer or oligomer having a small functional group equivalent is used to increase the crosslinking density, or a monomer or oligomer having a functional group with low molecular mobility such as a ring structure. May be used, or inorganic fine particles may be added to the active energy ray-curable resin composition described later.
  • a monomer or oligomer having a structure having a large molecular mobility such as a polyoxyalkylene structure or a polydimethylsiloxane structure may be used.
  • the film thickness of the intermediate layer 14 is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. Further, the film thickness of the intermediate layer 14 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 7 ⁇ m or less. If the film thickness of the intermediate layer 14 is 1 ⁇ m or more, higher pencil hardness can be maintained. On the other hand, when the film thickness of the intermediate layer 14 is 20 ⁇ m or less, the curling of the laminated structure 10 is unlikely to become strong. Moreover, even if force is applied from the outside, the intermediate layer 14 is not easily broken.
  • the film thickness of the outermost layer 16 is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
  • the thickness of the outermost layer 16 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. If the film thickness of the outermost layer 16 is 1 ⁇ m or more, the layer thickness is sufficient, so that it is possible to maintain better scratch resistance and high pencil hardness.
  • the film thickness of the outermost layer 16 is 20 ⁇ m or less, the outermost layer 16 is hardly cracked even when a force is applied to the laminated structure 10 from the outside.
  • the dent of the outermost layer 16 when an external force is applied in the pencil hardness test easily returns after the test. Therefore, since this dent hardly remains as an indentation, higher pencil hardness can be maintained.
  • the difference between the refractive index of the intermediate layer 14 and the refractive index of the substrate 12 and the difference between the refractive index of the outermost layer 16 and the refractive index of the intermediate layer 14 are each preferably 0.2 or less, more preferably 0.1 or less. Preferably, 0.05 or less is more preferable. If the difference in refractive index is 0.2 or less, reflection at the interface of each layer can be effectively suppressed.
  • the base material 12 which is the lowest layer of the laminated structure, a molded body that transmits light is preferable. Although this will be described in detail later, this is because active energy rays are irradiated from the base material side when a fine concavo-convex structure is formed using a mold that does not easily transmit light.
  • the material of the base material 12 include acrylic resins (polymethyl methacrylate, etc.), polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, and cellulose acetate butyrate.
  • Polyester polyethylene terephthalate, etc.
  • polyamide polyimide
  • polyether sulfone polysulfone
  • polyolefin polyethylene, polypropylene, etc.
  • polymethylpentene polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane, glass and the like.
  • materials exemplified as materials constituting the base material may be used.
  • the substrate 12 may be an injection molded body, an extrusion molded body, or a cast molded body.
  • the shape of the substrate 12 can be selected as appropriate, and may be a sheet or a film.
  • the surface of the substrate 12 may be subjected to a coating treatment, a corona treatment or the like in order to improve adhesion, antistatic properties, scratch resistance, weather resistance, and the like.
  • examples of the material for the intermediate layer 14 include an active energy ray-curable resin composition, a thermoplastic resin, and an inorganic material.
  • the intermediate layer 14 is preferably a layer made of a cured product of the active energy ray-curable resin composition in that it easily imparts hardness and elastic recoverability.
  • the material of the intermediate layer 14 is an active energy ray-curable resin composition, it is easy to form a fine uneven structure.
  • the outermost layer 16 is also preferably a layer made of a cured product of the active energy ray-curable resin composition from the viewpoint of easily imparting elastic recoverability and the ease of forming a fine uneven structure.
  • the active energy ray-curable resin composition will be described in detail.
  • An active energy ray-curable resin composition (hereinafter, sometimes simply referred to as “resin composition”) is a resin composition that cures by irradiating active energy rays and undergoes a polymerization reaction.
  • the resin composition suitably contains, as a polymerizable component, for example, a monomer, oligomer, or reactive polymer having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule. Further, the resin composition usually contains a polymerization initiator for curing.
  • Examples of the monomer having a radical polymerizable bond in the molecule include (meth) acrylates (methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl ( (Meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, alkyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) Acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth)
  • oligomers and reactive polymers having a radical polymerizable bond in the molecule examples include unsaturated polyesters (condensates of unsaturated dicarboxylic acids and polyhydric alcohols), polyester (meth) acrylates, and polyether (meth) acrylates. Polyol (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, cationic polymerization type epoxy compound, homopolymer or copolymer of the above-mentioned monomer having a radical polymerizable bond in the side chain, and the like. .
  • the monomer, oligomer, or reactive polymer having a cationic polymerizable bond in the molecule may be any compound having a cationic polymerizable functional group (cationic polymerizable compound), and may be any of a monomer, an oligomer, and a prepolymer. Also good.
  • the cationically polymerizable functional group include highly practical functional groups such as cyclic ether groups (epoxy groups, oxetanyl groups, etc.), vinyl ether groups, carbonate groups (O—CO—O groups), and the like.
  • the cationic polymerizable compound include cyclic ether compounds (such as epoxy compounds and oxetane compounds), vinyl ether compounds, and carbonate compounds (such as cyclic carbonate compounds and dithiocarbonate compounds).
  • the monomer having a cationic polymerizable bond in the molecule include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, etc. Among these, a monomer having an epoxy group is particularly preferable.
  • Specific examples of the oligomer and reactive polymer having a cationic polymerizable bond include a cationic polymerization type epoxy compound.
  • Examples of the polymerization initiator include known ones. When the resin composition is cured using a photoreaction, examples of the photopolymerization initiator include a radical polymerization initiator and a cationic polymerization initiator. Any radical polymerization initiator may be used as long as it generates an acid upon irradiation with a known active energy ray. An acetophenone-based photopolymerization initiator, a benzoin-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, or a thioxanthone-based light is used. Examples thereof include polymerization initiators and acylphosphine oxide photopolymerization initiators. These radical polymerization initiators may be used alone or in combination of two or more.
  • acetophenone photopolymerization initiator examples include acetophenone, p- (tert-butyl) -1 ′, 1 ′, 1′-trichloroacetophenone, chloroacetophenone, 2 ′, 2′-diethoxyacetophenone, hydroxyacetophenone, 2, Examples include 2-dimethoxy-2′-phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, and the like.
  • benzoin photopolymerization initiator examples include benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2 -Methylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl ketal and the like.
  • benzophenone photopolymerization initiator examples include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4′-bis ( And dimethylamino) benzophenone.
  • thioxanthone photopolymerization initiator examples include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, and dimethylthioxanthone.
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoyldiethoxyphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, and the like. .
  • radical polymerization initiators include, for example, ⁇ -acyl oxime ester, benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram sulfide Azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate and the like.
  • the cationic polymerization initiator is not particularly limited as long as it generates an acid upon irradiation with a known active energy ray, and examples thereof include sulfonium salts, iodonium salts, and phosphonium salts. These cationic polymerization initiators may be used alone or in combination of two or more.
  • sulfonium salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, bis (4- (diphenylsulfonio) -phenyl) sulfide-bis (hexafluorophosphate), bis (4- (diphenylsulfonio).
  • iodonium salt examples include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, and the like.
  • Examples of the phosphonium salt include tetrafluorophosphonium hexafluorophosphate and tetrafluorophosphonium hexafluoroantimonate.
  • thermal polymerization initiator examples include organic peroxides (methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-butyl. Peroxyoctate, tert-butylperoxybenzoate, lauroyl peroxide, etc.), azo compounds (azobisisobutyronitrile, etc.), amines (N, N-dimethylaniline, N, N-dimethyl-p) to the organic peroxides.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • the content of the polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable component. If content of a polymerization initiator is 0.1 mass part or more, superposition
  • the resin composition may include a non-reactive polymer.
  • non-reactive polymers include acrylic resins, styrene resins, polyurethane resins, cellulose resins, polyvinyl butyral resins, polyester resins, and thermoplastic elastomers.
  • the resin composition may include surfactants, mold release agents, lubricants, plasticizers, antistatic agents, light stabilizers, antioxidants, flame retardants, flame retardant aids, if necessary.
  • a known additive such as a polymerization inhibitor, a filler, a silane coupling agent, a colorant, a reinforcing agent, an inorganic filler, inorganic or organic fine particles, an impact modifier, and a small amount of a solvent may be contained.
  • the viscosity of the resin composition is not too high from the viewpoint of easy flow into the fine concavo-convex structure on the surface of the mold.
  • the viscosity of the resin composition measured with a rotary B-type viscometer at 25 ° C. is preferably 10000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less, and further preferably 2000 mPa ⁇ s or less.
  • the viscosity of the resin composition measured with a rotary B-type viscometer at 70 ° C. is preferably 5000 mPa ⁇ s or less, and more preferably 2000 mPa ⁇ s or less.
  • the lower limit of the viscosity of the resin composition is not particularly limited, but it is preferably 10 mPa ⁇ s or more because a laminated structure can be efficiently produced without wetting and spreading.
  • the resin composition for the intermediate layer 14 it is not limited to the resin composition mentioned above.
  • the resin composition (X) exemplified in the description of the second embodiment to be described later may be used, and as the resin composition for the outermost layer 16, it will be described later. You may use the resin composition (Y) illustrated in description of the 2nd aspect to do.
  • the method for forming the fine concavo-convex structure of the intermediate layer 14 and the outermost layer 16 shown in FIG. 1 is not particularly limited, but a transfer method using a mold, specifically, a mold having an inverted structure of the fine concavo-convex structure on the surface is activated energy It is formed by contacting and curing a material such as a linear curable resin composition. According to the transfer method, the shape of the fine concavo-convex structure of each layer can be freely designed.
  • the mold has an inverted structure of a fine concavo-convex structure on the surface.
  • the material for the mold include metals (including those having an oxide film formed on the surface), quartz, glass, resin, ceramics, and the like.
  • the shape of the mold include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
  • Examples of the mold production method include the following method (I-1) and method (I-2). Among these methods, the method (I-1) is preferable from the viewpoint that the area can be increased and the production is simple.
  • (I-1) A method of forming an inverted structure of a fine relief structure by a method of forming anodized alumina having a plurality of pores (recesses) on the surface of an aluminum base.
  • (I-2) A method of forming an inverted structure of a fine concavo-convex structure on the surface of a mold substrate by an electron beam lithography method, a laser beam interference method, or the like.
  • a method including the following steps (a) to (f) is preferable.
  • B A step of removing a part or all of the oxide film to form anodic oxidation pore generation points on the surface of the aluminum substrate.
  • C After the step (b), the step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
  • D A step of expanding the diameter of the pores after the step (c).
  • E A step of anodizing again in the electrolytic solution after the step (d).
  • F A step of repeatedly performing steps (d) and (e) to obtain a mold in which anodized alumina having a plurality of pores is formed on the surface of an aluminum substrate.
  • Examples of the shape of the aluminum substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape. Since the oil used when processing the aluminum base material into a predetermined shape may be adhered, it is preferable to degrease the aluminum base material in advance.
  • the aluminum substrate is preferably subjected to polishing treatment (mechanical polishing, chemical polishing, electrolytic polishing, etc.) in order to smooth the surface state.
  • polishing treatment mechanical polishing, chemical polishing, electrolytic polishing, etc.
  • the purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and further preferably 99.8% or more. When the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
  • electrolytic solution examples include sulfuric acid, oxalic acid, phosphoric acid and the like.
  • the concentration of oxalic acid is preferably 0.8 M or less. If the concentration of oxalic acid is 0.8 M or less, an increase in current value can be prevented and the surface of the oxide film can be prevented from becoming rough. Further, when the formation voltage is 30 to 100 V, anodized alumina having highly regular pores with a period of 100 nm to 200 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution is 60 ° C. or lower, it is possible to prevent the so-called “yake” phenomenon from occurring, and to suppress damage to the pores and the disorder of the regularity of the pores due to melting of the surface. Can do.
  • the concentration of sulfuric acid is preferably 0.7 M or less. If the concentration of sulfuric acid is 0.7M or less, the current value can be prevented from increasing and a constant voltage can be maintained. Further, when the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with a period of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
  • the temperature of the electrolytic solution is preferably 30 ° C. or lower, and more preferably 20 ° C. or lower. When the temperature of the electrolytic solution is 30 ° C. or less, it is possible to prevent a phenomenon called “burning” from occurring, and to prevent damage to the pores and the disorder of the regularity of the pores due to melting of the surface. Can do.
  • the method for removing the oxide film 24 include a method in which the oxide film 24 is dissolved and removed in a solution that can selectively dissolve the oxide film 24 without dissolving aluminum. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • the pore diameter expansion process is a process for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution capable of dissolving the oxide film 24. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore size expansion processing time, the larger the pore size.
  • Examples of the shape of the pore 22 include a substantially conical shape, a pyramid shape, and a cylindrical shape.
  • the average interval (period) between adjacent pores 22 is preferably not more than the wavelength of visible light, that is, not more than 400 nm, more preferably 25 to 300 nm, and further preferably 80 to 250 nm.
  • the average interval between adjacent pores 22 is measured by measuring the distance between adjacent pores 22 (the distance from the center of the pore 22 to the center of the adjacent pore 22) with an electron microscope at 50 points. The average value.
  • the average depth of the pores 22 is preferably 100 to 400 nm, and more preferably 130 to 300 nm.
  • the average depth of the pores 22 is the distance between the bottom of the pores 22 and the top of the convex portions existing between the pores 22 when the electron microscope is observed at a magnification of 30000 times. It is a value obtained by measuring points and averaging these values.
  • the aspect ratio of the pores 22 (average depth of the pores 22 / average interval between adjacent pores 22) is preferably 0.3 to 4, and more preferably 0.8 to 2.5.
  • the surface of the mold on which the fine concavo-convex structure is formed may be treated with a release agent.
  • the release agent include silicone resins, fluororesins, fluorine compounds, and phosphate esters, and fluorine compounds and phosphate esters are preferable.
  • fluorine compounds include “Fluorolink” manufactured by Solvay Specialty Polymers Japan Co., Ltd., fluoroalkylsilane “KBM-7803” manufactured by Shin-Etsu Chemical Co., Ltd., “MRAF” manufactured by Asahi Glass Co., Ltd., and Harves Co., Ltd.
  • OPTOOL HD1100 “OPTOOL HD2100 series” manufactured by Daikin Industries, Ltd., “Novec EGC-1720” manufactured by Sumitomo 3M Limited, “FS-2050” series manufactured by Fluoro Technology Co., Ltd., etc. Is mentioned.
  • a (poly) oxyalkylene alkyl phosphate compound is preferable.
  • Commercially available products include “JP-506H” manufactured by Johoku Chemical Industry Co., Ltd., “Mold With INT-1856” manufactured by Accel Corporation, “TDP-10”, “TDP-8”, “TDP” manufactured by Nikko Chemicals Co., Ltd.
  • release agents may be used alone or in combination of two or more.
  • the fine uneven structure of the laminated structure is the fine uneven structure on the surface of the anodized alumina. It is formed by transferring the structure.
  • a manufacturing apparatus for manufacturing a laminated structure and a manufacturing method of the laminated structure using the manufacturing apparatus will be specifically described.
  • the laminated structure 10 shown in FIG. 1 is manufactured as follows using, for example, the manufacturing apparatus shown in FIG. Between the roll-shaped mold 30 having an inverted structure (not shown) having a fine concavo-convex structure on the surface and the base material 12 that is a strip-shaped film moving along the surface of the roll-shaped mold 30, an intermediate layer is formed from the tank 32. A resin composition (active energy ray-curable resin composition) is supplied.
  • the base material 12 and the resin composition are nipped between the roll-shaped mold 30 and the nip roll 36 whose nip pressure is adjusted by the pneumatic cylinder 34. Thereby, the resin composition is uniformly distributed between the base material 12 and the roll-shaped mold 30, and at the same time, the resin composition is filled in the concave portions of the fine concavo-convex structure of the roll-shaped mold 30.
  • the resin composition is irradiated with active energy rays from the active energy ray irradiation device 38 installed below the roll-shaped mold 30 through the substrate 12 to cure the resin composition.
  • the intermediate layer 14 having a fine concavo-convex structure on which the fine concavo-convex structure on the surface of the roll-shaped mold 30 is transferred is formed.
  • the peeling roll 40 By peeling the base material 12 on which the intermediate layer 14 having a fine concavo-convex structure is formed on the surface from the roll-shaped mold 30 with the peeling roll 40, a laminate 10 ′ in which the intermediate layer 14 is laminated on the base material 12 is obtained. .
  • the laminated body 10 ′ is moved along the surface of the roll-shaped mold 30 instead of the base material 12, and the tank 32 is interposed between the laminated body 10 ′ and the roll-shaped mold 30.
  • a resin composition for the outermost layer (active energy ray-curable resin composition) is supplied from the substrate, and the resin composition is uniformly distributed between the laminate and the roll-shaped mold 30, and at the same time, the roll-shaped mold 30 Fill in the recesses of the fine relief structure.
  • the resin composition is irradiated with active energy rays through the substrate 12 to cure the resin composition.
  • the outermost layer 16 having a fine concavo-convex structure on which the fine concavo-convex structure on the surface of the roll-shaped mold 30 is transferred is formed.
  • the laminate 10 ′ having the outermost surface layer 16 having the fine uneven structure on the surface is peeled from the roll-shaped mold 30 by the peeling roll 40, thereby having the fine uneven structure on the surface as shown in FIG.
  • the laminated structure 10 in which the intermediate layer 14 and the outermost layer 16 are sequentially laminated on the substrate 12 is obtained.
  • an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, an LED lamp or the like is preferable.
  • the amount of light irradiation energy is preferably 100 to 10,000 mJ / cm 2 .
  • the intermediate layer 14 and the outermost layer 16 may be formed using the same manufacturing apparatus, or may be formed using different manufacturing apparatuses. When the same manufacturing apparatus is used, the manufacturing apparatus can be prevented from increasing in size. In this case, when the shape of the concave and convex portions of the fine concavo-convex structure is different in each layer, the mold is replaced with the outermost layer mold when switching from the formation of the intermediate layer 14 to the formation of the outermost layer 16. When using different manufacturing apparatuses, the intermediate layer 14 and the outermost layer 16 can be formed continuously.
  • the method of forming the intermediate layer 14 and the outermost layer 16 is not limited to the method described above.
  • the intermediate layer 14 may be formed by the step (1-2) shown in the description of the second aspect to be described later.
  • the laminated structure 10 in the first aspect described above has a fine concavo-convex structure on the surface of the outermost layer 16, the optical performance such as antireflection performance is good. Moreover, since the laminated structure 10 includes the outermost layer 16 having a specific elastic recovery rate and the intermediate layer 14 having a specific Martens hardness between the outermost layer 16 and the base material 12, scratch resistance is obtained. Both the property and the pencil hardness can be increased, and the mechanical properties of the surface of the laminated structure 10 are enhanced.
  • the laminated structure 10 is excellent in optical performance and scratch resistance, and exhibits high pencil hardness.
  • the laminated structure 10 of the present invention has a specific Martens hardness.
  • An intermediate layer 14 is provided. Therefore, even if the thickness of the laminated structure 10 is reduced by reducing the thickness of the intermediate layer 14 (for example, about 5 ⁇ m), sufficient pencil hardness can be obtained.
  • the intermediate layer is a layer made of a cured product of the active energy ray-curable resin composition
  • the active energy ray-curable resin composition is not cured or the curing is weakened when the intermediate layer is formed.
  • the surface of the intermediate layer may adhere to the transport roll, or blocking may occur when the films are stacked.
  • the surface of the intermediate layer 14 since the surface of the intermediate layer 14 also has a fine concavo-convex structure, the adhesion between the intermediate layer 14 and the outermost layer 16 is excellent due to the anchor effect by the concavo-convex structure. Furthermore, since the surface of the intermediate layer 14 has a fine concavo-convex structure and is excellent in adhesion to the outermost layer 16, the active energy ray-curable resin composition is formed when the intermediate layer 14 is formed for the purpose of improving adhesion. There is no need to cure or weaken the cure.
  • the base material 12 has a belt shape such as a film shape or a film shape
  • the surface of the intermediate layer 14 adheres to the transport roll or the films are stacked when the base material 12 on which the intermediate layer 14 is formed is wound. It is difficult for problems such as blocking to occur. Further, even when the intermediate layer 14 is formed by weakening the curing, blocking that is likely to occur when smooth surfaces are overlapped with each other is less likely to occur due to the fine uneven structure on the surface of the intermediate layer 14.
  • the fine concavo-convex structure is characterized by the convex pitch, the average convex height, and the aspect ratio which is the balance between the convex pitch and the average convex height.
  • the adhesiveness between the layers tends to be better as the pitch of the protrusions is narrower, the average height of the protrusions is higher, and the aspect ratio is higher.
  • the larger the pitch of the convex portions, the lower the average height of the convex portions, and the smaller the aspect ratio the more the scratch resistance of the surface of the laminated structure 10 tends to be improved. The phenomenon that the structure collapses hardly occurs.
  • the average height of the convex portions of the fine concavo-convex structure is the same in the intermediate layer 14 and the outermost layer 16, but the pitch of the convex portions is higher in the fine concavo-convex structure of the outermost layer 16.
  • the fine uneven structure of the intermediate layer 14 is larger and the aspect ratio is smaller in the fine uneven structure of the outermost layer 16 than in the fine uneven structure of the intermediate layer 14.
  • a fine concavo-convex structure with a wide convex portion pitch and a small aspect ratio is formed on the surface of the outermost layer 16, and a fine concavo-convex structure with a narrow convex portion pitch and a large aspect ratio is formed on the surface of the intermediate layer 14.
  • the laminated structure 10 thus produced has a good balance between scratch resistance and adhesion.
  • the pitch of the convex portions of the fine concavo-convex structure is different between the intermediate layer 14 and the outermost layer 16, these fine concavo-convex structures can be misplaced simply by stacking the outermost layer 16 on the intermediate layer 14.
  • the shape of the fine concavo-convex structure in each layer can be freely designed.
  • the outermost layer 16 having a uniform thickness can be easily formed. Further, since the resin composition is sufficiently filled up to the concave portion of the intermediate layer 14, it is difficult to form a gap between the intermediate layer 14 and the outermost layer 16. Moreover, the pitch of the convex portions, the average height of the convex portions, and the aspect ratio of the intermediate layer 14 and the outermost layer 16 can be changed by simply changing to a mold when forming the intermediate layer 14 and when forming the outermost layer 16. Different fine concavo-convex structures can be easily formed.
  • the laminated structure in the first aspect of the present invention comprises an antireflection article (antireflection film, antireflection film, etc.), an optical article (optical waveguide, relief hologram, lens, polarization separation element, etc.), cell culture sheet, super repellent material.
  • an antireflection article antireflection film, antireflection film, etc.
  • an optical article optical waveguide, relief hologram, lens, polarization separation element, etc.
  • cell culture sheet super repellent material.
  • Application development as various articles such as aqueous articles and superhydrophilic articles can be expected. Among these, it is particularly suitable for use as an antireflection article.
  • the article in the first aspect of the present invention is provided with the laminated structure in the first aspect of the present invention on the surface.
  • antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet.
  • image display devices liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.
  • an antireflection sheet may be directly attached to the image display surface as an antireflection article, and an antireflection film as an antireflection article on the surface of a member constituting the image display surface. May be formed directly, or an antireflection film may be formed on the front plate as an antireflection article.
  • the laminated structure in the first aspect of the present invention is not limited to the one described above.
  • a fine uneven structure is also formed on the surface of the intermediate layer 14, but the intermediate layer 14 has a fine uneven structure on the surface like the laminated structure 50 shown in FIG. It may not have.
  • the method of forming the intermediate layer 14 having a flat surface on the substrate 12 is not particularly limited, but a coextrusion molding method, a laminating molding method, a casting method, a coating method, a transfer method, Known methods such as
  • a base material and an intermediate layer material are extruded in a molten state by a known method such as a T-die molding method or an inflation molding method, laminated, and then cooled by a cooling roll or the like.
  • the method of cooling by is mentioned.
  • a lamination molding method a base material is prepared in advance by an extrusion molding method, and the intermediate layer material is extruded in a molten state on the surface of the base material, laminated, and then cooled by a cooling means such as a cooling roll.
  • the method of cooling by is mentioned.
  • the intermediate layer material such as the resin composition described above is dissolved or dispersed in an organic solvent alone or a mixture such as toluene, MEK, ethyl acetate, etc.
  • a solution of about 70% by mass is prepared, and this is developed by an appropriate development method such as a casting method or a coating method, dried, and cured with active energy rays as necessary, and directly attached to the surface of the substrate.
  • the method of doing is mentioned.
  • a transfer method an intermediate layer material such as the above-described resin composition is filled between a transfer roll (mold) having a mirror surface and a base material, and the intermediate layer material is interposed between the base material and the transfer roll. And a method of irradiating the material of the intermediate layer with active energy rays and curing the material of the intermediate layer.
  • the intermediate layer 14 having a flat surface can be formed by the step (1) shown in the description of the second aspect to be described later. If the intermediate layer 14 having a flat surface is formed by the step (1) described later, the adhesion with the outermost layer 16 is improved.
  • the intermediate layer 14 is composed of one layer.
  • the intermediate layer 14 is composed of a plurality of layers. May be.
  • the material, film thickness, and physical properties (such as mechanical characteristics and optical performance) of each layer may be the same or different.
  • the laminated structure 60 shown in FIG. 5 is configured by laminating the intermediate layer 14 and the outermost layer 16 in this order on the substrate 12.
  • the intermediate layer 14 of the multilayer structure 60 includes two layers 14a and 14a having a fine uneven structure on the surface, and the surface of the outermost layer 16 also has a fine uneven structure.
  • the concave and convex portions of the fine concavo-convex structure of the outermost layer 16 are arranged differently from the concave and convex portions of the fine concavo-convex structure of the layers 14a and 14a having the fine concavo-convex structure on the surface, constituting the intermediate layer 14, and the surface Further, the fine uneven structure of the layers 14a and 14a having the fine uneven structure is also different in arrangement.
  • a laminated structure 70 shown in FIG. 6 is configured by laminating an intermediate layer 14 and an outermost layer 16 in this order on a base material 12.
  • the intermediate layer 14 of the laminated structure 70 includes two layers, a layer 14a having a fine uneven structure on the surface and a layer 14b having no fine uneven structure on the surface, and the surface of the outermost layer 16 also has a fine uneven structure.
  • the concave and convex portions of the fine uneven structure of the outermost layer 16 are arranged differently from the concave and convex portions of the fine uneven structure of the layer 14 a having the fine uneven structure on the surface, which constitutes the intermediate layer 14.
  • Examples of the material of the layer 14b that does not have a fine concavo-convex structure on its surface include thermoplastic resins, active energy ray-curable resin compositions, and inorganic materials.
  • the outermost layer 16 and the layer 14a having a fine uneven structure on the surface are adjacent to each other, but the outermost layer 16 and the layer 14b having no fine uneven structure on the surface are formed. It may be adjacent.
  • the pitches of the concavo-convex structure of each layer and the aspect ratio are different.
  • the aspect ratio or the like may be the same.
  • the laminated structures 10, 60, and 70 shown in FIGS. 1, 5, and 6 have the same concave and convex shapes of the fine concavo-convex structure of each layer (in the case of FIGS. 1, 5, and 6, the substantially conical shape).
  • the shape of the concave and convex portions of the fine concavo-convex structure may be different in each layer, and may be appropriately selected according to the effect required for the fine concavo-convex structure.
  • a separate film may be provided on the back surface of the substrate 12 via an adhesive layer.
  • the pressure-sensitive adhesive layer By providing the pressure-sensitive adhesive layer, it can be easily attached to other film-like or sheet-like articles (front plate, polarizing element, etc.).
  • the laminated structure (laminated body) in the second aspect of the present invention is a laminated structure comprising three or more layers including a substrate, an intermediate layer (second layer), and an outermost layer (fine concavo-convex structure layer) ( Hereinafter, it may be referred to as “multilayer laminate”.
  • the fine concavo-convex structure includes a nano concavo-convex structure.
  • the number of intermediate layers may be two or more, but is preferably one from the viewpoint of productivity and cost.
  • a laminated structure obtained by laminating a base material and an intermediate layer, wherein the reaction rate of the polymerizable functional group on the surface of the intermediate layer is 35 to 85 mol%.
  • the characteristic laminated structure is referred to as “two-layer laminated body”. This two-layer laminate is a laminate structure that can be used in the production of the multilayer laminate.
  • the base material may be any material as long as it can support the outermost layer as a surface layer through the intermediate layer. However, as will be described later, in order to enable the use of a light-shielding mold (stamper) when manufacturing a laminated structure, an active energy ray is applied to the resin composition for the outermost layer via a substrate. Since it is required to irradiate, a base material having translucency with respect to the active energy ray (hereinafter sometimes referred to as “light-transmitting base material”) is preferable.
  • the light-transmitting substrate is not particularly limited as long as it is a molded body that transmits the active energy ray. Examples of the material constituting the light-transmitting substrate include the following.
  • Synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, lactone ring-containing (co) polymer, cycloolefin (co) polymer; cellulose diacetate Semi-synthetic polymers such as cellulose triacetate and cellulose acetate butyrate; Polyesters such as polyethylene terephthalate and polylactic acid; Polyamide, Polyimide, Polyethersulfone, Polysulfone, Polyethylene, Polypropylene, Polymethylpentene, Polyvinyl chloride, Polyvinyl acetal, Poly Ether ketone, polyurethane, composites of these polymers (eg, composites of polymethyl methacrylate and polylactic acid, composites of polymethyl methacrylate and polyvinyl chloride); glass.
  • Synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, sty
  • the shape and manufacturing method of the substrate are not particularly limited.
  • an injection molded body, an extrusion molded body, and a cast molded body can be used.
  • the shape may be a sheet shape, a film shape, or other three-dimensional shapes.
  • the shape is preferably a flexible film.
  • the surface of the substrate may be coated or corona treated for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, and weather resistance.
  • the thickness is preferably 500 ⁇ m or less.
  • middle layer (2nd layer) in the laminated structure of the 2nd aspect of this invention is a hardened
  • the resin composition (X) the polymerizable component (a) and the active energy ray polymerization initiator (d) are essential components, the other polymerizable component (b), the other component (c), and the solvent (e ) Is preferably used.
  • the intermediate layer has a role of imparting pencil hardness to the multilayer laminate in the second aspect of the present invention. Specifically, in the pencil hardness test, it is prevented from being indented on the base material by being pushed by the pencil core, and high pencil hardness can be realized.
  • the intermediate layer is required to have adhesion to the substrate and the outermost layer.
  • the adhesion between the base material and the intermediate layer may be a method in which a solvent is used to apply the intermediate layer resin composition (X) onto the base material so as to adhere to the base material.
  • Other methods include adding a component having substrate adhesion to the polymerizable component (a) of the resin composition (X) for the intermediate layer.
  • the adhesion between the intermediate layer and the outermost layer is obtained by providing the surface of the intermediate layer in contact with the outermost layer with a polymerizable functional group that is copolymerizable with the resin composition (Y) used for forming the outermost layer. It can be secured. By doing so, the adhesion between the intermediate layer and the outermost layer can be imparted when the resin composition (Y) is polymerized and cured. Specifically, when the resin composition (X) for the intermediate layer is polymerized and cured, adhesion to the outermost layer is imparted by intentionally leaving many unreacted polymerizable functional groups on the surface of the intermediate layer. it can.
  • the reaction rate of the polymerizable functional group on the surface of the intermediate layer necessary for ensuring the adhesion between the intermediate layer and the outermost layer is preferably 35 to 85 mol%. 45 to 75 mol% is more preferable, and 55 to 70 mol% is particularly preferable.
  • the reaction rate is 35 mol% or less, the surface of the intermediate layer becomes uncured, and the coating surface becomes rough when it comes into contact with other things. In the intermediate layer in such a state, when the coating surface comes into contact with the transport roll after the intermediate layer is formed, the coating surface becomes rough or it is difficult to wind up once after the intermediate layer is formed.
  • the reaction rate exceeds 75 mol%, the amount of unreacted polymerizable functional groups remaining on the surface of the intermediate layer becomes too small, and the adhesion with the outermost layer is lowered.
  • a measuring method means such as infrared spectroscopic measurement, Raman spectroscopic measurement, and analysis of the element after a loading reaction such as bromine can be considered, but infrared spectroscopic measurement is preferable because it can be measured efficiently and with high reproducibility.
  • the interface reflection between the base material and the intermediate layer and between the intermediate layer and the outermost layer is small. It is possible to suppress the occurrence of interference fringes by keeping the interface reflection low, and when the multilayer laminate in the second aspect of the present invention has antireflection performance, the antireflection performance can be sufficiently exhibited. it can.
  • a method of suppressing interface reflection a method of sufficiently infiltrating the composition of one layer into the surface of the other layer so that a change in refractive index at the interface of each layer becomes gentle, and a method of reducing the difference in refractive index of each layer Is mentioned. These two types of methods may be combined or singly.
  • Resin composition (X) Polymerizable component (a)
  • the polymerizable component (a) has a role of imparting pencil hardness to the multilayer laminate in the second embodiment of the present invention. Specifically, in the pencil hardness test, it is possible to impart high pencil hardness by preventing the indentation from being formed on the multilayer laminate by being pushed by the pencil core.
  • the adhesiveness is increased when the resin composition (Y) for the outermost layer is laminated and cured from above. It needs to be good. For that purpose, it is important to leave many polymerizable functional groups on the surface of the intermediate layer of the two-layer laminate as described above. As a result of intensive studies, the inventors of the present invention can easily adjust the reaction rate of the polymerizable functional group on the surface of the intermediate layer to a preferable range by including the specific polymerizable component (a) in the resin composition (X), It has been found that the pencil hardness of the multilayer laminate can be increased.
  • Examples of the polymerizable component (a) include the following. Pentaerythritol (tri) tetraacrylate, dipentaerythritol (penta) hexaacrylate, polypentaerythritol polyacrylate, and reaction product of pentaerythritol (tri) tetraacrylate and diisocyanate, dipentaerythritol (penta) hexaacrylate and diisocyanate Compounds having a polymerizable functional group such as a reaction product, a reaction product of (poly) pentaerythritol (poly) acrylate and diisocyanate.
  • a plurality of types of polymerizable components (a) may be combined or used alone.
  • a reaction product of pentaerythritol (tri) tetraacrylate and hexamethylene diisocyanate A reaction product of pentaerythritol (tri) tetraacrylate and hexamethylene diisocyanate. Combinations of (poly) pentaerythritol (poly) acrylate and reaction products of (poly) pentaerythritol (poly) acrylate and hexamethylene diisocyanate.
  • the diisocyanate is preferably a structure such as hexamethylene diisocyanate in terms of both pencil hardness and adhesion.
  • the polymerizable component (a) is preferably 30 to 100% by mass and more preferably 50 to 100% by mass with respect to 100% by mass of the total polymerizable components contained in the resin composition (X). If it is 30% by mass or more, it is preferable in terms of improving adhesion and pencil hardness, and if it is less than 100% by mass, “other polymerizable component (b)” other than the polymerizable component (a) can be added. , Substrate adhesion, leveling, viscosity adjustment, high hardness, flexibility, reactivity control, UV absorption, antioxidant, blocking prevention, gas barrier, antistatic, color tone adjustment, heat resistance, curl suppression, etc. It is preferable at the point which can provide the functionality of.
  • the polymerizable component (b) is a compound having a polymerizable functional group (excluding the polymerizable component (a)), and examples thereof include a radical polymerizable compound, a cationic polymerizable compound, and an anion polymerizable compound.
  • a radical polymerizable compound is preferred because of its high polymerization rate and wide range of material selection.
  • the radical polymerizable functional group a (meth) acryloyl group having excellent active energy ray curability and abundant choice of materials is preferable.
  • the polymerizable component (a) has a (meth) acryloyl group, a compound having a copolymerizability with the polymerizable component (a) is preferable.
  • Functions that can be imparted to the polymerizable component (b) include substrate adhesion, leveling, viscosity adjustment, high hardness, flexibility, reactivity control, ultraviolet absorption, antioxidant, antiblocking, gas barrier Properties, antistatic properties, color tone adjustment, heat resistance, curl suppression and the like.
  • Examples of the polymerizable component (b) include tri- or higher functional (meth) acrylates, bifunctional (meth) acrylates, and monofunctional (meth) acrylates.
  • trifunctional or higher functional (meth) acrylates include the following. Glycerin triacrylate, diglycerin tetraacrylate, polyglycerin polyacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, sorbitol hexaacrylate, isocyanuric acid EO-modified triacrylate and the like. Furthermore, the alkylene oxide modified body, caprolactone modified body, etc. of said compound are mentioned. In the present specification, “EO modification” means ethylene oxide modification.
  • bifunctional (meth) acrylate examples include the following. Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, polybutadiene-terminated diacrylate, hydrogenated polybutadiene-terminated diacrylate, alkoxylated bisphenol A diacrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tri Cyclodecanedimethanol di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, 9,9-bis [4- (2-acryloyloxyethoxy) pheny ] Fluorene, 1,
  • Examples of monofunctional (meth) acrylates include the following. Ethoxylated o-phenylphenol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, (iso) stearyl ( (Meth) acrylate, N, N-dimethylacrylamide, acryloylmorpholine, N, N-diethylacrylamide, dimethylaminoethyl acrylate, hydroxyethyl acrylamide, 2-hydroxyethyl (meth) acrylate, 3- (meth) acryloxypropyltrimethoxysilane 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole, 1,2,2,6,6-pentamethy -4-
  • Examples of the polymerizable component (b) further include silicone (meth) acrylates and fluorine-containing (meth) acrylates.
  • compounds obtained by modifying the surface of inorganic fine particles such as colloidal silica with a silane coupling agent having a (meth) acryloyl group are also effective components for improving pencil hardness and preventing blocking.
  • the active energy ray polymerization initiator (d) is a compound that generates an active species that is cleaved by irradiating active energy rays to initiate a polymerization reaction.
  • the active energy ray ultraviolet rays are preferable from the viewpoint of apparatus cost and productivity.
  • the active species to be generated is preferably a radical in terms of reaction rate.
  • Examples of the active energy ray polymerization initiator (d) that generates radicals by ultraviolet rays include the following. Benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone, 2-ethylanthraquinone, thioxanthones (2,4-diethylthioxanthone , Isopropylthioxanthone, 2,4-dichlorothioxanthone, etc.), acetophenones (diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, 2 -Methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-d
  • Active energy ray polymerization initiator (d) may be used alone or in combination of two or more. When using together, it is preferable to use together 2 or more types from which absorption wavelength differs.
  • thermal polymerization initiator such as a persulfate (potassium persulfate, ammonium persulfate, etc.), a peroxide (benzoyl peroxide, etc.), an azo initiator, or the like may be used in combination.
  • the proportion of the active energy ray polymerization initiator (d) in the resin composition (X) is preferably 0.01 to 10% by mass with respect to 100% by mass of the solid content of the resin composition (X). Is more preferably 5 to 5% by mass, and further preferably 0.2 to 3% by mass. If the ratio of the active energy ray polymerization initiator (d) is less than 0.01% by mass, the resin composition (X) is not completely cured, and a sufficient elastic modulus cannot be imparted to the intermediate layer. May decrease.
  • the ratio of the active energy ray polymerization initiator (d) exceeds 10% by mass, the unreacted active energy ray polymerization initiator (d) remains in the intermediate layer, which acts as a plasticizer, and the elastic modulus of the intermediate layer. May be reduced, and the pencil hardness of the multilayer laminate may be impaired. Moreover, it may cause coloring.
  • the resin composition (X) can contain a solvent (e).
  • solvent (e) By the solvent (e), the coating property and the substrate adhesion when the resin composition (X) is applied and dried are ensured.
  • the viscosity of the resin composition (X) that provides good coatability of the intermediate layer is preferably 5 to 200 [mPa ⁇ sec] at 25 ° C., more preferably 10 to 100 mPa [mPa ⁇ sec].
  • an E-type viscometer or a B-type viscometer can be used for measuring the viscosity. If the viscosity is too low, the thickness of the intermediate layer after drying cannot be increased, and the target pencil hardness may not be achieved. If the viscosity is too high, the leveling property at the time of coating may deteriorate, and streaky film thickness unevenness may occur.
  • the solid content concentration of the resin composition (X) is preferably 30% by mass to 80% by mass, and more preferably 35% by mass to 60% by mass. If the solid content concentration is too high, the amount of the solvent (e) is small, so that the intermediate layer may not sufficiently penetrate into the base material, and the adhesion between the intermediate layer and the base material may be reduced. If the solid content concentration is too low, the thickness of the intermediate layer after drying cannot be increased, and the target pencil hardness may not be achieved in the multilayer laminate.
  • Solvent (e) preferably contains a solvent that dissolves the base material in order to ensure adhesion to the base material.
  • the solvent (e) contains a solvent that dissolves the base material, a relaxation layer in which the interface between the base material and the intermediate layer is compatible can be formed, and as a result, adhesion is improved. In such a state, since the interface reflection between the base material and the intermediate layer can be reduced, there is an effect that the generation of interference fringes and the like can be suppressed.
  • examples of the solvent for dissolving triacetyl cellulose include the following.
  • Ethers having 3 to 12 carbon atoms specifically, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5- Trioxane, tetrahydrofuran, anisole, phenetole and the like;
  • Ketones having 3 to 12 carbon atoms specifically, acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone;
  • Esters having 3 to 12 carbon atoms specifically, ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, propion brewed ethyl, n-pent
  • Organic solvent having two or more kinds of functional groups Specifically, methyl 2-methoxyacetate, methyl 2-ethoxyacetate, ethyl 2-ethoxyacetate, ethyl 2-ethoxypropionate, 2-methoxyethanol, 2-propoxyethanol 2-butoxyethanol, 1,2-diacetoxyacetone, acetylacetone, diacetone alcohol, methyl acetoacetate, ethyl acetoacetate and the like.
  • halogen hydrocarbons dissolve triacetyl cellulose, but it is preferable not to use them in terms of the global environment and work environment.
  • the solvent (e) is a combination of a solvent having a high evaporation rate and a solvent having a low evaporation rate.
  • a solvent having a high evaporation rate By combining a solvent with a high evaporation rate and a slow solvent, it is possible to achieve both a short drying time and an excellent surface condition.
  • the residence time of the solvent In the case of only a solvent having a high evaporation rate, the residence time of the solvent is too short, and the time for the resin composition (X) to penetrate into the base material cannot be secured, resulting in a decrease in adhesion, and the surface becomes rough and cloudy. There is a case.
  • the drying time becomes long, the line speed becomes slow, and productivity may be lowered.
  • the mass composition ratio “s1: s2” of the solvent s1 having a high evaporation rate and the solvent s2 having a low evaporation rate is preferably in the range of about 40:60 to 90:10. Since the drying time and the permeability to the substrate differ depending on the type of solvent to be combined, it is necessary to optimize the composition ratio for each type of solvent to be combined.
  • the solvent (e) can control the amount of penetration of the intermediate layer into the base material by combining a solvent that dissolves the base material and a solvent that does not dissolve the base material.
  • the intermediate layer resin composition (X) used in the present invention can contain, for example, the following additives as required.
  • Known additives such as a ring agent, a colorant, a reinforcing agent, an impact modifier, and a conductivity imparting agent.
  • an antistatic agent, an ultraviolet absorber, a near-infrared absorber, or the like is contained in the outermost layer, it may be difficult to maintain the shape of the nano uneven structure. It is preferable to contain in an intermediate
  • ⁇ Antistatic agent suppresses dust and the like from adhering to the laminated structure.
  • the antistatic agent include the following. Conductive polymers such as polythiol, polythiophene and polyaniline, inorganic fine particles such as carbon nanotubes and carbon black, lithium salts and quaternary ammonium salts as exemplified in JP-A-2007-70449. These may be used alone or in combination.
  • a lithium perfluoroalkyl acid salt that exhibits stable performance at a relatively low price without impairing the transparency of the laminated structure is preferable.
  • the addition amount of the antistatic agent is preferably 0.5 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total polymerizable components in the resin composition (X). If it is 0.5 mass part or more, the surface resistance value of a laminated structure can be made low, and dust adhesion prevention performance is exhibited. If it is 20 mass parts or less, the improvement degree of the performance per addition amount will be favorable, and cost can be suppressed. In order to exhibit good antistatic performance, the thickness of the outermost layer laminated on the intermediate layer is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the near-infrared absorber gives a heat insulating effect to the laminated structure, and when the laminated structure is used for a plasma display or the like, it can suppress malfunction of the infrared remote controller of various home appliances.
  • Examples of the near infrared absorber include the following. Organic dyes such as diimonium dyes, phthalocyanine dyes, dithiol metal complex dyes, substituted benzenedithiol metal complex dyes, cyanine dyes, squalium dyes, conductive antimony-containing tin oxide fine particles, conductive tin Inorganic oxides such as indium oxide fine particles, tungsten oxide fine particles, and composite tungsten oxide fine particles. These may be used alone or in combination.
  • additives may be added to the outermost layer of the multilayer laminate. However, it is preferable to add to the intermediate layer without adding to the outermost layer because it is possible to suppress the maintenance of the nano uneven surface shape from being inhibited and to suppress the occurrence of bleed out over time. .
  • the outermost layer of the multilayer laminate in the second aspect of the present invention is a layer composed of a cured product of the active energy ray-curable resin composition (Y).
  • This outermost layer preferably has a concavo-convex structure in which the interval between adjacent convex portions is not more than the wavelength of visible light.
  • the resin composition (Y) those containing a polymerizable component (g), an active energy ray polymerization initiator (h), and a release agent (j) are preferably used. It is preferable that the resin composition (Y) bears the scratch resistance performance of the fine concavo-convex structure after being cured and the outermost layer is formed.
  • the resin composition (X) and the resin composition (Y) used as raw materials both contain a (meth) acrylate compound. It is preferable in that the resin composition (X) and the resin composition (Y) both contain a (meth) acrylate compound and can be copolymerized at the interface between the outermost layer and the intermediate layer to improve adhesion.
  • Polymerizable component (g) examples of the compound that can be used as the polymerizable component (g) include a radical polymerizable compound, a cationic polymerizable compound, an anion polymerizable compound, and the like. preferable.
  • a radical polymerizable functional group a (meth) acryloyl group having excellent active energy ray curability and abundant choice of materials is preferable.
  • the compound having a (meth) acryloyl group that can be used as the polymerizable component (g) is preferably composed of a bifunctional or higher (meth) acrylate as a main component in order to increase the scratch resistance of the fine relief structure. More preferably, the main component is the above (meth) acrylate.
  • the elastic modulus becomes high but becomes brittle, and the fine concavo-convex structure is easily broken or scraped, so that high scratch resistance cannot be obtained. Therefore, for example, it is effective to introduce an oxyethylene group into the cross-linked structure to give flexibility and improve scratch resistance.
  • polyethylene glycol di (meth) acrylate can be used, or tri- or higher functional EO-modified (meth) acrylate can be used.
  • ком ⁇ онент is a numerical value represented by the molecular weight per (meth) acryloyl group.
  • the component (g1) when a (meth) acrylate having an acrylic equivalent of less than 150 [g / eq] is a hard component and a (meth) acrylate having an acrylic equivalent of 150 [g / eq] or more is a soft component,
  • the component (g1) include the following.
  • urethane acrylate synthesized by reacting pentaerythritol triacrylate or dipentaerythritol pentaacrylate having a hydroxyl group with an isocyanate compound such as hexamethylene diisocyanate or isophorone diisocyanate can be mentioned.
  • Examples of commercially available hard components include the following. Aronix series manufactured by Toagosei Co., Ltd .: M-309, M-315, M-306, M-305, M-451, M-450, M-408, M-403, M-400, M-402, M-404, M-406, M-405, etc.
  • a hard component may be used individually by 1 type and may use 2 or more types together.
  • Examples of the soft component (g2) that imparts flexibility to the fine concavo-convex structure to improve the scratch resistance include the following. Polyethylene glycol di (meth) acrylate, pentaerythritol EO modified tetra (meth) acrylate, dipentaerythritol EO modified hexaacrylate, tripentaerythritol EO modified (meth) acrylate, (poly) glycerin EO modified poly (meth) acrylate, sorbitol EO Modified hexaacrylate, trimethylolpropane EO modified triacrylate, etc.
  • Examples of commercially available soft ingredients include the following. NK series manufactured by Shin-Nakamura Chemical Co., Ltd .; A-200, A-400, A-600, A-1000, 4G, 9G, 14G, 23G, A-PG5009E, A-PG5027E, A-PG-5054E, A -GLY-9E, A-GLY-20E, ATM-35E, etc. Toho Chemical Industries, Ltd .: T-200EA, S-130EA, etc. KAYARAD series manufactured by Nippon Kayaku Co., Ltd .; DPEA-12, etc.
  • a soft component may be used individually by 1 type and may use 2 or more types together.
  • the ratio of the hard component and the soft component in the polymerizable component (g) is appropriately adjusted depending on the compound used.
  • the acrylic equivalent of the polymerizable component (g) when the structure period of the fine uneven structure is about 100 nm, it is about 130 to 160 [g / eq], and when the structure period of the fine uneven structure is about 180 nm, it is 200 to 300. It is preferable to adjust at about [g / eq].
  • the optimum resin hardness varies depending on the structure period. As the structural period is smaller, a phenomenon in which a plurality of uneven projections are in close contact with each other is more likely to occur. Therefore, it is necessary to reduce the acrylic equivalent and harden the cured resin composition (Y).
  • Examples of other compounds that can be used as the polymerizable component (g) include monofunctional (meth) acrylates other than those described above, urethane (meth) acrylates, epoxy (meth) acrylates, polyester (meth) acrylates, and reactive polymers. Etc.
  • the active energy ray polymerization initiator (h) is a compound that generates an active species that is cleaved by irradiating active energy rays to initiate a polymerization reaction.
  • the active energy ray ultraviolet rays are preferable from the viewpoint of apparatus cost and productivity.
  • the active species to be generated is preferably a radical in terms of reaction rate.
  • Examples of the active energy ray polymerization initiator (h) that generates radicals by ultraviolet rays include the same compounds as the active energy ray polymerization initiator (d).
  • Active energy ray polymerization initiator (h) may be used alone or in combination of two or more. When using together, it is preferable to use together 2 or more types from which absorption wavelength differs. Moreover, you may use together thermal polymerization initiators, such as persulfate (potassium persulfate, ammonium persulfate, etc.), peroxides (benzoyl peroxide, etc.), an azo initiator, as needed.
  • persulfate potassium persulfate, ammonium persulfate, etc.
  • peroxides benzoyl peroxide, etc.
  • an azo initiator as needed.
  • the proportion of the active energy ray polymerization initiator (h) in the resin composition (Y) is preferably 0.01 to 10% by mass, and 0.1 to 7% by mass with respect to 100% by mass of the polymerizable component (g). % Is more preferable, and 0.2 to 5% by mass is further preferable. If the ratio of the active energy ray polymerization initiator (h) is less than 0.01% by mass, the resin composition (Y) is not completely cured, and a sufficient elastic modulus cannot be imparted to the intermediate layer. May decrease.
  • the ratio of the active energy ray polymerization initiator (h) exceeds 10% by mass, the unreacted active energy ray polymerization initiator (h) remains in the cured product, which acts as a plasticizer, and the elastic modulus of the cured product. May be reduced, and the pencil hardness of the multilayer laminate may be impaired. Moreover, it may cause coloring of the multilayer laminate.
  • the resin composition (Y) may further contain an ultraviolet absorber and / or an antioxidant.
  • the ultraviolet absorber include benzophenone, benzotriazole, hindered amine, benzoate, and triazine.
  • examples of commercially available products include UV absorbers such as “Tinuvin 400” and “Tinuvin 479” manufactured by Ciba Specialty Chemicals Co., Ltd., and “Viosorb 110” manufactured by Kyodo Pharmaceutical Co., Ltd.
  • Examples of the antioxidant include hindered phenol-based, benzimidazole-based, phosphorus-based, sulfur-based, and hindered amine-based antioxidants. Examples of commercially available products include “IRGANOX” series and “TINUVIN” series manufactured by BASF.
  • the proportion of the ultraviolet absorber and / or antioxidant in the resin composition (Y) is preferably 0.01 to 5% by mass in total with respect to 100% by mass of the polymerizable component (g).
  • the resin composition (Y) preferably contains a release agent (j).
  • the release agent (j) is added in order to maintain the releasability from the mold over a long period in the step of curing the resin composition (Y) to transfer the fine uneven structure on the mold surface.
  • Examples of the release agent (j) include silicone resins, fluororesins, fluorine compounds, and phosphate esters, and phosphate esters are particularly preferable.
  • a (poly) oxyalkylene alkyl phosphoric acid compound is preferable, and examples of commercially available products include the following. Johoku Chemical Co., Ltd .: JP-506H; Accel Corp .: Mold with INT-1856; Nikko Chemicals Co., Ltd .: TDP-10, TDP-8, TDP-6, TDP-2, DDP-10, DDP-8 , DDP-6, DDP-4, DDP-2, TLP-4, TCP-5, DLP-10 and the like.
  • the ratio of the release agent (j) in the resin composition (Y) is preferably 0.01 to 1% by mass, and preferably 0.1 to 0.5% by mass with respect to 100% by mass of the polymerizable component (g). Is more preferable.
  • the resin composition (Y) may be a surfactant, a lubricant, a plasticizer, an antistatic agent, a light stabilizer, a flame retardant, a flame retardant aid, a polymerization inhibitor, a pH adjuster, or a dispersibility aid as necessary.
  • a leveling agent, a filler, a silane coupling agent, a colorant, a reinforcing agent, an impact modifier, a conductivity imparting agent, a solvent and the like may be included.
  • the multilayer laminate in the second embodiment of the present invention includes at least a base material, an intermediate layer, and an outermost layer.
  • a base material In order to improve the antireflection performance by the fine concavo-convex structure on the surface of the multilayer laminate, it is not preferable that reflection occurs at the interface of each layer of the multilayer laminate. Reflection at the interface may lead to deterioration in appearance due to generation of interference fringes as well as a decrease in antireflection performance.
  • the refractive index difference between the base material and the intermediate layer constituting the multilayer laminate is smaller.
  • a relaxation layer in which the interface between the base material and the intermediate layer is compatible with each other can be produced by coating and drying using a solvent.
  • a relaxation layer can be similarly formed.
  • the outermost layer is formed of the solventless resin composition (Y)
  • an interface tends to remain between the intermediate layer and the outermost layer. In this case, it is preferable to reduce the refractive index difference between the outermost layer and the intermediate layer.
  • the refractive index difference between the outermost layer and the intermediate layer is preferably 0 to 0.1, more preferably 0 to 0.05, and further preferably 0 to 0.01.
  • the control of the refractive index difference between each layer is more important.
  • the multilayer laminate in the second embodiment of the present invention can be produced, for example, by a method having the following steps (1) to (3).
  • Step (1) After placing an active energy ray-curable resin composition (X) containing a compound having a polymerizable functional group on a light-transmitting substrate, first active energy ray irradiation is performed on the surface. A step of forming an intermediate layer in which the reaction rate of the polymerizable functional group is 35 to 85 mol%.
  • Step (2) A step of disposing an active energy ray-curable resin composition (Y) between the intermediate layer formed in the step (1) and a mold (stamper) for transferring a fine relief structure.
  • Step (3) Laminate in which the second active energy ray is irradiated from the substrate side, the resin composition (Y) is cured to form the outermost layer, and the substrate, the intermediate layer, and the outermost layer are sequentially laminated. A step of releasing the structure from the mold.
  • Step (1) the resin composition (X) for the intermediate layer is disposed on the substrate. After arranging the resin composition (X), the resin composition (X) can be dried as necessary.
  • the arrangement method of the resin composition (X) can be appropriately selected from various coating methods in consideration of the properties of the resin composition (X).
  • Examples of the arrangement method include a gravure coater, a bar coater, a slot die coater, a lip coater, and a comma coater.
  • the resin composition (X) is polymerized and cured by irradiating the active energy rays.
  • the reaction rate of the polymerizable functional group on the surface of the intermediate layer of the two-layer laminate obtained by irradiating active energy rays is 35 to 85 mol%, more preferably 45 to 75 mol%, and more preferably 55 to 70 mol%. Particularly preferred. When the reaction rate is 35 mol% or less, the surface of the intermediate layer becomes uncured, and the coating surface becomes rough when it comes into contact with other things.
  • the coating surface comes into contact with the transport roll after the intermediate layer is formed, the coating surface becomes rough or it is difficult to wind up once after the intermediate layer is formed. Furthermore, not only the surface of the intermediate layer but also the internal curing becomes insufficient, and the desired pencil hardness may not be obtained.
  • the reaction rate exceeds 75 mol%, the amount of unreacted polymerizable functional groups remaining on the surface of the intermediate layer becomes too small, and the adhesion with the outermost layer is lowered.
  • the active energy ray it is preferable to use ultraviolet rays from the viewpoint of apparatus cost and productivity. What is necessary is just to determine the irradiation amount of an ultraviolet-ray suitably considering the quantity of the polymerization initiator (d) which resin composition (X) contains.
  • the light source that generates ultraviolet rays is not particularly limited, and known ones such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a halogen lamp, and various lasers are used.
  • Estimated integrated light quantity is preferably from 50 ⁇ 1000mJ / cm 2, more preferably 100 ⁇ 500mJ / cm 2.
  • the integrated light amount is too large, the amount of polymerizable functional groups remaining on the surface of the intermediate layer may be out of the preferred range, or the light-transmitting substrate may be damaged by active energy rays. Conversely, if the integrated light quantity is too small, the surface of the intermediate layer may remain in a liquid state without being cured.
  • the thickness of the intermediate layer after curing of the resin composition (X) is preferably about 1 to 20 ⁇ m, and more preferably about 1 to 10 ⁇ m. If the thickness of the intermediate layer is 1 ⁇ m or more, it is possible to suppress a phenomenon in which indentation occurs due to indentation deformation by the pencil to the base material in the pencil hardness test of the multilayer laminate. Moreover, if the thickness of the intermediate layer is 20 ⁇ m or less, it is possible to prevent the problem of cracking during bending and warpage of the multilayer laminate.
  • the thickness accuracy of the intermediate layer is preferably within ⁇ 2 ⁇ m, and more preferably within ⁇ 1 ⁇ m.
  • the protective film can be pasted on the intermediate layer after completion of the step (1).
  • the protective film has a function of preventing foreign matter from adhering to the intermediate layer and preventing the back surface of the substrate and the intermediate layer from blocking once wound up.
  • a known film can be appropriately selected. Examples thereof include polyethylene terephthalate (PET) and polyethylene (PE).
  • PET polyethylene terephthalate
  • PE polyethylene
  • the surface of the protective film can be subjected to various surface treatments such as mold release treatment, anti-blocking treatment, and antistatic treatment.
  • Step (2) the outermost layer layer is formed between the intermediate layer in which the reaction rate of the polymerizable functional group on the surface obtained in the step (1) is 35 to 85 mol% and the fine unevenness transfer mold.
  • a resin composition (Y) is disposed.
  • various known methods can be selected.
  • a method (2-a) in which the resin composition (Y) is coated on an uncured intermediate layer using various coaters and then contacted with a mold;
  • a method (2-b) in which a bank made of the resin composition (Y) is formed between the mold and the intermediate layer, and a curable liquid is supplied to the bank from a nozzle.
  • the coating method of the curable liquid of the resin composition (Y) can be appropriately selected from various coating methods in consideration of the properties of the resin composition (Y).
  • the coating method include a gravure coater, a bar coater, a slot die coater, a lip coater, and a comma coater.
  • Examples of the method (2-b) include a method in which the nozzle is replaced with a slot die coater or the like and the curtain-shaped resin composition (Y) is supplied to the bank.
  • the film thickness of the layer made of the resin composition (Y) can be controlled by the hardness and material of the nip roll with respect to the roll-shaped mold, the nip pressure, or the gap between the roll-shaped mold and the nip roll.
  • the resin composition (Y) contains a solvent
  • the resin composition (Y) is applied on the intermediate layer by the same method as the above method (2-a), and then dried.
  • the thickness of the coating layer made of the resin composition (Y) is preferably about 5 to 40 ⁇ m, and more preferably about 10 to 20 ⁇ m.
  • the thickness accuracy of the coating layer is preferably within ⁇ 2 ⁇ m, and more preferably within ⁇ 1 ⁇ m.
  • the active energy ray is irradiated from the substrate side to cure the resin composition (Y). At that time, it is preferable to further cure the intermediate layer by reacting unreacted polymerizable functional groups present on the surface of the intermediate layer.
  • the active energy ray it is preferable to use ultraviolet rays from the viewpoint of apparatus cost and productivity. What is necessary is just to determine suitably the irradiation amount of an ultraviolet-ray in consideration of the quantity of the polymerization initiator (h) which a resin composition (Y) contains, and the transmittance
  • the light source that generates ultraviolet rays is not particularly limited, and known ones such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a halogen lamp, and various lasers are used.
  • the standard of the integrated light quantity is 200 to 10000 mJ / cm 2 .
  • the base material when the base material absorbs a part of the ultraviolet rays, the base material may absorb the ultraviolet rays when it is irradiated with the ultraviolet rays and become overheated to cause thermal deformation or the like. In that case, it is preferable to take measures such as installing a filter that cuts ultraviolet rays having a wavelength that is absorbed by the base material and does not reach the intermediate layer and the outermost layer, and cooling the laminated structure.
  • the target multilayer laminate can be obtained by releasing from the mold.
  • the mold release agent (j) added to the resin composition (Y) can be released with a low peeling force by the action of the release agent (j), and loss of the fine concavo-convex structure can be prevented during the release.
  • the cured product of the resin on which the fine concavo-convex structure is formed due to thermal shrinkage may be easier to release.
  • the total film thickness of the outermost layer and the intermediate layer cured in the step (3) is preferably about 5 ⁇ m to 80 ⁇ m, more preferably about 8 ⁇ m to 20 ⁇ m.
  • a thinner total film thickness is preferable because the thickness of the entire multilayer laminate is reduced, but in order to make the pencil hardness of the multilayer laminate 2H or higher, a film thickness of a certain level or more is required.
  • FIG. 8A and FIG. 8B are schematic cross-sectional views showing an embodiment of a multilayer structure (multilayer laminate) according to the second aspect of the present invention.
  • a laminated structure 100 in which an intermediate layer (second layer) 150 and an outermost layer (fine concavo-convex structure layer) 120 are sequentially laminated on a substrate 110 is illustrated.
  • the surface of the outermost layer 120 has a fine concavo-convex structure that exhibits surface antireflection properties.
  • the convex portion 130 and the concave portion 140 are formed on the surface of the outermost layer 120 at approximately equal intervals.
  • the shape of the convex portion 130 in FIG. 8A is a conical shape or a pyramid shape
  • the shape of the convex portion 130 in FIG. 8B is a bell shape
  • the shape of the convex portion 130 of the fine concavo-convex structure is not limited thereto, and may be a structure in which the occupation ratio of the cross-sectional area when the cross section of the outermost layer 120 is cut continuously increases.
  • finer convex portions may be united to form a fine concavo-convex structure. That is, even in shapes other than those shown in FIGS. 8A and 8B, the refractive index is continuously increased from the air to the material surface, and the antireflection performance that achieves both low reflectance and low wavelength dependency.
  • the shape is such that a shape such as a conical shape, a pyramidal shape, a bell shape, or the like that the cross-sectional area when cut by a plane perpendicular to the height direction of the convex portion continuously increases from the top to the bottom of the convex portion is preferable.
  • finer protrusions may be united to form the fine concavo-convex structure.
  • the interval between two adjacent convex portions 130 (w1 in FIG. 8A) of the fine concavo-convex structure or the interval between the two concave portions 140 is a size equal to or smaller than the wavelength of visible light.
  • visible light refers to light having a wavelength of 380 to 780 nm. If this interval w1 is 400 nm or less (more preferably 380 nm or less), the scattering of visible light can be suppressed.
  • the laminated structure in the second aspect of the present invention can be suitably used for optical applications such as an antireflection film.
  • the lower limit value of the interval w1 is not particularly limited as long as it can be manufactured.
  • the interval w1 is preferably 20 nm or more, and more preferably 40 nm or more from the viewpoint of ease of production of the mold.
  • the aspect ratio represented by “height d1 / interval w1” is preferably 0.3 or more, more preferably 0.5 or more, from the viewpoint of suppressing an increase in the minimum reflectance or the reflectance at a specific wavelength. .8 or more is particularly preferable.
  • These lower limit values of the aspect ratio are particularly significant in terms of reducing light reflection and reducing incident angle dependency.
  • the upper limit of the aspect ratio is not particularly limited as long as it can be manufactured.
  • the aspect ratio of the convex portion is 5 or less for accurate transfer.
  • the height of the convex portion or the depth of the concave portion is preferably 60 nm or more, more preferably 90 nm or more. preferable.
  • the shape and manufacturing method of the fine concavo-convex structure that exhibits good antireflection performance is described in Japanese Patent Application Laid-Open No. 2009-31764, and the same shape and manufacturing method can be used in the present invention.
  • the size of the fine concavo-convex structure on the surface was determined by observing a longitudinal section of the fine concavo-convex structure by Pt deposition for 10 minutes and observing it with a field emission scanning electron microscope (SM-7400F: manufactured by JEOL Ltd.) at an acceleration voltage of 3.00 kV.
  • SM-7400F field emission scanning electron microscope
  • the distance (period) between two adjacent convex portions (or two adjacent concave portions) and the depth of the convex portion (or concave portion) are measured, measured 10 points each, and the average value can be adopted. .
  • the multilayer structure (multilayer laminate) according to the second aspect of the present invention is optimal as a functional article having a fine uneven structure on the outermost layer.
  • a functional article include an antireflection article and a water-repellent article provided with the multilayer laminate in the second aspect of the present invention.
  • a display or a member for an automobile provided with the multilayer laminate in the second aspect of the present invention is suitable as a functional article.
  • the antireflective article provided with the laminated structure in the second aspect of the present invention comprises a multilayer laminated body having an outermost layer having a fine uneven structure on the surface as the uppermost layer.
  • This antireflection article exhibits high scratch resistance and good antireflection performance.
  • Anti-reflective articles have a fine concavo-convex structure on the surface of an object such as an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, or a cathode ray tube display device, a lens, a show window, or a spectacle lens. It is the structure which affixed the multilayer laminated body which has.
  • the water-repellent article provided with the laminated structure according to the second aspect of the present invention includes a multilayer laminate having an outermost layer having a fine concavo-convex structure on the surface as an uppermost layer.
  • This water-based article exhibits high anti-reflection performance as well as high scratch resistance and good water repellency.
  • the water-repellent article has, for example, a structure in which a multilayer laminate having a fine concavo-convex structure is attached to the surfaces of window materials, roof tiles, outdoor lighting, curved mirrors, vehicle windows, and vehicle mirrors.
  • the part to which the laminated structure of each target article is attached is a three-dimensional shape
  • a base material having a shape corresponding to the part is used in advance, and an intermediate layer and an outermost layer are formed on the base material. And this laminated structure may be attached to a predetermined portion of the target article.
  • the multilayer laminate in the second aspect of the present invention can be attached to the front plate, not limited to the surface thereof, and the front plate itself can be It can also be comprised from the laminated structure in a 2nd aspect.
  • the multilayer laminate in the second aspect of the present invention can be applied to optical uses such as optical waveguides, relief holograms, lenses and polarization separation elements, and uses such as cell culture sheets, in addition to the uses described above. .
  • Mold for transferring micro uneven structure (stamper for transferring micro uneven structure)”
  • the mold has a reverse structure of a fine concavo-convex structure on the surface.
  • the material for the mold include metals (including those having an oxide film formed on the surface), quartz, glass, resin, ceramics, and the like.
  • the shape of the mold include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
  • Examples of the mold production method include the method (I-1) and the method (I-2) exemplified as the mold production method in the description of the first aspect, and the area can be increased. In view of simple production, the method (I-1) is particularly preferred. As the method (I-1), a method having the steps (a) to (f) described in the first embodiment is preferable.
  • Examples of the shape of the pores of the mold include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like. A shape that continuously decreases in the vertical direction is preferable.
  • the average interval w between two adjacent pores is preferably not more than the wavelength of visible light, that is, not more than 400 nm.
  • the average interval w is more preferably 140 to 260 nm or less, and particularly preferably 160 to 200 nm.
  • the average interval w is obtained by measuring 50 intervals between two adjacent pores by electron microscope observation and averaging these values.
  • the depth d of the mold pores is preferably 120 to 250 nm, more preferably 150 to 220 nm, and particularly preferably 160 to 190 nm.
  • This depth d is the distance between the bottom of the pore and the top of the convex portion existing between the pores adjacent to the pore when observed at an magnification of 30000 by electron microscope observation. It is a measured value.
  • the aspect ratio of the pores is preferably 0.7 to 1.4, more preferably 0.8 to 1.2.
  • the surface of the mold on which the fine uneven structure is formed may be treated with a release agent.
  • the release agent include silicone resins, fluororesins, fluorine compounds, and phosphate esters, and phosphate esters are particularly preferable.
  • the phosphoric acid ester a (poly) oxyalkylene alkyl phosphoric acid compound is preferable, and examples of commercially available products include the following.
  • Test 1 The various measurement and evaluation methods in Test 1, the mold production method, and the components used in each example are as follows.
  • the cross section of the measurement sample was magnified 30000 times and observed, and the distance between the bottom of the convex part and the top of the concave part existing between the convex parts was measured at 50 points, and the average value was measured as the convex part. was the average height.
  • the elastic recovery rate was obtained from the following formula (II).
  • the elastic modulus was obtained by fitting a curve from ⁇ to ⁇ using the Hertz contact formula. At this time, the radius of curvature of the tip of the cantilever was 8 nm, and the Poisson's ratio of the sample was 0.35.
  • Elastic recovery factor (deformation amount between ⁇ and ⁇ ) / (deformation amount between ⁇ and ⁇ ) ⁇ 100 (II)
  • Pencil hardness was evaluated according to the scratch hardness (pencil method) described in JIS K 5600-5-4: 1999 (ISO 15184: 1996) except that the load was 500 g. went.
  • the back surface of the laminated structure having the fine concavo-convex structure on the surface is a transparent glass plate (manufactured by Matsunami Glass Industrial Co., Ltd., “Large slide glass, product number: S9112”.
  • a transparent 2.0 mm-thickness is formed on the back surface of the laminated structure having a fine concavo-convex structure on the surface (the back surface of the base material on which the fine concavo-convex structure is not transferred) via an optical adhesive.
  • a black acrylic resin plate manufactured by Mitsubishi Rayon Co., Ltd., “Acrylite EX # 502”, 50 mm ⁇ 60 mm was attached and used as a sample.
  • UV-2450 manufactured by Shimadzu Corporation
  • the surface of the sample (laminated structure side) at an incident angle of 5 ° (using a 5 ° specular reflection accessory) and a wavelength of 380 to 780 nm ) was measured, and the visibility reflectance was calculated based on JIS R 3106: 1998 (ISO 9050: 1990) to evaluate the antireflection property.
  • Mold manufacturing Manufacture of mold A
  • a 0.3 M oxalic acid aqueous solution was adjusted to 16 ° C., and an aluminum base material was immersed in the solution, and anodization was performed at 40 V DC for 30 minutes. This formed the oxide film which has a pore in an aluminum base material (process (a)).
  • the aluminum substrate on which the oxide film was formed was immersed for 6 hours in a 70 ° C.
  • step (b) The aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.3 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 40 V for 30 seconds (step (c)). Then, it was immersed for 8 minutes in 5 mass% phosphoric acid aqueous solution adjusted to 32 degreeC, and the pore diameter expansion process which expands the pore of an oxide film was performed (process (d)).
  • step (e) and (f) substantially conical pores having an average interval of 100 nm and an average depth of 180 nm are formed.
  • a mold having anodized alumina on the surface was obtained.
  • the mold obtained was immersed in a release agent (0.1% by weight aqueous solution of “TDP-8” manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, then pulled up and air-dried overnight to release the mold.
  • a treated mold A was obtained.
  • the aluminum substrate on which the oxide film was formed was immersed for 6 hours in a 70 ° C. aqueous solution in which 6% by mass of phosphoric acid and 1.8% by mass of chromic acid were mixed. Thereby, the oxide film was dissolved and removed (step (b)).
  • the aluminum base material from which the oxide film had been dissolved and removed was immersed in a 0.05M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds (step (c)). Subsequently, it was immersed in a 5% by mass phosphoric acid aqueous solution adjusted to 32 ° C.
  • step (d) the anodization and the pore diameter enlargement process are alternately repeated, and a total of 5 times is applied (steps (e) and (f)) to form substantially conical pores having an average interval of 180 nm and an average depth of 180 nm.
  • a mold having anodized alumina on the surface was obtained. The mold obtained was immersed in a release agent (0.1% by weight aqueous solution of “TDP-8” manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, then pulled up and air-dried overnight to release the mold. A processed mold B was obtained.
  • Preparation of active energy ray-curable resin composition (Preparation of active energy ray-curable resin composition A)
  • a polymerizable component 60 parts by mass of dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd., “DPHA”), 30 parts by mass of pentaerythritol triacrylate (Daiichi Kogyo Seiyaku Co., Ltd., “New Frontier PET-3”), 10 parts by mass of polyethylene glycol diacrylate (manufactured by Toagosei Co., Ltd., “M-260”) and a mixture of tetrafunctional silicone acrylate / propylene oxide-modified neopentyl glycol diacrylate (mixing ratio 7/3) (BIC Chemie Japan K.K.) "BYK-3570”), 1 part by mass, 1 part by weight of 1-hydroxycyclohexyl phenyl ketone (Ciba Japan Co., Ltd.,
  • Example 1-1 Formation of intermediate layer
  • Several drops of the resin composition A were dropped on the surface of the mold A.
  • the resin composition A was covered with a TAC film while spreading the resin composition A with a 80 ⁇ m thick triacetyl cellulose film (Fuji Film Co., Ltd., “TD80ULM”, hereinafter also referred to as “TAC film”) as a base material.
  • TAC film triacetyl cellulose film
  • the resin composition A was cured by irradiating ultraviolet rays with an energy of 1000 mJ / cm 2 from the TAC film side using a UV irradiation device (manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.).
  • the cured product of the resin composition A is released from the mold A together with the TAC film, and on the substrate, the average interval (period) between adjacent convex portions is 100 nm, and the average height of the convex portions is 180 nm (aspect ratio: A laminated film in which an intermediate layer having a film thickness of 5 ⁇ m having the fine uneven structure of 1.8) on the surface was laminated. About the obtained laminated
  • the cured product of the resin composition D is released from the mold together with the laminated film, and on the intermediate layer of the laminated film, the average interval (period) between adjacent convex portions is 100 nm, and the average height of the convex portions is 180 nm (aspect)
  • a film-like laminate structure having a fine concavo-convex structure with a ratio of 1.8) on the surface and having an outermost layer with a thickness of 4 ⁇ m laminated thereon was obtained.
  • the Martens hardness, elastic modulus, and elastic recovery rate of the cured product of the resin composition used in steps 1 and 2 were measured. The results are shown in Table 1. About the obtained laminated structure, adhesiveness, pencil hardness, and abrasion resistance were evaluated, and the reflectance and haze were measured. The results are shown in Table 2.
  • Example 1-2 A laminated structure was produced in the same manner as in Example 1-1 except that the resin composition D was changed to the resin composition E in Step 2, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer and the outermost layer, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-3 Except that the mold A was changed to the mold B in the step 1, the resin composition A was changed to the resin composition B, and the thickness of the intermediate layer was changed to 7 ⁇ m, the same as in Example 1-1.
  • a laminated structure was manufactured, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2. Further, the elastic modulus and elastic recovery rate of the outermost layer and the intermediate layer of the obtained laminated structure were measured. The results are shown in Table 5.
  • the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer is 180 nm
  • the average height of the convex portions is 180 nm
  • the aspect ratio is 1.0, which is formed on the surface of the outermost layer.
  • the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-4 In step 1, the mold A is changed to the mold B, the resin composition A is changed to the resin composition B, and the thickness of the intermediate layer is changed to 7 ⁇ m. In the step 2, the resin composition D is changed to the resin composition. Except for changing to E, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-3, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-5" Except for changing the mold A to a mirror aluminum substrate (hereinafter simply referred to as “mirror aluminum substrate”) in which the inverted structure of the fine concavo-convex structure is not formed on the surface in step 1, the same as in Example 1-1.
  • the laminated structure was manufactured, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2. The average distance between adjacent convex portions of the fine concavo-convex structure formed on the surface of the outermost layer, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-6 A laminated structure was produced in the same manner as in Example 1-1 except that the resin composition A was changed to the resin composition C in step 1 and the film thickness of the intermediate layer was changed to 7 ⁇ m. And evaluated. The results are shown in Tables 1 and 2. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer and the outermost layer, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • step 1 the mold A is changed to the mold B, the resin composition A is changed to the resin composition B, and the thickness of the intermediate layer is changed to 7 ⁇ m.
  • step 2 the resin composition D is changed to the resin composition.
  • Tables 1 and 2 Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-3, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • step 1 the mold A is changed to the mold B, the resin composition A is changed to the resin composition B, and the thickness of the intermediate layer is changed to 7 ⁇ m.
  • step 2 the resin composition D is changed to the resin composition.
  • Tables 1 and 2 Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-3, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-1 A laminated structure was produced in the same manner as in Example 1-1, except that the intermediate layer was not provided in step 1 and the thickness of the outermost layer was changed to 13 ⁇ m in step 2, and various measurements and evaluations were performed. It was. The results are shown in Tables 1 and 2. Note that the average distance between adjacent convex portions of the fine concavo-convex structure formed on the surface of the outermost layer, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-1.
  • Example 1-7 A laminated structure was produced in the same manner as in Example 1-1 except that the mold A was changed to the mold B and the resin composition D was changed to the resin composition G in Step 2, and various measurements and evaluations were performed. .
  • the results are shown in Tables 3 and 4.
  • the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as those in Example 1-1, and are formed on the surface of the outermost layer.
  • the average interval between adjacent convex portions of the fine concavo-convex structure was 180 nm, the average height of the convex portions was 180 nm, and the aspect ratio was 1.0.
  • Example 1-8 A laminated structure was produced in the same manner as in Example 1-1 except that the mold A was changed to the mold B and the resin composition D was changed to the resin composition H in Step 2, and various measurements and evaluations were performed. .
  • the results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-1, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-9 In step 1, the resin composition A is changed to the resin composition B, the thickness of the intermediate layer is changed to 7 ⁇ m, the mold A is changed to the mold B in step 2, and the resin composition D is changed to the resin composition. Except for changing to G, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Further, the elastic modulus and elastic recovery rate of the outermost layer and the intermediate layer of the obtained laminated structure were measured. The results are shown in Table 5.
  • the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-3, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-10 In step 1, the resin composition A is changed to the resin composition B, the thickness of the intermediate layer is changed to 7 ⁇ m, the mold A is changed to the mold B in step 2, and the resin composition D is changed to the resin composition. Except for changing to H, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-3, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-11 In step 1, the resin composition A is changed to the resin composition C, the thickness of the intermediate layer is changed to 7 ⁇ m, the mold A is changed to the mold B in step 2, and the resin composition D is changed to the resin composition. Except for changing to G, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-1, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-12 In step 1, the resin composition A is changed to the resin composition C, the thickness of the intermediate layer is changed to 7 ⁇ m, the mold A is changed to the mold B in step 2, and the resin composition D is changed to the resin composition. Except for changing to H, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-1, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-13 In step 1, the resin composition A is changed to the resin composition E, and the thickness of the intermediate layer is changed to 7 ⁇ m. In step 2, the mold A is changed to the mold B, and the resin composition D is changed to the resin composition. Except for changing to G, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-1, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-14 In step 1, the resin composition A is changed to the resin composition E, and the thickness of the intermediate layer is changed to 7 ⁇ m. In step 2, the mold A is changed to the mold B, and the resin composition D is changed to the resin composition. Except for changing to H, a laminated structure was produced in the same manner as in Example 1-1, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. Note that the average interval between adjacent convex portions of the fine concavo-convex structure formed on the surface of the intermediate layer, the average height of the convex portions, and the aspect ratio are the same as in Example 1-1, and are formed on the surface of the outermost layer. Further, the average interval between adjacent convex portions of the fine concavo-convex structure, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • Example 1-15 Except that the mold A was changed to a mirror aluminum substrate in the step 1, the mold A was changed to the mold B in the step 2, and the resin composition D was changed to the resin composition G, the same as in Example 1-1. A laminated structure was manufactured, and various measurements and evaluations were performed. The results are shown in Tables 3 and 4. The average distance between adjacent convex portions of the fine concavo-convex structure formed on the surface of the outermost layer, the average height of the convex portions, and the aspect ratio were the same as those in Example 1-6.
  • TAC refers to a TAC film
  • mirror surface refers to a mirror surface aluminum substrate.
  • SW means steel wool.
  • 250 g / cm 2 means that a load of 250 g is applied per unit area of steel wool.
  • the intermediate layer formed of a resin having specific physical properties and the outermost layer formed of a resin having a fine concavo-convex structure on the surface and having specific physical properties are formed on the substrate.
  • the laminated structures of Examples 1-1 to 1-15 sequentially laminated had high pencil hardness and good scratch resistance, antireflection properties, and transparency. Further, the intermediate layers formed in Examples 1-1 to 1-15 had blocking resistance. In particular, the laminated structures of Examples 1-1 to 1-4 and 1-6 to 1-14 having a fine uneven structure on the surface of the intermediate layer also had good adhesion.
  • Example 1-6 The laminated structure of Example 1-6 in which the Martens hardness of the intermediate layer is 170 N / mm 2 and the elastic recovery rate of the outermost layer is 77% is almost the same as that of Examples 1-1 to 1-4. However, the pencil hardness was lower than that of Examples 1-1 to 1-4, and indentations were generated during the test of hardness 2H.
  • the laminated structures of Comparative Examples 1-1 and 1-2 in which the elastic recovery rate of the resin forming the outermost layer is less than 70% have the same degree of adhesion and pencil hardness as those of Examples 1-1 to 1-4. Although it had antireflection properties and transparency, it was inferior in scratch resistance, and noticeable scratches were generated during a test with a load of 25 g / cm 2 .
  • Example 1-1 and 1-2 the laminated structures produced in the same manner as in Examples 1-1 to 1-4 except that no intermediate layer is formed are shown in Examples 1-1 to 1-1. It had adhesion, scratch resistance, antireflection properties and transparency similar to 1-4, but the pencil hardness was low and indentation occurred during the test of hardness 2H.
  • the laminated structure of Reference Example 1-1 has a pencil hardness comparable to that of the laminated structure of Example 1-6, but the thickness of the outermost layer is the same as that of the intermediate layer in Example 1-6. It is thicker than the total thickness of the outermost layer.
  • the elastic recovery rate and elastic modulus of the outermost layer and the intermediate layer are the elastic recovery rates of the cured product of the material (active energy ray-curable resin composition) constituting each layer. Whether the elastic modulus was measured with a microhardness meter or the elastic recovery rate and elastic modulus of each layer were measured with an AFM in the state of the laminated structure, it was found that there was no significant difference in the results.
  • Test 2 Various measurements and evaluation methods in Test 2 and a method for producing a mold (stamper) are as follows.
  • reaction rate on surface of intermediate layer was measured by the following method.
  • An infrared spectroscope (Avatar330: manufactured by Thermo Fisher Scientific Co., Ltd.) is attached with a total reflection method unit (Endurance Module: manufactured by ST Japan Co., Ltd.), and an intermediate layer of a two-layer laminate The measurement was performed under the conditions of the number of times of accumulation of 32 times and the resolution of 4 cm ⁇ 1 . From the results, the peak height attributed to the C ⁇ C bond near 810 cm ⁇ 1 was taken as p1, and the peak height r1 attributed to C ⁇ O of the ester bond near 1730 cm ⁇ 1 was read.
  • step (B) aqueous solution in which 6% by mass phosphoric acid and 1.8% by mass chromic acid were mixed to dissolve and remove the oxide film.
  • step (c) the aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.05M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 80 V for 7 seconds.
  • step (d) the pore diameter expansion process which expands the pore of an oxide film by immersing in 5 mass% phosphoric acid aqueous solution adjusted to 32 degreeC for 20 minutes was performed.
  • the mold C was obtained by alternately repeating the anodization in the step (c) and the pore diameter enlargement process in the step (d) five times.
  • the interval (period) between the pores of the mold C was about 180 nm, and the depth of the pores was about 180 nm.
  • the mold C was immersed in a 0.1% by mass aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, lifted and air-dried for 16 hours to perform mold release treatment.
  • step (c) The aluminum base material from which the oxide film was dissolved and removed was immersed in a 0.3 M oxalic acid aqueous solution adjusted to 16 ° C. and anodized at 40 V for 30 seconds (step (c)). Then, the pore diameter expansion process which expands the pore of an oxide film by immersing in 5 mass% phosphoric acid aqueous solution adjusted to 32 degreeC for 8 minutes was performed (process (d)).
  • the mold D was obtained by alternately repeating the anodic oxidation in the step (c) and the pore diameter enlargement process in the step (d) five times.
  • the interval (period) between the pores of the mold D was about 100 nm, and the depth of the pores was about 180 nm.
  • Mold D was subjected to mold release treatment by immersing it in a 0.1% by mass aqueous solution of TDP-8 (manufactured by Nikko Chemicals Co., Ltd.) for 10 minutes, lifting it up and air-drying it overnight.
  • TDP-8 manufactured by Nikko Chemicals Co., Ltd.
  • Example 2-1 (1. Formation of intermediate layer)
  • a resin composition (X-1) having the composition shown in Table 7 was prepared.
  • the symbols in the column of polymerizable component (a) and solvent (e) in Table 7 are the compounds shown in Table 6. Further, the Martens hardness, elastic modulus, and elastic recovery rate of the cured product of the resin composition (X) are as shown in Table 7.
  • a light-transmitting triacetyl cellulose film manufactured by Fuji Film Co., Ltd., product name T40UZ, thickness 40 ⁇ m
  • the resin composition (X-1) was coated on a substrate placed on a glass plate using a bar coater.
  • the laminate was dried for 3 minutes with a drier adjusted to 70 ° C. to obtain a laminate in which an uncured intermediate layer was formed on the substrate.
  • the integrated light quantity measured at a wavelength of 365 nm from the surface of the intermediate layer using an electrodeless UV lamp (F bulb manufactured by Fusion UV Systems Japan Co., Ltd.) without purging with an inert gas such as nitrogen.
  • an electrodeless UV lamp F bulb manufactured by Fusion UV Systems Japan Co., Ltd.
  • an inert gas such as nitrogen.
  • the double bond reaction rate (mol%) was measured by the “method for measuring the reaction rate of the surface of the intermediate layer” described above, and the results shown in Table 9 were obtained. Table 9 shows the evaluation results of the two-layer laminate.
  • Examples 2-2 to 2-12, Comparative Examples 2-1 to 2-4 Example 2 except that the resin composition (X) for the intermediate layer, the resin composition (Y) for the outermost layer, and the mold were changed to the combinations shown in Tables 9 and 10 (combination marked with a circle). In the same manner as in Example 1, a two-layer laminate and a multilayer laminate were obtained. In Comparative Examples 2-1 and 2-2, the outermost layer was formed between the substrate and the mold without forming the intermediate layer. The evaluation results are shown in Tables 9 and 10.
  • the fine concavo-convex structure of the mold is transferred, and when the mold C is used, a substantially conical nano concavo-convex structure having an average period of 180 nm and an average height of 180 nm is formed.
  • the mold D was used, a substantially conical nano uneven structure having an average period of 100 nm and an average height of 180 nm was formed.
  • the thickness of the outermost layer was all 5 ⁇ m.
  • the laminated structures of Examples 2-1 to 2-3 had good pencil hardness of 3H and good adhesion.
  • the laminated structure of Example 2-4 had a pencil hardness of H because the film thickness of the intermediate layer was relatively thin at 2 ⁇ m.
  • the laminated structure of Comparative Example 2-1 without the intermediate layer pencil hardness of HB In comparison with rank C
  • the pencil hardness improvement effect and the adhesion improvement effect were confirmed.
  • the laminated structures of Examples 2-5 to 2-6 although the resin constituting the outermost layer is soft, the pencil hardness is 3H like Example 2-2, and the pencil hardness of the intermediate layer is improved. At the same time it was confirmed that the effect was high, the adhesion was also good.
  • the laminated structure of Example 2-7 had a pencil hardness of H because the film thickness of the intermediate layer was as thin as 2 ⁇ m.
  • the laminated structure of Comparative Example 2-2 having no intermediate layer (pencil hardness of B, adhesion Compared with rank C), the pencil hardness improvement effect and the adhesion improvement effect were confirmed.
  • the resin composition (X-3) was used for the intermediate layer, so that the adhesion was Rank B, but there was no practical problem with adhesion and high pencil hardness. It was confirmed that it was feasible.
  • the laminated structures of Examples 2-9 to 2-12 had good pencil hardness of 3H and good adhesion.
  • the reaction rate of the polymerizable functional group on the surface of the intermediate layer after irradiation with the first active energy ray is as low as 12 mol%, and therefore the cured state of the intermediate layer is light at rank B
  • the coated surface became rough just by touching, and the pencil hardness after forming the three-layer laminate was H even though the film thickness of the intermediate layer was 5 ⁇ m.
  • the adhesion was Rank C because the reaction rate of the polymerizable functional group on the surface of the intermediate layer after irradiation with the first active energy ray was as high as 86 mol%.
  • the laminated structure of the present invention is useful as an optical article excellent in optical performance and mechanical properties, particularly as an antireflection article such as an antireflection film.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 基材と、中間層と、最表層とが順次積層した積層構造体であって、中間層のマルテンス硬さが120N/mm以上であり、最表層の弾性回復率が70%以上であり、かつ最表層は表面に可視光の波長以下の周期の微細凹凸構造を有する積層構造体。基材と、中間層と、最表層とが順次積層した積層構造体の製造方法であって、下記工程(1)~(3)を有する積層構造体の製造方法。工程(1):光透過性の基材に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。工程(2):中間層と微細凹凸構造転写用のモールドとの間に、活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。工程(3):基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、積層構造体をモールドから離型する工程。

Description

積層構造体およびその製造方法と、物品
 本発明は、積層構造体およびその製造方法と、物品に関する。
 本願は、2013年4月5日に、日本に出願された特願2013-079568号、および2013年8月12日に、日本に出願された特願2013-167825号、に基づき優先権を主張し、その内容をここに援用する。
 可視光の波長以下の周期の微細凹凸構造を表面に有する物品は、該微細凹凸構造における連続的な屈折率の変化によって、反射防止性能を有することが知られている。また、微細凹凸構造は、ロータス効果によって超撥水性能を発現することも知られている。ただし、微細凹凸構造の表面は、ナノスケールの凸部が破壊され易く、同じ樹脂で形成された平滑表面に比べ耐擦傷性や耐久性は低い。
 微細凹凸構造を表面に有する物品の製造方法としては、例えば、下記方法が提案されている。
 (i)微細凹凸構造の反転構造を表面に有するモールド(スタンパ)を用い、熱可塑性樹脂を射出成形またはプレス成形する際に、熱可塑性樹脂に微細凹凸構造を転写する方法。
 (ii)微細凹凸構造の反転構造を表面に有するモールドと基材との間に、活性エネルギー線硬化性樹脂組成物を充填し、活性エネルギー線の照射によって硬化させた後、モールドを離型して硬化物に微細凹凸構造を転写する方法。
 (iii)微細凹凸構造の反転構造を表面に有するモールドと基材との間に、活性エネルギー線硬化性樹脂組成物を充填した後、モールドを離型して活性エネルギー線硬化性樹脂組成物に微細凹凸構造を転写し、その後、活性エネルギー線の照射によって活性エネルギー線硬化性樹脂組成物を硬化させる方法。
 これらのうち、微細凹凸構造の転写性がよく、物品の表面の組成の自由度が高く、また、モールドがベルトやロールの場合に連続生産が可能であり、生産性に優れる点から、(ii)、(iii)の方法が注目されている。
 これまでにも、活性エネルギー線の照射により樹脂組成物を硬化させて、微細凹凸構造を転写する方法により微細凹凸構造を形成した微細凹凸構造体や、微細凹凸構造を形成するための樹脂組成物が提案されている。(ii)、(iii)の方法に用いる活性エネルギー線硬化性樹脂組成物としては、例えば、下記の組成物が提案されている。
 (1)ウレタンアクリレート等のアクリレートオリゴマーと、ラジカル重合性の官能基を有するアクリル系樹脂と、離型剤と、光重合開始剤とを含む光硬化性樹脂組成物(特許文献1)。
 (2)トリメチロールプロパントリ(メタ)アクリレートのような分子量当たりの二重結合数が極めて高い多官能(メタ)アクリレートと、光重合開始剤と、ポリエーテル変性シリコーンオイル等のレベリング剤とを含む紫外線硬化性樹脂組成物(特許文献2)。特許文献2には、最密充填されたシリカゾルを鋳型として可視光の波長以下の微細凹凸構造を作製することが記載されている。
 しかし、活性エネルギー線硬化性樹脂組成物の硬化物からなる層(微細凹凸構造層)に、光学性能、基材との密着性、機械特性(耐擦傷性や鉛筆硬度等)などを実用レベルで全て付与することは困難であった。特に、機械特性として重要視される耐擦傷性と鉛筆硬度は、以下に示すようにキズの発生メカニズムが異なるため、その両方を高めることは困難であった。
 耐擦傷性は、微細凹凸構造を有する表面に対して主に水平方向の外力がかかり、凸部が折れたり倒れたりして凹凸構造を維持できないことでキズが発生するときの、キズの付きにくさを示すものである。一方、鉛筆硬度は、微細凹凸構造を有する面に対して主に垂直方向(押込み方向)に外力が加わり、基材に凹みが伝わることで基材や微細凹凸構造層に圧痕が残り、キズが発生するときの、キズの付き具合を示すものである。
 反射防止性能と鉛筆硬度の両方を高める方法としては、微細凹凸構造を転写した活性エネルギー硬化性樹脂組成物の硬化層(微細凹凸構造層)と基材との間に中間層を設ける方法が知られている(特許文献3)。
 また特許文献4では、微細凹凸を有するハードコート層は、JIS K5600-5-4に準じた鉛筆硬度試験で「H」以上の硬度を示す樹脂であることが望ましいと記載されている。そして、その実施例では、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールテトラアクリレートなど、分子量当たりの二重結合数が極めて高い多官能モノマーが用いられている。
 また、特許文献4および5には、基材フィルムとナノ凹凸構造表層の密着性や接着性を高めるための中間層が開示されている。また、特許文献6には、反射防止効果を高めるためにナノ凹凸構造の表面の下層として屈折率調節層を備えた積層体が開示されている。また、特許文献7には、凹み傷を復元する機能(自己修復機能)を有する中間層と、その上に屈折率の異なるハードコート層を設けた反射防止フィルムが開示されている。
特許第4156415号公報 特開2000-71290号公報 特開2011-224957号公 特開2002-107501号公報 特許第3627304号公報 特開2009-31764号公報 特許第3676260号公報
 しかしながら、特許文献3に記載のように、硬化層と基材との間に中間層を設ける方法の場合、耐擦傷性が必ずしも十分ではなかった。このように、鉛筆硬度を高めることで耐擦傷性を向上させるには限界があり、耐擦傷性と鉛筆硬度の両方を高めることは容易ではなかった。
 特許文献2、4~6に記載のナノ凹凸構造体は、必ずしも耐擦傷性を満足させるものではない。特に、ナノ凹凸構造体を形成する樹脂を硬くするとナノ凹凸構造体が脆くなってしまい、スチールウール等で擦傷試験をした場合にナノ凹凸構造体が破壊され、反射防止性能が容易に失われてしまう。また、鉛筆硬度試験においても、ナノ凹凸構造体が破壊されて反射防止性能が失われる点が問題である。
 また、特許文献4~6に記載の中間層は、接着性や反射防止性能の改善を目的とするものである。特許文献7に記載の反射防止フィルムは、押圧による凹みに対する自己修復機能を有する中間層を有するが、この中間層は必ずしも鉛筆硬度を向上させる機能を有するものではない。
 本発明は上記事情に鑑みてなされたもので、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す積層構造体およびその製造方法と、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す物品の提供を課題とする。
 本発明者らは鋭意検討した結果、微細凹凸構造を有する硬化層と中間層の物性を規定することで、反射防止性能等の光学性能を損なうことなく、耐擦傷性と鉛筆硬度の両方を高められることを見出し、本発明を完成するに至った。
 さらに、特定の条件を満たす中間層(第二の層)を有する積層構造体が、耐擦傷性と鉛筆硬度とを両立させるという課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の態様を有する。
<1> 基材と、中間層と、最表層とが順次積層した積層構造体であって、前記中間層のマルテンス硬さが120N/mm以上であり、前記最表層の弾性回復率が70%以上であり、かつ最表層は表面に可視光の波長以下の周期の微細凹凸構造を有する、積層構造体。
<2> 前記最表層の表面の微細凹凸構造の周期が400nm以下である、<1>に記載の積層構造体。
<3> 前記最表層の弾性回復率が80%以上である、<1>または<2>に記載の積層構造体。
<4> 前記中間層のマルテンス硬さが180N/mm以上である、<1>または<2>に記載の積層構造体。
<5> 前記中間層の弾性回復率が60%以上である、<1>~<4>のいずれか1つに記載の積層構造体。
<6> 前記中間層は表面に1000nm以下の周期の微細凹凸構造を有する、<1>~<5>のいずれか1つに記載の積層構造体。
<7> 前記中間層の表面の微細凹凸構造の周期が、前記最表層の表面の微細凹凸構造の周期と異なる、<6>に記載の積層構造体。
<8> 前記中間層が多官能(メタ)アクリレートを含む樹脂組成物の硬化物である、<1>~<7>のいずれか1つに記載の積層構造体。
<9> <1>~<8>のいずれか1つに記載の積層構造体を表面に備えた、物品。
<10> <1>~<8>のいずれか1つに記載の積層構造体の製造方法であって、モールドを用いた転写法により前記微細凹凸構造を形成する、積層構造体の製造方法。
<11> 基材と、中間層と、最表層とが順次積層した積層構造体の製造方法であって、下記工程(1)~(3)を有する、積層構造体の製造方法。
工程(1):光透過性の基材に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。
工程(2):前記工程(1)で形成した中間層と微細凹凸構造転写用のモールドとの間に、活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。
工程(3):前記基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、基材と中間層と最表層とが順次積層した積層構造体をモールドから離型する工程。
<12> <1>~<5>のいずれか1つに記載の積層構造体の製造方法であって、下記工程(1)~(3)を有する、積層構造体の製造方法。
工程(1):光透過性の基材に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。
工程(2):前記工程(1)で形成した中間層と微細凹凸構造転写用のモールドとの間に、活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。
工程(3):前記基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、基材と中間層と最表層とが順次積層した積層構造体をモールドから離型する工程。
<13> 前記工程(1)における第1の活性エネルギー線照射の積算光量が50~1000mJ/cmである、<11>または<12>に記載の積層構造体の製造方法。
<14> 前記工程(1)における第1の活性エネルギー線照射の積算光量が100~500mJ/cmである、<13>に記載の積層構造体の製造方法。
<15> 前記中間層が、(ポリ)ペンタエリスリトール(ポリ)アクリレート、および(ポリ)ペンタエリスリトール(ポリ)アクリレートとヘキサメチレンジイソシアネートとの反応生成物を含む樹脂組成物(X)の半硬化物である、<11>~<14>のいずれか1つに記載の積層構造体の製造方法。
<16> <11>~<15>のいずれか1つに記載の積層構造体の製造方法によって得られる積層構造体であって、第1の活性エネルギー線照射後の中間層の表面における重合性官能基の反応率が35~85モル%である、積層構造体。
 本発明の積層構造体は、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す。
 本発明の積層構造体の製造方法によれば、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す積層構造体を製造できる。
 本発明の物品は、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す。
 また、本発明によれば、光の反射防止性能、光の透過性能、機械特性等に優れた積層構造体(積層体)を提供することができる。機械特性には、耐傷性等を反映した「耐スチールウール性」、およびそれとは異なる「鉛筆硬度」があり、両特性は二律背反の関係にあるが、本発明によれば、両特性を共に良好であり、十分実用に供することができる。それによって、具体的には、FPD等に対する反射防止、光透過性改良、表面保護等の用途に向けて、優れた機械特性を有する積層構造体を提供することができる。
本発明の第一の態様における積層構造体の一例を示す断面図である。 陽極酸化アルミナを表面に有するモールドの製造工程を示す断面図である。 積層構造体の製造装置の一例を示す構成図である。 本発明の第一の態様における積層構造体の他の例を示す断面図である。 本発明の第一の態様における積層構造体の他の例を示す断面図である。 本発明の第一の態様における積層構造体の他の例を示す断面図である。 原子間力顕微鏡により積層構造体の切断面を測定して得られる荷重変形曲線の一例を示すグラフである。 本発明の第二の態様における積層構造体の実施形態を示す模式的断面図である。 本発明の第二の態様における積層構造体の他の実施形態を示す模式的断面図である。
[第一の態様]
 以下、本発明の第一の態様を詳細に説明する。
 なお、本明細書において、積層構造体の最上層を「最表層」といい、最下層を「基材」または「基材層」といい、最表層と基材との間に配置される層を「中間層」という。
 また、本明細書における「活性エネルギー線」とは、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等を意味する。
 また、本明細書における「(メタ)アクリレート」は、アクリレートおよびメタクリレートの総称であり、「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の総称であり、「(メタ)アクリロニトリル」は、アクリロニトリルおよびメタクリロニトリルの総称であり、「(メタ)アクリルアミド」は、アクリルアミドおよびメタクリルアミドの総称である。
 図1においては、各層を図面上で認識可能な程度の大きさとするため、各層ごとに縮尺を異ならせてある。
 また、図2~6において、図1と同じ構成要素には同一の符号を付して、その説明を省略する場合がある。
「積層構造体」
 本発明の第一の態様における積層構造体は、少なくとも、基材、中間層、最表層がこの順に積層して構成され、最表層の表面に微細凹凸構造を有する。
 図1は、本発明の第一の態様における積層構造体の一例を示す断面図である。
 この例の積層構造体10は、基材12と、中間層14と、最表層16とが順次積層して構成され、中間層14の表面にも微細凹凸構造が形成されている。
 ここで、「最表層の表面」とは、最表層16の中間層14と接していない側の表面のことである。一方、「中間層の表面」とは、中間層14の最表層16と接している側の表面のことである。また、基材12の中間層14と接している側の表面を「基材の表面」といい、中間層14と接していない側の表面を「基材の裏面」という。最表層16の表面は積層構造体10の表面に相当し、基材12の裏面は積層構造体の裏面に相当する。
 この例の最表層16の微細凹凸構造の凹部および凸部は、中間層14の微細凹凸構造の凹部および凸部と異なって配置されている。
 ここで、「異なって配置」とは、積層構造体を積層方向(縦方向)に複数切断した切断面の1つ以上において、任意の層(例えば最表層)の微細凹凸構造の凹凸形状が、積層構造体の厚さ方向に平行移動したときに、残りの層(例えば中間層)の微細凹凸構造の形状と重ならないことを意味する。また「形状が重ならない」とは、任意の層の微細凹凸構造の凸部のアスペクト比と、残りの層の微細凹凸構造の凸部のアスペクト比とが異なること、任意の層と残りの層の微細凹凸構造が互いに位置ずれしていること、任意の層と残りの層の微細凹凸構造の周期が異なることなどを意味する。
 以下、この配置の状態を「配置違い」ともいう。
 微細凹凸構造の凹部および凸部の形状は特に限定されるものではないが、略円錐形状、角錐形状等の突起(凸部)が複数並んだ、いわゆるモスアイ構造あるいはその反転構造が好ましい。特に、最表層16の微細凹凸構造が、可視光の波長以下の周期(隣り合う凸部同士または凹部同士の平均間隔)であるモスアイ構造の場合、空気の屈折率から材料の屈折率へと連続的に屈折率が増大していくため、反射防止の手段として有効である。一方、中間層14の微細凹凸構造がモスアイ構造の場合、隣り合う層の屈折率が異なっていても界面の反射を抑えることができるため、反射率の低減や干渉縞の抑制に有効である。加えて、最表層16との密着性が良好となる。
 最表層16の微細凹凸構造の周期(隣り合う凸部同士または凹部同士の平均間隔)は、可視光の波長以下であり、具体的には400nm以下が好ましく、300nm以下がより好ましく、250nm以下がさらに好ましい。周期が400nm以下であれば、反射率が低く、かつ反射率の波長依存性が少ない。周期は、凸部構造の形成のしやすさの点から、25nm以上が好ましく、80nm以上がより好ましい。
 中間層14の微細凹凸構造の周期は1000nm以下が好ましい。周期が1000nm以下であれば、中間層14と最表層16の屈折率が異なる場合であっても、微細凹凸構造を視認しにくく、目立たなくなるため、外観が良好となる。また、最表層16との密着性を得やすくなる。特に、周期が可視光の波長以下であれば、上述したように反射率の低減や干渉縞の抑制に有効である。加えて、最表層16との密着性が良好となる。周期は、凸部構造の形成のしやすさの点から、25nm以上が好ましく、80nm以上がより好ましい。また、最表層16では微細凹凸構造の周期を大きくすることにより耐擦傷性を良好とすることができる、中間層14では微細凹凸構造の周期を小さくすることにより密着性を良好としたり、無用な回折光の発生を抑制したりできる、などの観点から、中間層14の表面の微細凹凸構造の周期は、最表層16の表面の微細凹凸構造の周期と異なることが好ましい。
 なお、周期は、電子顕微鏡によって隣り合う凸部同士の間隔(凸部の中心から隣接する凸部の中心までの距離)、または凹部同士の間隔(凹部の中心から隣接する凹部の中心までの距離)を50点測定し、これらの値を平均した値である。
 最表層16および中間層14の微細凹凸構造の凸部の平均高さは、100nm以上が好ましく、130nm以上がより好ましい。凸部の平均高さが100nm以上であれば、反射率が低く、かつ反射率の波長依存性が少ない。また、層間の密着性を確保できる。凸部の平均高さは、凸部構造の形成のしやすさの点から、400nm以下が好ましく、300nm以下がより好ましい。
 なお、凸部の平均高さは、前記電子顕微鏡によって倍率30000倍で観察したときにおける、凸部の最頂部と、凸部間に存在する凹部の最底部との間の距離を50点測定し、これらの値を平均した値である。
 また、凸部のアスペクト比(凸部の平均高さ/隣り合う凸部同士の平均間隔)は、0.8~5が好ましく、1.2~4がより好ましく、1.5~3がさらに好ましい。凸部のアスペクト比が0.8以上であれば、反射率が十分に低くなる。凸部のアスペクト比が5以下であれば、凸部の耐擦傷性が良好となる。
 本発明の第一の態様において、積層構造体の機械特性、特に耐擦傷性と鉛筆硬度の両方を高める点で、中間層14と最表層16の物性、特に中間層14のマルテンス硬さと、最表層16の弾性回復率を特定の範囲とすることが重要である。
 中間層14のマルテンス硬さは120N/mm以上であり、180N/mm以上が好ましく、200N/mm以上がより好ましい。また、中間層14のマルテンス硬さは400N/mm以下が好ましく、350N/mm以下がより好ましく、300N/mm以下がさらに好ましい。中間層14のマルテンス硬さが120N/mm以上であれば、中間層14が軟らかすぎず、鉛筆硬度試験で押込みの外力が加えられても中間層14の凹みが大きくなりにくい。よって、凹みが基材12にまで達しにくく、基材12が塑性変形しにくいため、高い鉛筆硬度を維持できる。一方、中間層14のマルテンス硬さが400N/mm以下であれば、外部から力が加えられても中間層14が割れにくい。
 また、中間層14の弾性回復率は50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましい。中間層14の弾性回復率が50%以上であれば、中間層14が塑性変形しにくいため、鉛筆硬度試験で押込みの外力が加えられた際の中間層14の凹みが、試験後に容易に戻る。よって、この凹みが圧痕として残りにくいため、より高い鉛筆硬度を維持できる。
 一方、最表層16の弾性回復率は70%以上であり、80%以上が好ましく、85%以上がより好ましい。最表層16の弾性回復率が70%以上であれば、耐擦傷試験で凹凸に対して横方向の外力が加えられても凸部が折れたり削られたりしにくく、原状回復が容易であるためキズが形成されにくく、耐擦傷性が向上する。また、弾性回復率が70%以上であれば、最表層16が塑性変形しにくいため、鉛筆硬度試験で押込みの外力が加えられた際の最表層16の凹みが、試験後に容易に戻る。よって、この凹みが圧痕として残りにくいため、より高い鉛筆硬度を維持できる。
 本発明の第一の態様における積層構造体10は、中間層14のマルテンス硬さが120N/mm以上であり、最表層16の弾性回復率70%以上であることを特徴とするが、これら中間層14のマルテンス硬さと、最表層16の弾性回復率には、最適な組み合わせがある。
 中間層14のマルテンス硬さが120N/mm以上の場合は、鉛筆硬度がより向上する点で、最表層16の弾性回復率は80%以上であることが好ましい。また、中間層14のマルテンス硬さが180N/mm以上の場合は、最表層16の弾性回復率は70%以上であることが好ましい。
 最表層16の弾性率は50MPa以上が好ましく、80MPa以上がより好ましく、110MPa以上がさらに好ましい。また、最表層16の弾性率は3500MPa以下が好ましく、3000MPa以下がより好ましく、560MPa以下がさらに好ましい。最表層16の弾性率が50MPa以上であれば、最表層16が軟らかすぎず、外から力が加えられても微細凹凸構造でない部分まで最表層16が大きく削られたり、えぐられたりしにくく、キズが付きにくいため、耐擦傷性により優れる。一方、最表層16の弾性率が3500MPa以下であれば、外部から力が加えられることにより微細凹凸構造が変形した際に、凸部が折れたり削られたりしにくく、容易に原状回復できる。
 ここで、各層のマルテンス硬さ、弾性回復率、弾性率は、各層の材料の硬化物のマルテンス硬さ、弾性回復率、弾性率を微小硬度計で測定することで求められる。
 具体的には、まず、ガラス板などの基材上に各層の材料の硬化物が形成された試験片を作製する。ビッカース圧子と微小硬度計を用いて、[押し込み(100mN/10秒)]→[クリープ(100mN、10秒)]→[徐荷(100mN/10秒)]の評価プログラムで試験片の硬化物の物性を測定する。得られた測定結果から、硬化物のマルテンス硬さ、弾性率、弾性回復率を解析ソフト(例えば、株式会社フィッシャーインストルメンツ製の「WIN-HCU」など)により算出し、これを各層のマルテンス硬さ、弾性回復率、弾性率とする。
 なお、製造された積層構造体10における各層のマルテンス硬さ、弾性回復率、弾性率を測定する場合、最表層16については、その表面を微小硬度計で最表層16の膜厚の10分の1以内の深さで測定することにより求めることもできる。一方、中間層14については、最表層16を除去して露出した中間層14の表面を、微小硬度計で中間層14の膜厚の10分の1以内の深さで測定することにより求めることもできる。
 また、最表層16と中間層14の密着力が強い場合、最表層16を除去して中間層14を露出させることが困難な場合がある。さらに、各層の膜厚が薄い場合は、微小硬度計で測定を行う際に下層の影響を受けることもある。このような場合は、積層構造体10を積層方向に切断し、その切断面を微小硬度計で測定することで、各層のマルテンス硬さ、弾性回復率、弾性率を測定することもできる。ただし、各層の膜厚が薄い場合、微小硬度計では各層を区別して測定することは困難となることがあるため、このような場合は、原子間力顕微鏡(AFM)を用いて測定する。
 なお、AFM測定により弾性率および弾性回復率を計測するためには、AFM測定におけるフォースカーブ測定を行う必要がある。フォースカーブ測定は、AFMのカンチレバーを試料表面に対する法線方向に往復運動させながら試料表面を押し込み、その際に生じするカンチレバーの反り量から力を検出する測定である。数ナノメーターの空間分解能を有することから、膜厚が薄い場合であってもそれぞれの膜の測定を行うことができる。ただし、このフォースカーブ測定からは、マルテンス硬さを求めることはできないため、マルテンス硬さと相関のある弾性率を用いてもよい。例えば、本発明の実施例で用いた樹脂組成物のマルテンス硬さと弾性率の関係は、概ね下記式のようになる。
 マルテンス硬さ[N/mm]=0.0603×弾性率[MPa] (相関係数の二乗R2=0.981)
 以下、AFM測定による弾性率および弾性回復率の具体的な計測方法の一例を説明する。
 積層構造体10をエポキシ系の樹脂で包埋した後、積層方向に切断し、平滑な切断面を露出させる。その切断面(試料)について、AFMおよびカンチレバーを用い、例えばRampsizeを200nm、Scanspeedを4Hz、押し込み荷重30nNの力でフォースカーブ測定を行う。押し込み荷重は材料によって適正値が異なるが、光硬化膜の場合は10~50nN程度が適正である。この際、カンチレバーのばね定数はサファイアなどを測定することで求めておく。
 フォースカーブ測定の結果を用いて、試料の変形量を下記式(I)より求め、図7に示すような荷重変形曲線を得る。
 変形量=探針の変位量-カンチレバーの反り量  ・・・(I)
 ここで、試料とカンチレバー間の凝着や摩擦の影響が強く出ない場合、以下のように考えることができる。
 図7中のαの位置が、カンチレバーが試料表面に触れたところである。また、βの位置が、試料表面を押し込んだときの最大押し込み位置である。また、γの位置が、押し込みを除荷し、カンチレバーが試料表面から離れた位置となる。これらを基に、弾性回復率を下記式(II)より求める。
 弾性回復率(%)=(βとγ間の変形量)/(αとβ間の変形量)×100  ・・・(II)
 また、弾性率はHertz接触式を用いてβからγの曲線をフィッティングすることで求める。この際、カンチレバーの先端の曲率半径は計測するか公称値を用いてもよく、試料のポアソン比は計測するか高分子材料であれば0.35としてもよい。
 各層のマルテンス硬さ、弾性回復率、弾性率は、各層の材料の配合組成によって調節できる。例えば、中間層14や最表層16の材料として後述する活性エネルギー線硬化性樹脂組成物を用いる場合、以下のようにしてマルテンス硬さ、弾性回復率、弾性率を調節する。すなわち、マルテンス硬さ、弾性率を大きくするには、例えば官能基当量の小さなモノマーやオリゴマーを使用して架橋密度を大きくしたり、環構造などの分子運動性の低い官能基を有するモノマーやオリゴマーを使用したり、後述する活性エネルギー線硬化性樹脂組成物に無機微粒子を添加したりすればよい。弾性回復率を大きくするには、例えばポリオキシアルキレン構造やポリジメチルシロキサン構造などの分子運動性の大きな構造を有するモノマーやオリゴマーを使用すればよい。
 中間層14の膜厚は1μm以上が好ましく、3μm以上がより好ましい。また、中間層14の膜厚は20μm以下が好ましく、10μm以下がより好ましく、7μm以下がさらに好ましい。中間層14の膜厚が1μm以上であれば、より高い鉛筆硬度を維持できる。一方、中間層14の膜厚が20μm以下であれば、積層構造体10のカールが強くなりにくい。また、外部から力が加えられても中間層14が割れにくい。
 最表層16の膜厚は1μm以上が好ましく、2μm以上がより好ましい。また、最表層16の膜厚は20μm以下が好ましく、10μm以下がより好ましく、5μm以下がさらに好ましい。最表層16の膜厚が1μm以上であれば、層としての厚みが十分であるため、より優れた耐擦傷性と高い鉛筆硬度を維持できる。一方、最表層16の膜厚が20μm以下であれば、積層構造体10に外部から力が加えられても最表層16が割れにくい。また、鉛筆硬度試験で押込みの外力が加えられた際の最表層16の凹みが、試験後に容易に戻る。よって、この凹みが圧痕として残りにくいため、より高い鉛筆硬度を維持できる。
 中間層14の屈折率と基材12の屈折率との差、および最表層16の屈折率と中間層14の屈折率との差は、それぞれ0.2以下が好ましく、0.1以下がより好ましく、0.05以下がさらに好ましい。屈折率差がそれぞれ0.2以下であれば、各層の界面における反射を効果的に抑えることができる。
 積層構造体の最下層である基材12としては、光を透過する成形体が好ましい。これは、詳しくは後述するが、光を透過しにくいモールドを用いて微細凹凸構造を形成する場合、基材側から活性エネルギー線を照射するためである。
 このような基材12の材料としては、例えばアクリル系樹脂(ポリメチルメタクリレート等)、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル(ポリエチレンテレフタレート等)、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、ガラス等が挙げられる。これらの材料は1種を単独で用いてもよく、2種以上を併用してもよい。また、後述する第二の態様の説明において、基材を構成する材料として例示された材料を用いてもよい。
 基材12は、射出成形体でもよく、押出成形体でもよく、キャスト成形体でもよい。基材12の形状としては適宜選択でき、シート状でもよく、フィルム状でもよい。
 また、基材12の表面は、密着性、帯電防止性、耐擦傷性、耐候性等の改良のために、コーティング処理、コロナ処理等が施されていてもよい。
 一方、中間層14の材料としては、活性エネルギー線硬化性樹脂組成物、熱可塑性樹脂、無機材料などが挙げられる。中間層14は硬度や弾性回復性を付与しやすいという点で、活性エネルギー線硬化性樹脂組成物の硬化物からなる層であることが好ましい。中間層14の材料が活性エネルギー線硬化性樹脂組成物である場合、微細凹凸構造を形成しやすい。
 また、最表層16も、弾性回復性を付与しやすいという点や、微細凹凸構造を形成しやすいという点で、活性エネルギー線硬化性樹脂組成物の硬化物からなる層であることが好ましい。
 以下、活性エネルギー線硬化性樹脂組成物について、詳しく説明する。
<活性エネルギー線硬化性樹脂組成物>
 活性エネルギー線硬化性樹脂組成物(以下、単に「樹脂組成物」という場合がある。)は、活性エネルギー線を照射することで、重合反応が進行し、硬化する樹脂組成物である。
 樹脂組成物は、重合性成分として、例えば分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマーを適宜含有するものである。また、樹脂組成物は、通常、硬化のための重合開始剤を含む。
(重合性成分)
 分子中にラジカル重合性結合を有するモノマーとしては、例えば(メタ)アクリレート類(メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート等)、(メタ)アクリル酸、(メタ)アクリロニトリル、スチレン類(スチレン、α-メチルスチレン等)、(メタ)アクリルアミド類((メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等)などの単官能モノマー;エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキシド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミドなどの二官能モノマー;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌル酸エチレンオキシド変性トリ(メタ)アクリレートなどの三官能モノマー;コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレートなどの四官能以上のモノマー、およびこれら四官能以上のモノマーのエチレンオキシド付加物やプロピレンオキシド付加物など;二官能以上のウレタンアクリレート、二官能以上のポリエステルアクリレートなどが挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、2官能以上のモノマーが好ましく、2官能以上の(メタ)アクリレート(多官能(メタ)アクリレート)がより好ましい。
 分子中にラジカル重合性結合を有するオリゴマーおよび反応性ポリマーとしては、例えば不飽和ポリエステル類(不飽和ジカルボン酸と多価アルコールとの縮合物等)、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、側鎖にラジカル重合性結合を有する上述のモノマーの単独重合体または共重合体等などが挙げられる。
 分子中にカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマーとしては、カチオン重合性の官能基を有する化合物(カチオン重合性化合物)であればよく、モノマー、オリゴマー、プレポリマーのいずれであってもよい。
 カチオン重合性の官能基としては、実用性の高い官能基として、例えば環状エーテル基(エポキシ基、オキセタニル基等)、ビニルエーテル基、カーボネート基(O-CO-O基)などが挙げられる。
 カチオン重合性化合物としては、例えば環状エーテル化合物(エポキシ化合物、オキセタン化合物等)、ビニルエーテル化合物、カーボネート系化合物(環状カーボネート化合物、ジチオカーボネート化合物等)などが挙げられる。
 分子中にカチオン重合性結合を有するモノマーとしては、具体的に、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられ、これらの中でもエポキシ基を有するモノマーが特に好ましい。カチオン重合性結合を有するオリゴマーおよび反応性ポリマーとしては、具体的に、カチオン重合型エポキシ化合物等が挙げられる。
(重合開始剤)
 重合開始剤としては、公知のものが挙げられる。
 光反応を利用して樹脂組成物を硬化させる場合、光重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤が挙げられる。
 ラジカル重合開始剤としては、公知の活性エネルギー線を照射して酸を発生するものであればよく、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤などが挙げられる。これらラジカル重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 アセトフェノン系光重合開始剤としては、例えばアセトフェノン、p-(tert-ブチル)-1’,1’,1’-トリクロロアセトフェノン、クロロアセトフェノン、2’,2’-ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2-ジメトキシ-2’-フェニルアセトフェノン、2-アミノアセトフェノン、ジアルキルアミノアセトフェノンなどが挙げられる。
 ベンゾイン系光重合開始剤としては、例えばベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンジルジメチルケタールなどが挙げられる。
 ベンゾフェノン系光重合開始剤としては、例えばベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノンなどが挙げられる。
 チオキサントン系光重合開始剤としては、例えばチオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントンなどが挙げられる。
 アシルホスフィンオキシド系光重合開始剤としては、例えば2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド、ベンゾイルジエトキシフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドなどが挙げられる。
 他のラジカル重合開始剤としては、例えばα-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレートなどが挙げられる。
 カチオン重合開始剤としては、公知の活性エネルギー線を照射して酸を発生するものであればよく、スルホニウム塩、ヨードニウム塩、ホスホニウム塩等が挙げられる。これらカチオン重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 スルホニウム塩としては、例えばトリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロホスフェート)、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロアンチモネート)、4-ジ(p-トルイル)スルホニオ-4’-tert-ブチルフェニルカルボニル-ジフェニルスルフィドヘキサフルオロアンチモネート、7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロホスフェート、7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロアンチモネートなどが挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。
 ホスホニウム塩としては、例えばテトラフルオロホスホニウムヘキサフルオロホスフェート、テトラフルオロホスホニウムヘキサフルオロアンチモネートなどが挙げられる。
 熱反応を利用して樹脂組成物を硬化させる場合、熱重合開始剤としては、例えば有機過酸化物(メチルエチルケトンペルオキシド、ベンゾイルペルオキシド、ジクミルペルオキシド、tert-ブチルハイドロペルオキシド、クメンハイドロペルオキシド、tert-ブチルペルオキシオクトエート、tert-ブチルペルオキシベンゾエート、ラウロイルペルオキシド等)、アゾ系化合物(アゾビスイソブチロニトリル等)、前記有機過酸化物にアミン(N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン等)を組み合わせたレドックス重合開始剤などが挙げられる。
 これら熱重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合開始剤の含有量は、重合性成分100質量部に対して、0.1~10質量部であることが好ましい。重合開始剤の含有量が0.1質量部以上であれば、重合が進行しやすい。重合開始剤の含有量が10質量部以下であれば、得られる硬化物が着色したり、機械強度が低下したりすることが少ない。
(その他の成分)
 樹脂組成物は、非反応性のポリマーを含んでもよい。
 非反応性のポリマーとしては、例えばアクリル樹脂、スチレン系樹脂、ポリウレタン樹脂、セルロース樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、熱可塑性エラストマー等が挙げられる。
 また、樹脂組成物は、必要に応じて、上述したもの以外に、界面活性剤、離型剤、滑剤、可塑剤、帯電防止剤、光安定剤、酸化防止剤、難燃剤、難燃助剤、重合禁止剤、充填剤、シランカップリング剤、着色剤、強化剤、無機フィラー、無機または有機系の微粒子、耐衝撃性改質剤、少量の溶剤等の公知の添加剤を含んでもよい。
(樹脂組成物の物性)
 樹脂組成物の粘度は、詳しくは後述するが、モールドの表面の微細凹凸構造への流れ込みやすさの観点から、高すぎないことが好ましい。具体的には、25℃において、回転式B型粘度計で測定した樹脂組成物の粘度は、10000mPa・s以下が好ましく、5000mPa・s以下がより好ましく、2000mPa・s以下がさらに好ましい。
 ただし、樹脂組成物の粘度が10000mPa・sを超える場合であっても、モールドとの接触の際に予め加温して粘度を下げることが可能であるならば特に問題はない。この場合、70℃において、回転式B型粘度計で測定した樹脂組成物の粘度は、5000mPa・s以下が好ましく、2000mPa・s以下がより好ましい。
 樹脂組成物の粘度の下限値については特に制限されないが、10mPa・s以上であれば、濡れ広がらずに、積層構造体を効率よく製造することができるため好ましい。
 なお、中間層14および最表層16の材料としては、上述した樹脂組成物に限定されない。例えば、中間層14用の樹脂組成物としては、後述する第二の態様の説明において例示された樹脂組成物(X)を用いてもよいし、最表層16用の樹脂組成物としては、後述する第二の態様の説明において例示された樹脂組成物(Y)を用いてもよい。
<積層構造体の製造方法>
 図1に示す中間層14および最表層16の微細凹凸構造の形成方法は特に限定されないが、モールドを用いた転写法、具体的には、微細凹凸構造の反転構造を表面に有するモールドに活性エネルギー線硬化性樹脂組成物などの材料を接触、硬化させることによって形成する。
 転写法によれば、各層の微細凹凸構造の形状を自由に設計することが可能である。また、任意の層の微細凹凸構造の凹部および凸部が、残りの層の微細凹凸構造のうちの少なくとも1つと異なって配置されている積層構造体を容易に製造できる。
 以下、転写法に用いるモールドの一例について説明する。
(モールド)
 モールドは、微細凹凸構造の反転構造を表面に有する。
 モールドの材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、セラミックス等が挙げられる。
 モールドの形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
 モールドの作製方法としては、例えば、下記方法(I-1)、方法(I-2)などが挙げられる。中でも、大面積化が可能であり、かつ作製が簡便である観点から、方法(I-1)が好ましい。
 (I-1)アルミニウム基材の表面に、複数の細孔(凹部)を有する陽極酸化アルミナを形成する方法によって、微細凹凸構造の反転構造を形成する方法。
 (I-2)モールド基材の表面に、電子ビームリソグラフィ法、レーザ光干渉法等によって微細凹凸構造の反転構造を形成する方法。
 方法(I-1)としては、下記の工程(a)~(f)を含む方法が好ましい。
 (a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
 (b)酸化皮膜の一部または全てを除去し、アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
 (c)工程(b)の後、アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
 (d)工程(c)の後、細孔の径を拡大させる工程。
 (e)工程(d)の後、電解液中、再度陽極酸化する工程。
 (f)工程(d)と工程(e)を繰り返し行い、複数の細孔を有する陽極酸化アルミナがアルミニウム基材の表面に形成されたモールドを得る工程。
工程(a):
 図2に示すように、アルミニウム基材20を陽極酸化することにより、細孔22を有する酸化皮膜24が形成される。
 アルミニウム基材の形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
 アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、あらかじめ脱脂処理されることが好ましい。また、アルミニウム基材は、表面状態を平滑にするために、研磨処理(機械研磨・化学研磨・電解研磨など)されていることが好ましい。
 アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上がさらに好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりする場合がある。
 電解液としては、硫酸、シュウ酸、リン酸等が挙げられる。
 シュウ酸を電解液として用いる場合、シュウ酸の濃度は、0.8M以下が好ましい。シュウ酸の濃度が0.8M以下であれば、電流値の上昇を防ぎ、酸化皮膜の表面が粗くなるのを抑制することができる。
 また、化成電圧が30~100Vの時、周期が100nm~200nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃以下であることにより、いわゆる「ヤケ」と呼ばれる現象の発生を防ぐことができ、細孔の破損や、表面が溶けて細孔の規則性が乱れることを抑制することができる。
 硫酸を電解液として用いる場合、硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7M以下であれば、電流値の上昇を防ぎ、定電圧を維持することができる。
 また、化成電圧が25~30Vの時、周期が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。電解液の温度は、30℃以下が好ましく、20℃以下がよりに好ましい。電解液の温度が30℃以下であることにより、いわゆる「ヤケ」と呼ばれる現象の発生を防ぐことができ、細孔の破損や、表面が溶けて細孔の規則性が乱れることを抑制することができる。
工程(b):
 図2に示すように、酸化皮膜24の一部または全てを一旦除去し、これを陽極酸化の細孔発生点26とすることにより、細孔の規則性を向上させることができる。酸化皮膜24は全てを除去せずに一部が残るような状態でも、酸化皮膜24のうち、すでに規則性が十分に高められた部分が残っているのであれば、酸化皮膜除去の目的を果たすことができる。
 酸化皮膜24を除去する方法としては、アルミニウムを溶解せず、酸化皮膜24を選択的に溶解できる溶液に酸化皮膜24を溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
工程(c):
 図2に示すように、酸化皮膜を除去したアルミニウム基材20を再度、陽極酸化することにより、円柱状の細孔22を有する酸化皮膜24が形成される。
 陽極酸化は、工程(a)と同様の条件で行うことができる。陽極酸化の時間を長くするほど深い細孔を得ることができる。
工程(d):
 図2に示すように、細孔22の径を拡大させる処理(以下、「細孔径拡大処理」という。)を行う。細孔径拡大処理は、酸化皮膜24を溶解できる溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
 細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
工程(e):
 図2に示すように、再度、陽極酸化を行うことにより、円柱状の細孔22の底部からさらに下に延びる、直径の小さい円柱状の細孔22がさらに形成される。
 陽極酸化は、工程(a)と同様の条件で行うことができる。陽極酸化の時間を長くするほど深い細孔を得ることができる。
工程(f):
 図2に示すように、工程(d)の細孔径拡大処理と、工程(e)の陽極酸化を繰り返すことにより、直径が開口部から深さ方向に連続的に減少する形状の細孔22を有する酸化皮膜24が形成される。これにより、アルミニウム基材20の表面に陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))を有するモールド28が得られる。最後は工程(d)で終わることが好ましい。
 繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が3回以上であることにより、連続的に細孔の直径が減少し、十分な反射率低減効果を有するモスアイ構造が得られる。
 細孔22の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられる。円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
 隣り合う細孔22同士の平均間隔(周期)は、可視光の波長以下、すなわち400nm以下であることが好ましく、25~300nmであることがより好ましく、80nm~250nmであることがさらに好ましい。
 隣り合う細孔22同士の平均間隔は、電子顕微鏡によって隣り合う細孔22間の間隔(細孔22の中心から隣接する細孔22の中心までの距離)を50点測定し、これらの値を平均した値である。
 細孔22の平均深さは、100~400nmが好ましく、130~300nmがより好ましい。
 細孔22の平均深さは、前記電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔22の最底部と、細孔22間に存在する凸部の最頂部との間の距離を50点測定し、これらの値を平均した値である。
 細孔22のアスペクト比(細孔22の平均深さ/隣り合う細孔22同士の平均間隔)は、0.3~4が好ましく、0.8~2.5がより好ましい。
 モールドの微細凹凸構造が形成された側の表面は、離型剤で処理されていてもよい。
 離型剤としては、シリコーン樹脂、フッ素樹脂、フッ素化合物、リン酸エステル等が挙げられ、フッ素化合物およびリン酸エステルが好ましい。
 フッ素化合物の市販品としては、ソルベイスペシャルティポリマーズジャパン株式会社製の「フルオロリンク」、信越化学工業株式会社製のフルオロアルキルシラン「KBM-7803」、旭硝子株式会社製の「MRAF」、株式会社ハーベス社製の「オプツールHD1100」、「オプツールHD2100シリーズ」、ダイキン工業株式会社製の「オプツールDSX」、住友スリーエム株式会社製の「ノベックEGC-1720」、株式会社フロロテクノロジー製の「FS-2050」シリーズ等が挙げられる。
 リン酸エステルとしては、(ポリ)オキシアルキレンアルキルリン酸化合物が好ましい。市販品としては、城北化学工業株式会社製の「JP-506H」、アクセル社製の「モールドウイズINT-1856」、日光ケミカルズ株式会社製の「TDP-10」、「TDP-8」、「TDP-6」、「TDP-2」、「DDP-10」、「DDP-8」、「DDP-6」、「DDP-4」、「DDP-2」、「TLP-4」、「TCP-5」、「DLP-10」などが挙げられる。
 これら離型剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 このようにして得られる、アルミニウム基材の表面に陽極酸化アルミナを有するモールドを用い、転写法により微細凹凸構造を形成する場合、積層構造体の微細凹凸構造は、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものである。
 以下、積層構造体を製造するための製造装置、該製造装置を用いた積層構造体の製造方法の一例について、具体的に説明する。
(製造装置および積層構造体の製造方法)
 図1に示す積層構造体10は、例えば、図3に示す製造装置を用いて、下記のようにして製造される。
 表面に微細凹凸構造の反転構造(図示略)を有するロール状モールド30と、ロール状モールド30の表面に沿って移動する帯状フィルムである基材12との間に、タンク32から中間層用の樹脂組成物(活性エネルギー線硬化性樹脂組成物)を供給する。
 ロール状モールド30と、空気圧シリンダ34によってニップ圧が調整されたニップロール36との間で、基材12および樹脂組成物をニップする。これにより、樹脂組成物を基材12とロール状モールド30との間に均一に行き渡らせると同時に、ロール状モールド30の微細凹凸構造の凹部内に充填する。
 ロール状モールド30の下方に設置された活性エネルギー線照射装置38から、基材12を介して樹脂組成物に活性エネルギー線を照射し、樹脂組成物を硬化させる。これにより、ロール状モールド30の表面の微細凹凸構造が転写された微細凹凸構造を表面に有する中間層14を形成する。
 剥離ロール40により、表面に微細凹凸構造を有する中間層14が形成された基材12をロール状モールド30から剥離することによって、基材12上に中間層14が積層した積層体10’を得る。
 再び、図3に示す製造装置を用い、基材12に代えて積層体10’をロール状モールド30の表面に沿って移動させ、積層体10’とロール状モールド30との間に、タンク32から最表層用の樹脂組成物(活性エネルギー線硬化性樹脂組成物)を供給し、該樹脂組成物を積層体とロール状モールド30との間に均一に行き渡らせると同時に、ロール状モールド30の微細凹凸構造の凹部内に充填する。
 ついで、基材12を介して樹脂組成物に活性エネルギー線を照射し、樹脂組成物を硬化させる。これにより、ロール状モールド30の表面の微細凹凸構造が転写された微細凹凸構造を表面に有する最表層16を形成する。
 ついで、剥離ロール40により、表面に微細凹凸構造を有する最表層16が形成された積層体10’をロール状モールド30から剥離することによって、図1に示すような、表面に微細凹凸構造を有する中間層14および最表層16が基材12上に順次積層した積層構造体10を得る。
 活性エネルギー線照射装置38としては、無電極ランプ、高圧水銀ランプ、メタルハライドランプ、LEDランプ等が好ましい。光照射エネルギー量は、100~10000mJ/cmが好ましい。
 なお、中間層14と最表層16は同じ製造装置を用いて形成してもよいし、異なる製造装置を用いて形成してもよい。
 同じ製造装置を用いる場合は、製造装置が大型化するのを防げる。この場合、各層で微細凹凸構造の凹部および凸部の形状が異なる場合には、中間層14の形成から最表層16の形成に切り替わるときに、モールドを最表層用のモールドに交換しておく。
 異なる製造装置を用いる場合は、中間層14と最表層16とを連続して形成することができる。
 また、中間層14および最表層16を形成する方法としては、上述した方法に限定されない。例えば、後述する第二の態様の説明において示された工程(1-2)により中間層14を形成してもよい。また、後述する第二の態様の説明において示された工程(2)および工程(3)により最表層16を形成してもよい。
<作用効果>
 以上説明した第一の態様における積層構造体10は、最表層16の表面に微細凹凸構造を有するので、反射防止性能等の光学性能が良好である。
 しかも、積層構造体10は特定の弾性回復率を有する最表層16、および該最表層16と基材12との間に、特定のマルテンス硬さを有する中間層14を備えているので、耐擦傷性と鉛筆硬度の両方を高めることができ、積層構造体10の表面の機械特性が高まる。
 中間層14の厚さを厚くしたり、中間層14を硬い材料、復元力の強い材料、あるいは応力を吸収する材料で形成したりすれば、積層構造体10の鉛筆硬度がより向上する傾向にある。さらに、最表層16の厚さを薄くしたり、復元力の強い材料、あるいは応力を吸収する材料で形成したりすれば、積層構造体10の表面の耐擦傷性や鉛筆硬度がより向上する傾向にある。
 このように、積層構造体10は、光学性能および耐擦傷性に優れ、高い鉛筆硬度を示す。
 なお、上述したように、例えば中間層14の厚さを厚くすれば、積層構造体10の鉛筆強度がより向上する傾向にあるが、本発明の積層構造体10は特定のマルテンス硬さを有する中間層14を備えている。よって、中間層14の厚さを薄くすることにより(例えば5μm程度)積層構造体10の厚さを薄くしても、十分な鉛筆硬度が得られる。
 ところで、表面に微細凹凸構造を有する硬化層(最表層)と基材との間に中間層を設ける場合、表面に微細凹凸構造を有する硬化層と中間層との密着性が十分に得られないことがある。特に、中間層が活性エネルギー線硬化性樹脂組成物の硬化物からなる層である場合には、表面に微細凹凸構造を有する硬化層と、中間層との層間の密着性を高めることが困難である。
 密着性を高める方法としては、中間層を形成する際に活性エネルギー線硬化性樹脂組成物の硬化を行わない、あるいは硬化を弱くする方法が知られている。しかし、これらの方法では、中間層の表面が搬送ロールに付着したり、フィルムを重ねたときにブロッキングが発生したりすることがある。
 図1に示す積層構造体10であれば、中間層14の表面にも微細凹凸構造を有するので、凹凸構造によるアンカー効果により中間層14と最表層16との密着性に優れる。
 さらに、中間層14の表面に微細凹凸構造を有することで最表層16との密着性に優れるため、密着性を向上させる目的で中間層14を形成る際に活性エネルギー線硬化性樹脂組成物の硬化を行わない、あるいは硬化を弱くする必要がない。よって、基材12がフィルム状やフィルム状などの帯状である場合、中間層14が形成された基材12の巻き取り時に中間層14の表面が搬送ロールに付着したり、フィルムを重ねたときにブロッキングが発生したりするといった問題が発生しにくい。また、硬化を弱くして中間層14を形成する場合であっても、平滑面同士を重ねた場合に起こりやすいブロッキングが、中間層14の表面に微細凹凸構造を有することで起りにくくなる。
 また、微細凹凸構造は、凸部のピッチ、凸部の平均高さ、および凸部のピッチと凸部の平均高さとのバランスであるアスペクト比によって特徴づけられる。例えば、凸部のピッチが狭く、凸部の平均高さが高く、アスペクト比が大きいほど層間の密着性が優れる傾向にある。一方、凸部のピッチが広く、凸部の平均高さが低く、アスペクト比が小さいほど積層構造体10の表面の耐擦傷性が向上する傾向にあり、隣り合う凸部同士が寄り添って微細凹凸構造が崩れる現象が起こりにくい。
 図1に示す積層構造体10は、中間層14と最表層16とで微細凹凸構造の凸部の平均高さが同じであるが、凸部のピッチは最表層16の微細凹凸構造の方が中間層14の微細凹凸構造よりも大きく、アスペクト比は最表層16の微細凹凸構造の方が中間層14の微細凹凸構造よりも小さい。このように、凸部のピッチが広く、アスペクト比が小さい微細凹凸構造が最表層16の表面に形成され、凸部のピッチが狭く、アスペクト比が大きい微細凹凸構造が中間層14の表面に形成された積層構造体10は、耐擦傷性と密着性のバランスが良好である。しかも、中間層14と最表層16とで微細凹凸構造の凸部のピッチが異なるので、中間層14上に最表層16を積層するだけで、これらの微細凹凸構造を配置違いにできる。
 また、前記微細凹凸構造を、モールドを用いた転写法により形成すれば、各層の微細凹凸構造の形状を自由に設計することが可能である。また、任意の層の微細凹凸構造の凹部および凸部が、残りの層の微細凹凸構造のうちの少なくとも1つと異なって配置されている積層構造体を容易に製造できる。
 また、転写法であれば、均一な厚さの最表層16を容易に形成できる。また、樹脂組成物が中間層14の凹部にまで十分に充填されるので、中間層14と最表層16との間に隙間が形成されにくい。しかも、中間層14の形成時と最表層16の形成時とにおいてモールドに変更するだけで、中間層14と最表層16とで、凸部のピッチ、凸部の平均高さ、およびアスペクト比の異なる微細凹凸構造を容易に形成することができる。
(用途)
 本発明の第一の態様における積層構造体は、反射防止物品(反射防止フィルム、反射防止膜等)、光学物品(光導波路、レリーフホログラム、レンズ、偏光分離素子等)、細胞培養シート、超撥水性物品、超親水性物品等の各種物品としての用途展開が期待できる。この中でも特に反射防止物品としての用途に適している。
 本発明の第一の態様における物品は、本発明の第一の態様における積層構造体を表面に備えるものである。
 反射防止物品としては、例えば、画像表示装置(液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置等)、レンズ、ショーウィンドウ、眼鏡等の表面に設けられる反射防止膜、反射防止フィルム、反射防止シート等が挙げられる。
 例えば反射防止物品を画像表示装置に用いる場合には、画像表示面に反射防止物品として反射防止フィルムを直接貼り付けてもよく、画像表示面を構成する部材の表面に反射防止物品として反射防止膜を直接形成してもよく、前面板に反射防止物品として反射防止膜を形成してもよい。
<他の実施形態>
 本発明の第一の態様における積層構造体は、上述したものに限定されない。図1に示す積層構造体10は、中間層14の表面にも微細凹凸構造が形成されているが、例えば図4に示す積層構造体50のように、中間層14は表面に微細凹凸構造を有していなくてもよい。
 図4に示すように、表面が平坦な中間層14を基材12上に形成する方法としては特に限定されないが、共押出成形法、ラミネ-ト成形法、流延法、塗工法、転写法等の公知の方法が挙げられる。
 共押出成形法としては、Tダイ成形法、インフレ-ション成形法等の公知の方法によって基材の材料および中間層の材料を溶融状態で押出し、積層した後、冷却ロ-ル等の冷却手段によって冷却する方法が挙げられる。
 ラミネ-ト成形法としては、基材を予め押出成形法等によって作製しておき、この基材の表面に中間層の材料を溶融状態で押出し、積層した後、冷却ロ-ル等の冷却手段によって冷却する方法が挙げられる。
 流延法や塗工法としては、上述した樹脂組成物などの中間層の材料を、トルエン、MEK、酢酸エチル等の有機溶媒の単独物または混合物に溶解または分散させて、固形分濃度が0~70質量%程度の溶液を調製し、これを流延方式、塗工方式等の適宜な展開方式によって展開し、乾燥、必要に応じて活性エネルギー線で硬化させて、基材の表面に直接付設する方法が挙げられる。
 転写法としては、表面が鏡面である転写ロール(モールド)と基材との間に、上述した樹脂組成物などの中間層の材料を充填し、中間層の材料を基材と転写ロールの間に均一に行き渡らせ、中間層の材料に活性エネルギー線を照射し、中間層の材料を硬化させる方法が挙げられる。
 また、後述する第二の態様の説明において示された工程(1)により表面が平坦な中間層14を形成することもできる。後述する工程(1)により表面が平坦な中間層14を形成すれば、最表層16との密着性が向上する。
 また、図1、4に示す積層構造体10、50は、中間層14が1層で構成されているが、例えば図5、6に示すように、中間層14は複数の層で構成されていてもよい。中間層が複数の層で構成されている場合、各層の材料、膜厚、物性(機械特性や光学性能など)は同じであってもよいし、異なっていてもよい。
 図5に示す積層構造体60は、基材12上に、中間層14と最表層16とが順に積層して構成されている。積層構造体60の中間層14は表面に微細凹凸構造を有する層14a,14aの2層からなり、最表層16の表面にも微細凹凸構造を有する。最表層16の微細凹凸構造の凹部および凸部は、中間層14を構成する、表面に微細凹凸構造を有する層14a,14aの微細凹凸構造の凹部および凸部と異なって配置され、かつ、表面に微細凹凸構造を有する層14a,14aの微細凹凸構造も配置違いである。
 図6に示す積層構造体70は、基材12上に、中間層14と最表層16とが順に積層して構成されている。積層構造体70の中間層14は表面に微細凹凸構造を有する層14aと表面に微細凹凸構造を有さない層14bの2層からなり、最表層16の表面にも微細凹凸構造を有する。最表層16の微細凹凸構造の凹部および凸部は、中間層14を構成する、表面に微細凹凸構造を有する層14aの微細凹凸構造の凹部および凸部と異なって配置されている。表面に微細凹凸構造を有さない層14bの材料としては、熱可塑性樹脂、活性エネルギー線硬化性樹脂組成物、無機材料などが挙げられる。
 なお、図6に示す積層構造体70は、最表層16と表面に微細凹凸構造を有する層14aとが隣接しているが、最表層16と表面に微細凹凸構造を有さない層14bとが隣接していてもよい。
 また、図1、5、6に示す積層構造体10、60、70は、各層の微細凹凸構造の凸部のピッチおよびアスペクト比が異なっているが、各層の微細凹凸構造の凸部のピッチおよびアスペクト比等は同じであってもよい。ただし、少なくとも2層の微細凹凸構造が配置違いであることが好ましい。
 また、図1、5、6に示す積層構造体10、60、70は、各層の微細凹凸構造の凹部および凸部の形状が同じ(図1、5、6の場合は略円錐形状)であるが、各層で微細凹凸構造の凹部および凸部の形状は異なっていてもよく、微細凹凸構造に求める効果に応じて適宜選択すればよい。
 さらに、基材12の裏面に、粘着材層を介してセパレートフィルムを設けてもよい。粘着材層を設けることによって、他のフィルム状やシート状の物品(前面板、偏光素子等)に容易に貼り付けることができる。
[第二の態様]
 以下、本発明の第二の態様を詳細に説明する。
「積層構造体(積層体)」
 本発明の第二の態様における積層構造体(積層体)は、基材、中間層(第二の層)および最表層(微細凹凸構造層)を含む3層以上から構成される積層構造体(以下、「多層積層体」という場合がある。)である。本発明の第二の態様において、微細凹凸構造にはナノ凹凸構造も含まれる。中間層の層数は2層以上でもよいが、生産性とコストの点から1層であることが望ましい。
 また本発明の第二の態様において、基材及び中間層を積層してなる積層構造体であって、前記中間層の表面における重合性官能基の反応率が35~85モル%であることを特徴とする積層構造体を「2層積層体」という。この2層積層体は、前記多層積層体の製造に使用可能な積層構造体である。
「基材」
 基材は、中間層を介して表層となる最表層を支持可能なものであれば、その材質はいずれであってもよい。ただし、後述するように、積層構造体を製造する際に、遮光性のモールド(スタンパ)の使用を可能とするためには、最表層用の樹脂組成物に基材を介して活性エネルギー線を照射することが要求されることから、活性エネルギー線に対して透光性を有する基材(以下「光透過性の基材」という場合がある。)が好ましい。光透過性の基材は、上記の活性エネルギー線を透過する成形体であれば特に限定されない。光透過性の基材を構成する材料としては、例えば以下のものが挙げられる。メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体、ラクトン環含有(共)重合体、シクロオレフィン(共)重合体等の合成高分子;セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート等の半合成高分子;ポリエチレンテレフタレート、ポリ乳酸等のポリエステル;ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフオン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、それら高分子の複合物(例えば、ポリメチルメタクリレートとポリ乳酸の複合物、ポリメチルメタクリレートとポリ塩化ビニルの複合物);ガラス。
 基材の形状や製造方法は、特に限定されない。例えば、射出成形体、押し出し成形体、キャスト成形体を使用できる。また、形状は、シート状、フィルム状、その他の立体形状でもよい。特に、中間層の成形を容易にする点から、形状は可撓性を有すフィルム状が好ましい。さらに、密着性、帯電防止性、耐擦傷性、耐候性等の特性の改良を目的として、基材の表面にコーティングやコロナ処理が施されていてもよい。
 基材がフィルム状の場合、その厚さは、500μm以下であることが好ましい。このようなフィルム基材を用いることで、ナノ凹凸構造の表面を有する成形体を容易に製造することができる。
[中間層(第二の層)]
 本発明の第二の態様の積層構造体における中間層(第二の層)を構成する材料は、重合性成分を含む活性エネルギー線硬化性の樹脂組成物(X)の硬化物である。樹脂組成物(X)としては、重合性成分(a)と活性エネルギー線重合開始剤(d)を必須成分とし、その他の重合性成分(b)、その他の成分(c)、及び溶剤(e)を含むものが好適に用いられる。
 中間層は、本発明の第二の態様における多層積層体に鉛筆硬度を付与する役割を有する。具体的には、鉛筆硬度試験において鉛筆の芯に押されて基材に圧痕が形成されることを防ぎ、高い鉛筆硬度を実現できる。
 また、中間層には、基材および最表層との密着性も求められる。基材と中間層の密着性は、溶剤を使用して基材上に中間層用の樹脂組成物(X)を塗工することにより、基材に密着させる方法が挙げられる。他には、中間層用の樹脂組成物(X)の重合性成分(a)に、基材密着性を有する成分を添加する方法が挙げられる。
 中間層と最表層の密着性は、最表層に接する側の中間層の表面に、最表層の形成に用いられる樹脂組成物(Y)と共重合性を有する重合性官能基を持たせることで確保できる。そうすることで、樹脂組成物(Y)を重合硬化させる際に中間層と最表層の密着性を付与できる。具体的には、中間層用の樹脂組成物(X)を重合硬化させる際に、中間層の表面に未反応の重合性官能基を意図的に多く残すことで最表層との密着性を付与できる。中間層の表面に未反応の重合性官能基を残す方法としては、ラジカル重合性官能基の場合、酸素による硬化阻害を利用することが挙げられる。(メタ)アクリレート化合物などのラジカル重合性官能基を有する樹脂組成物を活性エネルギー線で硬化させた場合、中間層の表層部の空気との界面付近では、酸素による硬化阻害で重合速度が遅くなる。この現象を利用することで中間層の内部は硬化が進み、十分な硬度が得られているにも関わらず、中間層の表面のみにラジカル重合性官能基を多く残すことができる。本発明の第二の態様における2層積層体において、中間層と最表層の密着性を確保するために必要な中間層の表面の重合性官能基の反応率は、35~85モル%が好ましく、45~75モル%がさらに好ましく、55~70モル%が特に好ましい。反応率が35モル%以下であると、中間層の表面が未硬化となり、他のものと接触すると塗工面が荒れてしまう。このような状態の中間層では、中間層形成後に塗工面が搬送ロールに触れると塗工面が荒れてしまったり、中間層形成後に一度巻き取ることが困難となったりする。さらに、中間層の表面だけでなく内部の硬化も不十分となり、所望の鉛筆硬度が得られない場合がある。一方、反応率が75モル%を超えると、中間層の表面に残る未反応の重合性官能基の量が少なくなりすぎるため、最表層との密着性が低下する。
 中間層の表面の重合性官能基の反応率を求めるためには、残存した炭素-炭素二重結合量(C=C)を求められればよい。測定方法としては、赤外分光測定、ラマン分光測定、臭素などの負荷反応後に当該元素を分析するなどの手段が考えられるが、赤外分光測定が効率的かつ再現性良く測定できるため好ましい。
 さらに、基材と中間層、および中間層と最表層の界面反射が少ないことが好ましい。界面反射を低く抑えることで干渉縞の発生を抑えることが可能になると共に、本発明の第二の態様における多層積層体が反射防止性能を有する場合に、その反射防止性能を十分発揮させることができる。界面反射を抑える方法としては、各層の界面での屈折率変化が緩やかになるように一方の層の組成物を他方の層の表面に十分浸透させる方法と、各層の屈折率差を小さくする方法が挙げられる。この2種類の方法は、組み合わせても良く単独でも良い。
「樹脂組成物(X)」
〔重合性成分(a)〕
 重合性成分(a)は、本発明の第二の態様における多層積層体に鉛筆硬度を付与する役割を有する。具体的には、鉛筆硬度試験において、鉛筆の芯に押されて多層積層体に圧痕が形成されることを防ぐことで高い鉛筆硬度を付与することが可能になる。
 さらに、第一の活性エネルギー線照射で中間層用の樹脂組成物(X)を硬化させた後に、その上から最表層用の樹脂組成物(Y)を積層し硬化させた際に密着性が良好である必要がある。そのためには前述の通り2層積層体の中間層の表面に重合性官能基を多く残すことが重要である。本発明者等は鋭意検討の結果、樹脂組成物(X)が特定の重合性成分(a)を含むことで、中間層の表面の重合性官能基の反応率を好ましい範囲に調整しやすく、多層積層体の鉛筆硬度も高くできることを見出した。
 重合性成分(a)としては、例えば以下のものが挙げられる。ペンタエリスリトール(トリ)テトラアクリレート、ジペンタエリスリトール(ペンタ)ヘキサアクリレート、ポリペンタエリスリトールポリアクリレート、および、ペンタエリスリトール(トリ)テトラアクリレートとジイソシアネートの反応生成物、ジペンタエリスリトール(ペンタ)ヘキサアクリレートとジイソシアネートの反応生成物、(ポリ)ペンタエリスリトール(ポリ)アクリレートとジイソシアネートの反応生成物など重合性官能基を有する化合物。重合性成分(a)は複数種類を組み合わせても良いし、単独で用いても良い。
 これらの中でも特に、以下のものが中間層の硬度、反り、密着性のバランスの点で好ましい。
・ペンタエリスリトール(トリ)テトラアクリレートとヘキサメチレンジイソシアネートの反応生成物。
・(ポリ)ペンタエリスリトール(ポリ)アクリレート、および(ポリ)ペンタエリスリトール(ポリ)アクリレートとヘキサメチレンジイソシアネートとの反応生成物の組み合わせ。
 なお、ジイソシアネートは、ヘキサメチレンジイソシアネートのような構造が鉛筆硬度と密着性両立の点で好ましい。
 重合性成分(a)は、樹脂組成物(X)が含む重合性成分の合計100質量%に対して、30~100質量%が好ましく、50~100質量%がより好ましい。30質量%以上であれば密着性と鉛筆硬度向上の点で好ましく、100質量%未満であれば、重合性成分(a)以外の「他の重合性成分(b)」を加えることができるため、基材密着性、レベリング性、粘度調整、高硬度、柔軟性、反応性制御、紫外線吸収性、酸化防止性、ブロッキング防止性、ガスバリア性、帯電防止性、色調調整、耐熱性、カール抑制などの機能性を付与できる点で好ましい。
〔重合性成分(b)〕
 重合性成分(b)は、重合性官能基を有する化合物(ただし、重合性成分(a)を除く。)であり、ラジカル重合性化合物、カチオン重合性化合物、アニオン重合性化合物などが挙げられるが、重合速度が速く材料選択の幅が広いことからラジカル重合性化合物が好ましい。ラジカル重合性官能基としては、活性エネルギー線硬化性に優れ、材料の選択肢が豊富な(メタ)アクリロイル基が好ましい。また、重合性成分(a)が(メタ)アクリロイル基を有することから、重合性成分(a)と共重合性を有する化合物が好ましい。
 重合性成分(b)に持たせることができる機能としては、基材密着性、レベリング性、粘度調整、高硬度、柔軟性、反応性制御、紫外線吸収性、酸化防止性、ブロッキング防止性、ガスバリア性、帯電防止性、色調調整、耐熱性、カール抑制などが挙げられる。
 重合性成分(b)としては、3官能以上の(メタ)アクリレート、2官能の(メタ)アクリレート及び単官能の(メタ)アクリレートが挙げられる。
 3官能以上の(メタ)アクリレートとして例えば以下のものが挙げられる。グリセリントリアクリレート、ジグリセリンテトラアクリレート、ポリグリセリンポリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ソルビトールヘキサアクリレート、イソシアヌル酸EO変性トリアクリレートなど。さらに上記の化合物のアルキレンオキサイド変性体、カプロラクトン変性体などが挙げられる。なお、本明細書において「EO変性」とは、エチレンオキサイド変性を意味する。
 2官能の(メタ)アクリレートとしては、例えば以下のものが挙げられる。ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリブタジエン末端ジアクリレート、水添ポリブタジエン末端ジアクリレート、アルコキシ化ビスフェノールAジアクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、1,3-アダマンタンジオールジ(メタ)アクリレート。さらに上記の化合物のアルキレンオキサイド変性体、カプロラクトン変性体などが挙げられる。
 単官能の(メタ)アクリレートとしては、例えば以下のものが挙げられる。エトキシ化o-フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、(イソ)ステアリル(メタ)アクリレート、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N,N-ジエチルアクリルアミド、ジメチルアミノエチルアクリレート、ヒドロキシエチルアクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、3-(メタ)アクリロキシプロピルトリメトキシシラン、2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール、1,2,2,6,6-ペンタメチル-4-ピペリジル-(メタ)アクリレート、2,2,6,6-テトラメチル-4-ピペリジル-(メタ)アクリレート、アクリル酸2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニル、N,N-ジメチルアミノプロピルアクリルアミドp-トルエンスルホン酸メチル4級塩、γ-ブチロラクトン(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートなど。さらに上記の化合物のアルキレンオキサイド変性体、カプロラクトン変性体などが挙げられる。
 重合性成分(b)としては、更に、シリコーン(メタ)アクリレート類、フッ素含有(メタ)アクリレート類、などが挙げられる。
 さらには、コロイダルシリカなどの無機微粒子表面を、(メタ)アクリロイル基を有するシランカップリング剤で修飾した化合物なども、鉛筆硬度向上やブロッキング防止に有効な成分として挙げられる。
〔活性エネルギー線重合開始剤(d)〕
 活性エネルギー線重合開始剤(d)は、活性エネルギー線を照射することで開裂し、重合反応を開始させる活性種を発生する化合物である。活性エネルギー線としては、装置コストや生産性の点から、紫外線が好ましい。発生させる活性種としては、反応速度の点でラジカルが好ましい。
 紫外線によってラジカルを発生する活性エネルギー線重合開始剤(d)としては、例えば以下のものが挙げられる。ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、チオキサントン類(2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン等)、アセトフェノン類(ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、ベンゾインエーテル類(ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等)、アシルホスフィンオキシド類(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等)、メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、9-フェニルアクリジン等。
 活性エネルギー線重合開始剤(d)は、1種を単独で用いてもよく、2種以上を併用してもよい。併用する場合は、吸収波長の異なる2種以上を併用することが好ましい。
 また、必要に応じて、過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、過酸化物(ベンゾイルパーオキシド等)、アゾ系開始剤等の熱重合開始剤を併用してもよい。
 樹脂組成物(X)中における活性エネルギー線重合開始剤(d)の割合は、樹脂組成物(X)の固形分100質量%に対して、0.01~10質量%が好ましく、0.1~5質量%がより好ましく、0.2~3質量%がさらに好ましい。活性エネルギー線重合開始剤(d)の割合が0.01質量%未満では、樹脂組成物(X)の硬化が完結せず、中間層に十分な弾性率を付与できず多層積層体の鉛筆硬度が低下する場合がある。活性エネルギー線重合開始剤(d)の割合が10質量%を超えると、中間層内に未反応の活性エネルギー線重合開始剤(d)が残り、可塑剤として働いてしまい、中間層の弾性率を低下させ、多層積層体の鉛筆硬度を損なう場合もある。また、着色の原因となる場合もある。
〔溶剤(e)〕
 基材上への樹脂組成物(X)の塗工を容易に行うために樹脂組成物(X)中には溶剤(e)を含有させることができる。溶剤(e)によって、樹脂組成物(X)を塗工し乾燥する際の塗工性と基材密着性が確保される。
 中間層の塗工性が良好となる樹脂組成物(X)の粘度は、25℃で、5~200[mPa・sec]が好ましく、10~100mPa[mPa・sec]がより好ましい。粘度の測定にはE型粘度計もしくはB型粘度計が使用できる。粘度が低すぎると乾燥後の中間層の膜厚を厚くすることができず、目的の鉛筆硬度が出せない場合がある。粘度が高すぎると塗工時のレベリング性が悪化し、筋状の膜厚ムラを生じる場合がある。
 樹脂組成物(X)の固形分濃度は30質量%以上80質量%以下が好ましく、35質量%以上60質量%以下が好ましい。固形分濃度が高すぎると溶剤(e)が少ないため基材への中間層の浸透が不十分となって中間層と基材への密着性が低下する場合がある。固形分濃度が少なすぎると乾燥後の中間層の膜厚を厚くすることができず、多層積層体において目的の鉛筆硬度を出せない場合がある。
 溶剤(e)は、基材への密着性確保のために基材を溶解する溶剤を含むことが好ましい。溶剤(e)が基材を溶解する溶剤を含むことで、基材と中間層の界面が相溶化している緩和層を形成させることができ、結果として密着性が向上する。このような状態にすると、基材と中間層の間での界面反射を減ずることもできるため、干渉縞等の発生を抑制できる効果もある。
 例えば、基材がトリアセチルセルロースフィルムである場合、トリアセチルセルロースを溶解する溶剤として以下のものが挙げられる。
 炭素子数が3~12のエーテル類:具体的には、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等;
 炭素数が3~12のケトン類:具体的には、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、およびメチルシクロヘキサノン等;
 炭素数が3~12のエステル類:具体的には、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n-ペンチル、およびγ-ブチロラクトン等;
 2種類以上の官能基を有する有機溶媒:具体的には、2-メトキシ酢酸メチル、2-エトキシ酢酸メチル、2-エトキシ酢酸エチル、2-エトキシプロピオン酸エチル、2-メトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノール、1,2-ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、およびアセト酢酸エチル等。
 ハロゲン炭化水素類にはトリアセチルセルロースを溶解するものがあるが、地球環境や作業環境の点で使用しないことが好ましい。
 また、溶剤(e)は、蒸発速度が速い溶剤と蒸発速度が遅い溶剤を組み合わせることが好ましい。蒸発速度が速い溶剤と遅い溶剤を組み合わせることで、短い乾燥時間と優れた表面状態を両立できる。蒸発速度が速い溶剤のみの場合、溶剤の滞在時間が短すぎて基材に樹脂組成物(X)が浸透する時間が確保できないため密着性が低下したり、表面が荒れて白濁してしまったりする場合がある。逆に蒸発速度が遅い溶剤のみの場合、乾燥時間が長くなってライン速度が遅くなり、生産性が低下する場合がある。
 蒸発速度が速い溶剤s1と蒸発速度が遅い溶剤s2の質量組成比「s1:s2」は、40:60~90:10程度の範囲が好ましい。組み合わせる溶剤の種類によって乾燥時間や基材への浸透性が異なるため、その組み合わせる溶剤の種類毎に組成比の最適化が必要である。
 また、溶剤(e)は、基材を溶解する溶剤と基材を溶解しない溶剤を組み合わせることで中間層の基材への浸透量を制御できる。
〔その他の成分(c)〕
 本発明に用いる中間層用の樹脂組成物(X)は、必要に応じて、例えば以下の添加剤を含有することができる。界面活性剤、滑剤、可塑剤、帯電防止剤、紫外線吸収剤、光安定剤、難燃剤、難燃助剤、重合禁止剤、pH調整剤、分散性助剤、レベリング剤、充填剤、シランカップリング剤、着色剤、強化剤、耐衝撃性改質剤、導電性付与剤等の公知の添加剤。特に、帯電防止剤、紫外線吸収剤、近赤外線吸収剤等が最表層に含有されると、ナノ凹凸構造の形状の維持が困難になる場合があることから、これらの添加剤は最表層には含有されず中間層に含有されることが、積層構造体の耐擦傷性及び反射抑制の点から好ましい。
 帯電防止剤は、積層構造体に埃等が付着するのを抑制する。帯電防止剤としては、例えば以下のものが挙げられる。ポリチオール系、ポリチオフェン系、ポリアニリン系などの導電性高分子や、カーボンナノチューブ、カーボンブラックなどの無機物微粒子、特開2007-70449号公報で例示されるようなリチウム塩、4級アンモニウム塩。また、これらは単独で用いてもよく、複数を併用してもよい。これらの中でも、帯電防止剤として、積層構造体の透明性を損なわず、比較的安価で、安定した性能を発揮するパーフルオロアルキル酸リチウム塩が好ましい。
 帯電防止剤の添加量は、樹脂組成物(X)中の重合性成分の合計100質量部に対し、0.5~20質量部が好ましく、1~10質量部がより好ましい。0.5質量部以上であれば、積層構造体の表面抵抗値を低くすることができ、埃付着防止性能を発揮する。20質量部以下であれば、添加量当たりの性能の向上度合いが良好で、かつコストを抑えることができる。また、良好な帯電防止性能を発揮させるためには、中間層の上に積層する最表層の厚みを100μm以下にすることが好ましく、50μm以下にすることがより好ましい。
 近赤外線吸収剤は、積層構造体に断熱効果を付与し、積層構造体をプラズマディスプレイ等に用いた場合、各種家電の赤外線リモコンの誤作動を抑制することができる。近赤外線吸収剤としては、例えば以下のものが挙げられる。ジイモニウム系色素、フタロシアニン系色素、ジチオール系金属錯体系色素、置換ベンゼンジチオール金属錯体系色素、シアニン系色素、スクアリウム系色素などの有機系のものや、導電性アンチモン含有錫酸化物微粒子、導電性錫含有インジウム酸化物微粒子、タングステン酸化物微粒子、複合タングステン酸化物微粒子などの無機系のもの。これらは単独で用いてもよく、複数を併用してもよい。
 これら添加剤は、多層積層体の最表層に添加してもよい。ただし、最表層には添加せずに中間層に添加することにより、ナノ凹凸表面形状の維持が阻害されるのを抑制すると共に、経時的にブリードアウトが生じるのを抑制することができるので好ましい。
「樹脂組成物(Y)」
 本発明の第二の態様における多層積層体の最表層は、活性エネルギー線硬化性の樹脂組成物(Y)の硬化物によって構成されている層である。この最表層は、隣り合う凸部同士の間隔が可視光の波長以下である凹凸構造を有することが好ましい。
 樹脂組成物(Y)としては、重合性成分(g)、活性エネルギー線重合開始剤(h)、離型剤(j)を含むものが好適に用いられる。樹脂組成物(Y)は、硬化されて最表層が形成された後において、微細凹凸構造の耐擦傷性能を担っていることが好ましい。
 多層積層体は、その原料として使用される樹脂組成物(X)と樹脂組成物(Y)が共に(メタ)アクリレート化合物を含むことが好ましい。樹脂組成物(X)と樹脂組成物(Y)が共に(メタ)アクリレート化合物を含むことにより最表層と中間層の界面で共重合させて密着性を向上させることができる点で好ましい。
〔重合性成分(g)〕
 重合性成分(g)として使用できる化合物としては、ラジカル重合性化合物、カチオン重合性化合物、アニオン重合性化合物などが挙げられるが、重合速度が速く材料選択の幅が広いことからラジカル重合性化合物が好ましい。ラジカル重合性官能基としては、活性エネルギー線硬化性に優れ、材料の選択肢が豊富な(メタ)アクリロイル基が好ましい。
 重合性成分(g)として使用できる(メタ)アクリロイル基を有する化合物は、微細凹凸構造の耐擦傷性を高くするために2官能以上の(メタ)アクリレートを主成分とすることが好ましく、3官能以上の(メタ)アクリレートを主成分とすることがさらに好ましい。
 また、樹脂組成物(Y)の硬化物を硬くしすぎると、弾性率は高くなるが脆くなり、微細凹凸構造が折れたり削れたりしやすくなるため高い耐擦傷性が得られない。そのため、例えば、オキシエチレン基を架橋構造中に導入して柔軟性を付与し、耐擦傷性を高めることが有効である。架橋構造中へのオキシエチレン基の導入のためには、ポリエチレングリコールジ(メタ)アクリレートを使用するか、3官能以上のEO変性(メタ)アクリレートを使用することができる。
 重合性成分(g)は、アクリル当量が小さいハード成分とアクリル当量が大きいソフト成分を組み合わせて硬さを制御することが好ましい。「アクリル当量」とは、(メタ)アクリロイル基1個当たりの分子量で表される数値である。
 重合性成分(g)において、アクリル当量が150[g/eq]未満の(メタ)アクリレートをハード成分、アクリル当量が150[g/eq]以上の(メタ)アクリレートをソフト成分とした場合、ハード成分(g1)としては、例えば以下のものが挙げられる。ペンタエリスリトール(トリ)テトラアクリレート、ジペンタエリスリトール(ペンタ)ヘキサアクリレート、トリペンタエリスリトールポリアクリレート、ポリペンタエリスリトールポリアクリレート、グリセリントリアクリレート、ジグリセリンテトラアクリレート、ポリグリセリンポリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ソルビトールヘキサアクリレートなど。
 さらに上記の化合物の中で水酸基を有するペンタエリスリトールトリアクリレートやジペンタエリスリトールペンタアクリレートなどを、ヘキサメチレンジイソシアネートやイソホロンジイソシアネートなどのイソシアネート化合物と反応させて合成したウレタンアクリレートなどが挙げられる。
 ハード成分の市販品としては、例えば以下のものが挙げられる。東亞合成株式会社製のアロニックスシリーズ:M-309、M-315、M-306、M-305、M-451、M-450、M-408、M-403、M-400、M-402、M-404、M-406、M-405など。新中村化学工業株式会社製のNKシリーズ:A-9300,A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、AD-TMP、A-TMMT、A-9550、A-DPH。日本化薬株式会社製のカヤラッドシリーズ:TMPTA、THE-330、PET-30、RP-1040、DPHAなど。共栄社化学株式会社製:UA-306H、UA-306T、UA-306I、UA-510Hなど。ハード成分は、1種類を単独で用いてもよく、2種類以上を併用しても良い。
 微細凹凸構造に柔軟性を付与して耐擦傷性を向上させるソフト成分(g2)としては、例えば以下のものが挙げられる。ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールEO変性テトラ(メタ)アクリレート、ジペンタエリスリトールEO変性ヘキサアクリレート、トリペンタエリスリトールEO変性(メタ)アクリレート、(ポリ)グリセリンEO変性ポリ(メタ)アクリレート、ソルビトールEO変性ヘキサアクリレート、トリメチロールプロパンEO変性トリアクリレートなど。
 ソフト成分の市販品としては、例えば以下のものが挙げられる。新中村化学工業株式会社製のNKシリーズ;A-200、A-400、A-600、A-1000、4G、9G、14G、23G、A-PG5009E、A-PG5027E、A-PG-5054E、A-GLY-9E、A-GLY-20E、ATM-35Eなど。東邦化学工業株式会社製:T-200EA、S-130EAなど。日本化薬株式会社製のKAYARADシリーズ;DPEA-12など。第一工業製薬株式会社製:DPHA-30EO、DPHA-36EO、DPHA-42EO、DPHA-48EO、DPHA-54EO、PETA-32EO、PETA-36EO、PETA-40EO、PETA-48EO、PETA-56EOなど。ソフト成分は、1種を単独で用いてもよく、2種以上を併用しても良い。
 重合性成分(g)中のハード成分とソフト成分の割合は、用いる化合物によって適宜調整される。重合性成分(g)のアクリル当量で示すと、微細凹凸構造の構造周期が100nm程度の場合は130~160[g/eq]程度、微細凹凸構造の構造周期が180nm程度の場合は200~300[g/eq]程度で調整することが好ましい。微細凹凸構造はその構造周期によって最適な樹脂の硬さが異なる。構造周期が小さいほど、凹凸の複数の突起が密着してしまう現象が起こりやすいため、アクリル当量を小さくして樹脂組成物(Y)の硬化物を硬くしておく必要がある。
 重合性成分(g)として用いることができる他の化合物としては、例えば、上記以外の単官能(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、反応性ポリマーなどが挙げられる。
〔活性エネルギー線重合開始剤(h)〕
 活性エネルギー線重合開始剤(h)とは、活性エネルギー線を照射することで開裂し、重合反応を開始させる活性種を発生する化合物である。活性エネルギー線としては、装置コストや生産性の点から、紫外線が好ましい。発生させる活性種としては、反応速度の点でラジカルが好ましい。
 紫外線によってラジカルを発生する活性エネルギー線重合開始剤(h)としては、前記の活性エネルギー線重合開始剤(d)と同様の化合物が挙げられる。
 活性エネルギー線重合開始剤(h)は、1種を単独で用いてもよく、2種以上を併用してもよい。併用する場合は、吸収波長の異なる2種以上を併用することが好ましい。また、必要に応じて、過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、過酸化物(ベンゾイルパーオキシド等)、アゾ系開始剤等の熱重合開始剤を併用してもよい。
 樹脂組成物(Y)中における活性エネルギー線重合開始剤(h)の割合は、重合性成分(g)100質量%に対して、0.01~10質量%が好ましく、0.1~7質量%がより好ましく、0.2~5質量%がさらに好ましい。活性エネルギー線重合開始剤(h)の割合が0.01質量%未満では、樹脂組成物(Y)の硬化が完結せず、中間層に十分な弾性率を付与できず多層積層体の鉛筆硬度が低下する場合がある。活性エネルギー線重合開始剤(h)の割合が10質量%を超えると、硬化物内に未反応の活性エネルギー線重合開始剤(h)が残り、可塑剤として働いてしまい、硬化物の弾性率を低下させ、多層積層体の鉛筆硬度を損なう場合もある。また、多層積層体の着色の原因となる場合もある。
〔紫外線吸収剤および/または酸化防止剤〕
 樹脂組成物(Y)は、紫外線吸収剤および/または酸化防止剤等をさらに含んでもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系、トリアジン系などが挙げられる。市販品としては、チバ・スペシャリティ・ケミカルズ株式会社製の「チヌビン400」や「チヌビン479」、共同薬品株式会社製の「Viosorb110」等の紫外線吸収剤が挙げられる。酸化防止剤としては、例えば、ヒンダードフェノール系、ベンズイミダゾール系、リン系、イオウ系、ヒンダードアミン系の酸化防止剤などが挙げられる。市販品としては、BASF社製の「IRGANOX」シリーズや「TINUVIN」シリーズなどが挙げられる。
 これらの紫外線吸収剤および酸化防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。樹脂組成物(Y)中における紫外線吸収剤および/または酸化防止剤の割合は、重合性成分(g)100質量%に対して、合計で0.01~5質量%が好ましい。
〔離型剤(j)〕
 樹脂組成物(Y)は、離型剤(j)を含むことが好ましい。離型剤(j)は、樹脂組成物(Y)を硬化させて金型表面の微細凹凸構造を転写する工程において、金型からの離型性を長期間にわたって維持させるために添加する。
 離型剤(j)としては、シリコーン樹脂、フッ素樹脂、フッ素化合物、リン酸エステル等が挙げられ、リン酸エステルが特に好ましい。リン酸エステルとしては、(ポリ)オキシアルキレンアルキルリン酸化合物が好ましく、市販品としては、例えば以下のものが挙げられる。城北化学工業株式会社製:JP-506H;アクセル社製:モールドウイズINT-1856;日光ケミカルズ株式会社製:TDP-10、TDP-8、TDP-6、TDP-2、DDP-10、DDP-8、DDP-6、DDP-4、DDP-2、TLP-4、TCP-5、DLP-10など。
 樹脂組成物(Y)中における離型剤(j)の割合は、重合性成分(g)100質量%に対して、0.01~1質量%が好ましく、0.1~0.5質量%がより好ましい。
〔その他の成分〕
 樹脂組成物(Y)は、必要に応じて、界面活性剤、滑剤、可塑剤、帯電防止剤、光安定剤、難燃剤、難燃助剤、重合禁止剤、pH調整剤、分散性助剤、レベリング剤、充填剤、シランカップリング剤、着色剤、強化剤、耐衝撃性改質剤、導電性付与剤、溶剤等の公知の添加剤を含んでいても良い。
[各層の屈折率]
 本発明の第二の態様における多層積層体は、少なくとも基材、中間層、および最表層を含んでいる。多層積層体の表面の微細凹凸構造による反射防止性能を良好にするためには多層積層体の各層の界面で反射が生じることは好ましくない。界面での反射は反射防止性能の低下のみならず、干渉縞発生による外観悪化につながる場合がある。
 多層積層体を構成する基材と中間層の間の屈折率差については、より小さいほうが好ましい。ただし、前述の通り、溶剤を使用しての塗工乾燥によって基材と中間層の界面が互いに相溶している緩和層を生じさせることができる。一方、中間層と最表層の界面についても、最表層を溶剤系の樹脂組成物(Y)で形成した場合は同様に緩和層を生じさせることができる。しかし、最表層を無溶剤系の樹脂組成物(Y)で形成する場合は、中間層と最表層の間に界面が残りやすい。この場合は、最表層と中間層の屈折率差を小さくすることが好ましい。具体的には、最表層と中間層の屈折率差は0~0.1が好ましく、0~0.05がより好ましく、0~0.01がさらに好ましい。微細凹凸構造による反射防止性能が高いほど、わずかな界面反射が干渉縞発生につながるため、各層間の屈折率差の制御は重要である。
「積層構造体の製造方法」
 本発明の第二の態様における多層積層体は、例えば下記の工程(1)~(3)の工程を有する方法によって製造することができる。
 工程(1):光透過性の基材に重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。
 工程(2):前記工程(1)で形成した中間層と微細凹凸構造転写用のモールド(スタンパ)との間に活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。
 工程(3):前記基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、基材と中間層と最表層とが順次積層した積層構造体をモールドから離型する工程。
〔工程(1)〕
 工程(1)では、基材上に中間層用の樹脂組成物(X)を配置する。樹脂組成物(X)を配置後に、必要に応じて樹脂組成物(X)を乾燥させることができる。
 樹脂組成物(X)の配置方式としては種々のコーティング方法から、該樹脂組成物(X)の性状を勘案して適宜選択可能である。配置方式としては、例えば、グラビヤコーター、バーコーター、スロットダイコーター、リップコーター、コンマコーター、などが挙げられる。
 第1の活性エネルギー線照射では、活性エネルギー線を照射することで樹脂組成物(X)を重合し、硬化させる。活性エネルギー線を照射して得られる2層積層体の中間層の表面における重合性官能基の反応率は35~85モル%であり、45~75モル%がさらに好ましく、55~70モル%が特に好ましい。反応率が35モル%以下であると、中間層の表面が未硬化となり、他のものと接触すると塗工面が荒れてしまう。このような状態の中間層では、中間層形成後に塗工面が搬送ロールに触れると塗工面が荒れてしまったり、中間層形成後に一度巻き取ることが困難となったりする。さらに、中間層の表面だけでなく内部の硬化も不十分となり、所望の鉛筆硬度が得られない場合がある。一方、反応率が75モル%を超えると、中間層の表面に残る未反応の重合性官能基の量が少なくなりすぎるため、最表層との密着性が低下する。
 活性エネルギー線としては、装置コストや生産性の観点から紫外線を使用することが好ましい。紫外線の照射量は、樹脂組成物(X)が含有する重合開始剤(d)の量を勘案して適宜決定すればよい。紫外線を発生する光源は特に限定はなく、超高圧水銀灯、高圧水銀灯、ハロゲンランプ、各種レーザー等公知のものが用いられる。積算光量の目安は50~1000mJ/cm2が好ましく、100~500mJ/cm2がより好ましい。積算光量が多すぎると、中間層の表面に残る重合性官能基の量が好ましい範囲を外れてしまったり、光透過性の基材が活性エネルギー線によるダメージを受けたりする場合がある。逆に積算光量が少なすぎると、中間層の表面が硬化せずに液状のままとなる場合がある。
 樹脂組成物(X)の硬化後の中間層の厚さは、1~20μm程度が好ましく、1~10μm程度がより好ましい。中間層の厚さが1μm以上であれば多層積層体の鉛筆硬度試験において基材まで鉛筆による押し込み変形が及んで圧痕が生じる現象を抑えることができる。また、中間層の厚さが20μm以下であれば折り曲げ時の割れや、多層積層体の反りの問題を防ぐことができる。中間層の厚み精度は±2μm以内が好ましく、±1μm以内がより好ましい。
 工程(1)の終了後に中間層上には保護フィルムを貼ることができる。保護フィルムは、中間層上に異物が付着することを防いだり、一度巻き取ったときに基材の裏面と中間層とがブロッキングしたりしないようにする機能がある。保護フィルムとしては、公知のものを適宜選択可能であるが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)などが挙げられる。保護フィルムの表面には、離型処理、ブロッキング防止処理、帯電防止処理などの種々の表面処理が可能である。
〔工程(2)〕
 工程(2)では、工程(1)で得られた表面における重合性官能基の反応率が35~85モル%の状態の中間層と微細凹凸転写用のモールドとの間に、最表層用の樹脂組成物(Y)を配置する。樹脂組成物(Y)を配置する方法としては、公知の種々の方法が選択可能である。
 樹脂組成物(Y)が無溶剤の場合、種々のコーターを用いて未硬化の中間層上に樹脂組成物(Y)を塗工した後にモールドに接触させる方法(2-a)と、ロール状のモールドと中間層の間に樹脂組成物(Y)からなるバンクを形成させ、バンクにノズルから硬化液を供給する方法(2-b)がある。
 方法(2-a)では、樹脂組成物(Y)の硬化液の塗工方式としては種々のコーティング方法から、この樹脂組成物(Y)の性状を勘案して適宜選択可能である。塗工方式としては、例えば、グラビヤコーター、バーコーター、スロットダイコーター、リップコーター、コンマコーター、などが挙げられる。
 方法(2-b)では、ノズルをスロットダイコーター等に置き換え、カーテン状の樹脂組成物(Y)をバンクに対して供給する方法等も挙げられる。この方法(2-b)では、ロール状のモールドに対するニップロールの硬さや材質とニップ圧、あるいはロール状のモールドとニップロールとのギャップによって樹脂組成物(Y)からなる層の膜厚を制御できる。
 樹脂組成物(Y)が溶剤を含む場合、前記方法(2-a)と同様の方法で中間層上に樹脂組成物(Y)を塗工し、次いで乾燥させる。
 樹脂組成物(Y)からなる塗工層の厚さは、5~40μm程度が好ましく、10~20μm程度がより好ましい。該塗工層の厚さが5μm以上であれば、微細凹凸構造に十分な耐擦傷性を付与できる。また、該塗工層の厚さが40μm以下であれば折り曲げ時の割れや、多層積層体の反りの問題を防ぐことができる。該塗工層の厚み精度は±2μm以内が好ましく、±1μm以内がより好ましい。
〔工程(3)〕
 工程(3)では、基材側から活性エネルギー線を照射し、樹脂組成物(Y)を硬化させる。その際、中間層の表面に存在する未反応の重合性官能基を反応させて、中間層の硬化を更に進めることが好ましい。活性エネルギー線としては、装置コストや生産性の観点から紫外線を使用することが好ましい。紫外線の照射量は、樹脂組成物(Y)が含有する重合開始剤(h)の量と基材の透過率を勘案して適宜決定すればよい。紫外線を発生する光源は特に限定はなく、超高圧水銀灯、高圧水銀灯、ハロゲンランプ、各種レーザー等公知のものが用いられる。積算光量の目安は200~10000mJ/cm2である。
 また、基材が紫外線の一部を吸収するような場合、紫外線照射時に基材が紫外線を吸収して過熱状態となって熱変形等を生じる可能性がある。その場合は、基材に吸収されて中間層及び最表層に達しない波長の紫外線をカットするフィルタを設置したり、積層構造体を冷却したりする等の対策が施されることが好ましい。
 工程(3)で中間層と最表層を同時に硬化した後、モールドから離型することで目的とする多層積層体を得ることができる。前述の樹脂組成物(Y)中に添加した離型剤(j)の作用によって低い剥離力で離型することができ、且つ離型の際に微細凹凸構造の欠損を防止することができる。
 また、離型時の温度が硬化時の温度より低くなるようにすると、熱収縮によって微細凹凸構造が形成された樹脂の硬化物が縮み、離型がより容易になる場合がある。
 工程(3)で硬化させる最表層と中間層の合計膜厚は5μm~80μm程度が好ましく、8μm~20μm程度がより好ましい。合計膜厚は薄いほうが多層積層体全体の厚さが薄くなるため好ましいが、多層積層体の鉛筆硬度を2H以上にするためにはある程度以上の膜厚が必要である。
〔その他の工程〕
 工程(1)~(3)以外の工程としては、異物や欠陥等の検査工程が工程(1)~(3)の間を含む時点に設置可能である。他には、工程(3)の後に最表層側から再度活性エネルギー線を照射するポストキュアを行い、中間層及び最表層の硬化を完結させたり、未開列の重合開始剤を減少させたりする工程を設置する方法や、保護フィルムを貼り合わせる工程等が挙げられる。
 なお、上述した工程(1)は、表面が平坦な中間層を形成する方法であるが、表面に微細凹凸構造を有する中間層を形成する場合には、工程(1)に代えて下記工程(1-2)を行えばよい。
 工程(1-2):光透過性の基材と微細凹凸構造転写用のモールド(スタンパ)との間に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、前記基材側から第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成し、基材と中間層とが順次積層した2層積層体をモールドから離型する工程。
 基材とモールドとの間に樹脂組成物(X)を配置する方法としては、工程(2)の説明において例示された方法が挙げられる。
「微細凹凸構造」
 図8(A)及び図8(B)は、本発明の第二の態様における積層構造体(多層積層体)の実施形態を示す模式的断面図である。図8(A)及び図8(B)においては、基材110上に中間層(第二の層)150と最表層(微細凹凸構造層)120が順次積層されてなる積層構造体100が例示されている。最表層120の表面は、図8(A)及び図8(B)に示すように、表面反射防止性を発現する微細凹凸構造を有する。具体的には、最表層120の表面に凸部130及び凹部140がおおよそ等間隔で形成されていることが好ましい。特に、図8(A)の凸部130の形状は円錐状又は角錐状であり、図8(B)の凸部130の形状は釣鐘状である。ただし、微細凹凸構造の凸部130の形状はこれらに限定されず、最表層120の横断面で切断した時の断面積の占有率が連続的に増大するような構造であればよい。また、より微細な凸部が合一して微細凹凸構造を形成していてもよい。すなわち、図8(A)及び図8(B)以外の形状であっても、空気から材料表面まで連続的に屈折率を増大し、低反射率と低波長依存性を両立させた反射防止性能を示すような形状であればよい。特に、円錐状、角錐状、釣鐘状など、凸部の高さ方向に垂直な面で切断した時の断面積が、凸部の頂部から底部に向かって連続的に増大するような形状が好ましい。また、より微細な突起が合一して上記の微細凹凸構造を形成していてもよい。
 良好な反射防止性能を発現する為には、微細凹凸構造の隣り合う2つの凸部130の間隔(図8(A)のw1)又は2つの凹部140の間隔は、可視光の波長以下のサイズであることが望ましい。ここで「可視光」とは、波長が380~780nmの光を指す。この間隔w1が400nm以下(より好ましくは380nm以下)であれば、可視光の散乱を抑制できる。この場合、本発明の第二の態様における積層構造体を反射防止膜などの光学用途に好適に使用できる。この間隔w1の下限値は、製造可能な範囲であればよく特に制限されない。鋳型を用いて転写する方法で微細凹凸形状を形成する場合、鋳型の製造容易性の点から間隔w1は20nm以上が好ましく、40nm以上がより好ましい。また、最低反射率や特定波長の反射率の上昇を抑制する点から、「高さd1/間隔w1」で表されるアスペクト比は0.3以上が好ましく、0.5以上がより好ましく、0.8以上が特に好ましい。これらアスペクト比の下限値は、特に、光反射の低減及び入射角依存性の低減化の点で意義が有る。アスペクト比の上限は、製造可能な範囲であれば特に制限されない。鋳型を用いて転写する方法で微細凹凸形状を形成する場合、正確に転写を行うには、凸部のアスペクト比が5以下であることが好ましい。凸部の高さ又は凹部の深さ(凹部140の底点140aから凸部130の頂点130aまでの垂直距離(図8(A)の垂直距離d1))は60nm以上が好ましく、90nm以上がより好ましい。良好な反射防止性能を発現する微細凹凸構造の形状や製造方法などは、特開2009-31764号公報などに記載されており、本発明においてもそれと同様の形状や製造方法を用いることができる。
 表面の微細凹凸構造の大きさは、微細凹凸構造の縦断面を10分間Pt蒸着し、電界放出形走査電子顕微鏡(SM-7400F:日本電子株式会社製)により加速電圧3.00kVで観察し、隣り合う2つの凸部(または隣り合う2つの凹部)の間隔(周期)及び該凸部(または凹部)の深さを測定し、それぞれ10点ずつ測定し、その平均値を採用することができる。
 本発明の第二の態様における積層構造体(多層積層体)は、最表層に微細凹凸構造を有する機能性物品として最適である。そのような機能性物品としては、例えば、本発明の第二の態様における多層積層体を備えた反射防止物品や撥水性物品が挙げられる。特に、本発明の第二の態様における多層積層体を備えたディスプレイや自動車用部材が、機能性物品として好適である。
「反射防止物品」
 本発明の第二の態様における積層構造体を備えた反射防止物品は、表面に微細凹凸構造を有する最表層を最上層に有する多層積層体を備える。この反射防止物品は、高い耐擦傷性と良好な反射防止性能を発現する。反射防止物品は、例えば、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置のような画像表示装置、レンズ、ショーウィンドー、眼鏡レンズ等の対象物の表面に、微細凹凸構造を有する多層積層体を貼り付けた構成である。
「撥水性物品」
 本発明の第二の態様における積層構造体を備えた撥水性物品は、表面に微細凹凸構造を有する最表層を最上層に有する多層積層体を備える。この機水性物品は、高い耐擦傷性と良好な撥水性を有すると共に、優れた反射防止性能を発現する。撥水性物品は、例えば、窓材、屋根瓦、屋外照明、カーブミラー、車両用窓、車両用ミラーの表面に、微細凹凸構造を有する多層積層体を貼り付けた構成である。
 上記各対象物品の積層構造体を貼り付ける部分が立体形状である場合は、あらかじめそれに応じた形状の基材を使用し、その基材の上に中間層と最表層を形成して積層構造体を得、この積層構造体を対象物品の所定部分に貼り付ければよい。
 また、対象物品が画像表示装置である場合は、その表面に限らず、その前面板に対して本発明の第二の態様における多層積層体を貼り付けることができ、前面板そのものを本発明の第二の態様における積層構造体から構成することもできる。
 また本発明の第二の態様における多層積層体は、上述した用途以外にも、例えば、光導波路、レリーフホログラム、レンズ、偏光分離素子などの光学用途や、細胞培養シート等の用途にも適用できる。
「微細凹凸構造転写用のモールド(微細凹凸構造転写用スタンパ)」
 モールドは、微細凹凸構造の反転構造を表面に有するものである。モールドの材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、セラミックス等が挙げられる。モールドの形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
 モールドの作製方法としては、例えば、第一の態様の説明において、モールドの作製方法として例示された方法(I-1)、方法(I-2)が挙げられ、大面積化が可能であり、かつ作製が簡便である点から、方法(I-1)が特に好ましい。
 方法(I-1)としては、第一の態様において説明された工程(a)~(f)を有する方法が好ましい。
 モールドの細孔の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
 隣接する2つの細孔間の平均間隔w(細孔の中心から隣接する細孔の中心までの距離)は、可視光の波長以下、すなわち400nm以下であることが好ましい。この平均間隔wは、140~260nm以下がより好ましく、160nm~200nmが特に好ましい。平均間隔wは、電子顕微鏡観察によって隣接する2つの細孔間の間隔を50点測定し、これらの値を平均したものである。
 モールドの細孔の深さdは、120~250nmが好ましく、150~220nmがより好ましく、160~190nmが特に好ましい。この深さdは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔の最底部と、該細孔に隣接する細孔の間に存在する凸部の最頂部との間の距離を測定した値である。細孔のアスペクト比(細孔の深さd/細孔間の平均間隔w)は、0.7~1.4が好ましく、0.8~1.2がより好ましい。
 モールドの微細凹凸構造が形成された側の表面を離型剤で処理してもよい。離型剤としては、シリコーン樹脂、フッ素樹脂、フッ素化合物、リン酸エステル等が挙げられ、リン酸エステルが特に好ましい。リン酸エステルとしては、(ポリ)オキシアルキレンアルキルリン酸化合物が好ましく、市販品としては例えば以下のものが挙げられる。城北化学工業株式会社製:JP-506H;アクセル社製:モールドウイズINT-1856;日光ケミカルズ株式会社製:TDP-10、TDP-8、TDP-6、TDP-2、DDP-10、DDP-8、DDP-6、DDP-4、DDP-2、TLP-4、TCP-5、DLP-10など。
 以下、実施例により本発明をさらに詳細に説明する。
[試験1]
 試験1における各種測定および評価方法、モールドの製造方法、各例で用いた成分は以下の通りである。
「測定・評価」
(1-1)モールドの細孔の測定
 モールドの一部を切り取って、表面および縦断面に白金を1分間蒸着し、電解放出型走査電子顕微鏡(日本電子株式会社製、「JSM-7400F」)を用い、加速電圧3.00kVで20000倍に拡大して観察し、隣り合う細孔同士の間隔(細孔の中心から隣接する細孔の中心までの距離)を50点測定し、その平均値を隣り合う細孔の平均間隔(周期)とした。
 また、モールドの縦断面を30000倍に拡大して観察し、細孔の最底部と、細孔間に存在する凸部の最頂部との間の距離を50点測定し、その平均値を細孔の平均深さとした。
(1-2)微細凹凸構造の凸部の測定
 中間層および最表層が形成された時点で、測定サンプルの表面および縦断面に白金を10分間蒸着し、電解放出型走査電子顕微鏡(日本電子株式会社製、「JSM-7400F」)を用い、加速電圧3.00kVで20000倍に拡大して観察し、隣り合う凸部同士の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、その平均値を隣り合う凸部の平均間隔(周期)とした。
 また、測定サンプルの断面を30000倍に拡大して観察し、凸部の最底部と、凸部間に存在する凹部の最頂部との間の距離を50点測定し、その平均値を凸部の平均高さとした。
(1-3)活性エネルギー線硬化性樹脂組成物の硬化物のマルテンス硬さ、弾性率、弾性回復率の測定
 大型スライドガラス(松浪硝子工業株式会社製、「大型スライドグラス、品番:S9213」、76mm×52mmサイズ)を基材として用いた。該基材上に、塗膜の厚みが約250μmとなるように活性エネルギー線硬化性樹脂組成物を塗布し、これに高圧水銀灯を用いて約1000mJ/cmで紫外線を照射し、基材上に活性エネルギー線硬化性樹脂組成物の硬化物が形成された試験片を作製した。これをマルテンス硬さ、弾性率および弾性回復率の測定用の試験片として用いた。
 ビッカース圧子(四面ダイアモンド錐体)と、微小硬度計(株式会社フィッシャーインストルメンツ製、「フィッシャースコープHM2000XYp」)を用いて、[押し込み(100mN/10秒)]→[クリープ(100mN、10秒)]→[徐荷(100mN/10秒)]の評価プログラムで試験片の硬化物の物性を測定した。測定は恒温室(温度23℃、湿度50%)内で行った。
 得られた測定結果から、活性エネルギー線硬化性樹脂組成物の硬化物のマルテンス硬さ、弾性率、弾性回復率を解析ソフト(株式会社フィッシャーインストルメンツ製、「WIN-HCU」)により算出した。
(1-4)積層構造体の最表層および中間層の弾性率、弾性回復率の測定
 積層構造体をエポキシ系の樹脂で包埋した後、積層方向にダイヤモンドナイフで切断し、平滑な切断面を露出させた。その切断面(試料)について、AFM(ブルカー・エイエックスエス株式会社製、「DimensionV」)およびカンチレバー(ブルカー・エイエックスエス株式会社製、「MPP-21100」)を用い、Rampsizeを200nm、Scanspeedを4Hz、押し込み荷重30nNの力でフォースカーブ測定を行った。
 カンチレバーのばね定数は、サファイアを用いて計測したところ4.08N/mであった。
 フォースカーブ測定の結果を用いて、試料の変形量を下記式(I)より求め、図7に示すような荷重変形曲線を得た。
 試料の変形量=探針の変位量-カンチレバーの反り量  ・・・(I)
 図7中のα、β、γを基に、弾性回復率を下記式(II)より求めた。また、弾性率はHertz接触式を用いてβからγの曲線をフィッティングすることで求めた。この際、カンチレバーの先端の曲率半径は8nmとし、試料のポアソン比は0.35とした。
 弾性回復率=(βとγ間の変形量)/(αとβ間の変形量)×100  ・・・(II)
(1-5)中間層および最表層の膜厚の測定
 中間層または最表層が形成された時点で、マイクロメーターを用い、基材と中間層または/および最表層を含む積層フィルムの膜厚を測定し、基材または中間層を積層したフィルムの膜厚を差し引くことで、中間層および最表層の膜厚を見積もった。
(1-6)耐ブロッキング性の評価
 後述する「工程1:中間層の形成」で得られた中間層が積層した積層フィルム2枚(50×50mm)を、中間層の表面と中間層が形成されていない基材フィルムの表面が接触するように重ね、800gの荷重をかけた状態で1日間放置した後、以下の評価基準にて耐ブロッキング性を評価した。
 ○:フィルム同士の張り付きがない。
 ×:フィルム同士が張り付いている。
(1-7)密着性の評価
 マス数を100マスとし、評価基準を後述のようにした以外は、クロスカットテープ剥離試験(JIS K 5600-5-6:1999(ISO 2409:1992))に準じて密着性の評価を行った。
 まず、微細凹凸構造を表面に有する積層構造体の裏面(微細凹凸構造が転写されていない基材の裏面)に、光学粘着剤を介して透明な2.0mm厚の黒色アクリル樹脂板(三菱レイヨン株式会社製、「アクリライトEX#502」、50mm×60mm)を貼り付け、微細凹凸構造を有する表面にカッターナイフにて2mm間隔で100マス(10×10)の碁盤目状の切れ込みを入れ、碁盤目状の部分に粘着テープ(ニチバン株式会社製、「セロテープCT―24(登録商標)」)を貼着した。その後、粘着テープを急激に剥がし、最表層および/または中間層の剥離状態を観察し、以下の評価基準にて密着性を評価した。
 ○:100マスのうち、10マス未満で剥がれが発生した。
 △:100マスのうち、10マス以上50マス未満で剥がれが発生した。
 ×:100マスのうち、50マス以上で剥がれが発生した。
(1-8)鉛筆硬度の測定
 荷重を500gとした以外は、JIS K 5600-5-4:1999(ISO 15184:1996)に記載の引っかき硬度(鉛筆法)に準じて、鉛筆硬度の評価を行った。
 まず、微細凹凸構造を表面に有する積層構造体の裏面(微細凹凸構造が転写されていない基材の裏面)が、透明なガラス板(松浪硝子工業株式会社製、「大型スライドグラス、品番:S9112」、76mm×52mmサイズ)に接するように固定し、硬度2B~3Hの鉛筆(三菱鉛筆株式会社製、「Uni鉛筆引かき値試験用」)で引っかき試験を実施し、積層構造体の表面の鉛筆硬度を測定した。
(1-9)耐擦傷性の評価
 微細凹凸構造を表面に有する積層構造体の表面に置かれた2cm四方のスチールウール(日本スチールウール株式会社製、「ボンスター#0000」)に100g、400g、1000gの荷重をかけ、磨耗試験機(新東科学株式会社製、「HEiDON TRIBOGEAR TYPE-30S」)を用い、往復距離30mm、ヘッドスピード30mm/秒にて10回往復磨耗を行った。各荷重をかけた後の積層構造体の表面の外観を評価した。外観評価に際しては、積層構造体の裏面(微細凹凸構造が転写されていない基材の裏面)に、光学粘着剤を介して2.0mm厚の黒色アクリル樹脂板(三菱レイヨン株式会社製、「アクリライトEX#502」、50mm×60mm)を貼り付け、屋内の蛍光灯下にて目視観察し、以下の評価基準にて耐擦傷性を評価した。
 ◎:傷が確認されない。
 ○:確認できる傷が5本未満であり、擦傷部位が白く曇らない。
 △:確認できる傷が5本以上、20本未満であり、擦傷部位がやや白く曇る。
 ×:確認できる傷が20本以上であり、擦傷部位がはっきり白く曇って見える。
 ×:傷はほぼ確認されないが、最表層に剥がれが発生している。
(1-10)ヘイズの測定
 微細凹凸構造を表面に有する積層構造体の裏面(微細凹凸構造が転写されていない基材の裏面)に、光学粘着剤を介して透明なガラス板(松浪硝子工業株式会社製、「大型スライドグラス、品番:S9112」、76mm×52mmサイズ)を貼り付け、これをサンプルとした。ヘイズメーター(日本電色工業株式会社製、「NDH2000」)を用いて、サンプルのヘイズを測定し、透明性を評価した。
(1-11)反射率の測定
 微細凹凸構造を表面に有する積層構造体の裏面(微細凹凸構造が転写されていない基材の裏面)に、光学粘着剤を介して透明な2.0mm厚の黒色アクリル樹脂板(三菱レイヨン株式会社製、「アクリライトEX#502」、50mm×60mm)を貼り付け、これをサンプルとした。分光光度計(株式会社島津製作所製、「UV-2450」)を用いて、入射角:5°(5°正反射付属装置使用)、波長:380~780nmの範囲でサンプルの表面(積層構造体側)の相対反射率を測定し、JIS R 3106:1998(ISO 9050:1990)に準拠して視感度反射率を算出し、反射防止性を評価した。
「モールドの製造」
(モールドAの製造)
 純度99.99質量%、厚さ2mm、直径65mmのアルミニウム円盤を、羽布研磨および電解研磨し、これをアルミニウム基材として用いた。
 0.3Mシュウ酸水溶液を16℃に調整し、これにアルミニウム基材を浸漬させ、直流40Vで30分間陽極酸化を行った。これにより、アルミニウム基材に細孔を有する酸化皮膜を形成した(工程(a))。
 続いて、酸化皮膜の形成されたアルミニウム基材を、6質量%のリン酸と1.8質量%クロム酸とを混合した70℃の水溶液中に6時間浸漬させた。これにより、酸化皮膜を溶解除去した(工程(b))。
 酸化皮膜が溶解除去されたアルミニウム基材を、16℃に調整した0.3Mのシュウ酸水溶液に浸漬させ、40Vで30秒間陽極酸化を施した(工程(c))。
 続いて、32℃に調整した5質量%リン酸水溶液中に8分間浸漬させ、酸化皮膜の細孔を拡大する細孔径拡大処理を施した(工程(d))。このように陽極酸化と細孔径拡大処理とを交互に繰り返し、合計5回ずつ施し(工程(e)、(f))、平均間隔が100nm、平均深さが180nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。
 得られたモールドを、離型剤(日光ケミカルズ株式会社製の「TDP-8」の0.1質量%水溶液)に10分間浸漬させた後、これを引き上げて一晩風乾することにより、離型処理させたモールドAを得た。
(モールドBの製造)
 純度99.99質量%、厚さ2mm、直径65mmのアルミニウム円盤を、羽布研磨および電解研磨し、これをアルミニウム基材として用いた。
 0.3Mシュウ酸水溶液を15℃に調整し、これにアルミニウム基材を浸漬させ、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流して陽極酸化した。30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返した。これにより、アルミニウム基材に細孔を有する酸化皮膜を形成した(工程(a))。
 続いて、酸化皮膜の形成されたアルミニウム基材を、6質量%のリン酸と1.8質量%クロム酸とを混合した70℃の水溶液中に6時間浸漬させた。これにより、酸化皮膜を溶解除去した(工程(b))。
 酸化皮膜が溶解除去されたアルミニウム基材を、16℃に調整した0.05Mのシュウ酸水溶液に浸漬させ、80Vで7秒間陽極酸化を施した(工程(c))。
 続いて、32℃に調整した5質量%リン酸水溶液中に20分間浸漬させ、酸化皮膜の細孔を拡大する細孔径拡大処理を施した(工程(d))。このように陽極酸化と細孔径拡大処理とを交互に繰り返し、合計5回ずつ施し(工程(e)、(f))、平均間隔が180nm、平均深さが180nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。
 得られたモールドを、離型剤(日光ケミカルズ株式会社製の「TDP-8」の0.1質量%水溶液)に10分間浸漬させた後、これを引き上げて一晩風乾することにより、離型処理させたモールドBを得た。
「活性エネルギー線硬化性樹脂組成物の調製」
(活性エネルギー線硬化性樹脂組成物Aの調製)
 重合性成分としてジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「DPHA」)60質量部、ペンタエリスリトールトリアクリレート(第一工業製薬株式会社製、「ニューフロンティアPET-3」)30質量部、ポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)10質量部、および4官能シリコーンアクリレート/プロピレンオキサイド変性ネオペンチルグリコールジアクリレートの混合物(混合比7/3)(ビックケミー・ジャパン株式会社製、「BYK-3570」)1質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)3.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物A(樹脂組成物A)を調製した。
(活性エネルギー線硬化性樹脂組成物Bの調製)
 重合性成分としてジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「DPHA」)40質量部、ペンタエリスリトールトリアクリレート(第一工業製薬株式会社製、「ニューフロンティアPET-3」)44質量部、ポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)10質量部、N,N-ジメチルアクリルアミド(株式会社興人製、「DMAA」)5質量部、および4官能シリコーンアクリレート/プロピレンオキサイド変性ネオペンチルグリコールジアクリレートの混合物(混合比7/3)(ビックケミー・ジャパン株式会社製、「BYK-3570」)1質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物B(樹脂組成物B)を調製した。
(活性エネルギー線硬化性樹脂組成物Cの調製)
 重合性成分として多官能ウレタンアクリレート(第一工業製薬株式会社製、「ニューフロンティアR-1150D」)50質量部、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「DPCA-30」)10質量部、および1,6-ヘキサンジオールジアクリレート(大阪有機化学工業株式会社製、「ビスコート#230」)40質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)3.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)1.0質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物C(樹脂組成物C)を調製した。
(活性エネルギー線硬化性樹脂組成物Dの調製)
 重合性成分としてジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「DPHA」)50質量部、ポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)25質量部、およびジペンタエリスリトールヘキサアクリレートのEO変性化合物(日本化薬株式会社製、「DPEA-12」)25質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物D(樹脂組成物D)を調製した。
(活性エネルギー線硬化性樹脂組成物Eの調製)
 重合性成分としてジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製、「DPHA」)25質量部、ペンタエリスリトールトリアクリレート(第一工業製薬株式会社製、「ニューフロンティアPET-3」)25質量部、ポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)25質量部、およびジペンタエリスリトールヘキサアクリレートのEO変性化合物(日本化薬株式会社製、「DPEA-12」)25質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物E(樹脂組成物E)を調製した。
(活性エネルギー線硬化性樹脂組成物Fの調製)
 重合性成分として無水コハク酸/トリメチロールエタン/アクリル酸(モル比1:2:4)の縮合エステル (大阪有機化学工業株式会社製、「TAS」)75質量部、ポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)20質量部、およびアクリル酸メチル5質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物F(樹脂組成物F)を調製した。
(活性エネルギー線硬化性樹脂組成物Gの調製)
 重合性成分としてペンタエリスリトールトリアクリレート(第一工業製薬株式会社製、「ニューフロンティアPET-3」)20質量部、およびエトキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社製、「ATM-35E」)80質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物G(樹脂組成物G)を調製した。
(活性エネルギー線硬化性樹脂組成物Hの調製)
 重合性成分としてポリエチレングリコールジアクリレート(東亞合成株式会社製、「M-260」)30質量部、およびジペンタエリスリトールヘキサアクリレートのEO変性化合物(日本化薬株式会社製、「DPEA-12」)70質量部と、重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン株式会社製、「IRGACURE184」)1.0質量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・ジャパン株式会社製、「IRGACURE819」)0.5質量部と、離型剤としてポリオキシエチレンアルキルエーテルリン酸化合物(日光ケミカルズ株式会社製、「TDP-2」)0.1質量部とを混合し、活性エネルギー線硬化性樹脂組成物H(樹脂組成物H)を調製した。
「実施例1-1」
(工程1:中間層の形成)
 樹脂組成物AをモールドAの表面に数滴垂らした。基材として厚さ80μmのトリアセチルセルロースフィルム(富士フィルム株式会社製、「TD80ULM」、以下「TACフィルム」とも示す)で樹脂組成物Aを押し広げながら、樹脂組成物AをTACフィルムで被覆した。その後、TACフィルム側からUV照射装置(ヘレウス・ノーブルライト・フュージョン・ユーブイ株式会社製)を用いて1000mJ/cmのエネルギーで紫外線を照射して、樹脂組成物Aを硬化させた。樹脂組成物Aの硬化物をTACフィルムごとモールドAから離型して、基材上に、隣り合う凸部同士の平均間隔(周期)が100nm、凸部の平均高さが180nm(アスペクト比:1.8)の微細凹凸構造を表面に有する、膜厚5μmの中間層が積層した積層フィルムを得た。
 得られた積層フィルムについて、耐ブロッキング性を評価した。結果を表2に示す。
(工程2:最表層の形成)
 樹脂組成物DをモールドAの表面に数滴垂らした。先に得られた積層フィルムで樹脂組成物Dを押し広げながら、樹脂組成物Dを積層フィルムで被覆した。その後、積層フィルム側からUV照射装置(ヘレウス・ノーブルライト・フュージョン・ユーブイ株式会社製)を用いて1000mJ/cmのエネルギーで紫外線を照射して、樹脂組成物Dを硬化させた。樹脂組成物Dの硬化物を積層フィルムごとモールドから離型して、積層フィルムの中間層上に、隣り合う凸部同士の平均間隔(周期)が100nm、凸部の平均高さが180nm(アスペクト比:1.8)の微細凹凸構造を表面に有する、膜厚4μmの最表層が積層したフィルム状の積層構造体を得た。
 工程1、2で用いた樹脂組成物の硬化物のマルテンス硬さ、弾性率、弾性回復率を測定した。結果を表1に示す。
 得られた積層構造体について、密着性、鉛筆硬度および耐擦傷性を評価し、反射率およびヘイズを測定した。結果を表2に示す。
「実施例1-2」
 工程2において樹脂組成物Dを樹脂組成物Eに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、中間層および最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであった。
「実施例1-3」
 工程1においてモールドAをモールドBに変更し、樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。また、得られた積層構造体の最表層および中間層の弾性率、弾性回復率を測定した。結果を表5に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔は180nm、凸部の平均高さは180nm、アスペクト比は1.0であり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「実施例1-4」
 工程1においてモールドAをモールドBに変更し、樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更し、工程2において樹脂組成物Dを樹脂組成物Eに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-3と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「実施例1-5」
 工程1においてモールドAを微細凹凸構造の反転構造が表面に形成されていない鏡面アルミニウム基材(以下、単に「鏡面アルミニウム基材」という。)に変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「実施例1-6」
 工程1において樹脂組成物Aを樹脂組成物Cに変更し、中間層の膜厚が7μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、中間層および最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「比較例1-1」
 工程1においてモールドAをモールドBに変更し、樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更し、工程2において樹脂組成物Dを樹脂組成物Cに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-3と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「比較例1-2」
 工程1においてモールドAをモールドBに変更し、樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更し、工程2において樹脂組成物Dを樹脂組成物Fに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-3と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-1と同じであった。
「参考例1-1」
 工程1で中間層を設けず、工程2において最表層の膜厚が13μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであった。
「参考例1-2」
 工程1で中間層を設けず、工程2において樹脂組成物Dを樹脂組成物Eに変更し、最表層の膜厚が11μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表1、2に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであった。
「実施例1-7」
 工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔は180nm、凸部の平均高さは180nm、アスペクト比は1.0であった。
「実施例1-8」
 工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Hに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-9」
 工程1において樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。また、得られた積層構造体の最表層および中間層の弾性率、弾性回復率を測定した。結果を表5に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-3と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-10」
 工程1において樹脂組成物Aを樹脂組成物Bに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Hに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-3と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-11」
 工程1において樹脂組成物Aを樹脂組成物Cに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-12」
 工程1において樹脂組成物Aを樹脂組成物Cに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Hに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-13」
 工程1において樹脂組成物Aを樹脂組成物Eに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-14」
 工程1において樹脂組成物Aを樹脂組成物Eに変更し、中間層の膜厚が7μmになるように変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Hに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、中間層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-1と同じであり、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「実施例1-15」
 工程1においてモールドAを鏡面アルミニウム基材に変更し、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は、実施例1-6と同じであった。
「参考例1-3」
 工程1で中間層を設けず、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Gに変更し、最表層の膜厚が10μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
「参考例1-4」
 工程1で中間層を設けず、工程2においてモールドAをモールドBに変更し、樹脂組成物Dを樹脂組成物Hに変更し、最表層の膜厚が10μmになるように変更した以外は、実施例1-1と同様にして積層構造体を製造し、各種測定および評価を行った。結果を表3、4に示す。
 なお、最表層の表面に形成された微細凹凸構造の隣り合う凸部同士の平均間隔、凸部の平均高さ、アスペクト比は実施例1-6と同じであった。
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000002
                  
