WO2014104080A1 - 硬化性ポリオルガノシロキサン組成物 - Google Patents

硬化性ポリオルガノシロキサン組成物 Download PDF

Info

Publication number
WO2014104080A1
WO2014104080A1 PCT/JP2013/084635 JP2013084635W WO2014104080A1 WO 2014104080 A1 WO2014104080 A1 WO 2014104080A1 JP 2013084635 W JP2013084635 W JP 2013084635W WO 2014104080 A1 WO2014104080 A1 WO 2014104080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bonded
silicon atom
independently
curable polyorganosiloxane
Prior art date
Application number
PCT/JP2013/084635
Other languages
English (en)
French (fr)
Inventor
正則 高梨
達留 岩渕
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to EP13868425.3A priority Critical patent/EP2940077A1/en
Priority to KR1020157019559A priority patent/KR20150099581A/ko
Priority to US14/653,039 priority patent/US20150337189A1/en
Priority to CN201380067804.7A priority patent/CN104870568A/zh
Priority to JP2014502912A priority patent/JP5617054B1/ja
Publication of WO2014104080A1 publication Critical patent/WO2014104080A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a polyorganosiloxane composition that cures by an addition reaction, and particularly relates to a polyorganosiloxane composition that cures to give a cured product suitable for an adhesive and / or a reflector of an optical element.
  • a white material having a high reflectance As an adhesive for fixing an optical element such as a light emitting diode (LED) to a substrate, or as a reflection material of light emitted from the optical element, a white material having a high reflectance is required.
  • LED light emitting diode
  • Patent Document 1 discloses a silicone for a semiconductor element that is used as a die bond material that has high concealability, effectively reflects light emitted from an LED, has good chip fit, has high adhesion, and is excellent in durability.
  • An adhesive is disclosed.
  • high light reflectance is maintained at a wavelength of 350 to 400 nm by using titanium oxide which is surface-treated with alumina or silica and alumina as a white pigment and whose unit cell has an anatase structure.
  • a white thermosetting silicone resin composition for forming an optical semiconductor case, and an optical semiconductor case for an LED made of a cured product of the composition are disclosed.
  • Patent Document 3 describes a cured product that retains whiteness, heat resistance, and light resistance, has excellent molding processability and dimensional stability, has little heat deterioration due to long-term use, and less yellowing due to UV deterioration, and has high light reflectivity.
  • An addition-curable silicone resin composition is disclosed.
  • Patent Document 4 describes white thermosetting for forming an optical semiconductor case that maintains whiteness, heat resistance, and light resistance, is uniform, has little yellowing, and has a reflectance of 80% or more in a wavelength range of 350 to 400 nm.
  • An optical semiconductor case for an LED or the like comprising a conductive silicone resin composition and a cured product of the composition is disclosed.
  • white pigments such as silica, titanium oxide, zinc oxide, calcium carbonate, alumina, and titanium oxide have been used for adhesives for optical elements in order to color them white.
  • the reflectance of light at each wavelength differs.
  • silicon dioxide and calcium carbonate have a problem that the reflectance is low in the wavelength region of 300 to 800 nm, although absorption is not shown for light in the near ultraviolet region.
  • optical elements such as LED elements have been required to emit light having a shorter wavelength, for example, violet light or ultraviolet light rather than blue light.
  • titanium oxide or zinc oxide is used for such an adhesive for an optical element, problems such as absorption of light on the short wavelength side and reduction in light extraction efficiency occur. Therefore, a material that can efficiently reflect light in such a short wavelength region has been demanded.
  • alumina having an average particle diameter of 0.1 to 3.0 ⁇ m works as a white pigment.
  • the alumina of the white pigment reflects light more than 80% particularly in the wavelength region of 400 nm or less. Although it has an effect, it is described that when alumina in a fine region is blended in the composition, a significant increase in viscosity occurs, so that it cannot be blended in a large amount and is used in combination with magnesium oxide.
  • An object of the present invention is to provide a material that efficiently reflects light in the wavelength region of purple and / or ultraviolet light emitted by an optical element such as an LED.
  • the present invention (A) an alkenyl group-containing polyorganosiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule; (B) a polyorganohydrogensiloxane having more than two hydrogen atoms bonded to silicon atoms in one molecule; (C) Formula (II): W t -Y s -SiR 4 r (OR 4 ) 3-r (II) [Wherein W is independently the following general formula (II ′): (Where R 3a is a C 2 -C 6 alkenyl group or a C 1 -C 6 alkyl group, R 3b is independently a C 1 -C 6 alkyl group, L is a C 2 -C 6 alkylene chain; m is a number of 5 to 400), Y represents the following general formula (III) bonded to a silicon atom: (Where Q 1 represents a linear or branched alkylene group that forms a carbon chain having two
  • the present invention also relates to an adhesive containing the above curable polyorganosiloxane composition and a semiconductor / electronic device device in which an optical element is bonded to a substrate with the adhesive. Furthermore, the present invention also relates to a cured product obtained by curing the above-described curable polyorganosiloxane composition, the cured product that is a reflective material, and a semiconductor / electronic device device including the reflective material.
  • the present invention it is possible to provide a cured product of a curable polyorganosiloxane composition that exhibits good reflectivity in a wide wavelength range.
  • the cured product of the present invention has a high reflectance in the purple and / or ultraviolet light region, particularly in the near ultraviolet region of 400 nm or less (especially 350 to 400 nm).
  • FIG. 6 is a graph showing the reflectance of light in each wavelength region of Example 1 and Comparative Examples 4 to 8.
  • FIG. 6 is a graph showing the reflectance of light in each wavelength region of Examples 1 to 8 and Comparative Examples 1 to 3.
  • the polyorganosiloxane composition of the present invention comprises (A) an alkenyl group-containing polyorganosiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule.
  • This alkenyl group-containing polyorganosiloxane is a component that serves as a base polymer, is a linear or branched polyorganosiloxane, and is preferably composed of a linear polyorganosiloxane and a branched polyorganosiloxane.
  • the alkenyl group bonded to the silicon atom may be branched or linear, and examples thereof include C 2 -C 6 alkenyl groups such as vinyl, allyl, 3-butenyl, and 5-hexenyl. .
  • a vinyl group is most preferred because it is easy to synthesize and does not impair the fluidity of the composition or the heat resistance of the cured product.
  • the above alkenyl group-containing polyorganosiloxane may have an organic group bonded to silicon in addition to the alkenyl group.
  • organic group include an unsubstituted or substituted monovalent aliphatic group or alicyclic group, or an unsubstituted or substituted aryl group that does not contain an aliphatic unsaturated carbon-carbon bond.
  • an alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl; a cycloalkyl group such as cyclohexyl; chloromethyl, 2 -Monovalent aliphatic or alicyclic groups substituted by halogen (eg chloro or fluoro) or cyano such as cyanoethyl, 3,3,3-trifluoropropyl, etc., and phenyl as the above aryl group
  • halogen eg chloro or fluoro
  • cyano such as cyanoethyl, 3,3,3-trifluoropropyl, etc.
  • phenyl as the above aryl group
  • Examples are groups. In view of heat resistance, a methyl group and a phenyl group are preferable.
  • n may be a linear polyorganosiloxane having a viscosity of 10 to 10,000 cP at 23 ° C.).
  • the component (A1) preferably has a low viscosity, for example, 10 to 3,000 cP, from the viewpoint that a larger amount of the component (D) of the present invention can be blended.
  • a viscosity is the value measured based on the method by JISK6249 7.1 term rotational viscosity.
  • said (A) component said (A1) component, (A2) SiO 4/2 unit and R ′ 3 SiO 1/2 unit, and optionally further R ′ 2 SiO unit and / or R′SiO 3/2 unit (wherein R ′ is independently , An unsubstituted or substituted monovalent aliphatic group or alicyclic group) and a branched polyorganosiloxane having at least three R ′ alkenyl groups per molecule is preferable. .
  • the component (A1) is a linear polyorganosiloxane represented by the above formula (I), and is a component that becomes a base polymer alone or together with the component (A2).
  • R 1 is a C 2 -C 6 alkenyl group, which may be branched or linear, vinyl, allyl, 3-butenyl, and 5- Hexenyl and the like are exemplified.
  • a vinyl group is most preferred because it is easy to synthesize and does not impair the fluidity of the composition or the heat resistance of the cured product.
  • R 1 may be present in any siloxane unit in the molecule, but in order to obtain good reactivity, at least a part of R 1 is preferably present at the molecular end, and 1 is present at each end. More preferably, there are two R 1 in total.
  • R 2 is a C 1 -C 6 alkyl group or an aryl group, and the C 1 -C 6 alkyl group may be branched or linear. Often, methyl, ethyl, propyl and the like are exemplified, and the aryl group is exemplified by a phenyl group. A methyl group or a phenyl group is particularly preferred because it is easy to synthesize and handle and gives a cured product having excellent thermal and mechanical properties.
  • n is a number that makes the viscosity of the component (A1) at 23 ° C. 10 to 10,000 cP. When the viscosity is within this range, it is possible to give a viscosity that facilitates work in the combined use of the mechanical properties and the component (A2).
  • the viscosity is preferably 20 to 5,000 cP, more preferably 50 to 2,500 cP, and still more preferably 150 to 2,500 cP.
  • the viscosity is a value measured according to a method based on JIS K6249, section 7.1 rotational viscosity.
  • the component (A2) is a branched polyorganosiloxane, which is a component that becomes a base polymer together with the component (A1), and can give particularly excellent mechanical strength to the cured product.
  • the component (A2) comprises SiO 4/2 units and R ′ 3 SiO 1/2 units, and optionally further R ′ 2 SiO units and / or R′SiO 3/2 units (wherein R ′ is each Independently, an unsubstituted or substituted monovalent aliphatic group or alicyclic group), and at least 3 R 'per molecule is an alkenyl group so that it becomes a crosslinking point in the curing reaction. It is.
  • the component (A2) is preferably a solid or viscous semi-solid resinous or liquid at room temperature.
  • 'molar ratio of 3 SiO 1/2 units (R' R for SiO 4/2 units 3 number of moles / SiO 4/2 units of SiO 1/2 units), 0.25 ⁇ 1.5 is preferred.
  • the molar ratio is preferably 0.4 to 1.2, more preferably 0.5 to 1.0.
  • R ′ is an alkenyl group
  • a C 2 -C 6 alkenyl group can be mentioned. These may be branched or linear, and examples thereof include vinyl, allyl, 3-butenyl, and 5-hexenyl.
  • the vinyl group is most preferable because it is easy to synthesize and does not impair the fluidity of the composition before curing and the heat resistance of the composition after curing.
  • Alkenyl groups can exist as R ′ in R ′ 3 SiO 1/2 units. Alkenyl groups may optionally be present as R ′ 2 SiO units or R′SiO 3/2 units R ′, but in order to obtain fast cure at room temperature, at least some of the alkenyl groups are It is preferably present in R ′ 3 SiO 1/2 units.
  • R ′ other than an alkenyl group examples include an unsubstituted or substituted monovalent aliphatic group or alicyclic group that does not contain an aliphatic unsaturated carbon-carbon bond, and includes methyl, ethyl, propyl, butyl, By alkyl groups such as pentyl, hexyl, octyl, decyl, dodecyl; cycloalkyl groups such as cyclohexyl; halogens such as chloromethyl, 2-cyanoethyl, 3,3,3-trifluoropropyl (eg chloro or fluoro) or cyano Examples thereof include a substituted monovalent aliphatic group or alicyclic group. In view of heat resistance, a methyl group is preferable.
  • the weight ratio of (A2) to (A1) is not particularly limited, but from the point that the hardness of the cured product increases. It is preferably 1 to 5, more preferably 1 to 4, and particularly preferably 1.5 to 2.5.
  • the weight ratio of SiO 4/2 units and optionally present R′SiO 3/2 units in the total amount of (A1) and (A2) is not particularly limited, From the point of giving excellent mechanical strength to the cured product, it is preferably 20 to 70% by weight.
  • the curable polyorganosiloxane composition of the present invention comprises (B) a polyorganohydrogensiloxane having more than two hydrogen atoms bonded to silicon atoms in one molecule.
  • (B) functions as a crosslinking agent of (A) by the addition reaction of the hydrosilyl group in the molecule with the alkenyl group in (A).
  • Such (B) has a number of hydrosilyl groups involved in the addition reaction in excess of two, preferably three or more, in order to reticulate the cured product.
  • the component (B) is typically represented by the general formula (IV): (R 5 ) c H d SiO (4-cd) / 2 (IV) (Where R 5 represents an unsubstituted or substituted monovalent aliphatic group or alicyclic group that does not contain an aliphatic unsaturated carbon-carbon bond; c is an integer from 0 to 2; d is 1 or 2, provided that c + d is an integer of 1 to 3)
  • the units represented by may be the same or different, and have more than two, preferably three or more in one molecule.
  • Examples of the organic group bonded to the silicon atom of the other siloxane unit of R 5 and (B) are the same as those of R ′ other than the alkenyl group in the above (A2), and among them, the synthesis is easy From the viewpoint, a methyl group is most preferable. Further, d is preferably 1 from the viewpoint of easy synthesis.
  • the siloxane skeleton in (B) may be linear, branched or cyclic. Moreover, you may use these mixtures.
  • the degree of polymerization of (B) is not particularly limited, but it is difficult to synthesize a polyorganohydrogensiloxane in which two or more hydrogen atoms are bonded to the same silicon atom.
  • the number of siloxane units is more preferably from 6 to 200, and particularly preferably from 10 to 150, since they do not volatilize even when heated to temperature and are excellent in fluidity and easily mixed with (A).
  • R 5a is independently an unsubstituted or substituted monovalent aliphatic group or alicyclic group that does not contain an aliphatic unsaturated carbon-carbon bond
  • R 5b is independently A hydrogen atom, or an unsubstituted or substituted monovalent aliphatic group or alicyclic group
  • p is a number of 2 to 100, preferably a number of 3 to 50
  • q is a number from 0 to 100, preferably a number from 3 to 50).
  • an unsubstituted or substituted monovalent aliphatic group or alicyclic group that does not contain an aliphatic unsaturated carbon-carbon bond includes methyl, ethyl, propyl, butyl, pentyl, Substituted by alkyl groups such as hexyl, octyl, decyl, dodecyl; cycloalkyl groups such as cyclohexyl; halogens such as chloromethyl, 2-cyanoethyl, 3,3,3-trifluoropropyl (eg chloro or fluoro) or cyano And monovalent aliphatic groups or alicyclic groups. In view of heat resistance, a methyl group is preferable.
  • the blending amount of (B) is bonded to the silicon atom in (B) with respect to the number Vi A of alkenyl groups bonded to the silicon atom in (A), in order to obtain a cured product having excellent mechanical properties.
  • An amount such that the ratio of the number H B of hydrogen atoms (H B / Vi A ) is 0.3 to 5 is preferable.
  • H B / Vi A is more preferably 0.5 to 5, and further preferably 0.7 to 2.
  • the polyorganosiloxane composition of the present invention comprises: (C) Formula (II): W t -Y s -SiR 4 r (OR 4 ) 3-r (II) [Wherein W is independently the following general formula (II ′): (Where R 3a is a C 2 -C 6 alkenyl group or a C 1 -C 6 alkyl group, R 3b is independently a C 1 -C 6 alkyl group, L is a C 2 -C 6 alkylene chain; m is a number of 5 to 400), Y represents the following general formula (III) bonded to a silicon atom: (Where Q 1 represents a linear or branched alkylene group that forms a carbon chain having two or more carbon atoms between a silicon atom and an ester bond, Q 2 is a linear or branched alkylene group that forms a carbon chain having 3 or more carbon atoms between the
  • the C 2 -C 6 alkenyl group for R 3a may be branched or linear, and vinyl, allyl, 3-butenyl, 5-hexenyl, etc. Illustrated.
  • R 3a at the end of the polyorganosiloxane of formula (II) is preferably a C 2 -C 6 alkenyl group, particularly a vinyl group, due to the characteristics of the filler surface treatment.
  • the C 1 -C 6 alkyl group for R 3a and R 3b may be branched or linear, and examples thereof include methyl, ethyl, propyl and the like. .
  • a methyl group is particularly preferred because it is easy to synthesize and handle and gives a cured product having excellent thermal and mechanical properties.
  • the C 2 -C 6 alkylene chain for L may be branched or linear, and examples thereof include an ethylene chain and a propylene chain. Since the polyorganosiloxane of the above formula (II) can be easily synthesized industrially by addition reaction between a hydrogen atom bonded to silicon and an unsaturated group bonded to silicon, a C 2 -C 6 alkylene chain for L Is preferably an ethylene chain.
  • m is a number of 5 to 400, preferably a number of 10 to 250, more preferably a number of 20 to 200.
  • the linear polyorganosiloxane of the following formula (IIa) has a viscosity at 23 ° C. of 5 to 1,000 cP, preferably 10 to 500 cP, more preferably 20 to 300 cP.
  • the viscosity is a value measured according to a method based on JIS K6249, section 7.1 rotational viscosity.
  • the organosilicon group for Y has, for example, a side chain represented by the formula (III) bonded to a silicon atom and has 2 to 50, preferably 4 to 20, silicon atoms.
  • Examples include organosiloxane oligomer residues.
  • any organic group can be bonded to the silicon atom.
  • Examples of such an organic group include an unsubstituted or substituted monovalent aliphatic group or alicyclic group that does not contain an aliphatic unsaturated carbon-carbon bond, such as methyl, ethyl, propyl, butyl, By alkyl groups such as pentyl, hexyl, octyl, decyl, dodecyl; cycloalkyl groups such as cyclohexyl; halogens such as chloromethyl, 2-cyanoethyl, 3,3,3-trifluoropropyl (eg chloro or fluoro) or cyano Examples thereof include a substituted monovalent aliphatic group or alicyclic group.
  • Such an organosilicon group has an alkoxy group and / or an alkenyloxy group bonded to a silicon atom, and has a Si—H group, an alkenyl group, an acrylic group, a methacryl group, an epoxy group, a mercapto group, an ester. It preferably has at least one reactive functional group selected from a group, an anhydrous carboxy group, an amino group, and an amide group. These may have one sort or two sorts or more.
  • examples of Q 1 include alkylene groups such as ethylene, trimethylene, 2-methylethylene, and tetramethylene. From the viewpoint of easy synthesis and handling, an ethylene group and 2 -A methylethylene group is preferred. Examples of Q 2 include alkylene groups such as trimethylene, 2-methyltrimethylene and tetramethylene, and a trimethylene group is preferable from the viewpoint of easy synthesis and handling.
  • organosilicon groups include the following groups.
  • t is 1, 2, or 3, and is preferably 1 or 2 for ease of synthesis.
  • s is 0 or 1, and 1 is preferable from the viewpoint of easy industrial synthesis.
  • t is 1.
  • one W exists, but Y does not exist, and W is directly bonded to a silicon atom of the side chain: SiR 4 r (OR 4 ) 3-r .
  • s is 1, t is 1, 2, or 3.
  • Y is 1 and W is independently bonded to the silicon atom of Y.
  • the fact that W is independently bonded to the silicon atom of Y means that a plurality of Ws are directly bonded to the silicon atom of Y separately. That is, the formula (II) can take the following structure: (W, Y, R 4 and r in the above formula are as defined in the formula (II)).
  • each W may be the same as or different from each other, but is preferably the same, and each W is the same as Y. Alternatively, they may be bonded to different silicon atoms, but preferably bonded to different silicon atoms.
  • examples of R 4 include alkyl groups such as methyl, ethyl, propyl, isopropyl and butyl; and alkyl groups substituted with alkoxy such as 2-methoxyethyl. From the viewpoint of providing reactivity and reducing the viscosity of the composition, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • R 4, when there exist a plurality in the formula (II) may being the same or different.
  • r is 0 or 1. When the surface treatment of the filler is performed, r is preferably 0 because having three —OR 4 has a higher reactivity and a higher surface treatment effect, that is, a larger viscosity reduction effect with a small amount of addition.
  • the organosilicon group-containing polyorganosiloxane represented by the formula (II) is, for example, the following formula (IIa): (Wherein R 3a , R 3b , and m are as defined in the above formula (II), and R 3c is a C 2 -C 6 alkenyl group), Formula (IIb): Y′-SiR 4 r (OR 4 ) 3-r (IIb) Wherein, Y 'is an is a hydrogen atom, or the defined organosilicon group for Y (where having 1-3 Si-H group); R 4 and r is the formula ( It can be obtained by adding an organosilicon compound represented by (II) using, for example, a platinum catalyst.
  • R 3a is preferably a C 2 -C 6 alkenyl group, particularly a vinyl group, from the viewpoint that a linear polyorganosiloxane of the formula (IIa) can be easily synthesized industrially.
  • R 3c is also preferably a vinyl group.
  • the component (C) can suppress thickening of the composition by alumina.
  • the blending amount of the component (C) can usually be changed depending on the specific surface area of alumina, but is not particularly limited as long as the thickening of the composition due to the blending of alumina can be suppressed. From the point that the thickening of the composition can be suppressed, it is 0.1% by weight or more, preferably 1% by weight or more, and from the point of preventing the mechanical strength of the resulting cured product from being reduced, preferably 20% by weight or less, preferably 10% by weight or less.
  • the curable polyorganosiloxane composition of the present invention contains (D) alumina having an average particle size of 5 ⁇ m or less.
  • the average particle diameter of (D) needs to be 5 ⁇ m or less in order to provide a cured product exhibiting good reflectivity in the near ultraviolet region, particularly 0.1 to 3 ⁇ m, especially 0.1 to 1 ⁇ m. Is preferred.
  • the average particle diameter in the present invention is a value determined as a mass average value D 50 (or median diameter) in particle size distribution measurement by laser diffraction method.
  • the shape of (D) is not particularly limited, and may be indefinite or spherical, but spherical is preferred from the viewpoint of providing a cured product exhibiting good reflectivity in the near ultraviolet region. .
  • the present invention also relates to a curable polyorganosiloxane composition that is substantially free of magnesium oxide.
  • the composition of the present invention contains 50 to 1000 parts by weight of the component (D) with respect to 100 parts by weight of the total of the components (A), (B), and (C).
  • the content of the component (D) is preferably 75 to 750 parts by weight, more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the total of the components (A), (B), and (C).
  • the polyorganosiloxane composition of the present invention comprises (E) a platinum group metal compound.
  • the component (E) functions as a catalyst for promoting the addition reaction between the alkenyl group bonded to the silicon atom in (A) and the hydrosilyl group in (B).
  • the platinum group metal compound a compound of a platinum group metal atom such as platinum, rhodium or palladium is used.
  • Chloroplatinic acid reaction product of chloroplatinic acid and alcohol, platinum-olefin complex, platinum-vinylsiloxane complex, platinum Examples include platinum compounds such as ketone complexes and platinum-phosphine complexes; rhodium compounds such as rhodium-phosphine complexes and rhodium-sulfide complexes; and palladium compounds such as palladium-phosphine complexes.
  • reaction products of chloroplatinic acid and alcohol for example, Lamorro's catalyst (platinum-octanol complex, US Pat. No. 4,733,377), and platinum-vinylsiloxane complex are preferred because of their good catalytic activity.
  • Lamorro's catalyst platinum-octanol complex, US Pat. No. 4,733,377
  • platinum-vinylsiloxane complex are preferred because of their good catalytic activity.
  • platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex and platinum-1,3,5,7 -Tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane is preferred.
  • the required curing speed varies depending on the shape of the site where the cured product is provided and the required working time, it can be arbitrarily selected depending on the combination of the component (E) and the curing inhibitor.
  • the blending amount of (E) is usually 0.1 to 1,000 ppm by weight in terms of platinum group metal atoms, based on the total amount of the component (A) and the component (B), because an excellent curing rate can be obtained. And preferably 0.5 to 100 ppm by weight. When the content is 0.1 ppm by weight or more, the curing rate is increased, and when the content is 1,000 ppm by weight or less, an increase in the curing rate commensurate with it is obtained.
  • an adhesiveness imparting agent can be blended within a range not inhibiting the catalytic activity of the component (E).
  • Adhesive agents include 3-glycidoxypropyl group-containing alkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyl (methyl) dimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) dimethoxysilane, etc.
  • Q 1 represents a linear or branched alkylene group forming a carbon chain having two or more carbon atoms between a silicon atom and an ester bond
  • Q 2 represents an oxygen atom and a side.
  • R 6 represents an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms
  • An aluminum alkoxide such as aluminum triethoxide, aluminum tripropoxide, aluminum tributoxide; titanium tetraethoxide, titanium tetrapropoxide, titanium tetraisopropoxide, titanium Titanium alkoxides such as tetrabutoxide, titanium tetraisobutoxide, titanium tetraisopropenyl oxide; zirconi Arm tetraisopropoxide, zirconium alkoxides such as zirconium tetra
  • examples of Q 1 include an alkylene group such as ethylene, trimethylene, 2-methylethylene, tetramethylene, and the like. -A methylethylene group is preferred.
  • examples of Q 2 include alkylene groups such as trimethylene, 2-methyltrimethylene, and tetramethylene, and the trimethylene group is preferred because it is easy to synthesize and handle.
  • R 6 examples include alkyl groups such as methyl, ethyl, propyl, isopropyl and butyl; and alkyl groups substituted with alkoxy such as 2-methoxyethyl, which give good adhesion and are alcohols generated by hydrolysis Are easy to volatilize, methyl group and ethyl group are preferable, and methyl group is particularly preferable.
  • formula (VI) The cyclic siloxane compound shown by these is illustrated.
  • the compounding amount of the adhesion-imparting agent varies depending on the kind of the adhesion-imparting agent and the substrate, but is usually in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the component (A). From the viewpoint, it is preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 5 parts by weight.
  • a curing inhibitor can be blended as long as the object of the present invention is not impaired.
  • the diallyl maleate is effective not only as an adhesion-imparting agent but also as a curing inhibitor.
  • Other curing inhibitors include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynyl- Acetylene alcohols such as 1-cyclohexane-1-ol are exemplified.
  • the blending amount of the curing inhibitor can be selected in any amount depending on the desired curability.
  • the curable polyorganosiloxane composition of the present invention is cured to form a cured product suitable for an adhesive and / or a reflector of an optical element.
  • the composition has an appropriate fluidity before curing.
  • an inorganic filler is added for the purpose of imparting high mechanical strength required according to the application to the cured product obtained, as long as the object of the present invention is not impaired. can do.
  • the inorganic filler include reinforcing fillers having an average particle size of less than 0.1 ⁇ m and a specific surface area of 30 mm 2 / g or more; and non-reinforcing fillers having an average particle size of 0.1 to 50 ⁇ m.
  • Examples of the reinforcing filler include dry method silica such as fumed silica and arc silica; and wet method silica such as precipitated silica. These may be used as they are, and may be used as a hydrophobizing agent such as hexamethyldisilazane. A surface treatment may be performed.
  • Non-reinforcing fillers include diatomaceous earth, ground quartz, fused quartz, titanium oxide, aluminum oxide, zinc oxide, aluminosilicate, calcium carbonate, organic acid surface treated calcium carbonate, magnesium carbonate, zinc carbonate, calcium silicate, Examples include talc and ferric oxide, which are selected according to the extrusion workability and the physical properties necessary for the resulting cured product. Moreover, you may mix
  • the blending amount of the inorganic filler can be 0 to 500 parts by weight with respect to 100 parts by weight of the component (A), and in particular from the viewpoint of durability, mechanical strength and workability (viscosity) of the cured product. 200 parts by weight is preferred.
  • a pigment in the curable polyorganosiloxane composition of the present invention, a pigment, a thixotropic agent, a viscosity modifier for improving the extrusion workability, and an ultraviolet ray preventive agent, depending on the purpose, unless the object of the present invention is impaired.
  • Various additives such as a fungicide, a heat resistance improver, a flame retardant, and a chain extender may be added.
  • a linear hydrogen polyorganosiloxane having one hydrogen atom bonded to a silicon atom at each end for example, both ends are MH units: (CH 3 ) 2 HSiO 1/2
  • it may be dissolved or dispersed in an organic solvent such as an aliphatic hydrocarbon such as hexane or pentane, or an aromatic hydrocarbon such as toluene or xylene.
  • the curable polyorganosiloxane composition of the present invention is obtained by uniformly kneading the components (A) to (E) and other components to be blended as necessary by a mixing means such as a universal kneader or a kneader. Can be prepared.
  • a mixing means such as a universal kneader or a kneader.
  • the co-hydrolysis is performed in the presence of an organic solvent such as toluene and xylene, and the subsequent steps are carried out as an organic solvent solution.
  • a curable polyorganosiloxane composition may be prepared by mixing uniformly by a mixing means such as a mixing head of a quantitative mixer, and defoamed under reduced pressure for use.
  • the method for curing the curable polyorganosiloxane composition of the present invention is not particularly limited.
  • the composition is injected into a site to be used, dropped, cast, cast, extruded from a container, or the like.
  • a cured product may be obtained by combining with an object such as an optical element by integral molding by transfer molding or injection molding, and curing by standing or heating at room temperature.
  • a method in which the optical element is bonded to the support member with the composition and then allowed to stand at room temperature, or a method in which heating is performed at 100 to 200 ° C. for about 30 to 300 minutes can be given.
  • the curing time can be appropriately adjusted, preferably 5 hours or less, more preferably 3 hours or less.
  • the curing conditions can be appropriately adjusted depending on the size of the member and the capacity of the heating furnace.
  • the cured product of the curable polyorganosiloxane composition of the present invention is excellent in reflectivity, particularly in the purple and / or ultraviolet light region, particularly in the near ultraviolet region of 400 nm or less (particularly 350 to 400 nm),
  • the reflectance with respect to light having a wavelength of 350 to 400 nm is usually 85% or more, preferably 90% or more, more preferably 92% or more.
  • the cured product of the present invention has a function of efficiently extracting light to the outside by reflecting light irradiated from the optical element with high reflectance.
  • the optical element of the present invention is an optical semiconductor element, for example, a semiconductor light emitting element such as a light emitting diode (LED), a laser diode (LD), or a photodiode (PD) and a semiconductor light receiving element, and a light emitting device such as a xenon tube.
  • a semiconductor light emitting element such as a light emitting diode (LED), a laser diode (LD), or a photodiode (PD) and a semiconductor light receiving element
  • a light emitting device such as a xenon tube.
  • siloxane units are indicated by the following symbols.
  • V unit: (CH 3) 2 (CH 2 CH) SiO 1/2 - D unit: — (CH 3 ) 2 SiO— DH unit: — (CH 3 ) HSiO— D
  • Q unit SiO 4/2 (tetrafunctional)
  • the following polyorganosiloxanes were used as the components (A), (B), and (C).
  • the intermediate siloxane unit simply indicates the number of units. When a plurality of types of intermediate siloxane units are included, the intermediate siloxane units are randomly arranged.
  • A1-1 both terminals blocked with M V unit, becomes the intermediate unit from D units, linear polymethylvinylsiloxane having a viscosity at 23 ° C. is at 250 cP
  • A1-2 both terminals blocked with M V unit, becomes the intermediate unit from D units, linear polymethylvinylsiloxane having a viscosity at 23 ° C. is at 3,000 cP
  • A1-3 both terminals blocked with M V unit, becomes the intermediate unit from D units, linear polymethylvinylsiloxane having a viscosity at 23 ° C.
  • A1-4 both terminals blocked with M V unit, an intermediate unit consists of 5 mole% of D Ph2 units and the remainder of D units, linear polymethylvinylsiloxane having a viscosity at 23 ° C. is at 1,000 cP;
  • A2-1 M units, M v units, and consists of Q units, branched polymethylvinylsiloxane molar units ratio represented by M 5 M v Q 8.
  • B-1 to B-3 were used as the component (B).
  • B-1 a linear polymethylhydrogensiloxane having both ends blocked with M units, an intermediate unit consisting of 50 mol% DH units and the remaining D units, and represented by MD H 20 D 20 M
  • B-2 a linear polymethylhydrogensiloxane having both ends blocked with M units, an intermediate unit consisting of DH units, and represented by MD H 50 M
  • B-3 A branched polymethylhydrogensiloxane represented by an average composition formula MH 8 Q 4 composed of MH units and Q units.
  • C-1 to C-4 were used as the component (C).
  • C-1 was obtained by adding C2-1 to C1-1 at 100 ° C. using E-1 as platinum catalyst (platinum 5 ppm relative to C1-1). In this reaction, the ratio of the number of hydrogen atoms bonded to silicon atoms in C2-1 to the number of vinyl groups bonded to silicon atoms of C1-1 is 0.1.
  • C-2 was obtained in the same manner as C-1, except that C1-2 was used instead of C1-1.
  • C-3 was obtained in the same manner as C-1, except that C1-2 was used instead of C1-1 and C2-2 was used instead of C2-1.
  • C-4 was obtained in the same manner as C-1, except that C1-3 was used instead of C1-1 and H-Si (OEt) 3 was used instead of C2-1.
  • C1-1 to C1-3, C2-1, and C2-2 are shown below. E-1 will be described later.
  • C1-1 both terminals blocked with M V unit, linear polymethylvinylsiloxane intermediate unit consists of 90 pieces of D units;
  • C1-2 Of both ends are blocked with one end M V unit, remaining one of the terminals blocked with M units, linear polymethylvinylsiloxane intermediate unit consists of 50 D units;
  • C1-3 both terminals blocked with M V unit, linear polymethylvinylsiloxane the intermediate units consist of 200 D units;
  • C2-1 The following formula (VI): Compound.
  • C2-2 Formula (VI ′) below:
  • D-1 Spherical alumina (trade name Sumiko Random AA-04, manufacturer: Sumitomo Chemical Co., Ltd.) with an average particle size of 0.4 ⁇ m
  • D-2 average particle diameter of 1.5 ⁇ m
  • spherical alumina (trade name Sumiko Random AA-1.5, manufacturer: Sumitomo Chemical Co., Ltd.)
  • D-3 Spherical alumina (trade name Sumiko Random AA-3, manufacturer: Sumitomo Chemical Co., Ltd.) with an average particle diameter of 3 ⁇ m
  • D-4 Spherical alumina (trade name Sumiko Random AA-18, manufacturer: Sumitomo Chemical Co., Ltd.) with an average particle size of 18 ⁇ m
  • D-5 Alumina having an average particle size of 0.55 ⁇ m and irregular shape (Alumina AL-160SG-4, manufactured by Showa Denko KK)
  • D-6 Alumina with an average particle diameter of 2 ⁇ m and irregular shape (trade name:
  • D-10 Barium titanate with an average particle diameter of 2 ⁇ m (trade name BT-UP2, manufactured by Sakai Chemical Industry Co., Ltd.)
  • D-11 Calcium carbonate having an average particle size of 1.7 ⁇ m (trade name NS-400, manufacturer Nitto Flour Industry Co., Ltd.)
  • D-12 Silicon dioxide with an average particle size of 4 ⁇ m (trade name Crystallite VX-S, manufacturer Tatsumori)
  • D-13 Alumina having an average particle size of 4.6 ⁇ m and irregular shape (trade name: AL-43KT, manufactured by Showa Denko KK)
  • E platinum group metal compounds
  • E-1 Lamorro's catalyst (platinum-octanol complex, US Pat. No. 4,733,377) (platinum atom conversion: 3.8% by weight).
  • E-2 Platinum-1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (1.8% by weight in terms of platinum atom).
  • F-1 1-ethynyl-1-cyclohexanol
  • G adheresion imparting agent
  • G-1 1,3,5-triallyl isocyanurate
  • G-2 B-1 added with 3-methacryloxypropyltrimethoxysilane at a molar ratio of 1: 3
  • G-3 3-glycol Sidoxypropyltrimethoxysilane partial hydrolysis product (trade name Coatsil MP-200, manufacturer in-house)
  • a polyorganosiloxane composition was prepared by the following method. Into a container equipped with a stirrer, a heating device and a decompression device, the toluene solution of component (A) is mixed and mixed uniformly, and then toluene is distilled off at 150 ° C. and 13 kPa ⁇ 1 torr ⁇ to obtain polysiloxane. A solution was prepared. Transfer this to a universal kneader, add component (C) and component (D), knead under reduced pressure at 150 ° C. for 3 hours, cool to 40 ° C. or lower, and add component (E), F-1 and G-1 was mixed.
  • Example 11 10 parts by weight of an isoparaffin solvent (trade name IP Solvent 1620, manufacturer, Idemitsu Kosan Co., Ltd.) was further added after the addition of the components, followed by 10 minutes of vacuum kneading.
  • IP Solvent 1620 trade name IP Solvent 1620, manufacturer, Idemitsu Kosan Co., Ltd.
  • the prepared polyorganosiloxane composition was cast into a sheet having a thickness of 250 ⁇ m or 500 ⁇ m and cured by heating in an oven at 150 ° C. for 1 hour to obtain a cured product.
  • This cured product was evaluated by the following test. [appearance] Judgment was made visually. [Reflectance] Using a spectrophotometer (UV3600 (integrated sphere ISR-3100), manufactured by Shimadzu Corporation), the wavelength region of 300 to 800 nm was continuously scanned, and the reflectance of the surface was measured using barium sulfate as a standard substance. .
  • UV3600 integrated sphere ISR-3100
  • the prepared polyorganosiloxane composition was poured into a 30 mm (length) ⁇ 60 mm (width) ⁇ 6 mm (depth) metal container (aluminum) coated with Teflon (registered trademark), and similarly coated with Teflon (registered trademark).
  • the covered metal lid was then cured at 150 ° C. for 1 hour in a hot air circulating drier.
  • the cured product was removed from the mold, and its hardness (Type D) was measured (based on JIS K6253).
  • Test piece according to JIS K6249 was prepared from the prepared polyorganosiloxane composition (the adherend was aluminum and the thickness of the adhesive layer was 1.0 mm), and then the test piece was prepared at 150 ° C. for 1 hour. Cured in a dryer. After the obtained cured product was cooled to room temperature, the tensile shear bond strength was measured at a tensile speed of 10 mm / min. Moreover, the state of the test piece at this time was confirmed, and the cohesive failure and the peeled one were evaluated according to the following criteria, and the cohesive failure rate was calculated from the ratio of both.
  • Cohesive failure A state in which the silicone resin is destroyed. Peeling: A state in which no silicone resin remains on the adherend surface.
  • the reflectance at each wavelength differs depending on the type of white pigment, the blending amount of alumina, the average particle diameter, and the shape.
  • alumina, quartz (silicon dioxide), and calcium carbonate having an average particle diameter of 18 ⁇ m did not absorb light in the near ultraviolet region, but had a low reflectance in the entire wavelength region of 300 to 800 nm.
  • titanium oxide and zinc oxide having a high concealment rate have a high reflectance in the visible light region, but in the near-ultraviolet region, almost no light was absorbed and no reflection was observed.
  • alumina having an average particle diameter of 5 ⁇ m or less was dispersed in a certain amount or more, it was shown that a reflectance of 85% or more can be maintained in the 350 to 400 nm region. It was also recognized that the alumina tends to have higher reflectivity in rounded and spherical shapes than in indeterminate shapes.
  • the curable polyorganosiloxane composition of the present invention is cured to exhibit a cured product exhibiting good reflectivity with respect to light in a wide wavelength range, particularly in the violet and / or ultraviolet region, particularly in the near ultraviolet region (350 to 400 nm). ) Can be given a cured product showing good reflectivity, and such a cured product is useful as a reflector.
  • the composition of the present invention is also excellent in adhesiveness and is useful as an adhesive for optical elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 本発明は、硬化して、LEDなどの光学素子が発する紫色及び/又は紫外光の波長領域の光を効率よく反射する材料を提供する。 本発明は、(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するアルケニル基含有ポリオルガノシロキサン;(B)ケイ素原子に結合した水素原子を1分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサン;(C)式(II)〔式中、Wは、独立して、一般式(II')(式中、R3aは、独立して、C-Cアルケニル基又はC-Cアルキル基であり、R3bは、独立して、C-Cアルキル基であり、Lは、C-Cアルキレン鎖であり、mは、5~400の数である)で示されるポリオルガノシロキサン基であり、Yは、ケイ素原子に結合した一般式(III)(式中、Qは、ケイ素原子とエステル結合との間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し、Qは、酸素原子と側鎖:SiR (OR3-rのケイ素原子との間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表す)で示される側鎖を有する有機ケイ素基であり、Rは、独立して、炭素数1~6の非置換又は置換のアルキル基であり、tは、1、2、又は3であり、sは、0又は1であるが、但し、sが0の場合、tは1であり、Wは側鎖:SiR (OR3-rのケイ素原子に結合し、sが1の場合、tは1、2、又は3であり、Wは独立してYのケイ素原子に結合し、rは、0又は1である〕で示されるポリオルガノシロキサン;(D)平均粒径が5μm以下のアルミナ;ならびに(E)白金族金属化合物を含み、ここで、(A)、(B)、及び(C)成分の合計100重量部に対して(D)成分が50~1000重量部である、硬化性ポリオルガノシロキサン組成物に関する。

Description

硬化性ポリオルガノシロキサン組成物
 本発明は、付加反応によって硬化するポリオルガノシロキサン組成物、特に、硬化して、光学素子の接着剤及び/又は反射材などに適した硬化物を与えるポリオルガノシロキサン組成物に関する。
 発光ダイオード(LED)などの光学素子を基板に固定するための接着剤として、あるいは光学素子が発する光の反射材としては、白色で反射率が高いものが求められている。
 特許文献1には、隠蔽性が高く、LEDから出る光を効果的に反射し、かつチップの収まり性が良好で、接着力も高く、耐久性に優れるダイボンド材として使用される、半導体素子用シリコーン接着剤が開示されている。
 特許文献2には、白色顔料としてアルミナ又はシリカとアルミナで表面処理されていて、かつ単位格子がアナタース型構造を有する酸化チタンを使用することで、波長350~400nmにおいて高い光反射率を維持する、光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物、ならびに該組成物の硬化物からなるLED用等の光半導体ケースが開示されている。
 特許文献3には、白色性、耐熱性、耐光性を保持し、成形加工性、寸法安定性に優れ、長期の使用による耐熱劣化やUV劣化による黄変が少なく、光反射性の高い硬化物の付加硬化型シリコーン樹脂組成物が開示されている。
 特許文献4には、白色性、耐熱性、耐光性を保持し、均一でかつ黄変が少なく、また波長350~400nm領域での反射率が80%以上である光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び該組成物の硬化物からなるLED用等の光半導体ケースが開示されている。
特開2009-256400号公報 特開2011-54902号公報 特開2011-140550号公報 特開2010-21533号公報
 従来、光学素子用の接着剤などには、白色に着色させるために、シリカ、酸化チタン、酸化亜鉛、炭酸カルシウム、アルミナ、酸化チタンなどの白色顔料が使用されてきた。しかしながら、白色顔料によっては、各波長での光の反射率が異なり、例えば、酸化チタンや酸化亜鉛では、可視光領域の光はよく反射されるものの、近紫外領域の光はほとんど吸収されてしまい、反射されないという問題がある。また、二酸化ケイ素や炭酸カルシウムでは、近紫外領域の光に対しては吸収が示されないものの、300~800nmの波長領域で反射率が低いという問題がある。
 ところで、近年、LED素子などの光学素子については、より短波長側の光を、例えば、青色光よりも紫色光や紫外光を発するものが求められるようになってきている。しかし、そのような光学素子用の接着剤などに酸化チタンや酸化亜鉛を使用すれば、短波長側の光が吸収されたり、光の取り出し効率が低下したりするなどの問題が生じる。そのため、このような短波長領域の光を効率よく反射することができる材料が求められてきている。
 特許文献4では、平均粒径が0.1~3.0μmのアルミナが白色顔料として働くが、白色顔料のアルミナは光を反射する効果において、特に400nm以下の領域の波長を80%以上反射する効果を有するが、微細領域のアルミナを組成物中に配合すると、著しい増粘が起こるため多量には配合できず、酸化マグネシウムと併用されることが記載されている。
 本発明の課題は、LEDなどの光学素子が発する紫色及び/又は紫外光の波長領域の光を効率よく反射する材料を提供することである。
 本発明者は、上記の課題を解決するために鋭意研究を重ねた結果、特定の粒径のアルミナを特定量配合した硬化性ポリオルガノシロキサン組成物が、広範な波長領域で良好な反射性を示すことを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するアルケニル基含有ポリオルガノシロキサン;
(B)ケイ素原子に結合した水素原子を1分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサン;
(C)式(II):
   W-Y-SiR (OR3-r    (II)
〔式中、Wは、独立して、下記一般式(II’):
Figure JPOXMLDOC01-appb-C000003
(式中、
 R3aは、C-Cアルケニル基又はC-Cアルキル基であり、
 R3bは、独立して、C-Cアルキル基であり、
 Lは、C-Cアルキレン鎖であり、
 mは、5~400の数である)で示されるポリオルガノシロキサン基であり、
 Yは、ケイ素原子に結合した下記一般式(III):
Figure JPOXMLDOC01-appb-C000004
(式中、
 Qは、ケイ素原子とエステル結合との間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し、
 Qは、酸素原子と側鎖:SiR (OR3-rのケイ素原子との間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表す)で示される側鎖を有する有機ケイ素基であり、
 Rは、独立して、炭素数1~6の非置換又は置換のアルキル基を表し、
 tは、1、2、又は3であり、sは、0又は1であるが、但し、sが0の場合、tは1であり、Wは側鎖:SiR (OR3-rのケイ素原子に結合し、sが1の場合、tは1、2、又は3であり、Wは独立してYのケイ素原子に結合し、
 rは、0又は1である〕で示されるポリオルガノシロキサン;
(D)平均粒径が5μm以下のアルミナ;ならびに
(E)白金族金属化合物
を含み、ここで、(A)、(B)、及び(C)成分の合計100重量部に対して(D)成分が50~1000重量部である、硬化性ポリオルガノシロキサン組成物に関する。
 また、本発明は、上記の硬化性ポリオルガノシロキサン組成物を含む接着剤、及び光学素子を基板に当該接着剤で接着させた半導体・電子機器装置にも関する。
 さらに、本発明は、上記の硬化性ポリオルガノシロキサン組成物を硬化させて得られる硬化物、反射材である当該硬化物、及び当該反射材を備える半導体・電子機器装置にも関する。
 本発明によれば、広範な波長領域で良好な反射性を示す硬化性ポリオルガノシロキサン組成物の硬化物を提供することができる。本発明の硬化物は、紫色及び/又は紫外光領域、特に近紫外領域400nm以下(特に350~400nm)で高い反射率を有する。
実施例1及び比較例4~8の各波長領域での光の反射率を示す図である。 実施例1~8及び比較例1~3の各波長領域での光の反射率を示す図である。
(A)アルケニル基含有ポリオルガノシロキサン
 本発明のポリオルガノシロキサン組成物は、(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するアルケニル基含有ポリオルガノシロキサンを含む。このアルケニル基含有ポリオルガノシロキサンは、ベースポリマーとなる成分であり、直鎖状あるいは分岐状のポリオルガノシロキサンであり、さらに直鎖状ポリオルガノシロキサンと分岐状ポリオルガノシロキサンとからなるものが好ましい。
 ケイ素原子に結合したアルケニル基は、分岐状であっても、直鎖状であってもよく、ビニル、アリル、3-ブテニル、及び5-ヘキセニルなどのC-Cアルケニル基が例示される。合成が容易で、組成物の流動性や、硬化物の耐熱性を損ねないという点から、ビニル基が最も好ましい。
 ケイ素原子に結合したアルケニル基は1分子中に少なくとも2個存在する。このとき、アルケニル基は分子中の任意のシロキサン単位に存在し得るが、良好な反応性を得るために、アルケニル基の少なくとも一部は、分子末端に存在することが好ましい。
 上記のアルケニル基含有ポリオルガノシロキサンは、アルケニル基以外にも、ケイ素に結合した有機基を有していてもよい。そのような有機基としては、例えば、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基、あるいは非置換又は置換のアリール基が挙げられ、ここで、上記の脂肪族基又は脂環式基として、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシルなどのアルキル基;シクロヘキシルなどのシクロアルキル基;クロロメチル、2-シアノエチル、3,3,3-トリフルオロプロピルなどのハロゲン(例えば、クロロ又はフルオロ)又はシアノによって置換された1価の脂肪族基又は脂環式基が例示され、また上記のアリール基としてフェニル基が例示される。耐熱性を考慮すると、メチル基及びフェニル基が好ましい。
 上記の(A)成分として、(A1)式(I):
Figure JPOXMLDOC01-appb-C000005
(式中、
 Rは、独立して、R又はRであり、Rのうち、少なくとも2個はRであり、
 Rは、独立して、C-Cアルケニル基であり、
 Rは、独立して、C-Cアルキル基又はアリール基であり、
 nは、23℃での粘度を10~10,000cPとする数である)で示される直鎖状ポリオルガノシロキサンを使用してもよい。
 なお、本発明の(D)成分がより多量に配合できる点から、(A1)成分は低粘度、例えば、10~3,000cPであることが好ましい。なお、粘度は、JIS K6249 7.1項回転粘度による方法に準拠して測定した値である。
 また、上記の(A)成分として、上記(A1)成分と、
(A2)SiO4/2単位及びR'SiO1/2単位、ならびに場合によってはさらにR'SiO単位及び/又はR'SiO3/2単位(式中、R'は、それぞれ独立して、非置換又は置換の、1価の脂肪族基又は脂環式基である)からなり、1分子当たり、少なくとも3個のR'がアルケニル基である分岐状ポリオルガノシロキサンと
からなるものが好ましい。
 (A1)成分は、上記式(I)で示される直鎖状ポリオルガノシロキサンであり、単独で、あるいは上記(A2)成分とともに、ベースポリマーとなる成分である。
 上記式(I)において、RはC-Cアルケニル基であり、これは、分岐状であっても、直鎖状であってもよく、ビニル、アリル、3-ブテニル、及び5-ヘキセニルなどが例示される。合成が容易で、組成物の流動性や、硬化物の耐熱性を損ねないという点から、ビニル基が最も好ましい。
 Rは式(I)中に少なくとも2個存在する。このとき、Rは分子中の任意のシロキサン単位に存在し得るが、良好な反応性を得るために、Rの少なくとも一部は、分子末端に存在することが好ましく、それぞれの末端に1個ずつ、合計2個のRが存在することがより好ましい。
 前記式(I)において、RはC-Cアルキル基又はアリール基であり、ここで、上記C-Cアルキル基は、分岐状であっても、直鎖状であってもよく、メチル、エチル、及びプロピルなどが例示され、また上記アリール基としてフェニル基が例示される。合成及び取扱いが容易で、熱的性質及び機械的性質の優れた硬化物を与えるという点から、メチル基又はフェニル基が特に好ましい。
 前記式(I)において、nは、23℃における(A1)成分の粘度を10~10,000cPにする数である。粘度がこの範囲にあると、機械的物性と(A2)成分との併用において作業しやすい粘性を与えることができる。粘度は、好ましくは20~5,000cPであり、より好ましくは50~2,500cPであり、さらに好ましくは150~2,500cPである。なお、粘度は、JIS K6249 7.1項回転粘度による方法に準拠して測定した値である。
 (A2)成分は、分岐状ポリオルガノシロキサンであり、前記(A1)成分とともに、ベースポリマーとなる成分であって、特に硬化物に優れた機械的強度を与えることができる。
 (A2)成分は、SiO4/2単位及びR'SiO1/2単位、ならびに場合によってはさらにR'SiO単位及び/又はR'SiO3/2単位(式中、R'は、それぞれ独立して、非置換又は置換の、1価の脂肪族基又は脂環式基である)からなり、硬化反応において架橋点となるように、1分子当たり、少なくとも3個のR'がアルケニル基である。(A2)成分は、常温で固体ないし粘稠な半固体の樹脂状又は液状のものが好ましい。
 (A2)において、SiO4/2単位に対するR'SiO1/2単位のモル比(R'SiO1/2単位のモル数/SiO4/2単位のモル数)は、0.25~1.5が好ましい。モル比がこの範囲であると、硬化した硬化物に対して優れた機械的強度を与える。モル比は、好ましくは0.4~1.2であり、より好ましくは0.5~1.0である。
 R'がアルケニル基の場合、C-Cアルケニル基が挙げられる。これらは、分岐状であっても、直鎖状であってもよく、ビニル、アリル、3-ブテニル、5-ヘキセニルなどが例示される。合成が容易で、また硬化前の組成物の流動性や、硬化後の組成物の耐熱性を損ねないという点から、ビニル基が最も好ましい。
 アルケニル基は、R'SiO1/2単位のR'として存在することができる。アルケニル基は、場合によっては、R'SiO単位又はR'SiO3/2単位のR'として存在してもよいが、室温で速い硬化を得るためには、アルケニル基の少なくとも一部が、R'SiO1/2単位に存在することが好ましい。
 アルケニル基以外のR'としては、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基が挙げられ、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシルなどのアルキル基;シクロヘキシルなどのシクロアルキル基;クロロメチル、2-シアノエチル、3,3,3-トリフルオロプロピルなどのハロゲン(例えば、クロロ又はフルオロ)又はシアノによって置換された1価の脂肪族基又は脂環式基が例示される。耐熱性を考慮すると、メチル基が好ましい。
 本発明のポリオルガノシロキサン組成物において、(A1)に対する(A2)の重量比((A2)の重量/(A1)の重量)は、特に制限されないが、硬化物の硬度が高くなる点から、好ましくは1~5、より好ましくは1~4、特に好ましくは1.5~2.5である。
 本発明のポリオルガノシロキサン組成物において、(A1)及び(A2)の合計量に占める、SiO4/2単位及び場合により存在するR'SiO3/2単位の重量割合は、特に制限されないが、硬化物に優れた機械的強度を与える点から、好ましくは20~70重量%である。
(B)ポリオルガノハイドロジェンシロキサン
 本発明の硬化性ポリオルガノシロキサン組成物は、(B)ケイ素原子に結合した水素原子を1分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサンを含む。
 (B)は、その分子中のヒドロシリル基が、(A)中のアルケニル基と付加反応することにより、(A)の架橋剤として機能する。そのような、(B)は、硬化物を網状化するために、付加反応に関与するヒドロシリル基を、1分子中に2個を越える数、好ましくは3個以上有する。
 (B)成分は、代表的には、一般式(IV):
   (RSiO(4-c-d)/2     (IV)
(式中、
 Rは、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基を表し;
 cは、0~2の整数であり;
 dは、1又は2であり、ただし、c+dは1~3の整数である)
で示される単位を、同一又は異なってもよく、1分子中に2個を越える数、好ましくは3個以上有する。
 R及び(B)の他のシロキサン単位のケイ素原子に結合した有機基としては、上記(A2)における、アルケニル基以外のR'と同様のものが例示され、それらの中でも、合成が容易な点から、メチル基が最も好ましい。また、合成が容易な点から、dは1が好ましい。
 (B)におけるシロキサン骨格は、直鎖状、分岐状又は環状のいずれであってもよい。また、これらの混合物を用いてもよい。
 (B)の重合度は特に限定されないが、同一のケイ素原子に2個以上の水素原子が結合したポリオルガノハイドロジェンシロキサンは合成が困難なので、3個以上のシロキサン単位からなることが好ましく、硬化温度に加熱しても揮発せず、かつ流動性に優れて(A)と混合しやすい点から、シロキサン単位の数は、6~200個がさらに好ましく、10~150個が特に好ましい。
 (B)として、好ましくは、式(IV’):
Figure JPOXMLDOC01-appb-C000006
(式中、R5aは、独立して、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基であり、R5bは、独立して、水素原子であるか、あるいは非置換又は置換の、1価の脂肪族基又は脂環式基であり、pは2~100の数であり、好ましくは、3~50の数であり、qは0~100の数であり、好ましくは、3~50の数である)で示されるポリオルガノハイドロジェンシロキサンを使用することができる。
 R5a及びR5bについての、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシルなどのアルキル基;シクロヘキシルなどのシクロアルキル基;クロロメチル、2-シアノエチル、3,3,3-トリフルオロプロピルなどのハロゲン(例えば、クロロ又はフルオロ)又はシアノによって置換された1価の脂肪族基又は脂環式基が例示される。耐熱性を考慮すると、メチル基が好ましい。
 (B)の配合量は、優れた機械的性質を有する硬化物が得られる点から、(A)中のケイ素原子に結合したアルケニル基の個数Viに対する(B)中のケイ素原子に結合した水素原子の個数Hの比(H/Vi)が、0.3~5となる量が好ましい。H/Viがこの範囲であると、硬化物の機械的強度及び耐熱性が十分で、また、硬化の際の発泡も抑制できる。H/Viは、より好ましくは、0.5~5であり、さらに好ましくは0.7~2である。
(C)有機ケイ素基含有ポリオルガノシロキサン
 本発明のポリオルガノシロキサン組成物は、
(C)式(II):
   W-Y-SiR (OR3-r    (II)
〔式中、Wは、独立して、下記一般式(II’):
Figure JPOXMLDOC01-appb-C000007
(式中、
 R3aは、C-Cアルケニル基又はC-Cアルキル基であり、
 R3bは、独立して、C-Cアルキル基であり、
 Lは、C-Cアルキレン鎖であり、
 mは、5~400の数である)で示されるポリオルガノシロキサン基であり、
 Yは、ケイ素原子に結合した下記一般式(III):
(式中、
 Qは、ケイ素原子とエステル結合との間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し、
 Qは、酸素原子と側鎖:SiR (OR3-rのケイ素原子との間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表す)で示される側鎖を有する有機ケイ素基であり、
 Rは、独立して、炭素数1~6の非置換又は置換のアルキル基を表し、
 tは、1、2、又は3であり、sは、0又は1であるが、但し、sが0の場合、tは1であり、Wは側鎖:SiR (OR3-rのケイ素原子に結合し、sが1の場合、tは1、2、又は3であり、Wは独立してYのケイ素原子に結合し、
 rは、0又は1である〕で示されるポリオルガノシロキサンを含む。
 上記式(II’)において、R3aについてのC-Cアルケニル基は、分岐状であっても、直鎖状であってもよく、ビニル、アリル、3-ブテニル、5-ヘキセニルなどが例示される。フィラー表面処理への特性により、式(II)のポリオルガノシロキサンの末端にあるR3aはC-Cアルケニル基、特にビニル基であることが好ましい。
 前記式(II’)において、R3a及びR3bについてのC-Cアルキル基は、分岐状であっても、直鎖状であってもよく、メチル、エチル、プロピルなどが例示される。合成及び取扱いが容易で、熱的性質及び機械的性質の優れた硬化物を与えるという点から、メチル基が特に好ましい。
 前記式(II’)において、LについてのC-Cアルキレン鎖は、分岐状であっても、直鎖状であってもよく、エチレン鎖、プロピレン鎖などが例示される。上記式(II)のポリオルガノシロキサンが、ケイ素に結合した水素原子とケイ素に結合した不飽和基との付加反応によって工業的に容易に合成できる点から、LについてのC-Cアルキレン鎖はエチレン鎖が好ましい。
 前記式(II’)において、mは、5~400の数、好ましくは10~250の数、より好ましくは20~200の数である。mがこれらの範囲にあると、後記式(IIa)の直鎖状ポリオルガノシロキサンは、23℃における粘度が、5~1,000cP、好ましくは10~500cP、より好ましくは20~300cPの範囲となって、機械的物性と作業しやすい粘性が得られる。なお、粘度は、JIS K6249 7.1項回転粘度による方法に準拠して測定した値である。
 前記式(II)において、Yについての有機ケイ素基として、例えば、ケイ素原子に結合した前記式(III)で示される側鎖を有する、ケイ素原子数2~50個、好ましくは4~20個のオルガノシロキサンオリゴマー残基などが例示される。
 上記の有機ケイ素基において、ケイ素原子には任意の有機基が結合し得る。このような有機基として、例えば、脂肪族不飽和炭素-炭素結合を含まない、非置換又は置換の、1価の脂肪族基又は脂環式基が挙げられ、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシルなどのアルキル基;シクロヘキシルなどのシクロアルキル基;クロロメチル、2-シアノエチル、3,3,3-トリフルオロプロピルなどのハロゲン(例えば、クロロ又はフルオロ)又はシアノによって置換された1価の脂肪族基又は脂環式基が例示される。
 また、このような有機ケイ素基は、ケイ素原子に結合したアルコキシ基及び/又はアルケニルオキシ基を有し、かつ、Si-H基、アルケニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、エステル基、無水カルボキシ基、アミノ基及びアミド基から選ばれる少なくとも1個の反応性官能基を有することが好ましい。これらは1種単独又は2種以上を有してもよい。
 前記一般式(III)で示される側鎖において、Qとしては、エチレン、トリメチレン、2-メチルエチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易な点から、エチレン基及び2-メチルエチレン基が好ましい。Qとしては、トリメチレン、2-メチルトリメチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易な点から、トリメチレン基が好ましい。
 このような有機ケイ素基として、下記の基が例示される。
Figure JPOXMLDOC01-appb-C000009
(上記式中、*はWとの結合部位を示し、#は側鎖:SiR (OR3-rのケイ素原子との結合部位を示す)。
 前記式(II)において、tは、1、2、又は3であり、合成し易さから、1又は2が好ましい。また、前記式(II)において、sは、0又は1であり、工業的な合成のし易さから、1が好ましい。
 但し、sが0の場合、tは1である。その場合、式(II)には、Wは1個存在するが、Yは存在せず、Wは側鎖:SiR (OR3-rのケイ素原子に直接結合する。sが1の場合、tは1、2、又は3である。その場合、式(II)には、Wは1、2、又は3個存在し、Yは1個存在し、Wは独立してYのケイ素原子に結合する。ここで、Wが独立してYのケイ素原子に結合するというのは、複数個のWがそれぞれ別々に直接Yのケイ素原子に結合することを意味する。すなわち、前記式(II)は以下の構造を取り得る:
Figure JPOXMLDOC01-appb-C000010
(上記式中、W、Y、R、及びrは、前記式(II)において定義されたとおりである)。
 Wが前記式(II)に2又は3個存在する場合、各々のWは、互いに同一であっても異なっていてもよいが、好ましくは同一であり、また、各々のWは、Yの同一又は異なるケイ素原子に結合してもよいが、好ましくは異なるケイ素原子に結合する。
 前記式(II)において、Rとしては、メチル、エチル、プロピル、イソプロピル、ブチルなどのアルキル基;及び2-メトキシエチルなどのアルコキシで置換されたアルキル基が例示され、D成分との良好な反応性を与え組成物の粘度を低減させる点から、メチル基及びエチル基が好ましく、メチル基が特に好ましい。なお、Rは、前記式(II)に複数個存在する場合は、互いに同一であっても異なっていてもよい。
 また、前記式(II)において、rは0又は1である。フィラーの表面処理を行う場合、-ORを3個有する方が、反応性が高く、表面処理の効果が高い、すなわち少量の添加で、粘度低減効果が大きいため、rは0が好ましい。
 前記式(II)で示される有機ケイ素基含有ポリオルガノシロキサンは、例えば、下式(IIa):
Figure JPOXMLDOC01-appb-C000011
(式中、R3a、R3b、及びmは前記式(II)で定義されたとおりであり、R3cはC-Cアルケニル基である)で示される直鎖状ポリオルガノシロキサンに、
下式(IIb):
 Y’-SiR (OR3-r    (IIb)
〔式中、Y’は、水素原子であるか、又はYについて前記定義された有機ケイ素基(但し、1~3個のSi-H基を有する)であり;R及びrは前記式(II)で定義されたとおりである〕で示される有機ケイ素化合物を、例えば、白金触媒を用いて付加させることにより、得ることができる。
 式(IIa)の直鎖状ポリオルガノシロキサンが工業的に容易に合成できる点から、R3aはC-Cアルケニル基、特にビニル基が好ましい。同様の理由で、R3cもビニル基が好ましい。
 本発明において、前記(C)成分は、アルミナによる組成物の増粘を抑制することができる。前記(C)成分の配合量は、通常、アルミナの比表面積により変えることができるが、アルミナの配合による組成物の増粘を抑えることができる限り、特に制限されず、例えば、アルミナに対して、組成物の増粘が抑えられる点から、0.1重量%以上、好ましくは1重量%以上であり、得られる硬化物の機械的強度の低下が防げる点から、20重量%以下、好ましくは10重量%以下である。
(D)平均粒径が5μm以下のアルミナ
 本発明の硬化性ポリオルガノシロキサン組成物は、(D)平均粒径が5μm以下のアルミナを含む。(D)の平均粒径は、近紫外領域で良好な反射性を示す硬化物を提供するために、5μm以下であることが必要であり、特に0.1~3μm、とりわけ0.1~1μmが好ましい。
 なお、本発明において平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めた値である。
 本発明において、(D)の形状は特に制限されず、不定形であっても球状であってもよいが、近紫外領域で良好な反射性を示す硬化物を提供する点から、球状が好ましい。
 本発明の組成物は、前記(C)成分を含むことによりアルミナの配合による増粘が抑えられるので、(D)のアルミナは多量に配合され得る。そのため、本発明の組成物は酸化マグネシウムを含まなくとも、その硬化物は近紫外領域(350~400nm)で良好な反射性を示すことができる。本発明は、酸化マグネシウムを実質的に含まない硬化性ポリオルガノシロキサン組成物にも関する。
 本発明の組成物は、前記(A)、(B)、及び(C)成分の合計100重量部に対して、上記(D)成分を50~1000重量部含む。(D)成分の含有量がこの範囲であると、近紫外領域で良好な反射性を示せる硬化物を提供できる。(D)成分の含有量は、(A)、(B)、及び(C)成分の合計100重量部に対して、好ましくは75~750重量部、より好ましくは100~500重量部である。
(E)白金族金属化合物
 本発明のポリオルガノシロキサン組成物は、(E)白金族金属化合物を含む。(E)成分は、(A)中のケイ素原子に結合したアルケニル基と(B)中のヒドロシリル基との間の付加反応を促進させるための触媒として機能する。白金族金属化合物としては、白金、ロジウム、パラジウムなどの白金族金属原子の化合物が用いられ、塩化白金酸、塩化白金酸とアルコールの反応生成物、白金-オレフィン錯体、白金-ビニルシロキサン錯体、白金-ケトン錯体、白金-ホスフィン錯体などの白金化合物;ロジウム-ホスフィン錯体、ロジウム-スルフィド錯体などのロジウム化合物;パラジウム-ホスフィン錯体などのパラジウム化合物などが例示される。
 これらのうち、触媒活性が良好な点から、塩化白金酸とアルコールの反応生成物、例えば、ラモローの触媒(白金-オクタノール錯体、米国特許第473377号明細書)、及び白金-ビニルシロキサン錯体が好ましく、短時間に硬化して接着性を発現する必要がある場合には、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体及び白金-1,3,5,7-テトラビニル-1,3,5,7-テトラメチルシクロテトラシロキサンが好ましい。しかし、必要な硬化速度は、硬化物を設ける部位の形状や、それに伴って必要な作業時間によっても異なるので、(E)成分と硬化抑制剤との組み合わせで、任意に選択することができる。
 (E)の配合量は、優れた硬化速度が得られる点から、(A)成分と(B)成分の合計量に対して、白金族金属原子換算で通常0.1~1,000重量ppmであり、好ましくは0.5~100重量ppmである。0.1重量ppm以上では硬化速度が速くなり、1,000重量ppmを以下では、それに見合う硬化速度の上昇が得られる。
 本発明の硬化性ポリオルガノシロキサン組成物には、必要に応じて、(E)成分の触媒能を阻害しない範囲で、接着性付与剤を配合することができる。接着性付与剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピル(メチル)ジメトキシシランなどの3-グリシドキシプロピル基含有アルコキシシラン類;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシランなどの2-(3,4-エポキシシクロヘキシル)エチル基含有アルコキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、メチルビニルジメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、メチルアリルジメトキシシランなどのアルケニルアルコキシシラン類;3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピル(メチル)ジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピル(メチル)ジメトキシシランなどの(メタ)アクリロキシプロピルアルコキシシラン類;ケイ素原子に結合した水素原子と、ケイ素原子に結合した下記一般式(V):
Figure JPOXMLDOC01-appb-C000012
(式中、Qは、ケイ素原子とエステル結合の間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;Qは、酸素原子と側鎖のケイ素原子の間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;Rは、炭素数1~6の非置換又は置換のアルキル基を表す)で示される側鎖とを有する有機ケイ素化合物;アルミニウムトリエトキシド、アルミニウムトリプロポキシド、アルミニウムトリブトキシドなどのアルミニウムアルコキシド;チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトライソプロペニルオキシドなどのチタンアルコキシド;ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシドなどのジルコニウムアルコキシド;マレイン酸ジアリル、トリアリルイソシアナートなどの極性基含有有機化合物などが例示される。
 上記一般式(V)で示される側鎖において、Qとしては、エチレン、トリメチレン、2-メチルエチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易なことから、エチレン基及び2-メチルエチレン基が好ましい。Qとしては、トリメチレン、2-メチルトリメチレン、テトラメチレンなどのアルキレン基が例示され、合成及び取扱いが容易なことから、トリメチレン基が好ましい。Rとしては、メチル、エチル、プロピル、イソプロピル、ブチルなどのアルキル基;及び2-メトキシエチルなどのアルコキシで置換されたアルキル基が例示され、良好な接着性を与え、かつ加水分解によって生じるアルコールが揮発しやすいことから、メチル基及びエチル基が好ましく、メチル基が特に好ましい。このような側鎖を有する有機ケイ素化合物として、式(VI):
Figure JPOXMLDOC01-appb-C000013
で示される環状シロキサン化合物が例示される。
 接着性付与剤の配合量は、接着性付与剤の種類及び基材によっても異なるが、(A)成分100重量部に対して通常0.01~20重量部の範囲であり、特に接着性の観点から0.1~10重量部が好ましく、0.5~5重量部がさらに好ましい。
 本発明の硬化性ポリオルガノシロキサン組成物の保存性や作業性を改善するために、本発明の目的を損なわない限り、硬化抑制剤を配合することができる。上記マレイン酸ジアリルは、接着性付与剤としてだけでなく、硬化抑制剤としても有効である。そのほか、硬化抑制剤としては、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニル-1-シクロヘキサン-1-オールなどのアセチレンアルコール類が例示される。硬化抑制剤の配合量は、所望の硬化性によって、任意の量を選択することができる。
 本発明の硬化性ポリオルガノシロキサン組成物は、硬化して、光学素子の接着剤及び/又は反射材に適した硬化物を形成するが、当該組成物に硬化前の段階で適度の流動性を与え、得られる硬化物に、その用途に応じて要求される高い機械的強度を付与するなどの目的で、本発明の目的を損なわない限り、前記(D)成分以外にも無機質充填剤を添加することができる。無機質充填剤としては、平均粒径0.1μm未満、比表面積30mm/g以上の補強性充填剤;及び平均粒径0.1~50μmの非補強性充填剤などが挙げられる。補強性充填剤としては、煙霧質シリカ、アークシリカなどの乾式法シリカ;及び沈殿シリカなどの湿式法シリカなどが例示され、これらはそのまま用いてもよく、ヘキサメチルジシラザンなどの疎水化剤で表面処理を行って用いてもよい。非補強性充填剤としては、けいそう土、粉砕石英、溶融石英、酸化チタン、酸化アルミニウム、酸化亜鉛、アルミノケイ酸、炭酸カルシウム、有機酸表面処理炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ケイ酸カルシウム、タルク、酸化第二鉄などが例示され、押出し作業性と、得られる硬化物に必要な物性に応じて選択される。また、目的に応じてカーボンブラックなどの導電性充填剤を配合してもよい。
 無機充填剤の配合量は、(A)成分100重量部に対して0~500重量部とすることができ、特に硬化物の耐久性や機械的強度、作業性(粘度)の点から0~200重量部が好ましい。
 さらに、本発明の硬化性ポリオルガノシロキサン組成物に、本発明の目的を損なわないかぎり、目的に応じて、顔料、チクソトロピー性付与剤、押出し作業性を改良するための粘度調整剤、紫外線防止剤、防かび剤、耐熱性向上剤、難燃化剤、鎖長延長剤など、各種の添加剤を加えてもよい。鎖長延長剤としては、各末端にケイ素原子に結合した水素原子を1個ずつ有する直鎖状のハイドロジェンポリオルガノシロキサン(例えば、両末端がM単位:(CHHSiO1/2-で封鎖され、中間単位がD単位:-(CHSiO-で構成される直鎖状ポリメチルシロキサン)が挙げられる。また、場合によっては、ヘキサン、ペンタン等の脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素等の有機溶媒に溶解ないし分散させた形態としもよい。
 本発明の硬化性ポリオルガノシロキサン組成物は、(A)~(E)成分、及びさらに必要に応じて配合される他の成分を、万能混練機、ニーダーなどの混合手段によって均一に混練して調製することができる。なお、(A)成分として、(A1)成分と(A2)成分とからなるものを使用する場合、(A2)成分のうち固体又は粘度の極度に高いものは、取扱いを容易にするために、共加水分解をトルエン、キシレンなどの有機溶媒の存在下に行い、以後の工程を有機溶媒溶液として進め、場合により(A1)成分と混合した後、減圧加熱により溶媒を留去して、(A)成分を形成させてもよい。
 また、安定に長期間貯蔵するために、(B)成分と(E)成分が別個の予備配合物に含まれるように、適宜、2個の予備配合物を調製して保存しておき、使用直前に定量混合器のミキシングヘッドのような混合手段によって均一に混合して硬化性ポリオルガノシロキサン組成物を調製し、減圧で脱泡して使用に供してもよい。
 本発明の硬化性ポリオルガノシロキサン組成物を硬化させる方法は特に限定されず、例えば、当該組成物を、使用すべき部位に注入、滴下、流延、注型、容器からの押出しなどの方法により、又はトランスファー成形や射出成形による一体成形によって、光学素子のような対象物と組み合わせ、室温で放置又は加熱して硬化させることにより、硬化物を得てもよい。また、当該組成物で光学素子を支持部材に接着した後、室温で放置する方法、又は100~200℃で30~300分程度加熱する方法なども挙げられる。
 200℃以下、好ましくは150℃程度、硬化後の特性を安定化させるために硬化時間を適宜調整することができ、好ましくは5時間以下、より好ましくは3時間以下である。もっとも、部材の大きさや加熱炉の能力によって、硬化条件は適宜調整することができる。
 本発明の硬化性ポリオルガノシロキサン組成物の硬化物は、反射性、特に紫色及び/又は紫外光領域、とりわけ近紫外領域400nm以下(特に、350~400nm)の光に対する反射性に優れており、例えば、厚さ500μmの硬化物において、波長350~400nmの光に対する反射率は、通常85%以上、好ましくは90%以上、より好ましくは92%以上である。本発明の硬化物は、光学素子から照射される光を高い反射率で反射させることで、光を外部に効率よく取り出させる機能を有する。
 本発明の光学素子とは、光半導体素子、例えば、発光ダイオード(LED)やレーザーダイオード(LD)、フォトダイオード(PD)などの半導体発光素子及び半導体受光素子など、ならびにキセノン管などの発光デバイスなどの総称として扱う。
 以下、実施例及び比較例によって、本発明をさらに詳細に説明する。これらの例において、部は重量部を示し、粘度は23℃における粘度を示す。本発明は、これらの実施例によって限定されるものではない。
 以下、シロキサン単位を、次のような記号で示す。
 M単位: (CHSiO1/2
 M単位: (CHHSiO1/2
 M単位: (CH(CH=CH)SiO1/2
 D単位: -(CHSiO-
 D単位: -(CH)HSiO-
 DPh2単位: -(Ph)SiO- (式中、Phはフェニル基を表す)
 Q単位: SiO4/2(4官能性)
 実施例及び比較例において、(A)、(B)、及び(C)成分として、下記のポリオルガノシロキサンを用いた。なお、単位式において、中間シロキサン単位は単に単位数を示すものであり、複数の種類の中間シロキサン単位を含む場合、中間シロキサン単位はランダムに配列されている。
 (A)成分として、以下のA1-1~A1-4及びA2-1を用いた。
A1-1:両末端がM単位で封鎖され、中間単位がD単位からなり、23℃における粘度が250cPである直鎖状ポリメチルビニルシロキサン;
A1-2:両末端がM単位で封鎖され、中間単位がD単位からなり、23℃における粘度が3,000cPである直鎖状ポリメチルビニルシロキサン;
A1-3:両末端がM単位で封鎖され、中間単位がD単位からなり、23℃における粘度が50cPである直鎖状ポリメチルビニルシロキサン;
A1-4:両末端がM単位で封鎖され、中間単位が5モル%のDPh2単位と残余のD単位からなり、23℃における粘度が1,000cPである直鎖状ポリメチルビニルシロキサン;
A2-1:M単位、M単位、及びQ単位からなり、モル単位比がMで示される分岐状ポリメチルビニルシロキサン。
 (B)成分として、以下のB-1~B-3を用いた。
B-1:両末端がM単位で封鎖され、中間単位が50モル%のD単位と残余のD単位からなり、MD 2020Mで示される直鎖状ポリメチルハイドロジェンシロキサン;
B-2:両末端がM単位で封鎖され、中間単位がD単位からなり、MD 50Mで示される直鎖状ポリメチルハイドロジェンシロキサン;
B-3:M単位とQ単位からなる平均組成式M で示される分岐状ポリメチルハイドロジェンシロキサン。
 (C)成分としてC-1~C-4を用いた。
 C-1は、C1-1に、白金触媒としてE-1(C1-1に対して白金5ppm)を用いて、100℃において、C2-1を付加させて得た。この反応において、C1-1のケイ素原子に結合したビニル基の個数に対するC2-1中のケイ素原子に結合した水素原子の個数の比は0.1である。
 C-2は、C1-1の代わりにC1-2を使用した以外は、C-1と同様にして得た。
 C-3は、C1-1の代わりにC1-2を、またC2-1の代わりにC2-2を使用した以外は、C-1と同様にして得た。
 C-4は、C1-1の代わりにC1-3を、またC2-1の代わりにH-Si(OEt)を使用した以外は、C-1と同様にして得た。
 なお、C1-1~C1-3、C2-1、及びC2-2は以下に示す。E-1は後記する。
C1-1:両末端がM単位で封鎖され、中間単位が90個のD単位からなる直鎖状ポリメチルビニルシロキサン;
C1-2:両末端のうち、一方の末端がM単位で封鎖され、残りの一方の末端がM単位で封鎖され、中間単位が50個のD単位からなる直鎖状ポリメチルビニルシロキサン;
C1-3:両末端がM単位で封鎖され、中間単位が200個のD単位からなる直鎖状ポリメチルビニルシロキサン;
C2-1:以下の式(VI):
Figure JPOXMLDOC01-appb-C000014
の化合物。
C2-2:以下の式(VI’):
Figure JPOXMLDOC01-appb-C000015
 実施例及び比較例に、(D)成分として、下記の白色顔料を用いた。
 D-1:平均粒径0.4μm、球状のアルミナ(商品名スミコランダムAA-04、製造元 住友化学(株))
 D-2:平均粒径1.5μm、球状のアルミナ(商品名スミコランダムAA-1.5、製造元 住友化学(株))
 D-3:平均粒径3μm、球状のアルミナ(商品名スミコランダムAA-3、製造元 住友化学(株))
 D-4:平均粒径18μm、球状のアルミナ(商品名スミコランダムAA-18、製造元 住友化学(株))
 D-5:平均粒径0.55μm、不定形のアルミナ(商品名アルミナAL-160SG-4、製造元 昭和電工(株))
 D-6:平均粒径2μm、不定形のアルミナ(商品名アルミナAL-30、製造元 昭和電工(株))
 D-7:不定形のアルミナ(商品名アルミナAS-40、製造元 昭和電工(株))
 D-8:平均粒径0.15μmの酸化チタン(商品名タイペークA-100、製造元 石原産業(株))
 D-9:平均粒径1μmの酸化亜鉛(商品名アエンカ1号、製造元 三井金属鉱業(株))
 D-10:平均粒径2μmのチタン酸バリウム(商品名BT-UP2、製造元 堺化学工業(株))
 D-11:平均粒径1.7μmの炭酸カルシウム(商品名NS-400、製造元 日東粉化工業(株))
 D-12:平均粒径4μmの二酸化ケイ素(商品名クリスタライトVX-S、製造元 (株)龍森)
 D-13:平均粒径4.6μm、不定形のアルミナ(商品名アルミナAL-43KT、製造元 昭和電工(株))
 実施例及び比較例に、(E)成分(触媒)として、下記の白金族金属化合物を用いた。
 E-1:ラモローの触媒(白金-オクタノール錯体、米国特許第473377号明細書)(白金原子換算3.8重量%)。
 E-2:白金-1,3,5,7-テトラビニル-1,3,5,7-テトラメチルシクロテトラシロキサン(白金原子換算1.8重量%)。
 実施例及び比較例に、(F)成分(硬化抑制剤)として、以下を用いた。
 F-1:1-エチニル-1-シクロヘキサノール
 実施例及び比較例に、(G)成分(接着性付与剤)として、以下を用いた。
 G-1:1,3,5-トリアリルイソシアヌレート
 G-2:前記B-1に3-メタクリロキシプロピルトリメトキシシランを1:3のモル比で付加させたもの
 G-3:3-グリシドキシプロピルトリメトキシシランの部分加水分解産物(商品名Coatsil MP-200、製造元 自社製)
実施例1~17及び比較例1~8
 表1に示す組成で、ポリオルガノシロキサン組成物を下記の方法により調製した。
 撹拌機、加熱装置及び減圧装置を備えた容器に、(A)成分のトルエン溶液を入れ、均一になるように混合した後、150℃、13kPa{1torr}でトルエンを留去して、ポリシロキサン溶液を調製した。これを万能混練機に移し、(C)成分及び(D)成分を添加して、150℃、3時間減圧下で混練し、40℃以下まで冷却して、(E)成分、F-1及びG-1を混合した。次に、(B)成分、G-2、及びG-3を添加して、10分間減圧混練することにより、脱泡を行って、ポリオルガノシロキサン組成物を調製した。なお、実施例11では、成分添加後に、さらにイソパラフィン系溶剤(商品名IPソルベント1620、製造元 出光興産株式会社)を10重量部添加してから、10分間の減圧混練を行った。
 上記調製されたポリオルガノシロキサン組成物を、厚さ250μm又は500μmのシート状に注型し、150℃のオーブン中で1時間加熱して硬化させて、硬化物を得た。この硬化物を以下の試験で評価した。
[外観]
 目視で判断した。
[反射率]
 分光光度計〔UV3600(積分球付属装置ISR-3100)、島津製作所社製〕を用いて、300~800nmの波長領域を連続スキャンして、硫酸バリウムを標準物質として、表面の反射率を測定した。
[硬さ]
 前記調製されたポリオルガノシロキサン組成物を、テフロン(登録商標)コートした30mm(縦)×60mm(横)×6mm(深さ)の金属容器(アルミ)に流し込み、同様にテフロン(登録商標)コートした金属製のふたをして、150℃で1時間、熱風循環式乾燥機中で、硬化させた。次いで、室温まで冷却後、金型から硬化物を取り外し、その硬さ(TypeD)を測定した(JIS K6253に準拠)。
[引張せん断接着強さ及び凝集破壊率]
 前記調製されたポリオルガノシロキサン組成物から、JIS K6249に準拠した試験片を作成(被着体はアルミニウム、接着層の厚さは1.0mm)し、次いで、それを150℃で1時間、上記の乾燥機中で硬化させた。得られた硬化物を室温まで冷却した後、引張速度10mm/分で、引張せん断接着強さを測定した。
 また、このときの試験片の状態を確認して、下記の基準で凝集破壊したものと剥離したものを評価して、両者の割合から凝集破壊率を算出した。
  凝集破壊:シリコーン樹脂が破壊された状態。
  剥  離:シリコーン樹脂が被着体表面に残っていない状態。
 上記の試験結果を表1及び2ならびに図1及び2に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表1及び2ならびに図1及び2から、白色顔料の種類、ならびにアルミナの配合量、平均粒径、及び形状によって、各波長における反射率が異なることが認められた。例えば、平均粒径が18μmのアルミナや石英(二酸化ケイ素)や炭酸カルシウムでは、近紫外領域での光吸収は認められなかったものの、300~800nmの波長領域全体で反射率は低かった。また、隠蔽率の高い酸化チタンや酸化亜鉛では、可視光領域の反射率は高いが、近紫外領域では、ほとんど光を吸収してしまい反射は認められなかった。一方で、平均粒径が5μm以下であるアルミナを一定量以上分散させた実施例では、350~400nm領域で、85%以上の反射率を保持できることが示された。また、当該アルミナは不定形より丸味状や球状の方が、反射率が高い傾向があることも認められた。
 本発明の硬化性ポリオルガノシロキサン組成物は、硬化して、広い波長領域の光に対して良好な反射性を示す硬化物、特に紫色及び/又は紫外光領域、とりわけ近紫外領域(350~400nm)の光に対して良好な反射性を示す硬化物を与えることができ、かかる硬化物は反射材として有用である。また、本発明の組成物は接着性にも優れていて、光学素子用の接着剤として有用である。

Claims (13)

  1. (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有するアルケニル基含有ポリオルガノシロキサン;
    (B)ケイ素原子に結合した水素原子を1分子中に2個を越える数で有するポリオルガノハイドロジェンシロキサン;
    (C)式(II):
       W-Y-SiR (OR3-r    (II)
    〔式中、Wは、独立して、下記一般式(II’):
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     R3aは、C-Cアルケニル基又はC-Cアルキル基であり、
     R3bは、独立して、C-Cアルキル基であり、
     Lは、C-Cアルキレン鎖であり、
     mは、5~400の数である)で示されるポリオルガノシロキサン基であり、
     Yは、ケイ素原子に結合した下記一般式(III):
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Qは、ケイ素原子とエステル結合との間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し、
     Qは、酸素原子と側鎖:SiR (OR3-rのケイ素原子との間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表す)で示される側鎖とを有する有機ケイ素基であり、
     Rは、独立して、炭素数1~6の非置換又は置換のアルキル基を表し、
     tは、1、2、又は3であり、sは、0又は1であるが、但し、sが0の場合、tは1であり、Wは側鎖:SiR (OR3-rのケイ素原子に結合し、sが1の場合、tは1、2、又は3であり、Wは独立してYのケイ素原子に結合し、
     rは、0又は1である〕で示されるポリオルガノシロキサン;
    (D)平均粒径が5μm以下のアルミナ;ならびに
    (E)白金族金属化合物
    を含み、ここで、(A)、(B)、及び(C)成分の合計100重量部に対して(D)成分が50~1000重量部である、硬化性ポリオルガノシロキサン組成物。
  2.  (C)において、R3aが、ビニル、アリル、3-ブテニル、及び5-ヘキセニルからなる群より選択されるC-Cアルケニル基であり;R3bが、独立して、メチル、エチル、及びプロピルからなる群より選択されるC-Cアルキル基である、請求項1記載の硬化性ポリオルガノシロキサン組成物。
  3.  (C)において、R3aがビニルであり、R3bがメチルである、請求項1又は2記載の硬化性ポリオルガノシロキサン組成物。
  4.  (C)において、sが1であり;Yが、ケイ素原子に結合した前記式(III)で示される側鎖を有する、ケイ素原子数2~50個のオルガノシロキサンオリゴマー残基であり;Qが、エチレン、トリメチレン、2-メチルエチレン、又はテトラメチレンを表し;Qが、トリメチレン、2-メチルトリメチレン、又はテトラメチレンを表し;Rが、独立して、メチル、エチル、プロピル、イソプロピル、ブチル、又は2-メトキシエチルを表す、請求項1~3のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  5.  (C)において、sが1であり;Yが、ケイ素原子に結合した前記式(III)で示される側鎖を有する、ケイ素原子数4~20個のオルガノシロキサンオリゴマー残基であり;Qがエチレン又は2-メチルエチレンを表し、Qがトリメチレンを表し;Rが独立してメチル又はエチルを表す、請求項1~4のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  6.  (A)、(B)、及び(C)の合計100重量部に対して、(D)が75~750重量部である、請求項1~5のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  7.  (D)の平均粒径が0.1~3μmである、請求項1~6のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  8.  (D)の形状が球状である、請求項1~7のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  9.  請求項1~8のいずれか1項記載の硬化性ポリオルガノシロキサン組成物を含む接着剤。
  10.  光学素子を基板に請求項9記載の接着剤で接着させた半導体・電子機器装置。
  11.  請求項1~8のいずれか1項記載の硬化性ポリオルガノシロキサン組成物を硬化させて得られる硬化物。
  12.  反射材である、請求項11記載の硬化物。
  13.  請求項12記載の反射材を備える、半導体・電子機器装置。
PCT/JP2013/084635 2012-12-26 2013-12-25 硬化性ポリオルガノシロキサン組成物 WO2014104080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13868425.3A EP2940077A1 (en) 2012-12-26 2013-12-25 Curable polyorganosiloxane composition
KR1020157019559A KR20150099581A (ko) 2012-12-26 2013-12-25 경화성 폴리오르가노실록산 조성물
US14/653,039 US20150337189A1 (en) 2012-12-26 2013-12-25 Curable polyorganosiloxane composition
CN201380067804.7A CN104870568A (zh) 2012-12-26 2013-12-25 固化性聚有机硅氧烷组合物
JP2014502912A JP5617054B1 (ja) 2012-12-26 2013-12-25 硬化性ポリオルガノシロキサン組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-283342 2012-12-26
JP2012283342 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014104080A1 true WO2014104080A1 (ja) 2014-07-03

Family

ID=51021158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084635 WO2014104080A1 (ja) 2012-12-26 2013-12-25 硬化性ポリオルガノシロキサン組成物

Country Status (7)

Country Link
US (1) US20150337189A1 (ja)
EP (1) EP2940077A1 (ja)
JP (1) JP5617054B1 (ja)
KR (1) KR20150099581A (ja)
CN (1) CN104870568A (ja)
TW (1) TW201431963A (ja)
WO (1) WO2014104080A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061783A1 (en) * 2015-02-26 2016-08-31 Shin-Etsu Chemical Co., Ltd. Addition-curable silicone resin composition and die attach material for optical semiconductor device
US20160369150A1 (en) * 2014-03-06 2016-12-22 Henkel Ag & Co. Kgaa Single crystal alumina filled die attach paste
JP2017203094A (ja) * 2016-05-11 2017-11-16 日本特殊陶業株式会社 半硬化接着剤の製造方法、複合体の製造方法、樹脂接着剤、複合体、および、静電チャック
WO2017217510A1 (ja) * 2016-06-15 2017-12-21 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物及びその使用
JP2018505560A (ja) * 2014-10-27 2018-02-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 光学半導体デバイスの製造方法およびそのためのシリコーン樹脂組成物
JP2019522686A (ja) * 2016-05-16 2019-08-15 ダウ シリコーンズ コーポレーション 少なくとも1種の非直鎖状オルガノポリシロキサンを含む接着剥離層
WO2019240124A1 (ja) * 2018-06-12 2019-12-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 成形用ポリオルガノシロキサン組成物、光学用部材、および成形方法
JP2020029509A (ja) * 2018-08-22 2020-02-27 信越化学工業株式会社 白色付加硬化型シリコーン組成物、発光ダイオード用リフレクター及び光半導体装置
JP6836697B1 (ja) * 2019-10-29 2021-03-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ポリフェニレンスルフィド樹脂接着用ポリオルガノシロキサン組成物
WO2021085230A1 (ja) * 2019-10-29 2021-05-06 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ポリフェニレンスルフィド樹脂接着用ポリオルガノシロキサン組成物
JP7475135B2 (ja) 2019-12-25 2024-04-26 デュポン・東レ・スペシャルティ・マテリアル株式会社 硬化性白色シリコーン組成物、光半導体装置用反射材、および光半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193555A1 (en) * 2014-06-19 2015-12-23 Inkron Oy Led lamp with siloxane particle material
US11739245B2 (en) * 2016-07-22 2023-08-29 Momentive Performance Materials Japan Llc Thermally conductive polyorganosiloxane composition
KR101823783B1 (ko) * 2016-10-12 2018-01-30 주식회사 케이씨씨 실리콘 고무 조성물 및 이의 경화물
WO2018212440A1 (ko) * 2017-05-19 2018-11-22 주식회사 케이씨씨 경화성 오르가노 폴리실록산 조성물 및 이를 포함하는 광학 반도체용 반사재료
KR102367879B1 (ko) * 2017-11-17 2022-02-25 모멘티브퍼포먼스머티리얼스코리아 주식회사 실리콘계 반사재 조성물 및 이를 이용하여 형성된 광학 장치
WO2019244531A1 (ja) * 2018-06-21 2019-12-26 株式会社Adeka 表面処理窒化アルミニウムの製造方法、表面処理窒化アルミニウム、樹脂組成物、及び硬化物
KR102114059B1 (ko) * 2018-08-17 2020-05-25 주식회사 케이씨씨 경화성 오르가노 폴리실록산 조성물 및 이를 포함하는 광학 반도체용 반사 재료
KR20210109528A (ko) * 2018-12-25 2021-09-06 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 접착성 폴리오르가노실록산 조성물
US11447659B2 (en) * 2019-06-24 2022-09-20 The Johns Hopkins University Low solar absorptance coatings
KR102467690B1 (ko) * 2020-08-19 2022-11-17 주식회사 케이씨씨실리콘 광학용 폴리실록산 조성물 및 이를 포함하는 광학 반도체용 반사 재료
US20230014862A1 (en) 2021-07-14 2023-01-19 The Goodyear Tire & Rubber Company Process for manufacturing a tread molding element of a tire-mold comprising a thermosetting polymer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US473377A (en) 1892-04-19 Shuttle-supplying mechanism for looms
WO2005030874A1 (ja) * 2003-09-29 2005-04-07 Ge Toshiba Silicones Co., Ltd. 熱伝導性シリコーン組成物
JP2007119589A (ja) * 2005-10-27 2007-05-17 Momentive Performance Materials Japan Kk 熱伝導性シリコーンゴム組成物
JP2007119588A (ja) * 2005-10-27 2007-05-17 Momentive Performance Materials Japan Kk 熱伝導性シリコーンゴム組成物
JP2008150439A (ja) * 2006-12-14 2008-07-03 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物及びそれを用いた塗布装置
JP2008280395A (ja) * 2007-05-09 2008-11-20 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物およびその硬化方法
JP2009256400A (ja) 2008-04-11 2009-11-05 Shin Etsu Chem Co Ltd 半導体素子用シリコーン接着剤
JP2010021533A (ja) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011054902A (ja) 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011140550A (ja) 2010-01-06 2011-07-21 Shin-Etsu Chemical Co Ltd 光学素子ケース成形用付加硬化型シリコーン樹脂組成物及び光半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001144A1 (en) * 2005-06-27 2007-01-04 Lg Chem, Ltd. Method for preparing light emitting diode device having heat dissipation rate enhancement
CN102712755A (zh) * 2010-01-25 2012-10-03 三井化学株式会社 聚酰亚胺树脂组合物、含有该组合物的粘接剂、叠层体及组件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US473377A (en) 1892-04-19 Shuttle-supplying mechanism for looms
WO2005030874A1 (ja) * 2003-09-29 2005-04-07 Ge Toshiba Silicones Co., Ltd. 熱伝導性シリコーン組成物
JP2007119589A (ja) * 2005-10-27 2007-05-17 Momentive Performance Materials Japan Kk 熱伝導性シリコーンゴム組成物
JP2007119588A (ja) * 2005-10-27 2007-05-17 Momentive Performance Materials Japan Kk 熱伝導性シリコーンゴム組成物
JP2008150439A (ja) * 2006-12-14 2008-07-03 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物及びそれを用いた塗布装置
JP2008280395A (ja) * 2007-05-09 2008-11-20 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物およびその硬化方法
JP2009256400A (ja) 2008-04-11 2009-11-05 Shin Etsu Chem Co Ltd 半導体素子用シリコーン接着剤
JP2010021533A (ja) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011054902A (ja) 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011140550A (ja) 2010-01-06 2011-07-21 Shin-Etsu Chemical Co Ltd 光学素子ケース成形用付加硬化型シリコーン樹脂組成物及び光半導体装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160369150A1 (en) * 2014-03-06 2016-12-22 Henkel Ag & Co. Kgaa Single crystal alumina filled die attach paste
US9796898B2 (en) * 2014-03-06 2017-10-24 Henkel Ag & Co. Kgaa Single crystal alumina filled die attach paste
JP2018505560A (ja) * 2014-10-27 2018-02-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 光学半導体デバイスの製造方法およびそのためのシリコーン樹脂組成物
EP3061783A1 (en) * 2015-02-26 2016-08-31 Shin-Etsu Chemical Co., Ltd. Addition-curable silicone resin composition and die attach material for optical semiconductor device
JP2016155967A (ja) * 2015-02-26 2016-09-01 信越化学工業株式会社 付加硬化性シリコーン樹脂組成物及び光半導体装置用ダイアタッチ材
US9660157B2 (en) 2015-02-26 2017-05-23 Shin-Etsu Chemical Co., Ltd. Addition-curable silicone resin composition and die attach material for optical semiconductor device
JP2017203094A (ja) * 2016-05-11 2017-11-16 日本特殊陶業株式会社 半硬化接着剤の製造方法、複合体の製造方法、樹脂接着剤、複合体、および、静電チャック
JP2019522686A (ja) * 2016-05-16 2019-08-15 ダウ シリコーンズ コーポレーション 少なくとも1種の非直鎖状オルガノポリシロキサンを含む接着剥離層
WO2017217510A1 (ja) * 2016-06-15 2017-12-21 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物及びその使用
JP2017226832A (ja) * 2016-06-15 2017-12-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物及びその使用
US10894883B2 (en) 2016-06-15 2021-01-19 Momentive Performance Materials Japan Llc Curable polyorganosiloxane composition and use thereof
WO2019240124A1 (ja) * 2018-06-12 2019-12-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 成形用ポリオルガノシロキサン組成物、光学用部材、および成形方法
JPWO2019240124A1 (ja) * 2018-06-12 2020-06-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 成形用ポリオルガノシロキサン組成物、光学用部材、および成形方法
JP2020029509A (ja) * 2018-08-22 2020-02-27 信越化学工業株式会社 白色付加硬化型シリコーン組成物、発光ダイオード用リフレクター及び光半導体装置
JP6836697B1 (ja) * 2019-10-29 2021-03-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ポリフェニレンスルフィド樹脂接着用ポリオルガノシロキサン組成物
WO2021085230A1 (ja) * 2019-10-29 2021-05-06 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 ポリフェニレンスルフィド樹脂接着用ポリオルガノシロキサン組成物
JP7475135B2 (ja) 2019-12-25 2024-04-26 デュポン・東レ・スペシャルティ・マテリアル株式会社 硬化性白色シリコーン組成物、光半導体装置用反射材、および光半導体装置

Also Published As

Publication number Publication date
JPWO2014104080A1 (ja) 2017-01-12
TW201431963A (zh) 2014-08-16
CN104870568A (zh) 2015-08-26
US20150337189A1 (en) 2015-11-26
KR20150099581A (ko) 2015-08-31
EP2940077A1 (en) 2015-11-04
JP5617054B1 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5617054B1 (ja) 硬化性ポリオルガノシロキサン組成物
JP4694371B2 (ja) 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
JP5526823B2 (ja) シリコーン樹脂で封止された光半導体装置
JP5002075B2 (ja) 硬化性ポリオルガノシロキサン組成物
TWI491646B (zh) A silicon-containing hardening composition, a hardened product of the silicon-containing hardening composition, and a wire frame substrate formed of the silicon-containing hardening composition
JP5674610B2 (ja) シリコーン樹脂シート、その製造方法、封止シートおよび発光ダイオード装置
WO2011125753A1 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JPWO2011136302A1 (ja) 半導体発光装置用パッケージ及び発光装置
JP2006321832A (ja) 光半導体封止用樹脂組成物及びこれを用いた光半導体装置
TW201631044A (zh) 硬化性聚矽氧樹脂組成物及其硬化物
KR20140056029A (ko) 실리콘 수지 조성물, 및 이것을 이용한 실리콘 적층 기판과 그의 제조 방법 및 led 장치
JP2012180513A (ja) 多面体構造ポリシロキサン変性体、該変性体を含有する組成物、該組成物を用いてなる封止剤、および光学デバイス
JP2017119848A (ja) 有機ケイ素化合物、該有機ケイ素化合物を含む熱硬化性組成物、および光半導体用封止材料
JP6884458B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP2021042332A (ja) 付加硬化型シリコーン組成物、その硬化物、光反射材、及び、光半導体装置
JP5879739B2 (ja) 半導体発光装置用パッケージ及び発光装置
JP5749543B2 (ja) 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP5837385B2 (ja) 熱硬化性樹脂組成物およびそれを用いた発光ダイオード用のパッケージ
JP2019163424A (ja) 硬化性樹脂組成物及び該樹脂組成物を封止剤として用いた光半導体装置。
WO2020241369A1 (ja) 硬化性オルガノポリシロキサン組成物、及びその硬化物からなる光学部材
WO2022004464A1 (ja) 硬化性シリコーン組成物及びその硬化物
JP2019163425A (ja) 硬化性組成物及び該組成物を封止剤として用いた光半導体装置。
TW202010793A (zh) 用於發光二極體反射器的熱固性矽氧烷樹脂組合物、發光二極體反射器和使用該組合物的半導體裝置
JP6966394B2 (ja) 発光ダイオード用リフレクター及び光半導体装置
CN111607231B (zh) 加成固化型硅酮组合物、光反射材料用硅酮固化物、光反射材料及光半导体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014502912

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019559

Country of ref document: KR

Kind code of ref document: A