WO2020196599A1 - 流体動圧軸受装置 - Google Patents

流体動圧軸受装置 Download PDF

Info

Publication number
WO2020196599A1
WO2020196599A1 PCT/JP2020/013255 JP2020013255W WO2020196599A1 WO 2020196599 A1 WO2020196599 A1 WO 2020196599A1 JP 2020013255 W JP2020013255 W JP 2020013255W WO 2020196599 A1 WO2020196599 A1 WO 2020196599A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic pressure
bearing
shaft member
groove portion
polygonal
Prior art date
Application number
PCT/JP2020/013255
Other languages
English (en)
French (fr)
Inventor
大智 加藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020050522A external-priority patent/JP7535865B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US17/435,492 priority Critical patent/US11959513B2/en
Priority to CN202080023337.8A priority patent/CN113614395A/zh
Publication of WO2020196599A1 publication Critical patent/WO2020196599A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a fluid dynamic bearing device.
  • the fluid dynamic bearing device supports the shaft member in a relative rotatably non-contact manner by the pressure generated in the fluid film (for example, an oil film) in the radial bearing gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing sleeve. Is what you do.
  • the fluid film for example, an oil film
  • hydrodynamic bearing devices include, for example, spindle motors for magnetic disk drive devices such as HDDs, polygon scanner motors for laser beam printers (LBPs), color wheel motors for projectors, and fan motors for electrical equipment. It is used by being incorporated in such as.
  • FIG. 16 shows a bearing sleeve 1 constituting the fluid dynamic bearing device of Patent Document 1.
  • radial bearing surfaces 3 are formed on the inner peripheral surface 2 of the bearing sleeve 1 at two locations separated in the axial direction.
  • a radial dynamic pressure generating portion is formed on the radial bearing surface 3.
  • the white arrows in the figure indicate the flow of lubricating oil.
  • a herringbone-shaped dynamic pressure groove 4 is formed as a radial dynamic pressure generating portion.
  • the dynamic pressure groove 4 is composed of a hill portion 5 (a region indicated by a scattering point in the figure) and a groove portion 6 located between the hill portions 5. That is, the hill portion 5 has a structure that rises inward in the radial direction from the groove portion 6.
  • the dynamic pressure groove 4 formed on the inner peripheral surface 2 of the bearing sleeve 1 has a herringbone shape, the bearing area (hill portion 5 of the dynamic pressure groove 4) is small. Therefore, the surface pressure applied to the radial bearing surface 3 of the bearing sleeve 1 increases, and the wear resistance decreases.
  • the shaft member is a radial bearing surface 3 of the bearing sleeve 1. May come into contact with.
  • an object of the present invention is that the rotation direction of the shaft member can correspond to both forward and reverse directions, the bearing area is increased, and the rotation speed is increased.
  • An object of the present invention is to provide a fluid dynamic pressure bearing device capable of obtaining a sufficient dynamic pressure effect even in a low region.
  • the fluid dynamic bearing device is a fluid generated in a radial bearing gap between a shaft member, a bearing member having a shaft member inserted in the inner circumference, and an outer peripheral surface of the shaft member and an inner peripheral surface of the bearing member. It is provided with a radial dynamic pressure generating portion that supports the shaft member so as to be relatively rotatable and non-contact with the pressure of the film.
  • the radial dynamic pressure generating portion in the present invention is a large number of polygonal hills arranged in a pattern on either the inner peripheral surface of the bearing member or the outer peripheral surface of the shaft member. It is characterized in that it is composed of a polygonal groove portion formed so as to surround the polygonal hill portion.
  • a dynamic pressure groove composed of a polygonal hill portion and a polygonal groove portion as the radial dynamic pressure generating portion, it is possible to deal with any of the forward and reverse directions of rotation of the shaft member. .. Further, the bearing area of the bearing member (polygonal hill portion of the dynamic pressure groove) can be increased. Further, a sufficient dynamic pressure effect can be obtained even in a region where the rotation speed of the shaft member is low.
  • the radial dynamic pressure generating portion in the present invention preferably has a structure in which the surface opening ratio in the polygonal groove portion is larger than the surface opening ratio in the polygonal hill portion.
  • Adopting such a structure is effective in that lubricating oil can be efficiently supplied to the radial bearing surface of the bearing member.
  • the radial dynamic pressure generating portion in the present invention preferably has a structure in which a groove portion for supplying lubricating oil is formed in the center of the polygonal hill portion.
  • the lubricating oil is satisfactorily supplied to the radial bearing surface of the bearing member, which is effective in that the lubrication efficiency can be improved.
  • the radial dynamic pressure generating portion in the present invention has a structure in which a hill portion that prevents the outflow of lubricating oil from the polygonal groove portion is formed.
  • the radial dynamic pressure generating portion in the present invention has a connecting groove portion that connects adjacent polygonal groove portions, and the cross-sectional area of the connecting groove portion is larger than the cross-sectional area of the polygonal groove portion.
  • the amount of lubricating oil flowing through the connecting groove portion becomes larger than the amount of lubricating oil flowing through the polygonal groove portion, and the lubricating oil can be continuously supplied to the radial bearing gap.
  • the connecting groove portion in the present invention is composed of a first connecting groove portion that connects polygonal groove portions that are vertically located in the axial direction and a second connecting groove portion that connects the polygonal groove portions in the circumferential direction. It is desirable to have a structure in which the cross-sectional area of is larger than the cross-sectional area of the second connecting groove.
  • the shaft member by forming a dynamic pressure groove composed of a polygonal hill portion and a polygonal groove portion as a radial dynamic pressure generating portion, the shaft member can be rotated in either the forward or reverse direction. Can be done. Therefore, the work of assembling the bearing member is simplified and the workability can be improved.
  • the bearing area of the bearing member (polygonal hill portion of the dynamic pressure groove) can be increased. Therefore, the surface pressure applied to the radial bearing surface of the bearing member is reduced, and the wear resistance can be improved.
  • FIG. 1 shows a schematic configuration of a cooling fan motor incorporated in an information device, for example, a mobile device such as a mobile phone or a tablet terminal.
  • the main parts of the fan motor are the fluid dynamic bearing device 11 of the embodiment, the motor base 13 to which the housing 12 of the fluid dynamic bearing device 11 is fixed, and the fluid dynamic bearing device 11.
  • a rotor 15 to which the shaft member 14 of the above is fixed is provided.
  • a stator coil 16 is attached to the motor base 13. Further, a rotor magnet 17 is attached to the rotor 15 so as to face the stator coil 16 via a radial gap.
  • stator coil 16 When the stator coil 16 is energized, the rotor 15 and the shaft member 14 rotate integrally by the electromagnetic force generated between the stator coil 16 and the rotor magnet 17, and the blades (not shown) provided in the rotor 15 cause axial direction or A radial airflow is generated.
  • the fluid dynamic bearing device 11 of the embodiment includes a shaft member 14, a bearing sleeve 18 which is a bearing member, a bottomed tubular housing 12, and a seal member 19. ..
  • the internal space of the housing 12 is filled with a predetermined amount of lubricating oil (not shown).
  • a rotor 15 is attached to the shaft member 14 (see FIG. 1).
  • a shaft member 14 is inserted into the inner circumference of the bearing sleeve 18.
  • the housing 12 has an opening at the axial end and holds the bearing sleeve 18 on the inner circumference.
  • the seal member 19 is attached to the axial end of the housing 12 to close the opening of the housing 12.
  • the shaft member 14 is made of metal such as stainless steel and has a columnar shape.
  • the outer diameter of the shaft member 14 is set smaller than the inner diameter of the bearing sleeve 18 and the seal member 19.
  • a convex portion 20 is provided at the lower end of the shaft member 14.
  • a rotor 15 is fixed to the upper end of the shaft member 14 (see FIG. 1).
  • the housing 12 is a metal or resin member in which a cylindrical side portion 21 and a bottom portion 22 are integrally formed.
  • a resin receiving member 23 is arranged on the bottom 22 of the housing 12.
  • the upper surface of the receiving member 23 functions as a thrust bearing surface that contacts and supports the convex portion 20 of the shaft member 14.
  • the receiving member 23 may be omitted. In that case, the bottom surface of the housing 12 functions as a thrust bearing surface.
  • the bearing sleeve 18 has a cylindrical shape and is fixed to the inner peripheral surface of the side portion 21 of the housing 12 by an appropriate means such as press fitting.
  • the bearing sleeve 18 is, for example, a porous body made of a copper-iron-based sintered metal containing copper and iron as main components.
  • the internal holes of the bearing sleeve 18 are impregnated with lubricating oil.
  • the material of the bearing sleeve 18 may be a porous body made of a soft metal such as brass or a resin, in addition to the sintered metal.
  • a radial dynamic pressure generating portion is formed on the inner peripheral surface 24 of the bearing sleeve 18 which is the radial bearing surface.
  • the radial dynamic pressure generating portion makes the shaft member 14 relatively rotatable by the pressure of the fluid film (oil film) generated in the radial bearing gap between the outer peripheral surface 25 of the shaft member 14 and the inner peripheral surface 24 of the bearing sleeve 18. Support by contact.
  • a polygonal, for example, octagonal dynamic pressure groove 26 is formed as a radial dynamic pressure generating portion.
  • the octagonal dynamic pressure groove 26 is illustrated, but a polygonal dynamic pressure groove other than the octagon may be used.
  • the dynamic pressure groove 26 is composed of a large number of octagonal hills 27 arranged in a pattern on the inner peripheral surface 24 of the bearing sleeve 18 and an octagonal groove 28 formed so as to surround the octagonal hills 27. ing.
  • the octagonal hill portion 27 has a structure that rises inward in the radial direction from the octagonal groove portion 28 (the region indicated by the scattered points in the figure).
  • the number and size of the octagonal hills 27 and the octagonal grooves 28 shown in FIG. 3 is an example, and the radial bearing gap between the outer peripheral surface 25 of the shaft member 14 and the inner peripheral surface 24 of the bearing sleeve 18. It may be set appropriately for forming an oil film on the bearing.
  • the dynamic pressure groove 26 has a shape symmetrical with respect to the axial center of the bearing sleeve 18.
  • a part of the octagonal groove 28 has a groove inclined with respect to the rotation direction of the shaft member 14. It will be arranged symmetrically with respect to the center of the axis.
  • the seal member 19 is an annular member made of a soft metal such as brass or another metal or resin.
  • the seal member 19 is fixed to the upper end portion of the housing 12 in a state of being separated from the upper end surface of the bearing sleeve 18 (see FIG. 2).
  • the inner peripheral surface 29 of the seal member 19 constitutes a non-contact seal (labyrinth seal) in the vicinity of the outer peripheral surface 25 of the shaft member 14.
  • the shape and configuration of the seal member 19 may be other than the structure shown in FIG. 2, and may be arbitrary.
  • a radial bearing gap is formed between the inner peripheral surface 24 of the bearing sleeve 18 and the outer peripheral surface 25 of the shaft member 14.
  • the dynamic pressure groove 26 of the bearing sleeve 18 causes a dynamic pressure action on the lubricating oil in the radial bearing gap.
  • an oil film whose pressure is increased by the dynamic pressure action of the dynamic pressure groove 26 is formed in the radial bearing gap between the inner peripheral surface 24 of the bearing sleeve 18 and the outer peripheral surface 25 of the shaft member 14. Will be done.
  • the oil film forms a radial bearing portion that non-contactly supports the shaft member 14.
  • the thrust load applied to the shaft member 14 is contact-supported on the upper surface of the receiving member 23 which is the thrust bearing portion.
  • the lubricating oil in the radial bearing gap is collected on the octagonal hill portion 27 side along the octagonal groove portion 28 of the dynamic pressure groove 26, and the pressure is applied between the octagonal hill portion 27 and the outer peripheral surface 25 of the shaft member 14. It becomes the maximum.
  • a radial bearing portion that non-contactly supports the shaft member 14 is configured.
  • the protrusion 20 of the shaft member 14 and the receiving member 23 slide to form a thrust bearing portion that contacts and supports the shaft member 14.
  • the fluid dynamic pressure bearing device 11 is roughly classified into a dynamic pressure bearing and a perfect circular bearing.
  • the dynamic pressure bearing is provided with a dynamic pressure groove 26 on the inner peripheral surface 24 of the bearing sleeve 18 to positively generate dynamic pressure in the oil film in the radial bearing gap.
  • the inner peripheral surface 24 of the bearing sleeve 18 is a cylindrical surface, and dynamic pressure is generated by the swing of the shaft member 14.
  • the shaft member 14, the rotor 15, and the blades rotate with high rotational accuracy due to the pressure improving effect of the dynamic pressure groove 26 as the dynamic pressure bearing when used in a steady posture.
  • the dynamic pressure groove 26 composed of the octagonal hill portion 27 and the octagonal groove portion 28 is formed as the radial dynamic pressure generating portion, whereby FIG. 4A and FIG. 4B show.
  • the direction of rotation of the shaft member 14 can be either the forward direction or the reverse direction (see the solid line arrow in the figure).
  • the bearing area of the bearing sleeve 18 (octagonal hill portion 27 of the dynamic pressure groove 26) can be increased. Therefore, the surface pressure applied to the radial bearing surface of the bearing sleeve 18 is reduced, and the wear resistance can be improved. As a result, the life of the fluid dynamic bearing device 11 can be extended.
  • the shaft member 14 can be reliably supported in a non-contact manner, so that the shaft member 14 can be prevented from coming into contact with the radial bearing surface of the bearing sleeve 18.
  • the bearing sleeve 18 of this embodiment is a porous body, and the surface aperture ratio of the octagonal hill portion 27 is set to 20% or less, preferably 2 to 10%. Then, the surface opening ratio in the octagonal groove 28 is set larger than the surface opening ratio in the octagonal hill 27.
  • a groove 30 (pocket) for supplying lubricating oil may be formed at the center of the octagonal hill portion 27 on the inner peripheral surface 24 of the bearing sleeve 18.
  • the white arrows in FIG. 5 indicate the flow of lubricating oil from the groove 30.
  • the lubricating oil is satisfactorily supplied to the radial bearing surface of the bearing sleeve 18, so that the lubrication efficiency can be improved.
  • hills 31 for preventing the outflow of lubricating oil from the octagonal groove 28 are formed at both ends of the inner peripheral surface 24 of the bearing sleeve 18 in the axial direction. You may do so.
  • a connecting groove portion 32 for connecting the adjacent octagonal groove portions 28 is formed on the inner peripheral surface 24 of the bearing sleeve 18 of the embodiment shown in FIGS. 3, 5 and 6, a connecting groove portion 32 for connecting the adjacent octagonal groove portions 28 is formed.
  • the cross-sectional area of the connecting groove portion 32 is made larger than the cross-sectional area of the octagonal groove portion 28.
  • the cross-sectional area of the connecting groove portion 32 is made larger than twice the cross-sectional area of the octagonal groove portion 28.
  • the depth of the connecting groove portion 32 is 0.003 mm
  • the width W2 thereof is 0.5315 mm
  • the cross-sectional area of the connecting groove portion 32 is 0.0028551 mm 2 or less. Therefore, it is preferable to set the cross-sectional area of the connecting groove portion 32 after determining the cross-sectional area of the octagonal groove portion 28. Further, it is desirable that the depths of the octagonal groove 28 and the connecting groove 32 have the same dimensions as the radial bearing gap.
  • the amount of lubricating oil flowing through the connecting groove portion 32 becomes larger than the amount of lubricating oil flowing through the octagonal groove portion 28.
  • Lubricating oil can be continuously supplied to the radial bearing gap.
  • the dynamic pressure groove 26 the dynamic pressure action can be effectively generated in the lubricating oil in the radial bearing gap.
  • the cross-sectional area of the connecting groove portion 32 is smaller than the cross-sectional area of the octagonal groove portion 28, the amount of lubricating oil flowing through the connecting groove portion 32 is smaller than the amount of lubricating oil flowing through the octagonal groove portion 28, and the octagonal groove portion 28 Negative pressure is generated near the entrance, making it difficult to obtain a sufficient dynamic pressure effect.
  • the connecting groove portion 32 described above (hereinafter referred to as the first connecting groove portion) connects two adjacent octagonal groove portions 28 located vertically in the axial direction of the bearing sleeve 18. ing. Further, a connecting groove portion 33 (hereinafter, referred to as a second connecting groove portion) for connecting each of the octagonal groove portions 28 located above and below in the circumferential direction is formed.
  • the first connecting groove portion 32 has an oil pool function for suppressing a shortage of lubricating oil in the octagonal groove portion 28 and the second connecting groove portion 33.
  • the octagonal groove 28 has a function of generating a dynamic pressure action and suppressing backflow due to pressure generated in the second connecting groove 33.
  • the second connecting groove 33 has a function of smoothing the pressure peak of the dynamic pressure and suppressing eccentricity due to the displacement of the center of gravity of the shaft member 14. That is, even if the position of the center of gravity of the shaft member 14 deviates from the design point, the dynamic pressure for supporting the shaft member 14 is constant within the smoothed range, and robustness (robustness) can be obtained.
  • the cross-sectional area of the first connecting groove portion 32 is preferably large because lubricating oil is stored, but if the cross-sectional area of the first connecting groove portion 32 is made too large, the flow path length of the octagonal groove portion 28 becomes long. It becomes shorter and it becomes difficult to generate the maximum dynamic pressure.
  • the axial length of the first connecting groove portion 32 cannot be changed. As shown in 8, it is effective to form a recessed portion 34 in which the first connecting grooved portion 32 is expanded in the circumferential direction.
  • the generation of dynamic pressure can be increased by lengthening the flow path length of the octagonal groove 28, but if the flow path length of the octagonal groove 28 is too long, the first connecting groove 32 and the second connecting groove 32 and the second The cross-sectional area of the connecting groove portion 33 will be reduced, and the functions of the first connecting groove portion 32 and the second connecting groove portion 33 will be reduced.
  • the second connecting groove 33 preferably has a large cross section because it smoothes the pressure peak of the dynamic pressure and suppresses the eccentricity due to the displacement of the center of gravity of the shaft member 14, but the second connecting groove 33 If the cross-sectional area of the groove portion 33 is made too large, the flow path length of the octagonal groove portion 28 becomes short as in the case of the first connecting groove portion 32, and it becomes difficult to generate the maximum dynamic pressure.
  • the cross-sectional areas of the first connecting groove portion 32, the octagonal groove portion 28, and the second connecting groove portion 33 are defined as follows. Assuming that the cross section A of the first connecting groove portion 32, the cross section B of the octagonal groove portion 28, and the cross section C of the second connecting groove portion 33, A> C ⁇ 2B is defined (see FIG. 9).
  • each cross-sectional area of is represented by each cross-sectional width.
  • the "number" in the drawing means the number of the bearing sleeve 18 arranged in the circumferential direction, with the two octagonal hills 27 located vertically above and below the bearing sleeve 18 as one.
  • the cross-sectional area ratio A / 2B of the first connecting groove portion 32 and the octagonal groove portion 28 is preferably 2.96 or more and 8.26 or less.
  • this cross-sectional area ratio is smaller than 2.96, a shortage of lubricating oil occurs in the octagonal groove 28 and the second connecting groove 33, and the dynamic pressure decreases.
  • the cross-sectional area ratio is larger than 8.26, it becomes difficult to secure the flow path length of the octagonal groove 28, and the dynamic pressure decreases.
  • the cross-sectional area ratio C / 2B of the second connecting groove portion 33 and the octagonal groove portion 28 is preferably 2.18 or more and 6.07 or less. If this cross-sectional area ratio is smaller than 2.18, it becomes difficult to smooth the maximum peak of dynamic pressure by the second connecting groove 33, and it becomes difficult to suppress eccentricity due to the deviation of the center of gravity of the shaft member 14. .. Further, if the cross-sectional area ratio is larger than 6.07, it becomes difficult to secure the flow path length of the octagonal groove 28, the dynamic pressure decreases, and the lubricating oil flows back to the first connecting groove 32. It becomes difficult to suppress the torque and the torque becomes high.
  • the bearing area of the bearing sleeve 18, that is, the total sum of the hills is formed by forming the dynamic pressure groove 26 composed of the octagonal hill portion 27 and the octagonal groove portion 28 as the radial dynamic pressure generating portion.
  • the surface area of the octagonal hill portion 27 of the dynamic pressure groove 26 By increasing the surface area, it is possible to exert a bearing force close to that of a perfect circular bearing. Further, by increasing the surface area of the octagonal hill portion 27 of the dynamic pressure groove 26, a sufficient dynamic pressure effect can be obtained even in a region where the rotation speed of the shaft member 14 is low, and a bearing force close to that of a perfect circular bearing can be obtained. It can be demonstrated.
  • the dynamic pressure effect generated by the octagonal groove 28 is such that when the gap between the shaft member 14 and the bearing sleeve 18 is biased or tilted on the circumference, the gap between the shaft member 14 and the bearing sleeve 18 is smaller.
  • the eccentricity of the shaft member 14 is suppressed because the dynamic pressure is larger than that of the larger gap between the shaft member 14 and the bearing sleeve 18.
  • the total surface area of the inner peripheral surface 24 of the bearing sleeve 18 is D and the total surface area of the hills (total surface area of the hills) in the total surface area D is E, the total surface area of the hills with respect to the total surface area D.
  • the ratio E / D of the surface area E is 76 to 78%. For this reason, it is preferable to increase the total surface area E of the hills of the dynamic pressure groove 26.
  • the inner peripheral surface 24 of the bearing sleeve 18 varies depending on the number of grooves along the axial direction. However, assuming that the surface area of the octagonal hills 27 per piece is F, the bearing sleeve 18 and the octagonal hills 27 per piece The surface area ratio F / D of is 2 to 6%.
  • the angle of the octagonal groove 28 with respect to the circumferential direction of the bearing sleeve 18 may be about 15 ° to 45 °.
  • the angle ⁇ of the octagonal groove 28 shown in FIG. 10 is 40 ° (see FIG. 7).
  • the axial dimension L1 of the octagonal hill portion 27 located at the center in the axial direction is made longer than the axial dimension L2 of the octagonal hill portion 27 located vertically in the axial direction. Yes (L1> L2).
  • the lubricating oil flows out from the center line of the octagonal groove 28 into which the lubricating oil flows into the first connecting groove 32 and the second connecting groove 33, and from the first connecting groove 32 and the second connecting groove 33.
  • the center line of the octagonal groove 28 is not in the same straight line, and when the center line is extended, both center lines do not intersect until they come into contact with the octagonal hill 27 located at the center in the axial direction ( See the alternate long and short dash line in FIG. 7).
  • the dynamic pressure release can be suppressed by preventing the lubricating oil from staying in the first connecting groove portion 32 and the second connecting groove portion 33, and the pressure in the octagonal groove portion 28 can be suppressed. Can be stabilized.
  • the dynamic pressure groove 26 is provided on the inner peripheral surface 24 of the bearing sleeve 18 is illustrated, but as shown in FIGS. 11 to 15, the inner peripheral surface 24 of the bearing sleeve 18 is a smooth cylinder.
  • the dynamic pressure groove 26 may be formed on the outer peripheral surface 25 of the shaft member 14 facing the surface.
  • FIG. 11 corresponds to the embodiment shown in FIG.
  • the embodiment shown in FIG. 12 corresponds to the embodiment shown in FIG.
  • the embodiment shown in FIG. 13 corresponds to the embodiment shown in FIG.
  • the embodiment shown in FIG. 14 corresponds to the embodiment shown in FIG. 7.
  • the embodiment shown in FIG. 15 corresponds to the embodiment shown in FIG.
  • the receiving member 23 of the thrust bearing portion touch-supports the convex portion 20 of the shaft member 14 (see FIG. 2), but the thrust bearing portion is the same as the radial bearing portion of the embodiment.
  • the shaft member 14 may be non-contactly supported by the pressure of the oil film.
  • a so-called shaft rotation type fluid dynamic bearing device 11 in which the bearing sleeve 18 is fixed and the shaft member 14 is rotated has been illustrated, but the present invention is not limited to this, and the shaft member 14 is fixed and the bearing sleeve 18 is used.
  • the present invention may also be applied to a so-called fixed shaft type hydrodynamic bearing device that rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

軸部材と、内周に軸部材が挿入された軸受スリーブ18と、軸部材の外周面と軸受スリーブ18の内周面24との間のラジアル軸受隙間に生じる油膜の圧力でもって軸部材を相対回転自在に非接触で支持する動圧溝26とを備えた流体動圧軸受装置であって、動圧溝26は、軸受スリーブ18の内周面24にパターン配置された多数の多角形丘部27と、その多角形丘部27を囲繞するように形成された多角形溝部28とで構成されている。

Description

流体動圧軸受装置
 本発明は、流体動圧軸受装置に関する。
 流体動圧軸受装置は、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間の流体膜(例えば、油膜)に生じる圧力により、軸部材を相対回転自在に非接触で支持するものである。
 流体動圧軸受装置は、高回転精度および静粛性から、例えば、HDD等の磁気ディスク駆動装置のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、電気機器のファンモータなどに組み込まれて使用される。
 例えば、特許文献1で開示された流体動圧軸受装置は、軸部材と、内周に軸部材が挿入された軸受スリーブと、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる油膜の圧力でもって軸部材を相対回転自在に非接触で支持するラジアル動圧発生部とを備えている。
 特許文献1の流体動圧軸受装置を構成する軸受スリーブ1を図16に示す。軸受スリーブ1の内周面2には、図16に示すように、軸方向に離隔した二箇所にラジアル軸受面3が形成されている。ラジアル軸受面3にはラジアル動圧発生部が形成されている。図中の白抜き矢印は、潤滑油の流れを示す。
 この特許文献1の軸受スリーブ1では、ラジアル動圧発生部として、へリングボーン形状の動圧溝4が形成されている。動圧溝4は、丘部5(図中散点で示す領域)と、その丘部5間に位置する溝部6とで構成されている。つまり、丘部5は、溝部6から径方向内側へ隆起した構造をなす。
特開2011-196544号公報
 ところで、特許文献1に記載の流体動圧軸受装置では、軸部材の回転方向(図16の実線矢印参照)が一方向に限定されている。そのため、軸受スリーブ1を組み込む際に、軸部材の回転方向と適合した向きに軸受スリーブ1を組み込まなければならず、組み込み作業が煩雑になり、作業性が低下する。
 また、軸受スリーブ1の内周面2に形成された動圧溝4がヘリングボーン形状であることから、軸受面積(動圧溝4の丘部5)が小さくなっている。そのため、軸受スリーブ1のラジアル軸受面3にかかる面圧が高くなり、耐摩耗性が低下する。
 さらに、軸部材の回転速度が低い領域では、十分な動圧効果を得ることが困難となり、軸部材を非接触で支持することが困難となって、軸部材が軸受スリーブ1のラジアル軸受面3と接触するおそれがある。
 そこで、本発明は前述の課題に鑑みて提案されたもので、その目的とするところは、軸部材の回転方向が正逆方向のいずれにも対応でき、軸受面積の増大を図り、回転速度が低い領域でも十分な動圧効果が得られる流体動圧軸受装置を提供することにある。
 本発明に係る流体動圧軸受装置は、軸部材と、内周に軸部材が挿入された軸受部材と、軸部材の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる流体膜の圧力でもって軸部材を相対回転自在に非接触で支持するラジアル動圧発生部とを具備する。
 前述の目的を達成するための技術的手段として、本発明におけるラジアル動圧発生部は、軸受部材の内周面および軸部材の外周面のいずれか一方にパターン配置された多数の多角形丘部と、その多角形丘部を囲繞するように形成された多角形溝部とで構成されていることを特徴とする。
 本発明では、ラジアル動圧発生部として、多角形丘部および多角形溝部からなる動圧溝を形成したことにより、軸部材の回転方向が正逆方向のいずれであっても対応することができる。また、軸受部材の軸受面積(動圧溝の多角形丘部)を増大させることができる。さらに、軸部材の回転速度が低い領域でも、十分な動圧効果を得ることができる。
 本発明におけるラジアル動圧発生部は、多角形丘部における表面開孔率よりも、多角形溝部における表面開孔率を大きくした構造が望ましい。
 このような構造を採用すれば、軸受部材のラジアル軸受面に潤滑油を効率よく供給することができる点で有効である。
 本発明におけるラジアル動圧発生部は、多角形丘部の中心に、潤滑油を供給するための溝部が形成されている構造が望ましい。
 このような構造を採用すれば、軸受部材のラジアル軸受面に潤滑油が良好に供給されるので、潤滑効率の向上が図れる点で有効である。
 本発明におけるラジアル動圧発生部は、多角形溝部からの潤滑油の流出を阻止する丘部が形成されている構造が望ましい。
 このような構造を採用すれば、多角形溝部からの潤滑油の流出を阻止することができるので、潤滑効率の向上が図れる点で有効である。
 本発明におけるラジアル動圧発生部は、隣接する多角形溝部を連結する連結溝部を有し、連結溝部の断面積を多角形溝部の断面積よりも大きくした構造が望ましい。
 このような構造を採用すれば、多角形溝部を流れる潤滑油量よりも、連結溝部を流れる潤滑油量が多くなり、ラジアル軸受隙間に潤滑油を連続して供給することができる。
 本発明における連結溝部は、軸方向で上下に位置する多角形溝部を連結する第一の連結溝部と、多角形溝部を周方向で連結する第二の連結溝部とからなり、第一の連結溝部の断面積を第二の連結溝部の断面積よりも大きくした構造が望ましい。
 このような構造を採用すれば、回転する軸部材の重心位置が設計点からずれたとしても、軸部材を支持する動圧力は平滑化された範囲で一定となり、ロバスト性(堅牢性)を有することができる。
 本発明によれば、ラジアル動圧発生部として、多角形丘部および多角形溝部からなる動圧溝を形成したことにより、軸部材の回転方向が正逆方向のいずれであっても対応することができる。そのため、軸受部材の組み込み作業が簡易化され、作業性の向上が図れる。
 また、軸受部材の軸受面積(動圧溝の多角形丘部)を増大させることができる。そのため、軸受部材のラジアル軸受面にかかる面圧が小さくなり、耐摩耗性の向上が図れる。
 さらに、軸部材の回転速度が低い領域でも、十分な動圧効果を得ることができる。そのため、軸部材を確実に非接触で支持することができるので、軸部材が軸受部材のラジアル軸受面と接触することを抑制できる。
ファンモータの概略構成を示す断面図である。 ファンモータに組み込まれる流体動圧軸受装置を示す断面図である。 流体動圧軸受装置の軸受スリーブの一例を示す断面図である。 図3の軸受スリーブで、正回転時の潤滑油の流れを示す断面図である。 図3の軸受スリーブで、逆回転時の潤滑油の流れを示す断面図である。 軸受スリーブの他例を示す断面図である。 軸受スリーブの他例を示す断面図である。 軸受スリーブの他例を示す断面図である。 軸受スリーブの他例を示す断面図である。 連結溝部の断面積を説明するための表である。 動圧溝の丘部の表面積を説明するための表である。 軸部材の一例を示す断面図である。 軸部材の他例を示す断面図である。 軸部材の他例を示す断面図である。 軸部材の他例を示す断面図である。 軸部材の他例を示す断面図である。 従来の流体動圧軸受装置の軸受スリーブを示す断面図である。
 本発明に係る流体動圧軸受装置の実施形態を図面に基づいて以下に詳述する。なお、流体動圧軸受装置を説明する前に、流体動圧軸受装置が組み込まれるファンモータについて説明する。
 図1は、情報機器、例えば携帯電話やタブレット型端末などのモバイル機器に組み込まれる冷却用のファンモータの概略構成を示す。
 ファンモータの主要部は、図1に示すように、実施形態の流体動圧軸受装置11と、その流体動圧軸受装置11のハウジング12が固定されたモータベース13と、流体動圧軸受装置11の軸部材14が固定されたロータ15とを備えている。
 モータベース13には、ステータコイル16が取り付けられている。また、ロータ15には、ステータコイル16と径方向のギャップを介して対向するロータマグネット17が取り付けられている。
 ステータコイル16に通電すると、ステータコイル16とロータマグネット17との間に生じる電磁力でロータ15および軸部材14が一体に回転し、ロータ15に設けられた羽根(図示せず)により軸方向あるいは径方向の気流が発生する。
 次に、前述のファンモータに組み込まれた流体動圧軸受装置11、つまり、実施形態の流体動圧軸受装置11を以下に詳述する。
 実施形態の流体動圧軸受装置11は、図2に示すように、軸部材14と、軸受部材である軸受スリーブ18と、有底筒状のハウジング12と、シール部材19とで構成されている。ハウジング12の内部空間には、所定量の潤滑油(図示せず)が充填されている。
 軸部材14には、ロータ15が取り付けられている(図1参照)。軸受スリーブ18の内周に軸部材14が挿入されている。ハウジング12は軸方向端部に開口部を有し、内周で軸受スリーブ18を保持している。シール部材19は、ハウジング12の軸方向端部に取り付けられてハウジング12の開口部を閉塞する。
 軸部材14は、例えばステンレス鋼などの金属製で円柱状をなす。軸部材14の外径は、軸受スリーブ18およびシール部材19の内径よりも小さく設定されている。軸部材14の下端には、凸部20が設けられている。軸部材14の上端には、ロータ15が固定されている(図1参照)。
 ハウジング12は、円筒状の側部21と底部22とを一体的に形成した金属製または樹脂製の部材である。ハウジング12の底部22に樹脂製の受け部材23が配置されている。受け部材23の上面が、軸部材14の凸部20を接触支持するスラスト軸受面として機能する。なお、受け部材23は省略してもよい。その場合、ハウジング12の底面がスラスト軸受面として機能する。
 軸受スリーブ18は、円筒状をなし、ハウジング12の側部21の内周面に圧入など適宜の手段で固定される。軸受スリーブ18は、例えば銅および鉄を主成分とする銅鉄系の焼結金属からなる多孔質体である。軸受スリーブ18の内部空孔には、潤滑油が含浸されている。軸受スリーブ18の材質は、焼結金属以外に、例えば黄銅などの軟質金属や樹脂からなる多孔質体であってもよい。
 ラジアル軸受面となる軸受スリーブ18の内周面24にはラジアル動圧発生部が形成される。ラジアル動圧発生部は、軸部材14の外周面25と軸受スリーブ18の内周面24との間のラジアル軸受隙間に生じる流体膜(油膜)の圧力でもって軸部材14を相対回転自在に非接触で支持する。
 この実施形態では、ラジアル動圧発生部として、図3に示すように、多角形、例えば八角形の動圧溝26が形成されている。ここでは、八角形の動圧溝26を例示しているが、八角形以外の多角形の動圧溝であってもよい。
 動圧溝26は、軸受スリーブ18の内周面24にパターン配置された多数の八角形丘部27と、その八角形丘部27を囲繞するように形成された八角形溝部28とで構成されている。八角形丘部27は、八角形溝部28(図中の散点で示す領域)から径方向内側へ隆起した構造をなす。
 図3に示す八角形丘部27および八角形溝部28の数および大きさは、一つの例示であり、軸部材14の外周面25と軸受スリーブ18の内周面24との間のラジアル軸受隙間に油膜を形成する上で適宜に設定すればよい。
 動圧溝26は、軸受スリーブ18の軸中心に対して対称な形状をなしている。軸受スリーブ18の内周面24に多数の八角形丘部27および八角形溝部28をパターン配置することで、八角形溝部28の一部は、軸部材14の回転方向に対して傾斜した溝が軸中心に対して左右対称に配置されることになる。
 シール部材19は、例えば黄銅などの軟質金属や、その他の金属あるいは樹脂からなる環状部材である。シール部材19は、軸受スリーブ18の上端面から離隔させた状態でハウジング12の上端部に固定される(図2参照)。
 図2に示すように、シール部材19の内周面29は、軸部材14の外周面25に近接して非接触シール(ラビリンスシール)を構成する。このシール部材19の形状や構成は、図2に示す構造以外でもよく、任意である。
 以上で説明した流体動圧軸受装置11では、軸部材14が回転すると、軸受スリーブ18の内周面24と軸部材14の外周面25との間にラジアル軸受隙間が形成される。軸受スリーブ18の動圧溝26は、ラジアル軸受隙間の潤滑油に動圧作用を発生させる。
 軸部材14の高速回転時、軸受スリーブ18の内周面24と軸部材14の外周面25との間のラジアル軸受隙間に、動圧溝26の動圧作用によって圧力を高められた油膜が形成される。この油膜により軸部材14を非接触で支持するラジアル軸受部が形成される。軸部材14に負荷されるスラスト荷重は、スラスト軸受部である受け部材23の上面で接触支持される。
 つまり、動圧溝26の八角形溝部28に沿ってラジアル軸受隙間の潤滑油が八角形丘部27側に集められ、八角形丘部27と軸部材14の外周面25との間で圧力が最大となる。これにより、軸部材14を非接触で支持するラジアル軸受部が構成される。軸部材14の凸部20と受け部材23とが摺動することで、軸部材14を接触支持するスラスト軸受部が構成される。
 ここで、流体動圧軸受装置11は、動圧軸受と真円軸受に大別される。動圧軸受は、軸受スリーブ18の内周面24に、ラジアル軸受隙間の油膜に積極的に動圧を発生させる動圧溝26を設けたものである。真円軸受は、軸受スリーブ18の内周面24を円筒面とし、軸部材14の振れ回りにより動圧を発生させるものである。
 この流体動圧軸受装置11を有するファンモータでは、定常姿勢での使用時、動圧軸受としての動圧溝26による圧力向上効果により、軸部材14、ひいてはロータ15および羽根が高い回転精度で回転し、軸部材14と軸受スリーブ18との接触による異音の発生などが生じ難い。
 また、このファンモータを非定常状態(例えば、軸部材14の振れ回りによるスイング状態)で使用し、軸部材14が軸受スリーブ18に対して大きく偏心した場合でも、動圧溝26の八角形溝部28に対して八角形丘部27の割合が大きいことから、真円軸受に近い支持力を発揮することができる。
 以上で説明した実施形態の流体動圧軸受装置11では、ラジアル動圧発生部として、八角形丘部27および八角形溝部28からなる動圧溝26を形成したことにより、図4Aおよび図4Bに示すように、軸部材14の回転方向が正方向および逆方向(図中の実線矢印参照)のいずれであっても対応することができる。
 つまり、軸部材14の回転方向が正方向の場合、潤滑油の流れは、図4Aの白抜き矢印で示す向きとなる。また、軸部材14の回転方向が逆方向の場合、潤滑油の流れは、図4Bの白抜き矢印で示す向きとなる。
 これにより、軸受スリーブ18を組み込む際に、軸部材14の回転方向について制約がないので、軸受スリーブ18の組み込み方向を限定されることなく組み込むことができる。また、軸部材14の回転方向が変化する用途でも使用可能である。その結果、軸受スリーブ18の組み込み作業が簡易化され、作業性の向上が図れる。
 また、軸受スリーブ18の軸受面積(動圧溝26の八角形丘部27)を増大させることができる。そのため、軸受スリーブ18のラジアル軸受面にかかる面圧が小さくなり、耐摩耗性の向上が図れる。その結果、流体動圧軸受装置11の長寿命化が図れる。
 さらに、軸部材14の回転速度が低い領域でも、十分な動圧効果を得ることができる。特に、起動停止および低速回転時、八角形溝部28が油溜まりとして機能する。これにより、軸部材14を確実に非接触で支持することができるので、軸部材14が軸受スリーブ18のラジアル軸受面と接触することを抑制できる。
 この実施形態の軸受スリーブ18は多孔質体であり、八角形丘部27における表面開孔率を20%以下、好ましくは2~10%に設定する。そして、八角形丘部27における表面開孔率よりも、八角形溝部28における表面開孔率を大きく設定する。
 このような構造を採用することにより、軸受スリーブ18のラジアル軸受面に潤滑油を効率よく供給することができる。
 軸受スリーブ18の内周面24において、図5に示すように、八角形丘部27の中心に、潤滑油を供給するための溝部30(ポケット)を形成するようにしてもよい。図5の白抜き矢印は、溝部30からの潤滑油の流れを示す。
 このような構造を採用することにより、図5の白抜き矢印で示すように、軸受スリーブ18のラジアル軸受面に潤滑油が良好に供給されるので、潤滑効率の向上が図れる。
 軸受スリーブ18の内周面24において、図6に示すように、軸受スリーブ18の内周面24の軸方向両端に、八角形溝部28からの潤滑油の流出を阻止する丘部31を形成するようにしてもよい。
 このような構造を採用することにより、八角形溝部28から軸受スリーブ18の外部へ潤滑油が流出することを阻止できるので、潤滑効率の向上が図れる。
 図3、図5および図6に示す実施形態の軸受スリーブ18の内周面24において、隣接する八角形溝部28を連結する連結溝部32が形成されている。動圧溝26において、連結溝部32の断面積を八角形溝部28の断面積よりも大きくする。前提条件として、連結溝部32の断面積を八角形溝部28の断面積の2倍よりも大きくする。
 例えば、図9の溝本数3本で内径φ2の形態を例示すると、八角形溝部28の深さを0.003mm、その幅W1を0.1607mmとした場合、八角形溝部28の断面積は、0.003mm×0.1607mm=0.0004821mmとなる。これに対して、連結溝部32の深さを0.003mm、その幅W2を0.5315mmとし、連結溝部32の断面積を、0.003mm×0.9517mm=0.0028551mmとする。
 ここで、連結溝部32の断面積が大きくなり過ぎると、動圧が低下してしまうため、連結溝部32の断面積は、0.0028551mm以下とすることが望ましい。そのため、八角形溝部28の断面積を決めた上で、連結溝部32の断面積を設定することが好ましい。また、八角形溝部28および連結溝部32の深さは、ラジアル軸受隙間と同じ寸法にすることが望ましい。
 以上のように、連結溝部32の断面積を八角形溝部28の断面積よりも大きくすることにより、八角形溝部28を流れる潤滑油量よりも、連結溝部32を流れる潤滑油量が多くなり、ラジアル軸受隙間に潤滑油を連続して供給することができる。その結果、動圧溝26において、ラジアル軸受隙間の潤滑油に動圧作用を効果的に発生させることができる。
 なお、連結溝部32の断面積が八角形溝部28の断面積よりも小さいと、八角形溝部28を流れる潤滑油量よりも、連結溝部32を流れる潤滑油量が少なくなり、八角形溝部28の入口付近で負圧が発生し、十分な動圧効果を得ることが困難となる。
 以上で説明した連結溝部32(以下、第一の連結溝部と称す)は、図7に示すように、軸受スリーブ18の軸方向で上下に位置して隣接する二つの八角形溝部28を連結している。また、上下に位置する八角形溝部28のそれぞれを周方向で連結する連結溝部33(以下、第二の連結溝部と称す)が形成されている。
 第一の連結溝部32は、八角形溝部28および第2の連結溝部33の潤滑油不足を抑制する油溜まり機能を有する。八角形溝部28は、動圧作用を発生させると共に、第二の連結溝部33で発生する圧力による逆流を抑制する機能を有する。
 第二の連結溝部33は、動圧の圧力ピークを平滑化し、軸部材14の重心位置がずれることによる偏心を抑制する機能を有する。つまり、軸部材14の重心位置が設計点からずれたとしても、軸部材14を支持する動圧力は平滑化された範囲で一定となり、ロバスト性(堅牢性)を有することができる。
 ここで、第一の連結溝部32の断面積は、潤滑油を溜めることから大きい方が好ましいが、第一の連結溝部32の断面積を大きくし過ぎると、八角形溝部28の流路長が短くなり、動圧を最大限発生させることが困難となる。
 なお、八角形溝部28の流路長を短くすることなく、第一の連結溝部32の断面積を大きくする構造としては、第一の連結溝部32の軸方向長さを変更できないことから、図8に示すように、第一の連結溝部32を周方向に拡げた窪み部34を形成することが有効である。
 一方、八角形溝部28の流路長を長くすることにより動圧の発生を高めることができるが、八角形溝部28の流路長を長くし過ぎると、第一の連結溝部32および第二の連結溝部33の断面積を小さくすることになり、第一の連結溝部32および第二の連結溝部33の機能を低下させることになる。
 また、第二の連結溝部33は、動圧の圧力ピークを平滑化し、軸部材14の重心位置がずれることによる偏心を抑制することから、大きな断面積を有することが好ましいが、第二の連結溝部33の断面積を大きくし過ぎると、第一の連結溝部32と同様、八角形溝部28の流路長が短くなり、動圧を最大限発生させることが困難となる。
 そこで、第一の連結溝部32、八角形溝部28および第二の連結溝部33の各断面積を以下のように規定する。第一の連結溝部32の断面積A、八角形溝部28の断面積B、第二の連結溝部33の断面積Cとすると、A>C≧2Bと規定する(図9参照)。
 第一の連結溝部32、八角形溝部28および第二の連結溝部33の深さが同一であることから、図9では、第一の連結溝部32、八角形溝部28および第二の連結溝部33の各断面積を各断面幅で表している。なお、図中の「本数」は、軸受スリーブ18の軸方向で上下に位置する二個の八角形丘部27を一本とし、軸受スリーブ18の周方向に配置した本数を意味する。
 図9に示すように、第一の連結溝部32と八角形溝部28の断面積比A/2Bは、2.96以上で、かつ、8.26以下が好ましい。この断面積比が2.96よりも小さいと、八角形溝部28および第二の連結溝部33での潤滑油不足が発生し、動圧が低下する。また、断面積比が8.26よりも大きいと、八角形溝部28の流路長を確保することが困難となり、動圧が低下する。
 また、第二の連結溝部33と八角形溝部28の断面積比C/2Bは、2.18以上で、かつ、6.07以下が好ましい。この断面積比が2.18よりも小さいと、第二の連結溝部33により動圧の最大ピークを平滑化することが困難となり、軸部材14の重心ずれによる偏心を抑制することが困難となる。また、断面積比が6.07よりも大きいと、八角形溝部28の流路長を確保することが困難となって動圧が低下すると共に、第一の連結溝部32への潤滑油の逆流を抑制することが困難となってトルクが高くなる。
 この流体動圧軸受装置11では、ラジアル動圧発生部として、八角形丘部27および八角形溝部28からなる動圧溝26を形成したことにより、軸受スリーブ18の軸受面積、つまり、丘部総和表面積を増大させることで真円軸受に近い支持力を発揮させることができる。また、動圧溝26の八角形丘部27の表面積を増大させることで、軸部材14の回転速度が低い領域でも、十分な動圧効果を得ることができ、真円軸受に近い支持力を発揮させることができる。さらに、八角形溝部28により発生する動圧効果は、軸部材14と軸受スリーブ18の隙間が円周上に偏りや傾きをもった際に、軸部材14と軸受スリーブ18間の隙間が小さい方が、軸部材14と軸受スリーブ18間の隙間が大きい方に比べ動圧が大きくなることで軸部材14の偏心を抑制する。
 図10に示すように、軸受スリーブ18の内周面24の全体表面積をD、その全体表面積Dに占める丘部表面積の総和(丘部総和表面積)をEとすると、全体表面積Dに対する丘部総和表面積Eの比E/Dを76~78%とする。このことから、動圧溝26の丘部総和表面積Eを増大させることが好ましい。
 なお、軸受スリーブ18の内周面24において軸方向に沿う溝部の本数によって変化するが、一個当たりの八角形丘部27の表面積をFとすると、軸受スリーブ18と一個当たりの八角形丘部27の表面積比F/Dを2~6%とする。
 この表面積比F/Dが2%より小さいと、一個当たりの八角形丘部27の動圧発生力が低下し、表面積比F/Dが6%より大きいと、第一の連結溝部32および第二の連結溝部33の寸法が小さくなることで動圧が低下する。
 また、この実施形態では、軸受スリーブ18の周方向に対する八角形溝部28の角度は15°~45°程度であればよい。図10に示す八角形溝部28の角度θは40°としている(図7参照)。
 この実施形態では、図7に示すように、軸方向中央に位置する八角形丘部27の軸方向寸法L1を軸方向上下に位置する八角形丘部27の軸方向寸法L2よりも長くしている(L1>L2)。
 これにより、第一の連結溝部32および第二の連結溝部33に潤滑油が流入する八角形溝部28の中心線と、第一の連結溝部32および第二の連結溝部33から潤滑油が流出する八角形溝部28の中心線とが同一直線状になく、その中心線を延伸した際に、軸方向中央に位置する八角形丘部27に当接するまで、両方の中心線が交わることはない(図7の一点鎖線参照)。
 このような構造とすることにより、第一の連結溝部32および第二の連結溝部33での潤滑油の滞留を防止することで動圧抜けを抑制することができ、八角形溝部28での圧力を安定化させることができる。
 以上の実施形態では、軸受スリーブ18の内周面24に動圧溝26を設けた場合を例示したが、図11~図15に示すように、軸受スリーブ18の内周面24を平滑な円筒面とし、対向する軸部材14の外周面25に動圧溝26を形成してもよい。
 なお、図11に示す実施形態は、図3に示す実施形態と対応する。図12に示す実施形態は、図5に示す実施形態と対応する。図13に示す実施形態は、図6に示す実施形態と対応する。図14に示す実施形態は、図7に示す実施形態と対応する。図15に示す実施形態は、図8に示す実施形態と対応する。
 以上の実施形態では、スラスト軸受部の受け部材23が軸部材14の凸部20を接触支持するものを例示したが(図2参照)、スラスト軸受部は、実施形態のラジアル軸受部と同様に、油膜の圧力で軸部材14を非接触で支持するものであってもよい。
 また、実施形態では、軸受スリーブ18を固定し軸部材14を回転させる、いわゆる軸回転タイプの流体動圧軸受装置11を例示したが、これに限らず、軸部材14を固定し軸受スリーブ18を回転させる、いわゆる軸固定タイプの流体動圧軸受装置にも本発明を適用してもよい。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (6)

  1.  軸部材と、内周に前記軸部材が挿入された軸受部材と、軸部材の外周面と前記軸受部材の内周面との間のラジアル軸受隙間に生じる流体膜の圧力でもって軸部材を相対回転自在に非接触で支持するラジアル動圧発生部とを備えた流体動圧軸受装置であって、
     前記ラジアル動圧発生部は、前記軸受部材の内周面および前記軸部材の外周面のいずれか一方にパターン配置された多数の多角形丘部と、前記多角形丘部を囲繞するように形成された多角形溝部とで構成されていることを特徴とする流体動圧軸受装置。
  2.  前記ラジアル動圧発生部は、前記多角形丘部における表面開孔率よりも、前記多角形溝部における表面開孔率を大きくした請求項1に記載の流体動圧軸受装置。
  3.  前記ラジアル動圧発生部は、前記多角形丘部の中心に、潤滑油を供給するための溝部が形成されている請求項1又は2に記載の流体動圧軸受装置。
  4.  前記ラジアル動圧発生部は、多角形溝部からの潤滑油の流出を阻止する丘部が形成されている請求項1~3のいずれか一項に記載の流体動圧軸受装置。
  5.  前記ラジアル動圧発生部は、隣接する多角形溝部を連結する連結溝部を有し、前記連結溝部の断面積を多角形溝部の断面積よりも大きくした請求項1~4のいずれか一項に記載の流体動圧軸受装置。
  6.  前記連結溝部は、軸方向で上下に位置する多角形溝部を連結する第一の連結溝部と、前記多角形溝部を周方向で連結する第二の連結溝部とからなり、前記第一の連結溝部の断面積を前記第二の連結溝部の断面積よりも大きくした請求項5に記載の流体動圧軸受装置。
PCT/JP2020/013255 2019-03-26 2020-03-25 流体動圧軸受装置 WO2020196599A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/435,492 US11959513B2 (en) 2019-03-26 2020-03-25 Fluid dynamic bearing device
CN202080023337.8A CN113614395A (zh) 2019-03-26 2020-03-25 流体动压轴承装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019059055 2019-03-26
JP2019-059055 2019-03-26
JP2020-050522 2020-03-23
JP2020050522A JP7535865B2 (ja) 2019-03-26 2020-03-23 流体動圧軸受装置

Publications (1)

Publication Number Publication Date
WO2020196599A1 true WO2020196599A1 (ja) 2020-10-01

Family

ID=72609923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013255 WO2020196599A1 (ja) 2019-03-26 2020-03-25 流体動圧軸受装置

Country Status (2)

Country Link
US (1) US11959513B2 (ja)
WO (1) WO2020196599A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072045A (ja) * 1973-10-30 1975-06-14
JPS5214160A (en) * 1975-07-23 1977-02-02 Akashi Seisakusho Co Ltd Static pressure bearing of pressure distribution adjusting type
JPS6396321U (ja) * 1987-11-13 1988-06-22
JPH0369813A (ja) * 1989-08-09 1991-03-26 Nippon Seiko Kk 動圧みぞ付軸受の製造方法
JP2008157330A (ja) * 2006-12-22 2008-07-10 Kobe Steel Ltd 軸受及び液冷式スクリュ圧縮機
JP2015017692A (ja) * 2013-07-12 2015-01-29 三菱重工業株式会社 ティルティングパッド軸受装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553857A (en) * 1983-12-22 1985-11-19 Ney Robert J Reversible journal bearing uniflow lubrication system
JPS6396321A (ja) 1986-10-09 1988-04-27 Hitachi Constr Mach Co Ltd 流体圧式クラツチの制御装置
GB2235736B (en) * 1989-08-09 1993-09-15 Nippon Seiko Kk Bearing with dynamic pressure grooves and method for manufacturing the same
GB2322915B (en) * 1997-03-06 2001-06-06 Ntn Toyo Bearing Co Ltd Hydrodynamic type porous oil-impregnated bearing
JP2004257510A (ja) 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd 流体軸受装置及び加工方法
US6935787B2 (en) * 2003-07-14 2005-08-30 Nien-Lun Li Oil-circulating structure for fan
CN100357620C (zh) * 2004-08-14 2007-12-26 鸿富锦精密工业(深圳)有限公司 流体动压轴承
US20080166077A1 (en) * 2007-01-05 2008-07-10 Ping-Hsien Chou Self-lubrication alignment bearing
JP5752437B2 (ja) 2010-02-26 2015-07-22 Ntn株式会社 流体動圧軸受装置
CN105156463B (zh) 2013-01-31 2018-12-14 三菱日立电力系统株式会社 倾斜垫片轴承装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072045A (ja) * 1973-10-30 1975-06-14
JPS5214160A (en) * 1975-07-23 1977-02-02 Akashi Seisakusho Co Ltd Static pressure bearing of pressure distribution adjusting type
JPS6396321U (ja) * 1987-11-13 1988-06-22
JPH0369813A (ja) * 1989-08-09 1991-03-26 Nippon Seiko Kk 動圧みぞ付軸受の製造方法
JP2008157330A (ja) * 2006-12-22 2008-07-10 Kobe Steel Ltd 軸受及び液冷式スクリュ圧縮機
JP2015017692A (ja) * 2013-07-12 2015-01-29 三菱重工業株式会社 ティルティングパッド軸受装置

Also Published As

Publication number Publication date
US20220349442A1 (en) 2022-11-03
US11959513B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
JP4628246B2 (ja) 焼結合金動圧軸受を備えたモータ
JP2007177808A (ja) 動圧軸受ユニット
JP6466105B2 (ja) 流体動圧軸受装置とこれに用いられる軸受部材及び軸部材
US20080037918A1 (en) Hydrodynamic Bearing Device
US8506167B2 (en) Dynamic bearing device having a thrust bearing portion
JP7535865B2 (ja) 流体動圧軸受装置
WO2020196599A1 (ja) 流体動圧軸受装置
JP3686630B2 (ja) 動圧軸受装置
WO2012144288A1 (ja) 流体動圧軸受装置
JP2006112614A (ja) 動圧軸受装置
JP2006304565A (ja) ブラシレスモータとその製造方法
JP2006329391A (ja) 動圧軸受装置
US6502992B2 (en) Hydrodynamic type bearing unit
KR20060059743A (ko) 유체동압 베어링을 갖는 스핀들 모터
JP6599572B2 (ja) 流体動圧軸受装置とこれに用いられる軸受部材及び軸部材
JP2023184104A (ja) 動圧軸受および流体動圧軸受装置
JP2004116623A (ja) 流体軸受装置
JP2006194383A (ja) 動圧軸受装置
JPH11191944A (ja) レーザビームプリンタのスピンドルモータ及び回転軸支持装置
WO2020013049A1 (ja) 流体動圧軸受装置、及びこの軸受装置を備えたモータ
JP6502036B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
JP4357051B2 (ja) スラスト動圧軸受
JP2024053879A (ja) 動圧軸受及びこれを備えた流体動圧軸受装置
JP4739247B2 (ja) 動圧型軸受装置
JP2020159457A (ja) 軸受スリーブ、動圧軸受装置、及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778356

Country of ref document: EP

Kind code of ref document: A1