WO2014103569A1 - 導電性接着剤組成物及びそれを用いた電子素子 - Google Patents

導電性接着剤組成物及びそれを用いた電子素子 Download PDF

Info

Publication number
WO2014103569A1
WO2014103569A1 PCT/JP2013/081340 JP2013081340W WO2014103569A1 WO 2014103569 A1 WO2014103569 A1 WO 2014103569A1 JP 2013081340 W JP2013081340 W JP 2013081340W WO 2014103569 A1 WO2014103569 A1 WO 2014103569A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
conductive adhesive
adhesive composition
resin
conductive
Prior art date
Application number
PCT/JP2013/081340
Other languages
English (en)
French (fr)
Inventor
理史 金田
春樹 両見
黒田 徹
哲也 向井
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201380062821.1A priority Critical patent/CN104822789B/zh
Priority to JP2014554244A priority patent/JP6156393B2/ja
Priority to KR1020157010695A priority patent/KR102188447B1/ko
Publication of WO2014103569A1 publication Critical patent/WO2014103569A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the present invention relates to a conductive adhesive composition and an electronic device using the same, and more specifically, a conductive material having a low silver content, low resistance, heat resistance, and moisture resistance for an internal electrode of a solid electrolytic capacitor.
  • the present invention relates to an adhesive composition and an electronic device using the same.
  • a conductive adhesive composition is used as a material for bonding a chip component such as an electronic element to a lead frame or various substrates as a solder substitute and electrically or thermally conducting, or in an electronic element or on an end face. It is used as an electrode.
  • the conductive adhesive composition used inside is reduced in silver (reduced silver content) from the viewpoint of cost merit. is needed. Therefore, a paste having a low silver content, low resistance after curing, high heat resistance and high moisture resistance is required.
  • Patent Document 1 volume resistivity is reduced by using a metal powder obtained by coating copper powder with silver and silver powder. That is, in Patent Document 1, silver coated copper powder having an average particle diameter of 5 to 60 ⁇ m, silver powder having an average particle diameter of 0.5 to 15 ⁇ m, and an epoxy resin that is liquid at room temperature are essential components, and silver component is contained in the components.
  • a conductive resin paste containing 10 to 90% by weight of coated copper powder and 5 to 85% by weight of silver powder and having a total amount of silver coated copper powder and silver powder of 75 to 97% by weight is described.
  • the silver coated part may be peeled off or cracked. After application to an electronic device, the crack progresses with time and the internal metal is exposed, so that the resistance value may change, making it difficult to apply. Further, when the pressure is low, the dispersion state is not sufficient, and thus the variation tends to increase. Even with a revolving mixer or a mixer with stirring blades, the dispersion is insufficient and the performance is not exhibited.
  • Patent Documents 2 to 4 it has been studied to maintain various characteristics such as volume resistivity and strength during heating by using only silver powder. That is, in Patent Document 2, it is composed of a metal powder, an epoxy resin, a bisalkenyl-substituted nadiimide, and a curing agent, and the metal powder is blended in the range of 60 to 90% by weight, and silica, titania, alumina.
  • a conductive adhesive comprising at least one organic compound that acts as a diluent for the epoxy resin and the bisalkenyl-substituted nadiimide and is not present as a liquid when cured as an additive component has been proposed.
  • Patent Document 3 the silver powder is contained in an amount of 80 to 95% by weight with respect to the total amount. At this time, the total amount of the silver powder (a) having a tap density of 3.5 g / ml to 8.0 g / ml.
  • a conductive adhesive is proposed in which the silver powder (b) having a tap density of 0.1 to 3.5 g / ml and a tap density of 0.1 to less than 3.5 g / ml is 50% by weight or less.
  • Patent Document 4 includes 95 to 50% by weight of a conductive filler, 5 to 50% by weight of a resin binder, and a conductive filler and a specific diluent.
  • the resin binder is an epoxy resin or dicyandiamide.
  • a curing accelerator and a specific curing agent obtained by reacting a dialkylamine with an epoxy compound as a curing accelerator, and obtained by treating the powder surface of a compound having a specific functional group in the molecule with an acidic substance
  • a conductive resin composition using a material has been proposed. Although these can maintain various properties such as volume resistivity and strength during heat, the silver content is 50% by weight or more, leading to an increase in cost of the conductive adhesive composition.
  • Patent Document 5 has an average particle size of 0.5 to 2 ⁇ m and a tap density of 3 to 7 g / cm 3.
  • a conductive paste for plasma display has been proposed which contains a conductive powder having a specific surface area of 0.4 to 1.5 m 2 / g and a specific organic component as essential components and contains glass frit.
  • the low silver content can be realized and the cost can be reduced.
  • the glass frit is melted by holding at 590 ° C. for 15 minutes, and the adhesive force is expressed by re-solidification. At that time, the glass frit functions as a sintering aid for silver to reduce the volume resistivity.
  • organic substances such as resins are decomposed and evaporated at a high temperature of 590 ° C.
  • Such a conductive paste is applied when the peripheral member is not affected even if it is heat-treated at a high temperature such as a plasma display.
  • a field where heat treatment must be performed at 300 ° C. or lower is required.
  • various internal electronic devices such as tantalum capacitors and aluminum solid electrolytic capacitors are used to bond their internal electrodes and end face electrodes.
  • an organic substance such as a resin can exist, and the adhesive strength is expressed by the resin.
  • the fired silver paste as in Patent Document 5 requires heat treatment at a high temperature. Therefore, when heat treatment is performed at 300 ° C. or lower, the resin remains but cannot undergo a curing reaction, and the glass frit does not melt. Therefore, the adhesive strength is weak and not practical.
  • Patent Document 6 describes a conductive resin composition containing a conductive powder, an epoxy resin, a phenoxy resin, a latent curing agent that can be activated at 60 ° C. to 130 ° C., and a solvent.
  • a conductive metal powder, an epoxy resin serving as a binder for the metal powder, and a conductive paste containing 3 to 10% by weight of a phenoxy resin with respect to the epoxy resin are described.
  • curing agent which reacts with the hydroxyl group of phenoxy resin is not contained, the problem that it is inferior to heat resistance and moisture resistance arises.
  • electroconductivity is bad compared with the case where there are many phenoxy resins, and in the case where silver content rate is 50 weight% or less, sufficient electroconductivity cannot be obtained.
  • JP-A-11-92739 Japanese Patent Laid-Open No. 11-140417 JP 2003-147279 A JP 2001-192437 A JP 11-339554 A JP 2009-269976 A JP-A-9-92029
  • an object of the present invention is to provide a conductive adhesive composition that can be cured at a low temperature and can realize a low silver content, low resistance, high adhesion, and high temperature moisture resistance, and the use thereof. It is to provide an electronic device.
  • a conductive resin composition containing silver powder an inorganic powder filler having a specific gravity of 4 or more, a resin and a curing agent component, and a solvent as essential components.
  • a conductive adhesive composition that achieves low silver content, low resistance, high adhesion, and high temperature and humidity resistance can be obtained by using phenoxy resin and blocked isocyanate as resin components and blending specific amounts of each component. As a result, the present invention has been completed.
  • the silver powder (A) and the inorganic powder filler (B) having a specific gravity of 4 or more are the conductive powder, and the phenoxy resin (C) and the blocked isocyanate (D) are the binder.
  • a conductive adhesive composition containing a solvent (E) as a component Silver powder (A) is blended in an amount of 20 to 50% by weight with respect to the total weight, and inorganic powder filler (B) is blended in an amount of 60% by weight or less with respect to the total weight, and the amount of blocked isocyanate (D) is phenoxy resin (C)
  • a conductive adhesive composition is provided that is 5 to 90 parts by weight with respect to 100 parts by weight and contains 5 to 14% by weight of the binder component (C + D) with respect to the total weight.
  • the conductive adhesive composition according to the first invention wherein the silver powder (A) is a flaky silver powder.
  • the inorganic powder filler (B) is selected from Ni, Cu, Bi, Co, Mn, Sn, Fe, Cr, Ti, or Zr.
  • a conductive adhesive composition characterized by being one or more metal powders or one or more oxide powders selected from WO 3 , SnO 2 , ZnO 2 , ZrO 2 , or TiO 2. Is done.
  • the conductive adhesive composition according to the first or third aspect wherein the inorganic powder filler (B) has an average particle size of 1 ⁇ m or less. Provided.
  • the conductive adhesive composition according to the first aspect wherein the phenoxy resin (C) has a number average molecular weight of 5,000 or more. Is done.
  • the conductive adhesive composition according to the first aspect wherein the binder component contains an epoxy resin (F) having a number average molecular weight of 5,000 or less. Things are provided.
  • the conductive adhesive composition according to the first or sixth aspect wherein the binder component further contains a phenol resin (G). .
  • an electronic device using the conductive adhesive composition of any one of the first to seventh inventions there is provided an electronic device using the conductive adhesive composition of any one of the first to seventh inventions.
  • the conductive adhesive composition of the present invention contains a specific amount of silver powder, a specific amount of a specific gravity as an inorganic powder filler, and a specific amount of a phenoxy resin which is a polymer resin. Low resistivity can be realized with a low silver content, and the cost can be reduced. Further, as a curing agent for the phenoxy resin, a specific amount of blocked isocyanate is blended with the phenoxy resin, so that the crosslink density can be increased and high adhesion and high temperature and humidity resistance can be realized. Therefore, when the conductive adhesive composition of the present invention is applied to internal electrodes and end electrodes of various electronic devices such as tantalum capacitors and aluminum solid electrolytic capacitors, low resistance, high adhesive strength, and high temperature and humidity resistance can be realized.
  • adherent moisture resistance moisture resistance of the adherend surface
  • adherent moisture resistance moisture resistance of the adherend surface
  • the conductive adhesive composition of the present invention has a first feature in that it contains not only silver powder but also an inorganic powder filler having a specific gravity of 4 or more as the conductive powder. As long as the specific gravity of the inorganic powder filler is 4 or more, it is possible to maintain sufficient conductivity even when a metal oxide or the like is used without being limited to conductive powder such as metal powder.
  • the conductive adhesive composition of the present invention has a second feature in that a specific amount of phenoxy resin and blocked isocyanate is blended.
  • Silver powder is a conductive component of the conductive adhesive composition.
  • the size of the particle size is not particularly limited, but the average particle size is preferably 30 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. In this range, it is desirable to mix a large particle size and a small particle size.
  • the shape is not particularly limited, but in consideration of price, handleability, storage stability, obtained characteristics, etc., application of flaky silver powder or spherical silver powder is desirable, and application of flaky silver powder is preferred. However, spherical powder or acicular powder may be applied according to the method of use of the conductive adhesive and the required characteristics.
  • silver powder usually, pure silver containing no lead is used as the silver powder.
  • Sn, Bi, In, Pd, Ni, Cu, or other metals or alloys, or mixed powders may be used as long as the object of the present invention is not impaired. good.
  • the blending ratio of silver powder is set within the range of 20-50% by weight. If it is 50% by weight or less, there is a cost merit, but if the blending ratio is less than 20% by weight, the electrical conductivity is inferior, which is not preferable.
  • the range of 20 to 45% by weight is preferable, and the range of 20 to 40% by weight is more preferable.
  • an inorganic powder having a specific gravity of 4 or more is used as the inorganic powder filler (B).
  • the inorganic powder filler is not particularly limited, but as metal powder, Ni, Cu, Bi, Co, Mn, Sn, Fe, Cr, Ti, Zr, etc., as oxide powder, WO 3 , SnO 2 , ZnO 2 , ZrO 2 , TiO 2 , and other nitrides, carbides, hydroxides, carbonates, sulfates and the like. These are all inorganic powders having a specific gravity of 4 or more, and may be used alone or in combination. An inorganic powder having a specific gravity of less than 4 such as Al, Mg, or MgO is not preferable because the volume resistivity of the conductive adhesive is increased.
  • the particle size of the inorganic powder filler is not particularly limited, but those having an average particle size of 1 ⁇ m or less are preferable. If the average particle diameter exceeds 1 ⁇ m, contact between silver powders having high conductivity is hindered, so that electrical conductivity may be deteriorated. By using a fine inorganic powder, the conductivity between silver powders is not hindered.
  • the blending ratio of the inorganic powder filler (B) is set to 60% by weight or less with respect to the total amount. If the inorganic powder filler (B) exceeds 60% by weight, the coating properties deteriorate, which is not preferable. On the other hand, if the inorganic powder filler (B) is less than 1% by weight, the electrical conductivity may be inferior.
  • the amount is preferably 3 to 55% by weight, more preferably 5 to 50% by weight, and still more preferably 10 to 40% by weight.
  • a phenoxy resin is used as a main binder component.
  • the phenoxy resin has a reactive epoxy group or hydroxyl group in the skeleton.
  • a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a novolac skeleton, a phenoxy resin having a naphthalene skeleton, a phenoxy resin having a biphenyl skeleton, etc. Is mentioned.
  • bisphenol A type phenoxy resin is preferable.
  • the molecular weight of the phenoxy resin is not particularly limited, but is preferably a number average molecular weight of 5,000 or more, which increases the required amount of solvent, from the viewpoint that the silver concentration in the coating film after curing is relatively increased and the conductivity is improved. .
  • the number average molecular weight of the phenoxy resin is preferably 7,000 or more, and more preferably 8,000 or more. If it is solid at room temperature, it is dissolved in the solvent (E).
  • phenoxy resins examples include jER1256, jER4250, jER4275 manufactured by Mitsubishi Chemical Corporation, YP-50, YP-50S, YP-70, ZX-1356-2, FX-316 manufactured by Nippon Steel Chemical Co., Ltd. , YPB-43C, and YPB-43M. These may be used alone or in combination.
  • the phenoxy resin has an excellent film forming property and has an effect of bringing the conductive particles into close contact with each other by curing shrinkage at the time of curing, and thus contributes to improvement of conductivity.
  • the content of the phenoxy resin is 5 to 14% by weight based on the total amount (C + D) with the blocked isocyanate.
  • the phenoxy resin is preferably blended in an amount of 5 to 13% by weight, more preferably 5 to 12% by weight. When the amount of phenoxy resin is less than 5% by weight, the adhesiveness is deteriorated, and when it is more than 14% by weight, the conductivity is deteriorated.
  • blocked isocyanate is used as a curing agent.
  • the blocked isocyanate is a compound in which the isocyanate group of the isocyanate compound is protected with a blocking agent.
  • the blocked isocyanate is usually stable at ordinary temperature, but when heated to a temperature higher than the dissociation temperature of the blocking agent, a free isocyanate group is generated. Therefore, when an isocyanate compound that is not protected with a blocking agent is used, the stability at room temperature deteriorates.
  • the dissociation temperature of the blocking agent is not particularly limited, but is preferably 50 to 200 ° C, and more preferably 100 to 180 ° C.
  • a dissociation catalyst for the blocking agent with respect to the blocked isocyanate and a curing accelerator that accelerates the reaction between the phenoxy resin and the isocyanate.
  • the dissociation catalyst and the curing accelerator are not particularly limited depending on the type, and examples thereof include organic tin compounds such as dibutyltin dilaurate and dioctyltin dilaurate, and tertiary amine compounds such as tetraethylenediamine. These may be used alone or in combination.
  • a blocked isocyanate it is possible to increase the crosslink density with the phenoxy resin and improve the adhesiveness, heat resistance, and moisture resistance.
  • the content of the blocked isocyanate is desirably 5 to 90 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 50 parts by weight, based on 100 parts by weight of the phenoxy resin.
  • the content is less than 5 parts by weight, the crosslinking density is lowered and the adhesiveness is deteriorated.
  • the content is more than 90 parts by weight, the conductivity deteriorates.
  • the blending ratio of the binder component (C + D) is preferably 5 to 14% by weight based on the total amount.
  • the binder component is preferably blended in an amount of 5 to 12% by weight, more preferably 6 to 11% by weight. If the blending ratio is less than 5% by weight, the adhesive strength and hot strength may be lowered, and if it exceeds 14% by weight, there may be problems such as deterioration of conductivity.
  • the resin binder component is used after being dissolved in the solvent (E).
  • the solvent (E) a solvent that can dissolve the resin to be blended and an organic compound that causes the solvent component to volatilize / evaporate or decompose and disperse when the adhesive composition is cured are selected.
  • the solvent examples include esters such as methyl acetate, ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol butyl ether acetate, diethylene glycol monoethyl ether acetate, and N-methyl-2-pyrrolidone.
  • esters such as methyl acetate, ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol butyl ether acetate, diethylene glycol monoethyl ether acetate, and N-methyl-2-pyrrolidone.
  • Polar solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hydrocarbon compounds such as hexane, heptane, benzene, toluene, xylene, etc. Is mentioned. These may be used alone or in combination. However, since the isocyanate group generated by dissociation of the blocking agent from the blocked isocyanate (D) is highly reactive with primary amine, secondary amine, and hydroxyl group, if a solvent having these functional groups is used, the resin curing system It is not preferable because it affects
  • a phenoxy resin which is a polymer resin
  • a large amount of solvent is required as compared with the case of a low molecular resin such as an epoxy resin. Since a solvent evaporates at the time of hardening, even if it is the same silver content rate, the silver concentration contained in the coating film after hardening increases, so that there is much solvent amount, and electroconductivity improves.
  • the solvent is preferably blended in an amount of 5 to 45% by weight, more preferably 10 to 40% by weight. If the amount of the solvent is less than 5% by weight, the viscosity of the conductive adhesive may be increased and the applicability may be deteriorated. Conversely, if the amount exceeds 45% by weight, the viscosity is too low to deteriorate the applicability. Or may adversely affect adhesion.
  • an epoxy resin can be additionally used for the binder component.
  • the epoxy resin preferably has a number average molecular weight of 5,000 or less.
  • the number average molecular weight is more preferably 4,000 or less, and further preferably 3,000 or less.
  • Adhesion moisture resistance can be improved with epoxy resins having a number average molecular weight of 5,000 or less, but even when an epoxy resin having a number average molecular weight of more than 5,000 is mixed, the adhesion moisture resistance is improved. There are things that cannot be done.
  • Examples of the epoxy resin having a number average molecular weight of 5,000 or less include, for example, epoxy resins manufactured by Mitsubishi Chemical Corporation, jER827, jER828, jER828EL, jER828XA, jER834, jER801N, jER801PN, jER802, jER813, jER816A, jER816C, jER819, jER1001 , JER1002, jER1003, jER1055, jER1004, jER1004AF, jER1007, jER1009, and the like. These may be used alone or in combination.
  • the content of the epoxy resin is preferably 0.1 to 7% by weight, more preferably 0.1 to 5% by weight, although it depends on the total weight of the binder component. As the blending amount of the epoxy resin increases, the conductivity deteriorates, but on the other hand, the adhesive strength and the adherend moisture resistance are improved.
  • a hardening agent and a hardening accelerator will not be specifically limited if it is an epoxy resin.
  • the curing agent include amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, and dicyandiamide, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydroanhydride Examples include phthalic acid, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, acid anhydrides such as methylhexahydrophthalic anhydride, polyphenols, and polyamides.
