WO2014126174A1 - 単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート - Google Patents
単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート Download PDFInfo
- Publication number
- WO2014126174A1 WO2014126174A1 PCT/JP2014/053379 JP2014053379W WO2014126174A1 WO 2014126174 A1 WO2014126174 A1 WO 2014126174A1 JP 2014053379 W JP2014053379 W JP 2014053379W WO 2014126174 A1 WO2014126174 A1 WO 2014126174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- single crystal
- grinding plate
- crystal sic
- sic substrate
- grinding
- Prior art date
Links
- 238000000227 grinding Methods 0.000 title claims abstract description 129
- 239000000758 substrate Substances 0.000 title claims abstract description 75
- 238000003672 processing method Methods 0.000 title claims abstract description 18
- 238000012545 processing Methods 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000006061 abrasive grain Substances 0.000 claims abstract description 47
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims description 86
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000002826 coolant Substances 0.000 claims description 12
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 8
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- 239000004745 nonwoven fabric Substances 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 239000010953 base metal Substances 0.000 abstract description 11
- 229910010271 silicon carbide Inorganic materials 0.000 description 73
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 72
- 230000009471 action Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000010432 diamond Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- LSMIOFMZNVEEBR-ICLSSMQGSA-N scilliroside Chemical compound C=1([C@@H]2[C@@]3(C)CC[C@H]4[C@@]([C@]3(CC2)O)(O)C[C@H](C2=C[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)CC[C@@]24C)OC(=O)C)C=CC(=O)OC=1 LSMIOFMZNVEEBR-ICLSSMQGSA-N 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30625—With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
- B24B37/245—Pads with fixed abrasives
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02013—Grinding, lapping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02024—Mirror polishing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
Definitions
- the present invention relates to a surface processing method of a single crystal SiC substrate, a manufacturing method thereof, and a grinding plate for surface processing of a single crystal SiC substrate.
- SiC silicon carbide
- Si silicon
- Si silicon
- the single crystal SiC substrate is formed, for example, by cutting a single crystal SiC ingot manufactured by a sublimation method and then mirror-treating both surfaces (see, for example, Patent Document 1).
- the cut substrate has warpage, waviness, and processing distortion.
- the substrate is mirror-finished by CMP (chemical mechanical polishing).
- CMP chemical mechanical polishing
- Non-Patent Document 2 discloses a method of dry polishing on a polishing disk in which chromium oxide abrasive grains having an average particle size of 0.5 ⁇ m are formed of a resin such as acrylonitrile or phenol, and a processing result of single crystal SiC.
- Non-Patent Document 2 requires a processing load that is not realistic in a mass production process of 0.34 MPa on a small single crystal sample, and practical application of the current SiC power semiconductor targeting a 6-inch diameter is required. It could not be applied to efforts toward Further, the polishing disk disclosed here is a so-called resin bond grindstone, and it has not been possible to avoid the generation of minute scratches. Therefore, based on the method disclosed in Non-Patent Document 2, at least a processing load is required to develop a mirror surface processing method that can be used for mass production of a single crystal SiC substrate having a mirror surface that can be used for a device at present. It was necessary to solve the problem and the problem of small scratches.
- Non-Patent Document 2 discloses that a mechanochemical action in which the sample surface is oxidized using chromium oxide as a catalyst and is removed by abrasive grains as a processing mechanism is expected to be the main mechanism. .
- the present inventor has reached the following mechanism. That is, abrasive grains made of a material having a band gap are given energy by mechanical sliding with the workpiece, and electrons on the surface of the abrasive grains are excited to generate electron-hole pairs.
- active species such as superoxide anion, hydroxyl radical, or atomic oxygen are generated, and the sample surface is oxidized.
- the oxidation product is assumed to be SiO 2 ⁇ nH 2 O and CO or CO 2 , and the SiO 2 ⁇ nH 2 O is removed by the abrasive grains to thereby remove the single crystal SiC substrate.
- this action is defined as tribocatalysis.
- the abrasive grains having the tribocatalytic action by using the abrasive grains having the tribocatalytic action, the surface of the single crystal SiC substrate generated during grinding is reduced based on the mechanical removal action using diamond abrasive grains or the like. .
- the present invention can be applied to a mass production process by using an existing grinding apparatus, and a surface processing method of a single crystal SiC substrate capable of suppressing the generation of minute scratches, its manufacturing method, and surface processing of a single crystal SiC substrate
- An object is to provide a grinding plate.
- the present invention provides the following means.
- a grinding plate in which a soft pad and a hard pad are attached in order on a base metal having a flat surface, and at least one metal having a band gap softer than a single crystal SiC on the surface of the hard pad A single crystal characterized in that a grinding plate on which abrasive grains made of oxide are fixed is attached to a grinding device, an oxidation product is produced by the grinding plate, and the surface is ground while removing the oxidation product.
- SiC substrate surface processing method The surface processing method for a single crystal SiC substrate according to (1), wherein pure water is used as a coolant.
- a grinding plate in which a soft pad and a hard pad are affixed in order on a base metal having a flat surface, and at least one metal having a band gap softer than a single crystal SiC on the surface of the hard pad A process comprising: mounting a grinding plate on which abrasive grains made of oxide are fixed to a grinding device; generating an oxidation product by the grinding plate; and grinding the surface while removing the oxidation product.
- a method for manufacturing a single crystal SiC substrate A grinding plate in which a soft pad and a hard pad are sequentially stuck on a base metal having a flat surface, and at least one metal having a band gap softer than a single crystal SiC on the surface of the hard pad.
- a grinding plate for surface processing of a single crystal SiC substrate wherein abrasive grains made of oxide are fixed.
- the metal oxide is at least one selected from cerium oxide, titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, zinc oxide, and tin oxide. Grinding plate for surface processing of single crystal SiC substrate.
- single crystal SiC substrate is used in common for any substrate before surface grinding, during surface grinding, and after surface grinding.
- a surface processing method of a single crystal SiC substrate that can be applied to a mass production process by using an existing grinding apparatus, can suppress generation of minute scratches, and can quickly obtain a mirror surface,
- the manufacturing method and a grinding plate for surface processing of a single crystal SiC substrate can be provided.
- FIG. 1 is a schematic view showing an example of a grinding plate for surface processing of a single crystal SiC substrate according to an embodiment of the present invention, wherein (a) is a cross-sectional view and (b) is a plan view.
- a grinding plate 10 shown in FIG. 1 has a base 1 having a flat surface, and a soft pad 2 and a hard pad 3 attached in this order, and the surface of the hard pad 3 is softer than single crystal SiC and has a band gap.
- Abrasive grains (not shown) made of at least one metal oxide are fixed.
- the soft pad 2 and the hard pad 3 are affixed via the adhesive sheet 4, and the hard pad 3 is comprised by eight sheets (3a) segmented in the shape of a right triangle.
- the base 1 has a screw hole 1a for fixing to the grinding device with a screw.
- the pressure-sensitive adhesive sheet 4 is used for preventing water absorption of the soft pad and stabilizing the sticking of the hard pad when a coolant such as pure water is used.
- the hard pad 3 may be directly attached to the soft pad 2 without using it.
- the soft pad 2 and the adhesive sheet 4 have a hole in a portion corresponding to the screw hole 1a in order to cover the screw hole 1a to prevent chips and coolant from entering. You may use in the mode which is not.
- the abrasive having a band gap is energized by mechanical sliding with the workpiece during surface grinding of the single crystal SiC substrate, whereby electrons on the surface of the abrasive are excited to generate electron-hole pairs, Active species such as superoxide anion, hydroxyl radical, or atomic oxygen are generated, and the sample surface is oxidized. Then, the SiO 2 ⁇ nH 2 O generated by the oxidation of the sample surface is removed by the abrasive grains, thereby causing a tribocatalytic action that the surface of the single crystal SiC substrate can be processed.
- a material having a band gap that causes tribocatalysis all metal oxides are softer than single crystal SiC. Further, most metal oxides are materials having a band gap, and powders having a tribocatalytic action for abrasive grains, pigments, photocatalysts and other uses are commercially available, and therefore can be preferably used.
- cerium oxide titanium oxide, silicon oxide, aluminum oxide, iron oxide, zirconium oxide, zinc oxide, and tin oxide in view of its tribocatalytic action due to its industrial availability and band gap.
- At least one metal oxide powder is more preferable.
- the metal oxide powder that can be most preferably used is cerium oxide in view of industrial availability and the ability to exert tribocatalysis because it is a semiconductor material having a band gap.
- the abrasive grains need to have the ability to remove SiO 2 ⁇ nH 2 O, it is necessary to have a certain primary particle diameter.
- the primary particle size is large, the specific surface area is small, and the tribocatalytic action as well as the photocatalytic action cannot be effectively exhibited, so there is an appropriate range. That is, it is advantageous that the mechanical removal ability of the abrasive grains is large, that is, the specific surface area is small.
- the surface since the surface is involved in tribocatalysis as in general catalysis, the effect is higher when the specific surface area is larger. Therefore, an area in which both are balanced is an appropriate range.
- the specific surface area of the abrasive grains is preferably 0.1 m 2 / g to 300 m 2 / g. This is because if it is smaller than 0.1 m 2 / g, the tribocatalytic action may not be exhibited efficiently, and if it is larger than 300 m 2 / g, SiO 2 ⁇ nH 2 O may not be efficiently removed.
- the specific surface area of the abrasive grains is more preferably 0.5 m 2 / g to 200 m 2 / g. This is because by setting it to 0.5 m 2 / g or more, the tribocatalytic action can be exhibited more efficiently, and by setting it to 200 m 2 / g or less, SiO 2 ⁇ nH 2 O can be more efficiently removed.
- the specific surface area of the abrasive grains is more preferably 1 m 2 / g to 100 m 2 / g. This is because the tribocatalytic action can be more efficiently exhibited by setting it to 1 m 2 / g or more, and SiO 2 ⁇ nH 2 O can be more efficiently removed by setting it to 100 m 2 / g or less.
- this grinding plate is provided with a base metal, it can be mounted on the grinding device for use in the grinding device.
- a well-known thing can be used as a base metal, For example, what the material is aluminum alloys, such as a silmine, can be used.
- the base metal has a flat surface facing the workpiece, and the grinding plate has a structure in which a soft pad and a hard pad are sequentially stuck on the flat surface.
- the soft pad can be non-woven or suede.
- the hard pad can be of polyurethane foam type.
- Abrasive grains made of at least one metal oxide, which is softer than single crystal SiC and has a band gap, are fixed to the outermost surface that is used for processing the grinding plate.
- the abrasive grains can be fixed to the surface of the hard pad using a binder or an adhesive.
- the abrasive grains can be fixed by sticking a commercially available fixed abrasive film to a hard pad.
- a surface processing method for a single crystal SiC substrate according to an embodiment of the present invention is a grinding plate in which a soft pad and a hard pad are sequentially attached to a base metal having a flat surface, and the single crystal is formed on the surface of the hard pad.
- a grinding plate to which abrasive grains made of at least one metal oxide having a band gap that is softer than SiC and having a band gap is fixed is mounted on a grinding apparatus, and an oxidation product is generated by the grinding plate, and the oxidation product is The surface is ground while being removed.
- FIG. 2 is a schematic diagram showing the structure of a portion for grinding a single crystal substrate as an example of a grinding apparatus for mounting the grinding plate of the present invention.
- the grinding plate 10 shown in FIG. 1 is attached to a drive unit 11, and the drive unit is rotated by a motor belt.
- Single crystal SiC substrate 12 is fixed to work piece table 13 by vacuum suction by a vacuum chuck device (not shown). While the substrate holding part 14 is rotated together with the workpiece table 13, the substrate is ground in the direction of the grinding plate.
- the tribocatalytic action of the grinding plate on the single crystal SiC can be manifested and an oxidation product can be produced.
- the rotation speed of the grinding plate is preferably 300 rpm to 3000 rpm. This is because the mechanical energy given to the abrasive grains is too small if it is less than 300 rpm and the tribocatalytic action may not appear, and if it exceeds 3000 rpm, problems such as heat generation and apparatus vibration may not be negligible. . Since there has been no example in which a grinding plate having a tribo catalytic action is applied to a grinding apparatus, it has not been clear whether or not the tribo catalytic action appears within the specifications of an existing grinding apparatus. As a result of intensive studies, it was found that a general grinding plate rotation speed can be applied.
- the rotation speed of the grinding plate is more preferably 500 rpm to 2000 rpm.
- 500 rpm or more it becomes possible to generate more sufficient mechanical energy for the tribocatalysis, and by setting it to 2000 rpm or less, problems such as heat generation and apparatus vibration can be avoided more reliably. Because.
- the rotation direction of the workpiece table can be the forward direction (the same direction) as the grinding plate rotation direction.
- the work table rotation speed is preferably 80% to 120% of the grinding plate rotation speed. This is because if it is less than 80% or more than 120%, the removal amount of the processed surface may be non-uniform.
- the rotation direction of the workpiece table can be opposite to the rotation direction of the grinding plate.
- the rotation speed of the workpiece table is preferably 30 rpm to 300 rpm after segmenting the hard pad into an appropriate shape.
- the rotation center of the workpiece table is disposed so as to contact the outer peripheral portion of the grinding plate, and the rotation direction of the workpiece table is opposite to the rotation direction of the grinding plate. Therefore, if there are abrasive grains on the entire surface of the grinding plate, the frequency of contact of the abrasive grains with the central part of the workpiece increases, and only the central part is scraped. Appropriate segmentation to prevent this is effective. Moreover, if it is less than 30 rpm or more than 300 rpm, it becomes an operation outside the specification of a normal grinding apparatus, and the removal amount of the processed surface may be non-uniform.
- the coolant may not be used, and when pure water is used as the coolant, the supply rate of pure water is preferably 100 ml / min or less. This is because if it exceeds 100 ml / min, the energy given to the abrasive grains by mechanical sliding becomes too small and the tribocatalytic action may not be sufficiently exhibited. On the other hand, if the supply rate of pure water is too high, the effect as a lubricant is increased and the frictional resistance is reduced. As a result, the energy given to the abrasive grains becomes small, and the generation of electron-hole pairs may not be sufficient.
- a manufacturing method of a single crystal SiC substrate according to an embodiment of the present invention is a grinding plate in which a soft pad and a hard pad are sequentially attached on a base metal having a flat surface, and the single crystal SiC is formed on the surface of the hard pad.
- a grinding plate to which abrasive grains made of at least one metal oxide that is softer and has a band gap is fixed is mounted on a grinding apparatus, and an oxidation product is generated by the grinding plate, and the oxidation product is removed. However, it has the process of grinding the surface. Since the method of the present invention utilizes oxidation on the SiC surface, it is related to the height of the oxidation barrier, and can be preferably applied to the C plane of the (0001) plane of the SiC substrate.
- This grinding plate substrate was trued using a conditioner CMP-M100A manufactured by Asahi Diamond Industry. Grinding for surface processing of single crystal SiC substrate with tribocatalytic action by attaching Trizact film cerium oxide made by Sumitomo 3M Co., Ltd., segmented into right triangle shape of 30x40x50mm on the surface of Truing IC1000 segment A plate was made.
- the prepared grinding plate is mounted on a grinding apparatus MHG-2000.
- C-plane single crystal ingot
- Asahi Diamond Industry Vitrified Bond Diamond Wheel (No. 4000) A crystal SiC substrate) was fixed to a workpiece table using a vacuum chuck, and surface processing on the C-plane side was performed.
- the work table rotation direction is opposite to the grinding plate rotation direction, the work table rotation speed is 40 rpm, the grinding plate rotation speed is 1500 rpm, and the pure water supply speed is 0 ml / min, that is, dry processing. Went.
- the workpiece table was manually fed gradually so that the value of the grinding wheel rotation motor current was within the range of 2.4 to 2.8 A.
- the processing time was 3 minutes.
- the removal amount of the single crystal ingot was measured at 9 points in the plane using a Mitutoyo height meter for the ingot height before and after processing, and as a result of calculation, the average value was 3.8 ⁇ m.
- the processing speed was a high value of 1.3 ⁇ m / min.
- the difference between the maximum value and the minimum value of the ingot height after processing was 1.4 ⁇ m, and it was processed uniformly.
- FIG. 3 shows the result of dark field observation using an Olympus optical microscope for the ingot surface before processing
- FIG. 4 for the ingot surface after processing.
- the single crystal SiC substrate surface processing method, the manufacturing method thereof, and the single crystal SiC substrate surface processing grinding plate of the present invention can be used for the production of a single crystal SiC substrate, and the substrate after the device is formed. Can be used in the process of thinning the substrate by processing the back surface of the substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
本願は、2013年2月13日に、日本に出願された特願2013-026081号に基づき優先権を主張し、その内容をここに援用する。
従って、非特許文献2に開示された方法に基づいて、現在、デバイスに使用可能な鏡面を有する単結晶SiC基板の量産に用いることができる鏡面加工方法を開発するためには少なくとも、加工荷重の問題と微小なキズの発生の問題を解決する必要があった。
本発明では、このトライボ触媒作用を有する砥粒を用いることによって、ダイヤモンド砥粒等を用いた機械的な除去作用に基づいて研削時に発生する単結晶SiC基板表面のキズの低減を図ることとした。
本発明においては、大口径の単結晶SiC基板の加工を容易に量産に適用するため、大口径の単結晶SiC基板を研削装置に装着して用いることができることが必要である。研削装置を使用して砥粒のトライボ触媒作用を利用した加工を行うことは、これまで全く行われてこなかったので、トライボ触媒作用が効果的に発現する研削条件を新たに探索した。その結果、砥粒の種類、粒径の選定、クーラントの種類、供給速度、研削プレート回転速度等において、適切な範囲があることを見出した。
そこで鋭意検討の結果、これまで研削装置には全く適用されることがなかったCMP用のパッドを研削プレートの基体として利用することに想到した。
従って、本発明では、研削時に単結晶SiC加工面につくキズを低減するために、砥粒としては単結晶SiCよりも軟らかいものを用いることとした。
(1)平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行うことを特徴とする単結晶SiC基板の表面加工方法。
(2)クーラントとして純水を用いることを特徴とする(1)に記載の単結晶SiC基板の表面加工方法。
(3)クーラントを用いないか、又は、クーラントとして用いる純水の供給速度が0ml/min超~100ml/min以下であることを特徴とする(1)に記載の単結晶SiC基板の表面加工方法。
(4)被加工物テーブルの回転方向が研削プレート回転方向と逆方向であり、硬質パッドはセグメント化されたものであり、被加工物テーブルの回転速度が30rpm~300rpmであることを特徴とする(1)~(3)のいずれか一項に記載の単結晶SiC基板の表面加工方法。
(5)平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行う工程を有することを特徴とする単結晶SiC基板の製造方法。
(6)平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定されていることを特徴とする単結晶SiC基板の表面加工用研削プレート。
(7)前記金属酸化物が酸化セリウム、酸化チタン、酸化珪素、酸化アルミニウム、酸化鉄、酸化ジルコニウム、酸化亜鉛、酸化錫から選ばれる少なくとも1種以上であることを特徴とする(6)に記載の単結晶SiC基板の表面加工用研削プレート。
(8)前記金属酸化物が少なくとも酸化セリウムを含むことを特徴とする(7)に記載の単結晶SiC基板の表面加工用研削プレート。
(9)前記砥粒の比表面積が0.1m2/g~300m2/gであることを特徴とする(6)~(8)のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
(10)前記軟質パッドが、不織布系またはスエード系であることを特徴とする(6)~(9)のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
(11)前記硬質パッドが、発泡ポリウレタン系であることを特徴とする(6)~(10)のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
(12)前記砥粒を結合剤及び/又は接着剤で固定されたものであることを特徴とする(6)~(11)のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
(13)前記砥粒の固定は、固定砥粒フィルムを硬質パッドに貼付することによってなされていることを特徴とする(6)~(12)のいずれか一項の単結晶SiC基板の表面加工用研削プレート。
図1は、本発明一実施形態に係る単結晶SiC基板の表面加工用研削プレートの一例を示す模式図であって、(a)は断面図、(b)は平面図である。
図1に示す研削プレート10は、平坦面を有する台金1と、その上に軟質パッド2、硬質パッド3が順に貼付され、硬質パッド3の表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒(図示略)が固定されている。
この例では、軟質パッド2と硬質パッド3とは粘着シート4を介して貼付され、硬質パッド3は直角三角形状にセグメント化された8枚(3a)によって構成されている。また、台金1は、研削装置にネジで固定するためのネジ穴1aを有する。この場合、純水等のクーラントを用いるときの軟質パッドの吸水防止と硬質パッド貼付の安定化のため、粘着シート4を使用している。しかし、使用せずに硬質パッド3を軟質パッド2に直接貼付してもよい。
また、この例に示すように、軟質パッド2と粘着シート4は、ネジ穴1aに切粉やクーラントの侵入を防ぐための蓋をする目的で、ネジ穴1aに相当する部分に穴を有さない態様で用いてもよい。
トライボ触媒作用を生じさせるバンドギャップを有する材料として特に、金属酸化物は、いずれも単結晶SiCよりも軟らかい材料である。また、ほとんどの金属酸化物はバンドギャップを持つ材料であり、砥粒や顔料、光触媒他の用途でトライボ触媒作用を持つ粉末が工業的に入手できるので好ましく使用できる。
台金としては公知のものを用いることができ、例えば、その材料がシルミン等のアルミニウム合金であるものを用いることができる。
また、砥粒の固定は、市販の固定砥粒フィルムを硬質パッドに貼付することによって行うことができる。
本発明の一実施形態に係る単結晶SiC基板の表面加工方法は、平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行うものである。
図2は、本発明の研削プレートを装着する研削装置の一例の単結晶基板を研削する部分の構造を示す模式図である。図1に示した研削プレート10は 駆動部11に装着され、駆動部はモータベルトによって回転する。単結晶SiC基板12は、真空チャック装置(不図示)によって真空吸着により被加工物テーブル13に固定される。基板保持部14が被加工物テーブル13と共に回転しながら、研削プレート方向に送られることで基板の研削が行われる。
硬質パッドをセグメント化すなわち、適当なサイズに分離して貼付することにより、被加工物テーブルと逆方向に回転する研削プレート上の砥粒と被加工物加工面内の接触頻度を制御することができ、例えば被加工物中央部だけが多く削れてしまうといった不均一な加工を防ぐことができる。通常の研削装置では被加工物テーブルの回転中心は研削プレートの外周部に当たるように配置され、被加工物テーブルの回転方向は研削プレート回転方向と逆方向である。そのため、研削プレート全面に砥粒があると、被加工物中央部への砥粒の接触頻度が高くなり、中央部だけが削れてしまう。これを防ぐための適切なセグメント化は有効である。
また、30rpm未満又は300rpm超とすると、通常の研削装置の仕様外の運転となり、加工面の除去量が不均一になるおそれがあるためである。
本発明の一実施形態に係る単結晶SiC基板の製造方法は、平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行う工程を有するものである。本発明の方法は、SiC表面での酸化を利用するのでその酸化障壁の高さに関係し、SiC基板の(0001)面のC面において、好ましく適用できる。
秀和工業株式会社製研削装置MHG-2000に装着できるように準備されたM12のネジ穴をもつ外径150mmのアルミニウム合金製の台金の被加工物と相対する面を平坦に加工し、その面上にニッタ・ハース株式会社製CMP用パッドSUBA600(軟質パッド)を貼付する。次いで、そのSUBA600の上に、アズワン株式会社製FEP粘着シートフィルムを介して30×40×50mmの直角三角形状にセグメント化したニッタ・ハース株式会製CMP用パッドIC1000(硬質パッド)を8枚貼付して研削プレート基体を作製した。この研削プレート基体を旭ダイヤモンド工業製コンディショナーCMP-M100Aを使用してツルーイングを行った。ツルーイングされたIC1000セグメント表面に、やはり30×40×50mmの直角三角形状にセグメント化した住友スリーエム株式会社製トライザクトフィルム酸化セリウムを貼付してトライボ触媒作用をもつ単結晶SiC基板の表面加工用研削プレートを作製した。
被加工物テーブルの回転方向は研削プレート回転方向と逆方向とし、被加工物テーブルの回転速度は40rpm、研削プレートの回転速度は1500rpmとし、純水の供給速度は0ml/min、すなわち乾式で加工を行った。被加工物テーブルは手動でじわじわ送ることで行い、砥石回転用モーター電流の値が2.4~2.8Aの範囲内になるようにした。加工時間は3分間であった。
加工前のインゴットで無数に観察された4000番ダイヤモンド砥粒による研削条痕は完全に消失しており、結晶欠陥や微小異物に起因する輝点のみが観察され、加工歪の無い鏡面が達成できていた。
第1の実施例で作製した単結晶SiC鏡面加工用研削プレートを使用して、純水供給量を10ml/min、50ml/min、100ml/minとした以外は第1の実施例と同一の研削条件で加工を行った。
加工速度はそれぞれ1.0μm/min、0.6μm/min、0.2μm/minであり、第1の実施例の場合と同様に、光学顕微鏡暗視野観察で研削条痕が完全に消失していることが確認された。
第1の実施例で作製した単結晶SiC鏡面加工用研削プレートを使用して、純水供給量を150ml/minとした以外は第1の実施例と同一の研削条件で加工を行ったところ、加工速度はほぼゼロであり、光学顕微鏡暗視野観察で研削条痕がほとんど消えていないことが確認された。純水供給量が150ml/minでは、機械的摺動によって砥粒に与えられるエネルギーが小さくなりすぎてトライボ触媒作用が現れなくなったと考えられる。
日本金剛砥石製レジンボンド酸化セリウム砥石を研削プレートとして使用し、第1の実施例と同様の加工を行ったところ、平均値としての加工速度は0.7μm/minであった。しかし、インゴット中央部が多く削れるという不均一な削れ方であり、光学顕微鏡暗視野観察では、微小なキズが観察された。本発明と異なり、軟質パッドと硬質パッドの組合せの構成を持たないため、表面基準の加工ができず、さらに微小なキズの発生を抑えることができなかったためと考えられる。
2 軟質パッド
3 硬質パッド
10 単結晶SiC基板の表面加工用研削プレート
Claims (13)
- 平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行うことを特徴とする単結晶SiC基板の表面加工方法。
- クーラントとして純水を用いることを特徴とする請求項1に記載の単結晶SiC基板の表面加工方法。
- クーラントを用いないか、又は、クーラントとして用いる純水の供給速度が0ml/min超~100ml/min以下であることを特徴とする請求項1に記載の単結晶SiC基板の表面加工方法。
- 被加工物テーブルの回転方向が研削プレート回転方向と逆方向であり、硬質パッドはセグメント化されたものであり、被加工物テーブルの回転速度が30rpm~300rpmであることを特徴とする請求項1~3のいずれか一項に記載の単結晶SiC基板の表面加工方法。
- 平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定された研削プレートを研削装置に装着し、前記研削プレートによって酸化生成物を生ぜしめ、その酸化生成物を除去しながら表面の研削を行う工程を有することを特徴とする単結晶SiC基板の製造方法。
- 平坦面を有する台金上に軟質パッド、硬質パッドが順に貼付された研削プレートであって、前記硬質パッドの表面に単結晶SiCよりも軟らかくかつバンドギャップを有する少なくとも1種以上の金属酸化物からなる砥粒が固定されていることを特徴とする単結晶SiC基板の表面加工用研削プレート。
- 前記金属酸化物が酸化セリウム、酸化チタン、酸化珪素、酸化アルミニウム、酸化鉄、酸化ジルコニウム、酸化亜鉛、酸化錫から選ばれる少なくとも1種以上であることを特徴とする請求項6に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記金属酸化物が少なくとも酸化セリウムを含むことを特徴とする請求項7に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記砥粒の比表面積が0.1m2/g~300m2/gであることを特徴とする請求項6~8のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記軟質パッドが、不織布系またはスエード系であることを特徴とする請求項6~9のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記硬質パッドが、発泡ポリウレタン系であることを特徴とする請求項6~10のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記砥粒を結合剤及び/又は接着剤で固定されたものであることを特徴とする請求項6~11のいずれか一項に記載の単結晶SiC基板の表面加工用研削プレート。
- 前記砥粒の固定は、固定砥粒フィルムを硬質パッドに貼付することによってなされていることを特徴とする請求項6~12のいずれか一項の単結晶SiC基板の表面加工用研削プレート。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157024095A KR101775258B1 (ko) | 2013-02-13 | 2014-02-13 | 단결정 SiC 기판의 표면 가공 방법, 그 제조 방법 및 단결정 SiC 기판의 표면 가공용 연삭 플레이트 |
CN201480008414.7A CN104981324B (zh) | 2013-02-13 | 2014-02-13 | 单晶SiC基板的表面加工方法、其制造方法和单晶SiC基板的表面加工用磨削板 |
US14/765,875 US9620374B2 (en) | 2013-02-13 | 2014-02-13 | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
US15/448,462 US9960048B2 (en) | 2013-02-13 | 2017-03-02 | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
US15/935,320 US10453693B2 (en) | 2013-02-13 | 2018-03-26 | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013026081A JP6016301B2 (ja) | 2013-02-13 | 2013-02-13 | 単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート |
JP2013-026081 | 2013-02-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/765,875 A-371-Of-International US9620374B2 (en) | 2013-02-13 | 2014-02-13 | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
US15/448,462 Division US9960048B2 (en) | 2013-02-13 | 2017-03-02 | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014126174A1 true WO2014126174A1 (ja) | 2014-08-21 |
Family
ID=51354173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053379 WO2014126174A1 (ja) | 2013-02-13 | 2014-02-13 | 単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート |
Country Status (6)
Country | Link |
---|---|
US (3) | US9620374B2 (ja) |
JP (1) | JP6016301B2 (ja) |
KR (1) | KR101775258B1 (ja) |
CN (1) | CN104981324B (ja) |
TW (1) | TWI515784B (ja) |
WO (1) | WO2014126174A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6016301B2 (ja) | 2013-02-13 | 2016-10-26 | 昭和電工株式会社 | 単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート |
JP6475518B2 (ja) * | 2015-03-03 | 2019-02-27 | 株式会社ディスコ | ウエーハの加工方法 |
JP6948798B2 (ja) * | 2017-02-14 | 2021-10-13 | 株式会社ディスコ | 研削ホイール |
JP6912284B2 (ja) * | 2017-06-23 | 2021-08-04 | 株式会社ディスコ | 研削装置 |
JP6974979B2 (ja) * | 2017-08-22 | 2021-12-01 | 株式会社ディスコ | 研削装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359156U (ja) * | 1989-10-12 | 1991-06-11 | ||
JPH06775A (ja) * | 1992-06-19 | 1994-01-11 | Rikagaku Kenkyusho | メカノケミカル作用を生じる電解ドレッシング用砥石 |
JP2001205555A (ja) * | 1999-11-16 | 2001-07-31 | Denso Corp | メカノケミカル研磨方法及びメカノケミカル研磨装置 |
JP2007283410A (ja) * | 2006-04-12 | 2007-11-01 | Kumamoto Univ | 触媒支援型化学加工方法 |
JP2008006559A (ja) * | 2006-06-30 | 2008-01-17 | Hitachi Maxell Ltd | 鏡面加工方法、および鏡面加工用の加工体 |
JP2008081389A (ja) * | 2006-08-28 | 2008-04-10 | Osaka Univ | 触媒支援型化学加工方法及び装置 |
JP2010188487A (ja) * | 2009-02-19 | 2010-09-02 | Kumamoto Univ | 触媒支援型化学加工方法及びそれを用いた加工装置 |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504457A (en) | 1966-07-05 | 1970-04-07 | Geoscience Instr Corp | Polishing apparatus |
JPS60242975A (ja) * | 1984-05-14 | 1985-12-02 | Kanebo Ltd | 平面研磨装置 |
US4944836A (en) | 1985-10-28 | 1990-07-31 | International Business Machines Corporation | Chem-mech polishing method for producing coplanar metal/insulator films on a substrate |
JPH0475A (ja) | 1989-05-31 | 1992-01-06 | Nippon Seiko Kk | 磁性流体シール装置とその製造方法 |
US5257478A (en) | 1990-03-22 | 1993-11-02 | Rodel, Inc. | Apparatus for interlayer planarization of semiconductor material |
EP0465868B1 (en) | 1990-06-29 | 1996-10-02 | National Semiconductor Corporation | Controlled compliance polishing pad |
US5152917B1 (en) * | 1991-02-06 | 1998-01-13 | Minnesota Mining & Mfg | Structured abrasive article |
EP0576937B1 (en) | 1992-06-19 | 1996-11-20 | Rikagaku Kenkyusho | Apparatus for mirror surface grinding |
US6069080A (en) * | 1992-08-19 | 2000-05-30 | Rodel Holdings, Inc. | Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like |
JP2716653B2 (ja) | 1993-11-01 | 1998-02-18 | 不二越機械工業株式会社 | ウェーハの研磨装置および研磨方法 |
US5958794A (en) | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
JP3853437B2 (ja) * | 1996-08-08 | 2006-12-06 | 大日本印刷株式会社 | 研磨シート |
JPH10156724A (ja) | 1996-11-28 | 1998-06-16 | Sony Corp | 研磨布、該研磨布を用いた平坦化研磨方法、及び半導体装置の製造方法 |
JPH10321572A (ja) | 1997-05-15 | 1998-12-04 | Toshiba Corp | 半導体ウェーハの両面洗浄装置及び半導体ウェーハのポリッシング方法 |
US5931724A (en) * | 1997-07-11 | 1999-08-03 | Applied Materials, Inc. | Mechanical fastener to hold a polishing pad on a platen in a chemical mechanical polishing system |
US6033293A (en) * | 1997-10-08 | 2000-03-07 | Lucent Technologies Inc. | Apparatus for performing chemical-mechanical polishing |
JPH11170167A (ja) | 1997-12-15 | 1999-06-29 | Nikon Corp | 光学素子の研磨方法及び研磨装置 |
JPH11198045A (ja) | 1998-01-19 | 1999-07-27 | Tosoh Corp | 研磨用成形体、それを用いた研磨用定盤及び研磨方法 |
JPH11235659A (ja) | 1998-02-18 | 1999-08-31 | Ricoh Co Ltd | 摩擦によって誘起される化学的除去加工方法およびその加工装置 |
JP2000190235A (ja) | 1998-12-24 | 2000-07-11 | Fuji Photo Film Co Ltd | 研磨体の製造方法 |
JP4644323B2 (ja) | 1999-04-28 | 2011-03-02 | Agcセイミケミカル株式会社 | 有機アルカリを含有する半導体用研磨剤 |
JP2000354950A (ja) | 1999-06-15 | 2000-12-26 | Sumitomo Metal Ind Ltd | 研磨パッド、研磨装置及び平坦な表面を有する被研磨体を製造する方法 |
US6953388B2 (en) * | 1999-12-22 | 2005-10-11 | Toray Industries, Inc. | Polishing pad, and method and apparatus for polishing |
TW586157B (en) | 2000-04-13 | 2004-05-01 | Showa Denko Kk | Slurry composition for polishing semiconductor device, and method for manufacturing semiconductor device using the same |
US6602117B1 (en) | 2000-08-30 | 2003-08-05 | Micron Technology, Inc. | Slurry for use with fixed-abrasive polishing pads in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods |
CN100496896C (zh) | 2000-12-01 | 2009-06-10 | 东洋橡膠工业株式会社 | 研磨垫 |
JP2003048164A (ja) | 2001-08-07 | 2003-02-18 | Disco Abrasive Syst Ltd | 研磨ホイール |
KR100877389B1 (ko) * | 2001-11-13 | 2009-01-07 | 도요 고무 고교 가부시키가이샤 | 연마 패드 및 그 제조 방법 |
TWI222390B (en) | 2001-11-13 | 2004-10-21 | Toyo Boseki | Polishing pad and its production method |
JP2004193377A (ja) | 2002-12-12 | 2004-07-08 | Toshiba Corp | 半導体装置の製造方法 |
JP2004255467A (ja) | 2003-02-24 | 2004-09-16 | Central Glass Co Ltd | ガラス基板の連続片面研磨装置 |
JP2005142441A (ja) | 2003-11-07 | 2005-06-02 | Sony Corp | ウエハ研磨装置及びウエハ研磨方法 |
JP2005277130A (ja) | 2004-03-25 | 2005-10-06 | Fujitsu Ltd | 半導体装置の製造方法 |
JP2005288552A (ja) | 2004-03-31 | 2005-10-20 | Noritake Co Ltd | 研磨工具およびそれを用いた研磨方法 |
JP2006055964A (ja) | 2004-08-23 | 2006-03-02 | Olympus Corp | スムージング工具 |
JP4818613B2 (ja) | 2005-01-19 | 2011-11-16 | アイオン株式会社 | 両面平面研磨装置 |
US7169031B1 (en) | 2005-07-28 | 2007-01-30 | 3M Innovative Properties Company | Self-contained conditioning abrasive article |
US7594845B2 (en) | 2005-10-20 | 2009-09-29 | 3M Innovative Properties Company | Abrasive article and method of modifying the surface of a workpiece |
JP2007190643A (ja) * | 2006-01-19 | 2007-08-02 | Nihon Micro Coating Co Ltd | クリーニングシート及び方法 |
EP2381008A2 (en) | 2006-08-28 | 2011-10-26 | Osaka University | Catalyst-aided chemical processing method and apparatus |
JP4499698B2 (ja) | 2006-10-04 | 2010-07-07 | 昭和電工株式会社 | 炭化珪素単結晶の製造方法 |
CN100443260C (zh) * | 2006-11-08 | 2008-12-17 | 大连理工大学 | 一种硬脆晶体基片的无损伤磨削方法 |
DE102009030297B3 (de) | 2009-06-24 | 2011-01-20 | Siltronic Ag | Verfahren zum Polieren einer Halbleiterscheibe |
DE102009048436B4 (de) | 2009-10-07 | 2012-12-20 | Siltronic Ag | Verfahren zum Schleifen einer Halbleiterscheibe |
CN102107391B (zh) * | 2009-12-24 | 2014-01-15 | 北京天科合达蓝光半导体有限公司 | 一种SiC单晶晶片的加工方法 |
CN101966689B (zh) * | 2010-09-27 | 2013-04-10 | 山东大学 | 一种大直径4H-SiC晶片碳面的表面抛光方法 |
KR20180135113A (ko) | 2011-01-27 | 2018-12-19 | 가부시키가이샤 후지미인코퍼레이티드 | 연마재 및 연마용 조성물 |
JP2012160683A (ja) | 2011-02-03 | 2012-08-23 | Renesas Electronics Corp | 半導体装置の製造方法 |
TWI605112B (zh) | 2011-02-21 | 2017-11-11 | Fujimi Inc | 研磨用組成物 |
CN103459089A (zh) | 2011-04-11 | 2013-12-18 | 旭硝子株式会社 | 研磨剂及研磨方法 |
JP5913839B2 (ja) | 2011-06-06 | 2016-04-27 | 株式会社ディスコ | 研磨方法 |
US9153451B2 (en) * | 2012-12-12 | 2015-10-06 | Micron Technology, Inc. | Method of forming a planar surface for a semiconductor device structure, and related methods of forming a semiconductor device structure |
JP6016301B2 (ja) * | 2013-02-13 | 2016-10-26 | 昭和電工株式会社 | 単結晶SiC基板の表面加工方法、その製造方法及び単結晶SiC基板の表面加工用研削プレート |
-
2013
- 2013-02-13 JP JP2013026081A patent/JP6016301B2/ja active Active
-
2014
- 2014-02-13 US US14/765,875 patent/US9620374B2/en active Active
- 2014-02-13 TW TW103104771A patent/TWI515784B/zh active
- 2014-02-13 CN CN201480008414.7A patent/CN104981324B/zh active Active
- 2014-02-13 WO PCT/JP2014/053379 patent/WO2014126174A1/ja active Application Filing
- 2014-02-13 KR KR1020157024095A patent/KR101775258B1/ko active IP Right Grant
-
2017
- 2017-03-02 US US15/448,462 patent/US9960048B2/en active Active
-
2018
- 2018-03-26 US US15/935,320 patent/US10453693B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359156U (ja) * | 1989-10-12 | 1991-06-11 | ||
JPH06775A (ja) * | 1992-06-19 | 1994-01-11 | Rikagaku Kenkyusho | メカノケミカル作用を生じる電解ドレッシング用砥石 |
JP2001205555A (ja) * | 1999-11-16 | 2001-07-31 | Denso Corp | メカノケミカル研磨方法及びメカノケミカル研磨装置 |
JP2007283410A (ja) * | 2006-04-12 | 2007-11-01 | Kumamoto Univ | 触媒支援型化学加工方法 |
JP2008006559A (ja) * | 2006-06-30 | 2008-01-17 | Hitachi Maxell Ltd | 鏡面加工方法、および鏡面加工用の加工体 |
JP2008081389A (ja) * | 2006-08-28 | 2008-04-10 | Osaka Univ | 触媒支援型化学加工方法及び装置 |
JP2010188487A (ja) * | 2009-02-19 | 2010-09-02 | Kumamoto Univ | 触媒支援型化学加工方法及びそれを用いた加工装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI515784B (zh) | 2016-01-01 |
KR101775258B1 (ko) | 2017-09-05 |
US9620374B2 (en) | 2017-04-11 |
US20160035579A1 (en) | 2016-02-04 |
US10453693B2 (en) | 2019-10-22 |
JP6016301B2 (ja) | 2016-10-26 |
CN104981324B (zh) | 2018-03-27 |
KR20150115900A (ko) | 2015-10-14 |
US9960048B2 (en) | 2018-05-01 |
US20180218916A1 (en) | 2018-08-02 |
TW201442090A (zh) | 2014-11-01 |
US20170178919A1 (en) | 2017-06-22 |
CN104981324A (zh) | 2015-10-14 |
JP2014151425A (ja) | 2014-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10453693B2 (en) | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate | |
JP6106535B2 (ja) | SiC基板の製造方法 | |
US11781244B2 (en) | Seed crystal for single crystal 4H—SiC growth and method for processing the same | |
JP5331844B2 (ja) | 半導体ウェハの両面研磨のための方法 | |
JP5458176B2 (ja) | 半導体ウェハを製造するための方法 | |
CN102169821B (zh) | 用于生产半导体晶片的方法 | |
JP4815801B2 (ja) | シリコンウエーハの研磨方法および製造方法および円板状ワークの研磨装置ならびにシリコンウエーハ | |
JP2009124153A (ja) | ポリシングされたエッジ部を備えた半導体ウェハの製造方法 | |
KR101303552B1 (ko) | 반도체 웨이퍼의 양면을 화학적으로 그라인딩하는 방법 | |
WO2015050218A1 (ja) | 研磨物の製造方法 | |
JP2007061961A (ja) | ラッピング定盤の製作方法及びメカニカルラッピング方法 | |
JP2006210488A (ja) | メカノケミカル研磨方法及びメカノケミカル研磨装置 | |
JPS63150158A (ja) | 端面研削盤切込み装置 | |
JP2017087332A (ja) | テンプレートアセンブリの製造方法及びこのテンプレートアセンブリを用いた研磨方法並びにテンプレートアセンブリ | |
JP6616171B2 (ja) | 研磨装置および研磨加工方法 | |
JP2024149101A (ja) | 研削プレート、研削装置、表面加工方法、単結晶SiC基板の製造方法及び単結晶SiC基板 | |
JP4154683B2 (ja) | 高平坦度裏面梨地ウェーハの製造方法および該製造方法に用いられる表面研削裏面ラップ装置 | |
JP2017107993A5 (ja) | ||
JP5988480B2 (ja) | 研磨方法 | |
JP2000331967A (ja) | 半導体デバイス表面の平坦化研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14751557 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14765875 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157024095 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14751557 Country of ref document: EP Kind code of ref document: A1 |