WO2014104063A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2014104063A1
WO2014104063A1 PCT/JP2013/084591 JP2013084591W WO2014104063A1 WO 2014104063 A1 WO2014104063 A1 WO 2014104063A1 JP 2013084591 W JP2013084591 W JP 2013084591W WO 2014104063 A1 WO2014104063 A1 WO 2014104063A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
pressure
vehicle
period
hfw
Prior art date
Application number
PCT/JP2013/084591
Other languages
English (en)
French (fr)
Inventor
将仁 寺坂
慎次 塚本
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to US14/654,732 priority Critical patent/US9751509B2/en
Priority to CN201380066563.4A priority patent/CN104870277B/zh
Priority to DE112013006213.5T priority patent/DE112013006213B4/de
Publication of WO2014104063A1 publication Critical patent/WO2014104063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1764Regulation during travel on surface with different coefficients of friction, e.g. between left and right sides, mu-split or between front and rear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters

Definitions

  • the present invention relates to a braking control device for a vehicle that performs anti-lock brake control that suppresses wheel locking and ensures vehicle steering.
  • select low type antilock brake control As the antilock brake control, so-called select low type antilock brake control is known.
  • a wheel having a slower wheel speed is specified from both the left and right wheels, and a decrease period for decreasing the braking force for both the left and right wheels and an increasing period for increasing the braking force based on the slip amount (or slip ratio) of the wheels Is determined.
  • Patent Document 1 discloses an example of a braking control device that performs select-low antilock brake control.
  • this device at the time of a brake operation by the driver, it is determined whether or not the road surface on which the vehicle is traveling is a split road based on the slip amount of both the left and right wheels.
  • the split road is a road surface in which the ⁇ value of the road surface in contact with the left wheel is different from the ⁇ value of the road surface in contact with the right wheel.
  • the low ⁇ side wheel When the slip amount of a wheel (hereinafter, also referred to as “low ⁇ side wheel”) traveling on a low ⁇ road among the left and right wheels under a condition that the road surface is a split road exceeds the first threshold value, the low ⁇ The antilock brake control is started not only on the side wheels but also on the wheels traveling on the high ⁇ road (hereinafter also referred to as “high ⁇ side wheels”). Then, the braking force for the low ⁇ side wheel and the high ⁇ side wheel is decreased in the decrease period determined by the slip amount of the low ⁇ side wheel, and is increased in the increase period.
  • the locking tendency of the high ⁇ side wheel is monitored. That is, when the slip amount of the high ⁇ side wheel does not exceed the second threshold value smaller than the first threshold value in one control cycle including the previous increase period, it can be determined that the high ⁇ side wheel is less likely to lock. Therefore, the increasing gradient of the braking force for the high ⁇ side wheel in the current increasing period is made steeper than the increasing gradient of the braking force for the high ⁇ side wheel in the previous increasing period.
  • the slip amount of the high ⁇ side wheel exceeds the second threshold in one control cycle including the previous increase period, it can be determined that the high ⁇ side wheel tends to be locked, so this time
  • the increasing gradient of the braking force for the high ⁇ side wheel in the increasing period is made gentler than the increasing gradient of the braking force for the high ⁇ side wheel in the previous increasing period.
  • An object of the present invention is to provide a vehicle braking control device capable of increasing the deceleration of a vehicle while ensuring the stability of vehicle behavior when performing a select low type anti-lock brake control in a vehicle traveling on a split road. Is to provide.
  • the braking control device for a vehicle that can solve the above-described problem provides a braking force for a second wheel having a fast wheel speed among both the left and right wheels during a decrease period in which the braking force for the first wheel having a slow wheel speed is reduced. And an anti-lock brake control of a select low system that increases the braking force on the second wheel during the increase period in which the braking force on the first wheel is increased.
  • the device is configured to increase the braking force applied to the second wheel when the vehicle behavior instability tendency is small than when the vehicle behavior instability tendency is large.
  • the low ⁇ side wheel which is a wheel that touches the low ⁇ road, tends to be the first wheel, and the wheel that touches the high ⁇ road.
  • the high ⁇ side wheel is likely to be the second wheel. In this state, when the slip amount of the low ⁇ side wheel increases and the anti-lock brake control start condition is satisfied, the braking force is adjusted not only for the low ⁇ side wheel but also for the high ⁇ side wheel.
  • the braking force for the high ⁇ side wheel is also reduced during the decrease period in which the braking force for the low ⁇ side wheel is reduced, and the braking force for the high ⁇ side wheel is also increased during the increase period when the braking force for the low ⁇ side wheel is increased. Will be increased.
  • the braking force for the high ⁇ side wheel corresponding to the second wheel is larger when the unstable tendency of the vehicle behavior is small than when the unstable tendency is large. Is done. Therefore, the braking force of the entire vehicle tends to increase under the condition that the vehicle behavior is stable. Therefore, when performing a select low type anti-lock brake control on a vehicle traveling on a split road, the vehicle deceleration can be increased while ensuring the stability of the vehicle behavior.
  • the high ⁇ side wheel may not show a locking tendency.
  • the braking force of the entire vehicle can be increased by minimizing the amount of reduction in the braking force applied to the high ⁇ side wheels during the reduction period. Therefore, it is preferable that the amount of decrease in the braking force applied to the second wheel during the decrease period is smaller when the unstable tendency of the vehicle behavior is small than when the unstable tendency of the vehicle behavior is large.
  • the decrease correction coefficient may be made smaller when the unstable tendency of the vehicle behavior is small than when the unstable tendency of the vehicle behavior is large.
  • the amount of increase in the braking force applied to the second wheel during the increase period is larger when the unstable behavior tendency is smaller than when the unstable behavior behavior is large.
  • this control configuration when a low-speed antilock brake control is performed on a vehicle traveling on a split road, a high ⁇ corresponding to the second wheel is obtained under the condition that the vehicle behavior is stable. The braking force on the side wheels tends to increase. As a result, the braking force of the entire vehicle can be increased. Therefore, the vehicle deceleration can be increased while ensuring the stability of the vehicle behavior.
  • the increase correction coefficient may be made larger when the unstable tendency of the vehicle behavior is small than when the unstable tendency of the vehicle behavior is large.
  • the instability tendency of the vehicle behavior may be made smaller as the difference between the target yaw rate set according to the vehicle operation mode and the yaw rate of the vehicle is smaller. According to this, when the yaw moment of the vehicle resulting from the execution of the select low type anti-lock brake control is small, it can be determined that the vehicle behavior is stable, so that the braking force on the high ⁇ side wheel is easily increased. . Therefore, the vehicle deceleration can be further increased while ensuring the stability of the vehicle behavior.
  • the block diagram which shows typically a braking device provided with the control apparatus which is one Embodiment of the braking control apparatus of a vehicle.
  • a map showing the relationship between yaw rate deviation and decompression gain.
  • the map which shows the relationship between a yaw rate deviation and a pressure increase gain.
  • the flowchart explaining a braking hydraulic pressure change process routine. 7 is a flowchart for explaining a decompression amount calculation processing routine. 7 is a flowchart for explaining a pressure increase amount calculation processing routine.
  • (A) is a timing chart showing how the wheel speeds of the low ⁇ side wheel and the high ⁇ side wheel change when a select low type anti-lock brake control is executed on a vehicle traveling on a split road; Is a timing chart showing how the yaw rate deviation changes, (c) is a timing chart showing how the pressure reduction gain and pressure increase gain are changed, and (d) is the hydraulic pressure of the wheel cylinder corresponding to the low ⁇ side wheel.
  • (e) is a timing chart which shows a mode that the hydraulic pressure of the wheel cylinder corresponding to a high micro side wheel changes.
  • the braking device 11 is mounted on a vehicle having a plurality of (four in this embodiment) wheels (a right front wheel FR, a left front wheel FL, a right rear wheel RR, and a left rear wheel RL). Yes.
  • the braking device 11 includes a hydraulic pressure generating device 20 to which a brake pedal 12 is connected, a brake actuator 30 that adjusts a braking force for each wheel FR, FL, RR, and RL, and a braking control device that controls the brake actuator 30. And a control device 40 as an example.
  • the hydraulic pressure generator 20 includes a booster 21 that boosts the operating force of the brake pedal 12 by the driver, and a brake hydraulic pressure (hereinafter also referred to as “MC pressure”) corresponding to the operating force boosted by the booster 21. .) Is provided.
  • MC pressure brake hydraulic pressure
  • the brake fluid corresponding to the MC pressure generated inside the master cylinder 22 individually corresponds to the wheels FR, FL, RR, and RL via the brake actuator 30.
  • WC pressure braking force according to the brake fluid pressure (hereinafter also referred to as “WC pressure”) generated in the wheel cylinders 15a to 15d is applied to the wheels FR, FL, RR, and RL.
  • the brake actuator 30 includes a first hydraulic circuit 31 connected to a wheel cylinder 15a for the right front wheel and a wheel cylinder 15d for the left rear wheel, a wheel cylinder 15b for the left front wheel, and a wheel cylinder for the right rear wheel.
  • a second hydraulic circuit 32 connected to 15c is provided.
  • the first hydraulic circuit 31 includes a right front wheel path 33a and a left rear wheel path 33d
  • the second hydraulic circuit 32 includes a left front wheel path 33b and a right rear wheel path.
  • the path 33c is provided.
  • the pressure increasing valves 34a, 34b, 34c, and 34d which are normally open solenoid valves that operate when regulating the increase in the WC pressure of the wheel cylinders 15a to 15d, and the WC pressure are reduced.
  • Pressure reducing valves 35a, 35b, 35c, and 35d which are normally closed solenoid valves that are actuated at the time, are provided.
  • the brake fluid that has flowed out of the wheel cylinders 15a to 15d via the pressure reducing valves 35a to 35d is temporarily stored in the reservoirs 361 and 362 and the reservoirs 361 and 362.
  • Pumps 371 and 372 are provided for sucking the brake fluid being discharged and discharging it to the master cylinder 22 side in the hydraulic circuits 31 and 32. These pumps 371 and 372 are pumped by the drive of the same drive motor 38.
  • control device 40 will be described.
  • the input side interface of the control device 40 includes wheel speed sensors SE1, SE2, SE3, SE4 for detecting the wheel speed VW of the wheels FR, FL, RR, RL and a yaw rate sensor SE5 for detecting the yaw rate Yr of the vehicle.
  • wheel speed sensors SE1, SE2, SE3, SE4 for detecting the wheel speed VW of the wheels FR, FL, RR, RL and a yaw rate sensor SE5 for detecting the yaw rate Yr of the vehicle.
  • a steering angle sensor SE6 for detecting the steering angle ⁇ of the steering wheel 16 and a brake switch SW1 for detecting whether or not the brake pedal 12 is operated are electrically connected to the input side interface.
  • the valves 34a to 34d, 35a to 35d, the drive motor 38, and the like are electrically connected to the output side interface of the control device 40.
  • the control device 40 controls the valves 34a to 34d, 35a to 35d and the drive motor 38 based on various detection signals from the various
  • Such a control device 40 has a microcomputer composed of a CPU, a ROM, a RAM, and the like.
  • the ROM stores in advance various control processes executed by the CPU, various maps, various threshold values, and the like.
  • the RAM stores various information (such as a vehicle body speed VS of the vehicle) that is appropriately rewritten while an ignition switch (not shown) of the vehicle is “ON”.
  • the left and right independent antilock brake control (hereinafter also referred to as “ABS control”) is performed on the front wheels FR and FL, and the select low method is applied to the rear wheels RR and RL. ABS control is performed.
  • ABS control is performed.
  • the left and right independent ABS control for example, when the slip amount Slp of the right front wheel FR exceeds the slip determination value SlpTh by a brake operation by the driver, the ABS control is started for the right front wheel FR. However, at this time, if the slip amount Slp of the left front wheel FL is less than the slip determination value SlpTh, the ABS control is not performed on the left front wheel FL.
  • ABS control if the slip amount Slp of at least one of the left and right rear wheels RR, RL exceeds the slip determination value SlpTh by the brake operation by the driver, ABS control is started for RR and RL. Moreover, the control cycle for both rear wheels RR and RL is the same cycle. Therefore, for example, in the pressure reduction period PD in which the WC pressure of the wheel cylinder 15c corresponding to the right rear wheel RR is reduced, the WC pressure of the wheel cylinder 15d corresponding to the left rear wheel RL is also reduced.
  • the WC pressure of the wheel cylinder 15d corresponding to the left rear wheel RL is also held.
  • the pressure increasing period PI in which the WC pressure of the wheel cylinder 15c corresponding to the right rear wheel RR is increased the WC pressure of the wheel cylinder 15d corresponding to the left rear wheel RL is also increased.
  • the pressure reduction period PD corresponds to a decrease period in which the braking force on the rear wheels RR and RL is reduced
  • the pressure holding period PR is This corresponds to a holding period in which the braking force for the rear wheels RR and RL is held.
  • the pressure increasing period PI corresponds to an increasing period in which the braking force for the rear wheels RR and RL is increased.
  • the WC pressure of the wheel cylinder corresponding to the wheel is simply referred to as “the WC pressure for the wheel”.
  • the deceleration of the wheel when the driver performs a braking operation is determined by the WC pressure on the wheel, the ⁇ value of the road surface on which the wheel is grounded, and the like. Therefore, if the driver performs a braking operation while traveling on the split road of the vehicle, the deceleration of the wheel (hereinafter also referred to as “low ⁇ side wheel”) LFW on the low ⁇ road is reduced to the high ⁇ road.
  • the grounded wheel hereinafter also referred to as “high ⁇ side wheel” tends to be larger than the deceleration of the HFW. That is, the slip amount Slp of the low ⁇ side wheel LFW tends to be larger than the slip amount Slp of the high ⁇ side wheel HFW.
  • the pressure reduction period PD is a road surface in which the ⁇ value of the road surface on which the left wheels FL and RL are grounded deviates from the ⁇ value of the road surface on which the right wheels FR and RR are grounded.
  • the WC pressure for the high ⁇ side wheel HFW is high even if the slip amount Slp is still small, that is, the high ⁇ side wheel HFW. Even if the lock tendency does not show or the lock tendency is small, the pressure is reduced in the pressure reduction period PD. That is, the braking force applied to the high ⁇ side wheel HFW that does not easily show a locking tendency depends on the slip amount Slp of the low ⁇ side wheel LFW that tends to show a locking tendency.
  • the unstable tendency of the vehicle behavior is observed during execution of the select low type ABS control, and the braking force for the high ⁇ side wheel HFW is increased as much as possible while ensuring the stability of the vehicle behavior. ing.
  • the amount of WC pressure to be reduced with respect to the high ⁇ side wheel HFW during the decompression period PD is reduced when the unstable tendency of the vehicle behavior is small than when the unstable tendency is large.
  • the amount of pressure reduction of the WC pressure with respect to the high ⁇ side wheel HFW during the pressure reduction period PD is determined according to the basic pressure reduction amount BDP as the basic amount of reduction set according to the magnitude of the unstable tendency of the vehicle behavior. It is set by multiplying the decompression gain KREL as a decrease correction coefficient.
  • the amount of pressure increase with respect to the high ⁇ side wheel HFW during the pressure increasing period PI is increased when the unstable tendency of the vehicle behavior is small than when the unstable tendency is large.
  • the amount of increase in the WC pressure with respect to the high ⁇ side wheel HFW during the pressure increase period PI depends on the basic pressure increase amount BBP as the set basic increase amount according to the magnitude of the unstable tendency of the vehicle behavior. It is set by multiplying the pressure increase gain KAPP as an increase correction coefficient determined in this way.
  • the yaw rate deviation ⁇ Yr is adopted as a parameter indicating the unstable tendency of the vehicle behavior.
  • This yaw rate deviation ⁇ Yr is obtained by substituting the target yaw rate Yr_Trg set according to the vehicle operation mode by the driver and the yaw rate Yr detected by the yaw rate sensor SE5 into the following relational expression (formula 1). It can be estimated that the greater the absolute value of the yaw rate deviation
  • the target yaw rate Yr_Trg is a value corresponding to the steering angle ⁇ of the steering wheel 16 and the vehicle body speed VS, and can be calculated using the following relational expression (formula 2).
  • SF is the vehicle stability factor
  • N is the gear ratio of the vehicle steering device
  • WB is the vehicle wheelbase length.
  • the map shown in FIG. 2 shows the relationship between the yaw rate deviation ⁇ Yr and the decompression gain KREL.
  • the decompression gain KREL is determined to be the minimum value KREL_min when the yaw rate deviation ⁇ Yr is “0 (zero)”, and the yaw rate deviation ⁇ Yr is a first value smaller than “0 (zero)”.
  • the maximum value KREL_max larger than the minimum value KREL_min is determined.
  • the decompression gain KREL is determined to be larger as the yaw rate deviation ⁇ Yr is smaller when the yaw rate deviation ⁇ Yr is less than “0 (zero)” and greater than or equal to the first value ⁇ Yr1.
  • the minimum value KREL_min of the decompression gain is preferably set to a value that is greater than or equal to “0 (zero)” and less than “1”. Accordingly, when the yaw rate deviation ⁇ Yr is a value close to “0 (zero)”, the amount of pressure reduction of the WC pressure with respect to the high ⁇ side wheel HFW during the pressure reduction period PD is determined to be a small value. In the present embodiment, it is assumed that the minimum value KREL_min of the decompression gain is “0 (zero)”. In this case, when the yaw rate deviation ⁇ Yr is “0 (zero)”, the WC pressure for the high ⁇ side wheel HFW is not reduced during the pressure reduction period PD.
  • the maximum value KREL_max of the decompression gain is preferably set to a value of “1” or more.
  • the maximum value KREL_max of the decompression gain is “1”.
  • the map shown in FIG. 3 shows the relationship between the yaw rate deviation ⁇ Yr and the pressure increase gain KAPP.
  • the pressure increase gain KAPP is determined to be the maximum value KAPP_max when the yaw rate deviation ⁇ Yr is “0 (zero)”, and the yaw rate deviation ⁇ Yr is smaller than “0 (zero)”.
  • the minimum value KAPP_min smaller than the maximum value KAPP_max is determined.
  • the pressure increase gain KAPP is determined to be a smaller value as the yaw rate deviation ⁇ Yr is smaller.
  • the second value ⁇ Yr2 may be the same value as the first value ⁇ Yr1, or may be a value different from the first value ⁇ Yr1.
  • the maximum value KAPP_max of the pressure increase gain is preferably set to a value of “1” or more.
  • the WC pressure increase amount for the high ⁇ side wheel HFW during the pressure increase period PI is determined to be a large value.
  • the maximum value KAPP_max of the pressure increase gain is “1.5”.
  • the minimum value KAPP_min of the pressure increase gain is preferably set to a value less than “1” and not less than “0 (zero)”.
  • the amount of increase in the WC pressure for the high ⁇ side wheel HFW during the pressure increase period PI is determined to be a small value.
  • the minimum value KAPP_min is set to “0 (zero)” and the yaw rate deviation ⁇ Yr is equal to or smaller than the second value ⁇ Yr2
  • the WC pressure for the high ⁇ side wheel HFW is not increased during the pressure increase period PI.
  • the minimum value KAPP_min of the pressure increase gain is “0.5”.
  • the processing routine shown in FIG. 4 is a main processing routine for performing ABS control, and is performed at predetermined intervals set in advance.
  • the control device 40 acquires the wheel speed VW of each wheel FR, FL, RR, RL based on the detection signals output from the wheel speed sensors SE1 to SE4 (steps). S11). Subsequently, the control device 40 calculates the vehicle body speed VS based on the wheel speed VW of at least one of the wheel speeds VW of the wheels FR, FL, RR, and RL (step S12). Then, the control device 40 calculates the slip amount Slp of the rear wheels RR and RL (step S13).
  • control device 40 sets the value obtained by subtracting the wheel speed VW of the right rear wheel RR from the vehicle body speed VS as the slip amount Slp of the right rear wheel RR, and the value obtained by subtracting the wheel speed VW of the left rear wheel RL from the vehicle body speed VS. Is the slip amount Slp of the left rear wheel RL.
  • the control device 40 acquires the steering angle ⁇ of the steering wheel 16 based on the detection signal output from the steering angle sensor SE6 (step S14), and obtains the vehicle body speed VS and the steering angle ⁇ from the above relational expression (formula 2).
  • the control device 40 acquires the yaw rate Yr based on the detection signal output from the yaw rate sensor SE5 (step S16), and substitutes the target yaw rate Yr_Trg and the yaw rate Yr into the above relational expression (formula 1). ⁇ Yr is obtained (step S17).
  • step S18 determines whether or not the select-low ABS control is being executed.
  • step S18: YES determines whether or not the end condition of the select low ABS control is satisfied.
  • step S19 determines whether or not the start condition of the select low ABS control is satisfied.
  • the start condition of the select low ABS control includes that the driver is operating a brake, and that the slip amount Slp of at least one of the rear wheels RR and RL is equal to or greater than the slip determination value SlpTh. Yes. Further, the termination condition of the select low type ABS control is that the vehicle stops or the brake operation by the driver is canceled.
  • step S19 when the ABS control end condition is not satisfied (step S19: NO), the control device 40 proceeds to step S21 to be described later. On the other hand, when the ABS control end condition is satisfied (step S19: YES), the control device 40 once ends this processing routine. Thereafter, the control device 40 operates the pumps 371 and 372 until the remaining amount of brake fluid in the reservoirs 361 and 362 runs out, and then performs an end process for stopping the pumps 371 and 372.
  • step S20 when the ABS control start condition is not satisfied (step S20: NO), the control device 40 once ends this processing routine. On the other hand, when the ABS control start condition is satisfied (step S20: YES), the control device 40 proceeds to the next step S21.
  • step S21 the control device 40 performs a brake fluid pressure changing process for individually changing the WC pressure for the rear wheels RR and RL.
  • the brake fluid pressure changing process will be described later with reference to FIG. Thereafter, the control device 40 once ends this processing routine.
  • step S21 the braking hydraulic pressure change processing routine in step S21 will be described with reference to the flowchart shown in FIG.
  • the control device 40 determines whether or not the current period is the decompression period PD (step S31).
  • the control device 40 performs a pressure reduction amount calculation process for calculating the pressure reduction amounts DP_RR and DP_RL of the WC pressure for the rear wheels RR and RL (step S32).
  • the decompression amount calculation process will be described later with reference to FIG.
  • control apparatus 40 performs the pressure reduction process which reduces the WC pressure with respect to the rear wheels RR and RL based on the calculated pressure reduction amounts DP_RR and DP_RL (step S33).
  • the control device 40 closes the pressure increasing valves 34c and 34d corresponding to the rear wheels RR and RL while opening the pumps 371 and 372, and opens the corresponding pressure reducing valves 35c and 35d.
  • the pressure increasing valves 34a to 34d and the pressure reducing valves 35a to 35d are controlled by PWM (Pulse Width Modulation).
  • the control device 40 sets the duty ratio of the control signal input to the solenoid of the pressure reducing valve 35c to a larger ratio as the pressure reducing amount DP_RR is larger, and sets the duty ratio of the control signal input to the solenoid of the pressure reducing valve 35d to the pressure reducing amount DP_RL. The larger the value, the larger the ratio. Further, the control device 40 sets the duty ratio of the control signal input to the solenoids of the pressure increasing valves 34c and 34d to, for example, “100%”. Thereafter, the control device 40 once ends this processing routine.
  • step S34 when the current period is not the decompression period PD (step S31: NO), the control device 40 determines whether or not the current period is the pressure increase period PI (step S34). .
  • step S34 YES
  • the control device 40 performs a pressure increase amount calculation process for calculating the pressure increase amounts BP_RR and BP_RL of the WC pressure for the rear wheels RR and RL (step S34). S35). This pressure increase calculation process will be described later with reference to FIG.
  • the control device 40 performs a pressure increasing process for increasing the WC pressure for the rear wheels RR and RL based on the calculated pressure increasing amounts BP_RR and BP_RL (step S36).
  • the control device 40 opens the pressure increasing valves 34c and 34d corresponding to the rear wheels RR and RL while closing the pumps 371 and 372, and closes the corresponding pressure reducing valves 35c and 35d.
  • the control device 40 sets the duty ratio of the control signal input to the solenoid of the pressure increasing valve 34c to a smaller ratio as the pressure increase amount BP_RR is larger, and increases the duty ratio of the control signal input to the solenoid of the pressure increasing valve 34d.
  • control device 40 sets the duty ratio of the control signal input to the solenoids of the pressure reducing valves 35c and 35d to “0%”. Thereafter, the control device 40 once ends this processing routine.
  • step S34 when the current period is not the pressure increasing period PI (step S34: NO), since the current period is the pressure holding period PR, the control device 40 determines the WC for the rear wheels RR and RL. A pressure holding process for holding the pressure is performed (step S37). In this pressure holding process, the control device 40 closes the pressure increasing valves 34c and 34d and the pressure reducing valves 35c and 35d corresponding to the rear wheels RR and RL while the pumps 371 and 372 are operated.
  • control device 40 sets the duty ratio of the control signal input to the solenoids of the pressure increasing valves 34c and 34d to “100%”, for example, and sets the duty ratio of the control signal input to the solenoids of the pressure reducing valves 35c and 35d to “ Set to 0%. Thereafter, the control device 40 once ends this processing routine.
  • step S32 the decompression amount calculation processing routine in step S32 will be described with reference to the flowchart shown in FIG.
  • the control device 40 determines the decompression gain KREL to a value corresponding to the yaw rate deviation ⁇ Yr calculated in step S17 using the map shown in FIG. 2 (step S41). . That is, in step S41, when the yaw rate deviation ⁇ Yr is large, the decompression gain KREL is determined to be smaller than when the yaw rate deviation ⁇ Yr is small.
  • the control device 40 determines whether or not the road surface on which the vehicle is traveling is a split road (step S42). For example, the control device 40 calculates the difference between the slip amount Slp of the right rear wheel RR and the slip amount Slp of the left rear wheel RL, and determines whether this difference is equal to or greater than a predetermined split road determination value. In this case, if the calculated difference is greater than or equal to the split road determination value, it can be determined that the road surface is a split road, and if the difference is less than the split road determination value, it is determined that the road surface is not a split road. can do.
  • step S42 If the road surface is not a split road (step S42: NO), the control device 40 sets the right wheel pressure reduction amount DP_RR and the left wheel pressure reduction amount DP_RL to the preset basic pressure reduction amount BDP (step S43), and executes this processing routine. Exit once.
  • step S44 determines whether or not the right rear wheel RR is the high ⁇ side wheel HFW (step S44). That is, in this step S44, it is determined whether or not the right rear wheel RR is the second wheel having the fast wheel speed VW among the left and right rear wheels RR and RL.
  • the right rear wheel RR is the high ⁇ side wheel HFW (step S44: YES)
  • the right rear wheel RR corresponds to the second wheel
  • the left rear wheel RL corresponds to the first wheel. Therefore, the control device 40 sets the left wheel pressure reduction amount DP_RL as the basic pressure reduction amount BDP (step S45).
  • step S44 when the left rear wheel RL is a high ⁇ side wheel (step S44: YES), the right rear wheel RR corresponds to the first wheel and the left rear wheel RL corresponds to the second wheel.
  • step S35 the pressure increase amount calculation processing routine in step S35 will be described with reference to the flowchart shown in FIG.
  • the control device 40 determines the pressure increase gain KAPP to a value corresponding to the yaw rate deviation ⁇ Yr calculated in step S17 using the map shown in FIG. S51). That is, in step S51, when the yaw rate deviation ⁇ Yr is large, the pressure increase gain KAPP is determined to be larger than when the yaw rate deviation ⁇ Yr is small.
  • the control device 40 determines whether or not the road surface on which the vehicle is traveling is a split road (step S52). If the road surface is not a split road (step S52: NO), the control device 40 sets the right wheel pressure increase amount BP_RR and the left wheel pressure increase amount BP_RL as the basic pressure increase amount BBP, and once ends this processing routine.
  • step S52 when the road surface is a split road (step S52: YES), the control device 40 determines whether or not the right rear wheel RR is the high ⁇ side wheel HFW (step S54). That is, in this step S54, it is determined whether or not the right rear wheel RR is the second wheel having the fast wheel speed VW among the left and right rear wheels RR and RL.
  • step S54 the high ⁇ side wheel HFW
  • step S55 the left wheel pressure increase amount BP_RL as the basic pressure increase amount BBP
  • the wheel speed VW of the low ⁇ side wheel LFW (in this case, the right rear wheel RR) is drawn by a solid line
  • the high ⁇ side wheel HFW in this case, the left rear wheel RL
  • the wheel speed VW is drawn with a broken line.
  • the left rear wheel RL does not show a locking tendency, that is, the slip amount Slp of the left rear wheel RL is substantially “0 (zero)”, so the vehicle body speed VS of the vehicle is It is assumed that it substantially coincides with the wheel speed VW of the left rear wheel RL.
  • (d) and (e) in FIG. 8 show the ABS control of the select low method of the comparative example.
  • the WC pressure for the low ⁇ side wheel LFW is reduced or increased in the same manner as in this embodiment.
  • the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW during the pressure increase period PI is different from that in the present embodiment. That is, the number of locks, which is the number of times that the slip amount Slp of the low ⁇ side wheel LFW becomes equal to or greater than the slip determination value SlpTh from the state less than the slip determination value SlpTh, is measured.
  • the WC pressure increase gradient for the high ⁇ side wheel HFW during the pressure increase period PI is equivalent to the WC pressure increase gradient for the low ⁇ side wheel LFW.
  • the WC pressure increase gradient for the high ⁇ side wheel HFW during the pressure increase period PI is steeper than the pressure increase gradient in the previous pressure increase period PI. Is done.
  • the slip amount Slp of the high ⁇ side wheel HFW is equal to or larger than a reference value smaller than the slip determination value SlpTh in one control cycle including the previous pressure increase period PI, during the current pressure increase period PI.
  • the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW is set to be gentler than the pressure increase gradient in the previous pressure increase period PI.
  • the low ⁇ side wheel LFW is decelerated more rapidly than the high ⁇ side wheel HFW, and the wheel speed difference between the high ⁇ side wheel HFW and the low ⁇ side wheel LFW gradually increases.
  • the yaw rate deviation ⁇ Yr which is a parameter indicating an unstable tendency of the vehicle behavior, deviates from “0 (zero)” to the negative side, that is, the yaw rate deviation ⁇ Yr gradually increases. Get smaller. Therefore, as shown in (c) of FIG. 8, as the yaw rate deviation ⁇ Yr decreases, the decompression gain KREL gradually increases, while the pressure increase gain KAPP gradually decreases.
  • the slip amount Slp of the low ⁇ side wheel LFW reaches the slip determination value SlpTh, and therefore, the select-low ABS control is started.
  • the WC pressure for the low ⁇ side wheel LFW and the high ⁇ side wheel HFW is reduced.
  • the WC pressure with respect to the low ⁇ side wheel LFW is rapidly reduced in order to quickly eliminate the locking tendency of the low ⁇ side wheel LFW.
  • the WC pressure for the high ⁇ side wheel HFW is reduced at a different gradient from the WC pressure reduction gradient for the low ⁇ side wheel LFW. That is, as indicated by a solid line in (e) of FIG. 8, the WC pressure reduction amount for the high ⁇ side wheel HFW in the current pressure reduction period PD is greater than the WC pressure reduction amount for the low ⁇ side wheel LFW. Less.
  • the yaw rate deviation ⁇ Yr is close to “0 (zero)”, it can be determined that the vehicle behavior is more stable than when the yaw rate deviation ⁇ Yr deviates from “0 (zero)”. Is gradually reduced.
  • the WC pressure for the high ⁇ side wheel HFW is reduced with the same gradient as the WC pressure for the low ⁇ side wheel LFW. Therefore, at the third timing t3 when the first pressure reduction period PD ends, the WC pressure for the high ⁇ side wheel HFW in the present embodiment is higher than the WC pressure for the high ⁇ side wheel HFW in the comparative example. That is, in the present embodiment, the braking force against the high ⁇ side wheel HFW in the pressure reduction period PD is less likely to be smaller than in the comparative example.
  • the pressure reduction gradient of the WC pressure with respect to the high ⁇ side wheel HFW in the pressure reduction period PD is determined by the yaw rate deviation ⁇ Yr. Therefore, when the yaw rate deviation ⁇ Yr gradually decreases as from the second timing t2 to the third timing t3, it can be estimated that the instability tendency of the vehicle behavior gradually increases, and therefore the WC pressure reduction gradient gradually increases. It becomes steep.
  • the holding pressure period PR in which the WC pressure for the low ⁇ side wheel LFW and the high ⁇ side wheel HFW is held is set.
  • this pressure holding period PR as shown in FIG. 8 (a), the braking force against the low ⁇ side wheel LFW is held in a small state, so that the wheel speed VW of the low ⁇ side wheel LFW gradually increases, The slip amount Slp gradually decreases.
  • the yaw rate deviation ⁇ Yr gradually increases and approaches “0 (zero)”. In the present embodiment, the yaw rate deviation ⁇ Yr becomes “0 (zero)” before the fifth timing t5, and the yaw rate deviation ⁇ Yr becomes “0 (zero)” until the sixth timing t6 thereafter.
  • the WC pressure for the high ⁇ side wheel HFW is higher than the WC pressure for the low ⁇ side wheel LFW. That is, in the pressure holding period PR in the present embodiment, the braking force for the high ⁇ side wheel HFW is held at a larger value than the pressure holding period PR of the comparative example. Therefore, the braking force of the entire vehicle in the pressure holding period PR is larger than that in the comparative example.
  • the wheel speed VW of the low ⁇ side wheel LFW increases toward the wheel speed VW of the high ⁇ side wheel HFW.
  • the slip amount Slp of the low ⁇ side wheel LFW becomes less than the slip determination value SlpTh.
  • the wheel speed VW of the low ⁇ side wheel LFW substantially coincides with the wheel speed VW of the high ⁇ side wheel HFW.
  • the WC pressure increase for the low ⁇ side wheel LFW and the high ⁇ side wheel HFW is started. That is, the pressure increasing period PI is from the fifth timing t5 to the seventh timing t7.
  • the yaw rate deviation ⁇ Yr does not change from the fifth timing t5 to the sixth timing t6 prior to the seventh timing t7.
  • the pressure increase gain KAPP is determined to be the maximum value KAPP_max or a value close to the maximum value KAPP_max. Therefore, as shown in (d) and (e) in FIG. 8, the WC pressure for the high ⁇ side wheel HFW is increased more steeply than the WC pressure for the low ⁇ side wheel LFW.
  • the WC pressure increase gradient for the high ⁇ side wheel HFW is equivalent to the WC pressure increase gradient for the low ⁇ side wheel LFW. Therefore, in the pressure increasing period PI from the fifth timing t5 to the seventh timing t7, the braking force on the high ⁇ side wheel HFW is smaller than that in the present embodiment. In other words, in the present embodiment, the braking force of the entire vehicle in the pressure increasing period PI is larger than that in the comparative example.
  • the second timing t2 to the seventh timing is one control cycle of the select-low type ABS control that repeats from pressure reduction to pressure increase.
  • the braking force for the high ⁇ side wheel HFW is controlled to be larger than the braking force for the low ⁇ side wheel LFW.
  • the WC pressure reduction for the low ⁇ side wheel LFW and the high ⁇ side wheel HFW is started.
  • the WC pressure depressurization gradient for the high ⁇ side wheel HFW in the depressurization period PD gradually decreases with time, but the WC pressure depressurization gradient for the low ⁇ side wheel LFW (that is, the comparative example).
  • WC pressure reduction gradient with respect to the high ⁇ side wheel HFW in FIG. Therefore, in the present embodiment, even in the pressure reduction period PD from the seventh timing t7 to the eighth timing t8, the braking force against the high ⁇ side wheel HFW is larger than that in the comparative example.
  • the pressure holding period PR is from the eighth timing t8 to the next ninth timing t9, similarly to the third timing t3 to the fifth timing t5.
  • the WC pressure on the low ⁇ side wheel LFW and the high ⁇ side wheel HFW The pressure increase is started.
  • the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW is the same as in the previous pressure increase period PI. It is determined by the magnitude of the yaw rate deviation ⁇ Yr, that is, the pressure increase gain KAPP.
  • the pressure increase gain KAPP is held at the maximum value KAPP_max, whereas from the tenth timing t10 to the eleventh timing t10. Until the timing t11, the pressure increase gain KAPP gradually decreases. Therefore, the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW gradually becomes gentle after the tenth timing t10.
  • the number of locks in the low ⁇ side wheel LFW is “2”, and the high ⁇ side wheel HFW is controlled in one control cycle including the previous pressure increase period PI.
  • the slip amount Slp is not greater than the above reference value. Therefore, in the current pressure increase period PI, the WC pressure increase gradient for the high ⁇ side wheel HFW is steeper than the WC pressure increase gradient for the low ⁇ side wheel LFW.
  • the slip amount Slp of the high ⁇ side wheel HFW is substantially “0 (zero)” in the pressure reduction period PD from the eleventh timing t11 to the twelfth timing t12.
  • the WC pressure for the high ⁇ side wheel HFW is rapidly reduced.
  • the WC pressure is reduced with respect to the high ⁇ side wheel HFW.
  • the gradient is determined by the yaw rate deviation ⁇ Yr, that is, the decompression gain KREL. Therefore, compared with the comparative example, the WC pressure depressurization gradient tends to be gentle.
  • the WC pressure reduction gradient for the high ⁇ side wheel HFW during the pressure reduction period PD when the vehicle behavior instability tendency is small is more gradual than when the vehicle behavior instability tendency is large. Is done. In other words, during the decompression period PD, the braking force against the high ⁇ side wheel HFW is unlikely to decrease. Therefore, the braking force of the entire vehicle can be increased under the condition that the unstable tendency of the vehicle behavior is within the allowable range.
  • the WC pressure increase gradient for the high ⁇ side wheel HFW in the pressure increase period PI when the vehicle behavior instability tendency is small is steeper than when the vehicle behavior instability tendency is large. It is assumed to be a gradient. That is, in the pressure increase period PI, the braking force for the high ⁇ side wheel HFW tends to increase. Therefore, the braking force of the entire vehicle can be increased under the condition that the unstable tendency of the vehicle behavior is within the allowable range.
  • the pressure increase gain KAPP and the pressure reduction gain KREL are updated each time the yaw rate deviation ⁇ Yr changes. Therefore, even during the one pressure increase period PI, when the pressure increase gain KAPP is changed, the amount of increase in the WC pressure for the high ⁇ side wheel HFW is changed based on the pressure increase gain KAPP after the change. It will be. Therefore, in one pressure increase period PI, the vehicle behavior is more stable than in the case where the WC pressure is increased with respect to the high ⁇ side wheel HFW based on the pressure increase gain KAPP at the start of the pressure increase period PI. It is possible to achieve both improvement in performance and increase in vehicle deceleration.
  • the vehicle behavior is improved more stably than in the case where the WC pressure is reduced with respect to the high ⁇ side wheel HFW based on the decompression gain KREL at the start of the decompression period PD. It is possible to achieve a balance with an increase in the deceleration.
  • the maximum value KAPP_max of the pressure increase gain KAPP is set to “2” and the minimum value KAPP_min is set to “1”.
  • the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW in the pressure increase period PI steep.
  • the WC pressure for the high ⁇ side wheel HFW after the end of the pressure increase period PI is larger than that in the present embodiment, the WC for the high ⁇ side wheel HFW is smaller in the decompression period PD than in the present embodiment.
  • the pressure can be greatly reduced. That is, the increase / decrease of the braking force with respect to the high ⁇ side wheel HFW tends to be large.
  • the maximum value KAPP_max of the pressure increase gain KAPP is set to a value (1) smaller than “2”, and the minimum value KAPP_min is set to a value (0.5) smaller than “1”. Therefore, compared with the above case, the WC pressure for the high ⁇ side wheel HFW after the end of the pressure increase period PI is reduced, but the amount of reduction of the WC pressure for the high ⁇ side wheel HFW in the pressure reduction period PD is reduced. Cheap. That is, the fluctuation range of the braking force with respect to the high ⁇ side wheel HFW is reduced. Therefore, the drivability during the select low ABS control can be improved by the amount of fluctuation in the braking force of the vehicle during the select low ABS control.
  • the WC pressure reduction gradient or pressure increase gradient for the wheel with less effective braking is determined by the yaw rate deviation ⁇ Yr. Even in such a case, as in the case where the vehicle is traveling on the split road, the vehicle deceleration can be further increased while ensuring the stability of the vehicle.
  • the yaw rate deviation ⁇ Yr is employed as a parameter indicating the unstable tendency of the vehicle behavior.
  • An unstable tendency of the vehicle behavior may be estimated based on the wheel speed difference between the right front wheel FR and the left front wheel FL where the Select Low type ABS control is not executed. In this case, it can be estimated that the greater the wheel speed difference between the right front wheel FR and the left front wheel FL, the greater the tendency of the vehicle behavior to be unstable.
  • the maximum value KREL_max of the decompression gain, the minimum value KREL_min of the decompression gain, the maximum value KAPP_max of the boosting gain, and the minimum value KAPP_min of the boosting gain may be set as appropriate.
  • the maximum value KREL_max of the decompression gain may be “1” or more, and the minimum value KREL_min of the decompression gain may be “0 (zero)” or less.
  • a basic pressure increase amount BBP for the low ⁇ side wheel and a basic pressure increase amount BBP for the high ⁇ side wheel may be prepared, and the basic pressure increase amount BBP for the high ⁇ side wheel may be appropriately changed. .
  • the basic pressure increase amount BBP for the high ⁇ side wheel is increased. You may make it change into a value.
  • the WC pressure increase gradient for the high ⁇ side wheel HFW in the pressure increase period PI can be made steeper than in the above-described embodiment, and the braking force for the entire vehicle can be increased. Will be able to.
  • the slip amount Slp of the high ⁇ side wheel HFW is greater than or equal to the reference value in one control cycle including the previous pressure increase period PI
  • the basic pressure increase amount BBP for the high ⁇ side wheel is small. It is preferable to change to a value. As a result, the vehicle deceleration can be further increased while ensuring the stability of the vehicle behavior.
  • a basic pressure reduction amount BDP for the low ⁇ side wheel and a basic pressure reduction amount BDP for the high ⁇ side wheel may be prepared, and the basic pressure reduction amount BDP for the high ⁇ side wheel may be appropriately changed.
  • the basic pressure increase amount BBP for the high ⁇ side wheel is set to a small value. You may make it change to. In this case, as compared with the case of the above-described embodiment, it is possible to make the pressure reduction gradient of the WC pressure with respect to the high ⁇ side wheel HFW in the pressure reduction period PD more gentle, and to increase the braking force on the entire vehicle.
  • the slip amount Slp of the high ⁇ side wheel HFW is greater than or equal to the reference value in one control cycle including the previous decompression period PD
  • the basic decompression amount BDP for the high ⁇ side wheel is set to a large value. It is preferable to change. As a result, the vehicle deceleration can be further increased while ensuring the stability of the vehicle behavior.
  • the pressure increase gradient of the WC pressure relative to the high ⁇ side wheel HFW may be determined regardless of the yaw rate deviation ⁇ Yr.
  • the duty ratio of the control signal input to the solenoid of the booster valve corresponding to the high ⁇ side wheel HFW is set to the same ratio as the duty ratio of the control signal input to the solenoid of the booster valve corresponding to the low ⁇ side wheel LFW. Also good.
  • the pressure reduction gradient of the WC pressure with respect to the high ⁇ side wheel HFW in the pressure reduction period PD is made gentler when the yaw rate deviation ⁇ Yr is large than when the yaw rate deviation ⁇ Yr is small. The effect of (3) can be obtained.
  • the pressure reduction gradient of the WC pressure relative to the high ⁇ side wheel HFW may be determined regardless of the yaw rate deviation ⁇ Yr.
  • the duty ratio of the control signal input to the solenoid of the pressure reducing valve corresponding to the high ⁇ side wheel HFW is set to the same ratio as the duty ratio of the control signal input to the solenoid of the pressure reducing valve corresponding to the low ⁇ side wheel LFW. Also good. Even in this case, when the yaw rate deviation ⁇ Yr is large, the pressure increase gradient of the WC pressure with respect to the high ⁇ side wheel HFW in the pressure increase period PI is made steeper than when the yaw rate deviation ⁇ Yr is small. ), (2), (4) can be obtained.
  • the pressure increase gain KAPP may be fixed at a value corresponding to the yaw rate deviation ⁇ Yr at the start of the pressure increase period PI. In this case, during one pressure increase period PI, the duty ratio of the control signal input to the pressure increase valve is not changed. Therefore, it is possible to reduce the control load of the control device 40 during the pressure increase period PI.
  • the decompression gain KREL may be fixed at a value corresponding to the yaw rate deviation ⁇ Yr at the start of the decompression period PD.
  • the duty ratio of the control signal input to the pressure reducing valve is not changed during one pressure reducing period PD. Therefore, it becomes possible to reduce the control load of the control device 40 during the decompression period PD.
  • the control cycle of the ABS control may not include the pressure holding period PR as long as it includes the pressure reducing period PD and the pressure increasing period PI.
  • Select low ABS control may be performed on the left and right front wheels FR and FL. In this case, it is preferable to perform left and right independent ABS control on the left and right rear wheels RR and RL.
  • the left and right front wheel wheel cylinders 15a and 15b are connected to one hydraulic circuit, and the left and right rear wheel wheel cylinders 15c and 15d are connected to the other hydraulic circuit. It may be.
  • the braking device may be a device provided with an electric brake device provided for each of the wheels FR, FL, RR, RL.
  • the braking force on the wheels FR, FL, RR, RL is controlled by adjusting the driving force of the motor provided in the corresponding electric brake device.
  • the vehicle on which the control device 40 is mounted may be a vehicle having three wheels or a vehicle having five or more wheels.
  • the control device 40 may perform select-low ABS control on diagonal left and right wheels such as the right front wheel FR and the left rear wheel RL, the left front wheel FL and the right rear wheel RR, for example.
  • Control device as a braking control device, FR, FL, RR, RL ... wheel, LFW ... low ⁇ side wheel as an example of first wheel, HFW ... high ⁇ side wheel as an example of second wheel, VS ... body speed, VW ... wheel speed, Yr ... yaw rate, Yr_Trg ... target yaw rate, .DELTA.Yr ... yaw rate deviation as an example of difference, PD ... depressurization period as an example of a decrease period, PI ... pressure increase as an example of an increase period.
  • BDP Basic pressure reduction amount as basic decrease amount
  • BBP Basic pressure increase amount as basic increase amount
  • KREL Pressure decrease gain as decrease correction coefficient
  • KAAP Pressure increase gain as increase correction coefficient
  • DP_RR Pressure decrease gain as increase correction coefficient
  • DP_RL Pressure increase gain as increase correction coefficient
  • BP_RR Pressure decrease gain as increase correction coefficient
  • BP_RL Pressure increase gain as increase correction coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

 車両の制動制御装置は、左右両輪のうち車輪速度の遅い第1の車輪に対する制動力を減少させる減少期間には左右両輪のうち車輪速度の速い第2の車輪に対する制動力を減少させ、第1の車輪に対する制動力を増大させる増大期間には第2の車輪に対する制動力を増大させるセレクトロー方式のアンチロックブレーキ制御を行う。同装置は、アンチロックブレーキ制御を行うに際し、第2の車輪に対する制動力を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも大きくするように構成される。

Description

車両の制動制御装置
 本発明は、車輪のロックを抑制して車両の操舵性を確保するアンチロックブレーキ制御を行う車両の制動制御装置に関する。
 アンチロックブレーキ制御として、いわゆるセレクトロー方式のアンチロックブレーキ制御が知られている。こうした制御では、左右両輪のうち車輪速度の遅い方の車輪が特定され、この車輪のスリップ量(又はスリップ率)に基づいて左右両輪に対する制動力を減少させる減少期間及び制動力を増大させる増大期間を含む制御サイクルが決定される。
 特許文献1には、セレクトロー方式のアンチロックブレーキ制御を行う制動制御装置の一例が開示されている。この装置では、運転者によるブレーキ操作時に、左右両輪のスリップ量に基づいて車両の走行している路面がスプリット路であるか否かが判定される。なお、スプリット路とは、左輪に接地している路面のμ値が右輪に接地している路面のμ値と乖離している路面のことである。
 そして、路面がスプリット路であるという条件下で、左右両輪のうち低μ路を走行する車輪(以下、「低μ側輪」ともいう。)のスリップ量が第1閾値を超えると、低μ側輪だけではなく高μ路を走行する車輪(以下、「高μ側輪」ともいう。)にもアンチロックブレーキ制御が開始される。すると、低μ側輪及び高μ側輪に対する制動力は、低μ側輪のスリップ量によって決定された減少期間ではそれぞれ減少され、増大期間ではそれぞれ増大される。
 また、上記の制動制御装置にあっては、高μ側輪のロック傾向が監視される。すなわち、前回の増大期間を含む一の制御サイクルで高μ側輪のスリップ量が第1閾値よりも小さい第2の閾値を超えなかった場合、高μ側輪がロック傾向になりにくいと判断できるため、今回の増大期間での高μ側輪に対する制動力の増大勾配が、前回の増大期間での高μ側輪に対する制動力の増大勾配よりも急勾配にされる。その一方で、前回の増大期間を含む一の制御サイクルで高μ側輪のスリップ量が第2の閾値を超えていた場合、高μ側輪がロック傾向になりやすいと判断できるため、今回の増大期間での高μ側輪に対する制動力の増大勾配が、前回の増大期間での高μ側輪に対する制動力の増大勾配よりも緩勾配にされる。これにより、スプリット路を走行する車両挙動の安定性が確保されるようになる。
特開2009-179322号公報
 ところで、近年では、車両がスプリット路を走行している際に上記のアンチロックブレーキ制御を行う場合であっても、車両挙動の安定性を確保した上で、車両の減速度をより大きくすることが希求されている。
 本発明の目的は、スプリット路を走行する車両でセレクトロー方式のアンチロックブレーキ制御を行うに際し、車両挙動の安定性を確保した上で車両の減速度を大きくすることができる車両の制動制御装置を提供することにある。
 上記課題を解決し得る車両の制動制御装置は、左右両輪のうち車輪速度の遅い第1の車輪に対する制動力を減少させる減少期間には左右両輪のうち車輪速度の速い第2の車輪に対する制動力を減少させ、第1の車輪に対する制動力を増大させる増大期間には第2の車輪に対する制動力を増大させるセレクトロー方式のアンチロックブレーキ制御を行う。同装置は、アンチロックブレーキ制御を行うに際し、第2の車輪に対する制動力を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも大きくするように構成される。
 車両がスプリット路を走行中に左右両輪に対して制動力が付与されているときには、低μ路に接地する車輪である低μ側輪が第1の車輪となりやすく、高μ路に接地する車輪である高μ側輪が第2の車輪となりやすい。この状態で低μ側輪のスリップ量が大きくなってアンチロックブレーキ制御の開始条件が成立すると、低μ側輪だけではなく高μ側輪に対する制動力が調整されるようになる。このとき、低μ側輪に対する制動力が減少される減少期間では高μ側輪に対する制動力も減少され、低μ側輪に対する制動力が増大される増大期間では高μ側輪に対する制動力も増大される。
 そして、こうしたセレクトロー方式のアンチロックブレーキ制御の実行中では、第2の車輪に相当する高μ側輪に対する制動力は、車両挙動の不安定傾向が小さいときには不安定傾向が大きいときよりも大きくされる。そのため、車両挙動が安定しているという条件下では、車両全体の制動力が大きくなりやすい。したがって、スプリット路を走行する車両でセレクトロー方式のアンチロックブレーキ制御を行うに際し、車両挙動の安定性を確保した上で車両の減速度を大きくすることができるようになる。
 ところで、第1の車輪に相当する低μ側輪のスリップ量によって決定される減少期間では、高μ側輪がロック傾向を示していない場合もある。こうした場合、減少期間での高μ側輪に対する制動力の減少量を極力少なくすることにより、車両全体の制動力を大きくすることができる。そこで、減少期間における第2の車輪に対する制動力の減少量を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも少なくすることが好ましい。この制御構成を採用すると、スプリット路を走行する車両でセレクトロー方式のアンチロックブレーキ制御が行われている場合、車両挙動が安定しているという条件下では、第2の車輪に相当する高μ側輪に対する制動力が小さくなりにくい。そのため、車両全体の制動力を大きくすることが可能となる。したがって、車両挙動の安定性を確保した上で車両の減速度を大きくすることができるようになる。
 なお、上記の減少量を設定する方法としては、一例として、設定されている基本減少量に減少補正係数を掛け合わせる方法が挙げられる。この場合、減少補正係数を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも小さくするようにしてもよい。
 また、上記車両の制動制御装置において、増大期間における第2の車輪に対する制動力の増大量を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも多くすることが好ましい。この制御構成を採用すると、スプリット路を走行する車両でセレクトロー方式のアンチロックブレーキ制御が行われている場合、車両挙動が安定しているという条件下では、第2の車輪に相当する高μ側輪に対する制動力が大きくなりやすい。そのため、車両全体の制動力を大きくすることが可能となる。したがって、車両挙動の安定性を確保した上で車両の減速度を大きくすることができるようになる。
 なお、上記の増大量を設定する方法としては、一例として、設定されている基本増大量に増大補正係数を掛け合わせる方法が挙げられる。この場合、増大補正係数を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも大きくするようにしてもよい。
 ここで、上記車両の制動制御装置では、車両操作態様に応じて設定される目標ヨーレートと車両のヨーレートとの差分が小さいときほど、車両挙動の不安定傾向が小さいとするようにしてもよい。これによれば、セレクトロー方式のアンチロックブレーキ制御の実行に起因する車両のヨーモーメントが小さいときには、車両挙動が安定していると判断できるため、高μ側輪に対する制動力が大きくされやすくなる。そのため、車両挙動の安定性を確保した上で車両の減速度をより大きくすることができるようになる。
車両の制動制御装置の一実施形態である制御装置を備える制動装置を模式的に示すブロック図。 ヨーレート偏差と減圧ゲインとの関係を示すマップ。 ヨーレート偏差と増圧ゲインとの関係を示すマップ。 セレクトロー方式のアンチロックブレーキ制御を行うために制御装置が実行する処理ルーチンを説明するフローチャート。 制動液圧変更処理ルーチンを説明するフローチャート。 減圧量演算処理ルーチンを説明するフローチャート。 増圧量演算処理ルーチンを説明するフローチャート。 スプリット路を走行する車両でセレクトロー方式のアンチロックブレーキ制御が実行される際において、(a)は低μ側輪及び高μ側輪の車輪速度が変化する様子を示すタイミングチャート、(b)はヨーレート偏差が変化する様子を示すタイミングチャート、(c)は減圧ゲイン及び増圧ゲインが変化する様子を示すタイミングチャート、(d)は低μ側輪に対応するホイールシリンダの液圧が変化する様子を示すタイミングチャート、(e)は高μ側輪に対応するホイールシリンダの液圧が変化する様子を示すタイミングチャート。
 以下、車両の制動装置の一実施形態について図を参照して説明する。
 図1に示すように、制動装置11は、複数(本実施形態では4つ)の車輪(右前輪FR、左前輪FL、右後輪RR、及び左後輪RL)を有する車両に搭載されている。この制動装置11は、ブレーキペダル12が連結される液圧発生装置20と、各車輪FR,FL,RR,RLに対する制動力を調整するブレーキアクチュエータ30と、ブレーキアクチュエータ30を制御する制動制御装置の一例としての制御装置40とを備えている。
 液圧発生装置20には、運転者によるブレーキペダル12の操作力を倍力するブースタ21と、このブースタ21によって倍力された操作力に応じたブレーキ液圧(以下、「MC圧」ともいう。)を発生するマスタシリンダ22とが設けられている。そして、運転者によってブレーキ操作が行われている場合、マスタシリンダ22からは、その内部で発生したMC圧に応じたブレーキ液がブレーキアクチュエータ30を介して車輪FR,FL,RR,RLに個別対応するホイールシリンダ15a,15b,15c,15dに供給される。すると、車輪FR,FL,RR,RLには、ホイールシリンダ15a~15dで発生するブレーキ液圧(以下、「WC圧」ともいう。)に応じた制動力が付与される。
 ブレーキアクチュエータ30には、右前輪用のホイールシリンダ15a及び左後輪用のホイールシリンダ15dに接続される第1の液圧回路31と、左前輪用のホイールシリンダ15b及び右後輪用のホイールシリンダ15cに接続される第2の液圧回路32とが設けられている。そして、第1の液圧回路31には右前輪用の経路33a及び左後輪用の経路33dが設けられるとともに、第2の液圧回路32には左前輪用の経路33b及び右後輪用の経路33cが設けられている。こうした経路33a~33dには、ホイールシリンダ15a~15dのWC圧の増圧を規制する際に作動する常開型の電磁弁である増圧弁34a,34b,34c,34dと、WC圧を減圧させる際に作動する常閉型の電磁弁である減圧弁35a,35b,35c,35dとが設けられている。
 また、液圧回路31,32には、ホイールシリンダ15a~15dから減圧弁35a~35dを介して流出したブレーキ液が一時貯留されるリザーバ361,362と、リザーバ361,362内に一時貯留されているブレーキ液を吸引して液圧回路31,32におけるマスタシリンダ22側に吐出するためのポンプ371,372とが設けられている。これら各ポンプ371,372は、同一の駆動モータ38の駆動によってポンプ作動する。
 次に、制御装置40について説明する。
 制御装置40の入力側インターフェースには、車輪FR,FL,RR,RLの車輪速度VWを検出するための車輪速度センサSE1,SE2,SE3,SE4及び車両のヨーレートYrを検出するためのヨーレートセンサSE5が電気的に接続されている。また、入力側インターフェースには、ステアリングホイール16の操舵角θを検出するための操舵角センサSE6及びブレーキペダル12の操作の有無を検出するためのブレーキスイッチSW1が電気的に接続されている。一方、制御装置40の出力側インターフェースには、各弁34a~34d,35a~35d及び駆動モータ38などが電気的に接続されている。そして、制御装置40は、各種センサSE1~SE6及びブレーキスイッチSW1からの各種検出信号に基づき、各弁34a~34d,35a~35d及び駆動モータ38を制御する。
 こうした制御装置40は、CPU、ROM及びRAMなどで構成されるマイクロコンピュータを有している。ROMには、CPUが実行する各種制御処理、各種マップ及び各種閾値などが予め記憶されている。また、RAMには、車両の図示しないイグニッションスイッチが「オン」である間に適宜書き換えられる各種の情報(車両の車体速度VSなど)が記憶される。
 本実施形態の車両では、前輪FR,FLに対しては左右独立方式のアンチロックブレーキ制御(以下、「ABS制御」ともいう。)が行われ、後輪RR,RLに対してはセレクトロー方式のABS制御が行われるようになっている。左右独立方式のABS制御では、運転者によるブレーキ操作によって、例えば右前輪FRのスリップ量Slpがスリップ判定値SlpTh以上になると、右前輪FRに対してABS制御が開始される。しかし、このとき、左前輪FLのスリップ量Slpがスリップ判定値SlpTh未満である場合、左前輪FLにはABS制御が行われない。
 これに対し、セレクトロー方式のABS制御では、運転者によるブレーキ操作によって、左右の両後輪RR,RLのうち少なくとも一方の後輪のスリップ量Slpがスリップ判定値SlpTh以上になると、両後輪RR,RLに対してABS制御が開始される。しかも、両後輪RR,RLに対する制御サイクルは同一サイクルとなっている。そのため、例えば右後輪RRに対応するホイールシリンダ15cのWC圧が減圧される減圧期間PDでは、左後輪RLに対応するホイールシリンダ15dのWC圧も減圧される。また、右後輪RRに対応するホイールシリンダ15cのWC圧が保圧される保圧期間PRでは、左後輪RLに対応するホイールシリンダ15dのWC圧も保圧される。さらに、右後輪RRに対応するホイールシリンダ15cのWC圧が増圧される増圧期間PIでは、左後輪RLに対応するホイールシリンダ15dのWC圧も増圧される。
 なお、ホイールシリンダのWC圧の調整によって車輪に対する制動力を制御する車両にあっては、減圧期間PDが、後輪RR,RLに対する制動力を減少させる減少期間に相当し、保圧期間PRが、後輪RR,RLに対する制動力を保持させる保持期間に相当する。また、増圧期間PIが、後輪RR,RLに対する制動力を増大させる増大期間に相当する。また、以降の記載においては、「車輪に対応するホイールシリンダのWC圧」を単に「車輪に対するWC圧」というものとする。
 ところで、運転者がブレーキ操作を行った際における車輪の減速度は、同車輪に対するWC圧、車輪の接地している路面のμ値などによって決まる。そのため、車両のスプリット路の走行中に運転者がブレーキ操作を行うと、低μ路に接地している車輪(以下、「低μ側輪」ともいう)LFWの減速度が、高μ路に接地している車輪(以下、「高μ側輪」ともいう)HFWの減速度よりも大きくなりやすい。すなわち、低μ側輪LFWのスリップ量Slpのほうが高μ側輪HFWのスリップ量Slpよりも大きくなりやすい。したがって、車両がスプリット路を走行する際にセレクトロー方式のABS制御が行われるときには、低μ側輪LFWのスリップ量Slpに基づいて、減圧期間PD、増圧期間PI(及び保圧期間PR)を含む制御サイクルが決定されやすい。なお、「スプリット路」とは、左側の車輪FL,RLの接地している路面のμ値が右側の車輪FR,RRの接地している路面のμ値と乖離する路面のことである。
 そのため、低μ側輪LFWのスリップ量Slpの変化態様に基づいて制御サイクルが決定される場合、高μ側輪HFWに対するWC圧は、スリップ量Slpが未だ小さくても、即ち高μ側輪HFWがロック傾向を示していなくても又はロック傾向が小さくても、減圧期間PDでは減圧されることとなる。すなわち、ロック傾向を示しにくい高μ側輪HFWに対する制動力は、ロック傾向を示しやすい低μ側輪LFWのスリップ量Slpに左右されることとなる。
 そこで、本実施形態では、セレクトロー方式のABS制御の実行中に車両挙動の不安定傾向を観察し、高μ側輪HFWに対する制動力を、車両挙動の安定性を確保した上で極力大きくしている。減圧期間PDにおいては、車両挙動の不安定傾向が小さいときには不安定傾向が大きいときよりも、減圧期間PD中での高μ側輪HFWに対するWC圧の減圧量が少なくされる。例えば、減圧期間PD中での高μ側輪HFWに対するWC圧の減圧量は、設定されている基本減少量としての基本減圧量BDPに、車両挙動の不安定傾向の大きさに応じて決定される減少補正係数としての減圧ゲインKRELを掛け合わせることにより設定される。
 また、増圧期間PIにおいては、車両挙動の不安定傾向が小さいときには不安定傾向が大きいときよりも、増圧期間PI中での高μ側輪HFWに対する増圧量が多くされる。例えば、増圧期間PI中での高μ側輪HFWに対するWC圧の増圧量は、設定されている基本増大量としての基本増圧量BBPに、車両挙動の不安定傾向の大きさに応じて決定される増大補正係数としての増圧ゲインKAPPを掛け合わせることにより設定される。
 このように減圧期間PD及び増圧期間PIで、高μ側輪HFWに対するWC圧の増減を車両挙動の不安定傾向の大きさに基づいて調整することにより、セレクトロー方式のABS制御の実行中であっても、車両挙動の安定性が確保された状態で車両全体の制動力が大きくされる。その結果、車両の制動距離の短縮化を図ることも可能となる。
 本実施形態では、車両挙動の不安定傾向を示すパラメータとして、ヨーレート偏差ΔYrが採用されている。このヨーレート偏差ΔYrは、運転者による車両操作態様に応じて設定される目標ヨーレートYr_TrgとヨーレートセンサSE5によって検出されるヨーレートYrとを以下に示す関係式(式1)に代入することで求められる。そして、ヨーレート偏差の絶対値|ΔYr|が大きいときほど、車両挙動の不安定傾向が大きいと推定することができる。
Figure JPOXMLDOC01-appb-M000001
 
 なお、目標ヨーレートYr_Trgは、ステアリングホイール16の操舵角θ及び車両の車体速度VSに応じた値であって、以下に示す関係式(式2)を用いて演算することができる。関係式(式2)において、「SF」は車両のスタビリティファクタであり、「N」は車両のステアリング装置のギア比であり、「WB」は車両のホイールベース長である。
Figure JPOXMLDOC01-appb-M000002
 
 次に、図2を参照して、上記の減圧ゲインKRELを決定するためのマップについて説明する。
 図2に示すマップは、ヨーレート偏差ΔYrと減圧ゲインKRELとの関係を示している。この図2に示すように、減圧ゲインKRELは、ヨーレート偏差ΔYrが「0(零)」であるときには最小値KREL_minに決定され、ヨーレート偏差ΔYrが「0(零)」よりも小さい第1の値ΔYr1未満であるときには最小値KREL_minよりも大きい最大値KREL_maxに決定される。そして、減圧ゲインKRELは、ヨーレート偏差ΔYrが「0(零)」未満且つ第1の値ΔYr1以上であるときには、ヨーレート偏差ΔYrが小さいほど大きい値に決定される。
 減圧ゲインの最小値KREL_minは、「0(零)」以上であって且つ「1」未満の値に設定することが好ましい。これにより、ヨーレート偏差ΔYrが「0(零)」に近い値であるときには、減圧期間PD中での高μ側輪HFWに対するWC圧の減圧量が少ない値に決定されるようになる。本実施形態では、減圧ゲインの最小値KREL_minが「0(零)」であるものとする。この場合、ヨーレート偏差ΔYrが「0(零)」である場合、減圧期間PD中では高μ側輪HFWに対するWC圧が減圧されない。
 その一方で、減圧ゲインの最大値KREL_maxは、「1」以上の値に設定することが好ましい。これにより、ヨーレート偏差ΔYrが小さい値であるときに、減圧期間PD中での高μ側輪HFWに対するWC圧の減圧量が大きい値に決定されるようになる。本実施形態では、減圧ゲインの最大値KREL_maxが「1」であるものとする。
 次に、図3を参照して、上記の増圧ゲインKAPPを決定するためのマップについて説明する。
 図3に示すマップは、ヨーレート偏差ΔYrと増圧ゲインKAPPとの関係を示している。この図3に示すように、増圧ゲインKAPPは、ヨーレート偏差ΔYrが「0(零)」であるときには最大値KAPP_maxに決定され、ヨーレート偏差ΔYrが「0(零)」よりも小さい第2の値ΔYr2未満であるときには最大値KAPP_maxよりも小さい最小値KAPP_minに決定される。そして、増圧ゲインKAPPは、ヨーレート偏差ΔYrが「0(零)」未満且つ第2の値ΔYr2以上であるときには、ヨーレート偏差ΔYrが小さいほど小さい値に決定される。なお、第2の値ΔYr2は、上記第1の値ΔYr1と同一値であってもよいし、第1の値ΔYr1とは異なる値であってもよい。
 増圧ゲインの最大値KAPP_maxは、「1」以上の値に設定することが好ましい。これにより、ヨーレート偏差ΔYrが「0(零)」に近い値であるときに、増圧期間PI中での高μ側輪HFWに対するWC圧の増圧量が大きい値に決定されるようになる。本実施形態では、増圧ゲインの最大値KAPP_maxが「1.5」であるものとする。
 その一方で、増圧ゲインの最小値KAPP_minは、「1」未満であって且つ「0(零)」以上の値に設定することが好ましい。これにより、ヨーレート偏差ΔYrが小さい値であるときに、増圧期間PI中での高μ側輪HFWに対するWC圧の増圧量が小さい値に決定されるようになる。特に最小値KAPP_minを「0(零)」とした場合、ヨーレート偏差ΔYrが第2の値ΔYr2以下である場合、増圧期間PI中では高μ側輪HFWに対するWC圧が増圧されない。本実施形態では、増圧ゲインの最小値KAPP_minが「0.5」であるものとする。
 次に、図4~図7に示すフローチャートを参照して、セレクトロー方式のABS制御を行うために制御装置40が実行する処理ルーチンについて説明する。図4に示す処理ルーチンは、ABS制御を行うためのメイン処理ルーチンであって、予め設定された所定周期毎に行われるものである。
 まず始めに、図4に示すフローチャートを参照して、メイン処理ルーチンについて説明する。
 図4に示すように、この処理ルーチンにおいて、制御装置40は、車輪速度センサSE1~SE4から出力される検出信号に基づいた各車輪FR,FL,RR,RLの車輪速度VWを取得する(ステップS11)。続いて、制御装置40は、各車輪FR,FL,RR,RLの車輪速度VWのうち少なくとも一つの車輪の車輪速度VWに基づいて車体速度VSを演算する(ステップS12)。そして、制御装置40は、後輪RR,RLのスリップ量Slpを演算する(ステップS13)。すなわち、制御装置40は、車体速度VSから右後輪RRの車輪速度VWを差し引いた値を右後輪RRのスリップ量Slpとし、車体速度VSから左後輪RLの車輪速度VWを差し引いた値を左後輪RLのスリップ量Slpとする。
 そして、制御装置40は、操舵角センサSE6から出力される検出信号に基づいたステアリングホイール16の操舵角θを取得し(ステップS14)、車体速度VS及び操舵角θを上記関係式(式2)に代入して目標ヨーレートYr_Trgを求める(ステップS15)。続いて、制御装置40は、ヨーレートセンサSE5から出力される検出信号に基づいたヨーレートYrを取得し(ステップS16)、目標ヨーレートYr_Trg及びヨーレートYrを上記関係式(式1)に代入してヨーレート偏差ΔYrを求める(ステップS17)。
 そして、制御装置40は、セレクトロー方式のABS制御が実行中であるか否かを判定する(ステップS18)。ABS制御中である場合(ステップS18:YES)、制御装置40は、セレクトロー方式のABS制御の終了条件が成立しているか否かを判定する(ステップS19)。一方、ABS制御中でない場合(ステップS18:NO)、制御装置40は、セレクトロー方式のABS制御の開始条件が成立しているか否かを判定する(ステップS20)。
 なお、セレクトロー方式のABS制御の開始条件は、運転者がブレーキ操作を行っていること、後輪RR,RLの少なくとも一方の車輪のスリップ量Slpがスリップ判定値SlpTh以上であることを含んでいる。また、セレクトロー方式のABS制御の終了条件は、車両が停止すること、又は運転者によるブレーキ操作が解消されることである。
 ステップS19において、ABS制御の終了条件が成立していない場合(ステップS19:NO)、制御装置40は、その処理を後述するステップS21に移行する。一方、ABS制御の終了条件が成立している場合(ステップS19:YES)、制御装置40は、本処理ルーチンを一旦終了する。その後、制御装置40は、リザーバ361,362内におけるブレーキ液の残量がなくなるまでポンプ371,372を作動させた後に同ポンプ371,372を停止させる終了処理を行う。
 ステップS20において、ABS制御の開始条件が成立していない場合(ステップS20:NO)、制御装置40は、本処理ルーチンを一旦終了する。一方、ABS制御の開始条件が成立している場合(ステップS20:YES)、制御装置40は、その処理を次のステップS21に移行する。
 ステップS21において、制御装置40は、後輪RR,RLに対するWC圧を個別に変更する制動液圧変更処理を行う。なお、制動液圧変更処理については、図5を用いて後述する。その後、制御装置40は、本処理ルーチンを一旦終了する。
 次に、図5に示すフローチャートを参照して、上記ステップS21の制動液圧変更処理ルーチンについて説明する。
 図5に示すように、この処理ルーチンにおいて、制御装置40は、現在の期間が減圧期間PDであるか否かを判定する(ステップS31)。現在の期間が減圧期間PDである場合(ステップS31:YES)、制御装置40は、後輪RR,RLに対するWC圧の減圧量DP_RR,DP_RLを演算する減圧量演算処理を行う(ステップS32)。なお、この減圧量演算処理については、図6を用いて後述する。
 そして、制御装置40は、演算した減圧量DP_RR,DP_RLに基づいて後輪RR,RLに対するWC圧を減圧させる減圧処理を行う(ステップS33)。この減圧処理において、制御装置40は、ポンプ371,372を作動させた状態で、後輪RR,RLに対応する増圧弁34c,34dを閉弁させるとともに、対応する減圧弁35c,35dを開弁させる。なお、増圧弁34a~34d及び減圧弁35a~35dは、PWM(Pulse Width Modulation)制御されている。そのため、制御装置40は、減圧弁35cのソレノイドに入力する制御信号のDuty比を減圧量DP_RRが大きいほど大きい比率に設定し、減圧弁35dのソレノイドに入力する制御信号のDuty比を減圧量DP_RLが大きいほど大きい比率に設定する。また、制御装置40は、増圧弁34c,34dのソレノイドに入力する制御信号のDuty比を例えば「100%」に設定する。その後、制御装置40は、本処理ルーチンを一旦終了する。
 一方、先のステップS31において、現在の期間が減圧期間PDではない場合(ステップS31:NO)、制御装置40は、現在の期間が増圧期間PIであるか否かを判定する(ステップS34)。現在の期間が増圧期間PIである場合(ステップS34:YES)、制御装置40は、後輪RR,RLに対するWC圧の増圧量BP_RR,BP_RLを演算する増圧量演算処理を行う(ステップS35)。なお、この増圧量演算処理については、図7を用いて後述する。
 そして、制御装置40は、演算した増圧量BP_RR,BP_RLに基づいて後輪RR,RLに対するWC圧を増圧させる増圧処理を行う(ステップS36)。この増圧処理において、制御装置40は、ポンプ371,372を作動させた状態で、後輪RR,RLに対応する増圧弁34c,34dを開弁させるとともに、対応する減圧弁35c,35dを閉弁させる。すなわち、制御装置40は、増圧弁34cのソレノイドに入力する制御信号のDuty比を増圧量BP_RRが大きいほど小さい比率に設定し、増圧弁34dのソレノイドに入力する制御信号のDuty比を増圧量BP_RLが大きいほど小さい比率に設定する。また、制御装置40は、減圧弁35c,35dのソレノイドに入力する制御信号のDuty比を「0%」に設定する。その後、制御装置40は、本処理ルーチンを一旦終了する。
 また、先のステップS34において、現在の期間が増圧期間PIではない場合(ステップS34:NO)、現在の期間が保圧期間PRであるため、制御装置40は、後輪RR,RLに対するWC圧を保圧させる保圧処理を行う(ステップS37)。この保圧処理において、制御装置40は、ポンプ371,372を作動させた状態で、後輪RR,RLに対応する増圧弁34c,34d及び減圧弁35c,35dを閉弁させる。すなわち、制御装置40は、増圧弁34c,34dのソレノイドに入力する制御信号のDuty比を例えば「100%」に設定するとともに、減圧弁35c,35dのソレノイドに入力する制御信号のDuty比を「0%」に設定する。その後、制御装置40は、本処理ルーチンを一旦終了する。
 次に、図6に示すフローチャートを参照して、上記ステップS32の減圧量演算処理ルーチンについて説明する。
 図6に示すように、この処理ルーチンにおいて、制御装置40は、図2に示すマップを用いて、減圧ゲインKRELを上記ステップS17で演算したヨーレート偏差ΔYrに応じた値に決定する(ステップS41)。すなわち、このステップS41では、ヨーレート偏差ΔYrが大きいときには、同ヨーレート偏差ΔYrが小さいときよりも減圧ゲインKRELが小さい値に決定される。
 続いて、制御装置40は、車両の走行中の路面がスプリット路であるか否かを判定する(ステップS42)。例えば、制御装置40は、右後輪RRのスリップ量Slpと左後輪RLのスリップ量Slpとの差分を演算し、この差分が所定のスプリット路判定値以上であるか否かを判定する。この場合、演算した差分がスプリット路判定値以上である場合には路面がスプリット路であると判定することができ、差分がスプリット路判定値未満である場合には路面がスプリット路ではないと判定することができる。
 そして、路面がスプリット路ではない場合(ステップS42:NO)、制御装置40は、右輪減圧量DP_RR及び左輪減圧量DP_RLを予め設定された基本減圧量BDPとし(ステップS43)、本処理ルーチンを一旦終了する。
 一方、路面がスプリット路である場合(ステップS42:YES)、制御装置40は、右後輪RRが高μ側輪HFWであるか否かを判定する(ステップS44)。すなわち、このステップS44では、右後輪RRが、左右の両後輪RR,RLのうち車輪速度VWの速い第2の車輪であるか否かが判定される。そして、右後輪RRが高μ側輪HFWである場合(ステップS44:YES)、右後輪RRが第2の車輪に相当し、左後輪RLが第1の車輪に相当することとなるため、制御装置40は、左輪減圧量DP_RLを基本減圧量BDPとする(ステップS45)。続いて、制御装置40は、設定した左輪減圧量DP_RL(=基本減圧量BDP)にステップS41で決定した減圧ゲインKRELを掛け合わせ、この乗算結果を右輪減圧量DP_RRとする(ステップS46)。そして、制御装置40は、本処理ルーチンを一旦終了する。
 一方、左後輪RLが高μ側輪である場合(ステップS44:YES)、右後輪RRが第1の車輪に相当し、左後輪RLが第2の車輪に相当することとなるため、制御装置40は、右輪減圧量DP_RRを基本減圧量BDPとする(ステップS47)。続いて、制御装置40は、設定した右輪減圧量DP_RR(=基本減圧量BDP)にステップS41で決定した減圧ゲインKRELを掛け合わせ、この乗算結果を左輪減圧量DP_RLとする(ステップS48)。そして、制御装置40は、本処理ルーチンを一旦終了する。
 次に、図7に示すフローチャートを参照して、上記ステップS35の増圧量演算処理ルーチンについて説明する。
 図7に示すように、この処理ルーチンにおいて、制御装置40は、図3に示すマップを用いて、増圧ゲインKAPPを、上記ステップS17で演算したヨーレート偏差ΔYrに応じた値に決定する(ステップS51)。すなわち、このステップS51では、ヨーレート偏差ΔYrが大きいときには、同ヨーレート偏差ΔYrが小さいときよりも増圧ゲインKAPPが大きい値に決定される。
 続いて、制御装置40は、車両の走行中の路面がスプリット路であるか否かを判定する(ステップS52)。そして、路面がスプリット路ではない場合(ステップS52:NO)、制御装置40は、右輪増圧量BP_RR及び左輪増圧量BP_RLを基本増圧量BBPとし、本処理ルーチンを一旦終了する。
 一方、路面がスプリット路である場合(ステップS52:YES)、制御装置40は、右後輪RRが高μ側輪HFWであるか否かを判定する(ステップS54)。すなわち、このステップS54では、右後輪RRが、左右の両後輪RR,RLのうち車輪速度VWの速い第2の車輪であるか否かが判定される。右後輪RRが高μ側輪HFWである場合(ステップS54:YES)、右後輪RRが第2の車輪に相当し、左後輪RLが第1の車輪に相当することとなるため、制御装置40は、左輪増圧量BP_RLを基本増圧量BBPとする(ステップS55)。続いて、制御装置40は、設定した左輪増圧量BP_RL(=基本増圧量BBP)にステップS51で決定した増圧ゲインKAPPを掛け合わせ、この乗算結果を右輪増圧量BP_RRとする(ステップS56)。そして、制御装置40は、本処理ルーチンを一旦終了する。
 一方、左後輪RLが高μ側輪HFWである場合(ステップS54:NO)、右後輪RRが第1の車輪に相当し、左後輪RLが第2の車輪に相当することとなるため、制御装置40は、右輪増圧量BP_RRを基本増圧量BBPとする(ステップS57)。続いて、制御装置40は、設定した右輪増圧量BP_RR(=基本増圧量BBP)にステップS51で決定した増圧ゲインKAPPを掛け合わせ、この乗算結果を左輪増圧量BP_RLとする(ステップS58)。そして、制御装置40は、本処理ルーチンを一旦終了する。
 次に、図8に示すタイミングチャートを参照して、スプリット路を直進走行する車両でセレクトロー方式のABS制御が行われる際の動作について説明する。ここでは、左右の両後輪RR,RLのうち、右後輪RRが低μ路に接地し、左後輪RLが高μ路に接地しているものとする。
 なお、図8中の(a)では、低μ側輪LFW(この場合、右後輪RR)の車輪速度VWが実線で描かれ、高μ側輪HFW(この場合、左後輪RL)の車輪速度VWが破線で描かれている。そして、運転者によるブレーキ操作中においては、左後輪RLがロック傾向を示さないため、即ち左後輪RLのスリップ量Slpがほぼ「0(零)」となるため、車両の車体速度VSが左後輪RLの車輪速度VWにほぼ一致するものとする。
 また、図8中の(d)及び(e)には、比較例のセレクトロー方式のABS制御が図示されている。この比較例では、低μ側輪LFWに対するWC圧は、本実施形態の場合と同じように減圧されたり増圧されたりする。その一方で、増圧期間PI中における高μ側輪HFWに対するWC圧の増圧勾配が本実施形態の場合と異なっている。すなわち、低μ側輪LFWのスリップ量Slpがスリップ判定値SlpTh未満の状態からスリップ判定値SlpTh以上になる回数であるロック回数が計測される。そして、ロック回数が「2」未満である場合、増圧期間PI中における高μ側輪HFWに対するWC圧の増圧勾配は、低μ側輪LFWに対するWC圧の増圧勾配と同等とされる。一方、ロック回数が「2」以上になった場合、増圧期間PI中における高μ側輪HFWに対するWC圧の増圧勾配は、前回の増圧期間PIでの増圧勾配よりも急勾配とされる。ただし、前回の増圧期間PIを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが、スリップ判定値SlpThよりも小さい基準値以上になっていた場合、今回の増圧期間PI中における高μ側輪HFWに対するWC圧の増圧勾配が、前回の増圧期間PIでの増圧勾配よりも緩勾配とされる。
 図8中の(a),(d)及び(e)に示すように、第1のタイミングt1で運転者によるブレーキ操作が開始されると、低μ側輪LFW及び高μ側輪HFWに対するWC圧がそれぞれ増圧される。すると、低μ側輪LFW及び高μ側輪HFWに対する制動力が増大され、これらの車輪速度VWが低下し始める。
 このとき、低μ側輪LFWは、高μ側輪HFWと比較して急激に減速され、高μ側輪HFWと低μ側輪LFWとの車輪速度差が次第に大きくなる。すると、図8中の(b)に示すように、車両挙動の不安定傾向を示すパラメータであるヨーレート偏差ΔYrが「0(零)」から負側に乖離していく、即ちヨーレート偏差ΔYrが次第に小さくなる。そのため、図8中の(c)に示すように、ヨーレート偏差ΔYrが小さくなるに連れて、減圧ゲインKRELが次第に大きくなる一方で、増圧ゲインKAPPが次第に小さくなる。
 そして、図8中の(a)に示すように、第2のタイミングt2では、低μ側輪LFWのスリップ量Slpがスリップ判定値SlpThに達するため、セレクトロー方式のABS制御が開始される。すると、図8中の(d)及び(e)に示すように、低μ側輪LFW及び高μ側輪HFWに対するWC圧が減圧される。このとき、低μ側輪LFWに対するWC圧は、低μ側輪LFWのロック傾向を速やかに解消させるべく急激に減圧される。
 これに対し、高μ側輪HFWに対するWC圧は、低μ側輪LFWに対するWC圧の減圧勾配とは異なる勾配で減圧される。すなわち、図8中の(e)にて実線で示すように、今回の減圧期間PDでの高μ側輪HFWに対するWC圧の減圧量が、低μ側輪LFWに対するWC圧の減圧量よりも少なくなる。しかも、ヨーレート偏差ΔYrが「0(零)」に近いときにはヨーレート偏差ΔYrが「0(零)」から乖離しているときよりも車両挙動が安定していると判断できるため、高μ側輪HFWに対するWC圧が緩やかに減圧される。
 ここで、図8中の(e)にて破線で示すように、比較例では、高μ側輪HFWに対するWC圧が、低μ側輪LFWに対するWC圧と同じ勾配で減圧される。そのため、初回の減圧期間PDが終了される第3のタイミングt3では、本実施形態における高μ側輪HFWに対するWC圧が、比較例における高μ側輪HFWに対するWC圧よりも高圧となる。すなわち、本実施形態では、減圧期間PDにおける高μ側輪HFWに対する制動力が比較例の場合よりも小さくなりにくい。
 ただし、本実施形態では、減圧期間PDでの高μ側輪HFWに対するWC圧の減圧勾配は、ヨーレート偏差ΔYrによって決まる。そのため、第2のタイミングt2から第3のタイミングt3までのようにヨーレート偏差ΔYrが次第に小さくなるときには、車両挙動の不安定傾向が次第に大きくなっていると推定できるため、WC圧の減圧勾配が次第に急勾配になる。
 そして、減圧期間PDが終了する第3のタイミングt3から第5のタイミングt5までは、低μ側輪LFW及び高μ側輪HFWに対するWC圧が保圧される保圧期間PRとされる。この保圧期間PRでは、図8中の(a)に示すように、低μ側輪LFWに対する制動力が小さい状態で保持されるため、低μ側輪LFWの車輪速度VWが次第に速くなり、スリップ量Slpが次第に小さくなる。すると、図8中の(b)に示すように、ヨーレート偏差ΔYrが次第に大きくなって「0(零)」に近づく。本実施形態では、第5のタイミングt5よりも前に、ヨーレート偏差ΔYrが「0(零)」となり、その後の第6のタイミングt6まではヨーレート偏差ΔYrが「0(零)」となる。
 また、図8中の(d)及び(e)に示すように、保圧期間PRでは、低μ側輪LFWに対するWC圧よりも高μ側輪HFWに対するWC圧のほうが高圧となっている。すなわち、本実施形態での保圧期間PRでは、比較例の保圧期間PRよりも高μ側輪HFWに対する制動力が大きい値で保持されている。そのため、保圧期間PRでの車両全体の制動力が、比較例の場合よりも大きい。
 また、保圧期間PRでは、低μ側輪LFWの車輪速度VWが高μ側輪HFWの車輪速度VWに向けて速くなる。すると、第5のタイミングt5よりも前の第4のタイミングt4で、低μ側輪LFWのスリップ量Slpがスリップ判定値SlpTh未満となる。そして、第5のタイミングt5に達すると、低μ側輪LFWの車輪速度VWが高μ側輪HFWの車輪速度VWとほぼ一致するようになる。すると、この第5のタイミングt5からは、低μ側輪LFW及び高μ側輪HFWに対するWC圧の増圧が開始される。すなわち、第5のタイミングt5から第7のタイミングt7までが、増圧期間PIとされる。
 本実施形態では、図8中の(b)に示すように、第5のタイミングt5から、第7のタイミングt7よりも前の第6のタイミングt6までは、ヨーレート偏差ΔYrが変化していない。この場合、ヨーレート偏差ΔYrがほぼ「0(零)」であるため、増圧ゲインKAPPは、最大値KAPP_max又はこの最大値KAPP_maxに近い値に決定されている。そのため、図8中の(d)及び(e)に示すように、高μ側輪HFWに対するWC圧は、低μ側輪LFWに対するWC圧と比較して急勾配で増圧される。
 ただし、図8中の(a)に示すように、第6のタイミングt6以降では、WC圧の増圧によって低μ側輪LFWの車輪速度VWが急激に低下し始め、低μ側輪LFWと高μ側輪HFWとの車輪速度差が次第に大きくなる。そのため、図8中の(b)に示すように、ヨーレート偏差ΔYrが次第に小さくなる。その結果、第6のタイミングt6以降にあっては、増圧ゲインKAPPが次第に小さくなるため、高μ側輪HFWに対するWC圧の増圧勾配が次第に緩やかになる。
 ここで、比較例の場合にあっては、第2のタイミングt2から第5のタイミングt5までの期間では、低μ側輪LFWのスリップ量Slpがスリップ判定値SlpTh以上になったロック回数は「1」である。そのため、高μ側輪HFWに対するWC圧の増圧勾配は、低μ側輪LFWに対するWC圧の増圧勾配と同等とされる。そのため、第5のタイミングt5から第7のタイミングt7までの増圧期間PIでは、高μ側輪HFWに対する制動力が本実施形態の場合と比較して小さい。言い換えると、本実施形態では、この増圧期間PIでの車両全体の制動力が比較例の場合よりも大きくなる。
 また、第2のタイミングt2から第7のタイミングまでが減圧から増圧までを繰り返すセレクトロー方式のABS制御の1回の制御サイクルであり、本実施形態では、この1回の制御サイクル期間において、高μ側輪HFWに対する制動力が低μ側輪LFWに対する制動力よりも大きくなるように制御される。
 そして、第7のタイミングt7になると、低μ側輪LFWのスリップ量Slpがスリップ判定値SlpTh以上になるため、低μ側輪LFW及び高μ側輪HFWに対するWC圧の減圧が開始される。図8中の(b)に示すように、第7のタイミングt7から第8のタイミングt8までの間では、ヨーレート偏差ΔYrが次第に小さくなるため、減圧ゲインKRELは、ヨーレート偏差ΔYrが小さくなるに連れて次第に大きくなるものの、最大値KREL_max(=1)未満となる。そのため、この減圧期間PDにおける高μ側輪HFWに対するWC圧の減圧勾配は、時間が経過するに連れて次第に緩やかにはなるものの、低μ側輪LFWに対するWC圧の減圧勾配(即ち、比較例での高μ側輪HFWに対するWC圧の減圧勾配)よりも急勾配で維持される。したがって、本実施形態では、第7のタイミングt7から第8のタイミングt8までの減圧期間PDでも、高μ側輪HFWに対する制動力が比較例の場合よりも大きくなる。
 そして、第8のタイミングt8で減圧期間PDが終了すると、低μ側輪LFW及び高μ側輪HFWに対するWC圧の保圧が開始される。すなわち、第8のタイミングt8から次の第9のタイミングt9までは、第3のタイミングt3から第5のタイミングt5までと同様に保圧期間PRとなる。
 そして、第9のタイミングt9で、低μ側輪LFWの車輪速度VWが高μ側輪HFWの車輪速度VWとほぼ一致するようになると、低μ側輪LFW及び高μ側輪HFWに対するWC圧の増圧が開始される。本実施形態では、第9のタイミングt9から第11のタイミングt11までの今回の増圧期間PIでは、前回の増圧期間PIと同様に、高μ側輪HFWに対するWC圧の増圧勾配が、ヨーレート偏差ΔYrの大きさ、即ち増圧ゲインKAPPによって決まる。第9のタイミングt9から、第11のタイミングt11よりも前の第10のタイミングt10までは、増圧ゲインKAPPが最大値KAPP_maxで保持されているのに対し、第10のタイミングt10から第11のタイミングt11までは、増圧ゲインKAPPが次第に小さくなる。そのため、高μ側輪HFWに対するWC圧の増圧勾配は、第10のタイミングt10以降では次第に緩やかになる。
 これに対し、比較例の場合においては、低μ側輪LFWでのロック回数が「2回」となっているとともに、前回の増圧期間PIを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが上記の基準値以上になっていない。そのため、今回の増圧期間PIにおいては、高μ側輪HFWに対するWC圧の増圧勾配が低μ側輪LFWに対するWC圧の増圧勾配よりも急勾配となる。
 しかし、比較例にあっては、第11のタイミングt11から第12のタイミングt12までの減圧期間PDで、高μ側輪HFWのスリップ量Slpがほぼ「0(零)」であるにも拘わらず、高μ側輪HFWに対するWC圧が急激に減圧される。
 これに対し、本実施形態にあっては、第11のタイミングt11から第12のタイミングt12までの減圧期間PDでも、それ以前の減圧期間PDと同様に、高μ側輪HFWに対するWC圧の減圧勾配は、ヨーレート偏差ΔYr、即ち減圧ゲインKRELによって決まる。そのため、比較例の場合と比較して、WC圧の減圧勾配が緩やかになりやすい。
 以上説明したように、本実施形態では、以下に示す効果を得ることができる。
 (1)車両のスプリット路の走行中にセレクトロー方式のABS制御が左右の両後輪RR,RLに実施されるに際し、車両挙動の不安定傾向が小さい場合における高μ側輪HFWに対する制動力は車両挙動の不安定傾向が大きい場合よりも大きくされる。そのため、車両挙動が安定しているという条件下では、車両全体に対する制動力をより大きくすることが可能となる。したがって、スプリット路を走行する車両でセレクトロー方式のABS制御を行うに際し、車両挙動の安定性を確保した上で車両の減速度をより大きくすることができるようになる。
 (2)その一方で、車両挙動の不安定傾向が大きいときには、高μ側輪HFWに対する制動力が、車両挙動の不安定傾向が小さいときよりも小さくされる。そのため、車両挙動の安定性の低下を抑制することができるようになる。
 (3)本実施形態では、車両挙動の不安定傾向が小さいときにおける減圧期間PDでの高μ側輪HFWに対するWC圧の減圧勾配は、車両挙動の不安定傾向が大きいときよりも緩勾配とされる。すなわち、減圧期間PDにおいては、高μ側輪HFWに対する制動力が小さくなりにくい。したがって、車両挙動の不安定傾向が許容範囲に収まるという条件下で車両全体の制動力を大きくすることができるようになる。
 (4)本実施形態では、車両挙動の不安定傾向が小さいときにおける増圧期間PIでの高μ側輪HFWに対するWC圧の増圧勾配は、車両挙動の不安定傾向が大きいときよりも急勾配とされる。すなわち、増圧期間PIにおいては、高μ側輪HFWに対する制動力が大きくなりやすい。したがって、車両挙動の不安定傾向が許容範囲に収まるという条件下で車両全体の制動力を大きくすることができるようになる。
 (5)増圧ゲインKAPP及び減圧ゲインKRELは、ヨーレート偏差ΔYrが変わる毎に更新される。そのため、一の増圧期間PI中であっても、増圧ゲインKAPPが変更されると、変更後の増圧ゲインKAPPに基づいて高μ側輪HFWに対するWC圧の増圧量が変更されることとなる。したがって、一の増圧期間PIでは、同増圧期間PIの開始時の増圧ゲインKAPPに基づいた高μ側輪HFWに対するWC圧の増圧量で固定される場合よりも、車両挙動の安定性向上と車両の減速度の上昇との両立を図ることができるようになる。
 同様に、一の減圧期間PD中であっても、減圧ゲインKRELが変更されると、変更後の減圧ゲインKRELに基づいて高μ側輪HFWに対するWC圧の減圧量が変更されることとなる。したがって、一の減圧期間PDでは、同減圧期間PDの開始時の減圧ゲインKRELに基づいた高μ側輪HFWに対するWC圧の減圧量で固定される場合よりも、車両挙動の安定性向上と車両の減速度の上昇との両立を図ることができるようになる。
 (6)増圧ゲインKAPPの最大値KAPP_maxを「2」とし、最小値KAPP_minを「1」とすることも考えられる。この場合、本実施形態の場合と比較して、増圧期間PIでの高μ側輪HFWに対するWC圧の増圧勾配を急勾配にすることが可能となる。その一方で、増圧期間PIの終了後における高μ側輪HFWに対するWC圧が本実施形態の場合よりも大きいため、減圧期間PDでは、本実施形態の場合よりも高μ側輪HFWに対するWC圧を大幅に減圧させることとなり得る。すなわち、高μ側輪HFWに対する制動力の増減が大きくなりやすい。
 この点、本実施形態では、増圧ゲインKAPPの最大値KAPP_maxを「2」よりも小さい値(1)とし、最小値KAPP_minを「1」よりも小さい値(0.5)としている。そのため、上記の場合と比較して、増圧期間PIの終了後における高μ側輪HFWに対するWC圧が小さくなるものの、減圧期間PDでの高μ側輪HFWに対するWC圧の減圧量が少なくなりやすい。すなわち、高μ側輪HFWに対する制動力の変動幅が小さくなる。したがって、セレクトロー方式のABS制御中における車両の制動力の変動幅が小さくなる分、セレクトロー方式のABS制御中におけるドライバビリティを向上させることができるようになる。
 (7)図4~図7に示す各処理ルーチンを実行すると、車両がスプリット路を走行していないときにも、左右の両後輪RR,RLのうち車輪速度VWの速いほうの車輪に対する制動力の変動態様をヨーレート偏差ΔYrによって調整することも可能となる。こうした場合としては、右後輪RRに対するブレーキの効きと左後輪RLに対するブレーキの効きとに乖離がある場合などが挙げられる。この場合、ブレーキの効きのよくない方の車輪が、スリップ量Slpが小さくなりやすいため、高μ側輪HFWと判断される。すなわち、ブレーキの効きのよくない方の車輪に対するWC圧の減圧勾配や増圧勾配が、ヨーレート偏差ΔYrによって決まるようになる。こうした場合であっても、車両がスプリット路を走行している場合と同様に、車両の安定性を確保した上で車両の減速度をより大きくすることができるようになる。
 なお、右後輪RRに装着されるタイヤと左後輪RLに装着されるタイヤの摩耗度合に乖離がある場合でも、左右の両後輪RR,RLのうち車輪速度VWの速いほうの車輪に対する制動力の変動態様をヨーレート偏差ΔYrによって調整することも可能となる。
 (8)本実施形態では、車両挙動の不安定傾向を示すパラメータとして、ヨーレート偏差ΔYrを採用している。セレクトロー方式のABS制御の実行に起因する車両のヨーモーメントが小さいときには、車両挙動が安定していると判断できるため、高μ側輪に対する制動力が大きくされる。そのため、車両挙動の安定性を確保した上で車両の減速度をより大きくすることができるようになる。
 なお、上記実施形態は以下のような別の実施形態に変更してもよい。
 ・セレクトロー方式のABS制御の実行されない右前輪FRと左前輪FLとの車輪速度差に基づいて車両挙動の不安定傾向を推定するようにしてもよい。この場合、右前輪FRと左前輪FLとの車輪速度差が大きいほど車両挙動の不安定傾向が大きいと推定することができる。
 ・減圧ゲインの最大値KREL_max、減圧ゲインの最小値KREL_min、増圧ゲインの最大値KAPP_max、増圧ゲインの最小値KAPP_minは適宜設定してもよい。例えば、減圧ゲインの最大値KREL_maxを「1」以上としてもよいし、減圧ゲインの最小値KREL_minを「0(零)」以下としてもよい。
 ・低μ側輪用の基本増圧量BBPと高μ側輪用の基本増圧量BBPとをそれぞれ用意し、高μ側輪用の基本増圧量BBPを適宜変更するようにしてもよい。例えば、前回の増圧期間PIを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが上記基準値以上にならなかった場合には、高μ側輪用の基本増圧量BBPを大きい値に変更するようにしてもよい。この場合、上記実施形態の場合と比較して、増圧期間PIでの高μ側輪HFWに対するWC圧の増圧勾配をより急勾配にすることが可能となり、車両全体に対する制動力をより大きくすることができるようになる。ただし、前回の増圧期間PIを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが上記基準値以上になっていた場合には、高μ側輪用の基本増圧量BBPを小さい値に変更することが好ましい。これにより、車両挙動の安定性を確保した上で車両の減速度をより大きくすることが可能となる。
 ・低μ側輪用の基本減圧量BDPと高μ側輪用の基本減圧量BDPとをそれぞれ用意し、高μ側輪用の基本減圧量BDPを適宜変更するようにしてもよい。例えば、前回の減圧期間PDを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが上記基準値以上にならなかった場合には、高μ側輪用の基本増圧量BBPを小さい値に変更するようにしてもよい。この場合、上記実施形態の場合と比較して、減圧期間PDでの高μ側輪HFWに対するWC圧の減圧勾配をより緩勾配にすることが可能となり、車両全体に対する制動力をより大きくすることができるようになる。ただし、前回の減圧期間PDを含む一の制御サイクルで高μ側輪HFWのスリップ量Slpが上記基準値以上になっていた場合には、高μ側輪用の基本減圧量BDPを大きい値に変更することが好ましい。これにより、車両挙動の安定性を確保した上で車両の減速度をより大きくすることが可能となる。
 ・増圧期間PIにおいては、高μ側輪HFWに対するWC圧の増圧勾配を、ヨーレート偏差ΔYrには関係なく決定するようにしてもよい。例えば、高μ側輪HFWに対応する増圧弁のソレノイドに入力される制御信号のDuty比を、低μ側輪LFWに対応する増圧弁のソレノイドに入力される制御信号のDuty比と同一比としてもよい。この場合であっても、減圧期間PDにおける高μ側輪HFWに対するWC圧の減圧勾配を、ヨーレート偏差ΔYrが大きいときにはヨーレート偏差ΔYrが小さいときよりも緩勾配にすることにより、上記(1)~(3)の効果を得ることができる。
 ・減圧期間PDにおいては、高μ側輪HFWに対するWC圧の減圧勾配を、ヨーレート偏差ΔYrには関係なく決定するようにしてもよい。例えば、高μ側輪HFWに対応する減圧弁のソレノイドに入力される制御信号のDuty比を、低μ側輪LFWに対応する減圧弁のソレノイドに入力される制御信号のDuty比と同一比としてもよい。この場合であっても、増圧期間PIにおける高μ側輪HFWに対するWC圧の増圧勾配を、ヨーレート偏差ΔYrが大きいときにはヨーレート偏差ΔYrが小さいときよりも急勾配にすることにより、上記(1),(2),(4)の効果を得ることができる。
 ・増圧期間PIが開始された場合には、増圧ゲインKAPPを、同増圧期間PIの開始時点のヨーレート偏差ΔYrに応じた値で固定するようにしてもよい。この場合、一の増圧期間PI中では、増圧弁に入力する制御信号のDuty比が変更されない。したがって、増圧期間PI中における制御装置40の制御負荷を軽減させることが可能となる。
 ・減圧期間PDが開始された場合には、減圧ゲインKRELを、同減圧期間PDの開始時点のヨーレート偏差ΔYrに応じた値で固定するようにしてもよい。この場合、一の減圧期間PD中では、減圧弁に入力する制御信号のDuty比が変更されない。したがって、減圧期間PD中における制御装置40の制御負荷を軽減させることが可能となる。
 ・ABS制御の制御サイクルは、減圧期間PDと増圧期間PIとを含んでいれば保圧期間PRを含んでいなくてもよい。
 ・左右の両前輪FR,FLに対して、セレクトロー方式のABS制御を行うようにしてもよい。この場合、左右の両後輪RR,RLに対しては左右独立方式のABS制御を行うことが好ましい。
 ・ブレーキアクチュエータとしては、左右の両前輪用のホイールシリンダ15a,15bが一方の液圧回路に連結され、左右の両後輪用のホイールシリンダ15c,15dが他方の液圧回路に連結される構成であってもよい。
 ・制動装置は、車輪FR,FL,RR,RL毎に設けられる電動ブレーキ装置を備える装置であってもよい。この場合、車輪FR,FL,RR,RLに対する制動力は、対応する電動ブレーキ装置が備えるモータの駆動力の調整によって制御されることとなる。
 ・制御装置40が搭載される車両は、3輪の車輪を有する車両であっても、5輪以上の車輪を有する車両であってもよい。
 ・制御装置40は、例えば、右前輪FR及び左後輪RLや左前輪FL及び右後輪RRなど、対角の左右輪に対してセレクトロー方式のABS制御を行ってもよい。
 40…制動制御装置としての制御装置、FR,FL,RR,RL…車輪、LFW…第1の車輪の一例としての低μ側輪、HFW…第2の車輪の一例としての高μ側輪、VS…車体速度、VW…車輪速度、Yr…ヨーレート、Yr_Trg…目標ヨーレート、ΔYr…差分の一例としてのヨーレート偏差、PD…減少期間の一例としての減圧期間、PI…増大期間の一例としての増圧期間、BDP…基本減少量としての基本減圧量、BBP…基本増大量としての基本増圧量、KREL…減少補正係数としての減圧ゲイン、KAAP…増大補正係数としての増圧ゲイン、DP_RR,DP_RL…減少量の一例としての減圧量、BP_RR,BP_RL…増大量の一例としての増圧量。

Claims (6)

  1.  左右両輪のうち車輪速度(VW)の遅い第1の車輪(LFW)に対する制動力を減少させる減少期間(PD)には前記左右両輪のうち車輪速度(VW)の速い第2の車輪(HFW)に対する制動力も減少させ、前記第1の車輪(LFW)に対する制動力を増大させる増大期間(PI)には前記第2の車輪(HFW)に対する制動力も増大させるセレクトロー方式のアンチロックブレーキ制御を行う車両の制動制御装置において、
     前記アンチロックブレーキ制御を行うに際し、前記第2の車輪(HFW)に対する制動力を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも大きくする(S46、S48、S56、S58)ように構成される車両の制動制御装置。
  2.  前記減少期間(PD)における前記第2の車輪(HFW)に対する制動力の減少量(DP_RR、DP_RL)を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも少なくする(S46、S48)、請求項1に記載の車両の制動制御装置。
  3.  前記減少期間(PD)における前記第2の車輪(HFW)に対する制動力の減少量(DP_RR、DP_RL)は、設定されている基本減少量(BDP)に減少補正係数(KREL)を掛け合わせて設定されるようになっており(S46、S48)、
     前記減少補正係数(KREL)を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも小さくする(S41)、請求項2に記載の車両の制動制御装置。
  4.  前記増大期間(PI)における前記第2の車輪(HFW)に対する制動力の増大量(BP_RR、BP_RL)を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも多くする(S56、S58)、請求項1~請求項3の何れか一項に記載の車両の制動制御装置。
  5.  前記増大期間(PI)における前記第2の車輪(HFW)に対する制動力の増大量(BP_RR、BP_RL)は、設定されている基本増大量(BBP)に増大補正係数(KAPP)を掛け合わせて設定されるようになっており(S56、S58)、
     前記増大補正係数(KAPP)を、車両挙動の不安定傾向が小さいときには車両挙動の不安定傾向が大きいときよりも大きくする(S51)、請求項4に記載の車両の制動制御装置。
  6.  車両操作態様に応じて設定される目標ヨーレート(Yr_Trg)と車両のヨーレート(Yr)との差分(|ΔYr|)が小さいときほど、車両挙動の不安定傾向が小さいとする、請求項1~請求項5の何れか一項に記載の車両の制動制御装置。
PCT/JP2013/084591 2012-12-25 2013-12-25 車両の制動制御装置 WO2014104063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/654,732 US9751509B2 (en) 2012-12-25 2013-12-25 Vehicle brake control device
CN201380066563.4A CN104870277B (zh) 2012-12-25 2013-12-25 车辆制动控制装置
DE112013006213.5T DE112013006213B4 (de) 2012-12-25 2013-12-25 Fahrzeugbremssteuerungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280863 2012-12-25
JP2012280863A JP5803893B2 (ja) 2012-12-25 2012-12-25 車両の制動制御装置

Publications (1)

Publication Number Publication Date
WO2014104063A1 true WO2014104063A1 (ja) 2014-07-03

Family

ID=51021141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084591 WO2014104063A1 (ja) 2012-12-25 2013-12-25 車両の制動制御装置

Country Status (5)

Country Link
US (1) US9751509B2 (ja)
JP (1) JP5803893B2 (ja)
CN (1) CN104870277B (ja)
DE (1) DE112013006213B4 (ja)
WO (1) WO2014104063A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107524A1 (ja) * 2017-11-29 2019-06-06 株式会社アドヴィックス 車両の制動制御装置
WO2019107523A1 (ja) * 2017-11-29 2019-06-06 株式会社アドヴィックス 車両の制動制御装置
DE112016000939B4 (de) 2015-02-27 2022-07-14 Advics Co., Ltd. Fahrzeugbremssteuerungsvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017001417A1 (de) * 2017-02-14 2018-08-16 Wabco Gmbh Verfahren zum Betrieb einer Bremse eines Kraftfahrzeugs, Fahrzeugsteuergerät und Fahrzeug
JP7139883B2 (ja) * 2018-10-29 2022-09-21 株式会社アドヴィックス 車両の制動制御装置
CN110040124B (zh) * 2019-04-24 2020-04-17 中通客车控股股份有限公司 一种车辆紧急制动控制方法及系统
CN110588615A (zh) * 2019-08-28 2019-12-20 安徽理工大学 一种基于电子机械制动集成系统协调控制策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145358A (ja) * 2003-11-19 2005-06-09 Daihatsu Motor Co Ltd 制動方法及び制動装置
JP2005193847A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 車輌の挙動制御装置
JP2011073575A (ja) * 2009-09-30 2011-04-14 Advics Co Ltd 車両運動制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986611A (en) * 1989-02-20 1991-01-22 Nippondenso Co., Ltd. Anti-lock brake control system for use in motor vehicle
JPH03118264A (ja) * 1989-09-30 1991-05-20 Aisin Seiki Co Ltd アンチスキッド制御装置
CN1098055A (zh) * 1993-03-31 1995-02-01 丰田自动车株式会社 车辆制动压力控制机构
JPH06286596A (ja) * 1993-03-31 1994-10-11 Toyota Motor Corp アンチロック型液圧ブレーキ装置
JP2001151098A (ja) * 1999-11-30 2001-06-05 Nisshinbo Ind Inc アンチロックブレーキ制御装置及び方法
JP4077613B2 (ja) * 2001-05-30 2008-04-16 トヨタ自動車株式会社 車輌用制動制御装置
US8210620B2 (en) * 2004-07-08 2012-07-03 Toyota Jidosha Kabushiki Kaisha Braking force control system for vehicles
JP4529661B2 (ja) * 2004-12-02 2010-08-25 株式会社アドヴィックス Abs制御装置
JP4705519B2 (ja) * 2005-07-28 2011-06-22 日信工業株式会社 車両用ブレーキ圧制御装置
WO2007020284A1 (de) 2005-08-19 2007-02-22 Continental Teves Ag & Co. Ohg Vorrichtung zum verkürzen des bremsweges eines fahrzeugs
JP5187479B2 (ja) * 2007-02-22 2013-04-24 株式会社アドヴィックス 車両挙動制御装置
DE102007046692B4 (de) * 2007-09-28 2021-04-29 Volkswagen Ag Antiblockiersystem für ein Kraftfahrzeug
EP2360073B1 (en) * 2008-12-09 2015-09-30 Toyota Jidosha Kabushiki Kaisha Braking control device
JP5326770B2 (ja) * 2009-04-22 2013-10-30 株式会社アドヴィックス ブレーキ制御装置
JP4816763B2 (ja) 2009-05-22 2011-11-16 株式会社アドヴィックス アンチロックブレーキ制御装置
JP5411832B2 (ja) * 2010-11-12 2014-02-12 トヨタ自動車株式会社 車両用制動制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145358A (ja) * 2003-11-19 2005-06-09 Daihatsu Motor Co Ltd 制動方法及び制動装置
JP2005193847A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 車輌の挙動制御装置
JP2011073575A (ja) * 2009-09-30 2011-04-14 Advics Co Ltd 車両運動制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016000939B4 (de) 2015-02-27 2022-07-14 Advics Co., Ltd. Fahrzeugbremssteuerungsvorrichtung
WO2019107524A1 (ja) * 2017-11-29 2019-06-06 株式会社アドヴィックス 車両の制動制御装置
WO2019107523A1 (ja) * 2017-11-29 2019-06-06 株式会社アドヴィックス 車両の制動制御装置
JP2019098796A (ja) * 2017-11-29 2019-06-24 株式会社アドヴィックス 車両の制動制御装置
JP2019098795A (ja) * 2017-11-29 2019-06-24 株式会社アドヴィックス 車両の制動制御装置
JP7047347B2 (ja) 2017-11-29 2022-04-05 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
US20160193989A1 (en) 2016-07-07
CN104870277B (zh) 2017-06-23
JP5803893B2 (ja) 2015-11-04
DE112013006213B4 (de) 2023-01-05
JP2014124972A (ja) 2014-07-07
CN104870277A (zh) 2015-08-26
DE112013006213T5 (de) 2015-09-10
US9751509B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2014104063A1 (ja) 車両の制動制御装置
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
US10676074B2 (en) Brake fluid pressure control apparatus for vehicle
JP4747959B2 (ja) 車両のブレーキ液圧制御装置
US7857399B2 (en) Anti-skid control apparatus for vehicle
JP5692533B2 (ja) 車両の制動制御装置
US10017165B2 (en) Method and device for regulating a brake system
EP3025917A1 (en) Brake control device
JP3528415B2 (ja) 制動圧力制御装置
US5727853A (en) Stability control device of vehicle improved against hunting
JP5163817B2 (ja) 車両用液圧ブレーキシステム
CN107848504B (zh) 车辆的制动控制装置
JP5215279B2 (ja) 車両用ブレーキ圧制御装置
US8155855B2 (en) Vehicle motion control apparatus
JP2000223312A (ja) 車両の制動力制御装置
JP5454062B2 (ja) 車両の制動制御装置
JP6197618B2 (ja) 車両の制動制御装置
JP6481388B2 (ja) 車両の制動制御装置
JP5966994B2 (ja) 車両用ブレーキ制御装置
JP2005035367A (ja) ブレーキ制御装置
JP6282159B2 (ja) 車両用ブレーキ制御装置
JP2022011485A (ja) 車両用ブレーキ液圧制御装置
JP6437814B2 (ja) 車両用ブレーキ制御装置
JP6136632B2 (ja) 車両の制動制御装置
JP2011068182A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867386

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14654732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013006213

Country of ref document: DE

Ref document number: 1120130062135

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867386

Country of ref document: EP

Kind code of ref document: A1