  • the curing accelerator examples include imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, tris (dimethylaminomethyl), and the like. ) Tertiary amine compounds such as phenol, benzyldimethylamine, and undecene-7. These may be used alone or in combination. When a curing agent or a curing accelerator is used, not only the moisture resistance to be bonded but also the adhesive strength is improved.
  • a phenol resin can be additionally used for the binder component.
  • the phenol resin is not particularly limited as long as it is soluble in the solvent (E), but use of a novolac type phenol resin or a resol type phenol resin is preferable. In the present invention, it is more preferable to use a novolac type phenol resin from the viewpoint of storage stability.
  • the above-mentioned curing agent for phenol resin together.
  • the curing agent include amine compounds such as hexamethylenetetramine.
  • the content of the phenol resin is preferably 0.1 to 7% by weight, more preferably 0.1 to 5% by weight, although it depends on the total weight of the binder component (C + D). Even when the epoxy resin (F) and the phenol resin (G) are contained, the total of the binder component (C + D), the epoxy resin (F), and the phenol resin (G) is 5 to 14% by weight based on the total weight. There is a need. While the blending amount of the phenol resin increases, the conductivity deteriorates, but on the other hand, the adhesive strength, the hot strength, and the moisture resistance to be bonded are improved. Even when the epoxy resin (F) and the phenol resin (G) are contained, a curing agent and a curing accelerator for these can be used in combination.
  • the conductive adhesive composition of the present invention is used as an internal electrode or an end face electrode of an electronic device such as a solid electrolytic capacitor, or an adhesive. In addition, it can also be used for bonding electronic elements such as multilayer ceramic capacitors and chip resistors. At the time of use, the conductive adhesive composition is applied to the adherend surface by dipping or screen printing and then cured by heating.
  • solid electrolytic capacitors are dielectric oxide film layers formed by oxidizing the surface of an anode body made of a sintered body obtained by pressure-molding and sintering a valve action metal such as tantalum, manganese dioxide, conductive polymer, etc.
  • a solid electrolyte layer, a carbon layer, and a silver layer made of the conductive material are sequentially formed. Thereafter, the anode lead frame and the anode lead wire are produced by resistance welding, and the cathode lead frame and the silver layer are connected by using a conductive adhesive and covered with an exterior resin.
  • the silver powder content is in the range of 20 to 50% by weight by blending specific amounts of silver powder, inorganic powder filler having a specific gravity of 4 or more, phenoxy resin, blocked isocyanate, and solvent. It is possible to realize both cost merit and low ESR.
  • (A) conductive powder As the silver powder, silver powder A: flaky silver powder and silver powder B: spherical silver powder were used.
  • the inorganic powder is Ni powder A: Ni powder having a specific gravity of 8.9 and an average particle diameter of 0.5 ⁇ m, Ni powder B: Ni powder having a specific gravity of 8.9 and an average particle diameter of 2 ⁇ m, Al powder: specific gravity Al powder having an average particle diameter of 0.5 ⁇ m in 2.7 and WO 3 powder: Tungsten trioxide powder having a specific gravity of 7.2 and an average particle diameter of 0.3 ⁇ m was used.
  • phenoxy resin A bisphenol A type solid phenoxy resin (Mitsubishi Chemical Corporation: jER1256) having a number average molecular weight of about 10,000 was used.
  • the epoxy resin includes epoxy resin A: bisphenol A type liquid epoxy resin having a number average molecular weight of about 370 (Mitsubishi Chemical Corporation: jER828), epoxy resin B: bisphenol A type solid epoxy resin having a number average molecular weight of about 1,650 ( Mitsubishi Chemical Corporation: jER1004AF), Epoxy Resin C: A bisphenol A type solid epoxy resin (Mitsubishi Chemical Corporation: jER1010) having a number average molecular weight of about 5,500 was used. Phenol / xylylene resin (Maywa Kasei Co., Ltd .: MEHC-7800H) was used as the phenol resin.
  • blocked isocyanate blocked isocyanate compound (Nippon Polyurethane Industry Co., Ltd .: Millionate MS-50, dissociation temperature 180 ° C.), non-blocking isocyanate compound (Nippon Polyurethane Industry Co., Ltd .: Coronate) CORONATE HX) was used.
  • curing agent A dicyandiamide (Mitsubishi Chemical Corporation: DICY-7)
  • curing agent B hexamethylenetetramine (Mitsubishi Gas Chemical Co., Ltd .: hexamine)
  • curing accelerator 2-phenyl -4-Methyl-5-hydroxymethylimidazole (Shikoku Kasei Co., Ltd .: Curesol 2P4MHZ-PW) was used.
  • Solvent Solvent A ethylene glycol monobutyl ether acetate (Kyowa Hakko Chemical Co., Ltd .: Butycel acetate), solvent B: phenylglycidyl ether (Sakamoto Pharmaceutical Co., Ltd .: PGE) was used.
  • each sample of Examples 1 to 23 and Comparative Examples 1 to 11 was subjected to the evaluation shown below after kneading.
  • (1) Measurement of volume resistance value A sample (conductive adhesive) is printed on an alumina substrate so as to have a rectangular shape with a width of 0.6 mm and a length of 60 mm, and left in an oven at 200 ° C. for 60 minutes to be cured. Then, it was cooled to room temperature, and the resistance value was measured at both ends on the conductive adhesive. Subsequently, the film thickness of the printed and cured thermal conductive adhesive was measured, and the volume resistivity [ ⁇ ⁇ cm] was determined from the resistance value and the film thickness.
  • a sample (conductive adhesive) was applied on one surface of an alumina substrate, and allowed to stand in an oven at 200 ° C. for 60 minutes to be cured to form a coating film. After cooling to room temperature, a conductive adhesive for adhesion measurement prepared from the following components is dropped onto this coating film, a 1.5 mm square silicon chip is placed, and a 60 ° C. oven is placed in a 60 ° C. oven. Hold for minutes to cure. Thereafter, the sample was cooled to room temperature and used as a sample for measuring the bond strength. A force was applied to the silicon chip from the horizontal direction with respect to the coating film of the measurement sample, and the force when the silicon chip was peeled was measured as the bond strength [N].
  • Conductive adhesive for adhesion measurement 72 parts by weight of flaky silver powder, 4.2 parts by weight of phenoxy resin (Mitsubishi Chemical Corporation: JER1256), blocked isocyanate (Nippon Polyurethane Industry Co., Ltd .: Millionate MS-50) 5 parts by weight, phenol / xylylene resin (Maywa Kasei Co., Ltd .: MEHC-7800H) 3.3 parts by weight, hexamethylenetetramine (Mitsubishi Chemical Corporation: hexamine) 0.33 parts by weight, ethylene glycol monobutyl ether acetate (Kyowa Hakko Chemical) Co., Ltd .: Butycel acetate) 17.76 parts by weight
  • the volume resistance value is 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less
  • the adhesive strength is 40 N or more
  • the hot adhesive strength is 4 N or more
  • the adherence is 30 N or more
  • the moisture resistance to be adhered is Regarding the property, only those satisfying all the conditions where the reduction rate of the adherence strength was 50% or less were evaluated as good ( ⁇ ), and when there was one that did not satisfy the conditions, it was determined as unacceptable ( ⁇ ).
  • Examples 1 to 23 Using the silver powder, inorganic powder component, binder resin, and solvent component described in Tables 1 and 2 as raw materials, an adhesive composition was prepared and kneaded using a three-roll kneader, and the conductive adhesive of the present invention Got. In Tables 1 and 2, the concentration of each component is shown in wt%. Using this conductive adhesive, the above measurements (1) to (7) were carried out to evaluate volume resistivity, applicability, adhesive strength, hot strength, adherence, adherent moisture resistance, and cost merit. did. The results are shown in Tables 1 and 2.
  • the conductive adhesives of Examples 1 to 23 are excellent in all of conductivity, coating property, adhesiveness, heat resistance, and moisture resistance to be bonded.
  • the conductive adhesives of Examples 13 to 16 and 18 to 23 containing an epoxy resin or a phenol resin having a number average molecular weight of 5,000 or less are more excellent in adhesion and moisture resistance.
  • Ni powder B is a Ni powder having a specific gravity of 8.9 and an average particle diameter of 2 ⁇ m, which is slightly reduced in terms of volume resistivity, adherence, and adherence moisture resistance. There is no problem in practical use.
  • the conductive adhesives of Comparative Examples 1 to 11 are inferior in any of conductivity, applicability, adhesion, heat resistance, adherend moisture resistance, and cost merit.
  • Comparative Example 1 since an inorganic powder filler having a specific gravity of 4 or less was used, the volume resistivity was high, which was not possible.
  • Comparative Example 2 the content of silver powder was less than 20% by weight, so that the volume resistivity was high and was not possible.
  • Comparative Example 3 the silver powder content was larger than 50% by weight, so there was no cost merit and it was not possible.
  • the total of the silver powder and the inorganic powder filler was not in the range of 50 to 80% by weight.
  • Comparative Example 6 the content of the blocked isocyanate was less than 5 parts by weight with respect to the phenoxy resin. In Comparative Example 7, the content of the blocked isocyanate was larger than 90 parts by weight with respect to the phenoxy resin. In Comparative Example 8, since the content of the phenoxy resin was larger than 10% by weight, the volume resistivity was high, which was not possible. In Comparative Example 9, since the content of the phenoxy resin was less than 3% by weight, the volume resistivity, applicability, adhesive strength, and the like were poor, making it impossible. Moreover, since the comparative example 10 used non-blocked isocyanate, the storage stability became impossible. Comparative Example 11 was evaluated with reference to Japanese Patent No. 3484957, but there was no cost merit and storage stability was not possible.
  • silver powder, inorganic powder filler having a specific gravity of 4 or more, phenoxy resin, blocked isocyanate, and solvent are essential components, and by adjusting the blending ratio thereof, the silver powder content is based on the total weight.
  • a conductive adhesive that maintains good electrical conductivity even in a relatively small range of 20 to 50% by weight and is excellent in adhesiveness, applicability, heat resistance, adhesiveness, and adhesive moisture resistance. be able to.
  • the conductive resin paste of the present invention can be applied to internal electrodes and end face electrodes of various electronic elements such as tantalum capacitors, aluminum solid electrolytic capacitors, chip resistors, and adhesion thereof. Moreover, since it can be cured at a low temperature, it can be easily handled and a low resistance value can be realized for a wiring electrode such as a touch panel, an electronic device using the same, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

 従来よりも低温で短時間硬化でき、固体電解コンデンサや導電性アルミ固体電解コンデンサなどの内部電極用として低抵抗で、高接着性、保存安定性に優れ且つ低銀含有率の導電性樹脂ペースト及びそれを用いた電子素子を提供する。 銀粉末(A)と比重が4以上の無機粉末フィラー(B)を導電性粉末、フェノキシ樹脂(C)とブロックイソシアネート(D)をバインダー成分とし、溶剤(E)を含む導電性接着剤組成物であって、銀粉末(A)が全重量に対して20~50重量%、かつ無機粉末フィラー(B)が全重量に対して60重量%以下配合され、ブロックイソシアネート(D)の量がフェノキシ樹脂(C)100重量部に対して5~90重量部であり、バインダー成分(C+D)が全重量に対して5~14重量%含まれることを特徴とする導電性接着剤組成物などにより提供する。

Description

導電性接着剤組成物及びそれを用いた電子素子
 本発明は、導電性接着剤組成物及びそれを用いた電子素子に関するもので、詳しくは、固体電解コンデンサの内部電極用として低銀含有率かつ低抵抗、耐熱性および耐湿性に優れた導電性接着剤組成物及びそれを用いた電子素子に関する。
 従来、導電性接着剤組成物は、ハンダ代替品として電子素子などのチップ部品をリードフレームや各種基板に接着し、電気的もしくは熱的に導通させる材料として使用したり、電子素子内部や端面の電極として使用されている。
 電子素子などのチップ部品は、小型化・高性能化が進んでいる一方で、コストメリットの観点から内部に使用される導電性接着剤組成物には低銀化(銀含有率の低減)が必要とされている。そのため、低銀含有率で、硬化後に低抵抗で耐熱性、耐湿性の高いペーストが要求されている。
 一般的な低銀化として、卑金属に銀をコートした金属粉のみやそれと銀粉末を併用する方法が選択される。例えば、特許文献1では銅粉に銀をコートした金属粉と銀粉末との併用によって体積抵抗率の低減化を図っている。
 すなわち、この特許文献1には、平均粒径が5~60μmの銀コート銅粉、平均粒径が0.5~15μmの銀粉、室温で液状のエポキシ樹脂を必須成分とし、該成分中に銀コート銅粉が10~90重量%、銀粉が5~85重量%含まれており、かつ銀コート銅粉と銀粉の合計量が75~97重量%である導電性樹脂ペーストが記載されている。
 しかし、銀をコートした金属粉を使用した場合、三本ロールでの混練時に圧力が高いと銀コート部分が剥がれたり、クラックが入ったりする。電子素子に適用後、経時変化によってクラックが進行し内部の金属が露出することにより、抵抗値が変化する可能性があるので適用しにくい。また,圧力が低いと分散状態が充分ではないため、バラツキが大きくなりやすい。自公転ミキサーや攪拌羽根付きミキサーでも分散が不充分となり性能が発揮されない。
 一方、特許文献2~4のように、銀粉末のみを使用することで体積抵抗率や熱時強度などの各種特性を維持することが検討されている。
 すなわち、特許文献2では、金属粉末、エポキシ樹脂、ビスアルケニル置換ナジイミド、及び硬化剤とで構成され、かつ上記金属粉末が60~90重量%の範囲で配合されていると共に、シリカ、チタニア、アルミナから選ばれる粉体、硬化促進剤、及びエポキシ樹脂と上記ビスアルケニル置換ナジイミドの希釈剤として作用しかつ硬化時には液体として存在しない有機化合物の少なくとも1種が添加成分として配合されている導電性接着剤が提案されている。
 また、特許文献3では、銀粉末を全量に対して80~95重量%含有させるが、その際、タップ密度が3.5g/ml以上で8.0g/ml以下の銀粉末(a)を全量に対して40~95重量%、さらにタップ密度が0.1g/ml以上で3.5g/ml未満の銀粉末(b)を50重量%以下とした導電性接着剤が提案されている。
 また、特許文献4では、導電性充填剤95重量%~50重量%及び樹脂バインダー5重量%~50重量%、及び導電性充填剤と特定の希釈剤とからなり、樹脂バインダーがエポキシ樹脂、ジシアンジアミド、硬化促進剤及び特定の硬化剤からなり、硬化促進剤としてエポキシ化合物にジアルキルアミンを反応して得られ、分子中に特定の官能基を有する化合物の粉末表面を酸性物質で処理して得たものを用いる導電性樹脂組成物が提案されている。
 これらは体積抵抗率や熱時強度などの各種特性を維持することができるものの、銀含有率が50重量%以上なので、導電性接着剤組成物のコストアップに繋がってしまう。
 これに対して、低銀含有率で低体積抵抗率を実現するために、特許文献5では、平均粒径が0.5~2μmで、かつタップ密度が3~7g/cmであり、さらに比表面積が0.4~1.5m/gである導電性粉末と特定の有機成分とを必須成分とし、ガラスフリットを含有するプラズマディスプレイ用導電ペーストが提案されている。
 特許文献5によれば、低銀含有率であり低コスト化が実現できるが、590℃で15分間保持することでガラスフリットを溶融し、再凝固によって接着力を発現させている。また、その際ガラスフリットは銀の焼結助剤として働き低体積抵抗率化を行なっている。しかし、一般的に樹脂などの有機物は590℃という高温では分解・蒸発してしまう。
 こうした導電ペーストは、プラズマディスプレイのような高温で熱処理しても周辺部材へ影響を与えない場合に適用されるが、高温熱処理による周辺部材の劣化を考えて300℃以下で熱処理しなければならない分野がある。
 それはタンタルコンデンサやアルミ固体電解コンデンサなど各種電子素子で、その内部電極や端面電極を接着する分野である。この熱処理後には樹脂などの有機物は存在し得るし、接着力はその樹脂によって発現させている。
 ところが、特許文献5のような焼成型銀ペーストは、高温での熱処理を必要とするため、300℃以下で熱処理すると、樹脂は残存するが硬化反応をさせることはできないし、ガラスフリットも溶融しないので接着力が弱くて実用性がない。
 また、樹脂組成の面から導電性を改善する方法として、フェノキシ樹脂を混合する例が知られている。特許文献6および特許文献7では、エポキシ樹脂に、優れた造膜性を持つフェノキシ樹脂を配合することで、硬化時の硬化収縮により導電粉末同士を接触させて、優れた導電性を得ることができるとされている。
 特許文献6には、導電粉末、エポキシ樹脂、フェノキシ樹脂、60℃~130℃で活性化可能な潜在性硬化剤、および溶剤を含む導電性樹脂組成物が記載されており、特許文献7には、導電性を有する金属粉と該金属粉のバインダーとなるエポキシ樹脂、およびエポキシ樹脂に対してフェノキシ樹脂を3~10重量%含有する導電性ペーストが記載されている。
 しかしながら、これらの例では、フェノキシ樹脂が多い場合は、フェノキシ樹脂の水酸基と反応する硬化剤が含まれていないため、耐熱性、耐湿性に劣るという問題が生じる。また、エポキシ樹脂の含有量が多い場合は、フェノキシ樹脂が多い場合に比べ導電性が悪く、銀含有率が50重量%以下のケースでは、十分な導電性を得ることができない。
 こうした状況の下、半導体などのチップ部品やチップ部品内で使用される材料を接着する際に、低温で硬化でき、低銀含有率かつ低抵抗、高接着性、高温耐湿性を実現した導電性接着剤組成物が切望されていた。
特開平11-92739号公報 特開平11-140417号公報 特開2003-147279号公報 特開2001-192437号公報 特開平11-339554号公報 特開2009-269976号公報 特開平9-92029号公報
 本発明の課題は、前述した従来技術の問題点に鑑み、低温で硬化でき、低銀含有率かつ低抵抗、高接着性、高温耐湿性を実現しうる導電性接着剤組成物及びそれを用いた電子素子を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、銀粉末、比重が4以上の無機粉末フィラー、樹脂と硬化剤成分、溶剤を必須成分とする導電性樹脂組成物において、樹脂成分としてフェノキシ樹脂、ブロックイソシアネートを用い、各成分を特定量配合することにより、低銀含有率かつ低抵抗、高接着性、高温耐湿性を実現した導電性接着剤組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、銀粉末(A)と比重が4以上の無機粉末フィラー(B)を導電性粉末、また、フェノキシ樹脂(C)とブロックイソシアネート(D)をバインダー成分とし、溶剤(E)を含む導電性接着剤組成物であって、
 銀粉末(A)が全重量に対して20~50重量%、かつ無機粉末フィラー(B)が全重量に対して60重量%以下配合され、ブロックイソシアネート(D)の量がフェノキシ樹脂(C)100重量部に対して5~90重量部であり、バインダー成分(C+D)が全重量に対して5~14重量%含まれることを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第2の発明によれば、第1の発明において、前記銀粉末(A)は、フレーク状の銀粉末であることを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第3の発明によれば、第1の発明において、前記無機粉末フィラー(B)は、Ni、Cu、Bi、Co、Mn、Sn、Fe、Cr、Ti、またはZrから選ばれる1種以上の金属粉、あるいは、WO、SnO、ZnO、ZrO、またはTiOから選ばれる1種以上の酸化物粉であることを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第4の発明によれば、第1または3の発明において、前記無機粉末フィラー(B)は、平均粒子径が1μm以下であることを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第5の発明によれば、第1の発明において、前記フェノキシ樹脂(C)は、数平均分子量が5,000以上であることを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第6の発明によれば、第1の発明において、前記バインダー成分が、数平均分子量5,000以下のエポキシ樹脂(F)を含有することを特徴とする導電性接着剤組成物が提供される。
 また、本発明の第7の発明によれば、第1または6の発明において、前記バインダー成分が、さらにフェノール樹脂(G)を含有することを特徴とする導電性接着剤組成物が提供される。
 一方、本発明の第8の発明によれば、第1~7のいずれかの発明の導電性接着剤組成物を用いてなる電子素子が提供される。
 本発明の導電性接着剤組成物は、銀粉末を特定量配合し、無機粉末フィラーとして特定の比重のものを特定量配合し、さらに、高分子樹脂であるフェノキシ樹脂を特定量配合するので、低銀含有率で低抵抗率を実現し、低コスト化することができる。また、フェノキシ樹脂の硬化剤として、ブロックイソシアネートをフェノキシ樹脂に対して特定量配合しており架橋密度を上げ、高接着性、高温耐湿性を実現できる。
 したがって、本発明の導電性接着剤組成物をタンタルコンデンサやアルミ固体電解コンデンサなど各種電子素子の内部電極や端面電極に適用したとき、低抵抗且つ高接着強度、高温耐湿性を実現できる。さらに、樹脂成分としてエポキシ樹脂またはフェノール樹脂を混合することによって、より被接着面の耐湿性(以下、被接着耐湿性ともいう)に優れ、かつ低銀含有率で低抵抗率を維持した導電性接着剤とすることができる。
1.導電性接着剤組成物
 以下、まず本発明の導電性接着剤組成物について詳細に説明する。
 本発明の導電性接着剤組成物は、導電性粉末として、銀粉末だけでなく比重が4以上の無機粉末フィラーを含有することに第一の特徴がある。この無機粉末フィラーは比重が4以上であれば、金属粉のような導電性を持った粉末に限らず、金属酸化物等を用いても、十分な導電性を維持することが可能である。
 また、本発明の導電性接着剤組成物は、フェノキシ樹脂とブロックイソシアネートを特定量配合することに第2の特徴がある。
[A.銀粉末]
 銀粉末は、導電性接着剤組成物の導電性成分である。粒径の大きさは、特に制限されないが、平均粒径が30μm以下のものが望ましく、20μm以下が好ましく、10μm以下がより好ましい。この範囲で粒径は大きいものと小さいものとの混合が望ましい。
 形状は特に制限されないが、価格や取扱性、保存性、得られる特性等を考慮した場合、フレーク状の銀粉末や球状の銀粉末の適用が望ましく、フレーク状の銀粉末の適用が好ましい。但し、導電性接着剤の使用方法や求められる特性に合わせて球状粉や針状粉の粉末を適用してもよい。
 通常、銀粉末は鉛を含まない純粋な銀を用いるが、本発明の目的を損なわない範囲でSn、Bi、In、Pd、Ni、Cuなどの金属や合金、あるいは混合粉を採用しても良い。
 また、銀粉末の配合割合は、20~50重量%の範囲内に設定される。50重量%以下であればコストメリットがあるが、配合割合が20重量%未満であると電気伝導性が劣り好ましくない。好ましいのは、20~45重量%の範囲、より好ましいのは、20~40重量%である。
[B.無機粉末フィラー]
 本発明では無機粉末フィラー(B)として、比重が4以上の無機粉末を使用する。
 無機粉末フィラーは、特に限定されないが、金属粉として、Ni、Cu、Bi、Co、Mn、Sn、Fe、Cr、Ti、Zrなど、酸化物粉として、WO、SnO、ZnO、ZrO、TiOなど、その他窒化物、炭化物、水酸化物、炭酸塩、硫酸塩などが挙げられる。これらは、いずれも比重が4以上の無機粉末であり、単独でも、複数種併用しても良い。比重が4未満の無機粉末、例えばAl、Mg、MgOであると、導電性接着剤の体積抵抗率が高くなるため、好ましくない。
 無機粉末フィラーの粒径は、特に制限されるわけではないが、平均粒子径が1μm以下のものが好ましい。平均粒子径が1μmを超えると導電性が大きい銀粉末同士の接触を妨げるので電気伝導性が劣化することがある。無機粉末として細かいものを使用することで、銀粉同士の導電を妨げないようになる。
 無機粉末フィラー(B)の配合割合は、全量に対して60重量%以下に設定される。無機粉末フィラー(B)が60重量%を超えると塗布性が悪化するため好ましくない。一方、無機粉末フィラー(B)が1重量%未満であると電気伝導性が劣ることがある。好ましい配合量は3~55重量%、より好ましいのは5~50重量%、さらに好ましいのは10~40重量%である。
[C.フェノキシ樹脂]
 本発明では、主たるバインダー成分としてフェノキシ樹脂を使用する。フェノキシ樹脂は、骨格中に反応性に富むエポキシ基や水酸基を有しており、例えばビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。これらの中でもビスフェノールA型フェノキシ樹脂が好ましい。
 フェノキシ樹脂の分子量は、特に制限されないが、硬化後の塗膜中の銀濃度が相対的に増加し、導電性が向上するという観点から、溶剤必要量が増える数平均分子量5,000以上が望ましい。フェノキシ樹脂の数平均分子量は7,000以上が好ましく、8,000以上がより好ましい。常温で固形の場合は、溶剤(E)に溶解させて使用する。
 上記フェノキシ樹脂の市販品としては、例えば、三菱化学株式会社製のjER1256、jER4250、jER4275、新日鉄化学株式会社製のYP-50、YP-50S、YP-70、ZX-1356-2、FX-316、YPB-43C、YPB-43Mなどが挙げられる。これらは、単独でも、複数種併用してもよい。
 フェノキシ樹脂は、前述したとおり、優れた造膜性を持ち、硬化時の硬化収縮により導電性粒子同士を密着させる効果を持つため、導電性の向上に寄与する。
 フェノキシ樹脂の含有量は、全量に対して、ブロックイソシアネートとの合計量(C+D)で5~14重量%とする。フェノキシ樹脂は、5~13重量%配合することが好ましく、5~12重量%配合することがより好ましい。フェノキシ樹脂が5重量%より少ないと、接着性が悪化し、14重量%より多いと、導電性が悪化する。
[D.ブロックイソシアネート]
 フェノキシ樹脂(C)は、骨格中に反応性に富むエポキシ基や水酸基を有しているので、硬化剤にはこれらの基と反応して、架橋構造を形成させる機能が要求される。
 そのため本発明では硬化剤として、ブロックイソシアネートを用いる。ブロックイソシアネートとは、イソシアネート化合物のイソシアネート基をブロック剤で保護したものである。
 ブロックイソシアネートは通常、常温で安定であるが、そのブロック剤の解離温度以上の温度に加熱すると、遊離のイソシアネート基を生成する。そのため、ブロック剤で保護されていないイソシアネート化合物を使用した場合、常温での安定性が悪化する。ブロック剤の解離温度は、特に制限されるわけではないが、50~200℃が好ましく、より好ましいのは100~180℃である。
 上記ブロックイソシアネートの市販品としては、例えば、日本ポリウレタン工業株式会社製のミリオネートMS-50、コロネートAPステーブル、コロネート2503、コロネート2512、コロネート2507、コロネート2527などが挙げられる。これらは、単独でも、複数種を併用してもよい。
 また、上記ブロックイソシアネートに対するブロック剤の解離触媒、フェノキシ樹脂とイソシアネートとの反応を促進する硬化促進剤を混合することも可能である。解離触媒、硬化促進剤は、種類によって特に限定されないが、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレートなどの有機スズ化合物、テトラエチレンジアミンなどの3級系アミン化合物などが挙げられる。これらは、単独でも、複数種併用してもよい。
 本発明では、ブロックイソシアネートを用いることで、フェノキシ樹脂との架橋密度をあげ、接着性、耐熱性、耐湿性を向上させることができる。
 ブロックイソシアネートの含有量は、フェノキシ樹脂100重量部に対して、5~90重量部混合することが望ましく、10~80重量部配合することが好ましく、15~50重量部配合することがより好ましい。含有量が5重量部より少ないと、架橋密度が低下し、接着性が悪化する。一方、含有量が90重量部より多いと、導電性が悪化する。
 本発明において、バインダー成分(C+D)の配合割合は、全量に対して5~14重量%とすることが望ましい。バインダー成分は、5~12重量%配合することが好ましく、6~11重量%配合することがより好ましい。配合割合が5重量%未満では接着強度や熱時強度が低下することがあり、また、14重量%を超えると導電性が悪化するなどの弊害が生じることがある。
[E.溶剤]
 本発明では、樹脂バインダー成分を溶剤(E)に溶解させて使用する。特にフェノキシ樹脂(C)、ブロックイソシアネート(D)、エポキシ樹脂(F)およびフェノール樹脂(G)が固形の場合は、溶剤(E)に溶解させて液状にする。したがって、溶剤(E)としては、配合する樹脂を溶解可能なもの、また、接着剤組成物が硬化する際、溶剤成分が揮発・蒸発し、又は分解して飛散してしまう有機化合物が選択される。
 上記溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどのエステル類、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどの極性溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロへキサノンなどのケトン類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素化合物などが挙げられる。これらは、単独でも、複数種併用してもよい。ただし、ブロックイソシアネート(D)からブロック剤が解離して生じるイソシアネート基は、1級アミン、2級アミン、水酸基との反応性が高いため、これらの官能基を持つ溶剤を使用すると、樹脂硬化系に影響を与えるため、好ましくない。
 一般に高分子樹脂であるフェノキシ樹脂を特定量以上配合することで粘度を維持する場合には、低分子樹脂、例えばエポキシ樹脂の場合と比較すると、多量の溶剤が必要となる。溶剤は、硬化時に蒸発してしまうため、同じ銀含有率であっても、溶剤量が多いほど硬化後の塗膜に含有する銀濃度が増加し、導電性が向上する。
 したがって、溶剤は、5~45重量%配合することが好ましく、10~40重量%配合することがより好ましい。溶剤の量が5重量%未満であると導電性接着剤の粘度が高くなって塗布性を悪化させる場合があり、逆に、45重量%を超えて配合すると粘度が低すぎて塗布性を悪化させたり、接着性に悪影響を与えることがある。
[F.エポキシ樹脂]
 本発明では上記バインダー成分に、さらにエポキシ樹脂を追加使用することができる。エポキシ樹脂は、その数平均分子量が5,000以下のものが好ましい。数平均分子量は4,000以下がより好ましく、3,000以下であることがさらに好ましい。数平均分子量が5,000以下のエポキシ樹脂であれば、被接着耐湿性を改善することができるが、数平均分子量が5,000より大きいエポキシ樹脂を混合しても、被接着耐湿性を改善できないことがある。
 数平均分子量が5,000以下のエポキシ樹脂としては、例えば、三菱化学株式会社製のエポキシ樹脂、jER827、jER828、jER828EL、jER828XA、jER834、jER801N、jER801PN、jER802、jER813、jER816A、jER816C、jER819、jER1001、jER1002、jER1003、jER1055、jER1004、jER1004AF、jER1007、jER1009などが挙げられる。これらは、単独でも、複数種併用してもよい。
 上記エポキシ樹脂の含有量は、バインダー成分の全重量にもよるが、好ましくは0.1~7重量%、より好ましくは0.1~5重量%である。エポキシ樹脂の配合量は、多いほど導電性が悪化するが、一方で接着強度、被接着耐湿性は向上する。
 また、上記エポキシ樹脂用の硬化剤、硬化促進剤を併用することが可能である。硬化剤、硬化促進剤は、エポキシ樹脂用であれば、特に限定されない。
 硬化剤としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド等のアミン系化合物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸などの酸無水物、ポリフェノール類、ポリアミドなどが挙げられる。
 硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、ウンデセン-7等の3級アミン系化合物などが挙げられる。
 これらは単独でも複数種混合して使用してもよい。硬化剤や硬化促進剤を使用した場合は、被接着耐湿性だけでなく、接着強度も向上する。
[G.フェノール樹脂]
 本発明では上記バインダー成分に、さらにフェノール樹脂を追加使用することができる。フェノール樹脂は、溶剤(E)に溶解するものであればよく、特に限定されないが、ノボラック型フェノール樹脂やレゾール型フェノール樹脂の使用が好ましい。本発明では、保存安定性の観点から、ノボラック型フェノール樹脂を使用することがより好ましい。
 また、上記フェノール樹脂用の硬化剤を併用することが可能である。硬化剤としては、ヘキサメチレンテトラミンなどのアミン系化合物が挙げられる。硬化剤を使用した場合は、被接着耐湿性だけでなく、接着強度も向上する。
 フェノール樹脂の含有量は、バインダー成分(C+D)の全重量にもよるが、好ましくは0.1~7重量%、より好ましくは0.1~5重量%である。エポキシ樹脂(F)とフェノール樹脂(G)とを含有する場合も、バインダー成分(C+D)とエポキシ樹脂(F)とフェノール樹脂(G)の総和が全重量に対して5~14重量%とする必要がある。フェノール樹脂の配合量は、多くなるとともに導電性が悪化するが、一方で接着強度、熱間強度、被接着耐湿性は向上する。
 エポキシ樹脂(F)とフェノール樹脂(G)とを含有する場合においても、これらに対する硬化剤、硬化促進剤を併用して使用することが可能である。
 上記のように本発明においては、数平均分子量が5,000以下のエポキシ樹脂、またはフェノール樹脂、もしくはその両方を配合することにより、硬化後の塗膜表面に露出するエポキシ基および水酸基等の反応性の高い官能基の量が増加すると考えられ、これによって、塗膜上に塗布される導電性接着剤との被接着性が向上し、接着接続面での高温耐湿性がさらに向上する。
2.電子素子
 本発明の導電性接着剤組成物は、固体電解コンデンサなどの電子素子の内部電極や端面電極、また接着剤などとして使用される。その他に、積層セラミックスコンデンサやチップ抵抗器などの電子素子などの接着にも使用することが可能である。使用時には被着面にディッピングやスクリーン印刷などによって導電性接着剤組成物を塗布した後に、加熱硬化させる。
 通常、固体電解コンデンサは、タンタル等の弁作用金属を加圧成形し焼結した焼結体からなる陽極体の表面を酸化して形成した誘電体酸化皮膜層、二酸化マンガンや導電性高分子等の導電性材料からなる固体電解質層、カーボン層、銀層を順次形成する。その後、陽極リードフレームと陽極リード線は抵抗溶接で、陰極リードフレームと銀層は、導電性接着剤を用いて接続し、外装樹脂で被覆することにより作製される。
 近年、貴金属である銀価格の上昇に伴い、固体電解コンデンサには、等価直列抵抗(ESR)が低いだけでなく、低価格のペーストが要求されている。これまでは価格を下げるため銀粉末以外の金属粉を使用すると、抵抗値が大きくなり、ESRとして使用できなかった。
 しかし、本発明では、前記の通り、銀粉末、比重が4以上の無機粉末フィラー、フェノキシ樹脂、ブロックイソシアネート、溶剤を特定量配合することにより、銀粉末の含有率を20~50重量%の範囲まで低下させながら、コストメリットと低いESRの両立を実現させることができる。
 以下に、実施例に基づき本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。なお、用いた原材料は次のとおりである。
(A)導電性粉末、
 銀粉末は、銀粉A:フレーク状銀粉末、銀粉B:球状銀粉末を用いた。
 また、無機粉末はNi粉A:比重が8.9で平均粒子径が0.5μmのNi粉末、Ni粉B:比重が8.9で平均粒子径が2μmのNi粉末、Al粉:比重が2.7で平均粒径が0.5μmのAl粉末、WO粉:比重が7.2で平均粒径が0.3μmの三酸化タングステン粉末を用いた。
(B)樹脂
 樹脂成分として、フェノキシ樹脂は、フェノキシ樹脂A:数平均分子量約10,000のビスフェノールA型固形フェノキシ樹脂(三菱化学株式会社:jER1256)を用いた。
 また、エポキシ樹脂は、エポキシ樹脂A:数平均分子量約370のビスフェノールA型液状エポキシ樹脂(三菱化学株式会社:jER828)、エポキシ樹脂B:数平均分子量約1,650のビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1004AF)、エポキシ樹脂C:数平均分子量約5,500のビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1010)を用いた。
 フェノール樹脂は、フェノール・キシリレン樹脂(明和化成株式会社:MEHC-7800H)を用いた。
(C)硬化剤
 フェノキシ樹脂用の硬化剤として、ブロックイソシアネート:ブロックイソシアネート化合物(日本ポリウレタン工業株式会社:ミリオネートMS-50、解離温度180℃)、非ブロック型イソシアネート化合物(日本ポリウレタン工業株式会社:コロネートCORONATE HX)を用いた。
 また、エポキシ樹脂用の硬化剤として、硬化剤A:ジシアンジアミド(三菱化学株式会社:DICY-7)、硬化剤B:ヘキサメチレンテトラミン(三菱ガス化学株式会社:ヘキサミン)、硬化促進剤:2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(四国化成株式会社:キュアゾール2P4MHZ-PW)を用いた。
(D)溶剤
 溶剤は、溶剤A:エチレングリコールモノブチルエーテルアセテート(協和発酵ケミカル株式会社:ブチセルアセテート)、溶剤B:フェニルグリシジルエーテル(阪本薬品工業株式会社:PGE)を用いた。
 また、実施例1~23及び、比較例1~11の各試料は混練後、下記に示す評価を行なった。
(1)体積抵抗値の測定
 アルミナ基板上に幅0.6mm、長さ60mmの長方形状となるように試料(導電性接着剤)を印刷し、200℃のオーブン中に60分間放置し、硬化した後、室温まで冷却し、導電性接着剤上の両端で抵抗値を測定した。続いて、印刷し硬化した熱導電性接着剤の膜厚を測定し、抵抗値と膜厚から体積抵抗率[Ω・cm]を求めた。
(2)塗布性の評価
 試料(導電性接着剤)を用いて、400メッシュのスクリーンにて幅100μm、長さ20mmの直線を10本印刷し、印刷面に欠け、かすれ、ダレ等があるものは不可(×)、それらが確認されない場合は良(○)とした。
(3)接着強度の測定
 アルミナ基板上に試料(導電性接着剤)を滴下し、1.5mm角のシリコンチップを載せ、200℃のオーブン中に60分間放置して硬化させた。室温まで冷却した後、この基板に対し水平方向からシリコンチップに力を加え、このシリコンチップが剥がれた時の力を接着強度[N]として測定した。
(4)熱間接着強度の測定
 銅基板上に試料(導電性接着剤)を滴下し、1.5mm角のシリコンチップを載せ、200℃のオーブン中に60分間放置して硬化させた。室温まで冷却した後、350℃に加熱されたホットプレート上に、この銅基板を20秒間放置し、その後、加熱したまま銅基板に対し、水平方向からシリコンチップに力を加え、このシリコンチップが剥がれたときの力を熱間接着強度[N]として測定した。
(5)被接着性の測定
 アルミナ基板上一面に試料(導電性接着剤)を塗布し、200℃のオーブン中に60分間放置させて硬化させ、塗膜を生成した。室温まで冷却した後、下記の成分から調製してなる被接着性測定用の導電性接着剤をこの塗膜上に滴下し、1.5mm角のシリコンチップを載せ、200℃のオーブン中に60分間保持して硬化させた。その後室温まで冷却し、被接着強度の測定試料とした。この測定試料の塗膜に対し水平方向からシリコンチップに力を加え、このシリコンチップが剥がれた時の力を被接着強度[N]として測定した。
 被接着性測定用の導電性接着剤:フレーク状銀粉72重量部、フェノキシ樹脂(三菱化学株式会社:JER1256)4.2重量部、ブロックイソシアネート(日本ポリウレタン工業株式会社:ミリオネートMS-50)2.5重量部、フェノール・キシリレン樹脂(明和化成株式会社:MEHC-7800H)3.3重量部、ヘキサメチレンテトラミン(三菱化学株式会社:ヘキサミン)0.33重量部、エチレングリコールモノブチルエーテルアセテート(協和発酵ケミカル株式会社:ブチセルアセテート)17.76重量部
(6)被接着耐湿性の評価
 上記(5)で作製した被接着強度の測定試料を、PCT(プレッシャークッカー試験)装置に入れ、温度121℃、湿度100%RH、2.1atmに48時間保持(耐湿試験)した。室温まで冷却した後、上記(5)と同様にして被接着強度を求めた。この被接着強度を上記(5)で測定した被接着強度と比較し、耐湿試験前後での被接着強度の減少率[%]を被接着耐湿性の評価の指標とした。
(7)コストメリットの評価
 銀粉の含有量が全重量に対して50重量%より多い場合はコストメリット無し(×)、50重量%以下の場合はコストメリット有り(○)とした。
(8)保存安定性の評価
 試料(導電性接着剤)を軟膏瓶に入れ密閉し、10℃で30日間放置した。放置前後の粘度をブルックフィールド社製HBT粘度計で50rpm時の粘度を測定した。保存安定性は、放置後の粘度が放置前の粘度に比べ、2倍以内であれば良(○)、2倍を超えた場合は不可(×)と評価した。
(9)総合評価
 上記の評価項目において、体積抵抗値は1×10-3Ω・cm以下、接着強度は40N以上、熱間接着強度は4N以上、被接着性については30N以上、被接着耐湿性については被接着強度の減少率が50%以下の条件を全て満たしたもののみ良(○)とし、1つでも条件に満たさないものがある場合は不可(×)とした。
(実施例1~23)
 表1、2に記載した銀粉、無機粉末成分、バインダー樹脂、溶剤成分を原料として、接着剤組成物を調製し、3本ロール型混練機を使用して混練し、本発明の導電性接着剤を得た。表1、2中、各成分の濃度は重量%で示している。
 この導電性接着剤を用いて、上記(1)~(7)の測定を実施し、体積抵抗率、塗布性、接着強度、熱間強度、被接着性、被接着耐湿性、コストメリットを評価した。この結果は表1、2に併記した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(比較例1~11)
 表3に記載した銀粉、無機粉末成分、バインダー樹脂、溶剤成分を原料として、接着剤組成物を調整し、3本ロール型混練機を使用して混練し、比較用の導電性接着剤を得た。この導電性接着剤を用いて、上記(1)~(7)により、体積抵抗率、塗布性、接着強度、熱間強度、被接着性、被接着耐湿性、コストメリットを測定・評価した。この結果は表3に併記した。
Figure JPOXMLDOC01-appb-T000003
「評価」
 表1、2から明らかなように、実施例1~23の導電性接着剤は、導電性、塗布性、接着性、耐熱性、被接着耐湿性のいずれにも優れていることが分かる。また、これらの実施例の中でも、数平均分子量5,000以下のエポキシ樹脂またはフェノール樹脂を含有している実施例13~16、18~23の導電性接着剤は、被接着耐湿性により優れていることが分かる。なお、実施例12は、Ni粉Bは比重が8.9で平均粒子径が2μmと大きいNi粉末なので、体積抵抗率、被接着性、被接着耐湿性の面で若干低下しているが、実用上問題がないレベルである。
 一方、表3から明らかなように、比較例1~11の導電性接着剤は、導電性、塗布性、接着性、耐熱性、被接着耐湿性、コストメリットのいずれかで劣っていることが分かる。すなわち、比較例1は、比重が4以下の無機粉末フィラーを用いたために、体積抵抗率が高く、不可となった。比較例2は、銀粉末の含有量が20重量%より小さいため、体積抵抗率が高く不可となった。比較例3は、銀粉末の含有量が50重量%より大きいため、コストメリットが無く、不可となった。比較例4,5は銀粉末と無機粉末フィラーの合計が50~80重量%の範囲ではないため、塗布性が悪く、不可となった。比較例6はブロックイソシアネートの含有量が、フェノキシ樹脂に対して5重量部より小さいため、接着性、耐熱性が悪く、不可となった。比較例7はブロックイソシアネートの含有量がフェノキシ樹脂に対して90重量部より大きいため、体積抵抗率が高く、不可となった。比較例8はフェノキシ樹脂の含有量が10重量%より大きいため、体積抵抗率が高く、不可となった。比較例9はフェノキシ樹脂の含有量が3重量%より小さいため、体積抵抗率、塗布性、接着強度等が悪く、不可となった。また、比較例10は非ブロックイソシアネートを用いたために、保存安定性が不可となった。比較例11は、特許第3484957号を参考に評価したが、コストメリットが無く保存安定性も不可となった。
 本発明によれば、銀粉末、比重が4以上の無機粉末フィラー、フェノキシ樹脂、ブロックイソシアネート、溶剤を必須成分とし、これらの配合比を調整することにより、銀粉末の含有量が全重量に対して20~50重量%と比較的少ない範囲においても、良好な導電性を維持し、かつ接着性、塗布性、耐熱性、被接着性、被接着耐湿性に優れた導電性接着剤を提供することができる。
 本発明の導電性樹脂ペーストは、タンタルコンデンサやアルミ固体電解コンデンサ、チップ抵抗器などの各種電子素子の内部電極や端面電極、また、それの接着に適用できる。また、低温で硬化できるためタッチパネルなどの配線電極や、それらを用いた電子素子などに対して、ハンドリングが良く低抵抗値を実現できるため、その工業的価値はきわめて大きい。

Claims (8)

  1.  銀粉末(A)と比重が4以上の無機粉末フィラー(B)を導電性粉末、また、フェノキシ樹脂(C)とブロックイソシアネート(D)をバインダー成分とし、溶剤(E)を含む導電性接着剤組成物であって、
     銀粉末(A)が全重量に対して20~50重量%、無機粉末フィラー(B)が全重量に対して60重量%以下配合され、ブロックイソシアネート(D)の量がフェノキシ樹脂(C)100重量部に対して5~90重量部であり、バインダー成分(C+D)が全重量に対して5~14重量%含まれることを特徴とする導電性接着剤組成物。
  2.  前記銀粉末(A)は、フレーク状の銀粉末であることを特徴とする請求項1に記載の導電性接着剤組成物。
  3.  前記無機粉末フィラー(B)は、Ni、Cu、Bi、Co、Mn、Sn、Fe、Cr、またはTi、Zrから選ばれる1種以上の金属粉、あるいは、WO、SnO、ZnO、ZrO、またはTiOから選ばれる1種以上の酸化物粉であることを特徴とする請求項1に記載の導電性接着剤組成物。
  4.  前記無機粉末フィラー(B)は、平均粒子径が1μm以下であることを特徴とする請求項1または3に記載の導電性接着剤組成物。
  5.  前記フェノキシ樹脂(C)は、数平均分子量が5,000以上であることを特徴とする請求項1に記載の導電性接着剤組成物。
  6.  前記バインダー成分が、数平均分子量5,000以下のエポキシ樹脂(F)を含有することを特徴とする請求項1に記載の導電性接着剤組成物。
  7.  前記バインダー成分が、さらにフェノール樹脂(G)を含有することを特徴とする請求項1または6に記載の導電性接着剤組成物。
  8.  請求項1~7のいずれかに記載の導電性接着剤組成物を用いてなる電子素子。
PCT/JP2013/081340 2012-12-25 2013-11-21 導電性接着剤組成物及びそれを用いた電子素子 WO2014103569A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380062821.1A CN104822789B (zh) 2012-12-25 2013-11-21 导电性粘接剂组合物及使用其的电子元件
JP2014554244A JP6156393B2 (ja) 2012-12-25 2013-11-21 導電性接着剤組成物及びそれを用いた電子素子
KR1020157010695A KR102188447B1 (ko) 2012-12-25 2013-11-21 도전성 접착제 조성물 및 그것을 사용한 전자 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280701 2012-12-25
JP2012280701 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103569A1 true WO2014103569A1 (ja) 2014-07-03

Family

ID=51020663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081340 WO2014103569A1 (ja) 2012-12-25 2013-11-21 導電性接着剤組成物及びそれを用いた電子素子

Country Status (5)

Country Link
JP (1) JP6156393B2 (ja)
KR (1) KR102188447B1 (ja)
CN (1) CN104822789B (ja)
TW (1) TWI599636B (ja)
WO (1) WO2014103569A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069027A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ
WO2017104434A1 (ja) * 2015-12-16 2017-06-22 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
US20180163069A1 (en) * 2015-06-09 2018-06-14 Tatsuta Electric Wire & Cable Co., Ltd. Conductive Paste
JP2020077645A (ja) * 2020-01-29 2020-05-21 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
WO2021166765A1 (ja) * 2020-02-20 2021-08-26 パナソニックIpマネジメント株式会社 電解コンデンサ用導電性ペーストおよび電解コンデンサ
EP4206292A1 (en) * 2021-12-31 2023-07-05 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203109A (ja) * 2016-05-11 2017-11-16 パナソニックIpマネジメント株式会社 導電性粒子を含む樹脂組成物およびその樹脂組成物を含む電子装置
US10658121B2 (en) * 2017-10-18 2020-05-19 Kemet Electronics Corporation Process for forming a solid electrolytic capacitor
WO2019159566A1 (ja) * 2018-02-14 2019-08-22 株式会社スリーボンド 導電性接着剤およびその硬化物
JP7281179B2 (ja) * 2019-05-30 2023-05-25 化研テック株式会社 導電性接着剤及び導電性接着剤の使用方法
US20220396094A1 (en) * 2019-11-27 2022-12-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
KR102583626B1 (ko) * 2021-02-05 2023-10-04 주식회사 엘지화학 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147618A (ja) * 1988-11-29 1990-06-06 Nitto Denko Corp エポキシ樹脂組成物及びそれを用いた接着方法
JPH0885187A (ja) * 1994-09-20 1996-04-02 Nippon Paint Co Ltd ラミネート金属板及びその製造方法
JP2004285307A (ja) * 2003-03-25 2004-10-14 Sony Chem Corp 接着剤及び電気装置の製造方法
WO2005041213A1 (ja) * 2003-10-27 2005-05-06 Toyo Boseki Kabushiki Kaisha 導電性ペースト

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188180A (ja) * 1989-12-18 1991-08-16 Hitachi Chem Co Ltd 導電性フイルム状接着剤,接着法,半導体装置および半導体装置の製造法
JPH04147618A (ja) * 1990-10-11 1992-05-21 Canon Inc オーミック電極形成方法
JPH0992029A (ja) 1995-09-28 1997-04-04 Matsushita Electric Ind Co Ltd 導電性ペースト
JPH10251606A (ja) * 1997-03-10 1998-09-22 Asahi Chem Ind Co Ltd 導電性接着剤
JP3526183B2 (ja) 1997-09-18 2004-05-10 住友ベークライト株式会社 導電性樹脂ペースト及びこれを用いて製造された半導体装置
JP3484957B2 (ja) 1997-11-10 2004-01-06 住友金属鉱山株式会社 導電性接着剤
JP3520798B2 (ja) 1998-03-19 2004-04-19 東レ株式会社 プラズマディスプレイ用導電ペ―ストならびにプラズマディスプレイおよびその基板
JP4467120B2 (ja) 2000-01-13 2010-05-26 住友金属鉱山株式会社 導電性樹脂組成物
JP3975728B2 (ja) 2001-11-19 2007-09-12 住友金属鉱山株式会社 導電性接着剤及びそれを用いた半導体等の回路基板
CN101210162B (zh) * 2006-12-28 2011-11-30 西安西电变压器有限责任公司 一种半导体胶及其制备方法
JP2009269976A (ja) 2008-05-02 2009-11-19 Taiyo Ink Mfg Ltd 導電性樹脂組成物
JP5558118B2 (ja) * 2009-07-01 2014-07-23 旭化成イーマテリアルズ株式会社 マイクロカプセル型エポキシ樹脂用硬化剤、及びそれを含むマスターバッチ型エポキシ樹脂用硬化剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147618A (ja) * 1988-11-29 1990-06-06 Nitto Denko Corp エポキシ樹脂組成物及びそれを用いた接着方法
JPH0885187A (ja) * 1994-09-20 1996-04-02 Nippon Paint Co Ltd ラミネート金属板及びその製造方法
JP2004285307A (ja) * 2003-03-25 2004-10-14 Sony Chem Corp 接着剤及び電気装置の製造方法
WO2005041213A1 (ja) * 2003-10-27 2005-05-06 Toyo Boseki Kabushiki Kaisha 導電性ペースト

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180163069A1 (en) * 2015-06-09 2018-06-14 Tatsuta Electric Wire & Cable Co., Ltd. Conductive Paste
JP2017069027A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ
WO2017104434A1 (ja) * 2015-12-16 2017-06-22 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2017111978A (ja) * 2015-12-16 2017-06-22 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2020077645A (ja) * 2020-01-29 2020-05-21 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
WO2021166765A1 (ja) * 2020-02-20 2021-08-26 パナソニックIpマネジメント株式会社 電解コンデンサ用導電性ペーストおよび電解コンデンサ
EP4206292A1 (en) * 2021-12-31 2023-07-05 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Also Published As

Publication number Publication date
TWI599636B (zh) 2017-09-21
CN104822789A (zh) 2015-08-05
CN104822789B (zh) 2016-09-28
KR20150100621A (ko) 2015-09-02
JP6156393B2 (ja) 2017-07-05
KR102188447B1 (ko) 2020-12-08
JPWO2014103569A1 (ja) 2017-01-12
TW201430099A (zh) 2014-08-01

Similar Documents

Publication Publication Date Title
JP6156393B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
EP1571680B1 (en) Electronic part with external electrode
US20110140162A1 (en) Conductive adhesive and led substrate using the same
JP5488059B2 (ja) 導電性ペースト
KR20110121572A (ko) 외부 전극용 도전성 페이스트, 및 그것을 이용하여 형성한 외부 전극을 구비한 적층 세라믹 전자 부품
EP3125254B1 (en) Conductive paste
KR101814084B1 (ko) 세라믹 칩부품의 연성외부전극 형성용 도전성 페이스트 조성물
JP4235888B2 (ja) 導電ペースト
JP2014120382A (ja) 導電性樹脂ペースト及びそれを用いた電子素子
WO2015099049A1 (ja) 導電性ペーストおよび導電性フィルム
JP2000290617A (ja) 導電性接着剤およびその使用法
JP6048166B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP5754090B2 (ja) ガラスフリット、およびこれを用いた導電性ペースト、電子デバイス
JP6852846B2 (ja) 電極用ペーストおよび積層セラミック電子部品
JP2017069027A (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
WO2016180574A1 (en) Use of an electrically conductive composition
JP4748158B2 (ja) 導電性樹脂硬化物及び電子部品モジュール
TW202112551A (zh) 導電組合物及應用該導電組合物的導電層及電路板
EP3093852B1 (en) Use of an electrically conductive composition
JP2020055912A (ja) 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
JP5764824B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP5861600B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JPH08176521A (ja) 導電性接着剤
JP4224772B2 (ja) 導電ペースト
CN107848283B (zh) 各向异性导电膜以及使用其的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554244

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010695

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866805

Country of ref document: EP

Kind code of ref document: A1