WO2014157686A1 - 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス - Google Patents

積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス Download PDF

Info

Publication number
WO2014157686A1
WO2014157686A1 PCT/JP2014/059327 JP2014059327W WO2014157686A1 WO 2014157686 A1 WO2014157686 A1 WO 2014157686A1 JP 2014059327 W JP2014059327 W JP 2014059327W WO 2014157686 A1 WO2014157686 A1 WO 2014157686A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
thickness
organic intermediate
laminate
Prior art date
Application number
PCT/JP2014/059327
Other languages
English (en)
French (fr)
Inventor
悠太 鈴木
公市 永元
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020157031045A priority Critical patent/KR102267089B1/ko
Priority to EP14775227.3A priority patent/EP2982506B1/en
Priority to JP2015508801A priority patent/JP6402093B2/ja
Priority to US14/780,805 priority patent/US20160053130A1/en
Priority to CN201480019234.9A priority patent/CN105102216B/zh
Publication of WO2014157686A1 publication Critical patent/WO2014157686A1/ja
Priority to US16/412,733 priority patent/US20190264061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/584No clear coat specified at least some layers being let to dry, at least partially, before applying the next layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a laminate having excellent gas barrier properties and in which gas barrier properties are unlikely to deteriorate even when a thermal load is applied, a method for producing the laminate, an electronic device member comprising the laminate, and an electronic device comprising the electronic device member About.
  • Patent Documents 1 and 2 propose a laminate in which at least one or more organic layers and inorganic layers formed using a specific monomer are alternately laminated on at least one side of a substrate.
  • Patent Document 3 proposes a laminate having a plastic film and a unit comprising at least one organic layer and at least two inorganic layers on the plastic film.
  • Patent Documents 1 to 3 have excellent gas barrier properties, but when a thermal load is applied, the gas barrier properties may be greatly reduced due to the difference in expansion coefficient between the inorganic layer and the organic layer. It was not suitable as a member of an electronic device that generates heat.
  • the present invention has been made in view of the actual situation of the prior art, and is a laminate having excellent gas barrier properties and less likely to lower gas barrier properties even when a thermal load is applied, a member for an electronic device comprising the laminate, And it aims at providing an electronic device provided with this member for electronic devices.
  • the present inventors have provided a specific gas barrier unit comprising two barrier layers and an organic intermediate layer on a substrate, thereby providing excellent gas barrier properties and heat load. As a result, it was found that a laminated body in which the gas barrier property is not easily deteriorated even if added can be obtained, and the present invention has been completed.
  • the organic intermediate layer having an elastic modulus at 90 ° C. of 1.5 GPa or more has a ratio (X / Y1) of the thickness (X) of the organic intermediate layer and the thickness (Y1) of the first barrier layer. 3 to 18 and the ratio (X / Y2) of the thickness (X) of the organic intermediate layer and the thickness (Y2) of the second barrier layer is 3 to 18 Laminated body.
  • the organic intermediate layer is made of a cured product of an energy ray curable composition.
  • the organic intermediate layer coats the energy ray curable composition on the first barrier layer to form a curable coating film, and the resulting curable coating film is irradiated with energy rays.
  • the energy beam curable composition contains a polyfunctional (meth) acrylic compound.
  • the laminate according to (5), wherein the polyfunctional (meth) acrylic compound is a compound having 3 or more (meth) acrylic groups.
  • the laminate according to (5), wherein the polyfunctional (meth) acrylic compound is a compound having a molecular weight of 350 to 5000.
  • the thickness (X) of the organic intermediate layer is 300 nm or more and 3 ⁇ m or less
  • the thickness (Y1) of the first barrier layer is 10 to 400 nm
  • the thickness (Y2) of the second barrier layer is 10 to 400 nm
  • the laminate according to (1), wherein the total thickness (Y) of the first barrier layer and the second barrier layer is 30 nm or more and 500 nm or less.
  • the cured curable coating was cured by irradiating it with energy rays, and an organic intermediate layer having an elastic modulus at 90 ° C.
  • a laminated body that is excellent in gas barrier properties and hardly deteriorates in gas barrier properties even when a thermal load is applied, a method for producing the same, an electronic device member comprising the laminated body, and the electronic device member.
  • An electronic device is provided.
  • Laminate The laminate of the present invention is a laminate having a base material and a gas barrier unit, and the gas barrier unit includes two barrier layers, a first barrier layer and a second barrier layer. And an organic intermediate layer having an elastic modulus at 90 ° C. of 1.5 GPa or more sandwiched between these barrier layers, and the ratio of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer (X / Y) is 3 or more and 18 or less, and the ratio (X / Y2) of the thickness (X) of the organic intermediate layer to the thickness (Y2) of the second barrier layer is 3 or more and 18 or less It is characterized by being.
  • Base material which comprises the laminated body of this invention will not be specifically limited if a gas barrier unit can be carry
  • a film or sheet is usually used as the substrate.
  • the thickness of the substrate is not particularly limited and may be determined according to the purpose of the laminate.
  • the thickness of the substrate is usually 0.5 to 500 ⁇ m, preferably 1 to 100 ⁇ m.
  • “A to B” means A or more and B or less.
  • the material of the base material is not particularly limited as long as it matches the purpose of the laminate of the present invention.
  • Base materials include polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, acrylic resin, cycloolefin polymer And resin base materials such as aromatic polymers.
  • polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
  • cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like. .
  • Apel an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
  • Arton a norbornene polymer manufactured by JSR
  • Zeonoa a norbornene polymer manufactured by Nippon Zeon
  • the gas barrier unit constituting the laminate of the present invention comprises two barrier layers, a first barrier layer and a second barrier layer, and elasticity at 90 ° C. sandwiched between these barrier layers.
  • a ratio of the thickness (X) of the organic intermediate layer and the thickness (Y1) of the first barrier layer (X / Y1) of 3 to 18 and The ratio (X / Y2) of the thickness (X) of the organic intermediate layer and the thickness (Y2) of the second barrier layer is 3 or more and 18 or less.
  • Each of the first barrier layer and the second barrier layer constituting the gas barrier unit is a layer that functions as a gas barrier layer [a layer having a characteristic (gas barrier property) for suppressing permeation of gas such as oxygen and water vapor).
  • a gas barrier layer a layer having a characteristic (gas barrier property) for suppressing permeation of gas such as oxygen and water vapor.
  • the laminate of the present invention has a first barrier layer and a second barrier layer (hereinafter, these layers may be collectively referred to as “barrier layer”) in the gas barrier unit, the gas barrier is extremely high. It will be excellent.
  • the thickness and type of the first barrier layer and the second barrier layer may be the same or different.
  • the one disposed on the side closer to the substrate is the first barrier layer, and is disposed on the side far from the substrate. Is referred to as a second barrier layer.
  • the thickness of the first barrier layer and the second barrier layer is such that the ratio (X / Y1) of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer is 3 As long as the ratio is 18 or less and the ratio (X / Y2) of the thickness (X2) of the organic intermediate layer to the thickness (Y2) of the second barrier layer is 3 or more and 18 or less, there is no particular limitation. .
  • the thickness (Y1) of the first barrier layer and the thickness (Y2) of the second barrier layer are each usually 10 to 400 nm, preferably 50 to 350 nm.
  • the barrier layer examples include those made of an inorganic vapor-deposited film and those obtained by subjecting a layer containing a polymer compound (hereinafter sometimes referred to as “polymer layer”) to a modification treatment such as ion implantation [
  • the barrier layer does not mean only a modified region (such as a region into which ions are implanted), but means a “modified polymer layer”. ] Etc. are mentioned.
  • the inorganic vapor deposition film examples include vapor deposition films of inorganic compounds and metals.
  • inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide
  • inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride
  • inorganic carbides Inorganic sulfides
  • inorganic oxynitrides such as silicon oxynitride
  • Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used singly or in combination of two or more. Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
  • a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc.
  • the CVD method is mentioned.
  • the polymer compound used includes silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether Examples include ketones, polyether ether ketones, polyolefins, polyesters, polycarbonates, polysulfones, polyether sulfones, polyphenylene sulfides, polyarylates, acrylic resins, cycloolefin polymers, and aromatic polymers. These polymer compounds can be used alone or in combination of two or more.
  • silicon-containing polymer compound is preferable as the polymer compound because a barrier layer having better gas barrier properties can be formed.
  • silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
  • a polysilazane compound is preferable from the viewpoint that a barrier layer having excellent gas barrier properties can be formed.
  • the polysilazane compound is a polymer compound having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
  • the compound which has a repeating unit represented by these is preferable.
  • the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
  • n represents arbitrary natural numbers.
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
  • alkyl group of the unsubstituted or substituted alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • alkenyl group of an unsubstituted or substituted alkenyl group examples include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned.
  • substituents for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • hydroxyl group such as hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
  • aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
  • alkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tri-t-butylsilyl group, a methyldiethylsilyl group, a dimethylsilyl group, a diethylsilyl group, a methylsilyl group, and an ethylsilyl group.
  • Rx, Ry, and Rz a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
  • Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
  • a modified polysilazane compound can also be used as the polysilazane compound.
  • Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726.
  • JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333 Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
  • the polysilazane compound perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of availability and the ability to form an ion AQA injection layer having excellent gas barrier properties.
  • a polysilazane compound a commercially available product as a glass coating material or the like can be used as it is.
  • the polysilazane compounds can be used alone or in combination of two or more.
  • the polymer layer may contain other components in addition to the polymer compound described above as long as the object of the present invention is not impaired.
  • other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
  • the content of the polymer compound in the polymer layer is preferably 50% by mass or more, and more preferably 70% by mass or more because a barrier layer having better gas barrier properties can be obtained.
  • the thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm. In the present invention, even if the thickness of the polymer layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
  • the method for forming the polymer layer is not particularly limited. For example, preparing a polymer layer forming solution containing at least one polymer compound, optionally other components, a solvent, etc., and then applying this polymer layer forming solution by a known method, A polymer layer can be formed by drying the obtained coating film.
  • Solvents used for the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing, spray coating, and gravure. Examples include an offset method.
  • drying the formed coating film As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually in the range of 60 to 130 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • Examples of the polymer layer modification treatment include ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • the ion implantation process is a method of modifying the polymer layer by implanting ions into the polymer layer, as will be described later.
  • the plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
  • ions implanted into the polymer layer ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc.
  • rare gases such as argon, helium, neon, krypton, and xenon
  • fluorocarbon hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .
  • Ion of alkane gases such as ethylene and propylene
  • Ions of alkadiene gases such as pentadiene and butadiene
  • Ions of alkyne gases such as acetylene
  • Aromatic carbonization such as benzene and toluene
  • Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds. These ions can be used alone or in combination of two or more.
  • ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a barrier layer having better gas barrier properties can be obtained.
  • the ion implantation amount can be appropriately determined in accordance with the purpose of use of the laminate (necessary gas barrier properties, transparency, etc.).
  • Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like.
  • the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
  • plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can be performed by injecting into the surface portion of the polymer layer.
  • a plasma generation gas such as a rare gas
  • the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 400 nm.
  • the arithmetic average roughness (Ra) of the surfaces of the first barrier layer and the second barrier layer is preferably 8 nm or less, respectively. Moreover, it is preferable that the maximum cross-sectional heights (Rt) of the surface roughness curves of the first barrier layer and the second barrier layer are each less than 150 nm.
  • the surface of the first barrier layer refers to the surface on which the organic intermediate layer and the second barrier layer are laminated, and the surface of the second barrier layer refers to the first barrier layer and the organic intermediate layer. The surface opposite to the side where the layers are stacked.
  • the organic intermediate layer constituting the gas barrier unit is a layer having an elastic modulus at 90 ° C. of 1.5 GPa or more sandwiched between the first barrier layer and the second barrier layer. Since the laminate of the present invention has this organic intermediate layer in the gas barrier unit, the gas barrier property is not easily lowered even when a thermal load is applied.
  • the elastic modulus at 90 ° C. of the organic intermediate layer is 1.5 GPa or more, preferably 1.5 to 5.0 GPa, more preferably 2.0 to 4.0 GPa.
  • the elastic modulus at 90 ° C. is 1.5 GPa or more, even if a heat load is applied, the laminate has a gas barrier property that hardly deteriorates.
  • the elastic modulus at 25 ° C. of the organic intermediate layer is preferably 3.2 GPa or more, more preferably 3.2 to 5.0 GPa. When the elastic modulus at 25 ° C. is within this range, a laminate having excellent flexibility can be easily obtained.
  • the elastic modulus at 60 ° C. of the organic intermediate layer is preferably 2.3 GPa or more, more preferably 2.3 to 4.5 GPa. When the elastic modulus at 60 ° C. is within this range, it becomes easy to obtain a laminate in which the gas barrier property is not easily lowered even when a thermal load is applied.
  • the elastic modulus of the organic intermediate layer can be measured by a known method, for example, a nanoindentation method using an ultra micro hardness tester.
  • a nanoindentation method using an ultra micro hardness tester for example, a nanoindentation method using an ultra micro hardness tester.
  • the elasticity modulus of an organic intermediate layer it can measure by the method shown in an Example in the state which laminated
  • the organic intermediate layer is not particularly limited in its resin component and the like as long as the elastic modulus at 90 ° C. is 1.5 GPa or more.
  • the organic intermediate layer is preferably made of a cured product of the curable composition.
  • the organic intermediate layer is preferably one in which the curable composition is applied on the first barrier layer to form a curable coating film and the obtained curable coating film is cured.
  • the curable composition examples include a thermosetting composition and an energy ray curable composition.
  • a curable coating film is formed using a thermosetting composition
  • an organic intermediate layer can be formed by curing the curable coating film by heating, and curable using an energy ray curable composition.
  • the organic intermediate layer can be formed by curing the curable coating film by irradiation with energy rays.
  • the organic intermediate layer is preferably made of a cured product of the energy beam curable composition.
  • the curing reaction can sufficiently proceed, and an organic intermediate layer having an elastic modulus at 90 ° C. of 1.5 GPa or more can be more efficiently formed. That is, when a thermosetting composition is used, the thermosetting composition may not be heated sufficiently because the performance of the laminate may be reduced or the productivity may be reduced. May not progress. On the other hand, when using an energy beam curable composition, these problems do not arise.
  • the organic intermediate layer is formed by applying the energy ray curable composition onto the first barrier layer to form a curable coating film, and irradiating the obtained curable coating film with energy rays to cure. More preferably.
  • the energy beam curable composition by using the energy beam curable composition, a curable coating film having excellent curability can be formed regardless of the film thickness, and by using a coating method, there is a predetermined thickness. A curable coating film can be formed efficiently.
  • the ratio (X / Y1) of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer, and the thickness of the organic intermediate layer ( The ratio (X / Y2) between X) and the thickness (Y2) of the second barrier layer can be controlled efficiently.
  • the energy ray-curable composition usually contains a polyfunctional monomer or oligomer and a photopolymerization initiator, and is a composition that is cured by irradiation with energy rays.
  • the energy ray curable composition examples include an energy ray curable composition containing a polyfunctional (meth) acrylic compound [hereinafter referred to as “(meth) acrylate energy ray curable composition”].
  • (meth) acrylate represents “acrylate” or “methacrylate”.
  • an energy ray-curable composition containing a compound having an ethylenically unsaturated group and a compound having a mercapto group is used from the viewpoint of more easily forming an organic intermediate layer having a desired elastic modulus and improving adhesion with the barrier layer. Compositions are preferred.
  • the polyfunctional (meth) acrylic compound in the (meth) acrylate energy beam curable composition preferably has 3 or more (meth) acrylic groups, more preferably 3-6. When the number of (meth) acrylic groups is 3 or more, an organic intermediate layer having a desired elastic modulus is more easily obtained.
  • the molecular weight of the polyfunctional (meth) acrylate compound is preferably 350 to 5000, more preferably 400 to 4000. When the molecular weight of the polyfunctional (meth) acrylate compound is within the above range, a curing reaction can be caused more efficiently, and an organic intermediate layer having a desired elastic modulus can be more easily obtained.
  • polyfunctional (meth) acrylic compounds include polyfunctional (meth) acrylate monomers and polyfunctional (meth) acrylate resins.
  • Multifunctional (meth) acrylate monomers include trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid-modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene Trifunctional (meth) acrylate compounds such as oxide-modified trimethylolpropane tri (meth) acrylate and tris (acryloyloxyethyl) isocyanurate; Tetrafunctional (meth) acrylate compounds such as diglycerin tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate; Pentafunctional (meth) acrylate compounds such as dipentaerythritol penta (meth) acrylate and propionic acid-modified dipentaerythritol penta (meth) acrylate;
  • polyfunctional (meth) acrylate resins examples include urethane (meth) acrylate resins, polyester (meth) acrylate resins, and epoxy (meth) acrylate resins.
  • Examples of the urethane (meth) acrylate resin include those obtained by reacting a hydroxyl group-containing (meth) acrylate compound, a polyvalent isocyanate compound, and a polyol compound.
  • hydroxyl-containing (meth) acrylate compounds examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxy.
  • Hydroxyalkyl (meth) acrylates such as hexyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, dipropylene Glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, pentaerythritol tri (meth) acrylate, caprolactone-modified pentaerythritol tri (Meth) acrylate, ethylene oxide modified penta
  • polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene Aliphatic polyisocyanates such as diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) Such as cyclohexane Cyclic polyisocyanates; trimer compounds or multimeric compounds of these
  • polyol-based compound examples include polyether-based polyols such as an alkylene structure-containing polyether-based polyol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol; 3 of polyhydric alcohols such as ethylene glycol and diethylene gool, polycarboxylic acids such as malonic acid, maleic acid and fumaric acid, and cyclic esters such as propiolactone, ⁇ -methyl- ⁇ -valerolactone and ⁇ -caprolactone Polyester polyols such as reactants with different components; Reaction products of polyhydric alcohols and phosgene, polycarbonate-based polyols such as ring-opening polymers of cyclic carbonates (alkylene carbonates such as ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate); Polyolefin polyols such as those having a homopolymer or
  • Examples of commercially available urethane (meth) acrylate resins include “SHIKOH UT-4690” and “SHIKOH UT-4692” (both manufactured by Nippon Synthetic Chemical Co., Ltd.).
  • the polyester (meth) acrylate resin is obtained by esterifying the hydroxyl group of a polyester oligomer having a hydroxyl group at both ends obtained by dehydration condensation reaction of a polybasic carboxylic acid (anhydride) and a polyol with (meth) acrylic acid.
  • examples thereof include compounds obtained, or compounds obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
  • Polybasic carboxylic acids (anhydrides) used in the production of polyester (meth) acrylate resins include (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (Anhydrous) pyromellitic acid, hexahydro (anhydrous) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like.
  • polystyrene resin examples include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, dimethylol heptane, trimethylol propane, pentaerythritol, dipentaerythritol and the like.
  • Examples of the epoxy (meth) acrylate resin include compounds obtained by reacting an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolac type epoxy resin with (meth) acrylic acid and esterifying it. . These compounds can also use a commercial item as it is.
  • a polyfunctional (meth) acrylic compound As a polyfunctional (meth) acrylic compound, a polyfunctional (meth) acrylate monomer can be used alone or in combination of two or more, and a polyfunctional (meth) acrylate resin can be used alone. Alternatively, two or more types can be used in combination. In addition, one or more polyfunctional (meth) acrylate monomers and one or more polyfunctional (meth) acrylate resins may be used in combination.
  • polyfunctional (meth) acrylic compounds trifunctional (meth) acrylate compounds such as ethoxylated isocyanuric acid triacrylate, hexafunctional (meth) acrylate compounds such as dipentaerythritol hexa (meth) acrylate, urethane (Meth) acrylate resins and combinations thereof are preferred.
  • a polyfunctional (meth) acrylic compound containing a large amount of functional groups is used, the elastic modulus of the organic intermediate layer increases, and if a polyfunctional (meth) acrylic compound containing few functional groups is used, curling of the laminate is suppressed. Since there exists a tendency which becomes easy, a desired laminated body can be formed by combining these.
  • the photopolymerization initiator in the energy ray curable composition is not particularly limited, and conventionally known photopolymerization initiators can be used.
  • photopolymerization initiators can be used.
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether; acetophenone, dimethylaminoacetophenone, 2 , 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone and other acetophenone compounds; 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-
  • the content of the photopolymerization initiator is preferably in the range of 0.1 to 7% by mass, more preferably 1 to 5% by mass in the solid content of the energy ray-curable composition.
  • the energy ray curable composition may contain silica fine particles having a functional group such as a (meth) acryl group (hereinafter, sometimes referred to as “reactive silica fine particles”).
  • reactive silica fine particles silica fine particles having a functional group such as a (meth) acryl group
  • the reactive silica fine particles can be obtained by modifying the silica fine particles with a functional group-containing compound that can react with silanol groups on the surface of the silica fine particles.
  • Such functional group-containing compounds include acrylic acid, acrylic acid chloride, 2-isocyanatoethyl acrylate, glycidyl acrylate, 2,3-iminopropyl acrylate, 2-hydroxyethyl acrylate, acryloyloxypropyltrimethoxysilane, and the like. Is mentioned.
  • the content thereof is 5 to 30% by mass, preferably 10 to 20% by mass, in the solid content of the energy ray curable composition.
  • the energy beam curable composition may contain other components as long as the effects of the present invention are not hindered.
  • other components include additives such as silane coupling agents, antistatic agents, light stabilizers, antioxidants, ultraviolet absorbers, resin stabilizers, fillers, pigments, extenders, and softeners. These can be used singly or in combination of two or more.
  • the content thereof is preferably 0.01 to 5% by mass, more preferably 0.01 to 2% by mass in the solid content of the energy ray-curable composition.
  • the energy ray-curable composition can be prepared by appropriately mixing and stirring the above-described polyfunctional monomer or oligomer, photopolymerization initiator, solvent, and the like according to a conventional method.
  • Solvents include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane, n-hexane, n- And aliphatic hydrocarbon solvents such as heptane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; and the like. These solvents can be used alone or in combination of two or more.
  • an energy ray curable composition is applied on a first barrier layer to form a curable coating film.
  • the curable coating film may be dried, then heated as desired, and then irradiated with energy rays to be cured.
  • Application methods of the energy ray curable composition include bar coating method, spin coating method, dipping method, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing method, spray coating, gravure.
  • Examples include an offset method.
  • As a drying method conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually in the range of 60 to 130 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • Examples of the energy rays used when curing the curable coating film include ultraviolet rays and electron beams. From the viewpoint of excellent handleability of the apparatus, ultraviolet rays are preferable, and from the viewpoint of not requiring a photopolymerization initiator, an electron beam is preferable.
  • Ultraviolet rays can be generated by a high-pressure mercury lamp, an electrodeless lamp, a xenon lamp, an LED lamp, or the like.
  • the electron beam can be generated by an electron beam accelerator or the like.
  • the irradiation amount of the energy beam is appropriately selected according to the purpose, but in the case of ultraviolet rays, the illuminance is preferably in the range of 50 to 1000 mW / cm 2 and the light amount of 50 to 1000 mJ / cm 2 , and in the case of electron beam, it is 10 to 1000 krad. A range is preferred.
  • the irradiation time is usually several seconds to several hours, and the irradiation temperature is usually in the range of room temperature (25 ° C.) to 100 ° C.
  • the thickness of the organic intermediate layer is such that the ratio (X / Y1) of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer is 3 to 18, and the organic intermediate layer There is no particular limitation as long as the ratio (X / Y2) of the thickness (X) of the layer and the thickness (Y2) of the second barrier layer is in the range of 3 to 18.
  • the thickness (X) of the organic intermediate layer is usually 300 nm or more and 3 ⁇ m or less, preferably 500 nm or more and 2 ⁇ m or less.
  • the arithmetic mean roughness (Ra) of the surface of the organic intermediate layer is preferably 8 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is preferably less than 150 nm.
  • the surface of the organic intermediate layer refers to the surface on the side where the second barrier layer is laminated (the surface opposite to the base material or the first barrier layer).
  • the thickness (X) of the organic intermediate layer constituting the gas barrier unit, the ratio (X / Y1) of the thickness (Y1) of the first barrier layer, and the thickness (X) of the organic intermediate layer constituting the gas barrier unit The ratio (X / Y2) of the thickness (Y2) of the second barrier layer is 3 or more and 18 or less, preferably 4 or more and 17 or less, respectively.
  • the ratio (X / Y1) and the ratio (X / Y2) are each less than 3 cracks are likely to occur in the barrier layer when a thermal load is applied, and the gas barrier properties of the laminate are likely to deteriorate.
  • the values of the ratio (X / Y1) and the ratio (X / Y2) each exceed 18, curling is likely to occur in the laminate, which is not suitable as a member for an electronic device.
  • the total thickness (Y) of the first barrier layer and the second barrier layer is not particularly limited, but is usually 30 nm or more and 500 nm or less, preferably 50 nm or more and 400 nm or less. When the total thickness (Y) of the first barrier layer and the second barrier layer is within the above range, the laminate of the present invention can be efficiently formed.
  • the laminated body of this invention has the said base material and a gas-barrier unit, it may have layers other than these.
  • the layer other than the base material and the gas barrier unit include a primer layer, a conductor layer, a shock absorbing layer, an adhesive layer, and a process sheet for improving interlayer adhesion with the base material.
  • the stacking position of these layers is not particularly limited.
  • the stacking position of these layers is not particularly limited.
  • seat has a role which protects a laminated body, when a laminated body is preserve
  • the laminate of the present invention preferably has a primer layer between the substrate and the gas barrier unit in order to improve interlayer adhesion with the substrate.
  • FIGS. 1 (a) to 1 (c) Examples of the laminate of the present invention are shown in FIGS. 1 (a) to 1 (c).
  • a laminate (10A) shown in FIG. 1A is obtained by laminating a base material (1), a barrier layer (2a), an organic intermediate layer (3), and a barrier layer (2b) in this order.
  • the gas barrier unit (4) composed of the first barrier layer (2a), the organic intermediate layer (3), and the second barrier layer (2b) satisfies the above requirements
  • the laminate (10A) satisfies the above requirements. It becomes this laminated body.
  • the substrate (1), the primer layer (5), the barrier layer (2a), the organic intermediate layer (3), and the barrier layer (2b) are laminated in this order. It will be.
  • the laminated body (10B) is formed by the gas barrier unit (4) including the first barrier layer (2a), the organic intermediate layer (3), and the second barrier layer (2b) satisfying the above requirements. It becomes this laminated body.
  • the laminate (10C) shown in FIG. 1 (c) includes a substrate (1), a barrier layer (2a), an organic intermediate layer (3a), a barrier layer (2b), an organic intermediate layer (3b), and a barrier layer (2c). ) Are stacked in this order.
  • the laminate (10C) includes a gas barrier unit (4a) composed of a first barrier layer (2a), an organic intermediate layer (3a), and a second barrier layer (2b), a first barrier layer (2b), When the gas barrier unit (4b) composed of the organic intermediate layer (3b) and the second barrier layer (2c) satisfies the above requirements, the laminate of the present invention is obtained.
  • the laminate of the present invention may have a plurality of gas barrier units.
  • the manufacturing method of the laminated body of this invention is not specifically limited.
  • the barrier layer (2a) is formed on the base material (1) by the above method, and then the organic intermediate layer (3) is formed on the barrier layer (2a) by the above method.
  • it can manufacture by forming a barrier layer (2b) by the said method on an organic intermediate
  • the barrier layer (2b) may be directly formed and laminated on the organic intermediate layer (3), or a barrier layer previously formed on the process sheet may be transferred and laminated on the organic intermediate layer (3). May be.
  • the laminate of the present invention is excellent in gas barrier properties, and hardly deteriorates even when a heat load is applied.
  • the laminated body of this invention is excellent in gas-barrier property is shown, for example by measuring water vapor permeability.
  • the water vapor permeability of the laminate of the present invention is preferably 10 mg / (m 2 ⁇ day) or less, more preferably 1 mg / (m 2 ⁇ day) or less at a temperature of 40 ° C. and a relative humidity of 90%.
  • the water vapor permeability of the laminate can be measured using a known gas permeability measuring device.
  • the gas barrier property of the laminate can be controlled by the thickness and the number of layers of the barrier layer.
  • the gas barrier property of the laminate of the present invention is not easily lowered even when a thermal load is applied.
  • the water vapor permeability is measured and the rate of increase is examined.
  • the rate of increase in water vapor permeability after standing at a temperature of 60 ° C. and a relative humidity of 90% for 150 hours is preferably 300% or less, more preferably 10% or less, and 5% or less. Is more preferable.
  • a laminate in which the gas barrier property is not easily lowered even when a heat load is applied can be obtained by using a gas barrier unit that satisfies the above requirements.
  • the laminate of the present invention preferably has a small curl amount.
  • the sum of the floats at the four ends is preferably 3 cm or less, and more preferably 1 cm or less.
  • the curl amount of the laminate can be controlled by adjusting the number of functional groups of the monomer and resin used for forming the organic intermediate layer.
  • the laminate of the present invention is preferably used as a member for electronic devices such as liquid crystal displays, organic EL displays, inorganic EL displays, electronic paper, and solar cells.
  • the manufacturing method of the laminated body of the present invention includes a step of forming a first barrier layer on a substrate directly or via another layer (step I), and a first barrier.
  • a first barrier layer On the layer, an energy ray curable composition is applied under atmospheric pressure to form a curable coating film, and the resulting curable coating film is irradiated with energy rays to be cured.
  • An organic intermediate layer of 1.5 GPa or more is formed so that the ratio (X / Y1) of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer is 3 or more and 18 or less.
  • the second barrier layer has a ratio (X / Y2) of the thickness (X) of the organic intermediate layer and the thickness (Y2) of the second barrier layer.
  • a step (Step III) of forming the layer so as to be 3 or more and 18 or less.
  • step (I) as the method for forming the first barrier layer, the same method as that described in the section “Laminated body” can be used.
  • examples of the method for forming the curable coating film and the organic intermediate layer include the same methods as those described in the section “Laminate”.
  • examples of the method for forming the second barrier layer include the same methods as those described in the section “Laminate”.
  • the laminate of the present invention can be efficiently formed.
  • an energy ray curable composition is applied to form a curable coating film, and the curable coating film is irradiated with energy rays to be cured.
  • a high-modulus organic intermediate layer can be efficiently formed, and the ratio (X / Y1) of the thickness (X) of the organic intermediate layer to the thickness (Y1) of the first barrier layer and the thickness of the organic intermediate layer (X ) And the thickness (Y2) ratio (X / Y2) of the second barrier layer can be efficiently controlled.
  • the laminate production method of the present invention is excellent in productivity.
  • the composition of an energy-beam curable composition can be substantially reflected (that is, the composition ratio of a component hardly changes), and the organic intermediate layer can be formed.
  • a laminate having excellent adhesion between the barrier layer and the organic intermediate layer can be obtained efficiently.
  • the electronic device member of the present invention comprises the laminate of the present invention. Therefore, since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. Moreover, since it is excellent in durability, it is suitable as a display member such as a liquid crystal display or an EL display; a back sheet for a solar cell;
  • the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the laminate of the present invention, the electronic device has excellent gas barrier properties and durability.
  • Polyfunctional (meth) acrylic compound 1 dipentaerythritol hexaacrylate (A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd., functional group number 6, molecular weight 578)
  • Polyfunctional (meth) acrylic compound 2 urethane (meth) acrylate compound (SHIKOH UT-4690, manufactured by Nippon Synthetic Chemical Co., Ltd., functional group number 6, molecular weight 1100)
  • Polyfunctional (meth) acrylic compound 3 Ethoxylated isocyanuric acid triacrylate (A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd., functional group number 3, molecular weight 423)
  • Polyfunctional (meth) acrylic compound 4 Urethane (meth) acrylate compound (SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd., functional group number 3, molecular weight 2400)
  • Polyfunctional (meth) acrylic compound 5 reactive si
  • Example 1 On the polyethylene terephthalate (PET) film (PET25 T-100, thickness 25 ⁇ m, manufactured by Mitsubishi Plastics) as a base material, the energy ray-curable composition (A) obtained in Production Example 1 was applied by a bar coating method. The obtained coating film was heated and dried at 70 ° C. for 1 minute, and then irradiated with UV light using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1. A primer layer having a thickness of 1 ⁇ m was formed.
  • PET polyethylene terephthalate
  • a perhydropolysilazane-containing liquid (AZNL110-20, manufactured by AZ Electronic Materials) was applied by a spin coating method, and the obtained coating film was heated at 120 ° C. for 2 minutes to have a thickness of 150 nm.
  • a perhydropolysilazane layer was formed.
  • argon (Ar) is plasma ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus, and the plasma-implanted perhydropolysilazane layer (hereinafter referred to as “barrier layer (1a)”). Formed.
  • the obtained coating film is heated and dried at 70 ° C. for 1 minute.
  • UV light irradiation was performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), and an organic intermediate layer having a thickness of 1 ⁇ m ( 1a) was formed.
  • a perhydropolysilazane-containing liquid (AZNL110-20, manufactured by Electronic Materials) was applied by spin coating, and the resulting coating film was heated at 120 ° C.
  • a perhydropolysilazane layer was formed. Thereafter, argon (Ar) is plasma-implanted into the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus, and the plasma-implanted perhydropolysilazane layer (hereinafter referred to as “barrier layer (2a)”). The laminate (I) was obtained.
  • RF power source Model number “RF” 56000, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Seisakusho
  • Example 2 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (II) was obtained.
  • Example 3 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • Example 4 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (IV) was obtained.
  • Example 5 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (V) was obtained.
  • Example 6 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (VI) was obtained.
  • Example 7 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. 7 In the same manner as in Example 1, a laminate (VII) was obtained.
  • Example 8 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (VIII) was obtained.
  • Example 9 On the PET film (PET25 T-100, thickness 25 ⁇ m, manufactured by Mitsubishi Plastics) as a base material, the energy ray-curable composition (A) obtained in Production Example 1 was applied by the bar coating method, and the resulting coating was obtained. The film was heated and dried at 70 ° C. for 1 minute and then irradiated with UV light using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes) 2 times), a primer layer having a thickness of 1 ⁇ m was formed.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes
  • an aluminum oxide layer having a thickness of 150 nm (hereinafter referred to as “barrier layer (1b)”) was formed by performing reactive sputtering film formation under the following conditions using a reactive sputtering apparatus. After applying the energy ray-curable composition (A) obtained in Production Example 1 on the barrier layer (1b) by bar coating at atmospheric pressure, the obtained coating film is heated and dried at 70 ° C. for 1 minute.
  • UV light irradiation was performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), and an organic intermediate layer having a thickness of 1 ⁇ m ( 1b) was formed.
  • an aluminum oxide layer hereinafter referred to as “barrier layer (2b)” having a thickness of 150 nm is formed by performing reactive sputtering film formation under the following conditions using a reactive sputtering apparatus. did.
  • UV light irradiation was performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), and an organic intermediate layer having a thickness of 1 ⁇ m ( 2b) was formed.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice
  • a 150 nm thick aluminum oxide layer (hereinafter referred to as “barrier layer (3b)”) is formed on the organic intermediate layer (2b) by performing reactive sputtering film formation using a reactive sputtering apparatus under the following conditions. To obtain a laminate (IX).
  • the film forming conditions for forming the barrier layers (1b) to (3b) are as follows.
  • Plasma generation gas oxygen
  • Gas flow rate oxygen 100 sccm
  • Target material Aluminum Power value: 2500W Vacuum chamber internal pressure: 0.2Pa
  • Example 10 A laminate (X) was obtained in the same manner as in Example 1 except that the thickness of the organic intermediate layer (1a) to be formed was changed to 0.5 ⁇ m in Example 1.
  • Example 11 In Example 1, a laminate (XI) was obtained in the same manner as in Example 1 except that the thickness of the organic intermediate layer (1a) to be formed was changed to 2.5 ⁇ m.
  • Example 1 In Example 1, it replaced with the energy beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (XII) was obtained.
  • Example 2 In Example 1, it replaced with the energy-beam curable composition (A) at the time of forming an organic intermediate
  • FIG. In the same manner as in Example 1, a laminate (XIII) was obtained.
  • Example 3 (Comparative Example 3) In Example 1, the energy ray-curable composition (K) obtained in Production Example (XIV) was used instead of the energy ray-curable composition (A) when forming the organic intermediate layer (1a). Except for this, a laminate (XIV) was obtained in the same manner as in Example 1.
  • a reactive sputtering film is formed on the primer layer under the same conditions as in Example 9 to form an aluminum oxide layer having a thickness of 150 nm (hereinafter referred to as “barrier layer (1c)”). Formed.
  • the obtained coating film is heated and dried at 70 ° C. for 1 minute.
  • UV light irradiation was performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), and an organic intermediate layer having a thickness of 1 ⁇ m ( 1c) was formed.
  • a reactive sputtering film is formed under the same conditions as in Example 9 to form an aluminum oxide layer [barrier layer (2c)] having a thickness of 150 nm.
  • a laminate (XV) was obtained.
  • Example 5 (Comparative Example 5) In Example 1, a laminate (XVI) was obtained in the same manner as in Example 1 except that the thickness of the organic intermediate layer (1a) to be formed was changed to 0.3 ⁇ m.
  • Example 6 (Comparative Example 6) In Example 1, a laminate (XVII) was obtained in the same manner as in Example 1 except that the thickness of the organic intermediate layer (1a) to be formed was changed to 3 ⁇ m. The obtained laminate (XVII) had a large curl and was not suitable as a member for an electronic device.
  • the energy beam curable compositions (A) to (K) obtained in Production Examples 1 to 11 were applied on a PET film (PET25 T-100, thickness 25 ⁇ m, manufactured by Mitsubishi Plastics, Inc.) by a bar coating method.
  • the obtained coating film was heated and dried at 70 ° C. for 1 minute, and then irradiated with UV light using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1 .466 W, twice the number of passes) and an organic intermediate layer having a thickness of 1 ⁇ m was formed to obtain a test piece.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1 .466 W, twice the number of passes
  • the elastic modulus (GPa) on the surface of the organic intermediate layer at 25 ° C., 60 ° C., and 90 ° C. was measured by a nanoindentation method using a micro hardness tester (DUH-W201-S, manufactured by Shimadzu Corporation). ) was measured. The measurement results are shown in Tables 1 and 2.
  • Table 1 shows the following.
  • the laminates of Examples 1 to 11 are excellent in gas barrier properties. Furthermore, even when a heat load is applied, the gas barrier property is not easily lowered, and the water vapor permeability hardly changes even after the durability test, and the increase rate is suppressed to 10%.
  • the laminates of Comparative Examples 1 to 5 are excellent in gas barrier properties before the durability test, but after the durability test, the water vapor permeability is remarkably increased and the gas barrier properties are greatly reduced. Further, the laminate of Comparative Example 6 had large curls and was not suitable as an electronic device member.
  • base material 2a, 2b, 2c barrier layer 3, 3a, 3b: organic intermediate layer 4, 4a, 4b: gas barrier unit 5: primer layer 10A, 10B, 10C: laminate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の積層体は、基材(1)と、ガスバリア性ユニット(4)とを有する積層体(10A)であって、前記ガスバリア性ユニット(4)が、第1のバリア層(2a)及び第2のバリア層(2b)の2つのバリア層、これらのバリア層に挟まれた、90℃における弾性率が1.5GPa以上である有機中間層(3)とからなり、有機中間層(3)の厚み(X)と、第1のバリア層(2a)の厚み(Y1)の比(X/Y1)が、3以上、18以下で、かつ、有機中間層(3)の厚み(X)と、第2のバリア層(2b)の厚み(Y2)の比(X/Y2)が、3以上、18以下のものである積層体である。本発明によれば、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくい積層体が提供される。

Description

積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
 本発明は、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくい積層体とその製造方法、この積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスに関する。
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、電極を有する基板として、ガラス板に代えて、透明プラスチックフィルム上に、無機層(ガスバリア層)が積層されてなる、いわゆるガスバリアフィルムが用いられている。
 また、無機層と有機層を組み合わせて用いることで、ガスバリアフィルムのガスバリア性をさらに向上させる方法が提案されている。
 例えば、特許文献1、2には、基材の少なくとも片面に、特定のモノマーを用いて形成された有機層と無機層とが交互に少なくとも一層以上積層されてなる積層体が提案されている。
 特許文献3には、プラスチックフィルムと、このプラスチックフィルム上に、少なくとも1層の有機層および少なくとも2層の無機層からなるユニットとを有する積層体が提案されている。
特開2003-335880号公報 特開2003-53881号公報 特開2007-253588号公報
 特許文献1~3に記載の積層体は、優れたガスバリア性を有するものの、熱負荷が加わると無機層と有機層との膨張率の差により、ガスバリア性が大きく低下することがあり、駆動時に発熱する電子デバイスの部材としては適していなかった。
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくい積層体、この積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討した結果、2つのバリア層と有機中間層とからなる特定のガスバリア性ユニットを基材上に設けることで、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくい積層体が得られることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(10)の積層体、(11)の電子デバイス用部材、及び(12)の電子デバイス、及び(13)の積層体の製造方法が提供される。
(1)基材と、ガスバリア性ユニットとを有する積層体であって、前記ガスバリア性ユニットが、第1のバリア層及び第2のバリア層の2つのバリア層と、これら2つのバリア層に挟まれた、90℃における弾性率が1.5GPa以上である有機中間層とからなり、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下で、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下のものであることを特徴とする積層体。
(2)前記第1および第2のバリア層が、無機蒸着膜からなるもの、又は、高分子化合物を含む層にイオンを注入して得られるものである、(1)に記載の積層体。
(3)前記有機中間層が、エネルギー線硬化性組成物の硬化物からなるものである、(1)に記載の積層体。
(4)前記有機中間層が、エネルギー線硬化性組成物を、第1のバリア層上に塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して、硬化させたものである、(3)に記載の積層体。
(5)前記エネルギー線硬化性組成物が、多官能(メタ)アクリル系化合物を含有するものである、(3)に記載の積層体。
(6)前記多官能(メタ)アクリル系化合物が、(メタ)アクリル基の数が3以上の化合物である、(5)に記載の積層体。
(7)前記多官能(メタ)アクリル系化合物が、分子量が350~5000の化合物である、(5)に記載の積層体。
(8)有機中間層の厚み(X)が、300nm以上、3μm以下、第1のバリア層の厚み(Y1)が10~400nm、第2のバリア層の厚み(Y2)が10~400nm、第1のバリア層と第2のバリア層の厚みの合計(Y)が、30nm以上、500nm以下である、(1)に記載の積層体。
(9)基材、バリア層、有機中間層、バリア層がこの順に積層されてなる、(1)に記載の積層体。
(10)基材、バリア層、有機中間層、バリア層、有機中間層、バリア層がこの順に積層されてなる、(1)に記載の積層体。(11)前記(1)~(10)のいずれかに記載の積層体からなる電子デバイス用部材。
(12)前記(11)に記載の電子デバイス用部材を備える電子デバイス。
(13)請求項1~8のいずれかに記載の積層体の製造方法であって、基材と、ガスバリア性ユニットとを有する積層体の製造方法であって、基材上に、直接又はその他の層を介して、第1のバリア層を形成する工程と、第1のバリア層上に、大気圧下でエネルギー線硬化性組成物を塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して硬化させ、90℃における弾性率が1.5GPa以上の有機中間層を、この有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下になるように形成する工程と、前記有機中間層上に、第2のバリア層を、前記有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下になるように形成する工程と、を有することを特徴とする積層体の製造方法。
 本発明によれば、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくい積層体及びその製造方法、この積層体からなる電子デバイス用部材、並びにこの電子デバイス用部材を備える電子デバイスが提供される。
本発明の積層体の一例を示す模式図である。
 以下、本発明を、1)積層体、2)積層体の製造方法、並びに、3)電子デバイス用部材及び電子デバイス、に項分けして詳細に説明する。
1)積層体
 本発明の積層体は、基材と、ガスバリア性ユニットとを有する積層体であって、前記ガスバリア性ユニットが、第1のバリア層及び第2のバリア層の2つのバリア層と、これらのバリア層に挟まれた、90℃における弾性率が1.5GPa以上の有機中間層とからなり、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y)が、3以上、18以下、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下のものであることを特徴とする。
(1)基材
 本発明の積層体を構成する基材は、ガスバリア性ユニットを担持できるものであれば特に限定されない。基材としては、通常、フィルム状又はシート状のものが用いられる。
 基材の厚みは、特に限定されず、積層体の目的に合わせて決定すればよい。基材の厚みは、通常、0.5~500μm、好ましくは1~100μmである。本明細書において、「A~B」は、A以上、B以下であることを意味する。
 基材の素材は、本発明の積層体の目的に合致するものであれば特に制限されない。
 基材の素材としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等の樹脂基材が挙げられる。
 これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド又はシクロオレフィン系ポリマーがより好ましく、ポリエステル又はシクロオレフィン系ポリマーがさらに好ましい。
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
(2)ガスバリア性ユニット
 本発明の積層体を構成するガスバリア性ユニットは、第1のバリア層及び第2のバリア層の2つのバリア層と、これらのバリア層に挟まれた、90℃における弾性率が1.5GPa以上の有機中間層とからなり、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下のものである。
 本発明の積層体は、このようなガスバリア性ユニットを有することで、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくいものとなっている。
〔バリア層〕
 ガスバリア性ユニットを構成する第1のバリア層及び第2のバリア層は、いずれもガスバリア層〔酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層〕として機能する層である。本発明の積層体は、ガスバリア性ユニット中に第1のバリア層及び第2のバリア層(以下、これらの層を総称して、「バリア層」ということがある。)を有するため、極めてガスバリア性に優れるものとなる。
 第1のバリア層と第2のバリア層の厚みや種類は、同じであってもよいし、異なっていてもよい。
 なお、本発明において、有機中間層を介して配置された2つのバリア層のうち、基材に近い側に配置されるものを第1のバリア層とし、基材に遠い側に配置されるものを第2のバリア層と呼ぶものとする。
 第1のバリア層と第2のバリア層の厚みは、後述するように、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上、18以下、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下となる範囲であれば、特に限定されない。第1のバリア層の厚み(Y1)と第2のバリア層の厚み(Y2)は、それぞれ、通常、10~400nm、好ましくは50~350nmである。
 バリア層としては、例えば、無機蒸着膜からなるもの、高分子化合物を含む層(以下、「高分子層」ということがある。)にイオンを注入等の改質処理を施して得られるもの〔この場合、バリア層とは、改質された領域(イオンが注入された領域など)のみを意味するのではなく、「改質された高分子層」を意味する。〕等が挙げられる。
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。
 高分子層に改質処理を施して得られるバリア層において、用いる高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等のケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
 これらの中でも、より優れたガスバリア性を有するバリア層を形成し得ることから、高分子化合物としては、ケイ素含有高分子化合物が好ましい。ケイ素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。これらの中でも、優れたガスバリア性を有するバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。
 ポリシラザン系化合物は、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する高分子化合物である。具体的には、式(1)
Figure JPOXMLDOC01-appb-C000001
で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン系化合物の数平均分子量は、特に限定されないが、100~50,000であるのが好ましい。
 前記式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
 これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。
 前記式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
 また、本発明においては、ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、特開昭62-195024号公報、特開平2-84437号公報、特開昭63-81122号公報、特開平1-138108号公報等、特開平2-175726号公報、特開平5-238827号公報、特開平5-238827号公報、特開平6-122852号公報、特開平6-306329号公報、特開平6-299118号公報、特開平9-31333号公報、特開平5-345826号公報、特開平4-63833号公報等に記載されているものが挙げられる。
 これらの中でも、ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオンAQA注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。 
 また、ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 高分子層は、上述した高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
 高分子層中の高分子化合物の含有量は、より優れたガスバリア性を有するバリア層が得られることから、50質量%以上が好ましく、70質量%以上がより好ましい。
 高分子層の厚みは、特に制限されないが、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
 本発明においては、高分子層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
 高分子層を形成する方法は特に限定されない。例えば、高分子化合物の少なくとも一種、所望により他の成分、及び溶剤等を含有する高分子層形成用溶液を調製し、次いで、この高分子層形成用溶液を、公知の方法により塗工し、得られた塗膜を乾燥することにより、高分子層を形成することができる。
 高分子層形成用溶液に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 高分子層形成用溶液の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
 形成された塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。
 高分子層の改質処理としては、イオン注入処理、プラズマ処理、紫外線照射処理、熱処理等が挙げられる。
 イオン注入処理は、後述するように、高分子層にイオンを注入して、高分子層を改質する方法である。
 プラズマ処理は、高分子層をプラズマ中に晒して、高分子層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
 紫外線照射処理は、高分子層に紫外線を照射して高分子層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
 これらの中でも、高分子層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
 高分子層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 なかでも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するバリア層が得られることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
 イオンの注入量は、積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる。
 イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便に目的のバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。
 プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、高分子層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、高分子層の表面部に注入して行うことができる。
 イオン注入により、イオンが注入される領域の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚み、積層体の使用目的等に応じて決定すればよいが、通常、10~400nmである。
 第1のバリア層と第2のバリア層の表面の算術平均粗さ(Ra)は、それぞれ8nm以下であることが好ましい。また、第1のバリア層と第2のバリア層の表面の粗さ曲線の最大断面高さ(Rt)は、それぞれ150nm未満であることが好ましい。なお、第1のバリア層の表面とは、有機中間層および第2のバリア層が積層された側の面をいい、第2のバリア層の表面とは、第1のバリア層および有機中間層が積層された側とは反対側の面をいう。第1のバリア層の算術平均粗さおよび最大断面高さが、上記範囲内であることで、熱負荷が加わってもガスバリア性が低下しにくいものとなる。
〔有機中間層〕
 ガスバリア性ユニットを構成する有機中間層は、第1のバリア層と第2のバリア層に挟まれた、90℃における弾性率が1.5GPa以上の層である。本発明の積層体は、ガスバリア性ユニット中にこの有機中間層を有するため、熱負荷が加わってもガスバリア性が低下しにくいものとなる。
 有機中間層の90℃における弾性率は、1.5GPa以上であり、好ましくは、1.5~5.0GPa、より好ましくは2.0~4.0GPaである。90℃における弾性率が1.5GPa以上であることで、熱負荷が加わってもガスバリア性が低下しにくい積層体になる。
 有機中間層の25℃における弾性率は、3.2GPa以上が好ましく、3.2~5.0GPaがより好ましくい。25℃における弾性率がこの範囲内であることで、フレキシブル性に優れる積層体が得られ易くなる。
 有機中間層の60℃における弾性率は、2.3GPa以上が好ましく、2.3~4.5GPaがより好ましい。60℃における弾性率がこの範囲内であることで、熱負荷が加わってもガスバリア性が低下しにくい積層体が得られ易くなる。
 有機中間層の弾性率は、公知の方法、例えば、超微小硬度計を用いるナノインデンテーション法により測定することができる。なお、有機中間層の弾性率については、便宜的に、基材上に有機中間層を積層した状態で、実施例に示す方法で測定することができる。
 有機中間層は、90℃における弾性率が1.5GPa以上である限り、その樹脂成分等は特に限定されない。
 有機中間層としては、硬化性組成物の硬化物からなるものが好ましい。なかでも、有機中間層は、硬化性組成物を、第1のバリア層上に塗工して硬化性塗膜を形成し、得られた硬化性塗膜を硬化させたものが好ましい。塗工法により硬化性塗膜を形成することで、1)比較的厚みのある硬化性塗膜及び有機中間層を効率よく形成することができ、2)比較的分子量が大きい材料を用いて硬化性塗膜及び有機中間層を形成することができ、3)硬化性組成物に含まれる成分の組成比をほとんど変えることなく、硬化性塗膜及び有機中間層を形成することができ、4)バリア層との密着性に優れる有機中間層を形成することができる。
 硬化性組成物としては、熱硬化性組成物やエネルギー線硬化性組成物が挙げられる。熱硬化性組成物を用いて硬化性塗膜を形成した場合は、加熱により硬化性塗膜を硬化させることで有機中間層を形成することができ、エネルギー線硬化性組成物を用いて硬化性塗膜を形成した場合は、エネルギー線の照射により硬化性塗膜を硬化させることで有機中間層を形成することができる。
 有機中間層は、エネルギー線硬化性組成物の硬化物からなるものが好ましい。
 エネルギー線硬化性組成物を用いることで、硬化反応を十分に進行させることができ、90℃における弾性率が1.5GPa以上の有機中間層をより効率よく形成することができる。
 すなわち、熱硬化性組成物を用いる場合、積層体の性能低下や、生産性の低下の原因になるおそれがあるため、熱硬化性組成物を十分に加熱できないことがあり、硬化反応が十分に進行しないおそれがある。一方、エネルギー線硬化性組成物を用いる場合、これらの問題が生じない。
 さらに、エネルギー線硬化性組成物を硬化させる場合、高温に加熱する必要がないため低沸点成分の揮発が抑えられ、硬化性塗膜に含まれる成分の組成比をほとんど変えることなく、有機中間層を形成することができる。
 また、有機中間層は、エネルギー線硬化性組成物を、第1のバリア層上に塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して、硬化させたものがより好ましい。
 上記のように、エネルギー線硬化性組成物を用いることで、膜厚に関わらず、硬化性に優れる硬化性塗膜を形成することができ、塗工法を利用することで、所定の厚みのある硬化性塗膜を効率よく形成することができる。このため、高弾性率の有機中間層の膜厚の調節や、有機中間層の厚み(X)と第1のバリア層の厚み(Y1)の比(X/Y1)及び有機中間層の厚み(X)と第2のバリア層の厚み(Y2)の比(X/Y2)の制御を効率よく行うことができる。
 エネルギー線硬化性組成物は、通常、多官能モノマーまたはオリゴマーと、光重合開始剤を含有し、エネルギー線を照射することにより硬化する組成物である。
 エネルギー線硬化性組成物としては、例えば、多官能(メタ)アクリル系化合物を含有するエネルギー線硬化性組成物〔以下、「(メタ)アクリレート系エネルギー線硬化性組成物」ということがある。なお、本明細書において、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」を表す。〕や、エチレン性不飽和基を有する化合物とメルカプト基を有する化合物とを含有するエネルギー線硬化性組成物が挙げられる。
 これらのエネルギー線硬化性組成物のなかでも、目的とする弾性率を有する有機中間層をより簡便に形成し、バリア層との密着性を高めるという観点から、(メタ)アクリレート系エネルギー線硬化性組成物が好ましい。
 (メタ)アクリレート系エネルギー線硬化性組成物中の多官能(メタ)アクリル系化合物は、(メタ)アクリル基の数が3以上のものが好ましく、3~6のものがより好ましい。(メタ)アクリル基の数が3以上であることで、所望の弾性率の有機中間層がより得られ易くなる。
 多官能(メタ)アクリレート系化合物の分子量は、好ましくは、350~5000、より好ましくは400~4000である。多官能(メタ)アクリレート系化合物の分子量が上記範囲内であることで、より効率よく硬化反応を起こすことができ、所望の弾性率の有機中間層がより得られ易くなる。 多官能(メタ)アクリル系化合物としては、多官能(メタ)アクリレート系モノマーや、多官能(メタ)アクリレート系樹脂等が挙げられる。
 多官能(メタ)アクリレート系モノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロイロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート化合物;
ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート化合物;
ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能(メタ)アクリレート化合物;
ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート化合物;等が挙げられる。
 多官能(メタ)アクリレート系樹脂としては、ウレタン(メタ)アクリレート系樹脂、ポリエステル(メタ)アクリレート系樹脂、エポキシ(メタ)アクリレート系樹脂等が挙げられる。
 ウレタン(メタ)アクリレート系樹脂は、水酸基含有(メタ)アクリレート系化合物、多価イソシアネート系化合物、及びポリオール系化合物を反応させて得られるもの等が挙げられる。
 水酸基含有(メタ)アクリレート系化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 多価イソシアネート系化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、変性ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族系ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族系ポリイソシアネート;水添化ジフェニルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等の脂環式系ポリイソシアネート;これらポリイソシアネートの3量体化合物又は多量体化合物;アロファネート型ポリイソシアネート;ビュレット型ポリイソシアネート;水分散型ポリイソシアネート(例えば、日本ポリウレタン工業(株)製の「アクアネート100」、「アクアネート110」、「アクアネート200」、「アクアネート210」等);等が挙げられる。
 ポリオール系化合物としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のアルキレン構造含有ポリエーテル系ポリオール等のポリエーテル系ポリオール;
エチレングリコール、ジエチレングール等の多価アルコール、マロン酸、マレイン酸、フマル酸等の多価カルボン酸、及び、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等の環状エステルの3種類の成分による反応物等のポリエステルポリオール;
 上述の多価アルコールとホスゲンとの反応物、環状炭酸エステル(エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネート等のアルキレンカーボネート等)の開環重合物等のポリカーボネート系ポリオール;
 飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマー又はコポリマーを有し、その分子末端に水酸基を有するもの等のポリオレフィン系ポリオール;
 炭化水素骨格としてブタジエンの共重合体を有し、その分子末端に水酸基を有するもの等のポリブタジエン系ポリオール;
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルを重合体又は共重合体の分子内にヒドロキシル基を少なくとも2つ有するもの等の(メタ)アクリル系ポリオール;
 ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等のポリシロキサン系ポリオール;等が挙げられる。
 ウレタン(メタ)アクリレート系樹脂の市販品としては、「SHIKOH UT-4690」、「SHIKOH UT-4692」(いずれも日本合成化学社製)等が挙げられる。
 ポリエステル(メタ)アクリレート系樹脂としては、多塩基性カルボン酸(無水物)及びポリオールの脱水縮合反応により得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより得られる化合物、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得られる化合物等が挙げられる。
 ポリエステル(メタ)アクリレート系樹脂の製造に用いる多塩基性カルボン酸(無水物)としては(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸等が挙げられる。また、ポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジメチロールヘプタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
 エポキシ(メタ)アクリレート系樹脂としては、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応させてエステル化することにより得られる化合物等が挙げられる。
 これらの化合物は、市販品をそのまま使用することもできる。
 多官能(メタ)アクリル系化合物としては、多官能(メタ)アクリレート系モノマーを1種単独で、あるいは2種以上を組み合わせて用いることができ、多官能(メタ)アクリレート系樹脂を1種単独で、あるいは2種以上を組み合わせて用いることができる。また、多官能(メタ)アクリレート系モノマーの1種以上と、多官能(メタ)アクリレート系樹脂の1種以上を組み合わせて用いることもできる。
 これらの中でも、多官能(メタ)アクリル系化合物としては、エトキシ化イソシアヌル酸トリアクリレート等の3官能(メタ)アクリレート化合物、ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート化合物、ウレタン(メタ)アクリレート系樹脂、及びこれらの組合せが好ましい。
 特に、官能基を多く含む多官能(メタ)アクリル系化合物を用いると有機中間層の弾性率が大きくなり、官能基が少ない多官能(メタ)アクリル系化合物を用いると積層体のカールを抑制し易くなる傾向があるため、これらの組み合わせることで所望の積層体を形成することができる。
 エネルギー線硬化性組成物中の光重合開始剤としては、特に制限されず、従来公知のものが使用できる。例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物;アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン等のアセトフェノン化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のα-ヒドロキシアルキルフェノン化合物;ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン等のベンゾフェノン化合物;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン等のアントラキノン化合物;2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン化合物;ベンジルジメチルケタール、アセトフェノンジメチルケタール等のジメチルケタール化合物;p-ジメチルアミノ安息香酸エステル;オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン];等が挙げられる。
 光重合開始剤の含有量は、エネルギー線硬化性組成物の固形分中、好ましくは0.1~7質量%、より好ましくは1~5質量%の範囲である。
 エネルギー線硬化性組成物は、(メタ)アクリル基等の官能基を有するシリカ微粒子(以下、「反応性シリカ微粒子」ということがある。)を含有してもよい。
 反応性シリカ微粒子を含有するエネルギー線硬化性組成物を用いることで、有機中間層の弾性率をより高めることができ、熱負荷が加わってもガスバリア性が低下しにくい積層体が得られる。
 反応性シリカ微粒子は、シリカ微粒子表面のシラノール基と反応し得る、官能基含有化合物を用いて、シリカ微粒子を修飾することにより得ることができる。
 かかる官能基含有化合物としては、アクリル酸、アクリル酸クロリド、アクリル酸2-イソシアナートエチル、アクリル酸グリシジル、アクリル酸2,3-イミノプロピル、アクリル酸2-ヒドロキシエチル、アクリロイルオキシプロピルトリメトキシシラン等が挙げられる。
 反応性シリカ微粒子を含有する場合、その含有量は、エネルギー線硬化性組成物の固形分中、5~30質量%、好ましくは10~20質量%である。
 エネルギー線硬化性組成物は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
 その他の成分としては、シランカップリング剤、帯電防止剤、光安定剤、酸化防止剤、紫外線吸収剤、樹脂安定剤、充填剤、顔料、増量剤、軟化剤等の添加剤が挙げられる。
 これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 その他の成分を含有する場合、それぞれの含有量は、エネルギー線硬化性組成物の固形分中、好ましくは0.01~5質量%、より好ましくは0.01~2質量%である。
 エネルギー線硬化性組成物は、上述の多官能モノマーまたはオリゴマー、光重合開始剤、溶媒等を、常法に従って適宜混合・攪拌することにより調製することができる。
 溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 エネルギー線硬化性組成物を用いて有機中間層を形成する方法としては、例えば、エネルギー線硬化性組成物を、第1のバリア層上に塗工して硬化性塗膜を形成し、得られた硬化性塗膜を乾燥し、次いで、所望により加熱した後、エネルギー線を照射して、硬化させる方法が挙げられる。
 エネルギー線硬化性組成物の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。
 硬化性塗膜を硬化させる際に用いるエネルギー線としては、紫外線や電子線等が挙げられる。
 装置の取扱性に優れるという観点からは、紫外線が好ましく、光重合開始剤を必要としないという観点からは、電子線が好ましい。
 紫外線は、高圧水銀ランプ、無電極ランプ、キセノンランプ、LEDランプなどで発生させることができる。一方、電子線は電子線加速器などで発生させることができる。
 エネルギー線の照射量は、目的に合わせて適宜選定されるが、紫外線の場合は照度50~1000mW/cm、光量50~1000mJ/cmの範囲が好ましく、電子線の場合は10~1000kradの範囲が好ましい。
 照射時間は、通常数秒~数時間であり、照射温度は、通常、室温(25℃)~100℃の範囲である。
 有機中間層の厚みは、後述するように、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下となる範囲であれば、特に限定されない。有機中間層の厚み(X)は、通常、300nm以上、3μm以下、好ましくは、500nm以上、2μm以下である。
 有機中間層の表面の算術平均粗さ(Ra)は、8nm以下、粗さ曲線の最大断面高さ(Rt)は、150nm未満であることが好ましい。なお、有機中間層の表面とは、第2のバリア層が積層された側の面(基材や、第1のバリア層とは反対側の面)をいう。有機中間層の算術平均粗さ(Ra)および最大断面高さ(Rt)が、上記範囲内であることで、第2のバリア層にピンホール等の欠陥が生じにくく、熱負荷が加わったときに第2のバリア層にクラックが生じ難く、積層体のガスバリア性が低下しにくいものとなる。
〔ガスバリア性ユニットの層構成〕
 ガスバリア性ユニットを構成する有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)および、ガスバリア性ユニットを構成する有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)は、それぞれ、3以上、18以下、好ましくは4以上、17以下である。比(X/Y1)および比(X/Y2)の値が、それぞれ3未満のときは、熱負荷が加わったときにバリア層にクラックが生じ易く、積層体のガスバリア性が低下し易くなる。一方、比(X/Y1)および比(X/Y2)の値が、それぞれ18を超えると、積層体にカールが発生し易くなり、電子デバイス用部材としては適さないものとなる。
 第1のバリア層と第2のバリア層の厚みの合計(Y)は特に限定されないが、通常、30nm以上、500nm以下、好ましくは50nm以上、400nm以下である。
 第1のバリア層と第2のバリア層の厚みの合計(Y)が、上記範囲内であることで、本願発明の積層体を効率よく形成することができる。
(3)積層体の層構成
 本発明の積層体は、前記基材と、ガスバリア性ユニットとを有するものであるが、これら以外の層を有するものであってもよい。
 基材、ガスバリア性ユニット以外の層としては、基材との層間密着性を向上させるためのプライマー層、導電体層、衝撃吸収層、粘着剤層、工程シート等が挙げられる。これらの層の積層位置は、特に限定されない。これらの層の積層位置は、特に限定されない。なお、工程シートは、積層体を保存、運搬等する際に、積層体を保護する役割を有し、積層体が使用される際には剥離されるものである。本発明の積層体は、基材との層間密着性を向上させるために、基材とガスバリア性ユニットの間にプライマー層を有していることが好ましい。
 本発明の積層体の例を図1(a)~(c)に示す。
 図1(a)に示す積層体(10A)は、基材(1)、バリア層(2a)、有機中間層(3)、バリア層(2b)がこの順に積層されてなるものである。
 積層体(10A)は、第1のバリア層(2a)、有機中間層(3)、第2のバリア層(2b)からなるガスバリア性ユニット(4)が上記の要件を満たすことで、本発明の積層体となる。
 図1(b)に示す積層体(10B)は、基材(1)、プライマー層(5)、バリア層(2a)、有機中間層(3)、バリア層(2b)がこの順に積層されてなるものである。
 積層体(10B)は、第1のバリア層(2a)、有機中間層(3)、第2のバリア層(2b)からなるガスバリア性ユニット(4)が上記の要件を満たすことで、本発明の積層体となる。
 図1(c)に示す積層体(10C)は、基材(1)、バリア層(2a)、有機中間層(3a)、バリア層(2b)、有機中間層(3b)、バリア層(2c)がこの順に積層されてなるものである。
 積層体(10C)は、第1のバリア層(2a)、有機中間層(3a)、第2のバリア層(2b)からなるガスバリア性ユニット(4a)と、第1のバリア層(2b)、有機中間層(3b)、第2のバリア層(2c)からなるガスバリア性ユニット(4b)の両方が上記の要件を満たすことで、本発明の積層体となる。
 積層体(10c)のように、本発明の積層体は、複数のガスバリア性ユニットを有するものであってもよい。
 本発明の積層体の製造方法は特に限定されない。
 例えば、積層体(10A)は、基材(1)上に、前記方法によりバリア層(2a)を形成し、次いで、バリア層(2a)上に前記方法により有機中間層(3)を形成し、さらに、有機中間層(3)上に前記方法によりバリア層(2b)を形成することにより、製造することができる。
 バリア層(2b)は、有機中間層(3)上に直接形成して積層させてもよいし、工程シート上に予め形成したバリア層を、有機中間層(3)上に転写して積層させてもよい。
 具体的には、後述する本発明の積層体の製造方法により、本発明の積層体を製造することが好ましい。
 本発明の積層体は、ガスバリア性に優れ、かつ、熱負荷が加わってもガスバリア性が低下しにくいものである。
 本発明の積層体がガスバリア性に優れることは、例えば水蒸気透過度を測定することにより示される。本発明の積層体の水蒸気透過度は、温度40℃、相対湿度90%において、好ましくは10mg/(m・day)以下、より好ましくは1mg/(m・day)以下である。
 積層体の水蒸気透過度は、公知のガス透過率測定装置を使用して測定することができる。
 積層体のガスバリア性は、バリア層の厚みや層数等により制御することができる。
 本発明の積層体が、熱負荷が加わってもガスバリア性が低下しにくいことは、例えば、積層体を高温高湿度下に長時間静置した後に水蒸気透過度を測定し、その増加率を調べることにより示される。例えば、温度60℃、相対湿度90%で150時間静置した後の水蒸気透過度の増加率は、300%以下であるのが好ましく、10%以下であるのがより好ましく、5%以下であるのがさらに好ましい。
 熱負荷が加わってもガスバリア性が低下しにくい積層体は、上記の要件を満たすガスバリア性ユニットを用いることで得ることができる。
 本発明の積層体は、カール量が小さいものが好ましい。
 例えば、一辺が10cmの正方形の積層体において、四方の端部の浮きの合計が、3cm以下が好ましく、1cm以下がより好ましい。
 積層体のカール量は、有機中間層の形成に用いるモノマーや樹脂の官能基数を調節することにより制御することができる。
 これらの特性を有するため、本発明の積層体は、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等の電子デバイスの部材として好ましく用いられる。
2)積層体の製造方法
 本発明の積層体の製造方法は、基材上に、直接又はその他の層を介して、第1のバリア層を形成する工程(工程I)と、第1のバリア層上に、大気圧下でエネルギー線硬化性組成物を塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して硬化させ、90℃における弾性率が1.5GPa以上の有機中間層を、この有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下になるように形成する工程(工程II)と、前記有機中間層上に、第2のバリア層を、前記有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下になるように形成する工程(工程III)と、を有することを特徴とする。
 工程(I)において、第1のバリア層を形成する方法としては、「積層体」の項で示したものと同様のものが挙げられる。
 工程(II)において、硬化性塗膜及び有機中間層を形成する方法としては、「積層体」の項で示したものと同様のものが挙げられる。
 工程(III)において、第2のバリア層を形成する方法としては、「積層体」の項で示したものと同様のものが挙げられる。
 本発明の積層体の製造方法によれば、本発明の積層体を効率よく形成することができる。特に、工程(II)において、エネルギー線硬化性組成物を塗工して硬化性塗膜を形成し、この硬化性塗膜にエネルギー線を照射して硬化させるため、膜厚が大きく、かつ、高弾性率の有機中間層を効率よく形成することができ、有機中間層の厚み(X)と第1のバリア層の厚み(Y1)の比(X/Y1)及び有機中間層の厚み(X)と第2のバリア層の厚み(Y2)の比(X/Y2)の制御を効率よく行うことができる。
 また、工程(II)においては、大気圧下で有機中間層を形成するため、本発明の積層体の製造方法は生産性に優れるものである。そして、本発明の積層体の製造方法によれば、エネルギー線硬化性組成物の組成がほぼ反映された(すなわち、成分の組成比がほとんど変わらない)有機中間層を形成することができ、さらに、バリア層と有機中間層との密着性に優れる積層体を効率よく得ることができる。
3)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明の積層体からなることを特徴とする。従って、本発明の電子デバイス用部材は、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。また、耐久性に優れるので、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池用バックシート;等として好適である。
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明の積層体からなる電子デバイス用部材を備えているので、優れたガスバリア性と耐久性を有する。
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
 用いた多官能(メタ)アクリル系化合物の詳細を以下に示す。
多官能(メタ)アクリル系化合物1:ジペンタエリスリトールヘキサアクリレート(A-DPH、新中村化学社製、官能基数6、分子量578)
多官能(メタ)アクリル系化合物2:ウレタン(メタ)アクリレート系化合物(SHIKOH UT-4690、日本合成化学社製、官能基数6、分子量1100)
多官能(メタ)アクリル系化合物3:エトキシ化イソシアヌル酸トリアクリレート(A-9300、新中村化学社製、官能基数3、分子量423)
多官能(メタ)アクリル系化合物4:ウレタン(メタ)アクリレート系化合物(SHIKOH UT-4692、日本合成化学社製、官能基数3、分子量2400)
多官能(メタ)アクリル系化合物5:反応性シリカ微粒子(固形分30%、表面がアクリロイル基で修飾されたシリカ微粒子、日産化学社製、MEK-AC-2101)
多官能(メタ)アクリル系化合物6:ウレタン(メタ)アクリレート系化合物(SHIKOH UT-4695、日本合成化学社製、官能基数2、分子量18000)
多官能(メタ)アクリル系化合物7:ウレタン(メタ)アクリレート系化合物(SHIKOH UT-4697、日本合成化学社製、官能基数2、分子量14000)
多官能(メタ)アクリル系化合物8:トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学社製、官能基数2、分子量304)
〔製造例1〕エネルギー線硬化性組成物(A)の調製
 多官能(メタ)アクリル系化合物1 20部をメチルイソブチルケトン100部に溶解させた後、光重合性開始剤(Irgacure127、BASF社製)を、エネルギー線硬化性組成物(A)の固形分に対して3%となるように添加して、エネルギー線硬化性組成物(A)を調製した。
〔製造例2〕エネルギー線硬化性組成物(B)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物2 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(B)を調製した。
〔製造例3〕エネルギー線硬化性組成物(C)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物1と多官能(メタ)アクリル系化合物2との混合物(質量比1:1)20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(C)を調製した。
〔製造例4〕エネルギー線硬化性組成物(D)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物3 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(D)を調製した。
〔製造例5〕エネルギー線硬化性組成物(E)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物2と多官能(メタ)アクリル系化合物3との混合物(質量比1:1)20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(E)を調製した。
〔製造例6〕エネルギー線硬化性組成物(F)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物1と多官能(メタ)アクリル系化合物4の混合物(質量比1:1)20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(F)を調製した。
〔製造例7〕エネルギー線硬化性組成物(G)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物4 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(G)を調製した。
〔製造例8〕エネルギー線硬化性組成物(H)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物1と多官能(メタ)アクリル系化合物5の混合物(質量比3:1)20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(H)を作製した。
〔製造例9〕エネルギー線硬化性組成物(I)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物6 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(I)を調製した。
〔製造例10〕エネルギー線硬化性組成物(J)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物7 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(J)を調製した。
〔製造例11〕エネルギー線硬化性組成物(K)の調製
 製造例1において、多官能(メタ)アクリル系化合物1 20部の代わりに、多官能(メタ)アクリル系化合物8 20部を用いたこと以外は、製造例1と同様にしてエネルギー線硬化性組成物(K)を調製した。
(実施例1)
 基材としてのポリエチレンテレフタレート(PET)フィルム(PET25 T-100、厚み25μm、三菱樹脂社製)上に、製造例1で得たエネルギー線硬化性組成物(A)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmのプライマー層を形成した。
 得られたプライマー層上に、ペルヒドロポリシラザン含有液(AZNL110-20、AZエレクトロニックマテリアルズ社製)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱して、厚み150nmのペルヒドロポリシラザン層を形成した。その後、ペルヒドロポリシラザン層の表面に、プラズマイオン注入装置を用いて、アルゴン(Ar)をプラズマイオン注入し、プラズマイオン注入したペルヒドロポリシラザン層(以下、「バリア層(1a)」という。)を形成した。
 バリア層(1a)上に、製造例1で得たエネルギー線硬化性組成物(A)をバーコート法により大気圧下で塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの有機中間層(1a)を形成した。
 有機中間層(1a)上に、ペルヒドロポリシラザン含有液(AZNL110-20、エレクトロニックマテリアルズ社製)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱して、厚み150nmのペルヒドロポリシラザン層を形成した。その後、ペルヒドロポリシラザン層の表面に、プラズマイオン注入装置を用いて、アルゴン(Ar)をプラズマイオン注入し、プラズマイオン注入したペルヒドロポリシラザン層(以下、「バリア層(2a)」という。)を形成し、積層体(I)を得た。
 なお、バリア層(1a)及びバリア層(2a)を形成する際のプラズマイオン注入は、下記の装置を用い、下記の条件で行った。
〈プラズマイオン注入装置〉
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
〈プラズマイオン注入の条件〉
 ・プラズマ生成ガス:Ar
 ・ガス流量:100sccm
 ・Duty比:0.5%
 ・繰り返し周波数:1000Hz
 ・印加電圧:-10kV
 ・RF電源:周波 13.56MHz、印加電力 1000W
 ・チャンバー内圧:0.2Pa
 ・パルス幅:5μsec
 ・処理時間(イオン注入時間):5分間
 ・搬送速度:0.2m/分
(実施例2)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例2で得たエネルギー線硬化性組成物(B)を用いたこと以外は、実施例1と同様にして積層体(II)を得た。
(実施例3)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例3で得たエネルギー線硬化性組成物(C)を用いたこと以外は、実施例1と同様にして積層体(III)を得た。
(実施例4)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例4で得たエネルギー線硬化性組成物(D)を用いたこと以外は、実施例1と同様にして積層体(IV)を得た。
(実施例5)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例5で得たエネルギー線硬化性組成物(E)を用いたこと以外は、実施例1と同様にして積層体(V)を得た。
(実施例6)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例6で得たエネルギー線硬化性組成物(F)を用いたこと以外は、実施例1と同様にして積層体(VI)を得た。
(実施例7)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例7で得たエネルギー線硬化性組成物(G)を用いたこと以外は、実施例1と同様にして積層体(VII)を得た。
(実施例8)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例8で得たエネルギー線硬化性組成物(H)を用いたこと以外は、実施例1と同様にして積層体(VIII)を得た。
(実施例9)
 基材としてのPETフィルム(PET25 T-100、厚み25μm、三菱樹脂社製)上に、製造例1で得たエネルギー線硬化性組成物(A)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmのプライマー層を形成した。
 プライマー層上に、反応性スパッタ装置を用いて下記条件で反応性スパッタ製膜を行うことで、厚み150nmの酸化アルミニウム層(以下、「バリア層(1b)」という。)を形成した。
 バリア層(1b)上に、製造例1で得たエネルギー線硬化性組成物(A)を大気圧下でバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの有機中間層(1b)を形成した。
 有機中間層(1b)上に、反応性スパッタ装置を用いて下記条件で反応性スパッタ製膜を行うことで、厚み150nmの酸化アルミニウム層(以下、「バリア層(2b)」という。)を形成した。
 バリア層(2b)上に、製造例1で得たエネルギー線硬化性組成物(A)を大気圧下でバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの有機中間層(2b)を形成した。
 有機中間層(2b)上に、反応性スパッタ装置を用いて下記条件で反応性スパッタ製膜を行うことで、厚み150nmの酸化アルミニウム層(以下、「バリア層(3b)」という。)を形成し、積層体(IX)を得た。
 バリア層(1b)~(3b)を形成する際の製膜条件は以下のとおりである。
 プラズマ生成ガス:酸素
 ガス流量:酸素 100sccm
 ターゲット材料:アルミニウム
 電力値:2500W
 真空槽内圧:0.2Pa
(実施例10)
 実施例1において、形成する有機中間層(1a)の厚みを0.5μmに変えたこと以外は、実施例1と同様にして積層体(X)を得た。
(実施例11)
 実施例1において、形成する有機中間層(1a)の厚みを2.5μmに変えたこと以外は、実施例1と同様にして積層体(XI)を得た。
(比較例1)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例9で得たエネルギー線硬化性組成物(I)を用いたこと以外は、実施例1と同様にして積層体(XII)を得た。
(比較例2)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例10で得たエネルギー線硬化性組成物(J)を用いたこと以外は、実施例1と同様にして積層体(XIII)を得た。
(比較例3)
 実施例1において、有機中間層(1a)を形成する際のエネルギー線硬化性組成物(A)に代えて、製造例(XIV)で得たエネルギー線硬化性組成物(K)を用いたこと以外は、実施例1と同様にして積層体(XIV)を得た。
(比較例4)
 基材としてのPETフィルム(PET25 T-100、厚み25μm、三菱樹脂社製)上に、製造例1で得たエネルギー線硬化性組成物(A)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmのプライマー層を形成した。
 プライマー層上に、反応性スパッタ装置を用いて、実施例9と同様の条件で反応性スパッタ製膜を行うことで、厚み150nmの酸化アルミニウム層(以下、「バリア層(1c)」という。)を形成した。
 バリア層(1c)上に、製造例9で得たエネルギー線硬化性組成物(I)を大気圧下でバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの有機中間層(1c)を形成した。
 有機中間層(1c)上に、反応性スパッタ装置を用いて実施例9と同様の条件で反応性スパッタ製膜を行うことで、厚み150nmの酸化アルミニウム層〔バリア層(2c)〕を形成し、積層体(XV)を得た。
(比較例5)
 実施例1において、形成する有機中間層(1a)の厚みを0.3μmに変えたこと以外は、実施例1と同様にして積層体(XVI)を得た。
(比較例6)
 実施例1において、形成する有機中間層(1a)の厚みを3μmに変えたこと以外は、実施例1と同様にして積層体(XVII)を得た。得られた積層体(XVII)は、カールが大きく、電子デバイス用部材としては適さないものだった。
 実施例1~11及び比較例1~6で得られた積層体(I)~(XVII)について、下記の測定を行った。
(有機中間層の弾性率)
 PETフィルム(PET25 T-100、厚み25μm、三菱樹脂社製)上に、製造例1~11で得たエネルギー線硬化性組成物(A)~(K)を、それぞれ、バーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの有機中間層を形成し、試験片を得た。
 上記試験片について、超微小硬度計(DUH-W201-S、島津製作所社製)を用い、ナノインデンテーション法により、25℃、60℃、90℃における有機中間層の表面における弾性率(GPa)を測定した。測定結果を第1表及び第2表に示す。
(水蒸気透過度の測定)
 水蒸気透過度測定装置(PERMATRAN、mocon社製)を用い、耐久試験(温度60℃、相対湿度90%にて150時間放置した。)前後の水蒸気透過度(g/m2/day)を測定した。試験前後の水蒸気透過度の増加率を下記式により算出し、増加率が10%以下の場合を耐久性が優れる(○)、10%超の場合を耐久性に劣る(×)と評価した。結果を第1表及び第2表に示す。
 なお、比較例6の得られた積層体は、下記のカール評価が(×)となり、電子デバイス用部材としては適さないものだったため、水蒸気透過度の測定は行わなかった。
Figure JPOXMLDOC01-appb-M000002
(カールの評価)
 一辺が10cmの正方形のサンプルを作成し、四方の端部の浮きの合計が、3cm以上のものをカール(×)、3cm以下のものを(○)と評価した。評価結果を第1表及び第2表に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 第1表より以下のことが分かる。
 実施例1~11の積層体は、ガスバリア性に優れている。さらに、熱負荷が加わってもガスバリア性が低下しにくく、耐久試験後も水蒸気透過度は、ほとんど変化しておらず、増加率が10%に抑えられている。
 一方、比較例1~5の積層体は、耐久試験前はガスバリア性に優れているが、耐久試験を経て、水蒸気透過度が著しく増加し、ガスバリア性が大きく低下している。
 また、比較例6の積層体は、カールが大きく電子デバイス用部材としては適さないものだった。
1:基材
2a、2b、2c:バリア層
3、3a、3b:有機中間層
4、4a、4b:ガスバリア性ユニット
5:プライマー層
10A、10B、10C:積層体

Claims (13)

  1.  基材と、ガスバリア性ユニットとを有する積層体であって、
     前記ガスバリア性ユニットが、第1のバリア層及び第2のバリア層の2つのバリア層と、これらのバリア層に挟まれた、90℃における弾性率が1.5GPa以上である有機中間層とからなり、有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下で、かつ、有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下のものであることを特徴とする積層体。
  2.  前記第1および第2のバリア層が、無機蒸着膜からなるもの、又は、高分子化合物を含む層にイオンを注入して得られるものである、請求項1に記載の積層体。
  3.  前記有機中間層が、エネルギー線硬化性組成物の硬化物からなるものである、請求項1に記載の積層体。
  4.  前記有機中間層が、エネルギー線硬化性組成物を、第1のバリア層上に塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して、硬化させたものである、請求項1に記載の積層体。
  5.  前記エネルギー線硬化性組成物が、多官能(メタ)アクリル系化合物を含有するものである、請求項3に記載の積層体。
  6.  前記多官能(メタ)アクリル系化合物が、(メタ)アクリル基の数が3以上の化合物である、請求項5に記載の積層体。
  7.  前記多官能(メタ)アクリル系化合物が、分子量が350~5000の化合物である、請求項5または6に記載の積層体。
  8.  有機中間層の厚み(X)が、300nm以上、3μm以下、第1のバリア層の厚み(Y1)が10~400nm、第2のバリア層の厚み(Y2)が10~400nm、第1のバリア層と第2のバリア層の厚みの合計(Y)が、30nm以上、500nm以下である、請求項1に記載の積層体。
  9.  基材、バリア層、有機中間層、バリア層がこの順に積層されてなる、請求項1に記載の積層体。
  10.  基材、バリア層、有機中間層、バリア層、有機中間層、バリア層がこの順に積層されてなる、請求項1に記載の積層体。
  11.  請求項1~10のいずれかに記載の積層体からなる電子デバイス用部材。
  12.  請求項11に記載の電子デバイス用部材を備える電子デバイス。
  13.  請求項1~8のいずれかに記載の積層体の製造方法であって、
     基材と、ガスバリア性ユニットとを有する積層体の製造方法であって、
     基材上に、直接又はその他の層を介して、第1のバリア層を形成する工程と、
     第1のバリア層上に、大気圧下でエネルギー線硬化性組成物を塗工して硬化性塗膜を形成し、得られた硬化性塗膜にエネルギー線を照射して硬化させ、90℃における弾性率が1.5GPa以上の有機中間層を、この有機中間層の厚み(X)と、第1のバリア層の厚み(Y1)の比(X/Y1)が、3以上18以下になるように形成する工程と、
     前記有機中間層上に、第2のバリア層を、前記有機中間層の厚み(X)と、第2のバリア層の厚み(Y2)の比(X/Y2)が、3以上18以下になるように形成する工程と、を有することを特徴とする積層体の製造方法。
PCT/JP2014/059327 2013-03-29 2014-03-28 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス WO2014157686A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157031045A KR102267089B1 (ko) 2013-03-29 2014-03-28 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스
EP14775227.3A EP2982506B1 (en) 2013-03-29 2014-03-28 Laminate, method for producing same, member for electronic device, and electronic device
JP2015508801A JP6402093B2 (ja) 2013-03-29 2014-03-28 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
US14/780,805 US20160053130A1 (en) 2013-03-29 2014-03-28 Laminate, method for producing same, member for electronic device, and electronic device
CN201480019234.9A CN105102216B (zh) 2013-03-29 2014-03-28 层叠体及其制造方法、电子设备用部件、以及电子设备
US16/412,733 US20190264061A1 (en) 2013-03-29 2019-05-15 Laminate, method for producing same, member for electronic device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074067 2013-03-29
JP2013-074067 2013-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/780,805 A-371-Of-International US20160053130A1 (en) 2013-03-29 2014-03-28 Laminate, method for producing same, member for electronic device, and electronic device
US16/412,733 Division US20190264061A1 (en) 2013-03-29 2019-05-15 Laminate, method for producing same, member for electronic device, and electronic device

Publications (1)

Publication Number Publication Date
WO2014157686A1 true WO2014157686A1 (ja) 2014-10-02

Family

ID=51624642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059327 WO2014157686A1 (ja) 2013-03-29 2014-03-28 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス

Country Status (7)

Country Link
US (2) US20160053130A1 (ja)
EP (1) EP2982506B1 (ja)
JP (1) JP6402093B2 (ja)
KR (1) KR102267089B1 (ja)
CN (1) CN105102216B (ja)
TW (1) TWI624363B (ja)
WO (1) WO2014157686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187718B1 (ja) * 2017-05-09 2017-08-30 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
WO2018181191A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 機能性フィルム及びデバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730055B (zh) * 2016-03-02 2021-06-11 日商琳得科股份有限公司 積層膜
EP3450159B1 (en) 2016-04-26 2021-11-24 Dow Toray Co., Ltd. Flexible laminate and flexible display provided with same
US10746225B2 (en) * 2018-03-30 2020-08-18 Minebea Mitsumi Inc. Photocurable resin composition and sliding member
KR102294027B1 (ko) * 2018-10-26 2021-08-27 주식회사 엘지화학 배리어 필름
KR102101783B1 (ko) * 2019-07-09 2020-04-17 주식회사 팀즈 이온빔 주입법을 이용한 대전방지 처리방법

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195024A (ja) 1986-02-12 1987-08-27 Toa Nenryo Kogyo Kk ポリシロキサザンおよびその製法
JPS6381122A (ja) 1986-09-24 1988-04-12 Toa Nenryo Kogyo Kk 新規ポリチタノシラザン及びその製造方法
JPH01138108A (ja) 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 無機シラザン高重合体、その製造方法及びその用途
JPH0284437A (ja) 1988-03-24 1990-03-26 Tonen Corp ポリボロシラザン及びその製造方法
JPH02175726A (ja) 1988-12-26 1990-07-09 Sekiyu Sangyo Katsuseika Center 共重合シラザンおよびその製造法
JPH0463833A (ja) 1990-06-30 1992-02-28 Tonen Corp 改質ポリシラザン及びその製造方法
JPH05238827A (ja) 1992-02-26 1993-09-17 Tonen Corp コーティング用組成物及びコーティング方法
JPH05345826A (ja) 1991-12-04 1993-12-27 Tonen Corp 改質ポリシラザン及びその製造方法
JPH06122852A (ja) 1992-10-09 1994-05-06 Tonen Corp コーティング用組成物及びコーティング方法
JPH06299118A (ja) 1993-04-20 1994-10-25 Tonen Corp コーティング用組成物及びコーティング方法
JPH06306329A (ja) 1993-02-24 1994-11-01 Tonen Corp コーティング用組成物及びコーティング方法
JPH0931333A (ja) 1995-07-13 1997-02-04 Tonen Corp シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜
JP2003053881A (ja) 2001-08-10 2003-02-26 Sumitomo Bakelite Co Ltd 水蒸気バリア性プラスチックフィルム
JP2003335880A (ja) 2001-12-26 2003-11-28 Sumitomo Bakelite Co Ltd 有機層の形成方法及びガスバリア性プラスチックフィルム
JP2007253588A (ja) 2006-03-27 2007-10-04 Fujifilm Corp バリア性フィルム基板、および、有機電界発光素子
JP2009511290A (ja) * 2005-10-05 2009-03-19 ダウ・コーニング・コーポレイション 被覆基板及びその製造方法
JP2010173134A (ja) * 2009-01-28 2010-08-12 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2012106421A (ja) 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2013226757A (ja) 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181974A (ja) * 2001-12-21 2003-07-03 Toppan Printing Co Ltd 透明な高水蒸気バリア積層体
JP4716773B2 (ja) * 2005-04-06 2011-07-06 富士フイルム株式会社 ガスバリアフィルムとそれを用いた有機デバイス
JP4717497B2 (ja) * 2005-04-20 2011-07-06 富士フイルム株式会社 ガスバリアフィルム
JP4624894B2 (ja) * 2005-09-16 2011-02-02 大日本印刷株式会社 ガスバリア性構造体およびその製造方法
JP4717674B2 (ja) * 2006-03-27 2011-07-06 富士フイルム株式会社 ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
TWI457235B (zh) * 2010-09-21 2014-10-21 Lintec Corp A gas barrier film, a manufacturing method thereof, an electronic device element, and an electronic device
JP5631822B2 (ja) * 2011-08-24 2014-11-26 富士フイルム株式会社 バリア性積層体およびガスバリアフィルム

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195024A (ja) 1986-02-12 1987-08-27 Toa Nenryo Kogyo Kk ポリシロキサザンおよびその製法
JPS6381122A (ja) 1986-09-24 1988-04-12 Toa Nenryo Kogyo Kk 新規ポリチタノシラザン及びその製造方法
JPH01138108A (ja) 1987-08-13 1989-05-31 Sekiyu Sangyo Katsuseika Center 無機シラザン高重合体、その製造方法及びその用途
JPH0284437A (ja) 1988-03-24 1990-03-26 Tonen Corp ポリボロシラザン及びその製造方法
JPH02175726A (ja) 1988-12-26 1990-07-09 Sekiyu Sangyo Katsuseika Center 共重合シラザンおよびその製造法
JPH0463833A (ja) 1990-06-30 1992-02-28 Tonen Corp 改質ポリシラザン及びその製造方法
JPH05345826A (ja) 1991-12-04 1993-12-27 Tonen Corp 改質ポリシラザン及びその製造方法
JPH05238827A (ja) 1992-02-26 1993-09-17 Tonen Corp コーティング用組成物及びコーティング方法
JPH06122852A (ja) 1992-10-09 1994-05-06 Tonen Corp コーティング用組成物及びコーティング方法
JPH06306329A (ja) 1993-02-24 1994-11-01 Tonen Corp コーティング用組成物及びコーティング方法
JPH06299118A (ja) 1993-04-20 1994-10-25 Tonen Corp コーティング用組成物及びコーティング方法
JPH0931333A (ja) 1995-07-13 1997-02-04 Tonen Corp シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜
JP2003053881A (ja) 2001-08-10 2003-02-26 Sumitomo Bakelite Co Ltd 水蒸気バリア性プラスチックフィルム
JP2003335880A (ja) 2001-12-26 2003-11-28 Sumitomo Bakelite Co Ltd 有機層の形成方法及びガスバリア性プラスチックフィルム
JP2009511290A (ja) * 2005-10-05 2009-03-19 ダウ・コーニング・コーポレイション 被覆基板及びその製造方法
JP2007253588A (ja) 2006-03-27 2007-10-04 Fujifilm Corp バリア性フィルム基板、および、有機電界発光素子
JP2010173134A (ja) * 2009-01-28 2010-08-12 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2012106421A (ja) 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
WO2012115175A1 (ja) * 2011-02-25 2012-08-30 富士フイルム株式会社 バリア性積層体およびバリア性積層体の製造方法
JP2013226757A (ja) 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982506A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181191A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 機能性フィルム及びデバイス
KR20190135471A (ko) * 2017-03-30 2019-12-06 린텍 가부시키가이샤 기능성 필름 및 디바이스
JPWO2018181191A1 (ja) * 2017-03-30 2020-02-06 リンテック株式会社 機能性フィルム及びデバイス
JP7227124B2 (ja) 2017-03-30 2023-02-21 リンテック株式会社 機能性フィルム及びデバイス
KR102582784B1 (ko) 2017-03-30 2023-09-25 린텍 가부시키가이샤 기능성 필름 및 디바이스
JP6187718B1 (ja) * 2017-05-09 2017-08-30 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品
JP2018189188A (ja) * 2017-05-09 2018-11-29 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品

Also Published As

Publication number Publication date
TW201501927A (zh) 2015-01-16
EP2982506A1 (en) 2016-02-10
CN105102216B (zh) 2017-09-29
KR102267089B1 (ko) 2021-06-18
EP2982506B1 (en) 2022-05-11
JPWO2014157686A1 (ja) 2017-02-16
KR20150135520A (ko) 2015-12-02
CN105102216A (zh) 2015-11-25
US20160053130A1 (en) 2016-02-25
TWI624363B (zh) 2018-05-21
US20190264061A1 (en) 2019-08-29
JP6402093B2 (ja) 2018-10-10
EP2982506A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6402093B2 (ja) 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
KR102059326B1 (ko) 가스 배리어성 적층체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
KR102267093B1 (ko) 가스 배리어성 적층체, 전자 디바이스용 부재 및 전자 디바이스
JP6666836B2 (ja) 長尺のガスバリア性積層体およびその製造方法
US20150367602A1 (en) Gas barrier film laminate, production method therefor, and electronic device
WO2011093286A1 (ja) ガスバリアフィルムとその製造方法、およびそれを用いたデバイス
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
KR20140048960A (ko) 가스 배리어 필름 및 디바이스
JPWO2017170252A1 (ja) 長尺のガスバリア性積層体
JP6830476B2 (ja) ガスバリアフィルム及びガスバリアフィルムの製造方法
WO2015152076A1 (ja) 長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
TW201841773A (zh) 功能性薄膜及裝置
JP6544832B2 (ja) ガスバリア性積層体、電子デバイス用部材および電子デバイス
JPWO2017170547A1 (ja) ガスバリア性積層体、電子デバイス用部材及び電子デバイス
US20200236804A1 (en) Laminate, member for electronic devices, and electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019234.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014775227

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157031045

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780805

Country of ref document: US