US3504457A - Polishing apparatus - Google Patents
Polishing apparatus Download PDFInfo
- Publication number
- US3504457A US3504457A US562757A US3504457DA US3504457A US 3504457 A US3504457 A US 3504457A US 562757 A US562757 A US 562757A US 3504457D A US3504457D A US 3504457DA US 3504457 A US3504457 A US 3504457A
- Authority
- US
- United States
- Prior art keywords
- polishing
- corfam
- layer
- porous
- organization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02024—Mirror polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/22—Lapping pads for working plane surfaces characterised by a multi-layered structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/02—Wheels in one piece
Definitions
- a device for polishing semiconductor wafers wherein the polishing tool comprises a poromeric material of polyurethane reinforced with a polyester and with a polishing slurry thereon is urged into contact with the workpiece.
- This invention relates to an apparatus for processing workpieces and, more specifically for imparting a polished finish to elements subjected thereto.
- the surface of the lapping plate in contact with the semiconductor elements has typically included thereon -as the active polishing member a pitch composition, papers, pseudo papers or other nonwovens, or felt substances.
- the above and other prior art operative polishing surfaces are characterized by at least several of the following deficiencies: (1) temperature sensitivity, and therefore instability at high polishing rates; (2) unhomogeneous consistency; (3) a propensity to pick up and retain foreign elements; (4) poor wear characteristics requiring frequent replacement; (5) variations from sample to sample; (6) the characteristics of being impermeable, and thereby preventing a polishing slurry from reaching all surface areas of a product being operated upon; (7) relatively little tensile strength, thereby being subject to distortion; and (8) a resistance to bonding, thereby being difiicult to affix to cooperating compositions and/or a lapping plate.
- an object of the present invention is the provision of a resilient, homogeneous polishing organization which is porous, relatively insensitive to temperature, and which may be fabricated with little variation from sample to sample.
- a specific illustrative polishing organization which comprises a layer of Corfam (a trademark of the Du Pont Corporation for a poromeric material) afiixed to a lapping substrate via layers of an adhesive, chemically inert nitrile rubber, and a pressure sensitive, clean release adhesive.
- a pororneric material such as Du Ponts Corfam, comprises polyurethane reinforced with polyester.
- the active, or free Corfam surface is adapted to be fiat such that the surface of the work elements brought into rotational bearing contact therewith will be polished, i.e., will be rendered flat.
- a porous film e.g., of foam polyurethane, is attached to the Corfam to function as the active polishing surface.
- the arrangement includes a layer of Corfam 20 which has a layer 35 of a, chemically inert material, eg., nitrile rubber, afiixed thereto by an adhesive 30.
- a layer 40 ⁇ of a pressure sensitive, clean release adhesive 40 is bonded to the bottom of the nitrile rubber layer 35 for purposes of facilitating the attachment and removal of the composite polishing laminated structure with respect to a metal lapping substrate 45.
- poromeric materials as well as other compositions embodying the attributes of Corfam described herein, may be employed in place of the Corfam layer 20.
- the Corfam layer 20 is fabricated such that the upper surface thereof exhibits the requisite flatness required for a particular polishing operation (assuming that a fiat surface is desired for the workpiece), Employing such a layer 20,the lapping substrate 45 is urged into a bearing pressure contact with elements 15 to be polished.
- elements 15 may comprise, for example, semiconductor wafers, with these elements being shown in the drawing as mounted on a rotating mounting block 10.
- the polishing operation may advantageously take place in a polishing liquid slurry environment, with the slurry being supplied by a slurry source 50 via a nozzle 51.
- the Corfam material 20 is very porous, and hence the slurry is translated by the layer 20 to all portions of the surface of the elements 15 thereby effecting uniform polishing. Also, the Corfam material 20 is essentially insensitive to temperature, at least in the temperature range of interest for polishing operations. Accordingly, polishing may be accomplished at high rates of speed. Further, the layer 20 is homogeneous, and may be fabricated in relatively large quantities to produce many uniform polishing layers without material variation from element to element.
- Corfam is resilient and prevents damage to elements 15 being polished by absorbing mechanical vibrations and any compaction caused by overshoot of the mounting members 10 or 45.
- the layer 20 is durable which is beneficial from maintenance and batch processing rate standpoints.
- the active, upper surface of the Corfam layer 20 can be treated or impregnated when required for special polishing operations.
- treatment may comprise, for example, brushing, napping, skiving or texturing the polishing Corfam surface to increase the number for active polishing fibers, or calendering the surface to increase its atness.
- the composite laminated polishing organization 20-30- 35-40 is easily attached to, and removed from the lapping substrate 45 by reason of the properties of the pressure sensitive, clean release adhesive layer 40.
- the inert layer 35 is employed to insulate the adhesive 40 from the layers thereabove, and also from the slurry which would otherwise reach the adhesive I40 through the porous Corfam layer 20. Such lforeign substances would tend to change the physical state of the adhesive 40, e.g., harden it thereby making attachment to and removal from the plate 45 more difficult.
- the upper face of the film 23 is the effective polishing surface, with the Corfam backing layer 20 providing resiliency and strength, while maintaining a composite porous organization which is desirable in a polishing organization for the reasons given hereinabove.
- compositions 4 which are porous only in film thicknesses, but which otherwise have desirable polishing properties, may be used as a polishing surface when mounted on a Corfam backing layer 20.
- the active polishing surface i.e., the upper surface of the Corfam 20 or the lm 23 if such a lm is employed, may exhibit a geometry other than a at plane -when a nonat work piece of a corresponding geometry is to be polished.
- other known bonding mechanisms such as mechanical interlocking or distortion, may be used to fabricate the composite laminated polishing structure shown in the drawing vwithout the use of the adhesives 25 and 30.
- a poromeric material comprising polyurethane reinforced with polyester, a porous film axed to said poromeric material, wherein said poromeric material has rst and second surfaces, said rst surface engaging said porous hlm, and further comprising an inert layer of nitrile rubber I affixed to said second surface of said Corfam.
- a poromeric material comprising polyurethane reinforced with polyester, a porous hlm aixed to said poromeric material, Iwherein said porous lm is polyurethane, and means for selectively urging work pieces to be polished into bearing contact with said porous film.
- a lapping substrate a poromeric layer comprising polyurethane reinforced with polyester mounted on said substrate, said poromeric layer including a polishing surface thereon, and means for urging work pieces to be polished into bearing contact with said poromeric polishing surface.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Laminated Bodies (AREA)
Description
April 7, 1970 H, R, JACOBSEN ET AL 3,504,457
POLISHING APPARATUS Filed July 5, 1966 40W iy//5/ BEAR/NG CON 754C 7' (IRG/N6 MF4/V5 INVENTORS HANS REM/#0107' .fS/V B52/.MER M JENSEN 2@ @Mge ys.
United States Patent O York Filed July 5, 1966, Ser. No. 562,757 Int. Cl. B24b 5/00, 29/00, 11/00 U.S. Cl. 51-131 4 Claims ABSTRACT OF THE DISCLOSURE A device for polishing semiconductor wafers wherein the polishing tool comprises a poromeric material of polyurethane reinforced with a polyester and with a polishing slurry thereon is urged into contact with the workpiece.
This invention relates to an apparatus for processing workpieces and, more specifically for imparting a polished finish to elements subjected thereto.
Many applications of present day interest require thin, fragile semiconductor wafers having a highly polished critical surface. To produce such a finish, prior art organizations have rotated such semiconductor elements against a lapping substrate in the presence of a polishing slurry.
The surface of the lapping plate in contact with the semiconductor elements has typically included thereon -as the active polishing member a pitch composition, papers, pseudo papers or other nonwovens, or felt substances. However, the above and other prior art operative polishing surfaces are characterized by at least several of the following deficiencies: (1) temperature sensitivity, and therefore instability at high polishing rates; (2) unhomogeneous consistency; (3) a propensity to pick up and retain foreign elements; (4) poor wear characteristics requiring frequent replacement; (5) variations from sample to sample; (6) the characteristics of being impermeable, and thereby preventing a polishing slurry from reaching all surface areas of a product being operated upon; (7) relatively little tensile strength, thereby being subject to distortion; and (8) a resistance to bonding, thereby being difiicult to affix to cooperating compositions and/or a lapping plate.
It is therefore an object of the present invention to provide an improved apparatus for polishing workpieces.
More specifically, an object of the present invention is the provision of a resilient, homogeneous polishing organization which is porous, relatively insensitive to temperature, and which may be fabricated with little variation from sample to sample.
These and other objects of the present invention are realized in a specific illustrative polishing organization which comprises a layer of Corfam (a trademark of the Du Pont Corporation for a poromeric material) afiixed to a lapping substrate via layers of an adhesive, chemically inert nitrile rubber, and a pressure sensitive, clean release adhesive. A pororneric material, such as Du Ponts Corfam, comprises polyurethane reinforced with polyester. In this regard see, for example, Chemistry of Organic Compounds by C. R. Noller, published by W. B. Saunders Company in 1965, at chapter 36.
The active, or free Corfam surface is adapted to be fiat such that the surface of the work elements brought into rotational bearing contact therewith will be polished, i.e., will be rendered flat. In an alternative embodiment of the present invention a porous film e.g., of foam polyurethane, is attached to the Corfam to function as the active polishing surface.
A complete understanding of the present invention and of the above and other objects thereof may be gained 3,504,457 Patented Apr. 7, 1970 from a consideration of an illustrative embodiment thereof depicted in the accompanying drawing.
Referring now to the drawing, there is shown in crosssectional form an illustrative polishing organization which embodies the principles of the present invention. The arrangement includes a layer of Corfam 20 which has a layer 35 of a, chemically inert material, eg., nitrile rubber, afiixed thereto by an adhesive 30. A layer 40` of a pressure sensitive, clean release adhesive 40 is bonded to the bottom of the nitrile rubber layer 35 for purposes of facilitating the attachment and removal of the composite polishing laminated structure with respect to a metal lapping substrate 45. It is noted that other poromeric materials, as well as other compositions embodying the attributes of Corfam described herein, may be employed in place of the Corfam layer 20.
The Corfam layer 20 is fabricated such that the upper surface thereof exhibits the requisite flatness required for a particular polishing operation (assuming that a fiat surface is desired for the workpiece), Employing such a layer 20,the lapping substrate 45 is urged into a bearing pressure contact with elements 15 to be polished. Such elements 15 may comprise, for example, semiconductor wafers, with these elements being shown in the drawing as mounted on a rotating mounting block 10. Further, the polishing operation may advantageously take place in a polishing liquid slurry environment, with the slurry being supplied by a slurry source 50 via a nozzle 51.
The Corfam material 20 is very porous, and hence the slurry is translated by the layer 20 to all portions of the surface of the elements 15 thereby effecting uniform polishing. Also, the Corfam material 20 is essentially insensitive to temperature, at least in the temperature range of interest for polishing operations. Accordingly, polishing may be accomplished at high rates of speed. Further, the layer 20 is homogeneous, and may be fabricated in relatively large quantities to produce many uniform polishing layers without material variation from element to element.
Moreover, Corfam is resilient and prevents damage to elements 15 being polished by absorbing mechanical vibrations and any compaction caused by overshoot of the mounting members 10 or 45. In addition, the layer 20 is durable which is beneficial from maintenance and batch processing rate standpoints.
Still further, the active, upper surface of the Corfam layer 20 can be treated or impregnated when required for special polishing operations. Such treatment may comprise, for example, brushing, napping, skiving or texturing the polishing Corfam surface to increase the number for active polishing fibers, or calendering the surface to increase its atness.
The composite laminated polishing organization 20-30- 35-40 is easily attached to, and removed from the lapping substrate 45 by reason of the properties of the pressure sensitive, clean release adhesive layer 40. The inert layer 35 is employed to insulate the adhesive 40 from the layers thereabove, and also from the slurry which would otherwise reach the adhesive I40 through the porous Corfam layer 20. Such lforeign substances would tend to change the physical state of the adhesive 40, e.g., harden it thereby making attachment to and removal from the plate 45 more difficult.
By way of -functional operation, when rotational bearing contact is established between the Corfam upper surface and the lwork pieces 15, the desired polishing surface is imparted to the lower, critical surface of these elements. Hence, the desired polishing is accomplished.
In an alternative embodiment of the invention a porous film 23, e.g., of foam polyurethane, is afiixed to the upper surface of the Corfam layer 20 by a porous adhesive 25. In such an arrangement, the upper face of the film 23 is the effective polishing surface, with the Corfam backing layer 20 providing resiliency and strength, while maintaining a composite porous organization which is desirable in a polishing organization for the reasons given hereinabove. Thus it is noted that compositions 4which are porous only in film thicknesses, but which otherwise have desirable polishing properties, may be used as a polishing surface when mounted on a Corfam backing layer 20.
Thus, the organization shown in the drawing, both with and without the film 23 and the adhesive 25, has been shown by the above to function as a very desirable polishing structure.
1t is to be understood that the above described method and organizations are only illustrative of the application of the principles of the present inventions. Numerous other arrangements and modes of operation may be devised by those skilled in the art without departing from the spirit and scope of this invention. For example, the active polishing surface, i.e., the upper surface of the Corfam 20 or the lm 23 if such a lm is employed, may exhibit a geometry other than a at plane -when a nonat work piece of a corresponding geometry is to be polished. In addition, other known bonding mechanisms, such as mechanical interlocking or distortion, may be used to fabricate the composite laminated polishing structure shown in the drawing vwithout the use of the adhesives 25 and 30.
We claim:
1. In combination in a polishing organization, a poromeric material comprising polyurethane reinforced with polyester, a porous film axed to said poromeric material, wherein said poromeric material has rst and second surfaces, said rst surface engaging said porous hlm, and further comprising an inert layer of nitrile rubber I affixed to said second surface of said Corfam.
plate, and means for selectively urging work pieces to be polished into a bearing relationship with said lapping plate.
3. In combination in a polishing organization, a poromeric material comprising polyurethane reinforced with polyester, a porous hlm aixed to said poromeric material, Iwherein said porous lm is polyurethane, and means for selectively urging work pieces to be polished into bearing contact with said porous film.
4. In combination in a polishing organization, a lapping substrate, a poromeric layer comprising polyurethane reinforced with polyester mounted on said substrate, said poromeric layer including a polishing surface thereon, and means for urging work pieces to be polished into bearing contact with said poromeric polishing surface.
References Cited UNITED STATES PATENTS 2,644,280 7 l 95 3 ONeil 51-406 3,050,909 8/ 1962 Rawstron 51-124 3,082,582 3/1963 Jeske 51-407 X 3,123,953 3/1964 Merkl 51-283 3,360,889 1/1968 Borish 51-131 X 671,130 4/1901 Darden 51-401 804,853 11/1905 Ireson. 1,923,719 8/1933 Fuller 51-301 X 2,650,158 8/1953 Eastman 51-407 X FOREIGN PATENTS 681,832 3/1964 Canada.
OTHER REFERENCES Boot and 'Shoe Recorder, Oct. l, 1963, article titled The Story of Corfam pages 1-2 thereof.
HAROLD D. WHITEHEAD, Primary Examiner U.'S. C1. XR.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56275766A | 1966-07-05 | 1966-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3504457A true US3504457A (en) | 1970-04-07 |
Family
ID=24247641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US562757A Expired - Lifetime US3504457A (en) | 1966-07-05 | 1966-07-05 | Polishing apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US3504457A (en) |
GB (1) | GB1152165A (en) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3841031A (en) * | 1970-10-21 | 1974-10-15 | Monsanto Co | Process for polishing thin elements |
US3857123A (en) * | 1970-10-21 | 1974-12-31 | Monsanto Co | Apparatus for waxless polishing of thin wafers |
US3947953A (en) * | 1974-08-23 | 1976-04-06 | Nitto Electric Industrial Co., Ltd. | Method of making plastic sealed cavity molded type semi-conductor devices |
US4728552A (en) * | 1984-07-06 | 1988-03-01 | Rodel, Inc. | Substrate containing fibers of predetermined orientation and process of making the same |
EP0291100A2 (en) * | 1987-05-15 | 1988-11-17 | Asahi Kasei Kogyo Kabushiki Kaisha | Polishing cloth |
EP0304645A2 (en) * | 1987-08-25 | 1989-03-01 | Rodel, Inc. | Inverted cell pad material for grinding, lapping, shaping and polishing |
US4841680A (en) * | 1987-08-25 | 1989-06-27 | Rodel, Inc. | Inverted cell pad material for grinding, lapping, shaping and polishing |
US4927432A (en) * | 1986-03-25 | 1990-05-22 | Rodel, Inc. | Pad material for grinding, lapping and polishing |
US4954141A (en) * | 1988-01-28 | 1990-09-04 | Showa Denko Kabushiki Kaisha | Polishing pad for semiconductor wafers |
WO1991014538A1 (en) * | 1990-03-22 | 1991-10-03 | Westech Systems, Inc. | Apparatus for interlayer planarization of semiconductor material |
EP0555660A2 (en) * | 1992-01-31 | 1993-08-18 | Westech, Inc. | Apparatus for interlayer planarization of semiconductor material |
US5403228A (en) * | 1992-07-10 | 1995-04-04 | Lsi Logic Corporation | Techniques for assembling polishing pads for silicon wafer polishing |
US5510175A (en) * | 1993-06-30 | 1996-04-23 | Chiyoda Co., Ltd. | Polishing cloth |
US5618227A (en) * | 1992-09-18 | 1997-04-08 | Mitsubushi Materials Corporation | Apparatus for polishing wafer |
US5649855A (en) * | 1995-01-25 | 1997-07-22 | Nec Corporation | Wafer polishing device |
US5664989A (en) * | 1995-07-21 | 1997-09-09 | Kabushiki Kaisha Toshiba | Polishing pad, polishing apparatus and polishing method |
US5692950A (en) * | 1996-08-08 | 1997-12-02 | Minnesota Mining And Manufacturing Company | Abrasive construction for semiconductor wafer modification |
US5769699A (en) * | 1993-04-30 | 1998-06-23 | Motorola, Inc. | Polishing pad for chemical-mechanical polishing of a semiconductor substrate |
US5846335A (en) * | 1994-06-28 | 1998-12-08 | Ebara Corporation | Method for cleaning workpiece |
US5913712A (en) * | 1995-08-09 | 1999-06-22 | Cypress Semiconductor Corp. | Scratch reduction in semiconductor circuit fabrication using chemical-mechanical polishing |
US6036579A (en) * | 1997-01-13 | 2000-03-14 | Rodel Inc. | Polymeric polishing pad having photolithographically induced surface patterns(s) and methods relating thereto |
US6095902A (en) * | 1998-09-23 | 2000-08-01 | Rodel Holdings, Inc. | Polyether-polyester polyurethane polishing pads and related methods |
US6238592B1 (en) | 1999-03-10 | 2001-05-29 | 3M Innovative Properties Company | Working liquids and methods for modifying structured wafers suited for semiconductor fabrication |
US6284114B1 (en) | 1997-09-29 | 2001-09-04 | Rodel Holdings Inc. | Method of fabricating a porous polymeric material by electrophoretic deposition |
US6336845B1 (en) | 1997-11-12 | 2002-01-08 | Lam Research Corporation | Method and apparatus for polishing semiconductor wafers |
US20020081956A1 (en) * | 2000-09-08 | 2002-06-27 | Applied Materials, Inc. | Carrier head with vibration dampening |
US6431959B1 (en) | 1999-12-20 | 2002-08-13 | Lam Research Corporation | System and method of defect optimization for chemical mechanical planarization of polysilicon |
US20020127862A1 (en) * | 2001-03-08 | 2002-09-12 | Cooper Richard D. | Polishing pad for use in chemical - mechanical palanarization of semiconductor wafers and method of making same |
EP1295680A2 (en) * | 2001-09-25 | 2003-03-26 | JSR Corporation | Polishing pad for semiconductor wafer |
US6626740B2 (en) | 1999-12-23 | 2003-09-30 | Rodel Holdings, Inc. | Self-leveling pads and methods relating thereto |
US20040055223A1 (en) * | 2000-12-01 | 2004-03-25 | Koichi Ono | Polishing pad, method of manufacturing the polishing pad, and cushion layer for polishing pad |
US20040072522A1 (en) * | 2002-06-18 | 2004-04-15 | Angela Petroski | Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers |
US6746311B1 (en) * | 2000-01-24 | 2004-06-08 | 3M Innovative Properties Company | Polishing pad with release layer |
US20040142638A1 (en) * | 2003-01-22 | 2004-07-22 | Angela Petroski | Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same |
US20040142637A1 (en) * | 2003-01-22 | 2004-07-22 | Angela Petroski | Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same |
US20040259484A1 (en) * | 2003-06-17 | 2004-12-23 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US20050098446A1 (en) * | 2003-10-03 | 2005-05-12 | Applied Materials, Inc. | Multi-layer polishing pad |
US20050197050A1 (en) * | 2003-06-17 | 2005-09-08 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US20050221723A1 (en) * | 2003-10-03 | 2005-10-06 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US20050245181A1 (en) * | 2000-09-08 | 2005-11-03 | Applied Materials, Inc. | Vibration damping during chemical mechanical polishing |
US20060046622A1 (en) * | 2004-09-01 | 2006-03-02 | Cabot Microelectronics Corporation | Polishing pad with microporous regions |
US20060148387A1 (en) * | 2000-09-08 | 2006-07-06 | Applied Materials, Inc., A Delaware Corporation | Vibration damping in chemical mechanical polishing system |
US20070049169A1 (en) * | 2005-08-02 | 2007-03-01 | Vaidya Neha P | Nonwoven polishing pads for chemical mechanical polishing |
US20070087177A1 (en) * | 2003-10-09 | 2007-04-19 | Guangwei Wu | Stacked pad and method of use |
US7618529B2 (en) | 2004-05-25 | 2009-11-17 | Rohm And Haas Electronic Materials Cmp Holdings, Inc | Polishing pad for electrochemical mechanical polishing |
US20110045753A1 (en) * | 2008-05-16 | 2011-02-24 | Toray Industries, Inc. | Polishing pad |
US20110269380A1 (en) * | 2010-05-03 | 2011-11-03 | Iv Technologies Co., Ltd. | Base layer, polishing pad including the same and polishing method |
US8092707B2 (en) | 1997-04-30 | 2012-01-10 | 3M Innovative Properties Company | Compositions and methods for modifying a surface suited for semiconductor fabrication |
JP2016064453A (en) * | 2014-09-24 | 2016-04-28 | 株式会社ディスコ | Processing device and wafer processing method |
US9960048B2 (en) | 2013-02-13 | 2018-05-01 | Showa Denko K.K. | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US671130A (en) * | 1900-05-02 | 1901-04-02 | Newton J Darden | Pencil-sharpener. |
US804853A (en) * | 1905-03-17 | 1905-11-21 | Charles L Ireson | Method of attachment of rubber and leather. |
US1923719A (en) * | 1931-04-27 | 1933-08-22 | Gen Electric | Stropping material |
US2644280A (en) * | 1950-09-13 | 1953-07-07 | Carborundum Co | Sanding disk accessory |
US2650158A (en) * | 1950-08-03 | 1953-08-25 | Carborundum Co | Scouring implement |
US3050909A (en) * | 1959-02-18 | 1962-08-28 | Rawstron George Ormerod | Apparatus for and method of polishing aspheric surfaces |
US3082582A (en) * | 1960-07-21 | 1963-03-26 | Formax Mfg Corp | Sanding pad assembly |
CA681832A (en) * | 1964-03-10 | Dominion Rubber Company | Flexible laminate | |
US3123953A (en) * | 1964-03-10 | merkl | ||
US3360889A (en) * | 1962-12-31 | 1968-01-02 | Indiana Contact Lens Inc | Method for altering the power of a corneal contact lens |
-
1966
- 1966-07-05 US US562757A patent/US3504457A/en not_active Expired - Lifetime
-
1967
- 1967-05-30 GB GB24790/67A patent/GB1152165A/en not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA681832A (en) * | 1964-03-10 | Dominion Rubber Company | Flexible laminate | |
US3123953A (en) * | 1964-03-10 | merkl | ||
US671130A (en) * | 1900-05-02 | 1901-04-02 | Newton J Darden | Pencil-sharpener. |
US804853A (en) * | 1905-03-17 | 1905-11-21 | Charles L Ireson | Method of attachment of rubber and leather. |
US1923719A (en) * | 1931-04-27 | 1933-08-22 | Gen Electric | Stropping material |
US2650158A (en) * | 1950-08-03 | 1953-08-25 | Carborundum Co | Scouring implement |
US2644280A (en) * | 1950-09-13 | 1953-07-07 | Carborundum Co | Sanding disk accessory |
US3050909A (en) * | 1959-02-18 | 1962-08-28 | Rawstron George Ormerod | Apparatus for and method of polishing aspheric surfaces |
US3082582A (en) * | 1960-07-21 | 1963-03-26 | Formax Mfg Corp | Sanding pad assembly |
US3360889A (en) * | 1962-12-31 | 1968-01-02 | Indiana Contact Lens Inc | Method for altering the power of a corneal contact lens |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3857123A (en) * | 1970-10-21 | 1974-12-31 | Monsanto Co | Apparatus for waxless polishing of thin wafers |
US3841031A (en) * | 1970-10-21 | 1974-10-15 | Monsanto Co | Process for polishing thin elements |
US3947953A (en) * | 1974-08-23 | 1976-04-06 | Nitto Electric Industrial Co., Ltd. | Method of making plastic sealed cavity molded type semi-conductor devices |
US4728552A (en) * | 1984-07-06 | 1988-03-01 | Rodel, Inc. | Substrate containing fibers of predetermined orientation and process of making the same |
US4927432A (en) * | 1986-03-25 | 1990-05-22 | Rodel, Inc. | Pad material for grinding, lapping and polishing |
EP0291100A2 (en) * | 1987-05-15 | 1988-11-17 | Asahi Kasei Kogyo Kabushiki Kaisha | Polishing cloth |
EP0291100A3 (en) * | 1987-05-15 | 1990-12-19 | Asahi Kasei Kogyo Kabushiki Kaisha | Polishing cloth |
EP0304645A2 (en) * | 1987-08-25 | 1989-03-01 | Rodel, Inc. | Inverted cell pad material for grinding, lapping, shaping and polishing |
US4841680A (en) * | 1987-08-25 | 1989-06-27 | Rodel, Inc. | Inverted cell pad material for grinding, lapping, shaping and polishing |
EP0304645A3 (en) * | 1987-08-25 | 1990-01-24 | Rodel, Inc. | Inverted cell pad material for grinding, lapping, shaping and polishing |
US4954141A (en) * | 1988-01-28 | 1990-09-04 | Showa Denko Kabushiki Kaisha | Polishing pad for semiconductor wafers |
US5257478A (en) * | 1990-03-22 | 1993-11-02 | Rodel, Inc. | Apparatus for interlayer planarization of semiconductor material |
WO1991014538A1 (en) * | 1990-03-22 | 1991-10-03 | Westech Systems, Inc. | Apparatus for interlayer planarization of semiconductor material |
EP0555660A3 (en) * | 1992-01-31 | 1994-03-23 | Westech Inc | |
EP0555660A2 (en) * | 1992-01-31 | 1993-08-18 | Westech, Inc. | Apparatus for interlayer planarization of semiconductor material |
US5403228A (en) * | 1992-07-10 | 1995-04-04 | Lsi Logic Corporation | Techniques for assembling polishing pads for silicon wafer polishing |
US5618227A (en) * | 1992-09-18 | 1997-04-08 | Mitsubushi Materials Corporation | Apparatus for polishing wafer |
US5769699A (en) * | 1993-04-30 | 1998-06-23 | Motorola, Inc. | Polishing pad for chemical-mechanical polishing of a semiconductor substrate |
US5510175A (en) * | 1993-06-30 | 1996-04-23 | Chiyoda Co., Ltd. | Polishing cloth |
US5846335A (en) * | 1994-06-28 | 1998-12-08 | Ebara Corporation | Method for cleaning workpiece |
US5649855A (en) * | 1995-01-25 | 1997-07-22 | Nec Corporation | Wafer polishing device |
US5664989A (en) * | 1995-07-21 | 1997-09-09 | Kabushiki Kaisha Toshiba | Polishing pad, polishing apparatus and polishing method |
US5913712A (en) * | 1995-08-09 | 1999-06-22 | Cypress Semiconductor Corp. | Scratch reduction in semiconductor circuit fabrication using chemical-mechanical polishing |
US6007407A (en) * | 1996-08-08 | 1999-12-28 | Minnesota Mining And Manufacturing Company | Abrasive construction for semiconductor wafer modification |
US5692950A (en) * | 1996-08-08 | 1997-12-02 | Minnesota Mining And Manufacturing Company | Abrasive construction for semiconductor wafer modification |
US6036579A (en) * | 1997-01-13 | 2000-03-14 | Rodel Inc. | Polymeric polishing pad having photolithographically induced surface patterns(s) and methods relating thereto |
US6210254B1 (en) * | 1997-01-13 | 2001-04-03 | Rodel Holdings Inc. | Method of manufacturing a polymeric polishing pad having photolithographically induced surface pattern(s) |
US8092707B2 (en) | 1997-04-30 | 2012-01-10 | 3M Innovative Properties Company | Compositions and methods for modifying a surface suited for semiconductor fabrication |
US6284114B1 (en) | 1997-09-29 | 2001-09-04 | Rodel Holdings Inc. | Method of fabricating a porous polymeric material by electrophoretic deposition |
US6336845B1 (en) | 1997-11-12 | 2002-01-08 | Lam Research Corporation | Method and apparatus for polishing semiconductor wafers |
US6416385B2 (en) | 1997-11-12 | 2002-07-09 | Lam Research Corporation | Method and apparatus for polishing semiconductor wafers |
US6517418B2 (en) | 1997-11-12 | 2003-02-11 | Lam Research Corporation | Method of transporting a semiconductor wafer in a wafer polishing system |
US6095902A (en) * | 1998-09-23 | 2000-08-01 | Rodel Holdings, Inc. | Polyether-polyester polyurethane polishing pads and related methods |
US6238592B1 (en) | 1999-03-10 | 2001-05-29 | 3M Innovative Properties Company | Working liquids and methods for modifying structured wafers suited for semiconductor fabrication |
US20030060126A1 (en) * | 1999-12-20 | 2003-03-27 | Lam Research Corporation | System and method of defect optimization for chemical mechanical planarization of polysilicon |
US6431959B1 (en) | 1999-12-20 | 2002-08-13 | Lam Research Corporation | System and method of defect optimization for chemical mechanical planarization of polysilicon |
US6626740B2 (en) | 1999-12-23 | 2003-09-30 | Rodel Holdings, Inc. | Self-leveling pads and methods relating thereto |
US6746311B1 (en) * | 2000-01-24 | 2004-06-08 | 3M Innovative Properties Company | Polishing pad with release layer |
US8376813B2 (en) | 2000-09-08 | 2013-02-19 | Applied Materials, Inc. | Retaining ring and articles for carrier head |
US8535121B2 (en) | 2000-09-08 | 2013-09-17 | Applied Materials, Inc. | Retaining ring and articles for carrier head |
US20100144255A1 (en) * | 2000-09-08 | 2010-06-10 | Applied Materials, Inc., A Delaware Corporation | Retaining ring and articles for carrier head |
US7497767B2 (en) | 2000-09-08 | 2009-03-03 | Applied Materials, Inc. | Vibration damping during chemical mechanical polishing |
US20050245181A1 (en) * | 2000-09-08 | 2005-11-03 | Applied Materials, Inc. | Vibration damping during chemical mechanical polishing |
US7331847B2 (en) * | 2000-09-08 | 2008-02-19 | Applied Materials, Inc | Vibration damping in chemical mechanical polishing system |
US20080039000A1 (en) * | 2000-09-08 | 2008-02-14 | Applied Materials, Inc. | Reataining ring and articles for carrier head |
US7255637B2 (en) | 2000-09-08 | 2007-08-14 | Applied Materials, Inc. | Carrier head vibration damping |
US20020081956A1 (en) * | 2000-09-08 | 2002-06-27 | Applied Materials, Inc. | Carrier head with vibration dampening |
US20060148387A1 (en) * | 2000-09-08 | 2006-07-06 | Applied Materials, Inc., A Delaware Corporation | Vibration damping in chemical mechanical polishing system |
US7192340B2 (en) | 2000-12-01 | 2007-03-20 | Toyo Tire & Rubber Co., Ltd. | Polishing pad, method of producing the same, and cushion layer for polishing pad |
US20060148392A1 (en) * | 2000-12-01 | 2006-07-06 | Koichi Ono | Method of producing polishing pad |
US7641540B2 (en) | 2000-12-01 | 2010-01-05 | Toyo Tire & Rubber Co., Ltd | Polishing pad and cushion layer for polishing pad |
US7329170B2 (en) | 2000-12-01 | 2008-02-12 | Toyo Tire & Rubber Co., Ltd. | Method of producing polishing pad |
US7762870B2 (en) | 2000-12-01 | 2010-07-27 | Toyo Tire & Rubber Co., Ltd | Polishing pad and cushion layer for polishing pad |
US20060148393A1 (en) * | 2000-12-01 | 2006-07-06 | Koichi Ono | Polishing pad and cushion layer for polishing pad |
US20040055223A1 (en) * | 2000-12-01 | 2004-03-25 | Koichi Ono | Polishing pad, method of manufacturing the polishing pad, and cushion layer for polishing pad |
US20060148391A1 (en) * | 2000-12-01 | 2006-07-06 | Koichi Ono | Polishing pad and cushion layer for polishing pad |
US20020127862A1 (en) * | 2001-03-08 | 2002-09-12 | Cooper Richard D. | Polishing pad for use in chemical - mechanical palanarization of semiconductor wafers and method of making same |
US6863774B2 (en) | 2001-03-08 | 2005-03-08 | Raytech Innovative Solutions, Inc. | Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same |
EP1295680A3 (en) * | 2001-09-25 | 2003-09-10 | JSR Corporation | Polishing pad for semiconductor wafer |
EP1295680A2 (en) * | 2001-09-25 | 2003-03-26 | JSR Corporation | Polishing pad for semiconductor wafer |
US6848974B2 (en) | 2001-09-25 | 2005-02-01 | Jsr Corporation | Polishing pad for semiconductor wafer and polishing process using thereof |
US7025668B2 (en) | 2002-06-18 | 2006-04-11 | Raytech Innovative Solutions, Llc | Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers |
US20040072522A1 (en) * | 2002-06-18 | 2004-04-15 | Angela Petroski | Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers |
US20040142638A1 (en) * | 2003-01-22 | 2004-07-22 | Angela Petroski | Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same |
US6852020B2 (en) | 2003-01-22 | 2005-02-08 | Raytech Innovative Solutions, Inc. | Polishing pad for use in chemical—mechanical planarization of semiconductor wafers and method of making same |
US20040142637A1 (en) * | 2003-01-22 | 2004-07-22 | Angela Petroski | Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same |
US7037184B2 (en) | 2003-01-22 | 2006-05-02 | Raytech Innovation Solutions, Llc | Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same |
US20050197050A1 (en) * | 2003-06-17 | 2005-09-08 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US6884156B2 (en) | 2003-06-17 | 2005-04-26 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US7435161B2 (en) | 2003-06-17 | 2008-10-14 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US20040259484A1 (en) * | 2003-06-17 | 2004-12-23 | Cabot Microelectronics Corporation | Multi-layer polishing pad material for CMP |
US8066552B2 (en) | 2003-10-03 | 2011-11-29 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US20050221723A1 (en) * | 2003-10-03 | 2005-10-06 | Applied Materials, Inc. | Multi-layer polishing pad for low-pressure polishing |
US7654885B2 (en) | 2003-10-03 | 2010-02-02 | Applied Materials, Inc. | Multi-layer polishing pad |
US20050098446A1 (en) * | 2003-10-03 | 2005-05-12 | Applied Materials, Inc. | Multi-layer polishing pad |
US20070087177A1 (en) * | 2003-10-09 | 2007-04-19 | Guangwei Wu | Stacked pad and method of use |
US7618529B2 (en) | 2004-05-25 | 2009-11-17 | Rohm And Haas Electronic Materials Cmp Holdings, Inc | Polishing pad for electrochemical mechanical polishing |
US20100000877A1 (en) * | 2004-05-25 | 2010-01-07 | Ameen Joseph G | Method for electrochemical mechanical polishing |
US7807038B2 (en) | 2004-05-25 | 2010-10-05 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Method for electrochemical mechanical polishing |
US20060046622A1 (en) * | 2004-09-01 | 2006-03-02 | Cabot Microelectronics Corporation | Polishing pad with microporous regions |
US8075372B2 (en) | 2004-09-01 | 2011-12-13 | Cabot Microelectronics Corporation | Polishing pad with microporous regions |
US20070049169A1 (en) * | 2005-08-02 | 2007-03-01 | Vaidya Neha P | Nonwoven polishing pads for chemical mechanical polishing |
US20110045753A1 (en) * | 2008-05-16 | 2011-02-24 | Toray Industries, Inc. | Polishing pad |
US20110269380A1 (en) * | 2010-05-03 | 2011-11-03 | Iv Technologies Co., Ltd. | Base layer, polishing pad including the same and polishing method |
US9960048B2 (en) | 2013-02-13 | 2018-05-01 | Showa Denko K.K. | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
US10453693B2 (en) | 2013-02-13 | 2019-10-22 | Showa Denko K.K. | Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate |
JP2016064453A (en) * | 2014-09-24 | 2016-04-28 | 株式会社ディスコ | Processing device and wafer processing method |
Also Published As
Publication number | Publication date |
---|---|
DE1652046A1 (en) | 1970-05-14 |
GB1152165A (en) | 1969-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3504457A (en) | Polishing apparatus | |
US3499250A (en) | Polishing apparatus | |
US4519168A (en) | Liquid waxless fixturing of microsize wafers | |
ATE337137T1 (en) | POLISHING PAD AND POLISHING APPARATUS | |
JPS63162155A (en) | Work mounting method for grinding | |
JPH0413568A (en) | Backing pad, precise flattening method thereof and polishing method thereof for semiconductor wafer | |
TW317521B (en) | ||
JPH09267257A (en) | Wafer grinding device | |
US3236010A (en) | Method for finishing glass surfaces | |
JP7091575B2 (en) | Notch part polishing pad and its manufacturing method | |
JPH10249709A (en) | Abrasive cloth | |
JPH05505769A (en) | Device for planarizing intermediate layers of semiconductor materials | |
JP3326841B2 (en) | Polishing equipment | |
US20070155268A1 (en) | Polishing pad and method for manufacturing the polishing pad | |
JP2016193488A (en) | Holding pad | |
KR200497189Y1 (en) | Two-layer polishing pad made of nonwoven fabric | |
JPH0917760A (en) | Method and apparatus for polishing semiconductor wafer | |
JPH11333703A (en) | Polishing machine | |
JP7021863B2 (en) | Cage | |
WO2002015246A1 (en) | Method of polishing semiconductor wafer | |
JPS5590263A (en) | Device for flatly and accurately polishing crystal substrate without causing irregularity | |
JP2006142439A (en) | Polishing pad and polishing method using the same | |
KR0136282B1 (en) | Needle felt for grinding | |
GB2284426A (en) | Abrasive material | |
JP2002064071A (en) | Polishing plate for mirror polishing silicon wafer and method thereof |