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
                  
 なお、表1、3中、「TAC」とはTACフィルムのことであり、「鏡面」は鏡面アルミニウム基材のことである。
 また、表2、4中、「SW」とはスチールウールのことであり、例えば「250g/cm」とはスチールウールの単位面積当たり、250gの荷重がかかったことを意味する。
 表1~4の結果から明らかなように、特定の物性を有する樹脂で形成した中間層と、表面に微細凹凸構造を有し、かつ特定の物性を有する樹脂で形成した最表層が基材上に順次積層した実施例1-1~1-15の積層構造体は、鉛筆硬度が高く、良好な耐擦傷性、反射防止性、および透明性を有していた。また、実施例1-1~1-15で形成した中間層は、耐ブロッキング性を有していた。
 特に、中間層の表面にも微細凹凸構造を有する実施例1-1~1-4、1-6~1-14の積層構造体は、良好な密着性も有していた。
 なお、中間層のマルテンス硬さが170N/mmであり、最表層の弾性回復率が77%である実施例1-6の積層構造体は、実施例1-1~1-4と同程度の密着性、耐擦傷性、反射防止性および透明性を有していたが、実施例1-1~1-4と比べると鉛筆硬度が低く、硬度2Hの試験時に圧痕が発生した。
 一方、最表層を形成する樹脂の弾性回復率が70%未満である比較例1-1、1-2の積層構造体は実施例1-1~1-4と同程度の密着性、鉛筆硬度、反射防止性および透明性を有していたが、耐擦傷性に劣り、荷重25g/cmの試験時に目立つキズが発生した。
 また、参考例1-1、1-2から明らかなように、中間層を形成しないこと以外は実施例1-1~1-4と同様に作製した積層構造体は、実施例1-1~1-4と同程度の密着性、耐擦傷性、反射防止性および透明性を有していたが、鉛筆硬度が低く、硬度2Hの試験時に圧痕が発生した。なお、参考例1-1の積層構造体は、実施例1-6の積層構造体と同程度の鉛筆硬度を有しているが、最表層の厚さは実施例1-6における中間層と最表層の厚さの合計に比べて厚い。この結果より、中間層を形成しない場合、中間層を形成した場合と同程度の鉛筆硬度を発現させるためには、最表層の厚さを厚くする必要があり、積層構造体全体の厚さが厚くなることが示された。
 また、参考例1-3、1-4から明らかなように、中間層を形成しないこと以外は実施例1-7~1-14と同様に作製した積層構造体は、実施例1-7~1-14と同程度の密着性、耐擦傷性、反射防止性および透明性を有していたが、鉛筆硬度が低かった。
 また、表1、3、5から明らかなように、最表層および中間層の弾性回復率と弾性率は、各層を構成する材料(活性エネルギー線硬化性樹脂組成物)の硬化物の弾性回復率と弾性率を微小硬度計で測定しても、積層構造体の状態で各層の弾性回復率と弾性率をAFMで測定しても、結果に大きな差がないことがわかった。
[試験2]
 試験2における各種測定および評価方法、モールド(スタンパ)の製造方法は以下の通りである。
「測定・評価」
(2-1)多層積層体の耐擦傷性
 磨耗試験機(新東科学株式会社製、「HEiDON TRIBOGEAR TYPE-30S」)を用い、物品の表面に置かれた2cm2にカットしたスチールウール(日本スチールウール社製、ボンスター#0000)に400g(100gf/cm2)の荷重をかけ、往復距離:30mm、ヘッドスピード:平均100mm/秒にて10回往復させ、物品の表面の外観を評価した。外観評価に際しては、2.0mm厚の黒色アクリル板(三菱レイヨン株式会社製、アクリライト)の片面に物品を貼り付け、屋内で蛍光灯にかざして目視で評価した。
A:擦傷部分の中で確認できる傷が10本未満である。
B:擦傷部分の中で反射防止性能が失われる面積が擦傷部分の50%未満である。
C:擦傷部分の反射防止性能が50%以上失われる。
D:擦傷部分の反射防止性能がほぼ全て失われる。
(2-2)多層積層体の鉛筆硬度
 JIS K5600-5-4に準じて、荷重500gfで試験を行った。試験後外観を目視にて観察し、圧痕が付かない鉛筆の硬度を記した。3Hで傷が付かず、4Hで傷が付く場合は「3H」と表記した。
(2-3)最表層と中間層との密着性
 JIS K 5400に準拠し、碁盤目剥離試験を行い最表層と中間層との密着性を評価した。基盤には厚さ2mmのアクリル板を用いた。碁盤目は10×10の100マスによって行い、100マス中で剥離が起こらなかった数を評価した。
A:全く剥離が無い。
B:1~99マスが剥離した。
C:100マス全てが剥離した。
(2-4)中間層の表面の反応率測定
 中間層の表面の反応率測定は以下の方法により行った。赤外分光装置(Avatar330:サーモフィッシャーサイエンティフィック株式会社製)に全反射法(Attenuated Total Reflectance)ユニット(エンデュランスモジュール:株式会社エス・テイ・ジャパン販売製)を取り付け、2層積層体の中間層の表面について積算回数32回、分解能4cm-1の条件で測定を行った。その結果から、810cm-1付近のC=C結合に帰属されるピーク高さをp1として、1730cm-1付近のエステル結合のC=Oに帰属されるピーク高さr1として読み取った。また原料として使用した重合性成分(a)について、810cm-1付近のピーク高さp2、1730cm-1付近のピーク高さr2を測定し、下記式(III)から得られる値を中間層の表面の二重結合反応率(モル%)とした。
Figure JPOXMLDOC01-appb-M000006
                  
(2-5)中間層の硬化状態
 2層積層体の中間層について、目視および指で触れて硬化の状態を確認し、以下の評価基準で評価した。
A:表面まで硬化している。
B:表面が未硬化で、触れると塗工面が荒れている。
(2-6)モールド(スタンパ)の細孔の測定
 陽極酸化ポーラスアルミナからなるモールドの一部の縦断面を1分間Pt蒸着し、電界放出形走査電子顕微鏡(日本電子株式会社製、商品名JSM-7400F)により加速電圧3.00kVで観察し、隣り合う細孔の間隔(周期)及び細孔の深さを測定した。具体的にはそれぞれ10点ずつ測定し、その平均値を測定値とした。
(2-7)活性エネルギー線硬化性樹脂組成物の硬化物のマルテンス硬さ、弾性率、弾性回復率の測定
 大型スライドガラス(松浪硝子工業株式会社製、「大型スライドグラス、品番:S9213」、76mm×52mmサイズ)を基材として用いた。該基材上に、塗膜の厚みが約250μmとなるように活性エネルギー線硬化性樹脂組成物を塗布し、これに高圧水銀灯を用いて約1000mJ/cmで紫外線を照射し、基材上に活性エネルギー線硬化性樹脂組成物の硬化物が形成された試験片を作製した。これをマルテンス硬さ、弾性率および弾性回復率の測定用の試験片として用いた。
 ビッカース圧子(四面ダイアモンド錐体)と、微小硬度計(株式会社フィッシャーインストルメンツ製、「フィッシャースコープHM2000XYp」)を用いて、[押し込み(100mN/10秒)]→[クリープ(100mN、10秒)]→[徐荷(100mN/10秒)]の評価プログラムで試験片の硬化物の物性を測定した。測定は恒温室(温度23℃、湿度50%)内で行った。
 得られた測定結果から、活性エネルギー線硬化性樹脂組成物の硬化物のマルテンス硬さ、弾性率、弾性回復率を解析ソフト(株式会社フィッシャーインストルメンツ製、「WIN-HCU」)により算出した。
「モールドの製造」
(モールドCの製造)
 純度99.99質量%、電解研磨した厚さ2mm、直径65mmアルミニウム円盤をアルミニウム基材として用いた。0.3Mシュウ酸水溶液を15℃に調整し、この液中にアルミニウム基材を浸漬して、直流安定化装置の電源のON/OFFを繰り返すことでアルミニウム基材に間欠的に電流を流して陽極酸化した。30秒おきに80Vの定電圧を5秒間印加する操作を60回繰り返し、細孔を有する酸化皮膜を形成した(工程(a))。続いて、酸化皮膜を形成したアルミニウム基材を、6質量%のリン酸と1.8質量%クロム酸を混合した70℃の水溶液中に6時間浸漬して、酸化皮膜を溶解除去した(工程(b))。
 その後、酸化皮膜を溶解除去したアルミニウム基材を、16℃に調整した0.05Mのシュウ酸水溶液中に浸漬して80Vで7秒間陽極酸化を施した(工程(c))。続いて、32℃に調整した5質量%リン酸水溶液中に20分間浸漬して酸化皮膜の細孔を拡大する孔径拡大処理を施した(工程(d))。このように工程(c)の陽極酸化と工程(d)の孔径拡大処理を交互に5回繰り返してモールドCを得た。モールドCの細孔の間隔(周期)は約180nm、細孔の深さは約180nmであった。
 モールドCを、TDP-8(日光ケミカルズ株式会社製)の0.1質量%水溶液に10分間浸漬し、引き上げて16時間風乾することにより離型処理を施した。
(モールドDの製造)
 モールドCと同様のアルミニウム円盤をアルミニウム基材として用いた。0.3Mシュウ酸水溶液を15℃に調整し、この液中にアルミニウム基板を浸漬して直流40Vの定電圧で30分間陽極酸化を行って、細孔を有する酸化皮膜を形成した(工程(a))。続いて、酸化皮膜を形成したアルミニウム基材を、6質量%のリン酸と1.8質量%クロム酸を混合した70℃の水溶液中に6時間浸漬して、酸化皮膜を溶解除去した(工程(b))。
 酸化皮膜を溶解除去したアルミニウム基材を、16℃に調整した0.3Mのシュウ酸水溶液中に浸漬して40Vで30秒間陽極酸化を施した(工程(c))。続いて、32℃に調整した5質量%リン酸水溶液中に8分間浸漬して酸化皮膜の細孔を拡大する孔径拡大処理を施した(工程(d))。このように工程(c)の陽極酸化と工程(d)の孔径拡大処理を交互に5回繰り返してモールドDを得た。モールドDの細孔の間隔(周期)は約100nm、細孔の深さは約180nmであった。
 モールドDを、TDP-8(日光ケミカルズ株式会社製)の0.1質量%水溶液に10分間浸漬し、引き上げて一晩風乾することにより離型処理を施した。
「実施例2-1」
(1.中間層の形成)
 中間層用の樹脂組成物(X)として、表7に示す組成の樹脂組成物(X-1)を調製した。なお、表7中の重合性成分(a)及び溶剤(e)の欄の記号は、表6に示す化合物である。また、樹脂組成物(X)の硬化物のマルテンス硬さ、弾性率、弾性回復率は表7に示す通りである。
 基材として光透過性のトリアセチルセルロースフィルム(富士フイルム株式会社製、製品名T40UZ、厚さ40μm)を使用した。ガラス板上に置いた基材上にバーコーターを使用して樹脂組成物(X-1)を塗工した。続いて、70℃に調整した乾燥機で3分間乾燥させ、基材上に未硬化の中間層が形成された積層体を得た。続いて窒素等の不活性ガスのパージを行わない状態で中間層の表面から無電極タイプのUVランプ(フュージョンUVシステムズ・ジャパン株式会社製、Hバルブ)を用いて365nmの波長で測定した積算光量が350mJ/cm2なるように紫外線を照射し、中間層を硬化させて、2層積層体を得た。
 前述した「中間層の表面の反応率の測定方法」によって二重結合反応率(モル%)を測定し表9に示す結果を得た。また、2層積層体の評価結果を表9に示す。
(2.最表層の形成)
 最表層用の樹脂組成物(Y)として、表8に示す組成の樹脂組成物(Y-1)を調製した。なお、表8中の重合性成分(g)の欄の記号は、表6に示す化合物である。また、樹脂組成物(Y)の硬化物のマルテンス硬さ、弾性率、弾性回復率は表8に示す通りである。
 モールドD上に樹脂組成物(Y-1)を適量滴下し、前記2層積層体の中間層が該樹脂組成物に接触するように被覆し、該中間層で該樹脂組成物を均一に押し広げた。続いて無電極タイプのUVランプ(フュージョンUVシステムズ・ジャパン株式会社製、Dバルブ)を用いて365nmの波長で測定した積算光量が1000mJ/cm2になるように、基材側から紫外線を照射し、樹脂組成物(Y-1)及び中間層中の未反応の樹脂組成物(X-1)を反応させて硬化した。その後モールドを剥離して、微細凹凸構造を表面に有する多層積層体を得た。
 この多層積層体の表面には、モールドの微細凹凸構造が転写されており、平均周期100nm、平均高さ180nmである略円錐状のナノ凹凸構造が形成されていた。多層積層体の評価結果を表9に示す。最表層の厚さは全て5μmであった。
「実施例2-2~2-12、比較例2-1~2-4」
 中間層用の樹脂組成物(X)、最表層用の樹脂組成物(Y)及びモールドを表9、10に示す組み合わせ(○印を付した組み合わせ)に変更したこと以外は、実施例2-1と同様にして2層積層体及び多層積層体を得た。なお、比較例2-1及び2-2においては、中間層を形成せず、基材とモールドとの間に最表層を形成した。
 評価結果を表9、10に示す。各多層積層体の表面には、モールドの微細凹凸構造が転写されており、モールドCを使用した場合は、平均周期180nm、平均高さ180nmである略円錐状のナノ凹凸構造が形成されており、モールドDを使用した場合は、平均周期100nm、平均高さ180nmである略円錐状のナノ凹凸構造が形成されていた。最表層の厚さは全て5μmであった。
Figure JPOXMLDOC01-appb-T000007
                  
Figure JPOXMLDOC01-appb-T000008
                  
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
                  
「評価結果の纏め」
 実施例2-1~2-3の積層構造体は、鉛筆硬度が3Hと良好で、且つ密着性も良好であった。実施例2-4の積層構造体は、中間層の膜厚が2μmと比較的薄いため鉛筆硬度がHであったが、中間層の無い比較例2-1の積層構造体(鉛筆硬度がHB、密着性がランクC)と比較すると、鉛筆硬度の向上効果と密着性の向上効果が確かめられた。実施例2-5~2-6の積層構造体は、最表層を構成する樹脂が柔らかいにも拘らず、鉛筆硬度は実施例2-2と同様に3Hであり、中間層の鉛筆硬度の向上効果が高いことが確かめられると同時に、密着性も良好であった。
 実施例2-7の積層構造体は、中間層の膜厚が2μmと薄いため鉛筆硬度がHであったが、中間層の無い比較例2-2の積層構造体(鉛筆硬度がB、密着性がランクC)と比較すると、鉛筆硬度の向上効果と密着性の向上効果が確かめられた。実施例2-8の積層構造体は、中間層用として樹脂組成物(X-3)を用いていることから、密着性がランクBとなったが、実用上問題ない密着性と高い鉛筆硬度を実現可能であることが確かめられた。
 実施例2-9~2-12の積層構造体は、鉛筆硬度が3Hと良好で、且つ密着性も良好であった。
 比較例2-3の積層構造体は、第1の活性エネルギー線照射後の中間層の表面における重合性官能基の反応率が12モル%と低いため、中間層の硬化状態はランクBで軽く触れるだけで塗工面が荒れてしまう状態となり、3層積層体にした後の鉛筆硬度も中間層の膜厚が5μmあるにもかかわらずHであった。比較例2-4の積層構造体は、第1の活性エネルギー線照射後の中間層の表面における重合性官能基の反応率が86モル%と高いため、密着性がランクCであった。
 本発明の積層構造体は、光学性能および機械特性に優れた光学物品、特に反射防止フィルム等の反射防止物品として有用である。
 10 積層構造体
 12 基材
 14 中間層
 14a 表面に微細凹凸構造を有する層
 14b 表面に微細凹凸構造を有さない層
 16 最表層
 20 アルミニウム基材
 22 細孔
 24 酸化皮膜
 26 細孔発生点
 28 モールド
 30 ロール状モールド
 32 タンク
 34 空気圧シリンダ
 36 ニップロール
 38 活性エネルギー線照射装置
 40 剥離ロール
 50 積層構造体
 60 積層構造体
 70 積層構造体
 100 積層構造体
 110 基材
 120 最表層(微細凹凸構造層)
 130 凸部
 130a 凸部の頂点
 140 凹部
 140a 凹部の底点
 150 中間層(第二の層)
 w1 隣り合う凸部の間隔
 d1 凹部の底点から凸部の頂点までの垂直距離

Claims (16)

  1.  基材と、中間層と、最表層とが順次積層した積層構造体であって、
     前記中間層のマルテンス硬さが120N/mm以上であり、
     前記最表層の弾性回復率が70%以上であり、かつ最表層は表面に可視光の波長以下の周期の微細凹凸構造を有する、積層構造体。
  2.  前記最表層の表面の微細凹凸構造の周期が400nm以下である、請求項1に記載の積層構造体。
  3.  前記最表層の弾性回復率が80%以上である、請求項1または2に記載の積層構造体。
  4.  前記中間層のマルテンス硬さが180N/mm以上である、請求項1または2に記載の積層構造体。
  5.  前記中間層の弾性回復率が60%以上である、請求項1~4のいずれか一項に記載の積層構造体。
  6.  前記中間層は表面に1000nm以下の周期の微細凹凸構造を有する、請求項1~5のいずれか一項に記載の積層構造体。
  7.  前記中間層の表面の微細凹凸構造の周期が、前記最表層の表面の微細凹凸構造の周期と異なる、請求項6に記載の積層構造体。
  8.  前記中間層が多官能(メタ)アクリレートを含む樹脂組成物の硬化物である、請求項1~7のいずれか一項に記載の積層構造体。
  9.  請求項1~8のいずれか一項に記載の積層構造体を表面に備えた、物品。
  10.  請求項1~8のいずれか一項に記載の積層構造体の製造方法であって、
     モールドを用いた転写法により前記微細凹凸構造を形成する、積層構造体の製造方法。
  11.  基材と、中間層と、最表層とが順次積層した積層構造体の製造方法であって、
     下記工程(1)~(3)を有する、積層構造体の製造方法。
    工程(1):光透過性の基材に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。
    工程(2):前記工程(1)で形成した中間層と微細凹凸構造転写用のモールドとの間に、活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。
    工程(3):前記基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、基材と中間層と最表層とが順次積層した積層構造体をモールドから離型する工程。
  12.  請求項1に記載の積層構造体の製造方法であって、
     下記工程(1)~(3)を有する、積層構造体の製造方法。
    工程(1):光透過性の基材に、重合性官能基を有する化合物を含む活性エネルギー線硬化性の樹脂組成物(X)を配置した後、第1の活性エネルギー線照射を行い、表面における重合性官能基の反応率が35~85モル%である中間層を形成する工程。
    工程(2):前記工程(1)で形成した中間層と微細凹凸構造転写用のモールドとの間に、活性エネルギー線硬化性の樹脂組成物(Y)を配置する工程。
    工程(3):前記基材側から第2の活性エネルギー線照射を行い、樹脂組成物(Y)を硬化させて最表層を形成し、基材と中間層と最表層とが順次積層した積層構造体をモールドから離型する工程。
  13.  前記工程(1)における第1の活性エネルギー線照射の積算光量が50~1000mJ/cmである、請求項11または12に記載の積層構造体の製造方法。
  14.  前記工程(1)における第1の活性エネルギー線照射の積算光量が100~500mJ/cmである、請求項13に記載の積層構造体の製造方法。
  15.  前記中間層が、(ポリ)ペンタエリスリトール(ポリ)アクリレート、および(ポリ)ペンタエリスリトール(ポリ)アクリレートとヘキサメチレンジイソシアネートとの反応生成物を含む樹脂組成物(X)の半硬化物である、請求項11~14のいずれか一項に記載の積層構造体の製造方法。
  16.  請求項11~15のいずれか一項に記載の積層構造体の製造方法によって得られる積層構造体であって、
     第1の活性エネルギー線照射後の中間層の表面における重合性官能基の反応率が35~85モル%である、積層構造体。
PCT/JP2014/060016 2013-04-05 2014-04-04 積層構造体およびその製造方法と、物品 WO2014163198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14779531.4A EP2982502A4 (en) 2013-04-05 2014-04-04 MULTILAYER STRUCTURE, METHOD FOR THE MANUFACTURE THEREOF AND ARTICLES
US14/781,141 US20160082688A1 (en) 2013-04-05 2014-04-04 Multilayer structure, method for producing same, and article
JP2014519322A JP5716868B2 (ja) 2013-04-05 2014-04-04 積層構造体およびその製造方法と、物品
KR1020157027057A KR20150125704A (ko) 2013-04-05 2014-04-04 적층 구조체 및 그의 제조 방법과 물품
CN201480016549.8A CN105377542B (zh) 2013-04-05 2014-04-04 层叠结构体及其制造方法以及物品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-079568 2013-04-05
JP2013079568 2013-04-05
JP2013-167825 2013-08-12
JP2013167825 2013-08-12

Publications (1)

Publication Number Publication Date
WO2014163198A1 true WO2014163198A1 (ja) 2014-10-09

Family

ID=51658485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060016 WO2014163198A1 (ja) 2013-04-05 2014-04-04 積層構造体およびその製造方法と、物品

Country Status (7)

Country Link
US (1) US20160082688A1 (ja)
EP (1) EP2982502A4 (ja)
JP (1) JP5716868B2 (ja)
KR (1) KR20150125704A (ja)
CN (1) CN105377542B (ja)
TW (1) TWI547378B (ja)
WO (1) WO2014163198A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122114A (ja) * 2014-12-25 2016-07-07 株式会社クラレ 微細構造体及び光学部材
JP2017003884A (ja) * 2015-06-12 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム 光学フィルム、これを用いた偏光板、タッチパネル、ディスプレイ部材及び表示装置
JP2017007689A (ja) * 2015-06-18 2017-01-12 共同印刷株式会社 ブリスターパック用積層体、及びそれを用いたブリスターパック
JP2017021181A (ja) * 2015-07-10 2017-01-26 コニカミノルタ株式会社 光学フィルム、偏光板および画像表示装置
JP2017047683A (ja) * 2015-09-01 2017-03-09 東洋紡株式会社 ハードコートポリエステルフィルム
JP2017198906A (ja) * 2016-04-28 2017-11-02 シャープ株式会社 光学部材の製造方法、及び、光学部材
WO2018012339A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 光学部材の製造方法
JP2018012279A (ja) * 2016-07-21 2018-01-25 株式会社Monaコーポレーション 三次元加飾用フィルム、三次元加飾成型体および三次元加飾用フィルムの製造方法
WO2018062481A1 (ja) * 2016-09-30 2018-04-05 Scivax株式会社 反射防止材およびその製造方法
JP2018517924A (ja) * 2015-07-24 2018-07-05 華為技術有限公司Huawei Technologies Co.,Ltd. カメラモジュールおよび端末
WO2020059603A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
WO2020059604A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
CN111114033A (zh) * 2015-12-18 2020-05-08 迪睿合电子材料有限公司 显示面板
JP2020076019A (ja) * 2018-11-09 2020-05-21 リケンテクノス株式会社 Bステージ塗膜
JP2020149014A (ja) * 2019-03-15 2020-09-17 シャープ株式会社 超撥水性フィルム
JP2021056305A (ja) * 2019-09-27 2021-04-08 デクセリアルズ株式会社 反射防止構造体、反射防止構造体付き基材、カメラモジュール及び情報端末機器
JP2021519376A (ja) * 2018-03-28 2021-08-10 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH エンボス構造をコーティングの表面に転写する方法、および前記コーティングを含むコンポジット
CN114521167A (zh) * 2019-09-25 2022-05-20 巴斯夫涂料有限公司 将压纹结构转印到涂层表面的方法以及可以用作压纹模具的复合物
WO2022124420A1 (ja) * 2020-12-11 2022-06-16 デクセリアルズ株式会社 光学体、光学体の製造方法、積層体及びイメージセンサ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077645B1 (ko) * 2013-05-20 2020-02-14 루미리즈 홀딩 비.브이. 돔을 가진 칩 규모 발광 디바이스 패키지
JP6600253B2 (ja) * 2015-12-25 2019-10-30 東京応化工業株式会社 イメージセンサ用永久接着剤組成物、並びにそれを用いた接着方法及び積層体
AU2016414182B2 (en) * 2016-07-05 2019-05-02 Essity Hygiene And Health Aktiebolag Absorbent article having an improved fastening system and a method to manufacture such absorbent article
WO2018021089A1 (ja) * 2016-07-26 2018-02-01 富士フイルム株式会社 ガスバリアフィルムおよび太陽電池、ならびに、ガスバリアフィルムの製造方法
KR102159492B1 (ko) * 2016-08-10 2020-09-25 주식회사 엘지화학 점착제 조성물, 이를 포함하는 연료전지용 서브 가스켓 필름, 이를 포함하는 막전극 어셈블리 및 이를 포함하는 연료 전지 스택
JP6796997B2 (ja) * 2016-11-07 2020-12-09 フクビ化学工業株式会社 防眩性および反射防止性を有する透明基板用の中間積層体と透明基板の製造方法
US10589382B2 (en) * 2017-03-30 2020-03-17 General Electric Company Overlapping border and internal sections of object formed by different AM melting beam sources in overlapping field region
WO2019222311A1 (en) * 2018-05-16 2019-11-21 Sharklet Technologies, Inc. Textured surfaces having variable amounts of surface energy, methods of manufacture thereof and articles comprising the same
KR102050665B1 (ko) * 2018-06-05 2019-11-29 에스케이씨 주식회사 유리접합용 필름, 유리접합 필름용 조성물 및 이를 포함하는 접합유리
JP7234514B2 (ja) * 2018-06-13 2023-03-08 Agc株式会社 光学積層体
JP2020068381A (ja) * 2018-10-22 2020-04-30 デクセリアルズ株式会社 原盤、原盤の製造方法及び転写物の製造方法
JP2022020286A (ja) * 2020-07-20 2022-02-01 株式会社ディスコ 保護部材形成装置で用いるシート、及び保護部材形成方法
JPWO2022168578A1 (ja) * 2021-02-05 2022-08-11
KR102434846B1 (ko) * 2021-03-02 2022-08-22 엔비에스티(주) 내수성 및 내오염성이 개선된 가변형 이종 표면 복합체 및 이를 이용한 위변조 방지 장치
KR102434848B1 (ko) * 2021-03-02 2022-08-22 엔비에스티(주) 내수성 및 내오염성이 개선된 가변형 이종 표면 복합체의 제조방법 및 이를 이용한 위변조 방지 장치
CN113985700B (zh) * 2021-11-18 2023-08-29 业成科技(成都)有限公司 光波导与显示装置的制作方法及其使用的光罩

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071290A (ja) 1998-08-28 2000-03-07 Teijin Ltd 反射防止物品の製造方法
JP2001215326A (ja) * 2000-01-31 2001-08-10 Nitto Denko Corp 偏光部材の製造方法
JP2002107501A (ja) 2000-09-28 2002-04-10 Dainippon Printing Co Ltd ハードコート層を有するフィルム、反射防止フィルム、およびそれらの製造方法
JP3627304B2 (ja) 1995-08-22 2005-03-09 大日本印刷株式会社 光学物品用電離放射線硬化型樹脂組成物、光学物品及び面光源
JP3676260B2 (ja) 2000-12-28 2005-07-27 ナトコ株式会社 活性エネルギー線硬化性ウレタン(メタ)アクリレート及び活性エネルギー線硬化性組成物並びにそれらの用途
JP2007070449A (ja) 2005-09-06 2007-03-22 Mitsubishi Rayon Co Ltd 硬化性組成物
JP4156415B2 (ja) 2003-03-20 2008-09-24 大日本印刷株式会社 賦型方法、賦型フィルム、及び射出成形品
JP2009031764A (ja) 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd 反射防止物品、およびこれより得られる成形品、ならびにこれらを備えた自動車用部品
JP2011000856A (ja) * 2009-06-22 2011-01-06 Dnp Fine Chemicals Co Ltd 基材、中間膜及び微細凹凸構造膜を積層してなる積層体
JP2011224957A (ja) 2010-03-31 2011-11-10 Mitsubishi Rayon Co Ltd 積層体及びその製造方法
WO2012124498A1 (ja) * 2011-03-11 2012-09-20 シャープ株式会社 金型、金型の製造方法、及び、ナノインプリントフィルムの製造方法
JP2013029828A (ja) * 2011-06-21 2013-02-07 Mitsubishi Rayon Co Ltd 光透過性成形体及びそれを用いた反射防止物品
JP2014071321A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp フィルムミラーおよびそれに用いる複合フィルム
WO2014065136A1 (ja) * 2012-10-22 2014-05-01 三菱レイヨン株式会社 積層構造体およびその製造方法と、物品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019503A2 (en) * 2003-08-19 2005-03-03 Nanoopto Corporation Sub-micron-scale patterning method and system
JP4849068B2 (ja) * 2005-09-21 2011-12-28 コニカミノルタオプト株式会社 防眩性反射防止フィルム及び防眩性反射防止フィルムの製造方法
TWI357507B (en) * 2007-05-23 2012-02-01 Kolon Inc Optical sheet
US8747994B2 (en) * 2008-09-17 2014-06-10 Sharp Kabushiki Kaisha Anti-reflective film and production method thereof
US8672493B2 (en) * 2009-03-30 2014-03-18 Sharp Kabushiki Kaisha Display device and optical film
EP2461190B1 (en) * 2009-07-28 2022-06-29 Sharp Kabushiki Kaisha Optical film, method for producing same, and method for controlling optical characteristics of same
KR101304658B1 (ko) * 2010-03-31 2013-09-05 미츠비시 레이온 가부시키가이샤 적층체 및 그 제조 방법
US9140831B2 (en) * 2010-09-16 2015-09-22 Dai Nippon Printing Co., Ltd. Optical sheet, optical member, surface light source device, and liquid crystal display device
WO2012105357A1 (ja) * 2011-02-01 2012-08-09 シャープ株式会社 積層体及び積層体の製造方法
JP6048145B2 (ja) * 2011-09-08 2016-12-21 三菱レイヨン株式会社 微細凹凸構造を表面に有する透明フィルム、および、その製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627304B2 (ja) 1995-08-22 2005-03-09 大日本印刷株式会社 光学物品用電離放射線硬化型樹脂組成物、光学物品及び面光源
JP2000071290A (ja) 1998-08-28 2000-03-07 Teijin Ltd 反射防止物品の製造方法
JP2001215326A (ja) * 2000-01-31 2001-08-10 Nitto Denko Corp 偏光部材の製造方法
JP2002107501A (ja) 2000-09-28 2002-04-10 Dainippon Printing Co Ltd ハードコート層を有するフィルム、反射防止フィルム、およびそれらの製造方法
JP3676260B2 (ja) 2000-12-28 2005-07-27 ナトコ株式会社 活性エネルギー線硬化性ウレタン(メタ)アクリレート及び活性エネルギー線硬化性組成物並びにそれらの用途
JP4156415B2 (ja) 2003-03-20 2008-09-24 大日本印刷株式会社 賦型方法、賦型フィルム、及び射出成形品
JP2007070449A (ja) 2005-09-06 2007-03-22 Mitsubishi Rayon Co Ltd 硬化性組成物
JP2009031764A (ja) 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd 反射防止物品、およびこれより得られる成形品、ならびにこれらを備えた自動車用部品
JP2011000856A (ja) * 2009-06-22 2011-01-06 Dnp Fine Chemicals Co Ltd 基材、中間膜及び微細凹凸構造膜を積層してなる積層体
JP2011224957A (ja) 2010-03-31 2011-11-10 Mitsubishi Rayon Co Ltd 積層体及びその製造方法
WO2012124498A1 (ja) * 2011-03-11 2012-09-20 シャープ株式会社 金型、金型の製造方法、及び、ナノインプリントフィルムの製造方法
JP2013029828A (ja) * 2011-06-21 2013-02-07 Mitsubishi Rayon Co Ltd 光透過性成形体及びそれを用いた反射防止物品
JP2014071321A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp フィルムミラーおよびそれに用いる複合フィルム
WO2014065136A1 (ja) * 2012-10-22 2014-05-01 三菱レイヨン株式会社 積層構造体およびその製造方法と、物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982502A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122114A (ja) * 2014-12-25 2016-07-07 株式会社クラレ 微細構造体及び光学部材
JP2017003884A (ja) * 2015-06-12 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム 光学フィルム、これを用いた偏光板、タッチパネル、ディスプレイ部材及び表示装置
JP2017007689A (ja) * 2015-06-18 2017-01-12 共同印刷株式会社 ブリスターパック用積層体、及びそれを用いたブリスターパック
JP2017021181A (ja) * 2015-07-10 2017-01-26 コニカミノルタ株式会社 光学フィルム、偏光板および画像表示装置
JP2018517924A (ja) * 2015-07-24 2018-07-05 華為技術有限公司Huawei Technologies Co.,Ltd. カメラモジュールおよび端末
JP2017047683A (ja) * 2015-09-01 2017-03-09 東洋紡株式会社 ハードコートポリエステルフィルム
CN111114033A (zh) * 2015-12-18 2020-05-08 迪睿合电子材料有限公司 显示面板
CN111114033B (zh) * 2015-12-18 2022-07-12 迪睿合电子材料有限公司 显示面板
US11110673B2 (en) 2015-12-18 2021-09-07 Dexerials Corporation Method of forming antireflection optical body, and display panel
JP2017198906A (ja) * 2016-04-28 2017-11-02 シャープ株式会社 光学部材の製造方法、及び、光学部材
WO2018012339A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 光学部材の製造方法
JPWO2018012339A1 (ja) * 2016-07-12 2019-04-04 シャープ株式会社 光学部材の製造方法
JP2018012279A (ja) * 2016-07-21 2018-01-25 株式会社Monaコーポレーション 三次元加飾用フィルム、三次元加飾成型体および三次元加飾用フィルムの製造方法
WO2018062481A1 (ja) * 2016-09-30 2018-04-05 Scivax株式会社 反射防止材およびその製造方法
JP7420729B2 (ja) 2018-03-28 2024-01-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング エンボス構造をコーティングの表面に転写する方法、および前記コーティングを含むコンポジット
JP2021519376A (ja) * 2018-03-28 2021-08-10 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH エンボス構造をコーティングの表面に転写する方法、および前記コーティングを含むコンポジット
JPWO2020059604A1 (ja) * 2018-09-18 2021-09-16 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
WO2020059604A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
WO2020059603A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット
JP2020076019A (ja) * 2018-11-09 2020-05-21 リケンテクノス株式会社 Bステージ塗膜
JP7213064B2 (ja) 2018-11-09 2023-01-26 リケンテクノス株式会社 Bステージ塗膜
JP2020149014A (ja) * 2019-03-15 2020-09-17 シャープ株式会社 超撥水性フィルム
CN114521167A (zh) * 2019-09-25 2022-05-20 巴斯夫涂料有限公司 将压纹结构转印到涂层表面的方法以及可以用作压纹模具的复合物
CN114521167B (zh) * 2019-09-25 2024-04-16 巴斯夫涂料有限公司 将压纹结构转印到涂层表面的方法以及可以用作压纹模具的复合物
JP2021056305A (ja) * 2019-09-27 2021-04-08 デクセリアルズ株式会社 反射防止構造体、反射防止構造体付き基材、カメラモジュール及び情報端末機器
WO2022124420A1 (ja) * 2020-12-11 2022-06-16 デクセリアルズ株式会社 光学体、光学体の製造方法、積層体及びイメージセンサ

Also Published As

Publication number Publication date
JP5716868B2 (ja) 2015-05-13
EP2982502A1 (en) 2016-02-10
EP2982502A4 (en) 2016-08-17
TW201504059A (zh) 2015-02-01
US20160082688A1 (en) 2016-03-24
JPWO2014163198A1 (ja) 2017-02-16
TWI547378B (zh) 2016-09-01
CN105377542A (zh) 2016-03-02
KR20150125704A (ko) 2015-11-09
CN105377542B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP5716868B2 (ja) 積層構造体およびその製造方法と、物品
JP5954329B2 (ja) 物品および活性エネルギー線硬化性樹脂組成物
JP6044544B2 (ja) 積層体の製造方法
WO2014065136A1 (ja) 積層構造体およびその製造方法と、物品
JP6451321B2 (ja) 光学物品及びその製造方法
WO2012096322A1 (ja) 活性エネルギー線硬化性樹脂組成物、微細凹凸構造体及び微細凹凸構造体の製造方法
JP5958338B2 (ja) 微細凹凸構造体、撥水性物品、モールド、及び微細凹凸構造体の製造方法
WO2013005769A1 (ja) 微細凹凸構造を表面に有する物品、およびこれを備えた映像表示装置
JP5648632B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体とその製造方法、及びナノ凹凸構造体を備えた撥水性物品
JP2011026449A (ja) 積層体、およびこれを有する物品
JP6686284B2 (ja) 活性エネルギー線硬化性樹脂組成物の硬化物を含む物品
JP2015054402A (ja) 積層構造体およびその製造方法、反射防止物品
JP2016210150A (ja) 積層体およびその製造方法と、物品
JP2013241503A (ja) 多官能ウレタン(メタ)アクリレート、活性エネルギー線硬化性樹脂組成物及び微細凹凸構造を表面に有する物品
JP2014016453A (ja) 微細凹凸構造体を備えた物品及び活性エネルギー線硬化樹脂組成物
JP2014077040A (ja) 活性エネルギー線硬化性組成物、およびそれを用いた微細凹凸構造体
JP2014126761A (ja) 積層体、およびその製造方法
WO2016158979A1 (ja) 活性エネルギー線硬化性樹脂組成物及び物品
JP2014076556A (ja) 微細凹凸構造を有する物品およびその製造方法
JP2013033136A (ja) 微細凹凸構造体、およびこれを有する反射防止物品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014519322

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781141

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157027057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014779531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE