WO2014123116A1 - 酸素吸収性多層体の梱包体及び保存方法 - Google Patents

酸素吸収性多層体の梱包体及び保存方法 Download PDF

Info

Publication number
WO2014123116A1
WO2014123116A1 PCT/JP2014/052557 JP2014052557W WO2014123116A1 WO 2014123116 A1 WO2014123116 A1 WO 2014123116A1 JP 2014052557 W JP2014052557 W JP 2014052557W WO 2014123116 A1 WO2014123116 A1 WO 2014123116A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
absorbing
gas barrier
absorbing multilayer
multilayer body
Prior art date
Application number
PCT/JP2014/052557
Other languages
English (en)
French (fr)
Inventor
康太 鍵本
恵美子 横瀬
隆欣 伊藤
潤 若林
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US14/759,305 priority Critical patent/US20150353251A1/en
Priority to EP14748651.8A priority patent/EP2955129A4/en
Priority to KR1020157018277A priority patent/KR20150114467A/ko
Priority to JP2014560769A priority patent/JP6327522B2/ja
Priority to CN201480007634.8A priority patent/CN104968580A/zh
Publication of WO2014123116A1 publication Critical patent/WO2014123116A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • B65D75/30Articles or materials enclosed between two opposed sheets or blanks having their margins united, e.g. by pressure-sensitive adhesive, crimping, heat-sealing, or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2069Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/388Materials used for their gas-permeability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a package in which an oxygen-absorbing multilayer body containing an easily oxidizable thermoplastic resin and a transition metal catalyst and a gas containing carbon dioxide are sealed in a gas barrier container, and the oxygen-absorbing multilayer It relates to the body preservation method.
  • An oxygen scavenger is used to remove oxygen in the packaging container and the packaging bag.
  • a method for storing the oxygen-absorbing multilayer body As a method for storing the oxygen-absorbing multilayer body, a method of introducing an oxygen scavenger into a gas barrier container for storing the oxygen-absorbing multilayer body, a method for reducing the inside of the gas barrier container or a vacuum, or an inert gas A gas replacement method is known.
  • Patent Document 1 discloses an oxygen-absorbing film package that can be stably distributed and stored.
  • an embedded body that fills the space is disposed in the space in the core of the film winder housed in the outer bag having oxygen barrier properties. The amount of oxygen that can be absorbed by the oxygen-absorbing film is reduced to facilitate long-term storage.
  • Patent Document 1 when the method of Patent Document 1 is applied to an oxygen-absorbing multilayer body containing an easily oxidizable thermoplastic resin and a transition metal catalyst, the oxygen-absorbing function is remarkably reduced at room temperature or during a long-term storage period at a high temperature. The problem became clear.
  • the present invention has been made in order to solve the above-mentioned problems, and an object thereof is an easily oxidizable thermoplastic resin and a transition metal catalyst capable of suppressing deterioration of oxygen absorption performance even when stored at room temperature or high temperature for a long period of time. It is in providing the package of the oxygen absorptive multilayer body containing this, and the preservation
  • the inventors of the present invention can suppress deterioration in performance during long-term storage by coexisting carbon dioxide in the storage of an oxygen-absorbing multilayer body containing an easily oxidizable thermoplastic resin and a transition metal catalyst. And found the present invention.
  • the present invention provides the following ⁇ 1> to ⁇ 14>.
  • ⁇ 1> (A) Oxygen-absorbing multilayer comprising at least two layers: an isolation layer containing a thermoplastic resin, and an oxygen-absorbing layer comprising an oxygen-absorbing resin composition containing an easily oxidizable thermoplastic resin and a transition metal catalyst A package of an oxygen-absorbing multilayer body, wherein the body and (B) a gas having a carbon dioxide concentration of 0.1 to 100% by volume are sealed in a gas barrier container.
  • ⁇ 3> The oxygen-absorbing multilayer package according to ⁇ 1> or ⁇ 2>, wherein the oxygen concentration in the gas barrier container is 0 to 1% by volume.
  • ⁇ 4> The oxygen-absorbing multilayer package according to any one of ⁇ 1> to ⁇ 3>, wherein the gas barrier container contains an oxygen scavenger.
  • ⁇ 5> The oxygen-absorbing multilayer package according to ⁇ 4>, wherein the oxygen scavenger is a carbon dioxide generating oxygen scavenger.
  • ⁇ 6> The above ⁇ 1> to ⁇ 1>, wherein the oxygen-absorbing multilayer body starts oxygen absorption by irradiation with at least one energy beam selected from the group consisting of ⁇ rays, electron beams and ultraviolet rays.
  • an oxygen-absorbing multilayer body comprising at least two layers of an isolation layer containing a thermoplastic resin and an oxygen-absorbing layer comprising an oxygen-absorbing resin composition containing an easily oxidizable thermoplastic resin and a transition metal catalyst
  • ⁇ 11> The method for storing an oxygen-absorbing multilayer body according to ⁇ 9> or ⁇ 10>, wherein the oxygen concentration in the gas barrier container is 0 to 1% by volume.
  • ⁇ 12> Any one of the above ⁇ 9> to ⁇ 11>, wherein an oxygen scavenger is sealed in the gas barrier container so that a carbon dioxide concentration in the gas barrier container is 0.1 to 100% by volume. 2.
  • ⁇ 13> The method for storing an oxygen-absorbing multilayer body according to ⁇ 12>, wherein the oxygen scavenger is a carbon dioxide generating oxygen scavenger.
  • ⁇ 14> The method for storing an oxygen-absorbing multilayer body according to any one of the above ⁇ 9> to ⁇ 13>, wherein the storage temperature is 40 ° C. or lower.
  • the excellent oxygen-absorbing performance of the oxygen-absorbing multilayer can be maintained for a long time by coexisting carbon dioxide. It becomes.
  • the oxygen-absorbing multilayer body of the present embodiment is obtained by laminating an oxygen-absorbing layer made of an oxygen-absorbing resin composition containing an isolating layer containing a thermoplastic resin, an easily oxidizable thermoplastic resin and a transition metal catalyst. , Comprising at least two layers of an isolation layer and an oxygen absorption layer. In addition to the above layers, any layer can be laminated (intervened) at any position within a range in which the intended performance of the oxygen-absorbing multilayer body of the present embodiment is not impaired. .
  • the oxygen-absorbing multilayer body can be produced by a known method.
  • a deodorizing agent such as an inorganic metal compound that absorbs an acidic gas or a basic gas, silica, or zeolite can be added to any layer of the oxygen-absorbing multilayer body as appropriate.
  • the isolation layer constituting the oxygen-absorbing multilayer body of the present embodiment serves to isolate the oxygen-absorbing layer and the stored item and also serves as a sealant. Moreover, it plays a role of performing efficient oxygen permeation so as not to prevent rapid oxygen absorption by the easily oxidizable thermoplastic resin contained in the oxygen-absorbing resin composition constituting the oxygen-absorbing layer.
  • Isolation layer in this embodiment 23 ° C.
  • oxygen permeability when measured under the conditions of 60% relative humidity is at 1000mL / (m 2 ⁇ day ⁇ atm) or more, preferably 3000mL / (m 2 ⁇ day ⁇ Atm) or more, and more preferably 5000 mL / (m 2 ⁇ day ⁇ atm) or more.
  • the oxygen permeability is equal to or higher than the above preferable value, the oxygen absorption rate of the oxygen absorption layer can be further increased as compared with the case where the oxygen permeability is not higher.
  • thermoplastic resin used in the isolation layer include polyethylene, ethylene- ⁇ -olefin copolymer, polypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, and ethylene-cyclic olefin copolymer.
  • Polyolefin resins such as ethylene- (meth) acrylic acid copolymer, ethylene-methyl (meth) acrylate, various ion cross-linked products of ethylene- (meth) acrylic acid copolymer, ethylene-vinyl acetate copolymer, etc.
  • Synthetic rubber resins such as ethylene copolymers, polybutadiene, polyisoprene, styrene-butadiene copolymers and their hydrogenated resins, soft polyvinyl chloride, polystyrene, polymethylpentene, silicone resins and polysiloxanes and other resins And the like. These can be used alone or in combination of two or more.
  • the thickness of the isolation layer is not particularly limited and can be set as appropriate. Considering the balance between the strength of the multilayer body and the oxygen absorption rate, the thickness of the separating layer is preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and particularly preferably 1 to 20 ⁇ m.
  • the oxygen-absorbing layer constituting the oxygen-absorbing multilayer body of this embodiment contains a thermoplastic resin composition containing an easily oxidizable thermoplastic resin and a transition metal catalyst.
  • the thickness of the oxygen absorbing layer is not particularly limited and can be set as appropriate. Considering the flexibility of the packaging material and the balance of oxygen absorption rate, it is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the oxidizable thermoplastic resin used in the present embodiment is a carbon-carbon double bond, allyl carbon (carbon adjacent to the carbon-carbon double bond), phenyl group, alcohol group, ether group, aldehyde group, ketone. It means a thermoplastic resin having either a group or a tertiary carbon. These can be used alone or in combination of two or more. Among these, a thermoplastic resin having a carbon-carbon double bond, allyl carbon, phenyl group or tertiary carbon is preferable, and a thermoplastic resin having a carbon-carbon double bond, allyl carbon or phenyl group is more preferable.
  • the carbon-carbon double bond or allyl carbon may be in the main chain of the polymer or in the side chain.
  • Representative examples include 1,4-polybutadiene, 1,2-polybutadiene, 1,4-polyisoprene, 3,4-polyisoprene, styrene butadiene rubber, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block.
  • copolymers ethylene-methyl acrylate-cyclohexenyl methyl acrylate copolymer, and the like.
  • thermoplastic resin having a phenyl group examples include hydrogenated styrene butadiene rubber and hydrogenated styrene isoprene rubber.
  • thermoplastic resin having tertiary carbon examples include polypropylene and polymethylpentene.
  • 1,2-polybutadiene, styrene-butadiene-styrene block copolymer, and styrene-isoprene-styrene block copolymer are preferable, 1,2-polybutadiene is more preferable, and syndiotactic 1,2-polybutadiene is preferable. Particularly preferred.
  • the transition metal catalyst of the present embodiment can be appropriately selected from known ones as long as it can function as an oxidation reaction catalyst for an easily oxidizable thermoplastic resin, and is not particularly limited.
  • transition metal catalyst examples include organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides and hydroxides of transition metals.
  • transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, manganese, iron, cobalt, nickel, and copper are preferable.
  • organic acids examples include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, octylic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, capric acid, Examples include, but are not limited to, naphthenic acid.
  • the transition metal catalyst is preferably a combination of these transition metals and an organic acid, the transition metal is manganese, iron, cobalt, nickel or copper, and the organic acid is octylic acid, neodecanoic acid, naphthenic acid and stearic acid.
  • a combination of at least one selected fatty acid is more preferable. Particularly preferred is a combination in which the transition metal is cobalt and the organic acid is octylic acid or neodecanoic acid.
  • a transition metal catalyst can be used individually by 1 type or in combination of 2 or more types.
  • the oxygen absorbing layer is different from the above-mentioned easily oxidizable thermoplastic resin (hereinafter simply referred to as “other thermoplastics”). Resin ”)) may be further blended.
  • the blending amount is not particularly limited, but is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the easily oxidizable thermoplastic resin from the viewpoint of increasing the oxygen absorption rate. Particularly preferred is ⁇ 500 parts by weight.
  • the other thermoplastic resins to be blended here are preferably those having high compatibility with the easily oxidizable thermoplastic resin and those having a high oxygen permeability when the thermoplastic resin composition is formed into a film.
  • the oxygen-absorbing resin composition constituting the oxygen-absorbing layer can be produced, for example, by mixing a resin composition containing an easily oxidizable thermoplastic resin and a transition metal catalyst at a temperature higher than the melting temperature of each resin. Alternatively, it can also be produced by mixing an easily oxidizable thermoplastic resin and a powdered transition metal catalyst at a temperature higher than the melting temperature of the resin. Further, the oxygen-absorbing resin composition can also be produced by mixing a powdery transition metal catalyst or a resin composition (masterbatch) containing a transition metal catalyst alone at a high concentration and an easily oxidizable resin at a melting temperature or higher.
  • the form of the oxygen-absorbing multilayer body of the present embodiment is not particularly limited.
  • a roll film, a bottle, a bag, a sheet-like film, etc. are mentioned.
  • the roll-shaped film means that the oxygen-absorbing multilayer film is wound around the core.
  • the length of the film to be wound is not particularly limited, but is preferably 1 to 2000 m, more preferably 10 to 1000 m.
  • the material of the roll core of the roll film includes paper, plastic and the like, but is not limited thereto.
  • the form of the core is not limited at all, and a rod-like tube or a hollow tube can be used.
  • the oxygen-absorbing multilayer body and the gas containing 0.1 to 100% by volume of carbon dioxide are sealed in a gas barrier container.
  • the gaseous carbon dioxide concentration is preferably 1 to 100% by volume, more preferably 10 to 100% by volume, still more preferably 20 to 100% by volume, and particularly preferably 50 to 100% by volume.
  • the oxygen concentration of the gas is preferably 0 to 1% by volume, more preferably 0 to 0.5% by volume, and still more preferably. 0 to 0.1% by volume.
  • the gas may contain a known inert gas. Examples of the inert gas include nitrogen and a gas composed of a group 18 element such as argon.
  • the method for adjusting the gas is not limited at all.
  • an oxygen-absorbing multilayer body and a gas adjusted to a predetermined composition are sealed in a gas barrier container, or a gas containing oxygen (for example, air) in a gas barrier container containing the oxygen-absorbing multilayer body is sealed.
  • a gas containing carbon dioxide As a gas used for substitution, nitrogen gas or argon gas generally used for gas substitution may be mixed and used as long as the carbon dioxide concentration and the oxygen concentration are within the above ranges.
  • the carbon dioxide concentration and oxygen concentration in the gas barrier container can be set to, for example, 1 to 100% by volume and It can also be adjusted to 0 to 1% by volume.
  • the above-mentioned organic oxygen absorber carbon dioxide generating oxygen absorber
  • the gas composition can be adjusted within the range.
  • the gas composition in the gas barrier container is appropriately adjusted from the volume and gas composition in the gas barrier container, the capacity of the oxygen scavenger used and the amount of the oxygen scavenger used. Can do. These methods can be used individually by 1 type or in combination of 2 or more types.
  • the gas barrier container of the present embodiment is not limited in size and shape as long as it can accommodate the oxygen-absorbing multilayer body.
  • the shape include a cylindrical drum can, and a bag shape such as a palm bag or a three-sided bag.
  • the material of the gas barrier container is not particularly limited, and a known gas barrier substance can be used.
  • uniaxially or biaxially stretched polyester film such as PET or polyamide film such as MXD6; vinyl alcohol copolymer film; aluminum foil; uniaxially or biaxially stretched PET film, polyamide film, polyolefin film, etc.
  • Metal-deposited plastic film in which a thin film of metal such as aluminum is deposited on a stretched film; inorganic compounds such as aluminum oxide and silicon oxide on stretched films such as uniaxially or biaxially stretched PET film, polyamide film, and polyolefin film
  • An inorganic compound vapor-deposited plastic film provided with a thin film of the above; a barrier layer coating obtained by coating a suitable amount of a vinylidene chloride resin, a mixture of an inorganic layered compound and a water-soluble polymer such as polyvinyl alcohol, etc.
  • Grayed plastic film or the like can be preferably used.
  • the material constituting the gas barrier layer can be used as a single layer or in combination as a multilayer. Further, the material constituting the gas barrier layer is preferably one that can block ultraviolet rays.
  • the package of this embodiment can be provided with an oxygen indicator and / or a carbon dioxide indicator.
  • the oxygen indicator indicates the oxygen concentration by color tone or the like, and for example, an oxygen detector ageless eye manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
  • the carbon dioxide indicator indicates the carbon dioxide concentration by color tone or the like.
  • the oxygen indicator and / or carbon dioxide indicator can be provided by printing.
  • the printing method is not particularly limited, and printing methods such as gravure printing, offset printing, letterpress printing, screen printing, and coating methods can be applied.
  • oxygen and / or carbon dioxide concentration in the container is displayed by applying or printing the oxygen detector and / or carbon dioxide detector on paper, plastic, etc. as characters, graphics, or patterns. It can be used as an indicator for performing.
  • an oxygen detector and / or a carbon dioxide detector is applied or printed as a character, figure, pattern, or the like on the inner surface of the gas barrier container or on an object in the gas barrier container, for example, the surface of an oxygen scavenger.
  • an indicator that displays the concentration of oxygen and / or carbon dioxide in the container.
  • At least one energy ray selected from ⁇ rays, electron beams and ultraviolet rays is irradiated. Oxygen absorption may be started.
  • irradiation of at least one energy beam selected from ⁇ rays, electron beams and ultraviolet rays to the oxygen-absorbing multilayer body is also referred to as activation.
  • the activation may be performed after the oxygen-absorbing multilayer body is sealed in a gas barrier container, or before the oxygen-absorbing multilayer body is sealed in a gas barrier container. Alternatively, the activation may be performed, and then the oxygen-absorbing multilayer body may be sealed in a gas barrier container. It is preferable that the activation is performed after the oxygen-absorbing multilayer body is sealed in a gas barrier container in terms of suppressing a decrease in oxygen absorption performance and increasing the efficiency of productivity.
  • the dose of ⁇ rays and / or electron beams for starting oxygen absorption in the oxygen-absorbing multilayer body of this embodiment is generally 1 to 200 kGy, preferably 1 to 150 kGy, more preferably 5 to 100 kGy.
  • the oxygen-absorbing multilayer body can be activated more than when it is not, and the odor is considered to be due to the decomposition of the resin in the oxygen-absorbing multilayer body and the gas barrier container.
  • production can be suppressed more.
  • ⁇ rays and / or electron beams can be used as described above, but ⁇ rays are more preferable in that uniform irradiation is possible.
  • the source of ⁇ rays is not particularly limited, cobalt 60 and cesium 137 are exemplified.
  • UV ultraviolet ray
  • the wavelength of the ultraviolet ray irradiated for initiating oxygen absorption of the oxygen-absorbing multilayer body of this embodiment is preferably 10 to 400 nm, and more preferably 200 to 380 nm.
  • the irradiation amount is preferably 300 to 2000 mJ / cm 2 in terms of integrated light 365 nm.
  • LLDPE and silica gel (specific surface area 300 m 2 / g, average particle size 4 ⁇ m) are mixed at a mass ratio of 85:15 and melt kneaded at 170 ° C. using a twin-screw kneading extruder to produce an odor absorbing layer master batch. did.
  • a mixed resin of LLDPE and the above odor absorbing layer masterbatch is used as the odor absorbing layer resin, and syndiotactic 1,2-polybutadiene (hereinafter referred to as “RB”) and styrene-isoprene—as the oxygen absorbing layer resin.
  • RB syndiotactic 1,2-polybutadiene
  • SIS styrene block copolymer
  • LLDPE was used as a resin for the separation layer.
  • the mixing ratio was such that the component content in each layer was as follows. Odor absorbing layer: 5.0% by mass of silica gel
  • Oxygen absorption layer RB 60% by mass, SIS 10% by mass, Co atom 0.3% by mass
  • each layer was co-extruded from a T-die in the order of odor absorbing layer / oxygen absorbing layer / isolating layer so that the thickness of each layer was 20 ⁇ m / 20 ⁇ m / 10 ⁇ m, respectively, and the odor absorbing layer side Were subjected to corona discharge treatment to obtain a three-layer film.
  • an oxygen barrier layer made of vinylidene chloride-coated biaxially stretched polypropylene was adhered to the odor absorbing layer side of the produced three-layer film by dry lamination to prepare an oxygen-absorbing multilayer body.
  • the oxygen-absorbing multilayer body was cut into 100 mm ⁇ 100 mm, sealed and sealed with the multilayer body and 240 mL of air in a gas barrier bag made of silica-deposited polyethylene terephthalate (hereinafter referred to as “silica-deposited PET”). And stored at 60% RH. After storage for 1 day, the oxygen concentration in the bag was measured, and the amount of oxygen absorbed was calculated. Moreover, the thing whose oxygen absorption performance after 1 day storage is 0.05 mL / cm ⁇ 2 > or more was set as the pass.
  • Example 1 The oxygen-absorbing multilayer body was irradiated with ⁇ rays having a dose of 60 kGy, and then cut into 200 mm ⁇ 160 mm.
  • Ten sheets of this oxygen-absorbing multilayer and two iron-based oxygen scavengers (Ageless ZH-100, manufactured by Mitsubishi Gas Chemical Company, Inc.) were stored in a gas barrier bag made of silica-deposited PET.
  • the gas in the gas barrier bag was replaced by degassing the air in the gas barrier bag and enclosing carbon dioxide with a purity of 99.5% by volume. Further, the above replacement operation (degassing and carbon dioxide encapsulation) was performed twice.
  • Example 2 Instead of two oxygen scavengers (Mitsubishi Gas Chemical Co., Ltd., Ageless ZH-100), two non-ferrous carbon dioxide generating oxygen scavengers (Mitsubishi Gas Chemical Co., Ltd., Ageless GE-100) were used.
  • a package of an oxygen-absorbing multilayer was produced in the same manner as in Example 1 except that 400 mL of air was enclosed instead of carbon.
  • the package was stored at 25 ° C. or 40 ° C., and after a predetermined period of time, the oxygen-absorbing multilayer body was taken out from the gas barrier bag, and the oxygen absorption performance was evaluated.
  • Table 1 The results are shown in Table 1.
  • Example 1 A package of oxygen-absorbing multilayer body was produced in the same manner as in Example 1 except that nitrogen gas was used instead of carbon dioxide. Thereafter, the oxygen absorption performance was evaluated in the same manner as in Example 1. Moreover, as a result of measuring the carbon dioxide concentration in the gas barrier bag in the same manner as in Example 1, it was 0.5% by volume or less. The results are shown in Table 1.
  • the oxygen-absorbing multilayer body of the present invention can be used for all or part of an oxygen-absorbing container.
  • the use of the oxygen-absorbing multilayer body of the present invention is not limited, and exhibits oxygen absorption performance that is highly practical in the field of storage and quality maintenance of foods, beverages, pharmaceuticals, medical products, cosmetics, metal products, electronic products, etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

 易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性多層体の長期保管時の酸素吸収性能を保持できる梱包体及び保存方法等を提供する。本発明の酸素吸収性多層体の梱包体は、(A)熱可塑性樹脂を含有する隔離層と、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層の少なくとも2層を備える酸素吸収性多層体と、(B)二酸化炭素濃度が0.1~100容量%である気体とが、ガスバリア性容器内に密封されてなる。

Description

酸素吸収性多層体の梱包体及び保存方法
 本発明は、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性多層体と、二酸化炭素を含有する気体とが共にガスバリア性容器内に密封された梱包体、及び前記酸素吸収性多層体の保存方法に関する。
 食品、飲料、医薬品、医療品、化粧品、金属製品、電子製品に代表される、酸素の影響を受けて変質あるいは劣化し易い各種物品の酸素酸化を防止し長期に保存する目的で、これらを収納した包装容器や包装袋内の酸素除去を行う脱酸素剤が使用されている。
 近年は、より取扱いが容易で適用範囲が広く誤食の可能性が極めて小さいフィルム状の酸素吸収性多層体に関して、その酸素吸収性組成物及び層構成について多くの提案がなされている。酸素吸収性多層体は、それ自身が酸素と反応することによって酸素吸収機能を発現する。従って、この種の酸素吸収性多層体を酸素存在下に放置した場合、酸化が自然と進行してしまうため酸素吸収性能が経時的に低下してしまう。そのため、一般的には製造、流通、加工、保管時における酸素吸収量をできるだけ少なくする必要があり、特に、酸素吸収性多層体の長期保管時はそれが必要である。酸素吸収性多層体の保管方法としては、酸素吸収性多層体を保管するガスバリア性容器内に脱酸素剤を投入する方法や、そのガスバリア性容器内を減圧状態や真空にする方法或いは不活性ガスでガス置換する方法が知られている。
 例えば、特許文献1には、安定的に流通し、かつ保管することができる酸素吸収性フィルムの包装体が開示されている。この酸素吸収性フィルムの包装体においては、酸素バリア性を有する外装袋内に収納されたフィルム巻取体の巻芯内の空間に、当該空間を埋める埋め込み体を配置することで、外装袋内に存在する、酸素吸収性フィルムが吸収可能な酸素の量を減少させて長期保管を容易にしている。
特開2011-235915号公報
 しかしながら、特許文献1の方法を、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性多層体に適応させた場合、常温で又は高温で長期保管期間中に酸素吸収機能が著しく低下するという問題点が判明した。
 本発明は、上記課題を解決するためになされたものであり、その目的は、常温又は高温で長期保管しても酸素吸収性能の劣化を抑制可能な、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性多層体の梱包体、及び、酸素吸収性多層体の保存方法を提供することにある。
 本発明者らは、鋭意検討した結果、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性多層体の保管において、二酸化炭素を共存させることで長期保管時の性能の低下を抑制できることを見出し、本発明に至った。
 すなわち、本発明は、以下<1>~<14>を提供する。
<1> (A)熱可塑性樹脂を含有する隔離層と、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層の少なくとも2層を備える酸素吸収性多層体と、(B)二酸化炭素濃度が0.1~100容量%である気体とが、ガスバリア性容器内に密封されている、酸素吸収性多層体の梱包体。
<2> 前記ガスバリア性容器内の二酸化炭素濃度が1~100容量%である、上記<1>記載の酸素吸収性多層体の梱包体。
<3> 前記ガスバリア性容器内の酸素濃度が0~1容量%である、上記<1>又は<2>に記載の酸素吸収性多層体の梱包体。
<4> 前記ガスバリア性容器内に脱酸素剤を含有する、上記<1>~<3>の何れか一項に記載の酸素吸収性多層体の梱包体。
<5> 前記脱酸素剤が、二酸化炭素発生型脱酸素剤である、上記<4>に記載の酸素吸収性多層体の梱包体。
<6> 前記酸素吸収性多層体が、γ線、電子線及び紫外線よりなる群から選ばれる少なくとも1種類のエネルギー線の照射により酸素吸収を開始することを特徴とする、上記<1>~<5>の何れか一項に記載の酸素吸収性多層体の梱包体。
<7> 前記易酸化性熱可塑性樹脂が、炭素-炭素二重結合、アリル炭素及びフェニル基よりなる群から選ばれる少なくとも1種を有する熱可塑性樹脂である、上記<1>~<6>の何れか一項に記載の酸素吸収性多層体の梱包体。
<8> 前記ガスバリア性容器内に酸素インジケーターを備える、上記<1>~<7>の何れか一項に記載の酸素吸収性多層体の梱包体。
<9> 熱可塑性樹脂を含有する隔離層と、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層の少なくとも2層を備える酸素吸収性多層体の保存方法であって、
 前記多層体をガスバリア性容器内に密封し、前記ガスバリア性容器内の二酸化炭素濃度を0.1~100容量%とする、酸素吸収性多層体の保存方法。
<10> 前記ガスバリア性容器内の二酸化炭素濃度が1~100容量%である、上記<9>記載の酸素吸収性多層体の保存方法。
<11> 前記ガスバリア性容器内の酸素濃度が0~1容量%である、上記<9>又は<10>に記載の酸素吸収性多層体の保存方法。
<12> 前記ガスバリア性容器内に脱酸素剤を密封して、前記ガスバリア性容器内の二酸化炭素濃度を0.1~100容量%とする、上記<9>~<11>の何れか一項に記載の酸素吸収性多層体の保存方法。
<13> 前記脱酸素剤が、二酸化炭素発生型脱酸素剤である、上記<12>に記載の酸素吸収性多層体の保存方法。
<14> 保存温度が40℃以下である、上記<9>~<13>の何れか一項に記載の酸素吸収性多層体の保存方法。
 本発明の酸素吸収性多層体の梱包体及び酸素吸収性多層体の保存方法によれば、二酸化炭素を共存させることで、酸素吸収性多層体の優れた酸素吸収性能を長期間維持できることが可能となる。
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
<酸素吸収性多層体>
 本実施形態の酸素吸収性多層体は、熱可塑性樹脂を含有する隔離層、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層を積層したものであり、少なくとも隔離層と酸素吸収層の2層を備える。さらに、上記の各層の他にも、本実施形態の酸素吸収性多層体が目的とする所期の性能を損なわない範囲内で、任意の層を任意の位置に積層(介在)することもできる。前記酸素吸収性多層体は公知の方法で製造することができる。さらに前記酸素吸収性多層体の任意の層に適宜、酸性ガスや塩基性ガスを吸収する無機金属化合物やシリカやゼオライト等の脱臭剤を添加することもできる。
(隔離層)
 本実施形態の酸素吸収性多層体を構成する隔離層は、酸素吸収層と収納物とを隔離する役割を果たすと共に、シーラントとしての役割を果たす。また、酸素吸収層を構成する酸素吸収性樹脂組成物に含有される易酸化性熱可塑性樹脂による速やかな酸素吸収を妨げないように、効率的な酸素透過を行う役割を果たす。
 本実施形態の隔離層は、23℃、相対湿度60%の条件下で測定したときの酸素透過度が1000mL/(m・day・atm)以上であり、好ましくは3000mL/(m・day・atm)以上であり、5000mL/(m・day・atm)以上であるとより好ましい。酸素透過度が上記の好ましい値以上であると、そうでない場合に比べて、酸素吸収層の酸素を吸収する速度をより高めることができる。
 隔離層に用いられる熱可塑性樹脂の代表例としては、ポリエチレン、エチレン-α-オレフィン共重合体、ポリプロピレン、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、エチレン-環状オレフィン共重合体等のポリオレフィン樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル、エチレン-(メタ)アクリル酸共重合体の各種イオン架橋物、エチレン-酢酸ビニル共重合体等のエチレン系共重合体、ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体等の合成ゴム系樹脂及びその水添樹脂、軟質ポリ塩化ビニル、ポリスチレン、ポリメチルペンテン、シリコーン樹脂及びポリシロキサンと他の樹脂との共重合体等が挙げられる。これらは、1種を単独で、または2種以上を組み合わせて用いることができる。
 隔離層の厚さは、特に限定されず、適宜設定することができる。多層体の強度及び酸素吸収速度のバランスを考慮すると、隔離層の厚さは、1~100μmが好ましく、1~50μmがより好ましく、1~20μmが特に好ましい。
(酸素吸収層)
 本実施形態の酸素吸収性多層体を構成する酸素吸収層は、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する熱可塑性樹脂組成物を含有する。
 酸素吸収層の厚みは、特に限定されず、適宜設定することができる。包装材料としての柔軟性を及び酸素吸収速度のバランスを考慮すると、1~300μmが好ましく、5~200μmがより好ましく、10~100μmが特に好ましい。
 本実施形態に用いられる易酸化性熱可塑性樹脂とは、炭素-炭素二重結合、アリル炭素(炭素-炭素二重結合に隣接する炭素)、フェニル基、アルコール基、エーテル基、アルデヒド基、ケトン基、第3級炭素のいずれかを有する熱可塑性樹脂を意味する。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、炭素-炭素二重結合、アリル炭素、フェニル基、第3級炭素を有する熱可塑性樹脂が好ましく、炭素-炭素二重結合、アリル炭素、フェニル基を有する熱可塑性樹脂がより好ましい。
 炭素-炭素二重結合又はアリル炭素を有する熱可塑性樹脂において、炭素-炭素二重結合又はアリル炭素は、高分子の主鎖にあってもよいし、側鎖にあってもよい。代表例として、1,4-ポリブタジエン、1,2-ポリブタジエン、1,4-ポリイソプレン、3,4-ポリイソプレン、スチレンブタジエンゴム、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、エチレン-アクリル酸メチル-アクリル酸シクロヘキセニルメチル共重合体等が挙げられる。フェニル基を有する熱可塑性樹脂としては、水添スチレンブタジエンゴム、水添スチレンイソプレンゴム等が挙げられる。第3級炭素を有する熱可塑性樹脂としては、ポリプロピレン、ポリメチルペンテン等が挙げられる。これらの中でも、1,2-ポリブタジエン、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体が好ましく、1,2-ポリブタジエンがより好ましく、シンジオタクチック1,2-ポリブタジエンが特に好ましい。
 本実施形態の遷移金属触媒は、易酸化性熱可塑性樹脂の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができ、特に限定されない。
 上記遷移金属触媒の具体例としては、例えば、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、マンガン、鉄、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、オクチル酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸が挙げられるが、これらに限定されない。遷移金属触媒は、これらの遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がマンガン、鉄、コバルト、ニッケル又は銅であり、有機酸がオクチル酸、ネオデカン酸、ナフテン酸及びステアリン酸から選ばれる少なくとも1種の脂肪酸である組み合わせがより好ましい。特に,遷移金属がコバルト、有機酸がオクチル酸又はネオデカン酸である組み合わせが特に好ましい。なお、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 酸素吸収層には、酸素吸収層の酸素透過性を上げ酸素を吸収する速度を速くするために、上述した易酸化性熱可塑性樹脂とは別種の熱可塑性樹脂(以下、単に「他の熱可塑性樹脂」ともいう。)をさらに配合してもよい。他の熱可塑性樹脂を配合する場合、その配合量としては、特に限定されないが、酸素吸収速度を高める観点から、易酸化性熱可塑性樹脂100質量部に対して10~1000質量部が好ましく、50~500質量部が特に好ましい。ここで配合する他の熱可塑性樹脂は、易酸化性熱可塑性樹脂との相溶性が高いものや、熱可塑性樹脂組成物をフィルム化した際の酸素透過度が高いものが好ましい。
 酸素吸収層を構成する酸素吸収性樹脂組成物は、例えば易酸化性熱可塑性樹脂と遷移金属触媒を含有する樹脂組成物を各樹脂の溶融温度以上で混合することによって、製造できる。あるいは、易酸化性熱可塑性樹脂と粉末状遷移金属触媒を樹脂の溶融温度以上で混合すること等によっても製造できる。また、酸素吸収性樹脂組成物は粉末状遷移金属触媒あるいは遷移金属触媒単体を高濃度に含有する樹脂組成物(マスターバッチ)と易酸化性樹脂を溶融温度以上で混合することによっても製造できる。
(酸素吸収性多層体の形態)
 本実施形態の酸素吸収性多層体の形態は、特に限定されない。例えば、ロール状フィルム、ボトル、袋、枚葉状フィルム等が挙げられる。
(ロール状フィルム)
 本実施形態において、ロール状フィルムとは、巻芯に酸素吸収性多層体のフィルムが巻き取られた状態であることを意味する。巻き取られるフィルムの長さは、特に限定されないが、好ましくは1~2000mであり、より好ましくは10~1000mである。
 前記ロール状フィルムの巻芯の材質は、紙、プラスチックなどが挙げられるが、これらに限定されるものではない。巻芯の形態も何ら制限されず、棒状の管や中空管を用いることができる。
<二酸化炭素を含有する気体>
 本実施形態の梱包体では、上述した酸素吸収性多層体と二酸化炭素を0.1~100容量%含有する気体とが、ガスバリア性容器内に密封される。気体の二酸化炭素濃度は、1~100容量%が好ましく、10~100容量%がより好ましく、20~100容量%がさらに好ましく、50~100容量%が特に好ましい。二酸化炭素濃度を上記の好ましい範囲とすることで、酸素吸収性多層体の酸素吸収性能をより高く維持することが出来る。
 また、酸素吸収性多層体の酸素吸収性能低下を抑制する観点から、気体の酸素濃度は0~1容量%であることが好ましく、より好ましくは0~0.5容量%であり、さらに好ましくは0~0.1容量%である。さらに、気体には公知の不活性気体が含まれていても良い。不活性気体としては、窒素や、アルゴンなどの18族元素からなる気体が挙げられる。
 上記の気体の調整方法は何ら限定されない。例えば、酸素吸収性多層体と、所定の組成に調整した気体とをガスバリア性容器内に封入して密封する方法や、酸素吸収多層体を収納したガスバリア性容器内の酸素を含む気体(例えば空気)を、二酸化炭素を含む気体で置換する方法が挙げられる。置換に用いる気体としては、二酸化炭素濃度や酸素濃度が上記の範囲内であれば、一般的にガス置換に使用される窒素ガスやアルゴンガスを混合して使用してもよい。
 また、二酸化炭素を含む気体と共に、容器内の酸素を吸収することができる鉄系脱酸素剤を封入することで、ガスバリア性容器内の二酸化炭素濃度や酸素濃度を、例えば1~100容量%及び0~1容量%にそれぞれ調整することもできる。さらに、ガスバリア性容器内の酸素を吸収し二酸化炭素を発生する、有機系脱酸素剤(二酸化炭素発生型脱酸素剤)を酸素吸収性多層体と共にガスバリア性容器内に収納することによっても、上記範囲内に気体組成を調整することができる。この有機系脱酸素剤を用いた気体組成の調整方法においては、ガスバリア容器内の容積と気体組成、用いる脱酸素剤の能力とその配合量から適宜、ガスバリア性容器内の気体組成を調整することができる。これらの方法は、1種を単独で、または2種以上を組み合わせて用いることができる。
<ガスバリア性容器>
 本実施形態のガスバリア性容器は、酸素吸収性多層体を収納できるものであれば、その大きさや形状は限定されない。形状としては円筒型のドラム缶や、合掌袋や三方袋のような袋形状等が挙げられる。また、ガスバリア性容器の素材も特に限定されず、公知のガスバリア性物質を用いることができる。例えば、一軸ないし二軸延伸された、PET等のポリエステルフィルム又はMXD6等のポリアミドフィルム;ビニルアルコール共重合体系フィルム;アルミニウム箔;一軸ないし二軸延伸されたPETフィルム、ポリアミドフィルム、ポリオレフィン系フィルムなどの延伸フィルム上にアルミニウム等の金属の薄膜を蒸着した金属蒸着プラスチックフィルム;一軸ないし二軸延伸されたPETフィルム、ポリアミドフィルム、ポリオレフィン系フィルムなどの延伸フィルム上に、酸化アルミニウムや酸化ケイ素などの無機化合物の薄膜を設けた無機化合物蒸着プラスチックフィルム;上記のプラスチックフィルムに塩化ビニリデン樹脂、無機層状化合物とポリビニルアルコール等の水溶性高分子の混合物等を適量塗工したバリア層コーティングプラスチックフィルム等が好ましく使用できる。
 さらに、ガスバリア層を構成する材料は、単層として、または組み合わせて多層として用いることもできる。さらにガスバリア層を構成する材料は、紫外線を遮断できるものが好ましい。
(酸素インジケーター、二酸化炭素インジケーター)
 本実施形態の梱包体には、酸素インジケーター及び/又は二酸化炭素インジケーターを設けることができる。酸素インジケーターとは、色調などで酸素濃度を示すものであり、例えば、三菱瓦斯化学株式会社製の酸素検知剤エージレスアイを用いることができる。同様に、二酸化炭素インジケーターとは、色調などで二酸化炭素濃度を示すものである。
 酸素インジケーター及び/又は二酸化炭素インジケーターは印刷によって設けることができる。印刷方法は特に限定されないが、グラビア印刷、オフセット印刷、凸版印刷、スクリーン印刷等の印刷方法あるいは塗布方法等が適用できる。具体的には、紙またはプラスチック等の上に、酸素検知剤及び/又は二酸化炭素検知剤を文字、図形または絵柄等として塗布または印刷することにより、容器内の酸素及び/又は二酸化炭素の濃度表示を行なうインジケーターとすることができる。また、ガスバリア性容器の内側面上、または、ガスバリア性容器内の物体、例えば脱酸素剤の表面上に、酸素検知剤及び/又は二酸化炭素検知剤を文字、図形または絵柄等として塗布または印刷することにより、容器内の酸素及び/又は二酸化炭素の濃度表示を行なうインジケーターとすることができる。
(エネルギー線)
 酸素が存在する雰囲気下で前記酸素吸収性多層体を放置しても十分に酸素の吸収を開始しない場合、γ線、電子線及び紫外線の中から選ばれる少なくとも1種類のエネルギー線を照射して、酸素吸収を開始させてもよい。本明細書においては、前記酸素吸収性多層体への、γ線、電子線及び紫外線の中から選ばれる少なくとも1種類のエネルギー線の照射を、活性化とも言う。
(γ線、電子線)
 γ線及び電子線を照射する場合、前記酸素吸収性多層体をガスバリア性容器内に密封した後に前記活性化を行ってもよいし、前記酸素吸収性多層体をガスバリア性容器内に密封する前に前記活性化を行い、その後に前記酸素吸収性多層体をガスバリア性容器内に密封してもよい。酸素吸収性能の低下を抑制できる点や生産性の効率化の点で、前記酸素吸収性多層体をガスバリア性容器内に密封した後に前記活性化を行うことが好ましい。
 本実施形態の酸素吸収性多層体の酸素吸収を開始させるγ線及び/又は電子線の線量としては、一般的には1~200kGyであり、1~150kGyが好ましく、5~100kGyがより好ましい。線量が上記範囲内の場合、そうでない場合に比べて、酸素吸収性多層体をより活性化することができると共に、酸素吸収性多層体及びガスバリア性容器の中の樹脂の分解によると思われる異臭発生をより抑制することができる。
 本実施形態においては、上述したとおりγ線及び/又は電子線を用いることができるが、均一な照射が可能である点で、γ線がより好ましい。γ線の線源は特に限定されないが、コバルト60、セシウム137が例示される。
 (紫外線)
 紫外線を照射する場合、前記酸素吸収性多層体をガスバリア性容器内に密封する前に前記活性化を行い、その後に前記酸素吸収性多層体をガスバリア性容器内に密封することが好ましい。
 本実施形態の酸素吸収性多層体の酸素吸収を開始させる為に照射する紫外線の波長としては、10~400nmが好ましく、200~380nmがより好ましい。照射量は積算光365nm換算で300~2000mJ/cmが好ましい。照射量が上記好ましい範囲内にあると、そうでない場合に比べて、酸素吸収性多層体を活性化することができると共に、フィルムの着色や変形をより抑制する事ができる。
 以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。
(触媒マスターバッチ)
 オクチル酸コバルト溶液(オクチル酸コバルト:溶媒=1:1(質量比)、Co含有量:8質量%)と合成ケイ酸カルシウム粉末(平均粒子径2μm)とを質量比2:1で混合し、粉末状物を得た。該粉末状物と直鎖状短鎖分岐ポリエチレン(以下「LLDPE」と表記する)とを、質量比20:80で2軸混練押出機を用いて160℃で溶融混練することにより、触媒マスターバッチ(Co含有量1質量%)を作製した。
(臭気吸収層マスターバッチ)
 LLDPEとシリカゲル(比表面積300m/g、平均粒子径4μm)を、質量比85:15で混合し、2軸混練押出機を用いて170℃で溶融混練して、臭気吸収層マスターバッチを作製した。
(酸素吸収性多層体)
 臭気吸収層用樹脂としてLLDPEと上記臭気吸収層マスターバッチの混合樹脂を用い、酸素吸収層用樹脂としてシンジオタクチック1,2-ポリブタジエン(以下、「RB」と表記する。)及びスチレン-イソプレン-スチレンブロック共重合体(以下、「SIS」と表記する。)と上記触媒マスターバッチの混合樹脂を用い、隔離層用樹脂としてLLDPEを用いた。混合比は、各層中の成分含有率が下記になるようにした。
 臭気吸収層: シリカゲル5.0質量%
 酸素吸収層: RB60質量%、SIS10質量%、Co原子0.3質量%
 各層を構成する樹脂を、臭気吸収層/酸素吸収層/隔離層の順序で、各層の厚さがそれぞれ20μm/20μm/10μmとなるようにTダイより共押出して製膜し、臭気吸収層側にコロナ放電処理を行い、3層フィルムを得た。次に、作製した3層フィルムの臭気吸収層側に塩化ビニリデンコート2軸延伸ポリプロピレンからなる酸素バリア層を、ドライラミネーションにより接着し、酸素吸収性多層体を作成した。
(酸素吸収性能の評価)
 酸素吸収性多層体を100mm×100mmに切り出し、シリカ蒸着ポリエチレンテレフタレート(以下、「シリカ蒸着PET」と表記する。)からなるガスバリア袋に前記多層体と空気240mLとを封入し密封した後に、25℃、60%RHにて保存した。1日保存後に袋内酸素濃度を測定し、酸素吸収量を算出した。また、1日保存後の酸素吸収性能が0.05mL/cm以上であるものを合格とした。
(実施例1)
 前記酸素吸収性多層体に、線量60kGyのγ線を照射した後に、200mm×160mmに切り取った。この酸素吸収性多層体10枚と、鉄系脱酸素剤(三菱瓦斯化学株式会社製、エージレスZH-100)2個とを、シリカ蒸着PETからなるガスバリア袋に収納した。前記ガスバリア袋内の空気を脱気し、純度99.5容量%の二酸化炭素を封入することで、前記ガスバリア袋内の気体を置換した。さらに、前記の置換操作(脱気と前記二酸化炭素の封入)を2回行った。その後、純度99.5容量%の二酸化炭素を400mL封入し、ガスバリア袋の開口部をシールして密封することで、酸素吸収性多層体の梱包体を作製した。
 該梱包体を室温で24時間保存後に、ガスバリア袋内の二酸化炭素濃度をガスクロマトグラフにて測定した結果、91容量%であった。また、該梱包体を25℃または40℃で保管し、所定期間経過後にガスバリア袋から酸素吸収性多層体を取り出し、酸素吸収性能の評価を行った。結果を表1に示す。
(実施例2)
 脱酸素剤(三菱瓦斯化学株式会社製、エージレスZH-100)2個に代えて非鉄系の二酸化炭素発生型脱酸素剤(三菱瓦斯化学株式会社製、エージレスGE-100)2個を用い、二酸化炭素に代えて空気を400mL封入したこと以外は、実施例1と同様にして、酸素吸収性多層体の梱包体を作製した。
 該梱包体を室温で24時間保存後に、ガスバリア袋内の二酸化炭素濃度をガスクロマトグラフにて測定した結果、13容量%であった。また、該梱包体を25℃または40℃で保管し、所定期間経過後にガスバリア袋から酸素吸収性多層体を取り出し、酸素吸収性能の評価を行った。結果を表1に示す。
(比較例1)
 二酸化炭素の代わりに窒素ガスを使用した以外は実施例1と同様にして、酸素吸収性多層体の梱包体を作製した。その後、実施例1と同様に、酸素吸収性能の評価を行った。また、実施例1と同様にガスバリア袋内の二酸化炭素濃度を測定した結果、0.5容量%以下であった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~2から、二酸化炭素を共存させて保管させると、常温25℃又は40℃という比較的高温下で保管しても、酸素吸収性能を長期間維持させることができることが明らかとなった。
産業上の利用分野
 本発明の酸素吸収性多層体は、酸素吸収性容器の全体又は一部に使用することができる。本発明の酸素吸収性多層体の用途に制限はなく、食品、飲料、医薬品、医療品、化粧品、金属製品、電子製品などの保存及び品質保持の分野において実用性の高い酸素吸収性能を発揮する。
 なお、本出願は、2013年2月5日に日本国特許庁に出願された日本特許出願(特願2013-020545号)に基づく優先権を主張しており、その内容はここに参照として取り込まれる。

Claims (14)

  1.  (A)熱可塑性樹脂を含有する隔離層と、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層の少なくとも2層を備える酸素吸収性多層体と、
     (B)二酸化炭素濃度が0.1~100容量%である気体とが、
     ガスバリア性容器内に密封されている、酸素吸収性多層体の梱包体。
  2.  前記ガスバリア性容器内の二酸化炭素濃度が1~100容量%である、請求項1記載の酸素吸収性多層体の梱包体。
  3.  前記ガスバリア性容器内の酸素濃度が0~1容量%である、請求項1又は2に記載の酸素吸収性多層体の梱包体。
  4.  脱酸素剤が前記ガスバリア性容器内に密封されている、請求項1~3の何れか一項に記載の酸素吸収性多層体の梱包体。
  5.  前記脱酸素剤が、二酸化炭素発生型脱酸素剤である、請求項4に記載の酸素吸収性多層体の梱包体。
  6.  前記酸素吸収性多層体が、γ線、電子線及び紫外線よりなる群から選ばれる少なくとも1種類のエネルギー線の照射により酸素吸収を開始することを特徴とする、請求項1~5の何れか一項に記載の酸素吸収性多層体の梱包体。
  7.  前記易酸化性熱可塑性樹脂が、炭素-炭素二重結合、アリル炭素及びフェニル基よりなる群から選ばれる少なくとも1種を有する熱可塑性樹脂である、請求項1~6の何れか一項に記載の酸素吸収性多層体の梱包体。
  8.  前記ガスバリア性容器内に酸素インジケーター及び/又は二酸化炭素インジケーターを備える、請求項1~7の何れか一項に記載の酸素吸収性多層体の梱包体。
  9.  熱可塑性樹脂を含有する隔離層と、易酸化性熱可塑性樹脂及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層の少なくとも2層を備える酸素吸収性多層体の保存方法であって、
     前記多層体をガスバリア性容器内に密封し、前記ガスバリア性容器内の二酸化炭素濃度を0.1~100容量%とする、酸素吸収性多層体の保存方法。
  10.  前記ガスバリア性容器内の二酸化炭素濃度が1~100容量%である、請求項9記載の酸素吸収性多層体の保存方法。
  11.  前記ガスバリア性容器内の酸素濃度が0~1容量%である、請求項9又は10に記載の酸素吸収性多層体の保存方法。
  12.  前記ガスバリア性容器内に脱酸素剤を密封して、前記ガスバリア性容器内の二酸化炭素濃度を0.1~100容量%とする、請求項9~11の何れか一項に記載の酸素吸収性多層体の保存方法。
  13.  前記脱酸素剤が、二酸化炭素発生型脱酸素剤である、請求項12に記載の酸素吸収性多層体の保存方法。
  14.  保存温度が40℃以下である、請求項9~13の何れか一項に記載の酸素吸収性多層体の保存方法。
PCT/JP2014/052557 2013-02-05 2014-02-04 酸素吸収性多層体の梱包体及び保存方法 WO2014123116A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/759,305 US20150353251A1 (en) 2013-02-05 2014-02-04 Packaged article of oxygen absorbing multilayer body and method for storing oxygen absorbing multilayer body
EP14748651.8A EP2955129A4 (en) 2013-02-05 2014-02-04 PACKAGING UNIT FOR A MULTILAYER OXYGEN ABSORBENT ITEM AND STORAGE PROCESS
KR1020157018277A KR20150114467A (ko) 2013-02-05 2014-02-04 산소 흡수성 다층체의 곤포체 및 보존 방법
JP2014560769A JP6327522B2 (ja) 2013-02-05 2014-02-04 酸素吸収性多層体の梱包体及び保存方法
CN201480007634.8A CN104968580A (zh) 2013-02-05 2014-02-04 吸氧性多层体的包装体及保存方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-020545 2013-02-05
JP2013020545 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014123116A1 true WO2014123116A1 (ja) 2014-08-14

Family

ID=51299710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052557 WO2014123116A1 (ja) 2013-02-05 2014-02-04 酸素吸収性多層体の梱包体及び保存方法

Country Status (7)

Country Link
US (1) US20150353251A1 (ja)
EP (1) EP2955129A4 (ja)
JP (1) JP6327522B2 (ja)
KR (1) KR20150114467A (ja)
CN (1) CN104968580A (ja)
TW (1) TW201444681A (ja)
WO (1) WO2014123116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075406A (ja) * 2018-11-07 2020-05-21 東洋製罐グループホールディングス株式会社 酸素吸収性積層体及びその製造方法
JP2020092262A (ja) * 2018-11-26 2020-06-11 住友化学株式会社 有機光電変換素子の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894194B1 (en) * 2012-09-07 2017-01-11 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using same
JP6198182B1 (ja) * 2016-12-09 2017-09-20 三菱瓦斯化学株式会社 多層体、包装容器、及び食品の保存方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128683A (ja) * 1988-11-05 1990-05-17 Mitsubishi Gas Chem Co Inc 嫌気性菌の培養装置及び培養方法
JPH04287684A (ja) * 1991-03-15 1992-10-13 Mitsubishi Gas Chem Co Inc カンピロバクタ−属細菌の培養方法
JP2009215440A (ja) * 2008-03-11 2009-09-24 Mitsubishi Gas Chem Co Inc 酸素吸収性樹脂組成物
JP2009234623A (ja) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd 易酸化物質含有フィルム巻取り脱酸素包装用外装体
WO2010023899A1 (ja) * 2008-08-26 2010-03-04 三菱瓦斯化学株式会社 脱酸素性多層体
JP2011235915A (ja) 2010-05-07 2011-11-24 Dainippon Printing Co Ltd 酸素吸収性フィルムの包装体
JP2012171666A (ja) * 2011-02-23 2012-09-10 Mitsubishi Gas Chemical Co Inc 酸素吸収性包装容器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464813B1 (ko) * 2009-05-18 2014-11-24 미츠비시 가스 가가쿠 가부시키가이샤 탈산소성 다층체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128683A (ja) * 1988-11-05 1990-05-17 Mitsubishi Gas Chem Co Inc 嫌気性菌の培養装置及び培養方法
JPH04287684A (ja) * 1991-03-15 1992-10-13 Mitsubishi Gas Chem Co Inc カンピロバクタ−属細菌の培養方法
JP2009215440A (ja) * 2008-03-11 2009-09-24 Mitsubishi Gas Chem Co Inc 酸素吸収性樹脂組成物
JP2009234623A (ja) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd 易酸化物質含有フィルム巻取り脱酸素包装用外装体
WO2010023899A1 (ja) * 2008-08-26 2010-03-04 三菱瓦斯化学株式会社 脱酸素性多層体
JP2011235915A (ja) 2010-05-07 2011-11-24 Dainippon Printing Co Ltd 酸素吸収性フィルムの包装体
JP2012171666A (ja) * 2011-02-23 2012-09-10 Mitsubishi Gas Chemical Co Inc 酸素吸収性包装容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955129A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075406A (ja) * 2018-11-07 2020-05-21 東洋製罐グループホールディングス株式会社 酸素吸収性積層体及びその製造方法
JP7225701B2 (ja) 2018-11-07 2023-02-21 東洋製罐グループホールディングス株式会社 酸素吸収性積層体及びその製造方法
JP2020092262A (ja) * 2018-11-26 2020-06-11 住友化学株式会社 有機光電変換素子の製造方法
JP7061103B2 (ja) 2018-11-26 2022-04-27 住友化学株式会社 有機光電変換素子の製造方法

Also Published As

Publication number Publication date
CN104968580A (zh) 2015-10-07
TW201444681A (zh) 2014-12-01
EP2955129A1 (en) 2015-12-16
KR20150114467A (ko) 2015-10-12
JPWO2014123116A1 (ja) 2017-02-02
JP6327522B2 (ja) 2018-05-23
EP2955129A4 (en) 2016-10-26
US20150353251A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6327522B2 (ja) 酸素吸収性多層体の梱包体及び保存方法
WO2017169036A1 (ja) 酸素吸収剤組成物、酸素吸収性多層体、酸素吸収性包装容器、及び物品の保存方法
JP6225491B2 (ja) 放射線滅菌処理用包装材料及びそれよりなる包装体
JP4248986B2 (ja) 酸素吸収性積層体、これを用いた包装体およびこれを用いた内容物の充填方法
JP7228329B2 (ja) 臭気吸着性能を有する積層体およびそれを用いた包装袋
KR20160107294A (ko) 산소흡수성 수지 조성물, 및 산소흡수성 필름
JPH05247276A (ja) 酸素バリアー性樹脂組成物
JP2013203436A (ja) 脱酸素性多層体及びそれを用いた重量袋
WO2020213517A1 (ja) ブリスター容器用積層体
JP2018115012A (ja) 包装袋及びその製造方法
JP4081918B2 (ja) 酸素吸収剤、それを用いた包装材料及び包装容器
JP2014079916A (ja) 酸素吸収性多層体
JP7155667B2 (ja) 消臭包装材料及び消臭包装体
JP2018115011A (ja) 包装袋及びその製造方法
JP7155665B2 (ja) 液体内容物用消臭積層体及び液体内容物用消臭包装体
JP2021147086A (ja) 包装体
JP7155666B2 (ja) 消臭包装材料及び消臭包装体
EP3302960B1 (en) Oxygen scavenging films
JP2021146630A (ja) 吸湿及び吸ガス積層フィルム
JP2020158140A (ja) 消臭包装体
JP2020011737A (ja) 包装袋
JP2020158141A (ja) 消臭ptp包装体
JP2019064633A (ja) 液体内容物包装用の積層体、及び液体内容物用包装材料、液体内容物用包装体
JP2018202777A (ja) 殺菌、滅菌処理用積層体と、該積層体を用いた包装材料、及び包装体
JP6186875B2 (ja) 酸素バリア性樹脂組成物ならびにこれらを用いた積層体および成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14759305

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157018277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014748651

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE