WO2014119652A1 - ティルティングパッド軸受装置 - Google Patents

ティルティングパッド軸受装置 Download PDF

Info

Publication number
WO2014119652A1
WO2014119652A1 PCT/JP2014/052059 JP2014052059W WO2014119652A1 WO 2014119652 A1 WO2014119652 A1 WO 2014119652A1 JP 2014052059 W JP2014052059 W JP 2014052059W WO 2014119652 A1 WO2014119652 A1 WO 2014119652A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bearing
oil groove
rotating shaft
tilting pad
Prior art date
Application number
PCT/JP2014/052059
Other languages
English (en)
French (fr)
Inventor
西岡 忠相
侑樹 角
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013146668A external-priority patent/JP6420946B2/ja
Priority claimed from JP2013146669A external-priority patent/JP6332919B2/ja
Priority to KR1020157018155A priority Critical patent/KR101676984B1/ko
Priority to EP15188732.0A priority patent/EP3001049B1/en
Priority to EP14745639.6A priority patent/EP2952757B1/en
Priority to KR1020157022540A priority patent/KR101676987B1/ko
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201480003228.4A priority patent/CN104903601B/zh
Priority to US14/763,930 priority patent/US9366287B2/en
Priority to KR1020157022536A priority patent/KR101676986B1/ko
Publication of WO2014119652A1 publication Critical patent/WO2014119652A1/ja
Priority to US14/939,184 priority patent/US9371857B2/en
Priority to US14/939,236 priority patent/US9512879B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se
    • F16C32/0659Details of the bearing area per se of pockets or grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0644Details of devices to control the supply of liquids to the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0651Details of the bearing area per se
    • F16C32/0655Details of the bearing area per se of supply openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing

Definitions

  • the present invention relates to a tilting pad bearing device that is supported by a plurality of bearing pads that can swing a rotating shaft of a large-sized rotating machine, such as a sliding bearing of a steam turbine.
  • tilting pad bearing devices are used to stably support the rotating shaft.
  • the tilting pad bearing device is a kind of sliding bearing, and has a configuration in which a plurality of bearing pads (tilting pads) that can swing around a rotating shaft in a bearing housing are arranged.
  • the bearing pad is swingably supported by a pivot provided inside the bearing housing.
  • the lubricating oil is guided between the outer peripheral surface of the rotating shaft and the bearing surface of the bearing pad, and a wedge-shaped oil film is formed between them to support the rotating shaft.
  • Patent Document 1 discloses such a tilting pad bearing device.
  • JP 59-212520 A Japanese Utility Model Publication No. 2-14661
  • the tilting pad bearing device is configured such that the bearing pad is supported by a pivot that abuts the outer peripheral surface of the bearing pad so that the bearing pad can swing.
  • the bearing pad is slightly deformed by a load applied to the bearing pad through the via. Therefore, when the rotating shaft is stopped, the bearing pad and the rotating shaft come into contact with each other in a contact area having a shape depending on the deformation of the bearing pad. For example, when the bearing pad is point-supported by a pivot, the contact area between the bearing pad and the rotating shaft is substantially elliptical.
  • the floating characteristics of the rotating shaft by the JOP mechanism are as follows: the contact area between the bearing pad and the rotating shaft when the rotating shaft is stopped, and the lubricating oil provided on the bearing surface of the bearing pad It has been found that it is influenced by the relative positional relationship with the oil groove for introduction. In other words, depending on the relative arrangement relationship between the contact area and the oil groove, the magnitude of the hydraulic pressure supplied to the JOP mechanism that is required to float the rotating shaft differs.
  • Patent Documents 1 and 2 disclose nothing about the relative arrangement relationship between the contact area and the oil groove that can float the rotating shaft by the JOP mechanism even when the pressure of the oil supplied to the JOP mechanism is small. It has not been.
  • An object of at least some embodiments of one aspect of the present invention is to provide a tilting pad bearing device capable of floating a rotating shaft with a small supply oil pressure.
  • the objective of at least some embodiment of the other aspect of this invention is to provide the tilting pad bearing apparatus which can prevent a contact with a rotating shaft and a bearing pad.
  • a tilting pad bearing device includes: A plurality of bearing pads arranged around the rotation shaft and rotatably supporting the rotation shaft; A support member that is interposed between the plurality of bearing pads and a bearing housing that supports the bearing pads, and supports the bearing pads in a swingable manner; A tilting pad bearing device comprising an oil supply mechanism configured to supply lubricating oil to at least one oil groove formed on a bearing surface of one or more bearing pads of the plurality of bearing pads. There, The at least one oil groove is provided inside and outside a contact area that contacts an outer peripheral surface of the rotating shaft among the bearing surfaces when the rotating shaft is stopped.
  • the oil groove to which the lubricating oil is supplied from the oil supply mechanism is provided on the inner side and the outer side of the contact area in contact with the outer peripheral surface of the rotating shaft in the bearing surface. Therefore, when the lubricating oil is supplied from the oil supply mechanism via the oil groove at the start of rotation of the rotating shaft or at a low speed, the lubricating oil can be spread both inside and outside the contact area. Therefore, even if the hydraulic pressure supplied to the oil supply mechanism is relatively small, the rotating shaft can be effectively levitated.
  • the contact area is given to the tilting pad bearing device via the diameter of the rotating shaft (the radius of curvature of the outer peripheral surface of the rotating shaft), the radius of curvature of the bearing surface of the bearing pad, the material of the bearing pad, and the rotating shaft. Determined by load and the like.
  • the shape and position of the contact area may be obtained experimentally or estimated by simulation.
  • the pressure sensitive paper may be sandwiched between the rotating shaft and the on-axis pad, and the colored portion of the pressure sensitive paper may be determined as the contact area.
  • the contact area may be estimated from the contact stress calculated using Hertz theory, or the contact area may be estimated using FEM analysis.
  • a tilting pad bearing device includes: A plurality of bearing pads arranged around the rotation shaft and rotatably supporting the rotation shaft; A support member that is interposed between the plurality of bearing pads and a bearing housing that supports the bearing pads, and supports the bearing pads in a swingable manner; A tilting pad bearing device comprising an oil supply mechanism configured to supply lubricating oil to at least one oil groove formed on a bearing surface of one or more bearing pads of the plurality of bearing pads.
  • the support member is disposed offset from the central position in the rotation direction of the rotation shaft of the one or more bearing pads to the upstream side in the rotation direction or the downstream side in the rotation direction of the rotation shaft,
  • the weighted average position of the at least one oil groove obtained by weighting the center position of each oil groove in the circumferential direction of the rotating shaft by the opening area of the oil groove is the center with respect to the arrangement position of the support member.
  • the support member is deviated in the offset direction with respect to the position.
  • the offset direction of the supporting member weighted average position of the oil groove weighted center position x i of each oil groove in the opening area S i of the oil groove is relative to the position of the support member Therefore, even if the support member is offset, the gap between the bearing pad end on the offset side and the outer peripheral surface of the rotary shaft is such that the bearing pad end on the opposite side of the offset direction and the rotary shaft It can suppress becoming smaller than the clearance gap with an outer peripheral surface. Therefore, it is possible to suppress the rotation shaft from tilting when the rotation shaft starts to rotate or to rotate at a low speed, and to prevent the rotation shaft and the bearing pad from contacting each other.
  • the at least one oil groove extends continuously from the inside to the outside of the contact area. In this way, by providing at least one oil groove that continuously extends from the inside to the outside of the contact area, the number of installed oil grooves can be reduced while maintaining the floating characteristics of the rotating shaft by the oil groove. it can.
  • the at least one oil groove includes an inner oil groove provided inside the contact area, and an outer oil groove provided outside the contact area separately from the inner oil groove. Including.
  • each of the at least one oil groove has a position where the pressure of the oil film formed between the bearing surface and the outer peripheral surface of the rotating shaft is the same when the rotating shaft rotates. It is set as the structure provided along the isobar which passes. Since each oil groove is formed by one communicating space, the same pressure is applied at any position in the oil groove. Therefore, when the oil groove is formed so as to straddle different isobaric lines, there is a possibility that the pressure in the oil groove becomes uniform during the rotation of the rotating shaft and the function as a hydrodynamic bearing is impaired. Therefore, as in the above-described embodiment, by providing each oil groove along a constant pressure line, the pressure in the oil groove at each constant pressure line position can be maintained, and the function as a hydrodynamic bearing can be maintained well.
  • the at least one oil groove includes a first oil groove provided along a first isobaric line passing through a position where the pressure of the oil film is a first pressure, and the pressure of the oil film is the first pressure.
  • a second oil passage that communicates with two oil grooves, and the first oil passage and the second oil passage are provided as separate systems so that at least different pressures can be maintained during rotation of the rotating shaft.
  • the first oil passage that communicates with the first oil groove and the second oil passage that communicates with the second oil groove can be maintained at different pressures at least during rotation of the rotating shaft as separate systems. Is provided. Thereby, it can be avoided that the pressures of the first oil groove and the second oil groove provided along different isobaric lines (first and second isobaric lines) are equalized during rated rotation of the rotating shaft, The function as a bearing can be maintained well.
  • the plurality of first oil grooves provided along the first isobaric lines are configured to communicate with each other via the first oil supply passage.
  • the configuration of the oil supply mechanism such as the oil supply passage and the valve can be simplified by adopting a configuration in which the oil supply passages communicate with each other for the plurality of oil grooves provided along the same isobaric line.
  • the first oil supply passage is provided in the first oil supply passage, the first valve for adjusting the supply amount of the lubricating oil to the first oil groove, the second oil supply passage, the first oil supply passage, And a second valve for adjusting the supply amount of the lubricating oil to the two oil grooves.
  • the one or more bearing pads are arranged offset from the central position in the rotational direction of the rotary shaft in the rotational direction upstream side or the rotational direction downstream side of the rotary shaft, and the rotary shaft
  • the weighted average position of the at least one oil groove obtained by weighting the center position of each oil groove in the circumferential direction by the opening area of the oil groove is based on the center position with respect to the arrangement position of the support member.
  • the support member is displaced in the offset direction.
  • An oil film pressure formed between the rotating shaft and the bearing pad is applied to the bearing pad of the tilting pad bearing device during operation of the JOP mechanism at the start of rotation of the rotating shaft or at low speed rotation (that is, during supply of lubricating oil).
  • a moment around the support point of the bearing pad by the support member is applied.
  • This moment is obtained by integrating a local moment, which is the product of the oil film pressure at an arbitrary position on the bearing surface and the distance from the support point at the position, for all positions on the bearing surface.
  • the sign of this local moment is reversed on both sides of the support point of the bearing pad by the support member. Therefore, the magnitude of the absolute value of the moments on both sides of the bearing pad support point by the support member determines the net moment direction according to the distribution of the oil film pressure formed between the rotating shaft and the bearing pad.
  • the value obtained by dividing the sum ⁇ x i S i by the sum ⁇ S i of the opening areas of all the oil grooves (the oil groove obtained by weighting the center position x i of each oil groove with the opening area S i of the oil groove)
  • the direction of the net moment according to the oil film pressure distribution is determined according to the arrangement relationship between the weighted average position x A ) and the position of the support member.
  • the weighted average position of the oil groove obtained by weighting the center position x i of each oil groove with the opening area S i of the oil groove is shifted in the offset direction of the support member with respect to the arrangement position of the support member.
  • the support member is disposed on the downstream side in the rotational direction of the rotary shaft with respect to the center position of the bearing pad in the circumferential direction of the rotary shaft, and the weighted average of the at least one oil groove The position is shifted from the arrangement position of the support member to the downstream side in the rotation direction of the rotation shaft.
  • a plurality of oil supply ports that receive the supply of the lubricating oil from the oil supply mechanism are provided side by side in the axial direction of the rotary shaft on the bearing surface, and the oil groove communicates with each oil supply port. Are formed independently. As a result, if the supply amount of the lubricating oil to each oil groove is adjusted independently and the oil film pressure of each oil groove is adjusted independently, even if uneven contact occurs in the axial direction of the rotating shaft, each oil groove The uneven contact can be corrected by adjusting the oil film pressure of the groove.
  • the at least one oil groove is disposed in a region where the oil film pressure by the wedge-shaped oil film formed on the bearing surface is equal when the rotating shaft rotates.
  • the oil film pressure of the oil groove decreases in accordance with the lower oil film pressure.
  • by forming one oil groove in a region where the oil film pressure is equivalent a decrease in the oil film pressure can be prevented.
  • the isobaric region in which the oil film pressure due to the wedge-shaped oil film formed on the bearing surface is equal the oil film pressure gradually decreases from the maximum oil film pressure region.
  • the oil groove is arranged along one isobaric line. The oil groove is concentrically spread outside the maximum oil film pressure region. In this way, the isobaric line in the oil film pressure distribution (distribution in which the oil film pressure gradually decreases around the maximum oil film pressure region concentrically spreads outside the maximum oil film pressure region) formed when the rotary shaft rotates. By arranging the oil groove along the line, the function as a hydrodynamic bearing can be maintained well.
  • a gap between the rotary shaft and the upstream end of the bearing pad in the rotational direction is It is distributed in a region equivalent to the gap between the rotating shaft and the downstream end of the bearing pad in the rotation direction.
  • the oil groove to which the lubricating oil is supplied from the oil supply mechanism is configured to be provided inside and outside the contact area in contact with the outer peripheral surface of the rotating shaft among the bearing surfaces.
  • the lubricating oil can be spread both inside and outside the contact area. Therefore, even if the hydraulic pressure supplied to the oil supply mechanism is relatively small, the rotating shaft can be effectively levitated.
  • 1 is an overall configuration diagram of a bearing device according to a first embodiment of the present invention. It is sectional drawing of the bearing pad which concerns on 1st Embodiment. It is an expanded view of the bearing surface of the bearing pad in 1st Embodiment. It is an expanded view of the bearing surface of the bearing pad (only an oil groove inside a contact area) in a comparative example. It is an expanded view of the bearing surface of the bearing pad (only the oil groove outside the contact area) in another comparative example. It is a graph which shows the relationship between a contact area and an oil film pressure. It is a block diagram which shows an example of the oil supply mechanism of the bearing apparatus which concerns on 1st Embodiment.
  • (A) is a diagram which shows the oil film pressure distribution of the oil groove which concerns on 4th Embodiment
  • (B) is a diagram which shows the oil film pressure distribution of the oil groove which concerns on 6th Embodiment. It is an expanded view of the bearing surface of the bearing pad which concerns on the modification of 6th Embodiment. It is sectional drawing of the bearing apparatus which shows the oil supply mechanism which concerns on the modification of 6th Embodiment.
  • FIG. 1 is an overall configuration diagram of the tilting pad bearing device according to the first embodiment of the present invention.
  • the bearing housing 12 shown in FIG. 1 is a split bearing housing, and is composed of semicircular housing pieces 12a and 12b.
  • the housing pieces 12a and 12b are coupled by a coupling tool such as a bolt in a state where the mating surfaces are in contact with each other.
  • a plurality (four in FIG. 1) of bearing pads 14 are provided along the inner peripheral surface of the bearing housing 12, and the inner peripheral surface of the bearing pad 14 forms a bearing surface 14a.
  • a rotating shaft 15 (see FIG. 2) of a large-sized rotating machine such as a turbine or a generator is disposed inside the bearing surface 14a.
  • the bearing pad 14 provided with the oil supply port 34 and the oil groove 36 is a bearing pad 14 positioned at least on the lower side in the circumferential direction of the rotating shaft 15 among the plurality of bearing pads 14, 14,. It may be. That is, the oil supply port 34 and the oil groove 36 may be formed in the bearing pad 14 disposed at a position that supports the weight of the rotary shaft 15 when the rotary shaft 15 is stopped. Of course, the oil supply port 34 and the oil groove 36 may also be formed in the bearing pad 14 positioned on the upper side in the circumferential direction of the rotating shaft 15.
  • the pump 18 is driven by a motor 20 and discharges high-pressure lubricating oil o from an oil tank (not shown) to the oil supply line 22.
  • the oil passage 22 is provided with a relief valve 24.
  • the oil supply line 22 branches into the branch paths 28a and 28b on the downstream side.
  • the branch paths 28a and 28b are provided with valves (flow rate adjusting valves) 30a and 30b, respectively.
  • the branch paths 28 a and 28 b communicate with the oil supply ports 34 formed in the respective bearing pads 14 through the oil supply holes 32 a and 32 b formed in the housing piece 12 b and the bearing pad 14, respectively.
  • FIG. 2 is a cross-sectional view of the bearing pad in the first embodiment of the present invention.
  • FIG. 3 is a development view of the bearing surface of the bearing pad according to the first embodiment of the present invention.
  • FIG. 3 is a diagram in which a bearing pad 14 having a curvature is developed on a plane.
  • the tilting pad bearing device 10 having a configuration in which the bearing pad 14 is point-supported by the pivot 38 is illustrated.
  • G 1 is a straight line passing through the center of the rotating shaft 15 and the support point of the pivot 38.
  • the arrow r shown in FIG. 2 is the direction of rotation of the rotating shaft 15.
  • G 2 is a straight line that passes through the support point of the bearing pad 14 by the pivot 38 and is parallel to the axis of the rotary shaft 15.
  • An arrow a indicates the axial direction of the rotating shaft 15.
  • the bearing pad 14 shown in FIGS. 2 and 3 is pivotally supported by a pivot 38 provided on the inner peripheral surface of the housing piece 12b.
  • the pivot 38 is normally provided near the center of the bearing pad 14, but may be arranged offset from the center position of the bearing pad 14 in the rotation direction of the rotating shaft 15 to the upstream side or the downstream side in the rotation direction.
  • the rotational direction front end 14 b of the bearing pad 14 is positioned on the upstream side with respect to the rotational direction of the rotating shaft 15, and the rotational direction rear end 14 c of the bearing pad 14 is positioned on the downstream side.
  • the straight line G 2 passing through the pivot 38 is downstream in the rotation direction of the rotation shaft 15 with respect to the center position C of the bearing pad 14 in the rotation direction of the rotation shaft 15 (see FIG. 13).
  • the pivot 38 has a rotating shaft more than the center position of the bearing pad 14 in the circumferential direction of the rotating shaft 15.
  • 15 is arranged on the downstream side in the rotation direction, and the gap between the bearing surface 14a of the front end 14b of the bearing pad 14 and the outer peripheral surface of the rotary shaft 15 is increased. Therefore, the amount of lubricating oil drawn into the bearing surface 14a increases, and the lubricity between the bearing pad 14 and the rotating shaft 15 can be improved.
  • four oil supply ports 40 (40a, 40b), 44 (44a, 44b) are open on the bearing surface 14a of the bearing pad 14, and the oil communicated with each of the oil supply ports 40, 44.
  • Grooves 42 (42a, 42b) and 46 (46a, 46b) are provided.
  • the tilting pad bearing device 10 having the above configuration is configured such that the bearing pad 14 is supported by a pivot 38 that abuts on the outer peripheral surface of the bearing pad 14 so that the bearing pad 14 can swing.
  • the bearing pad 14 is slightly deformed by the weight of the pad 14 or a load applied to the bearing pad 14 via the rotating shaft 15. Therefore, when the rotating shaft 15 is stopped, the bearing pad 14 and the rotating shaft 15 come into contact with each other in the contact area S having a shape depending on the deformation of the bearing pad 14.
  • the contact area S between the bearing pad 14 and the rotating shaft 15 is substantially elliptical as shown in FIG.
  • the oil grooves 42 and 46 are provided inside and outside the contact area S.
  • the contact area S is tilted via the diameter of the rotating shaft 15 (the radius of curvature of the outer peripheral surface of the rotating shaft), the radius of curvature of the bearing surface 14a of the bearing pad 14, the material of the bearing pad 14, and the rotating shaft 15. It is determined by the load applied to the pad bearing device 10 or the like.
  • the shape and position of the contact area S may be obtained experimentally or estimated by simulation.
  • pressure-sensitive paper may be sandwiched between the rotary shaft 15 and the on-axis pad 14 and the colored area of the pressure-sensitive paper may be determined as the contact area S.
  • the contact area S may be estimated from the contact stress calculated using Hertz theory, or the contact area S may be estimated using FEM analysis.
  • the characteristics of the oil film pressure between the bearing pad 14 in the first embodiment shown in FIGS. 2 and 3 and the bearing pads 14 ′ and 14 ′′ in the comparative example shown in FIGS. 4 is a development view of the bearing surface of the bearing pad in the comparative example
  • FIG. 5 is a development view of the bearing surface of the bearing pad (oil groove only outside the contact area) in the other comparative example
  • Fig. 6 is a graph showing the relationship between the contact area and the oil film pressure
  • Fig. 6 (A) is a graph showing the oil film pressure characteristic of the bearing pad 14 in the first embodiment (Fig. 3).
  • FIG. 6C is a graph showing the oil film pressure characteristic of the bearing pad 14 ′′ in the other comparative example (FIG. 5). .
  • the bearing pad 14 'shown in FIG. 4 is not provided with an oil groove outside the contact area S, and the oil grooves 42' (42a ', 42b'), 46 '(46a) only inside the contact area S. ', 46b').
  • the bearing pad 14 ′′ shown in FIG. 5 is not provided with an oil groove outside the contact area S, and the oil grooves 42 ′′ (42a ′′, 42b ′′), only inside the contact area S, 46 ′′ (46a ′′, 46b ′′) is provided. 4 and 6B, when oil grooves 42 'and 46' for guiding the lubricating oil are formed inside the contact area S, the inside of the contact area S and the outside of the contact area S are formed.
  • the gap between the bearing pad 14 ′ and the rotating shaft 15 increases rapidly at the boundary. Therefore, although the oil film pressure by the lubricating oil supplied to the clearance via the oil grooves 42a ′, 42b ′, 46a ′, 46b ′ in the contact area S is maintained high inside the contact area S, On the outside, it is greatly reduced by a sudden increase in the volume of the gap. Therefore, it is difficult to spread the lubricating oil so that a substantially uniform oil film pressure is formed on the entire bearing surface of the bearing pad 14 ′, and in particular, a situation in which the oil film pressure on the outside of the contact area S is not sufficiently established can occur. . As shown in FIG. 5 and FIG.
  • the oil grooves 42 and 46 are provided inside and outside the contact area S.
  • the lubricating oil can be spread both inside and outside the contact area S. Therefore, even if the hydraulic pressure supplied to the oil supply mechanism 16 is relatively small, the rotary shaft 15 can be effectively levitated.
  • At least one oil groove 42 and 46 may extend continuously from the inner side to the outer side of the contact area S. That is, each of the oil grooves 42 and 46 may extend so as to straddle the boundary of the contact area S. In this way, by providing at least one oil groove 42, 46 that extends continuously from the inside to the outside of the contact area S, the oil groove while maintaining the floating characteristics of the rotating shaft 15 by the oil groove 42, 46. The number of installations 42 and 46 can also be reduced.
  • FIG. 3 illustrates a case where all the oil grooves 42 and 46 are continuously extended from the inside to the outside of the contact area S.
  • the at least one oil groove includes an inner oil groove provided inside the contact area S and an outer oil provided outside the contact area S separately from the inner oil groove. And a groove.
  • the inner oil groove provided inside the contact area S and the outer oil groove provided outside the contact area S the floating characteristics of the rotating shaft 15 by the oil groove are maintained while maintaining the floating characteristics.
  • the installation position of the oil groove and the degree of freedom of the shape can be improved.
  • At least one of the oil grooves 42 and 44 has the same pressure of the oil film formed between the bearing surface 14 a and the outer peripheral surface of the rotary shaft 15 when the rotary shaft 15 rotates. It may be provided along the isobaric line passing through the position.
  • the supply of the lubricating oil to the oil supply ports 40 and 44 opened in the bearing surface 14a of the bearing pad 14 is stopped.
  • the lubricating oil rotates with the rotary shaft 15 to form an oil film pressure, and an oil film pressure distribution (see FIG. 3) due to the oil film pressure is formed.
  • lines p1 to p6 are the isobaric lines of the wedge-shaped oil film due to the shaft rotation.
  • the inner region of the innermost isobaric line p1 exhibits the maximum oil film pressure, and the oil film pressure gradually decreases toward the outside. Go.
  • an elliptical shape having a maximum oil film pressure region (inside region of p1) as a center and a constant pressure region extending concentrically is exhibited.
  • the isobaric line is a line passing through a position where the pressure of the oil film formed between the bearing surface 14 a and the outer peripheral surface of the rotating shaft 15 is the same when the rotating shaft 15 rotates.
  • each of the fuel filler openings 40 (40a, 40b) shown in FIG. 3 is provided on the isobaric line p4.
  • An oil groove 42 (42a, 42b) communicating with the oil supply port 40 is provided along the isobaric line p4.
  • an oil groove 46 (46a, 46b) communicating with the oil supply port 44 (44a, 44b) is provided along the isobaric line p5.
  • the oil groove 42 and the oil groove 46 are independent of each other.
  • Each oil groove 42, 44 is formed by one communicating space, so that the same pressure is applied at any position in each oil groove 42, 44.
  • the pressure in the oil grooves 42 and 44 may become uniform when the rotary shaft 15 rotates, and the function as a hydrodynamic bearing may be impaired. . Therefore, as in the above-described embodiment, by providing the oil grooves 42 and 44 along the isobaric lines p4 and p5, respectively, the pressure in the oil grooves 42 and 44 at the positions of the isobaric lines is maintained, and the function as a hydrodynamic bearing is achieved. Can be kept in good condition.
  • the oil supply passages 52 and 54 that supply the lubricating oil to the oil groove 42 and the oil groove 44 are separated so that they can be maintained at different pressures at least when the rotary shaft 15 rotates. It is provided as a system.
  • the oil supply mechanism 16 shown in FIG. 7 includes a first oil supply port 40, a first oil groove 42, a second oil supply port 44, a second oil groove 46, a first oil supply passage 52, and a second oil supply passage 54.
  • the first valve 53, the second valve 55, and the pump 50 are provided.
  • the first oil groove 42 and the second oil groove 46 are provided along isobaric lines indicating different oil film pressures.
  • the first oil supply passage 52 and the second oil supply passage 54 are provided as separate systems so that they can be maintained at different pressures at least when the rotary shaft 15 rotates.
  • the first oil supply passage 52 and the second oil supply passage 54 are connected to a pump 50 so that lubricating oil is supplied by the pump 50.
  • the 1st valve 53 and the 2nd valve 55 are provided, respectively, and the 1st oil supply path 52 and the 2nd oil supply path 54 are provided.
  • the supply amount of the lubricating oil is configured to be adjustable.
  • the first valve 53 and the second valve 55 are opened, and the pump 50 is operated to pass through the first oil supply path 52 and the second oil supply path 54.
  • Lubricating oil is supplied to the first oil groove 42 and the second oil groove 46.
  • the amount of lubricating oil supplied to each oil groove 42, 46 may be adjusted by the opening degree of each valve 53, 55.
  • the first valve 53 and the second valve 55 are closed, the pump 50 is stopped, and the first oil groove 42 via the first oil supply passage 52 and the second oil supply passage 54 is stopped. And the supply of the lubricating oil to the second oil groove 46 is shut off. At this time, since the first oil groove 42 and the second oil groove 46 are not communicated with each other, the pressures of the oil grooves 42 and 46 are maintained independently.
  • the first oil supply passage 40 communicating with the first oil groove 42 and the second oil supply passage 44 communicating with the second oil groove 46 are separated so that at least different pressures can be maintained when the rotary shaft 15 rotates.
  • the pressure in the first oil groove 42 and the second oil groove 46 provided along different isobaric lines (first and second isobaric lines) is equalized during the rated rotation of the rotating shaft 15. This can be avoided, and the function as a dynamic pressure bearing can be maintained well.
  • FIG. 8 is a development view of the bearing surface of the bearing pad according to the second embodiment of the present invention.
  • FIG. 9 is a configuration diagram showing an example of an oil supply mechanism of the bearing device according to the second embodiment of the present invention.
  • the oil supply mechanism 16 includes a first oil supply port 60 (60a, 60b), 64 (64a, 64b), a first oil groove 62 (62a, 62b), 66 (66a, 66b), Oil supply passages 72 and 74, a first valve 76, and a pump 70 are provided.
  • the plurality of first oil grooves 62 and 66 are provided along a constant pressure line indicating the same oil film pressure. Further, the first oil grooves 62 and 66 are configured to communicate with each other via the first oil supply passages 72 and 74.
  • the first oil supply passages 72 and 74 are joined at the base side, and the first valve 76 is provided between the joined first oil supply passages 72 and 74 and the pump 70.
  • the first valve 76 is configured to adjust the amount of lubricating oil supplied to the first oil supply passages 72 and 74.
  • the first valve 76 is opened, the pump 70 is operated, and lubricating oil is supplied to the first oil grooves 62 and 66 via the first oil supply passages 72 and 74. Supply.
  • the first valve 76 is closed, the pump 70 is stopped, and the lubricating oil is supplied to the first oil grooves 62 and 66 via the first oil supply passages 72 and 74. Cut off.
  • the first oil passages 72 and 74 communicate with each other for the plurality of first oil grooves 62 and 66 provided along the same isobaric line, the first oil passage is provided. It is also possible to simplify the configuration of the oil supply mechanism 16 such as 72 and 74 and the valve 73.
  • FIG. 10 is a development view of the bearing surface of the bearing pad according to the third embodiment of the present invention.
  • the oil groove 82 includes a pair of rhombus-shaped oil grooves 82 a and 82 b arranged so as to sandwich the oil supply port 80 along the axial direction of the rotating shaft 15. Also good.
  • the oil groove 82 is arranged across the straight line G 2 through a pivot 38, the circumferential direction of the rotation upstream side of the apex portion 83a of the rhombic shape of the oil groove 80, 83 b are rotating direction upstream side of the straight line G 2 May be located.
  • the oil groove 82 has the shape of a line symmetry with respect to the straight line G 2.
  • FIG. 11 is a cross-sectional view of a bearing pad in the fourth embodiment of the present invention.
  • FIG. 12 is a development view of the bearing surface of the bearing pad according to the fourth embodiment of the present invention.
  • FIG. 13 is a view for explaining the weighted average position of the oil groove.
  • FIG. 12 is the figure which expand
  • G 1 is a straight line passing through the center of the rotating shaft 15 and the support point of the pivot 38.
  • C is a straight line passing through the center position of the bearing pad 14 (bearing surface 14 a) in the rotation direction of the rotating shaft 15. This central position C is parallel to the axis of the rotating shaft 15.
  • G 2 is a straight line passing through the support point of the bearing pad 14 by the pivot 38 and parallel to the axis of the rotary shaft 15.
  • Each bearing pad 14 is swingably supported by a pivot 38 provided on the inner peripheral surface of the housing piece 12b.
  • the pivot 38 is disposed offset from the central position C of the bearing pad 14 in the rotation direction of the rotation shaft 15 to the upstream side in the rotation direction or the downstream side in the rotation direction of the rotation shaft 15.
  • the arrangement position of the pivot 38 (support point of the bearing pad 14) is positive in the x axis with respect to the center position C of the bearing pad 14 (downstream in the rotational direction). It is arranged offset.
  • the pivot 38 is disposed at a position of 60%, for example.
  • the bearing surface 14 a of the bearing pad 14 is provided with an oil groove 82 that has an oil supply port 80 and communicates with the oil supply port 80.
  • the oil groove 82 includes a pair of rhombus-shaped oil grooves disposed on both sides in the axial direction of the rotating shaft 15 of the oil filler port 80.
  • the weighted average position of the oil groove 82 is a value obtained by weighting the center position C of the oil groove 82 in the circumferential direction of the rotating shaft 15 by the opening area of the oil groove 82, which will be described in detail below.
  • FIG. 13 shows a case where both sides of the straight line G 2 through the supporting point of the pivot 38, the two oil grooves 90a and the oil groove 90b having different opening areas are provided.
  • the oil groove 90a is provided on the downstream side in the rotational direction of the rotary shaft 15 of the straight line G 2 (the straight line G 2 in FIG. 13 right), the oil groove 90b is a straight line in the direction of rotation upstream side (Fig. 13 than the straight line G 2 It is provided on the left) than G 2.
  • Oil grooves 90a and the oil groove 90b in the present embodiment are, with respect to the straight line G 2 through the supporting point of the pivot 38 (position of the pivot 38),
  • the bearing pad 14 is configured to be shifted in the offset direction of the support point of the pivot 38 with respect to the center position C of the bearing pad 14.
  • FIG. 13 shows a case where the pivot 38 is arranged offset from the central position C in the rotational direction of the rotary shaft 15 on the downstream side in the rotational direction (the direction along the rotational direction is the offset direction).
  • the weighted average position A of the oil groove 90a and the oil groove 90b is the straight line G 2 through the supporting point of the pivot 38 deviated toward the downstream side in the rotating direction (i.e., satisfying the relationship of x A> x G)
  • An oil groove 90a and an oil groove 90b are formed, respectively.
  • the pivot 38 is disposed offset from the central position C of the rotating shaft 15 to the upstream side in the rotation direction.
  • the oil groove 90a and the oil groove 90b so as to shift the rotational direction upstream side are respectively formed of the straight line G 2 in which the weighted average position of the oil groove 90a and the oil groove 90b passes through a supporting point of the pivot 38.
  • the bearing pad 14 of the tilting pad bearing device 10 is provided between the rotary shaft 15 and the bearing pad 14 during operation of the JOP mechanism at the start of rotation of the rotary shaft 15 or at low speed rotation (that is, during supply of lubricating oil).
  • a moment around the support point of the bearing pad 14 by the pivot 38 is applied according to the distribution of the formed oil film pressure (see FIG. 11). This moment is obtained by integrating a local moment, which is the product of the oil film pressure at an arbitrary position on the bearing surface 14a and the distance from the support point at the position, for all positions on the bearing surface 14a. The sign of this local moment is reversed on both sides of the support point of the bearing pad 14 by the pivot 38.
  • a value obtained by dividing the sum ⁇ x i S i by the sum ⁇ S i of the opening areas of all the oil grooves (the center position x i of each oil groove is weighted by the opening areas S i of the oil grooves 90a and 90b).
  • the direction of the net moment according to the distribution of the oil film pressure is determined according to the arrangement relationship between the weighted average position x A ) of the oil grooves and the position of the pivot 38.
  • each of the oil grooves 90a, the center position x i of 90b oil grooves 90a weighted by the opening area S i of the oil groove, the weighted average position X A of 90b is the arrangement position of the pivot 38 since as shifted in the offset direction of the pivot 38 against, even pivot 38 is offset relative to the center position x C of the bearing pads 14, the rotational direction of the upstream side and the downstream side of the rotary shaft 15 relative to the pivot 38 Can be balanced. Therefore, when the rotation of the rotating shaft 15 is started or when the rotating shaft 15 rotates at a low speed, the rotating shaft 15 can be prevented from being tilted, and the rotating shaft 15 and the bearing pad 14 can be prevented from coming into contact. .
  • FIG. 13 illustrates the case where two oil grooves 90a and 90b are provided on the bearing surface 14a, the number, shape, arrangement configuration, and the like of the oil grooves are not limited.
  • the weighted average position of the oil groove is configured to deviate in the offset direction with respect to the center position of the pivot 38 with respect to the arrangement position of the pivot 38, so that the pivot 38 is used as a reference.
  • the moment acting on the upstream side and the downstream side in the rotation direction of the rotary shaft can be balanced. Therefore, when the rotation of the rotation shaft starts or when the rotation shaft rotates at a low speed, the rotation shaft can be prevented from being tilted, and the rotation shaft and the bearing pad can be prevented from coming into contact, and the rotation shaft can be smoothly rotated.
  • the rotational position of the oil supply port 80 and the oil groove 82 is a further sum of moments around the pivot of the oil film pressure distribution P due to JOP in the region further downstream of the pivot 38 and upstream of the pivot 38 and upstream of the pivot 38.
  • the gap s1 may be disposed in a region equivalent to the gap s2.
  • the fuel filler port 80 is disposed at a position of 70%, for example.
  • the oil film thickness in the downstream region in the rotational direction can be secured, and the region where the gap s1 is equal to the gap s2.
  • the oil film thickness in the upstream region in the rotation direction can also be secured. In this way, it is possible to maintain a uniform oil film pressure throughout the entire bearing surface 14a.
  • FIG. 14 is a development view of the bearing surface of the bearing pad according to the fifth embodiment of the present invention.
  • FIG. 15 is an oil film pressure distribution diagram in the fifth embodiment of the present invention.
  • the bearing pad 14 is provided with a plurality of oil supply ports 140 a and 140 b. Oil grooves 142a and 142b communicate with the oil filler openings 140a and 140b, respectively.
  • the oil supply port 140a is connected to a pump 50 that supplies high-pressure lubricating oil to the oil supply ports 140a and 140b via an oil supply passage 144a and an oil supply passage 146a formed in the bearing pad 14.
  • the oil supply port 140b is connected to the pump 50 via an oil supply passage 144b and an oil supply passage 146b formed in the bearing pad 14.
  • the oil supply passages 146a and 146b are provided with valves (flow rate adjusting valves 148a and 148b), respectively.
  • the oil grooves 142a and 142b have a rhombus shape and are formed independently of each other at positions separated in the axial direction (direction of arrow a). Incidentally, the oil groove 142a and 142b are disposed across the straight line G 2 in FIG. 14, the oil groove 142a, circumferential rotation upstream apex portion 142c is the upstream side in the rotation direction of the straight line G 2 of the diamond shape 142b (The left side in FIG. 14) may be located.
  • the positional relationship between the pivot and the oil grooves 142a and 142b may be the same as in the fourth embodiment described above. That is, in one embodiment, the pivot arrangement position G 2 is offset from the center position C of the bearing pad 14 with respect to the rotation direction x of the rotary shaft 15. Then, the two oil grooves 142a, weighted average position X A of 142b is to be shifted to the offset direction relative to the pivot arrangement positions C, two oil grooves 142a, 142b are disposed respectively.
  • the offset direction is the downstream side in the rotation direction of the rotation shaft 15 (the right side in FIG. 5).
  • the oil supply mechanism is configured to supply lubricating oil from the pump 50 to the oil supply ports 140a and 140b via the oil supply passages 146a and 146b and the oil supply passages 144a and 144b. At this time, the pressure of the lubricating oil o flowing through the oil supply passages 146a and 146b can be adjusted separately by the valves 148a and 148b. According to the present embodiment, in addition to the operational effects obtained in the fourth embodiment, when an offset occurs in the axial direction of the rotary shaft 15, the amount of lubricating oil supplied to the oil groove in the area where the offset has occurred is reduced. Increasing the oil film pressure can eliminate uneven contact.
  • FIG. 16 is a development view of the bearing surface of the bearing pad according to the sixth embodiment of the present invention.
  • FIG. 17A is a diagram showing the oil film pressure distribution of the oil groove according to the fourth embodiment
  • FIG. 17B is a diagram showing the oil film pressure distribution of the oil groove according to the sixth embodiment.
  • lines p1 to p5 are wedge-shaped oil film isobaric lines due to shaft rotation, and the inner region of p1 exhibits the maximum oil film pressure, and the oil film pressure gradually decreases toward the outside. As shown, with a focus on maximum oil film pressure region R 1, exhibits an oval that equal pressure range spreads concentrically.
  • the isobaric line is a line passing through a position where the pressure of the oil film formed between the bearing surface 14 a and the outer peripheral surface of the rotating shaft 15 is the same when the rotating shaft 15 rotates.
  • each of the fuel filler ports 152a and 152b is provided on the isobaric line p4. Further, an oil groove 154a communicating with the oil supply port 152a is provided along the isobaric line p4. Similarly, an oil groove 154b communicating with the oil supply port 152b is provided along the isobaric line p4. The oil groove 154a and the oil groove 154b are independent of each other.
  • Each oil groove 154a, 154b is formed by a single communicating space, so that the same pressure is applied at any position in each oil groove 154a, 154b. Therefore, if the oil grooves 154a and 154b are formed so as to intersect with the isobaric lines, the pressure in each of the oil grooves 154a and 154b may become uniform when the rotary shaft 15 rotates, and the function as a hydrodynamic bearing may be impaired. is there. Therefore, as in the present embodiment, by providing the oil grooves 154a and 154b along the isobars, the pressure in the oil grooves 154a and 154b at the isobar positions is maintained, and the function as a hydrodynamic bearing is improved. I can keep it.
  • FIG. 17A shows the case of the oil groove 82 of the fourth embodiment
  • FIG. 17B shows the case of the oil groove 154a of the present embodiment.
  • the diamond-shaped oil groove 82 may be disposed across isobars having different oil film pressures. For this reason, as shown in FIG. 17A, there is a possibility that the entire region of the oil groove 82 becomes the low-pressure side oil film pressure, and there is a possibility that the low-pressure region Pr is generated in the wedge-shaped oil film pressure distribution pa due to the shaft rotation. .
  • the oil groove 154a or 154b of the present embodiment has an equal oil film pressure in the entire region, and therefore, as shown in FIG. 17B, the wedge-shaped oil film pressure distribution pb due to the shaft rotation has a low pressure region. Will not occur.
  • the oil grooves 154a and 154b are arranged symmetrically in the axial direction with respect to the pivot 38, it is easy to form the same oil film pressure in the axial direction of the rotating shaft 15. Therefore, it is possible to suppress the uneven contact of the rotating shaft 15.
  • the oil groove 154a or 154b is disposed so as to straddle the linear G 2 in FIG. 16, the oil groove 154a or 154b rotation upstream side of the oil groove end 154c of is located upstream in the rotational direction of the straight line G 2 Also good.
  • a weighted average position x A of the oil groove 154a and 154b with respect to the rotation direction of the rotary shaft 15, with respect to the straight line G 2 through the position of the pivot, bearing pads 14 may be arranged so as to be offset in the offset direction of the pivot with respect to the central position of 14 (in the exemplary embodiment shown in FIG. 16, downstream in the rotational direction).
  • the positions of the oil grooves 154a and 154b with respect to the rotation direction of the rotary shaft 15 are the sum of the moments around the pivot of the oil film pressure distribution P by the JOP in the upstream region of the pivot from the pivot,
  • the gap s1 and the gap s2 may be the same region.
  • FIG. 18 is a development view of a bearing surface of a bearing pad according to a modification of the sixth embodiment.
  • FIG. 19 is a cross-sectional view of a bearing device showing an oil supply mechanism according to a modification of the sixth embodiment.
  • the oil supply mechanism shown in FIGS. 18 and 19 includes a first oil supply port 156c, 156d, a first oil groove 158c, 158d, a second oil supply port 157a, 157b, a second oil groove 159a, 159b, and a first oil supply.
  • a passage 146f, a second oil supply passage 146e, a first valve 148e, a second valve 148d, and a pump 50 are provided.
  • the first oil grooves 158c and 158d and the second oil grooves 159a and 159b are provided along isobaric lines indicating different oil film pressures.
  • the first oil passage 146f and the second oil passage 146e are provided as separate systems so that they can be maintained at different pressures at least when the rotary shaft 15 rotates.
  • the first oil passage 146f and the second oil passage 146e are connected to the pump 50, and lubricating oil is supplied by the pump 50.
  • a first valve 148e and a second valve 148d are provided between the first oil passage 146f and the second oil passage 146e and the pump 50, respectively, and are connected to the first oil passage 146f and the second oil passage 146e.
  • the supply amount of the lubricating oil is configured to be adjustable.
  • the amount of lubricating oil supplied to each oil groove 158c, 159a may be adjusted by the opening of each valve 148e, 148d.
  • the first valve 148e and the second valve 148d are closed, the pump 50 is stopped, and the first oil groove 158c through the first oil passage 146f and the second oil passage 146e. (158d) and supply of the lubricating oil to the second oil groove 159a (159b) are shut off.
  • the first oil groove 158c (158d) and the second oil groove 159a (159b) are not communicated with each other, the pressures of the oil grooves 158c (158d) and 159a (159b) are maintained independently.
  • first oil passage 146e communicating with the first oil groove 157a and the second oil passage 146f communicating with the second oil groove 156c can be maintained at different pressures at least when the rotary shaft 15 rotates.
  • the pressure in the first oil groove 157a and the second oil groove 156c provided along different isobaric lines (first and second isobaric lines) is equalized during the rated rotation of the rotating shaft 15. This can be avoided, and the function as a dynamic pressure bearing can be maintained well.
  • the tilting pad bearing device 10 includes: For the purpose of allowing the rotary shaft 15 to float with a small supply oil pressure, A plurality of bearing pads 14 arranged around the rotary shaft 15 and rotatably supporting the rotary shaft 15; A support member (pivot 38) that is interposed between the plurality of bearing pads 14 and the bearing housing 12 that supports the bearing pads 14, and supports the bearing pads 14 in a swingable manner;
  • the lubricating oil is configured to be supplied to at least one oil groove (42, 46, 62, 66, 82) formed in the bearing surface 14a of one or more of the plurality of bearing pads 14.
  • a tilting pad bearing device 10 provided with an oil supply mechanism, At least one oil groove (42, 46, 62, 66, 82) is provided inside and outside the contact area S that contacts the outer peripheral surface of the rotating shaft 15 in the bearing surface 14a when the rotating shaft 15 is stopped. .
  • the tilting pad bearing device 10 includes: The purpose is to prevent contact between the rotating shaft 15 and the bearing pad 14, A plurality of bearing pads 14 arranged around the rotation shaft 15 and rotatably supporting the rotation shaft 15, and interposed between the plurality of bearing pads 14 and the bearing housing 12 supporting these bearing pads 14.
  • a tilting pad comprising an oil supply mechanism configured to supply lubricating oil to at least one oil groove 82 formed on the bearing surface 14a of one or more of the plurality of bearing pads 14.
  • the support member (pivot 38) is disposed offset from the central position C in the rotation direction of the rotation shaft 15 of the one or more bearing pads 14 to the upstream side in the rotation direction or the downstream side in the rotation direction of the rotation shaft 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 小さな供給油圧力で回転軸を浮上させることができるティルティングパッド軸受装置を提供することを目的とし、回転軸の周囲に配置され、前記回転軸を回転自在に支持する複数の軸受パッドと、前記複数の軸受パッドとこれら軸受パッドを支持する軸受ハウジングとの間に介在され、各軸受パッドを揺動可能に支持する支持部材と、前記複数の軸受パッドのうちの1個以上の軸受パッドの軸受面に形成された少なくとも1個の油溝に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置であって、前記少なくとも1個の油溝は、前記回転軸の停止時において前記軸受面のうち前記回転軸の外周面と接触する接触エリアの内側及び外側に設けられている。

Description

ティルティングパッド軸受装置
 本発明は、例えば、蒸気タービンの滑り軸受のように、大型回転機械の回転軸を揺動可能な複数の軸受パッドで支承するティルティングパッド軸受装置に関する。
 タービンや発電機等の大型回転機械においては、回転軸を安定に支承するため、ティルティングパッド軸受装置が用いられている。ティルティングパッド軸受装置は、滑り軸受の一種であり、軸受ハウジング内で回転軸の周囲に揺動可能な複数の軸受パッド(ティルティングパッド)を配置した構成を有する。軸受パッドは、軸受ハウジングの内側に設けられたピボットによって揺動可能に支持されている。そして、回転軸の回転によって、潤滑油を回転軸の外周面と軸受パッドの軸受面との間に導き、これらの間にくさび状油膜を形成して回転軸を支承するようになっている。例えば特許文献1には、かかるティルティングパッド軸受装置が開示されている。
 このようなティルティングパッド軸受装置においては、油膜のくさび効果による十分な負荷能力が得られない回転開始時や低速回転時に、回転軸の外周面とティルティングパッドの軸受面との接触をなくし、軸受面の焼付きを防ぐ必要がある。そのため、ジャッキング・オイル・ポンプと呼ばれる機構(JOP機構)が採用されることがある。例えば特許文献2に記載されるJOP機構は、ティルティングパッドの軸受面に給油口を開口させ、この給油口に給油通路を介してポンプから高圧の潤滑油を供給し、軸受面に油膜を形成して回転軸を油膜で浮上させるものである。通常、軸受面には、広い範囲に潤滑油を行き渡らせるために油溝が形成される。
特開昭59-212520号公報 実開平2-146961号公報
 ところで、ティルティングパッド軸受装置は、軸受パッドが揺動可能なように、軸受パッドの外周面に当接するピボットにより軸受パッドが支持される構成となっているため、軸受パッドの自重あるいは回転軸を介して軸受パッドに与えられる荷重等により軸受パッドはわずかに変形する。そのため、回転軸の停止時、この軸受パッドの変形に依存した形状の接触エリアにて、軸受パッドと回転軸とが接触することになる。例えば軸受パッドがピボットで点支持される場合、軸受パッドと回転軸との接触エリアは略楕円形状となる。
 ここで、本発明者による鋭意検討の結果、JOP機構による回転軸の浮上特性は、回転軸の停止時における軸受パッドと回転軸との接触エリアと、軸受パッドの軸受面に設けられた潤滑油導入用の油溝との相対的な配置関係の影響を受けることが分かっている。換言すれば、接触エリアと油溝との相対的な配置関係によっては、回転軸の浮上させるために必要なJOP機構への供給油圧の大きさが異なる。
 しかしながら、特許文献1及び2には、JOP機構への供給油の圧力が小さくても、JOP機構による回転軸を浮上させることができる接触エリアと油溝との相対的な配置関係については何ら開示されていない。
 本発明の一態様の少なくとも幾つかの実施形態の目的は、小さな供給油圧力で回転軸を浮上させることができるティルティングパッド軸受装置を提供することである。
 なお、本発明の他の態様の少なくとも幾つかの実施形態の目的は、回転軸と軸受パッドとの接触を防止し得るティルティングパッド軸受装置を提供することである。
 本発明の一態様の少なくとも幾つかの実施形態に係るティルティングパッド軸受装置は、
 回転軸の周囲に配置され、前記回転軸を回転自在に支持する複数の軸受パッドと、
 前記複数の軸受パッドとこれら軸受パッドを支持する軸受ハウジングとの間に介在され、各軸受パッドを揺動可能に支持する支持部材と、
 前記複数の軸受パッドのうちの1個以上の軸受パッドの軸受面に形成された少なくとも1個の油溝に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置であって、
 前記少なくとも1個の油溝は、前記回転軸の停止時において前記軸受面のうち前記回転軸の外周面と接触する接触エリアの内側及び外側に設けられていることを特徴とする。
 上記ティルティングパッド軸受装置によれば、給油機構から潤滑油が供給される油溝を、軸受面のうち回転軸の外周面と接触する接触エリアの内側及び外側に設ける構成としている。そのため、回転軸の回転開始時又は低速回転時において給油機構から油溝を介して潤滑油を供給した時に、接触エリアの内側及び外側の両方に潤滑油を行き渡らせることができる。よって、給油機構への供給油圧が比較的小さい場合であっても、回転軸を効果的に浮上させることができる。
 なお、接触エリアは、回転軸の直径(回転軸の外周面の曲率半径)、軸受パッドの軸受面の曲率半径、軸受パッドの材質、及び、回転軸を介してティルティングパッド軸受装置に与えられる荷重等によって決定される。接触エリアの形状、位置は、実験的に求めてもよいし、シミュレーションによって推定してもよい。例えば、回転軸と軸上パッドの間に感圧紙を挟み込み、感圧紙の着色した部位を接触エリアと判定してもよい。あるいは、ヘルツ理論を用いて算出される接触応力から接触エリアを推定してもよいし、FEM解析を用いて接触エリアを推定してもよい。
 また、本発明の他の態様の少なくとも幾つかの実施形態に係るティルティングパッド軸受装置は、
 回転軸の周囲に配置され、前記回転軸を回転自在に支持する複数の軸受パッドと、
 前記複数の軸受パッドとこれら軸受パッドを支持する軸受ハウジングとの間に介在され、各軸受パッドを揺動可能に支持する支持部材と、
 前記複数の軸受パッドのうちの1個以上の軸受パッドの軸受面に形成された少なくとも1個の油溝に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置であって、
 前記支持部材は、前記1個以上の軸受パッドの前記回転軸の回転方向における中央位置に対し、前記回転軸の回転方向上流側又は回転方向下流側にオフセットして配置され、
 前記回転軸の周方向における各々の前記油溝の中心位置を該油溝の開口面積で重み付けした前記少なくとも1個の油溝の加重平均位置が、前記支持部材の配置位置に対して、前記中央位置を基準とした前記支持部材のオフセット方向にずれていることを特徴とする。
 上記ティルティングパッド軸受装置によれば、各々の油溝の中心位置xを油溝の開口面積Sで重み付けした油溝の加重平均位置が支持部材の配置位置に対して支持部材のオフセット方向にずれるようにしたので、支持部材がオフセットされていても、オフセット側の軸受パッド端部と回転軸の外周面との隙間が、オフセットした方向とは反対側の軸受パッド端部と回転軸の外周面との隙間より小さくなることを抑制できる。よって、回転軸の回転開始時又は低速回転時に、回転軸が傾くことを抑制し、回転軸と軸受パッドが接触することを防止できる。
 一実施形態において、前記少なくとも1個の油溝は、前記接触エリアの内側から外側まで連続的に延在している。
 このように、接触エリアの内側から外側まで連続的に延在する少なくとも1個の油溝を設けることによって、油溝による回転軸の浮上特性を維持しながら油溝の設置数を削減することもできる。
 他の実施形態において、前記少なくとも1個の油溝は、前記接触エリアの内側に設けられた内側油溝と、前記内側油溝とは別に前記接触エリアの外側に設けられた外側油溝とを含む。
 このように、接触エリアの内側に設けられた内側油溝と、接触エリアの外側に設けられた外側油溝とを設けることにより、油溝による回転軸の浮上特性を維持しながら各油溝の設置位置や形状の自由度を向上させることができる。
 幾つかの実施形態では、前記少なくとも1個の油溝の各々が、前記回転軸の回転時に前記軸受面と前記回転軸の外周面との間に形成される油膜の圧力が同一である位置を通る等圧線に沿って設けられた構成とする。
 各油溝は、それぞれ、連通した1つの空間によって形成されるので、油溝内はいずれの位置も同一の圧力となる。したがって、異なる等圧線にまたがるように油溝を形成した場合、回転軸の回転時に油溝内の圧力が均一化して動圧軸受としての機能が損なわれる可能性がある。そこで、上記実施形態のように、各油溝をそれぞれ等圧線に沿って設けることによって、各等圧線位置における油溝内の圧力を維持し、動圧軸受としての機能を良好に保てる。
 一実施形態において、前記少なくとも1個の油溝は、前記油膜の前記圧力が第1圧力である位置を通る第1等圧線に沿って設けられる第1油溝と、前記油膜の前記圧力が前記第1圧力とは異なる第2圧力である位置を通る第2等圧線に沿って設けられる第2油溝とを含み、前記給油機構は、前記第1油溝に連通する第1給油路と、前記第2油溝に連通する第2給油路とを含み、前記第1給油路と前記第2給油路とは、少なくとも前記回転軸の回転時に互いに異なる圧力に維持可能に別系統として設けられた構成とする。
 上記実施形態によれば、第1油溝に連通する第1給油路と、第2油溝に連通する第2給油路とが、少なくとも回転軸の回転時に互いに異なる圧力に維持可能に別系統として設けられている。これにより、異なる等圧線(第1等圧線と第2等圧線)に沿って設けられる第1油溝および第2油溝の圧力が、回転軸の定格回転時において均一化されることを回避でき、動圧軸受としての機能を良好に保持できる。
 一実施形態において、前記第1等圧線に沿って設けられる複数個の前記第1油溝は、前記第1給油路を介して互いに連通するように構成されている。
 このように、同一の等圧線に沿って設けられる複数個の油溝については給油路が互いに連通する構成を採用すれば、給油路やバルブ等の給油機構の構成を簡素化することもできる。
 幾つかの実施形態において、前記第1給油路に設けられ、前記第1油溝への前記潤滑油の供給量を調整するための第1バルブと、前記第2給油路に設けられ、前記第2油溝への前記潤滑油の供給量を調整するための第2バルブとをさらに備える。
 回転軸の回転開始時又は低速回転時のようにJOP機構を作動させる場合には各バルブの開度を調節することによって各油溝への潤滑油の供給量を調整可能であり、一方、回転軸の定格回転時のように軸受面へ潤滑油を供給しない場合には、各バルブで油路を遮断することによって油路からの潤滑油の漏出を防止可能であるため、軸受面の油膜圧を適切に保持できる。
 幾つかの実施形態では、前記1個以上の軸受パッドの前記回転軸の回転方向における中央位置に対し、前記回転軸の回転方向上流側又は回転方向下流側にオフセットして配置され、前記回転軸の周方向における各々の前記油溝の中心位置を該油溝の開口面積で重み付けした前記少なくとも1個の油溝の加重平均位置が、前記支持部材の配置位置に対して、前記中央位置を基準とした前記支持部材のオフセット方向にずれている。
 ティルティングパッド軸受装置の軸受パッドには、回転軸の回転開始時又は低速回転時におけるJOP機構の作動中(すなわち潤滑油の供給中)、回転軸と軸受パッドとの間に形成される油膜圧の分布に応じて、支持部材による軸受パッドの支持点まわりのモーメントが加わる。このモーメントは、軸受面上の任意の位置における油膜圧と、該位置の支持点からの距離との積である局所的なモーメントを軸受面上の全ての位置について積算したものである。この局所的なモーメントの符号は、支持部材による軸受パッドの支持点の両側において逆転する。したがって、支持部材による軸受パッドの支持点の両側におけるモーメントの絶対値の大小関係により、回転軸と軸受パッドとの間に形成される油膜圧の分布に応じた正味のモーメントの方向が決まる。ここで、各油溝の局所的なモーメントへの寄与は、各油溝の中心位置xと、当該油溝が作る油膜圧の大きさに影響する当該油溝の開口面積Sとの積xによって表わされる。よって、油膜圧の分布に応じた正味のモーメントの方向は、基本的には、全油溝についての局所的モーメントへの寄与の総和Σxによって決まる。換言すれば、総和Σxを全油溝の開口面積の総和ΣSで除して得られる値(各々の油溝の中心位置xを油溝の開口面積Sで重み付けした油溝の加重平均位置x)と支持部材の位置との配置関係に応じて、油膜圧の分布に応じた正味のモーメントの方向が定まる。
 上記ティルティングパッド軸受装置では、各々の油溝の中心位置xを油溝の開口面積Sで重み付けした油溝の加重平均位置が支持部材の配置位置に対して支持部材のオフセット方向にずれるようにしたので、支持部材がオフセットされていても、支持部材を基準として回転軸の回転方向上流側と下流側に作用するモーメントをバランスさせることができる。よって、回転軸の回転開始時又は低速回転時に、回転軸が傾くことを抑制し、回転軸と軸受パッドが接触することを防止できる。
 一実施形態では、前記支持部材は、前記回転軸の周方向における前記軸受パッドの中央位置よりも前記回転軸の回転方向下流側に配置されており、前記少なくとも1個の油溝の前記加重平均位置が、前記支持部材の配置位置より前記回転軸の回転方向下流側にずれている。
 幾つかの実施形態において、前記給油機構からの前記潤滑油の供給を受ける複数の給油口が前記軸受面上に前記回転軸の軸方向に並んで設けられ、各給油口に連通する前記油溝が夫々独立して形成される。
 これによって、各油溝への潤滑油の供給量を独立して調整して各油溝の油膜圧を独立して調整すれば、回転軸の軸方向で偏当りが起っても、各油溝の油膜圧の調整により偏当りを矯正できる。
 幾つかの実施形態では、前記少なくとも1個の油溝は、前記回転軸の回転時、前記軸受面に形成されるくさび状油膜による油膜圧が同等となる領域内に配置される。
 回転軸と軸受パッドとの間で形成される油膜圧が異なる領域に跨って連続した1個の油溝を形成すると、該油溝の油膜圧は、低い方の油膜圧に合わせて低下する。これに対し、上記実施形態のように、1個の油溝を油膜圧が同等の領域内に形成することで、かかる油膜圧の低下を防止できる。
 幾つかの実施形態では、前記回転軸の回転時、前記軸受面に形成されるくさび状油膜による油膜圧が同等となる等圧領域が、最大油膜圧領域を中心とし油膜圧が徐々に低圧となる領域が該最大油膜圧領域の外側に同心状に広がるように形成され、前記油溝が一つの等圧線に沿って配置される。
 このように、回転軸の回転時に形成される油膜圧の分布(最大油膜圧領域を中心とし油膜圧が徐々に低圧となる領域が該最大油膜圧領域の外側に同心状に広がる分布)における等圧線に沿って油溝を配置することで、動圧軸受としての機能を良好に保てる。
 幾つかの実施形態では、前記回転軸の回転時に前記回転軸の外周面と前記軸受面との間に発生する油膜圧により、前記回転軸と前記軸受パッドの回転方向上流端との隙間が、前記回転軸と前記軸受パッドの回転方向下流端との隙間と同等となる領域に分布している。
 本発明の幾つかの実施形態によれば、給油機構から潤滑油が供給される油溝を、軸受面のうち回転軸の外周面と接触する接触エリアの内側及び外側に設ける構成としたので、回転軸の回転開始時又は低速回転時において給油機構から油溝を介して潤滑油を供給した時に、接触エリアの内側及び外側の両方に潤滑油を行き渡らせることができる。よって、給油機構への供給油圧が比較的小さい場合であっても、回転軸を効果的に浮上させることができる。
本発明の第1実施形態に係る軸受装置の全体構成図である。 第1実施形態に係る軸受パッドの断面図である。 第1実施形態における軸受パッドの軸受面の展開図である。 比較例における軸受パッド(接触エリアの内側のみ油溝)の軸受面の展開図である。 他の比較例における軸受パッド(接触エリアの外側のみ油溝)の軸受面の展開図である。 接触エリアと油膜圧との関係を示すグラフである。 第1実施形態に係る軸受装置の給油機構の一例を示す構成図である。 本発明の第2実施形態における軸受パッドの軸受面の展開図である。 本発明の第2実施形態に係る軸受装置の給油機構の一例を示す構成図である。 本発明の第3実施形態における軸受パッドの軸受面の展開図である。 本発明の第4実施形態に係る軸受装置の断面図である。 本発明の第4実施形態における軸受パッドの軸受面の展開図である。 油溝の加重平均位置を説明するための図である。 本発明の第5実施形態における軸受パッドの軸受面の展開図である。 本発明の第5実施形態における油膜圧分布図である。 本発明の第6実施形態に係る軸受パッドの軸受面の展開図である。 (A)は第4実施形態に係る油溝の油膜圧分布を示す線図であり、(B)は、第6実施形態に係る油溝の油膜圧分布を示す線図である。 第6実施形態の変形例に係る軸受パッドの軸受面の展開図である。 第6実施形態の変形例に係る給油機構を示す軸受装置の断面図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、この発明の範囲をそれのみに限定する趣旨ではない。
(第1実施形態)
 図1を参照して、本発明の第1実施形態に係るティルティングパッド軸受装置10の全体的な概略構成について説明する。なお、図1は本発明の第1実施形態に係るティルティングパッド軸受装置の全体構成図である。
 幾つかの実施形態において、図1に示す軸受ハウジング12は2つ割り型の軸受ハウジングであり、半円形のハウジング片12a及び12bで構成されている。ハウジング片12a及び12bは、互いの合わせ面が当接された状態でボルト等の結合具で結合される。軸受ハウジング12の内周面に沿って複数(図1では4個)の軸受パッド14が設けられ、軸受パッド14の内周面が軸受面14aを形成している。軸受面14aの内側に、タービンや発電機等、大型回転機械の回転軸15(図2参照)が配置される。複数の軸受パッド14,14,…のうちの1個以上の軸受パッド14の軸受面14aには、給油口34が開口し、かつ給油口34に連通した油溝36が刻設されている。給油口34及び油溝36が設けられる軸受パッド14は、回転軸15の周囲に配置される複数の軸受パッド14,14,…のうち、少なくとも回転軸15の周方向下方に位置する軸受パッド14であってもよい。すなわち、回転軸15の停止時に、回転軸15の自重を支持する位置に配置される軸受パッド14に、給油口34及び油溝36が形成されてもよい。勿論、回転軸15の周方向上方に位置する軸受パッド14にも給油口34及び油溝36が形成されていてもよい。
 以下、給油口34に潤滑油を供給する給油機構16の構成を説明する。ポンプ18はモータ20によって駆動され、図示しない油タンクから高圧の潤滑油oを給油ライン22に吐出する。油路22にはリリーフ弁24が設けられ、給油ライン22を流れる潤滑油oの圧力が許容値を超えたとき、潤滑油の一部をタンク26に放出して潤滑油oの圧力を許容値以下に低減する。給油ライン22は下流側で分岐路28a及び28bに分岐する。分岐路28a及び28bには、夫々バルブ(流量調整弁)30a及び30bが設けられている。分岐路28a及び28bは、夫々ハウジング片12b及び軸受パッド14に形成された給油孔32a及び32bを経て、夫々の軸受パッド14に形成された給油口34に連通している。
 次に、図2及び図3を参照して、ティルティングパッド軸受装置10の各部位の具体的な構成について説明する。図2は本発明の第1実施形態における軸受パッドの断面図である。図3は本発明の第1実施形態における軸受パッドの軸受面の展開図である。なお、図3は、曲率を有する軸受パッド14を平面上に展開した図である。
 以下の実施形態では、軸受パッド14がピボット38により点支持される構成を有するティルティングパッド軸受装置10について例示している。
 図2において、Gは、回転軸15の中心とピボット38の支持点を通る直線である。図2に示す矢印rは回転軸15の回転方向である。図3において、Gは、ピボット38による軸受パッド14の支持点を通り、回転軸15の軸線と平行な直線である。矢印aは回転軸15の軸方向を示す。
 幾つかの実施形態において、図2及び図3に示す軸受パッド14は、ハウジング片12bの内周面に設けられたピボット38によって揺動可能に点支持されている。ピボット38は、通常、軸受パッド14の中央付近に設けられるが、回転軸15の回転方向における軸受パッド14の中央位置よりも回転方向上流側又は下流側にオフセットして配置されてもよい。図2において、回転軸15の回転方向に対して上流側には軸受パッド14の回転方向前端14bが位置し、下流側には軸受パッド14の回転方向後端14cが位置する。
 一実施形態において、図2及び図3では、ピボット38を通る直線Gが、回転軸15の回転方向における軸受パッド14の中央位置C(図13参照)に対し、回転軸15の回転方向下流側にオフセットして配置された場合を示している。このように、回転軸15の定格回転時のようにティルティングパッド軸受装置10が動圧軸受として機能する場合に、ピボット38が回転軸15の周方向における軸受パッド14の中心位置よりも回転軸15の回転方向下流側に配置されていることにより、軸受パッド14の前端14bの軸受面14aと回転軸15の外周面との隙間が大きくなる。そのため、潤滑油の軸受面14aへの引き込み量が増加し、軸受パッド14と回転軸15の間の潤滑性を向上できる。
 幾つかの実施形態では、軸受パッド14の軸受面14aには、4つの給油口40(40a,40b),44(44a,44b)が開口し、且つ、各給油口40,44に連通した油溝42(42a,42b),46(46a,46b)が設けられている。
 上記構成を有するティルティングパッド軸受装置10は、軸受パッド14が揺動可能なように、軸受パッド14の外周面に当接するピボット38により軸受パッド14が支持される構成となっているため、軸受パッド14の自重あるいは回転軸15を介して軸受パッド14に与えられる荷重等により軸受パッド14はわずかに変形する。そのため、回転軸15の停止時、この軸受パッド14の変形に依存した形状の接触エリアSにて、軸受パッド14と回転軸15とが接触することになる。例えば、図2に示すように軸受パッド14がピボット38で点支持される場合、図3に示すように軸受パッド14と回転軸15との接触エリアSは略楕円形状となる。
 幾つかの実施形態において、油溝42,46は接触エリアSの内側及び外側に設けられる。なお、接触エリアSは、回転軸15の直径(回転軸の外周面の曲率半径)、軸受パッド14の軸受面14aの曲率半径、軸受パッド14の材質、及び、回転軸15を介してティルティングパッド軸受装置10に与えられる荷重等によって決定される。接触エリアSの形状、位置は、実験的に求めてもよいし、シミュレーションによって推定してもよい。例えば、回転軸15と軸上パッド14の間に感圧紙を挟み込み、感圧紙の着色した部位を接触エリアSと判定してもよい。あるいは、ヘルツ理論を用いて算出される接触応力から接触エリアSを推定してもよいし、FEM解析を用いて接触エリアSを推定してもよい。
 ここで、図6を参照して、図2及び図3に示す第1実施形態における軸受パッド14と、図4及び図5に示す比較例における軸受パッド14’,14”とで油膜圧の特性を対比して説明する。図4は比較例における軸受パッドの軸受面の展開図である。図5は他の比較例における軸受パッド(接触エリアの外側のみ油溝)の軸受面の展開図である。図6は接触エリアと油膜圧との関係を示すグラフであり、図6(A)は第1実施形態(図3)における軸受パッド14の油膜圧特性を示すグラフで、図6(B)は比較例(図4)における軸受パッド14’の油膜圧特性を示すグラフで、図6(C)は他の比較例(図5)における軸受パッド14”の油膜圧特性を示すグラフである。
 図4に示す軸受パッド14’には、接触エリアSの外側には油溝が設けられておらず、接触エリアSの内側にのみ油溝42’(42a’,42b’),46’(46a’,46b’)が設けられている。これに対し、図5に示す軸受パッド14”には、接触エリアSの外側には油溝が設けられておらず、接触エリアSの内側にのみ油溝42”(42a”,42b”),46”(46a”,46b”)が設けられている。
 図4及び図6(B)に示すように、潤滑油を導くための油溝42’,46’が接触エリアSの内側に形成されている場合、接触エリアSの内側から接触エリアSの外側への境界で軸受パッド14’と回転軸15の間の隙間は急激に広がる。そのため、接触エリアS内の油溝42a’,42b’,46a’,46b’を介して隙間に供給される潤滑油による油膜圧は、接触エリアSの内側では高く維持されるものの接触エリアSの外側では隙間の急激な体積増加によって大幅に低下してしまう。そのため、軸受パッド14’の軸受面全体に略均一な油膜圧が形成されるように潤滑油を行き渡らせることが難しく、特に接触エリアSの外側における油膜圧が十分に立たないという事態が起こり得る。
 図5及び図6(C)に示すように、接触エリアSの外側に油溝42”,46”が形成されている場合、接触エリアSの外側から接触エリアSの内側に向けてその境界で軸受パッド14”と回転軸15の間の隙間は急激に狭くなる。そのため、接触エリアSの内側へ潤滑油が十分に供給されず、接触エリアSの内側における油膜圧が十分に立たないという事態が起こり得る。
 このように、比較例における軸受パッド14’,14”によれば、軸受パッド14’,14”の軸受面14a’,14a”に十分に潤滑油が行き渡らず、そのため、JOP機構を起動して回転軸15の回転させる際に、回転軸15が円滑に浮上しない可能性がある。
 これに対して本実施形態では、図3及び図6(A)に示すように、接触エリアSの内側及び外側に油溝42,46を設ける構成としたので、回転軸15の回転開始時又は低速回転時において給油機構16から油溝42,46を介して潤滑油を供給した時に、接触エリアSの内側及び外側の両方に潤滑油を行き渡らせることができる。よって、給油機構16への供給油圧が比較的小さい場合であっても、回転軸15を効果的に浮上させることができる。
 また、一実施形態において、少なくとも1個の油溝42,46は、接触エリアSの内側から外側まで連続的に延在していてもよい。即ち、各々の油溝42,46は、接触エリアSの境界を跨ぐように延設されていてもよい。このように、接触エリアSの内側から外側まで連続的に延在する少なくとも1個の油溝42,46を設けることによって、油溝42,46による回転軸15の浮上特性を維持しながら油溝42,46の設置数を削減することもできる。なお、図3では、全ての油溝42,46が、接触エリアSの内側から外側まで連続的に延在して配置された場合を例示している。
 さらに、図示しないが他の実施形態では、少なくとも1個の油溝は、接触エリアSの内側に設けられた内側油溝と、内側油溝とは別に接触エリアSの外側に設けられた外側油溝とを含んでもよい。このように、接触エリアSの内側に設けられた内側油溝と、接触エリアSの外側に設けられた外側油溝とを設けることにより、油溝による回転軸15の浮上特性を維持しながら各油溝の設置位置や形状の自由度を向上させることができる。
 また、幾つかの実施形態において、少なくとも1個の油溝42,44の各々が、回転軸15の回転時に軸受面14aと回転軸15の外周面との間に形成される油膜の圧力が同一である位置を通る等圧線に沿って設けられてもよい。
 回転軸15の高速回転時、軸受パッド14の軸受面14aに開口した給油口40,44への潤滑油の供給は停止されている。この時、潤滑油は回転軸15と共に連れ回りしながら油膜圧を形成し、油膜圧による油膜圧分布(図3参照)が形成される。図3において、ラインp1~p6は軸回転によるくさび状油膜の等圧線であり、最内側に位置する等圧線p1の内側領域が最大油膜圧を呈し、外側へ行くに従って油膜圧は順々に低下していく。図示のように、最大油膜圧領域(p1の内側領域)を中心とし、等圧域が同心状に広がる楕円形を呈する。ここで、等圧線は、回転軸15の回転時に軸受面14aと回転軸15の外周面との間に形成される油膜の圧力が同一である位置を通る線である。
 一実施形態では、図3に示す給油口40(40a,40b)の各々が等圧線p4上に設けられている。また、給油口40に連通した油溝42(42a,42b)が等圧線p4に沿って設けられている。同様に、給油口44(44a,44b)に連通した油溝46(46a,46b)が等圧線p5に沿って設けられている。油溝42及び油溝46は、それぞれが互いに独立している。
 各油溝42,44は、それぞれ、連通した1つの空間によって形成されるので、各油溝42,44内はいずれの位置も同一の圧力となる。したがって、異なる等圧線にまたがるように油溝42,44を形成した場合、回転軸15の回転時に各油溝42,44内の圧力が均一化して動圧軸受としての機能が損なわれる可能性がある。そこで、上記実施形態のように、各油溝42,44をそれぞれ等圧線p4,p5に沿って設けることによって、各等圧線位置における油溝42,44内の圧力を維持し、動圧軸受としての機能を良好に保てる。
 また、一実施形態では、図7に示すように、油溝42と油溝44とに潤滑油を供給する給油路52,54が、少なくとも回転軸15の回転時に互いに異なる圧力に維持可能に別系統として設けられる。
 図7に示す給油機構16は、第1給油口40と、第1油溝42と、第2給油口44と、第2油溝46と、第1給油路52と、第2給油路54と、第1バルブ53と、第2バルブ55と、ポンプ50とを有している。
 第1油溝42と第2油溝46とは、異なる油膜圧を示す等圧線に沿って設けられている。第1給油路52及び第2給油路54は、少なくとも回転軸15の回転時に互いに異なる圧力に維持可能に別系統として設けられる。第1給油路52及び第2給油路54は、ポンプ50に接続されて、ポンプ50によって潤滑油が供給されるようになっている。第1給油路52及び第2給油路54とポンプ50との間には、それぞれ、第1バルブ53,第2バルブ55が設けられており、第1給油路52及び第2給油路54への潤滑油の供給量が調節可能に構成される。
 そして、回転軸15の回転開始時又は低速回転時には、第1バルブ53及び第2バルブ55をそれぞれ開いた状態とし、ポンプ50を作動させて第1給油路52及び第2給油路54を介して第1油溝42と第2油溝46に潤滑油を供給する。各油溝42,46への潤滑油の供給量は、各バルブ53,55の開度によって調節してもよい。一方、回転軸15の定格回転時には、第1バルブ53及び第2バルブ55を閉じた状態とし、ポンプ50を停止して第1給油路52及び第2給油路54を介した第1油溝42及び第2油溝46への潤滑油の供給を遮断する。このとき、第1油溝42第2油溝46とは連通していないため、各油溝42,46の圧力は独立して保たれる。
 このように、第1油溝42に連通する第1給油路40と、第2油溝46に連通する第2給油路44とが、少なくとも回転軸15の回転時に互いに異なる圧力に維持可能に別系統として設けられることにより、異なる等圧線(第1等圧線と第2等圧線)に沿って設けられる第1油溝42及び第2油溝46の圧力が、回転軸15の定格回転時において均一化されることを回避でき、動圧軸受としての機能を良好に保持できる。
(第2実施形態)
 次に、本発明の第2実施形態を図8及び図9に基づいて説明する。図8は本発明の第2実施形態における軸受パッドの軸受面の展開図である。図9は本発明の第2実施形態に係る軸受装置の給油機構の一例を示す構成図である。
 本実施形態に係る給油機構16は、第1給油口60(60a,60b),64(64a,64b)と、第1油溝62(62a,62b),66(66a,66b)と、第1給油路72,74と、第1バルブ76と、ポンプ70とを有している。
 複数の第1油溝62,66は、同一の油膜圧を示す等圧線に沿って設けられている。さらに、第1油溝62,66は、第1給油路72,74を介して互いに連通するように構成されている。例えば、第1給油路72,74が基部側で合流しており、合流した第1給油路72,74とポンプ70との間に第1バルブ76が設けられる。第1バルブ76は、第1給油路72,74への潤滑油の供給量を調節する構成となっている。
 そして、回転軸15の回転開始時又は低速回転時には、第1バルブ76を開いた状態とし、ポンプ70を作動させて第1給油路72,74を介して第1油溝62,66に潤滑油を供給する。一方、回転軸15の定格回転時には、第1バルブ76を閉じた状態とし、ポンプ70を停止して第1給油路72,74を介した第1油溝62,66への潤滑油の供給を遮断する。
 上記第2実施形態によれば、同一の等圧線に沿って設けられる複数個の第1油溝62,66については第1給油路72,74が互いに連通する構成を採用すれば、第1給油路72,74やバルブ73等の給油機構16の構成を簡素化することもできる。
(第3実施形態)
 図10は本発明の第3実施形態における軸受パッドの軸受面の展開図である。
 図10に示すように、一実施形態において油溝82は、回転軸15の軸方向に沿って給油口80を挟むように配置された、一対の菱形形状の油溝82a,82bを含んでいてもよい。その場合、油溝82は、ピボット38を通る直線Gを跨いで配置され、油溝80の菱形形状の周方向の回転上流側の頂点部83a,83bが直線Gよりも回転方向上流側に位置していてもよい。なお、図10に示す例示的な実施形態では、油溝82は直線Gに対して線対称の形状を有する。
(第4実施形態)
 図11は本発明の第4実施形態における軸受パッドの断面図である。図12は本発明の第4実施形態における軸受パッドの軸受面の展開図である。図13は油溝の加重平均位置を説明するための図である。なお、図12は、曲率を有する軸受パッド14を平面上に展開した図である。
 図11において、Gは、回転軸15の中心とピボット38の支持点を通る直線である。図12において、Cは、回転軸15の回転方向における軸受パッド14(軸受面14a)の中央位置を通る直線である。この中央位置Cは回転軸15の軸線に平行である。Gは、ピボット38による軸受パッド14の支持点を通り、回転軸15の軸線と平行な直線である。矢印aは回転軸15の軸方向を示す。また、図12及び図13において、回転軸15の回転方向をx軸とし、ピボット38の支持点(支持部材の配置位置)を通る直線Gの位置をx=0に設定する。さらに、ピボット38の支持点を通る直線Gよりも回転方向下流側(図12及び図13では右側)を正の向き、直線Gよりも回転方向上流側(図12及び図13では左側)を負の向きとしている。
 各軸受パッド14は、ハウジング片12bの内周面に設けられたピボット38によって揺動可能に支持される。幾つかの実施形態において、ピボット38は、回転軸15の回転方向における軸受パッド14の中央位置Cに対し、回転軸15の回転方向上流側又は回転方向下流側にオフセットして配置される。なお、図12に示す例示的な実施形態では、ピボット38の配置位置(軸受パッド14の支持点)は、軸受パッド14の中央位置Cに対してx軸の正の方向(回転方向下流側)にオフセットして配置されている。例えば、図11に示すように回転方向前端14bを0%とし、回転方向後端14cを100%としたとき、ピボット38は、例えば60%の位置に配置される。
 軸受パッド14の軸受面14aには、給油口80が開口し、かつ給油口80に連通した油溝82が刻設されている。油溝82は、給油口80の回転軸15の軸方向両側に配置された一対の菱形形状の油溝を含んでいる。この油溝82は、油溝82の加重平均位置Xが、ピボット38の配置位置を通る直線Gに対して、軸受パッド14の中央位置Cを基準としたピボット38の支持点のオフセット方向(図11及び12に示す例示的な実施形態では回転方向下流側)にずれるように配置される。ここで、油溝82の加重平均位置とは、回転軸15の周方向における油溝82の中心位置Cを該油溝82の開口面積で重み付けした値であり、以下に詳述する。
 図13を用いて、油溝の構成について詳細に説明する。なお、図13では一例として、ピボット38の支持点を通る直線Gの両側にそれぞれ、開口面積の異なる2つの油溝90a及び油溝90bが設けられた場合を示している。油溝90aは直線Gよりも回転軸15の回転方向下流側(図13において直線Gよりも右側)に設けられ、油溝90bは直線Gよりも回転方向上流側(図13において直線Gよりも左側)に設けられている。ここでは、X軸上における直線Gの位置を原点(X=0)とするので、X軸上における油溝90aの中心位置を示す座標Xは正(X>0)となり、X軸上における油溝90bの中心位置を示す座標Xは負(X<0)となる。
 本実施形態において油溝90a及び油溝90bは、これら2つの油溝90a,90bの加重平均位置xが、ピボット38の支持点を通る直線G(ピボット38の配置位置)に対して、軸受パッド14の中央位置Cを基準としたピボット38の支持点のオフセット方向にずれるように構成される。なお、図13では、ピボット38が回転軸15の回転方向中央位置Cより回転方向下流側にオフセットされて配置される場合(回転方向に沿った方向がオフセット方向)を示している。この場合、油溝90a及び油溝90bの加重平均位置Aが、ピボット38の支持点を通る直線Gよりも回転方向下流側にずれる(即ち、x>xの関係を満たす)ように油溝90a及び油溝90bがそれぞれ形成される。
 図示しないが、他の実施形態では、ピボット38が、回転軸15の中央位置Cより回転方向上流側にオフセットされて配置される。この場合、油溝90a及び油溝90bの加重平均位置がピボット38の支持点を通る直線Gよりも回転方向上流側にずれるように油溝90a及び油溝90bがそれぞれ形成される。
 ティルティングパッド軸受装置10の軸受パッド14には、回転軸15の回転開始時又は低速回転時におけるJOP機構の作動中(すなわち潤滑油の供給中)、回転軸15と軸受パッド14との間に形成される油膜圧の分布(図11参照)に応じて、ピボット38による軸受パッド14の支持点まわりのモーメントが加わる。このモーメントは、軸受面14a上の任意の位置における油膜圧と、該位置の支持点からの距離との積である局所的なモーメントを軸受面14a上の全ての位置について積算したものである。この局所的なモーメントの符号は、ピボット38による軸受パッド14の支持点の両側において逆転する。したがって、ピボット38による軸受パッド14の支持点の両側におけるモーメントの絶対値の大小関係により、回転軸15と軸受パッド14との間に形成される油膜圧の分布に応じた正味のモーメントの方向が決まる。ここで、各油溝90a,90bの局所的なモーメントへの寄与は、各油溝90a,90bの中心位置x(i=1,2)と、当該油溝90a,90bが作る油膜圧の大きさに影響する当該油溝90a,90bの開口面積S(i=1,2)との積xによって表わされる。よって、油膜圧の分布に応じた正味のモーメントの方向は、基本的には、全油溝90a,90bについての局所的モーメントへの寄与の総和Σx(i=1,2)によって決まる。換言すれば、総和Σxを全油溝の開口面積の総和ΣSで除して得られる値(各々の油溝の中心位置xを油溝90a,90bの開口面積Sで重み付けした油溝の加重平均位置x)とピボット38の位置との配置関係に応じて、油膜圧の分布に応じた正味のモーメントの方向が定まる。
 上記ティルティングパッド軸受装置10では、各々の油溝90a,90bの中心位置xを油溝の開口面積Sで重み付けした油溝90a,90bの加重平均位置Xがピボット38の配置位置に対してピボット38のオフセット方向にずれるようにしたので、ピボット38が軸受パッド14の中央位置xに対してオフセットされていても、ピボット38を基準として回転軸15の回転方向上流側と下流側に作用するモーメントをバランスさせることができる。よって、回転軸15の回転開始時又は低速回転時に、回転軸15が傾くことを抑制し、回転軸15と軸受パッド14が接触することを防止できるので回転軸15の円滑な回転が可能となる。なお、図13では軸受面14aに2つの油溝90a,90bが設けられた場合について例示したが、油溝の数、形状、配置構成等については限定されない。
 上述の実施形態によれば、油溝の加重平均位置が、ピボット38の配置位置に対して、ピボット38の中心位置を基準としたオフセット方向にずれるように構成することによって、ピボット38を基準として回転軸の回転方向上流側と下流側に作用するモーメントをバランスさせることができる。よって、回転軸の回転開始時又は低速回転時に、回転軸が傾くことを抑制し、回転軸と軸受パッドが接触することを防止できるとともに、回転軸の円滑な回転が可能となる。
 一実施形態では、ピボット38の位置を境にして、ピボット38より回転方向(図中矢印r方向)上流側の軸受面14aに形成されるJOPによる油膜圧分布Pのピボット周りのモーメントの総計と、ピボット38より回転方向下流側の軸受面14aに形成されるJOPによる油圧分布Pのピボット周りのモーメントの総計とがバランスするように、軸受パッド14の回転方向前端14bと回転軸15の外周面との隙間s1と、軸受パッド14の回転方向後端14cと回転軸15の外周面との隙間s2とが形成されるようにしてもよい。
 給油口80及び油溝82の回転方向位置は、ピボット38よりさらに回転方向下流側であって、かつピボット38より回転方向上流側領域のJOPによる油膜圧分布Pのピボット周りのモーメントの総計と、ピボット38より回転方向下流側領域のJOPによる油膜圧分布Pのピボット周りのモーメントの総計とがバランスしたとき、隙間s1が隙間s2と同等となる領域に配置してもよい。給油口80は例えば70%の位置に配置される。
 このように、給油口80及び油溝82をピボット38より回転方向下流側領域に配置することにより、回転方向下流側領域の油膜厚さを確保できると共に、隙間s1が隙間s2より同等となる領域に配置することにより、回転方向上流側領域の油膜厚さも確保できる。こうして、軸受面14aの全域で均等な油膜圧を保持することも可能である。
(第5実施形態)
 次に、本発明の第5実施形態を図14及び図15により説明する。図14は本発明の第5実施形態における軸受パッドの軸受面の展開図である。図15は本発明の第5実施形態における油膜圧分布図である。
 図14に示すように、本実施形態では、軸受パッド14に複数の給油口140a及び140bが設けられている。給油口140a及び140bには、夫々油溝142a及び142bが連通している。給油口140aは、軸受パッド14に形成された給油路144a及び給油路146aを介して、高圧潤滑油を給油口140a及び140bに供給するポンプ50に接続されている。給油口140bは、軸受パッド14に形成された給油路144b及び給油路146bを介してポンプ50に接続されている。給油路146a及び146bには、夫々バルブ(流量調整弁148a及び148b)が設けられている。油溝142a及び142bは、菱形形状を有し、軸方向(矢印a方向)に離れた位置で互いに独立して形成されている。
 なお、油溝142a及び142bは図14中の直線Gを跨いで配置され、油溝142a,142bの菱形形状の周方向の回転上流側の頂点部142cが直線Gよりも回転方向上流側(図14における左側)に位置していてもよい。
 また、ピボット及び油溝142a、142bの位置関係は、上述の第4実施形態と同様であってもよい。すなわち、一実施形態において、ピボットの配置位置Gは、軸受パッド14の中央位置Cから回転軸15の回転方向xに対してオフセットされる。そして、2つの油溝142a、142bの加重平均位置Xが、ピボットの配置位置Cに対してオフセット方向へずれるように、2つの油溝142a、142bはそれぞれ配置される。なお、図14では一例として、オフセット方向を回転軸15の回転方向下流側(図5の右側)としている。
 給油機構は、ポンプ50から給油路146a、146b及び給油路144a、144bを経由して給油口140a、140bに潤滑油を供給する構成となっている。このとき、バルブ148a、148bで給油路146a、146bを流れる潤滑油oの圧力を別々に調整できる。本実施形態によれば、第4実施形態で得られる作用効果に加えて、回転軸15の軸方向で偏当りが生じたとき、偏当りが生じた領域の油溝へ供給する潤滑油量を多くし、油膜圧を高くすることで、偏当りをなくすことができる。
(第6実施形態)
 次に、本発明の第6実施形態を図16及び図17に基づいて説明する。図16は本発明の第6実施形態に係る軸受パッドの軸受面の展開図である。図17(A)は第4実施形態に係る油溝の油膜圧分布を示す線図であり、(B)は、第6実施形態に係る油溝の油膜圧分布を示す線図である。
 回転軸15の高速回転時、軸受パッド14の軸受面14aに開口した給油口への潤滑油の供給は停止されている。この時、潤滑油は回転軸15と共に連れ回りしながら油膜圧を形成し、図16に示すような油膜圧分布が形成される。図16に示す油膜圧分布は、図3を用いて説明した油膜圧分布と同様である。すなわち、図16中、ラインp1~p5は軸回転によるくさび状油膜の等圧線であり、p1の内側領域が最大油膜圧を呈し、外側へ行くに従って油膜圧は順々に低下していく。図示のように、最大油膜圧領域Rを中心とし、等圧域が同心状に広がる楕円形を呈する。ここで、等圧線は、回転軸15の回転時に軸受面14aと回転軸15の外周面との間に形成される油膜の圧力が同一である位置を通る線である。
 本実施形態では、給油口152a及び152bの各々が等圧線p4上に設けられている。また、給油口152aに連通した油溝154aが等圧線p4に沿って設けられ、同様に給油口152bに連通した油溝154bが等圧線p4に沿って設けられている。油溝154aと油溝154bとは互いに独立している。
 各油溝154a,154bは、それぞれ、連通した1つの空間によって形成されるので、各油溝154a,154b内はいずれの位置も同一の圧力となる。したがって、仮に油溝154a,154bが等圧線と交差するように形成した場合、回転軸15の回転時に各油溝154a,154b内の圧力が均一化して動圧軸受としての機能が損なわれる可能性がある。
 そこで、本実施形態のように、各油溝154a,154bをそれぞれ等圧線に沿って設けることによって、各等圧線位置における油溝154a,154b内の圧力を維持し、動圧軸受としての機能を良好に保てる。
 油溝154a又は154bは、夫々全領域内の油膜圧が等圧に保持されているので、油溝154a又は154bで油膜圧の低下は起こらない。
 この現象を図17で説明する。図17(A)は第4実施形態の油溝82の場合を示し、図17(B)は本実施形態の油溝154aの場合を示す。菱形形状の油溝82は、油膜圧が異なる等圧線に跨って配置されるおそれがある。そのため、図17(A)に示すように、油溝82の領域全体が低圧側の油膜圧となるおそれがあり、軸回転によるくさび状の油膜圧分布paに低圧域Prが発生するおそれがある。これに対し、本実施形態の油溝154a又は154bは、全領域で油膜圧が等圧であるので、図17(B)に示すように、軸回転によるくさび状の油膜圧分布pbに低圧域が発生することはない。
 また、油溝154a及び154bは、ピボット38に対し軸方向で対称に配置されているので、回転軸15の軸方向で同一の油膜圧を形成するのが容易である。そのため、回転軸15の偏当りを抑制できる。
 なお、油溝154a又は154bは図16中の直線Gを跨ぐように配置され、油溝154a又は154bの回転上流側の油溝端部154cは直線Gよりも回転方向上流側に位置してもよい。
 なお、第5実施形態で説明した給油機構の構成により、給油口152a,152bへの潤滑油の供給圧力を独立して調節することで、回転軸15の偏当りを防止することも可能である。
 また、第4~第5実施形態で説明したように、回転軸15の回転方向に対する油溝154a及び154bの加重平均位置xは、ピボットの配置位置を通る直線Gに対して、軸受パッド14の中央位置を基準としたピボットのオフセット方向(図16に示す例示的な実施形態では回転方向下流側)にずれるように配置されてもよい。
 さらに、回転軸15の回転方向に対する油溝154a及び154bの位置が、ピボットより回転方向上流側領域のJOPによる油膜圧分布Pのピボット周りのモーメントの総計と、ピボットより回転方向下流側領域のJOPによる油膜圧分布Pのピボット周りのモーメントの総計とがバランスしたとき、隙間s1と隙間s2(図11参照)とが同等となる領域であってもよい。
 続いて、上述した第6実施形態の変形例を図18及び図19により説明する。図18は第6実施形態の変形例に係る軸受パッドの軸受面の展開図である。図19は第6実施形態の変形例に係る給油機構を示す軸受装置の断面図である。
 図18及び図19に示す給油機構は、第1給油口156c,156dと、第1油溝158c,158dと、第2給油口157a,157bと、第2油溝159a,159bと、第1給油路146fと、第2給油路146eと、第1バルブ148eと、第2バルブ148dと、ポンプ50とを有している。
 第1油溝158c,158dと第2油溝159a,159bとは、異なる油膜圧を示す等圧線に沿って設けられている。第1油路146f及び第2油路146eは、少なくとも回転軸15の回転時に互いに異なる圧力に維持可能に別系統として設けられる。第1油路146f及び第2油路146eは、ポンプ50に接続されて、ポンプ50によって潤滑油が供給されるようになっている。第1油路146f及び第2油路146eとポンプ50との間には、それぞれ、第1バルブ148e,第2バルブ148dが設けられており、第1油路146f及び第2油路146eへの潤滑油の供給量が調節可能に構成される。
 そして、回転軸15の回転開始時又は低速回転時には、第1バルブ148e及び第2バルブ148dをそれぞれ開いた状態とし、ポンプ50を作動させて第1油路146f及び第2油路146eを介して第1油溝158c(158d)と第2油溝159a(159b)に潤滑油を供給する。各油溝158c,159aへの潤滑油の供給量は、各バルブ148e,148dの開度によって調節してもよい。一方、回転軸15の定格回転時には、第1バルブ148e及び第2バルブ148dを閉じた状態とし、ポンプ50を停止して第1油路146f及び第2油路146eを介した第1油溝158c(158d)及び第2油溝159a(159b)への潤滑油の供給を遮断する。このとき、第1油溝158c(158d)第2油溝159a(159b)とは連通していないため、各油溝158c(158d),159a(159b)の圧力は独立して保たれる。
 このように、第1油溝157aに連通する第1給油路146eと、第2油溝156cに連通する第2給油路146fとが、少なくとも回転軸15の回転時に互いに異なる圧力に維持可能に別系統として設けられることにより、異なる等圧線(第1等圧線と第2等圧線)に沿って設けられる第1油溝157a及び第2油溝156cの圧力が、回転軸15の定格回転時において均一化されることを回避でき、動圧軸受としての機能を良好に保持できる。
 以上説明したように、本発明の一態様の少なくとも幾つかの実施形態に係るティルティングパッド軸受装置10は、
 小さな供給油圧力で回転軸15を浮上可能とすることを目的とし、
 回転軸15の周囲に配置され、回転軸15を回転自在に支持する複数の軸受パッド14と、
 複数の軸受パッド14とこれら軸受パッド14を支持する軸受ハウジング12との間に介在され、各軸受パッド14を揺動可能に支持する支持部材(ピボット38)と、
 複数の軸受パッド14のうちの1個以上の軸受パッド14の軸受面14aに形成された少なくとも1個の油溝(42,46,62,66,82)に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置10であって、
 少なくとも1個の油溝(42,46,62,66,82)は、回転軸15の停止時において軸受面14aのうち回転軸15の外周面と接触する接触エリアSの内側及び外側に設けられる。
 また、本発明の他の態様の少なくとも幾つかの実施形態に係るティルティングパッド軸受装置10は、
 回転軸15と軸受パッド14との接触を防止することを目的とし、
 回転軸15の周囲に配置され、回転軸15を回転自在に支持する複数の軸受パッド14と、複数の軸受パッド14とこれら軸受パッド14を支持する軸受ハウジング12との間に介在され、各軸受パッド14を揺動可能に支持する支持部材(ピボット38)と、
 複数の軸受パッド14のうちの1個以上の軸受パッド14の軸受面14aに形成された少なくとも1個の油溝82に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置であって、
 支持部材(ピボット38)は、1個以上の軸受パッド14の回転軸15の回転方向における中央位置Cに対し、回転軸15の回転方向上流側又は回転方向下流側にオフセットして配置され、
 回転軸15の周方向における各々の油溝82の中心位置xを該油溝82の開口面積で重み付けした少なくとも1個の油溝の加重平均位置xが、支持部材(ピボット38)の配置位置Gに対して、中央位置Cを基準とした支持部材(ピボット38)のオフセット方向にずれている。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。例えば、上述した第1実施形態~第6実施形態は、適宜組み合わせて実施してもよい。
 10            ティルティングパッド軸受装置
 12            軸受ハウジング
 12a,12b       ハウジング片
 14            軸受パッド
 14a           軸受面
 15            回転軸
 16            給油機構
 18            ポンプ
 20            モータ
 22            給油ライン
 24            リリーフ弁
 26            タンク
 28a,28b       分岐路
 30a,30b       バルブ
 34            給油口
 36            油溝
 38            ピボット
 40(40a,40b)   第1給油口
 42(42a,42b)   第1油溝
 44(44a,44b)   第2給油口
 46(46a,46b)   第2油溝
 50            ポンプ
 P             JOPによる油膜圧分布
 Pr            低圧域
 R            最大油膜圧領域
 o             潤滑油
 pa、pb         軸回転によるくさび状油膜の圧力分布
 p1~p5         軸回転によるくさび状油膜の等圧線
 s1,s2         隙間
 S             接触エリア
 

Claims (13)

  1.  回転軸の周囲に配置され、前記回転軸を回転自在に支持する複数の軸受パッドと、
     前記複数の軸受パッドとこれら軸受パッドを支持する軸受ハウジングとの間に介在され、各軸受パッドを揺動可能に支持する支持部材と、
     前記複数の軸受パッドのうちの1個以上の軸受パッドの軸受面に形成された少なくとも1個の油溝に潤滑油を供給するように構成された給油機構とを備えたティルティングパッド軸受装置であって、
     前記少なくとも1個の油溝は、前記回転軸の停止時において前記軸受面のうち前記回転軸の外周面と接触する接触エリアの内側及び外側に設けられていることを特徴とするティルティングパッド軸受装置。
  2.  前記少なくとも1個の油溝は、前記接触エリアの内側から外側まで連続的に延在していることを特徴とする請求項1に記載のティルティングパッド軸受装置。
  3.  前記少なくとも1個の油溝は、前記接触エリアの内側に設けられた内側油溝と、前記内側油溝とは別に前記接触エリアの外側に設けられた外側油溝とを含むことを特徴とする請求項1に記載のティルティングパッド軸受装置。
  4.  前記少なくとも1個の油溝の各々が、前記回転軸の回転時に前記軸受面と前記回転軸の外周面との間に形成される油膜の圧力が同一である位置を通る等圧線に沿って設けられたことを特徴とする請求項1乃至3のいずれか一項に記載のティルティングパッド軸受装置。
  5.  前記少なくとも1個の油溝は、前記油膜の前記圧力が第1圧力である位置を通る第1等圧線に沿って設けられる第1油溝と、前記油膜の前記圧力が前記第1圧力とは異なる第2圧力である位置を通る第2等圧線に沿って設けられる第2油溝とを含み、
     前記給油機構は、前記第1油溝に開口する第1給油口に連通する第1給油路と、前記第2油溝開口する第2給油口に連通する第2給油路とを含み、
     前記第1給油路と前記第2給油路とは、少なくとも前記回転軸の回転時に互いに異なる圧力に維持可能に別系統として設けられたことを特徴とする請求項4に記載のティルティングパッド軸受装置。
  6.  前記第1等圧線に沿って設けられる複数個の前記第1油溝は、前記第1給油路を介して互いに連通するように構成されることを特徴とする請求項5に記載のティルティングパッド軸受装置。
  7.  前記第1給油路に設けられ、前記第1油溝への前記潤滑油の供給量を調整するための第1バルブと、
     前記第2供給路に設けられ、前記第2油溝への前記潤滑油の供給量を調整するための第2バルブとをさらに備えることを特徴とする請求項5に記載のティルティングパッド軸受け装置。
  8.  前記支持部材は、前記1個以上の軸受パッドの前記回転軸の回転方向における中央位置に対し、前記回転軸の回転方向上流側又は回転方向下流側にオフセットして配置され、
     前記回転軸の周方向における各々の前記油溝の中心位置を該油溝の開口面積で重み付けした前記少なくとも1個の油溝の加重平均位置が、前記支持部材の配置位置に対して、前記中央位置を基準とした前記支持部材のオフセット方向にずれていることを特徴とする請求項1に記載のティルティングパッド軸受装置。
  9.  前記支持部材は、前記回転軸の周方向における前記軸受パッドの中央位置よりも前記回転軸の回転方向下流側に配置されており、
     前記少なくとも1個の油溝の前記加重平均位置が、前記支持部材の配置位置より前記回転軸の回転方向下流側にずれていることを特徴とする請求項8に記載のティルティングパッド軸受装置。
  10.  前記給油機構からの前記潤滑油の供給を受ける複数の給油口が前記軸受面上に前記回転軸の軸方向に並んで設けられ、各給油口に連通する前記油溝が夫々独立して形成されていることを特徴とする請求項1乃至3のいずれか一項に記載のティルティングパッド軸受装置。
  11.  前記少なくとも1個の油溝は、前記回転軸の回転時、前記軸受面に形成されるくさび状油膜による油膜圧が同等となる領域内に配置されていることを特徴とする請求項1乃至3のいずれか一項に記載のティルティングパッド軸受装置。
  12.  前記回転軸の回転時、前記軸受面に形成されるくさび状油膜による油膜圧が同等となる等圧領域が、最大油膜圧領域を中心とし油膜圧が徐々に低圧となる領域が該最大油膜圧領域の外側に同心状に広がるように形成され、
     前記油溝が一つの等圧線に沿って配置されていることを特徴とする請求項1乃至3のいずれか一項に記載のティルティングパッド軸受装置。
  13.  前記回転軸の回転時に前記回転軸の外周面と前記軸受面との間に発生する油膜圧により、前記回転軸と前記軸受パッドの回転方向上流端との隙間が、前記回転軸と前記軸受パッドの回転方向下流端との隙間と同等となる領域に分布していることを特徴とする請求項1乃至3のいずれか一項に記載のティルティングパッド軸受装置。
PCT/JP2014/052059 2013-01-31 2014-01-30 ティルティングパッド軸受装置 WO2014119652A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020157022536A KR101676986B1 (ko) 2013-01-31 2014-01-30 틸팅 패드 베어링 장치
US14/763,930 US9366287B2 (en) 2013-01-31 2014-01-30 Tilting pad bearing device
EP15188732.0A EP3001049B1 (en) 2013-01-31 2014-01-30 Tilting pad bearing device
EP14745639.6A EP2952757B1 (en) 2013-01-31 2014-01-30 Tilting pad bearing device
KR1020157022540A KR101676987B1 (ko) 2013-01-31 2014-01-30 틸팅 패드 베어링 장치
KR1020157018155A KR101676984B1 (ko) 2013-01-31 2014-01-30 틸팅 패드 베어링 장치
CN201480003228.4A CN104903601B (zh) 2013-01-31 2014-01-30 倾斜垫片轴承装置
US14/939,184 US9371857B2 (en) 2013-01-31 2015-11-12 Tilting pad bearing device
US14/939,236 US9512879B2 (en) 2013-01-31 2015-11-12 Tilting pad bearing device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013016421 2013-01-31
JP2013-016421 2013-01-31
JP2013-146668 2013-07-12
JP2013146668A JP6420946B2 (ja) 2013-07-12 2013-07-12 ティルティングパッド軸受装置
JP2013146669A JP6332919B2 (ja) 2013-01-31 2013-07-12 ティルティングパッド軸受装置
JP2013-146669 2013-07-12

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/763,930 A-371-Of-International US9366287B2 (en) 2013-01-31 2014-01-30 Tilting pad bearing device
US14/939,184 Continuation US9371857B2 (en) 2013-01-31 2015-11-12 Tilting pad bearing device
US14/939,236 Continuation US9512879B2 (en) 2013-01-31 2015-11-12 Tilting pad bearing device

Publications (1)

Publication Number Publication Date
WO2014119652A1 true WO2014119652A1 (ja) 2014-08-07

Family

ID=54035047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052059 WO2014119652A1 (ja) 2013-01-31 2014-01-30 ティルティングパッド軸受装置

Country Status (5)

Country Link
US (3) US9366287B2 (ja)
EP (2) EP3001049B1 (ja)
KR (3) KR101676986B1 (ja)
CN (2) CN104903601B (ja)
WO (1) WO2014119652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138603A (ja) * 2015-01-28 2016-08-04 株式会社神戸製鋼所 ティルティングパッドジャーナル軸受

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038088B2 (ja) * 2014-09-22 2016-12-07 三菱重工業株式会社 軸受及び軸受パッド
JP6849310B2 (ja) * 2016-02-29 2021-03-24 三菱パワー株式会社 ジャーナル軸受および回転機械
US10527038B2 (en) * 2017-01-20 2020-01-07 Hamilton Sundstrand Corporation Fuel flow control assembly of aircraft engine and method
US10385830B2 (en) 2017-07-14 2019-08-20 General Electric Company Compound main bearing arrangement for a wind turbine
CN107218299A (zh) * 2017-08-03 2017-09-29 中冶赛迪工程技术股份有限公司 吐丝机用椭圆油膜轴承结构
DE102017120578A1 (de) * 2017-09-07 2019-03-07 Voith Patent Gmbh Kippsegmentlager, insbesondere Radialkippsegmentlager
WO2020196599A1 (ja) 2019-03-26 2020-10-01 Ntn株式会社 流体動圧軸受装置
DE102019209027A1 (de) * 2019-06-21 2020-12-24 Siemens Aktiengesellschaft Lageranordnung
CN111963572B (zh) * 2020-08-14 2021-10-22 北京稳力科技有限公司 一种气体压缩机、电机及箔片径向气体动压轴承
CN111997999B (zh) * 2020-08-20 2022-04-12 浙江申发轴瓦股份有限公司 一种可倾瓦滑动轴承轴瓦结构和可倾瓦滑动轴承
KR102539698B1 (ko) 2022-11-23 2023-06-07 동양메탈공업 주식회사 직접윤활식 틸팅 패드 저널베어링

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138243A (ja) * 1974-04-08 1975-11-04
JPS5569317A (en) * 1978-11-10 1980-05-24 Maag Zahnraeder & Maschinen Ag Inclined segment type radial bearing for high loaded and high speed shaft
JPS59212520A (ja) 1983-05-18 1984-12-01 Mitsubishi Electric Corp スラスト軸受装置
JPH02146961U (ja) 1989-05-12 1990-12-13
JPH0496621U (ja) * 1991-01-29 1992-08-21
JP2001517288A (ja) * 1997-03-31 2001-10-02 ダブリューエッチエム ホールディング コーポレーション 階段状部付きポケットを備えたジャーナル軸受用自己安定化真傾斜パッド
JP2011127772A (ja) * 2011-03-30 2011-06-30 Toshiba Corp パッド型ジャーナル軸受装置
JP2012532279A (ja) * 2009-07-10 2012-12-13 シーメンス アクチエンゲゼルシヤフト 風力タービン主軸受け

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2348928A (en) * 1941-11-13 1944-05-16 Heald Machine Co Bearing construction
US3004804A (en) * 1959-08-26 1961-10-17 Gen Electric Pivoted shoe bearing with force-feed lubrication
FR1306740A (fr) * 1961-09-08 1962-10-19 Rateau Soc Perfectionnements aux paliers et dispositifs similaires comprenant des patins à fluide sous pression
US3339990A (en) * 1964-07-13 1967-09-05 Worthington Corp Lubricated bearing shoe
US3604767A (en) * 1969-10-06 1971-09-14 Cincinnati Milacron Inc Adjustable pivoted shoe bearing and method of adjusting
JPS496052B1 (ja) * 1970-03-11 1974-02-12
DE2211414A1 (de) * 1972-03-06 1973-09-13 Siemens Ag Hydrodynamisches spurlager mit mittig unterstuetzten kippsegmenten fuer eine in zwei drehrichtungen rotierende welle
JPS5324625Y2 (ja) 1974-01-24 1978-06-23
FR2260710A1 (en) * 1974-02-13 1975-09-05 Rateau Sa Spherical seat shaft bearings - have bores from bearing faces to cavities at seat transmitting max oil pressure
US3891281A (en) 1974-04-08 1975-06-24 Allis Chalmers Pivoted pad bearing apparatus and method for bidirectional rotation
DE2709048A1 (de) * 1977-03-02 1978-09-07 Kraftwerk Union Ag Anordnung zur druckoelanhebung von maschinenwellen in radialgleitlagern
DE2846110C3 (de) 1978-10-23 1982-02-18 Hollingsworth Gmbh, 7265 Neubulach Kardierplatte
JPS5571821U (ja) * 1978-11-13 1980-05-17
JPS58102819A (ja) * 1981-12-11 1983-06-18 Toshiba Corp テイルテイングパツド軸受
US4746230A (en) 1984-02-17 1988-05-24 Elliott Turbomachinery Co., Inc. Tilt pad journal bearing
CH665262A5 (de) 1984-06-22 1988-04-29 Bbc Brown Boveri & Cie Kippsegmentradiallager.
JPH02146961A (ja) 1986-09-20 1990-06-06 Pfu Ltd 電源入力電圧切替え回路
CN87205706U (zh) * 1987-04-01 1988-07-27 李传友 沟槽式可倾瓦动压轴承
DE3815029A1 (de) * 1988-05-03 1989-11-16 Interatom Gasstatisches lager mit geteilter lagerschale
US5000584A (en) 1990-03-02 1991-03-19 Morgan Construction Company Bushing for oil film bearing
JPH0496621A (ja) 1990-08-13 1992-03-30 Toshiyasu Suzuki 突入電流防止手段およびその方法
JPH0727132A (ja) 1993-07-09 1995-01-27 Mitsubishi Heavy Ind Ltd ジャーナル軸受
JPH07113422A (ja) 1993-10-15 1995-05-02 Mitsubishi Heavy Ind Ltd ティルティングパッドスラスト軸受
JP3377612B2 (ja) * 1994-07-27 2003-02-17 三菱重工業株式会社 動圧気体ジャーナル軸受
JPH10292817A (ja) 1997-04-17 1998-11-04 Mitsubishi Heavy Ind Ltd 調芯機構を有するジャーナル軸受
JP2001124062A (ja) 1999-10-21 2001-05-08 Hitachi Ltd ティルティングパッド軸受装置
ES2250626T3 (es) 2001-02-02 2006-04-16 Alstom Technology Ltd Procedimiento y dispositivo para vigilar el funcionamiento de un cojinete de deslizamiento.
US6739756B2 (en) * 2001-03-12 2004-05-25 Whm Holding Corporation Combination thrust bearing and journal bearing, and method for distributing fluid to same
JP2004301258A (ja) * 2003-03-31 2004-10-28 Toshiba Corp ジャーナル軸受
US7165889B2 (en) * 2005-01-27 2007-01-23 Siemens Power Generation, Inc. Bearing oil lift pocket
JP2009531623A (ja) 2006-03-31 2009-09-03 アルストム テクノロジー リミテッド 流体動圧式スラスト滑り軸受けおよびその作動方法
JP5197977B2 (ja) * 2007-03-28 2013-05-15 株式会社東芝 ジャーナル軸受装置
JP2009030704A (ja) * 2007-07-26 2009-02-12 Hitachi Plant Technologies Ltd ティルティングパッドジャーナル軸受
CN201090607Y (zh) * 2007-10-25 2008-07-23 济南重工股份有限公司 轴承衬体
IT1395717B1 (it) * 2009-09-22 2012-10-19 Nuovo Pignone Spa Cuscinetto, meccanismo di distribuzione olio e metodo.
JP5767884B2 (ja) 2011-07-27 2015-08-26 株式会社東芝 ティルティングパッドジャーナル軸受および蒸気タービン
JP5800420B2 (ja) * 2011-09-07 2015-10-28 三菱日立パワーシステムズ株式会社 ジャーナル軸受
WO2013046404A1 (ja) * 2011-09-29 2013-04-04 株式会社日立製作所 直接潤滑方式ティルティングパッドジャーナル軸受
JP5812973B2 (ja) 2011-12-02 2015-11-17 三菱日立パワーシステムズ株式会社 ジャーナル軸受及び蒸気タービン

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138243A (ja) * 1974-04-08 1975-11-04
JPS5569317A (en) * 1978-11-10 1980-05-24 Maag Zahnraeder & Maschinen Ag Inclined segment type radial bearing for high loaded and high speed shaft
JPS59212520A (ja) 1983-05-18 1984-12-01 Mitsubishi Electric Corp スラスト軸受装置
JPH02146961U (ja) 1989-05-12 1990-12-13
JPH0496621U (ja) * 1991-01-29 1992-08-21
JP2001517288A (ja) * 1997-03-31 2001-10-02 ダブリューエッチエム ホールディング コーポレーション 階段状部付きポケットを備えたジャーナル軸受用自己安定化真傾斜パッド
JP2012532279A (ja) * 2009-07-10 2012-12-13 シーメンス アクチエンゲゼルシヤフト 風力タービン主軸受け
JP2011127772A (ja) * 2011-03-30 2011-06-30 Toshiba Corp パッド型ジャーナル軸受装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2952757A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138603A (ja) * 2015-01-28 2016-08-04 株式会社神戸製鋼所 ティルティングパッドジャーナル軸受
WO2016121640A1 (ja) * 2015-01-28 2016-08-04 株式会社神戸製鋼所 ティルティングパッドジャーナル軸受
US10094417B2 (en) 2015-01-28 2018-10-09 Kobe Steel, Ltd. Tilting pad journal bearing
KR101925231B1 (ko) * 2015-01-28 2018-12-04 가부시키가이샤 고베 세이코쇼 틸팅 패드 저널 베어링

Also Published As

Publication number Publication date
US20160061255A1 (en) 2016-03-03
EP2952757B1 (en) 2020-03-11
US20150369278A1 (en) 2015-12-24
EP2952757A4 (en) 2016-03-23
CN105156463B (zh) 2018-12-14
EP3001049A1 (en) 2016-03-30
CN104903601B (zh) 2018-09-14
US9512879B2 (en) 2016-12-06
EP2952757A1 (en) 2015-12-09
CN105156463A (zh) 2015-12-16
CN104903601A (zh) 2015-09-09
KR20150092297A (ko) 2015-08-12
KR20150100961A (ko) 2015-09-02
US20160069387A1 (en) 2016-03-10
KR101676986B1 (ko) 2016-11-16
KR20150103311A (ko) 2015-09-09
US9366287B2 (en) 2016-06-14
KR101676984B1 (ko) 2016-11-16
EP3001049B1 (en) 2020-03-18
KR101676987B1 (ko) 2016-11-16
US9371857B2 (en) 2016-06-21

Similar Documents

Publication Publication Date Title
WO2014119652A1 (ja) ティルティングパッド軸受装置
US8646979B2 (en) Hybrid hydro (air) static multi-recess journal bearing
US6364316B1 (en) Dual pressure balanced noncontacting finger seal
CN102748390B (zh) 流体动力轴向轴承
JP6332919B2 (ja) ティルティングパッド軸受装置
EP1421287B1 (en) A thrust bearing and method for equalizing load
US9797303B2 (en) Turbocharger with thrust bearing providing combined journal and thrust bearing functions
WO2015175341A1 (en) Five-axial groove cylindrical journal bearing with pressure dams for bi-directional rotation
JPH09503276A (ja) 角度をつけた円環状の溝を有する面封止装置
CN104870758A (zh) 流体膜锥形或半球形浮动式环轴承
JPH04252804A (ja) 改良した流体圧応答性バランス機構を有するスラスト力補償装置
WO2015015599A1 (ja) 低振動形フローティングメタルベアリング
CN103470319A (zh) 用于涡轮的轴颈轴承垫
US5042616A (en) Self-regulating lubricant supply for thrust bearings
JP6420946B2 (ja) ティルティングパッド軸受装置
JP6151133B2 (ja) 軸流タービン
JP2565809Y2 (ja) ジャーナル軸受
JP2013137100A (ja) ジャーナル軸受及び蒸気タービン
JP7449088B2 (ja) トロイダル無段変速機
RU2630271C1 (ru) Подшипник газостатический
TWI262272B (en) Fluid dynamic bearing
US20140029878A1 (en) Partial arc hydrostatic bearing
JPH10205527A (ja) スラスト軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018155

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763930

Country of ref document: US

Ref document number: 2014745639

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE