WO2014083942A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014083942A1
WO2014083942A1 PCT/JP2013/077325 JP2013077325W WO2014083942A1 WO 2014083942 A1 WO2014083942 A1 WO 2014083942A1 JP 2013077325 W JP2013077325 W JP 2013077325W WO 2014083942 A1 WO2014083942 A1 WO 2014083942A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon dioxide
silicon
silicon carbide
semiconductor device
Prior art date
Application number
PCT/JP2013/077325
Other languages
English (en)
French (fr)
Inventor
透 日吉
雄 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP13859222.5A priority Critical patent/EP2927939A4/en
Priority to US14/439,144 priority patent/US9450060B2/en
Priority to CN201380055165.2A priority patent/CN112368809A/zh
Publication of WO2014083942A1 publication Critical patent/WO2014083942A1/ja
Priority to US15/228,127 priority patent/US9716157B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/512Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being parallel to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same, and more particularly to a silicon carbide semiconductor device capable of improving the breakdown voltage characteristics of a gate runner and a method for manufacturing the same.
  • silicon carbide has been increasingly adopted as a material for semiconductor devices in order to enable the use of high-voltage, low-loss and high-temperature environments in semiconductor devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). It is being Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device. In addition, a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • a gate runner made of a material having a lower electrical resistivity than the gate electrode may be formed on the outer periphery.
  • a gate electrode (gate runner) is arranged in an outer peripheral region on a silicon carbide substrate.
  • a gate electrode is disposed above the p-type semiconductor layer, and a gate electrode pad portion (gate runner) is in contact with the gate electrode. Is arranged.
  • the gate electrode pad portion and the silicon carbide substrate are provided. An oxide film is formed.
  • the oxide film is formed by plasma CVD, for example.
  • the surface of the silicon carbide substrate may be roughened.
  • a method of forming a thermal oxide film by thermally oxidizing the surface of the silicon carbide substrate is also conceivable. In order to form a thermal oxide film having a thickness sufficient to ensure a withstand voltage, it is necessary to increase the thermal oxidation temperature. However, when the thermal oxidation temperature is increased, the surface of the silicon carbide substrate may be roughened.
  • the present invention has been made to solve such a problem, and an object of the present invention is to improve the insulating performance between the gate runner and the silicon carbide substrate while suppressing the surface roughness of the silicon carbide substrate.
  • a semiconductor device and a manufacturing method thereof are provided.
  • a thick silicon dioxide film can be easily formed by forming a material containing silicon at a position facing a region where the gate runner is formed and oxidizing the material containing silicon.
  • a silicon dioxide film formed by oxidizing a material containing silicon has a lower carbon concentration than a silicon dioxide film formed by oxidizing silicon carbide, and thus has superior insulation performance. Insulation performance with the substrate can be improved. Further, no plasma is used, and there is no need to increase the oxidation temperature. Therefore, the insulation performance between the gate runner and the substrate can be improved while suppressing the surface roughness of the silicon carbide substrate.
  • the silicon carbide semiconductor device of the present invention has the following steps.
  • a silicon carbide substrate having a first main surface and a second main surface facing each other is prepared.
  • the silicon carbide substrate includes a first impurity region having a first conductivity type, a well region in contact with the first impurity region and having a second conductivity type different from the first conductivity type, and a first impurity region formed by the well region. And a second impurity region having a first conductivity type.
  • the first main surface includes a first region in contact with a channel region sandwiched between the first impurity region and the second impurity region, and a second region different from the first region.
  • a material containing silicon is formed on the second region.
  • a first silicon dioxide region is formed on the first region.
  • a material containing silicon is oxidized to form a second silicon dioxide region.
  • a gate electrode is formed in contact with the first silicon dioxide region and the second silicon dioxide region.
  • a gate runner is formed that is electrically connected to the gate electrode and disposed at a position facing the second silicon dioxide region. The thickness of the second silicon dioxide region is greater than the thickness of the first silicon dioxide region.
  • the material containing silicon is oxidized to form the second silicon dioxide region.
  • a gate runner arranged at a position facing the second silicon dioxide region is formed.
  • the step of forming the first silicon dioxide region and the step of forming the second silicon dioxide region are performed by simultaneously oxidizing the first region and the material containing silicon. Done.
  • the first silicon dioxide region and the second silicon dioxide region are efficiently formed.
  • the thickness of the second silicon dioxide region is not less than 1.5 times and not more than 5 times the thickness of the first silicon dioxide region. If the first thickness is 1.5 times or more the second thickness, the carbon concentration in the first silicon dioxide region can be made higher than the carbon concentration in the second silicon dioxide region. On the other hand, if the first thickness is not more than 5 times the second thickness, the step between the gate electrode formed in the second silicon dioxide region and the gate electrode formed in the first silicon dioxide region is large. Therefore, the gate electrode can be formed without breaking.
  • the method for manufacturing a silicon carbide semiconductor device further includes a step of forming a source wiring arranged so as to be surrounded by the gate runner in plan view.
  • a voltage can be efficiently applied to the gate electrode from the entire outer peripheral region of the chip.
  • the gate runner is formed outside the second impurity region. Thereby, the gate runner is formed outside the source wiring.
  • the silicon carbide substrate further includes a JTE region in contact with the well region.
  • the gate runner is formed inside the JTE region.
  • the second silicon dioxide region is formed in contact with the end portion of the first main surface.
  • the pressure resistance between the gate runner and the silicon carbide substrate can be further improved.
  • the method for manufacturing a silicon carbide semiconductor device further includes a step of forming source wirings arranged so as to sandwich the gate runner in plan view. Thereby, a voltage can be applied to the gate electrode from near the center of the chip.
  • the step of forming the gate runner includes a step of forming a gate pad for applying a voltage to the gate runner.
  • the gate runner is formed so as to extend in a branched manner from the gate pad. Thereby, a voltage can be efficiently applied to the gate electrode by disposing the gate runner near the gate electrode.
  • the step of forming the second silicon dioxide region and the step of forming the third silicon dioxide region are performed simultaneously. Thereby, the second silicon dioxide region and the third silicon dioxide region are efficiently formed.
  • the silicon carbide semiconductor device includes a silicon carbide substrate, a first silicon dioxide region, a second silicon dioxide region, a gate electrode, and a gate runner.
  • the silicon carbide substrate has a first main surface and a second main surface that face each other.
  • the silicon carbide substrate includes a first impurity region having a first conductivity type, a well region in contact with the first impurity region and having a second conductivity type different from the first conductivity type, and a first impurity region formed by the well region. And a second impurity region having a first conductivity type.
  • the first main surface includes a first region in contact with a channel region sandwiched between the first impurity region and the second impurity region, and a second region different from the first region.
  • the first silicon dioxide region is disposed on the first region.
  • the second silicon dioxide region is disposed on the second region.
  • the gate electrode is in contact with the first silicon dioxide region and the second silicon dioxide region.
  • the gate runner is electrically connected to the gate electrode and disposed at a position facing the second silicon dioxide region.
  • the second silicon dioxide region is thicker than the first silicon dioxide region.
  • the carbon concentration in the second silicon dioxide region is lower than the carbon concentration in the first silicon dioxide region.
  • the gate runner is arranged at a position facing the second silicon dioxide region, and the carbon concentration of the second silicon dioxide region is the same as that of the first silicon dioxide region. Lower than carbon concentration. Thereby, the insulation performance of a gate runner and a silicon carbide substrate can be improved.
  • the thickness of the second silicon dioxide region is not less than 1.5 times and not more than 5 times the thickness of the first silicon dioxide region.
  • a silicon carbide semiconductor device capable of improving the insulation performance between the gate runner and the silicon carbide substrate while suppressing the surface roughness of the silicon carbide substrate and a method for manufacturing the same are provided. can do.
  • FIG. 1 is a schematic cross-sectional view schematically showing a structure of a silicon carbide semiconductor device according to a first embodiment of the present invention. It is a schematic plan view schematically showing the structure of the gate electrode of the silicon carbide semiconductor device according to the first embodiment of the present invention. 1 is a schematic plan view schematically showing a structure of a gate runner of a silicon carbide semiconductor device according to a first embodiment of the present invention. It is a flowchart which shows schematically the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1 of this invention.
  • FIG. 3 is a schematic cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device according to the first embodiment of the present invention.
  • FIG. 12 is a schematic plan view schematically showing a structure of a gate runner of a silicon carbide semiconductor device according to a modification of the second embodiment of the present invention.
  • MOSFET 1 which is a silicon carbide semiconductor device in the first embodiment includes a silicon carbide substrate 10, a silicon dioxide layer 15, a gate electrode 27, a source contact electrode 16, a drain electrode 20, and a gate.
  • Has runner 2 mainly.
  • Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b facing each other, and is made of hexagonal silicon carbide of polytype 4H, for example.
  • First main surface 10a of silicon carbide substrate 10 may be, for example, a surface that is off about 8 ° or less from the (0001) plane, or may be a (0-33-8) plane.
  • the first main surface 10a is a surface having an off angle of 62 ° ⁇ 10 ° macroscopically with respect to the ⁇ 000-1 ⁇ plane.
  • Silicon carbide substrate 10 mainly includes base substrate 11, drift layer 12, well region 13, second impurity region 14, and p + region 18.
  • the base substrate is an epitaxial layer made of silicon carbide and having n type conductivity (first conductivity type).
  • Drift layer 12 is arranged on base substrate 11 and has n type conductivity.
  • the impurity contained in the drift layer 12 is, for example, nitrogen (N).
  • the concentration of nitrogen contained in the drift layer 12 is, for example, about 5 ⁇ 10 15 cm ⁇ 3 .
  • the drift layer 12 includes a first impurity region 17.
  • the first impurity region 17 is a part of the drift layer 12 and a JFET region sandwiched between a pair of well regions 13 described later. Drift layer 12 and first impurity region 17 have the same conductivity type.
  • the well region 13 is in contact with the first impurity region 17 and has a p-type (second conductivity type) whose conductivity type is different from the n-type (first conductivity type).
  • a pair of well regions 13 are arranged so as to sandwich the first impurity region 17, and impurities contained in the well region 13 are, for example, aluminum (Al), boron (B), or the like.
  • the concentration of aluminum or boron in the well region 13 is, for example, about 1 ⁇ 10 17 cm ⁇ 3 .
  • the second impurity region 14 is a source region separated from the first impurity region 17 by the well region 13.
  • the second impurity region 14 has n type (first conductivity type).
  • the second impurity region 14 is formed inside each of the pair of well regions 13 so as to include the first main surface 10 a and be surrounded by the well region 13.
  • Second impurity region 14 contains, for example, an impurity such as phosphorus (P) at a higher concentration (density) than the impurity contained in drift layer 12.
  • concentration of phosphorus in the second impurity region 14 is, for example, about 1 ⁇ 10 20 cm ⁇ 3 .
  • the p + region 18 includes the first main surface 10 a, is surrounded by the well region 13, and is formed in each of the pair of well regions 13 so as to be adjacent to the second impurity region 14. .
  • the p + region 18 is disposed in contact with the source contact electrode 16, the second impurity region 14, and the well region 13.
  • the p + region 18 contains an impurity such as Al at a higher concentration (density) than the impurity contained in the well region 13.
  • the concentration of Al in the p + region 18 is, for example, about 1 ⁇ 10 20 cm ⁇ 3 .
  • the gate insulating film includes a third silicon dioxide region 15a disposed in contact with the surface 10c of the first impurity region 17, and a first silicon dioxide region disposed in contact with the first region 10d of the well region 13. 15b.
  • the thickness T3 of the third silicon dioxide region 15a is larger than the thickness T1 of the first silicon dioxide region 15b.
  • the thickness T1 of the third silicon dioxide region 15a on the first impurity region 17 is about 180 nm, for example, and the thickness T1 of the first silicon dioxide region 15b on the well region 13 is about 50 nm, for example.
  • the thickness T3 of the third silicon dioxide region 15a is 1.5 times or more and 5 times or less than the thickness T1 of the first silicon dioxide region 15b.
  • channel region CH is formed in well region 17 sandwiched between first impurity region 17 and second impurity region 14 and at a position facing first silicon dioxide region 15b. It is configured to be possible. In other words, the first silicon dioxide region 15b is disposed in contact with the channel region CH.
  • First main surface 10a of silicon carbide substrate 10 includes first region 10d in contact with channel region CH sandwiched between first impurity region 17 and second impurity region 14, and first region 10d. It includes a different second region 10f.
  • First silicon dioxide region 15b is arranged on first region 10d of first main surface 10a
  • second silicon dioxide region 15c is arranged on second region 10f of first main surface 10a. Yes.
  • the thickness T2 of the second silicon dioxide region 15c is larger than the thickness T1 of the first silicon dioxide region 15b.
  • the thickness T2 of the second silicon dioxide region 15c is not less than 1.5 times and not more than 5 times the thickness T1 of the first silicon dioxide region 15b.
  • the carbon concentration of first silicon dioxide region 15b is higher than the carbon concentration of second silicon dioxide region 15c.
  • the carbon concentration of first silicon dioxide region 15b is higher than the carbon concentration of third silicon dioxide region 15a.
  • the carbon concentration of first silicon dioxide region 15b is, for example, about 1 ⁇ 10 18 cm ⁇ 3 or more and about 1 ⁇ 10 20 cm ⁇ 3 or less, and the carbon of second silicon dioxide region 15c and third silicon dioxide region 15a.
  • the concentration is, for example, about 1 ⁇ 10 17 cm ⁇ 3 or more and about 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the carbon concentration of each of the first silicon dioxide region 15b, the second silicon dioxide region 15c, and the third silicon dioxide region 15a can be measured by, for example, SIMS (Secondary Ion Mass Spectrometry).
  • Gate electrode 27 includes a gate electrode region 27a disposed on first silicon dioxide region 15b and third silicon dioxide region 15a, and a gate electrode region 27b disposed on second silicon dioxide region 15c. .
  • Gate electrode region 27a is in contact with first silicon dioxide region 15b and third silicon dioxide region 15a so that first silicon dioxide region 15b and third silicon dioxide region 15a are sandwiched between silicon carbide substrate 10 and gate electrode region 27a.
  • the gate electrode 27 is made of a conductor such as polysilicon doped with impurities or Al (aluminum). Gate electrode 27 is in contact with first silicon dioxide region 15b and second silicon dioxide region 15c.
  • gate electrode region 27a and gate electrode region 27b are electrically connected. ing. In plan view, the gate electrode region 27a and the gate electrode region 27b are formed so as to surround the source contact electrode 16 described later. The gate electrode 27 is in contact with an interlayer insulating film 21 described later.
  • the source contact electrode 16 is disposed in contact with the second impurity region 14, the p + region 18, and the first silicon dioxide region 15b.
  • the source contact electrode 16 is made of a material capable of ohmic contact with the second impurity region 14 such as NiSi (nickel silicide).
  • the drain electrode 20 is formed in contact with the second main surface 10b on the opposite side of the silicon carbide substrate 10 from the side on which the drift layer 12 is formed.
  • the drain electrode 20 is made of a material that can be in ohmic contact with the n-type base substrate 11 such as NiSi, and is electrically connected to the base substrate 11.
  • a pad electrode 23 is disposed in contact with the drain electrode 20.
  • the source contact electrode 16 and the drain electrode 20 are configured such that the current flowing between the source contact electrode 16 and the drain electrode 20 can be controlled by the gate electrode 27 applied to the gate electrode 27.
  • the interlayer insulating film 21 is formed so as to be in contact with the first silicon dioxide region 15b and surround the gate electrode region 27a.
  • Interlayer insulating film 21 is made of, for example, silicon dioxide which is an insulator.
  • Source interconnection 19 surrounds interlayer insulating film 21 on first main surface 10 a of silicon carbide substrate 10 and extends to the upper surface of source contact electrode 16.
  • the source wiring 19 is made of a conductor such as Al, for example, and is electrically connected to the second impurity region 14 via the source contact electrode 16.
  • the MOSFET 1 further includes a JTE (Junction Termination Extension) region 4, a guard ring region 5, and a field stop region 6.
  • JTE region 4 and guard ring region 5 is a region having the same conductivity type (p-type) as well region 13.
  • the impurity concentration of each of JTE region 4 and guard ring region 5 is lower than the impurity concentration of well region 13.
  • JTE region 4 is in contact with well region 13, but guard ring region 5 is not in contact with well region 13.
  • the guard ring region 5 is disposed outside the JTE region 4 so as to surround the JTE region 4.
  • a plurality of guard ring regions 5 may be provided.
  • Each of JTE region 4 and guard ring region 5 contains impurities such as boron and aluminum.
  • the dose of the impurity is, for example, 1.3 ⁇ 10 13 cm ⁇ 2 , and preferably about 8 ⁇ 10 12 cm ⁇ 2 to 1.4 ⁇ 10 13 cm ⁇ 2 .
  • the field stop region 6 is a region having the same conductivity type (n-type) as the drift layer 12.
  • the impurity concentration of the field stop region 6 is higher than the impurity concentration of the drift layer 12.
  • the impurity concentration contained in the field stop region 6 is, for example, about 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the field stop region 6 is arranged outside the JTE region 4 and the guard ring region 5 so as to surround the JTE region 4 and the guard ring region 5 in plan view.
  • the gate runner 2 is made of a material having a lower electrical resistivity than the gate electrode region 27b, such as aluminum, and is electrically connected to the gate electrode region 27b.
  • the gate runner 2 is disposed above the well region 13 having a p-type. More specifically, the gate runner 2 is disposed in the well region 13 and above the region where the channel region CH is not formed via the second silicon dioxide region 15c and the gate electrode region 27b.
  • the gate runner 2 is disposed on the end 10e side of the chip in plan view.
  • the gate runner 2 is in contact with a gate pad 7 disposed near the corner of the chip.
  • the gate pad 7 is configured so that a gate voltage is applied from the outside.
  • the gate runner 2 is arranged so as to surround the source wiring 19 in a plan view.
  • the source wiring 19 is configured such that a source current is applied from the outside.
  • MOSFET 1 the operation of MOSFET 1 will be described.
  • the voltage of gate electrode 27 is lower than the threshold voltage, that is, in the off state, between well region 13 and first impurity region 17 located immediately below first silicon dioxide region 15b.
  • the pn junction becomes reverse bias and becomes non-conductive.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 27, an inversion layer is formed in the channel region CH in the vicinity of the well region 13 in contact with the first silicon dioxide region 15b.
  • the second impurity region 14 and the first impurity region 17 are electrically connected, and a current flows between the source wiring 19 and the drain electrode 20.
  • a substrate preparation step (S10: FIG. 4) is performed. Specifically, referring to FIG. 5, base substrate 11 made of, for example, polytype 4H hexagonal silicon carbide is prepared, and n-type (first conductivity type) drift layer 12 is formed on base substrate 11 by epitaxial growth. It is formed.
  • the drift layer 12 contains impurities such as N (nitrogen) ions.
  • silicon carbide substrate 10 including drift layer 12 having a main surface 10a and having the first conductivity type is prepared.
  • First main surface 10a of silicon carbide substrate 10 may be, for example, a surface that is off about 8 ° from the (0001) plane, or may be a (0-33-8) plane.
  • the first main surface 10a is a surface having an off angle of 62 ° ⁇ 10 ° macroscopically with respect to the ⁇ 000-1 ⁇ plane.
  • a well region forming step is performed. Specifically, referring to FIG. 6, for example, Al (aluminum) ions are ion-implanted into drift layer 12 to form well region 13.
  • ion implantation for forming the second impurity region 14 is performed. Specifically, for example, P (phosphorus) ions are implanted into the well region 13 to form the second impurity region 14 in the well region 13.
  • ion implantation for forming the p + region 18 is performed. Specifically, for example, Al ions are implanted into the well region 13 to form a p + region 18 in the well region 13 and in contact with the second impurity region 14.
  • the ion implantation can be performed, for example, by forming a mask layer made of silicon dioxide on the first main surface 10a of the drift layer 12 and having an opening in a desired region where the ion implantation is to be performed.
  • Al (aluminum) ions are ion-implanted into drift layer 12 to form JTE region 4 and guard ring region 5, and for example, P (phosphorus) ions are ion-implanted into drift layer 12, A field stop region 6 is formed.
  • the first impurity region 17 having the n-type, the well region 13 in contact with the first impurity region 17 and having the p-type different from the n-type, and the first impurity region 17 by the well region 13 A silicon carbide substrate 10 (see FIG. 6) including second impurity region 14 which is separated and has n-type, JTE region 4 in contact with well region 13, guard ring region 5 and field stop region 6 is prepared.
  • the Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b facing each other.
  • the first main surface 10a includes a first region 10d in contact with a channel region CH (see FIG. 1) sandwiched between the first impurity region 17 and the second impurity region 14, and the first region 10d Different second regions 10f.
  • an activation annealing step is performed. Specifically, heat treatment is performed in which the silicon carbide substrate 10 is heated to, for example, about 1700 ° C. and held for about 30 minutes in an inert gas atmosphere such as argon. As a result, the implanted impurities are activated.
  • a material forming step including silicon (S20: FIG. 4) is performed. Specifically, referring to FIG. 7, a material 22 a containing silicon is formed so as to be in contact with well region 13, JTE region 4, guard ring region 5, and field stop region 6.
  • silicon-containing material 22 is formed so as to be in contact with end portion 10e of first main surface 10a of silicon carbide substrate 10.
  • the material 22 containing silicon is formed in contact with the second region 10f different from the first region 10d in contact with the channel region CH (see FIG. 1).
  • the material 22b containing silicon is also formed on the surface 10c of the first impurity region 17 sandwiched between the pair of well regions 13.
  • the materials 22a and 22b containing silicon include polysilicon, amorphous silicon, and amorphous silicon carbide, and may be single crystal silicon.
  • the material 22 containing silicon is a material whose main component is silicon. More preferably, the material 22 containing silicon is a material that is more easily oxidized than silicon carbide.
  • the thickness of the material 22 containing silicon is, for example, about 60 nm. Note that the first impurity region 17 is a JFET region.
  • the step of forming the material containing silicon for example, after depositing polysilicon on the first main surface 10a of the silicon carbide substrate 10, patterning is performed by wet etching, dry etching, or the like, so that the second region 10f is formed.
  • the material 22 a including the formation is formed, and the material 22 b including silicon is formed on the surface 10 c of the silicon carbide substrate 10 in contact with the first impurity region 17.
  • the width W2 of the material containing silicon formed on the surface 10c of the first impurity region 17 is the width W1 of the first impurity region (that is, the pair of well regions 13). Smaller than the shortest distance).
  • the width W1 of the first impurity region is not less than about 2.5 ⁇ m and not more than about 3.0 ⁇ m, for example.
  • the silicon dioxide layer forming step includes a step of forming a first silicon dioxide region 15b that becomes a part of the gate insulating film on the first region 10d, and a second silicon dioxide region by oxidizing the material 22a containing silicon. 15c is formed. Specifically, the silicon-containing material 22a on the second region 10f and the silicon-containing material 22b (the second silicon-containing region) formed on the surface 10c of the first impurity region 17 are each oxidized. Second silicon dioxide region 15c and third silicon dioxide region 15a are formed.
  • first region 10d of the well region 13 sandwiched between the first impurity region 17 and the second impurity region 14 is oxidized to form a first silicon dioxide region 15b.
  • silicon carbide substrate 10 in which materials 22a and 22b containing silicon are formed and first region 10d of well region 13 is exposed is heated to, for example, about 1300 ° C. in an oxygen atmosphere. A heat treatment is performed for about 1 hour.
  • silicon dioxide layer 15 is sandwiched between third silicon dioxide region 15 a on surface 10 c of first impurity region 17, first impurity region 17, and second impurity region 14.
  • a first silicon dioxide region 15b on the first region 10d of the well region 13 and a second silicon dioxide region 15c on the second region 10f are included.
  • the second thickness T2 is larger than the first thickness T1.
  • the first thickness T1 is about 50 nm
  • the second thickness T2 is about 180 nm.
  • the third thickness T3 is larger than the first thickness T1.
  • the second thickness T2 and the third thickness T3 are approximately the same.
  • the thickness T2 of the second silicon dioxide region 15c is not less than 1.5 times and not more than 5 times, more preferably not less than 3 times and not more than 5 times the thickness T1 of the first silicon dioxide region 15b.
  • the carbon concentration of second silicon dioxide region 15c is lower than the carbon concentration of first silicon dioxide region 15b.
  • silicon-containing material 22b disposed on surface 10c of first impurity region 17 and silicon-containing material disposed on second region 10f are performed simultaneously.
  • Each of the materials 22a and 22b containing silicon is almost completely oxidized to silicon dioxide, and the first region 10d made of silicon carbide in the well region 13 is also oxidized to silicon dioxide.
  • the thickness of each of the materials 22a and 22b containing silicon is about 60 nm
  • the thickness of each of the silicon dioxide layers formed by oxidizing each of the materials 22a and 22b is about 180 nm.
  • the width W3 of the third silicon dioxide region 15a is preferably equal to or smaller than the width W1 of the first impurity region 17.
  • first main surface 10a of silicon carbide substrate 10 is oxidized to form first silicon dioxide region 15b that forms a gate insulating film, a certain amount is formed from first main surface 10a of silicon carbide substrate 10.
  • the depth region is oxidized to silicon dioxide.
  • the thickness of silicon dioxide is about twice the thickness of the region of oxidized silicon carbide substrate 10.
  • silicon carbide substrate 10 is held at a temperature of about 1100 ° C. for about 1 hour, for example, in a nitrogen monoxide atmosphere. Thereafter, heat treatment for heating silicon carbide substrate 10 is performed in an inert gas such as argon or nitrogen. In the heat treatment, silicon carbide substrate 10 is held at a temperature of 1100 ° C. or higher and 1500 ° C. or lower for about 1 hour.
  • an inert gas such as argon or nitrogen.
  • gate electrode 27 made of polysilicon which is a conductor doped with impurities at a high concentration is formed by, for example, CVD (Chemical Vapor Deposition), photolithography and etching. .
  • Gate electrode 27 includes a gate electrode region 27a disposed on first silicon dioxide region 15b and third silicon dioxide region 15a, and a gate electrode region 27b disposed on second silicon dioxide region 15c. . As shown in FIG. 2, the gate electrode region 27a and the gate electrode region 27b are electrically connected. Referring to FIG.
  • the interlayer insulating film 21 is formed in contact with the gate electrode region 27b so that a part of the surface of the gate electrode region 27b is exposed.
  • a part of interlayer insulating film 21 and first silicon dioxide region 15b in the region where source contact electrode 16 is formed is removed by photolithography and etching.
  • an ohmic electrode forming step is performed. Specifically, a metal film is formed, for example, by vapor deposition so as to be in contact with second impurity region 14 and p + region 18 on first main surface 10a of silicon carbide substrate 10.
  • the metal film is, for example, Ni (nickel).
  • the metal film may contain, for example, Ti (titanium) atoms and Al (aluminum) atoms.
  • the metal film may contain, for example, Ni atoms and Si (silicon) atoms.
  • the metal film is heated at, for example, about 1000 ° C., whereby the nickel film is heated and silicided to make ohmic contact with the second impurity region 14 of the silicon carbide substrate 10.
  • a source contact electrode 16 is formed.
  • a metal film such as Ni is formed in contact with second main surface 10b of silicon carbide substrate 10, and drain electrode 20 is formed by heating the metal film.
  • gate runner formation step (S50: FIG. 4) is performed.
  • gate runner 2 made of Al as a conductor is electrically connected to gate electrode region 27b and faces second silicon dioxide region 15c, for example, by vapor deposition. It is arranged at the position.
  • Gate runner 2 is in contact with interlayer insulating film 21 and is also electrically connected to gate electrode region 27a through gate electrode region 27b.
  • Gate runner 2 is made of a material having a lower electrical resistivity than gate electrode region 27a.
  • the step of forming the gate runner may include a step of forming a gate pad 7 for applying a voltage to the gate runner 2.
  • gate runner 2 is preferably formed outside second impurity region 14 and p + region 18 (on the side closer to end portion 10e of silicon carbide substrate 10). Gate runner 2 is preferably formed inside JTE region 4, guard ring region 5 and field stop region 6 (on the side far from end portion 10 e of silicon carbide substrate 10). In the present embodiment, the gate runner 2 is disposed above the well region 13 having p-type.
  • the source wiring 19 is formed so as to surround the interlayer insulating film 21 and to be in contact with the source contact electrode 16.
  • source wiring 19 is formed so as to be surrounded by gate runner 2 in plan view.
  • the gate runner 2 and the source wiring 19 may be formed at the same time.
  • a pad electrode 23 made of, for example, Al is formed in contact with the drain electrode 20.
  • the first conductivity type is n-type and the second conductivity type is p-type has been described, but the present invention is not limited to this embodiment.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • the vertical MOSFET has been described as an example of the silicon carbide semiconductor device, but the present invention is not limited to this embodiment.
  • the silicon carbide semiconductor device may be a lateral MOSFET, for example.
  • the MOSFET may be a planar type or a trench type.
  • the silicon carbide semiconductor device may be an IGBT (Insulated Gate Bipolar Transistor) or the like.
  • MOSFET 1 According to MOSFET 1 and the method of manufacturing the same according to the present embodiment, after material 22a containing silicon is formed on second region 10f, material 22a containing silicon is oxidized to form second silicon dioxide region 15c. Is formed. Gate runner 2 arranged at a position facing second silicon dioxide region 15c is formed. Thereby, the insulation performance between silicon carbide substrate 10 and gate runner 2 can be improved while suppressing the surface roughness of silicon carbide substrate 10.
  • the step of forming first silicon dioxide region 15b and the step of forming second silicon dioxide region 15c include a material containing first region 10d and silicon. It is carried out by simultaneously oxidizing 22a. Thereby, the first silicon dioxide region 15b and the second silicon dioxide region 15c are efficiently formed.
  • second thickness T2 of second silicon dioxide region 15c is 1.5 times or more the first thickness T1 of first silicon dioxide region 15b. 5 times or less. If the first thickness T1 is 1.5 times or more the second thickness T2, the carbon concentration of the first silicon dioxide region 15b is made higher than the carbon concentration of the second silicon dioxide region 15c efficiently. Can do. On the other hand, if the first thickness T1 is not more than 5 times the second thickness T2, the gate electrode region 27b formed in the second silicon dioxide region 15c and the gate formed in the first silicon dioxide region 15b. Since the step with the electrode region 27a does not become too large, the gate electrode 27 can be formed without being cut off.
  • the method further includes the step of forming source wiring 19 arranged so as to be surrounded by gate runner 2 in plan view. Thereby, a voltage can be efficiently applied to the gate electrode 27 from the entire outer peripheral region of the chip.
  • gate runner 2 is formed outside second impurity region 14. Thereby, the gate runner 2 is formed outside the source line 19.
  • gate runner 2 is formed inside JTE region 4. Thereby, the breakdown voltage degradation of the MOSFET 1 can be suppressed.
  • second silicon dioxide region 15c is formed in contact with end portion 10e of first main surface 10a.
  • the pressure resistance between gate runner 2 and silicon carbide substrate 10 can be further improved.
  • the step of forming material 22b containing second silicon in contact with first impurity region 17 and the oxidation of material 22b containing second silicon are performed. And a step of forming a third silicon dioxide region 15a. Thereby, a thick silicon dioxide region is formed on the first impurity region 17. As a result, the capacitance in the vicinity of the gate insulating film is reduced, so that the switching characteristics of the MOSFET 1 can be improved.
  • the step of forming second silicon dioxide region 15c and the step of forming third silicon dioxide region 15a are performed simultaneously. Thereby, the second silicon dioxide region 15c and the third silicon dioxide region 15a are efficiently formed.
  • MOSFET 1 which is the silicon carbide semiconductor device in the second embodiment
  • MOSFET 1 according to the second embodiment is different from MOSFET 1 according to the first embodiment in that gate runner 2 is disposed near the center of the chip, and the other configurations are the same.
  • gate runner 2 in MOSFET 1 faces second silicon dioxide region 15 c sandwiched between two source contact electrodes 16 in a cross-sectional view (field of view in FIG. 11). Placed in position.
  • well region 13 in contact with second silicon dioxide region 15 c includes two p + regions 18 and two second impurity regions 14.
  • one end of the p + region 18 is in contact with the second impurity region 14 and the other end is in contact with the well region 13.
  • each of second impurity region 14 and p + region 18 is arranged at a line-symmetrical position with respect to the normal line of first main surface 10a.
  • gate runner 2 in MOSFET 1 is arranged to extend linearly near the center of chip 1 in plan view.
  • the gate runner 2 is connected to a gate pad 7 disposed on the end 10 e side of the chip 1.
  • the gate pad 7 is configured so that a gate voltage is applied from the outside.
  • the source wiring 19 is disposed so as to sandwich the gate runner 2 and the gate pad 7 in plan view.
  • the source wiring 19 is configured such that a source current is applied from the outside.
  • the gate runner 2 may be formed to extend from the gate pad 7 in a branched manner.
  • the gate pad 7 is disposed in the vicinity of the center of the chip 1, and a gate runner portion that linearly extends from the gate pad 7 to the center of the chip and linearly extends from each of the left and right sides of the gate pad 7. It may have a gate runner portion that bends about 90 ° in the vicinity of one end portion 10e and extends along a direction parallel to the end portion 10e.
  • the gate runner 2 may be formed surrounded by the source wiring 19.
  • a substrate preparation step (S10: FIG. 4) is performed.
  • silicon carbide substrate 10 is prepared by a method similar to the method described in the first embodiment.
  • base substrate 11 made of, for example, polytype 4H hexagonal silicon carbide is prepared, and n-type (first conductivity type) drift layer 12 is formed on base substrate 11 by epitaxial growth.
  • Al (aluminum) ions are ion-implanted into drift layer 12 to form well region 13.
  • ion implantation for forming the second impurity region 14 is performed. Specifically, for example, P (phosphorus) ions are implanted into the well region 13 to form the second impurity region 14 in the well region 13. Further, ion implantation for forming the p + region 18 is performed. Specifically, for example, Al ions are implanted into the well region 13 to form a p + region 18 in the well region 13 and in contact with the second impurity region 14.
  • the ion implantation can be performed, for example, by forming a mask layer made of silicon dioxide on the first main surface 10a of the drift layer 12 and having an opening in a desired region where the ion implantation is to be performed.
  • Silicon carbide substrate 10 including second impurity region 14 which is separated and has n-type is prepared.
  • Silicon carbide substrate 10 has a first main surface 10a and a second main surface 10b facing each other.
  • the first main surface 10a includes a first region 10d in contact with the channel region CH sandwiched between the first impurity region 17 and the second impurity region 14, and a second region different from the first region 10d. 10f.
  • an activation annealing step is performed. Specifically, heat treatment is performed in which the silicon carbide substrate 10 is heated to, for example, about 1700 ° C. and held for about 30 minutes in an inert gas atmosphere such as argon. As a result, the implanted impurities are activated.
  • a material forming step including silicon (S20: FIG. 4) is performed. Specifically, referring to FIG. 14, a material 22 a containing silicon is formed in a region in well region 13 that is opposite to the second impurity region with respect to p + region 18. . The region includes a second region 10f different from the first region 10d in contact with the channel region CH (see FIG. 11). In the present embodiment, the material 22b containing silicon is also formed on the surface 10c of the first impurity region 17 sandwiched between the pair of well regions 13.
  • the materials 22a and 22b containing silicon include polysilicon, amorphous silicon, and amorphous silicon carbide, and may be single crystal silicon.
  • the material 22 containing silicon is a material whose main component is silicon. More preferably, the material 22 containing silicon is a material that is more easily oxidized than silicon carbide.
  • the thickness of the material 22 containing silicon is, for example, about 60 nm. Note that the first impurity region 17 is a JFET region.
  • the step of forming the material containing silicon for example, after depositing polysilicon on the first main surface 10a of the silicon carbide substrate 10, patterning is performed by wet etching, dry etching, or the like, so that the second region 10f is formed.
  • the material 22 a including the formation is formed, and the material 22 b including silicon is formed on the surface 10 c of the silicon carbide substrate 10 in contact with the first impurity region 17.
  • the silicon dioxide layer forming step includes a step of forming a first silicon dioxide region 15b that becomes a part of the gate insulating film on the first region 10d, and a second silicon dioxide region by oxidizing the material 22a containing silicon. 15c is formed. Specifically, the silicon-containing material 22a on the second region 10f and the silicon-containing material 22b formed on the surface 10c of the first impurity region 17 are oxidized to form the second silicon dioxide region 15c and the second silicon dioxide region 15c, respectively. 3 silicon dioxide regions 15a are formed.
  • first region 10d of the well region 13 sandwiched between the first impurity region 17 and the second impurity region 14 is oxidized to form a first silicon dioxide region 15b.
  • silicon carbide substrate 10 in which materials 22a and 22b containing silicon are formed and first region 10d of well region 13 is exposed is heated to, for example, about 1300 ° C. in an oxygen atmosphere. A heat treatment is performed for about 1 hour.
  • silicon dioxide layer 15 is sandwiched between third silicon dioxide region 15 a on surface 10 c of first impurity region 17, first impurity region 17, and second impurity region 14. It includes a first silicon dioxide region 15b on first region 10d of well region 13 and a second silicon dioxide region 15c on second region 10f of first main surface 10a.
  • the step of forming the silicon dioxide layer material 22a containing silicon arranged on surface 10c of first impurity region 17 and material containing silicon arranged on second region 10f
  • the step of oxidizing each of 22b and the step of oxidizing the first region 10d of the well region 13 are performed simultaneously.
  • Each of the materials 22a and 22b containing silicon is almost completely oxidized to silicon dioxide, and the first region 10d of the well region 13 is also oxidized to silicon dioxide.
  • the thickness of each of the materials 22a and 22b containing silicon is about 60 nm
  • the thickness of each of the silicon dioxide layers formed by oxidizing each of the materials 22a and 22b is about 180 nm.
  • silicon carbide substrate 10 is held at a temperature of about 1100 ° C. for about 1 hour, for example, in a nitrogen monoxide atmosphere. Thereafter, heat treatment for heating silicon carbide substrate 10 is performed in an inert gas such as argon or nitrogen. In the heat treatment, silicon carbide substrate 10 is held at a temperature of 1100 ° C. or higher and 1500 ° C. or lower for about 1 hour.
  • an inert gas such as argon or nitrogen.
  • gate electrode 27 made of polysilicon, which is a conductor doped with impurities at a high concentration, is formed by, for example, CVD, photolithography and etching.
  • Gate electrode 27 includes a gate electrode region 27a disposed on first silicon dioxide region 15b and third silicon dioxide region 15a, and a gate electrode region 27b disposed on second silicon dioxide region 15c. .
  • the gate electrode region 27a and the gate electrode region 27b are electrically connected.
  • interlayer insulating film 21 made of silicon dioxide, which is an insulator is formed so as to surround gate electrode region 27a, for example, by CVD.
  • the interlayer insulating film 21 is formed in contact with the gate electrode region 27b so that a part of the surface of the gate electrode region 27b is exposed. Next, a part of interlayer insulating film 21 and first silicon dioxide region 15b in the region where source contact electrode 16 is formed is removed by photolithography and etching.
  • an ohmic electrode forming step is performed. Specifically, a metal film is formed, for example, by vapor deposition so as to be in contact with second impurity region 14 and p + region 18 on first main surface 10a of silicon carbide substrate 10.
  • the metal film is, for example, Ni (nickel).
  • the metal film may contain, for example, Ti (titanium) atoms and Al (aluminum) atoms.
  • the metal film may contain, for example, Ni atoms and Si (silicon) atoms.
  • the metal film is heated at, for example, about 1000 ° C., whereby the nickel film is heated and silicided to make ohmic contact with the second impurity region 14 of the silicon carbide substrate 10.
  • a source contact electrode 16 is formed.
  • a metal film such as Ni is formed in contact with second main surface 10b of silicon carbide substrate 10, and drain electrode 20 is formed by heating the metal film.
  • gate runner formation step (S50: FIG. 4) is performed.
  • gate runner 2 made of Al as a conductor is electrically connected to gate electrode region 27b and faces second silicon dioxide region 15c, for example, by vapor deposition. It is arranged at the position.
  • Gate runner 2 is in contact with interlayer insulating film 21 and is also electrically connected to gate electrode region 27a through gate electrode region 27b.
  • Gate runner 2 is made of a material having a lower electrical resistivity than gate electrode region 27a.
  • the step of forming the gate runner may include a step of forming a gate pad 7 for applying a voltage to the gate runner 2.
  • the gate runner 2 is formed in contact with the gate electrode region 27b at a position facing the second silicon dioxide region 15c.
  • the gate runner 2 is formed between the two source wirings 19 and 19 in a sectional view.
  • the source wiring 19 is formed so as to surround the interlayer insulating film 21 and to be in contact with the source contact electrode 16.
  • source wiring 19 is formed so as to sandwich gate runner 2 and gate pad 7 in plan view.
  • the gate runner 2 and the source wiring 19 may be formed at the same time.
  • a pad electrode 23 made of, for example, Al is formed in contact with the drain electrode 20.
  • the method for manufacturing MOSFET 1 according to the present embodiment further includes the step of forming source wiring 19 disposed so as to sandwich gate runner 2 in plan view. Thereby, a voltage can be applied to the gate electrode 27 from near the center of the chip 1.
  • the step of forming gate runner 2 includes the step of forming gate pad 7 for applying a voltage to gate runner 2.
  • the gate runner 2 is formed to extend from the gate pad 7 in a branched manner. Thereby, the voltage can be efficiently applied to the gate electrode 27 by disposing the gate runner 2 close to the gate electrode 27.
  • 1 MOSFET (chip), 2 gate runner, 4 JTE region, 5 guard ring region, 6 field stop region, 7 gate pad, 10 silicon carbide substrate, 10a first main surface, 10b second main surface, 10c surface, 10d first region, 10f second region, 10e end, 11 base substrate, 12 drift layer, 13 well region, 14 second impurity region, 15 silicon dioxide layer, 15a third silicon dioxide region, 15b first 1 silicon dioxide region, 15c second silicon dioxide region, 16 source contact electrode, 17 first impurity region (JFET region), 18 p + region, 19 source wiring, 20 drain electrode, 21 interlayer insulating film, 22, 22a, 22b Material containing silicon, 23 pad electrodes, 27, 27a, 27b Gate electrode, CH channel region, T1 first thickness, T2 second thickness, T3 third thickness, W1, W2, W3 width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 炭化珪素基板(10)は、第1の不純物領域(17)、第1の不純物領域(17)と接するウェル領域(13)と、ウェル領域(13)によって第1の不純物領域(17)と隔てられた第2の不純物領域(14)とを含む。第1の主面(10a)は、チャネル領域(CH)と接する第1の領域(10d)と、第1の領域(10d)とは異なる第2の領域(10f)とを含む。第2の領域(10f)上に珪素を含む材料(22a)が形成される。第1の領域(10d)上に第1の二酸化珪素領域(15b)が形成される。珪素を含む材料(22a)を酸化して第2の二酸化珪素領域(15c)が形成される。ゲート電極(27)と電気的に接続され、かつ第2の二酸化珪素領域(15c)に対向した位置にゲートランナー(2)が形成される。これにより、基板の表面荒れを抑制しつつ、ゲートランナーと基板との絶縁性能を向上可能な炭化珪素半導体装置およびその製造方法を提供することができる。

Description

炭化珪素半導体装置およびその製造方法
 本発明は炭化珪素半導体装置およびその製造方法に関し、より特定的には、ゲートランナーの耐圧特性を向上可能な炭化珪素半導体装置およびその製造方法に関するものである。
 近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 MOSFETにおいて、ゲート信号をゲート電極に効率的に伝えるために、外周部にゲート電極よりも電気抵抗率が小さい材料からなるゲートランナーが形成される場合がある。たとえば特開平11-266014号公報(特許文献1)に記載されているMOSFETによれば、炭化珪素基板上の外周部領域にゲート電極(ゲートランナー)が配置されている。また国際公開2010/098294号(特許文献2)に記載されているMOSFETによれば、p型半導体層の上方にゲート電極が配置され、当該ゲート電極に接してゲート電極用パッド部(ゲートランナー)が配置されている。
 上記各文献に記載されているMOSFETによれば、ゲート電極用パッド部(ゲートランナー)と炭化珪素基板との間の絶縁性能を確保するため、ゲート電極用パッド部と炭化珪素基板との間には酸化膜が形成されている。
特開平11-266014号公報 国際公開2010/098294号
 上記酸化膜の形成は、たとえばプラズマCVDなどにより形成される。しかしながら、炭化珪素基板をプラズマ中に配置すると炭化珪素基板の表面に荒れが発生する場合がある。また炭化珪素基板の表面を熱酸化することで熱酸化膜を形成する方法も考えられる。絶縁耐圧を確保できる程度の厚みの熱酸化膜を形成するためには、熱酸化温度を高くする必要がある。しかしながら、熱酸化温度を高くすると炭化珪素基板の表面に荒れが発生する場合がある。
 本発明はこのような課題を解決するためになされたものであって、その目的は、炭化珪素基板の表面荒れを抑制しつつ、ゲートランナーと炭化珪素基板との絶縁性能を向上可能な炭化珪素半導体装置およびその製造方法を提供することである。
 発明者らは鋭意研究の結果、以下の知見を得て本発明を見出した。ゲートランナーが形成される領域と対向する位置に珪素を含む材料を形成し、当該珪素を含む材料を酸化させることにより、厚い二酸化珪素膜を簡易に形成することができる。また珪素を含む材料を酸化することにより形成される二酸化珪素膜は、炭化珪素を酸化することにより形成される二酸化珪素膜よりも炭素濃度が少ないため、絶縁性能に優れているため、ゲートランナーと基板との間の絶縁性能を向上することができる。またプラズマを使用せず、かつ酸化温度を高くする必要もない。そのため、炭化珪素基板の表面荒れを抑制しつつ、ゲートランナーと基板との間の絶縁性能を向上することができる。
 本発明の炭化珪素半導体装置は以下の工程を有している。互いに対向する第1の主面および第2の主面を有する炭化珪素基板が準備される。炭化珪素基板は、第1導電型を有する第1の不純物領域と、第1の不純物領域と接しかつ第1導電型と異なる第2導電型を有するウェル領域と、ウェル領域によって第1の不純物領域と隔てられかつ第1導電型を有する第2の不純物領域とを含む。第1の主面は、第1の不純物領域と第2の不純物領域とに挟まれたチャネル領域と接する第1の領域と、第1の領域とは異なる第2の領域とを含む。第2の領域上に珪素を含む材料が形成される。第1の領域上に第1の二酸化珪素領域が形成される。珪素を含む材料を酸化して第2の二酸化珪素領域が形成される。第1の二酸化珪素領域および第2の二酸化珪素領域に接してゲート電極が形成される。ゲート電極と電気的に接続され、かつ第2の二酸化珪素領域に対向した位置に配置されたゲートランナーが形成される。第2の二酸化珪素領域の厚みは、第1の二酸化珪素領域の厚みより大きい。
 本発明に係る炭化珪素半導体装置の製造方法によれば、第2の領域上に珪素を含む材料が形成された後、当該珪素を含む材料を酸化して第2の二酸化珪素領域が形成される。第2の二酸化珪素領域に対向した位置に配置されたゲートランナーが形成される。これにより、炭化珪素基板の表面荒れを抑制しつつ、炭化珪素基板とゲートランナーとの絶縁性能を向上させることができる。
 上記に係る炭化珪素半導体装置において好ましくは、第1の二酸化珪素領域を形成する工程および第2の二酸化珪素領域を形成する工程は、第1の領域と珪素を含む材料とを同時に酸化することにより行われる。これにより、効率的に第1の二酸化珪素領域と第2の二酸化珪素領域とが形成される。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、第2の二酸化珪素領域の厚みは、第1の二酸化珪素領域の厚みの1.5倍以上5倍以下である。第1の厚みが第2の厚みの1.5倍以上であれば、第1の二酸化珪素領域の炭素濃度を第2の二酸化珪素領域の炭素濃度よりも効率的に高くすることができる。一方、第1の厚みが第2の厚みの5倍以下であれば、第2の二酸化珪素領域に形成されるゲート電極と、第1の二酸化珪素領域に形成されるゲート電極との段差が大きくなり過ぎないので、ゲート電極を断絶することなく形成することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、平面視においてゲートランナーに囲まれるように配置されたソース配線を形成する工程をさらに有する。これにより、チップの外周領域全体からゲート電極に対して効率的に電圧を印加することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、ゲートランナーは第2の不純物領域よりも外側に形成される。これにより、ゲートランナーはソース配線よりも外側に形成される。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、炭化珪素基板は、ウェル領域に接するJTE領域をさらに含む。ゲートランナーはJTE領域よりも内側に形成される。これにより、炭化珪素半導体装置の耐圧劣化を抑制することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、第2の二酸化珪素領域は第1の主面の端部に接するように形成される。これにより、ゲートランナーと炭化珪素基板との耐圧をさらに向上することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、平面視においてゲートランナーを挟むように配置されたソース配線を形成する工程をさらに有する。これにより、チップの中央付近からゲート電極に対して電圧を印加することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、ゲートランナーを形成する工程は、ゲートランナーに電圧を印加するためのゲートパッドを形成する工程を含む。ゲートランナーはゲートパッドから枝分かれ状に延伸するように形成される。これにより、ゲート電極の近くまでゲートランナーを配置することにより、効率的にゲート電極に対して電圧を印加することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、第1の不純物領域に接して第2の珪素を含む材料を形成する工程と、第2の珪素を含む材料を酸化することにより第3の二酸化珪素領域を形成する工程とをさらに有する。これにより、第1の不純物領域上に厚い二酸化珪素領域が形成される。結果として、ゲート絶縁膜近傍の静電容量が低減されるので、炭化珪素半導体装置のスイッチング特性を向上することができる。
 上記に係る炭化珪素半導体装置の製造方法において好ましくは、第2の二酸化珪素領域が形成される工程および第3の二酸化珪素領域が形成される工程が同時に行われる。これにより、効率的に第2の二酸化珪素領域および第3の二酸化珪素領域が形成される。
 本発明に係る炭化珪素半導体装置は、炭化珪素基板と、第1の二酸化珪素領域と、第2の二酸化珪素領域と、ゲート電極と、ゲートランナーとを有している。炭化珪素基板は、互いに対向する第1の主面および第2の主面を有する。炭化珪素基板は、第1導電型を有する第1の不純物領域と、第1の不純物領域と接しかつ第1導電型と異なる第2導電型を有するウェル領域と、ウェル領域によって第1の不純物領域と隔てられかつ第1導電型を有する第2の不純物領域とを含む。第1の主面は、第1の不純物領域と第2の不純物領域とに挟まれたチャネル領域と接する第1の領域と、第1の領域とは異なる第2の領域とを含む。第1の二酸化珪素領域は、第1の領域上に配置されている。第2の二酸化珪素領域は、第2の領域上に配置されている。ゲート電極は、第1の二酸化珪素領域および第2の二酸化珪素領域に接する。ゲートランナーは、ゲート電極と電気的に接続され、かつ第2の二酸化珪素領域に対向した位置に配置されている。第2の二酸化珪素領域は、第1の二酸化珪素領域よりも厚い。第2の二酸化珪素領域の炭素濃度は、第1の二酸化珪素領域の炭素濃度よりも低い。
 本発明に係る炭化珪素半導体装置によれば、ゲートランナーは、第2の二酸化珪素領域に対向した位置に配置されており、第2の二酸化珪素領域の炭素濃度は、第1の二酸化珪素領域の炭素濃度よりも低い。これにより、ゲートランナーと炭化珪素基板との絶縁性能を向上することができる。
 上記に係る炭化珪素半導体装置において好ましくは、第2の二酸化珪素領域の厚みは第1の二酸化珪素領域の厚みの1.5倍以上5倍以下である。
 以上の説明から明らかなように、本発明によれば、炭化珪素基板の表面荒れを抑制しつつ、ゲートランナーと炭化珪素基板との絶縁性能を向上可能な炭化珪素半導体装置およびその製造方法を提供することができる。
本発明の実施の形態1に係る炭化珪素半導体装置の構造を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置のゲート電極の構造を概略的に示す平面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置のゲートランナーの構造を概略的に示す平面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第4の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第5の工程を概略的に示す断面模式図である。 本発明の実施の形態1に係る炭化珪素半導体装置の製造方法の第6の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の構造を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置のゲートランナーの構造を概略的に示す平面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第4の工程を概略的に示す断面模式図である。 本発明の実施の形態2に係る炭化珪素半導体装置の製造方法の第5の工程を概略的に示す断面模式図である。 本発明の実施の形態2の変形例に係る炭化珪素半導体装置のゲートランナーの構造を概略的に示す平面模式図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
 (実施の形態1)
 図1を参照して、実施の形態1における炭化珪素半導体装置であるMOSFET1は、炭化珪素基板10と、二酸化珪素層15と、ゲート電極27と、ソースコンタクト電極16と、ドレイン電極20と、ゲートランナー2を主に有している。
 炭化珪素基板10は、互いに対向する第1の主面10aおよび第2の主面10bを有し、たとえばポリタイプ4Hの六方晶炭化珪素からなる。炭化珪素基板10の第1の主面10aは、たとえば(0001)面から8°以下程度オフした面であってもよく、(0-33-8)面であってもよい。好ましくは、第1の主面10aは、{000-1}面に対して、巨視的に62°±10°のオフ角を有する面である。
 炭化珪素基板10は、ベース基板11と、ドリフト層12と、ウェル領域13と、第2の不純物領域14と、p+領域18とを主に含む。ベース基板は、炭化珪素からなり導電
型がn型(第1導電型)を有するエピタキシャル層である。ドリフト層12は、ベース基板11上に配置されており、導電型がn型である。ドリフト層12に含まれる不純物はたとえば窒素(N)である。ドリフト層12に含まれている窒素濃度はたとえば5×1015cm-3程度である。ドリフト層12は第1の不純物領域17を含む。第1の不純物領域17は、ドリフト層12の一部であって後述する一対のウェル領域13によって挟まれたJFET領域である。ドリフト層12と第1の不純物領域17とは同じ導電型を有する。
 ウェル領域13は第1の不純物領域17と接し、導電型がn型(第1導電型)とは異なるp型(第2導電型)を有する領域である。ウェル領域13は、第1の不純物領域17を挟むように一対配置されており、ウェル領域13に含まれる不純物は、たとえばアルミニウム(Al)、ホウ素(B)などである。ウェル領域13におけるアルミニウムやホウ素の濃度は、たとえば1×1017cm-3程度である。
 第2の不純物領域14は、ウェル領域13によって第1の不純物領域17と隔てられているソース領域である。また第2の不純物領域14はn型(第1導電型)を有する。第2の不純物領域14は、上記第1の主面10aを含み、かつウェル領域13に取り囲まれるように、一対のウェル領域13の各々の内部に形成されている。第2の不純物領域14は、たとえばリン(P)などの不純物をドリフト層12に含まれる不純物よりも高い濃度(密度)で含んでいる。第2の不純物領域14におけるリンの濃度は、たとえば1×1020cm-3程度である。
 p+領域18は、上記第1の主面10aを含み、かつウェル領域13に取り囲まれるとともに、第2の不純物領域14に隣接するように一対のウェル領域13の各々の内部に形成されている。p+領域18は、ソースコンタクト電極16、第2の不純物領域14およびウェル領域13に接して配置されている。p+領域18は、たとえばAlなどの不純物をウェル領域13に含まれる不純物よりも高い濃度(密度)で含んでいる。p+領域18における、Alの濃度はたとえば1×1020cm-3程度である。
 ゲート絶縁膜は、第1の不純物領域17の表面10cに接して配置された第3の二酸化珪素領域15aと、ウェル領域13の第1の領域10dに接して配置された第1の二酸化珪素領域15bとを含んでいる領域である。
 第3の二酸化珪素領域15aの厚みT3は第1の二酸化珪素領域15bの厚みT1よりも大きい。第1の不純物領域17上の第3の二酸化珪素領域15aの厚みT1はたとえば180nm程度であり、ウェル領域13上の第1の二酸化珪素領域15bの厚みT1はたとえば50nm程度である。好ましくは、第3の二酸化珪素領域15aの厚みT3は第1の二酸化珪素領域15bの厚みT1よりも1.5倍以上5倍以下である。
 本実施の形態のMOSFET1において、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域17内であって、第1の二酸化珪素領域15bと対向する位置にチャネル領域CHが形成可能に構成されている。言い換えれば、第1の二酸化珪素領域15bはチャネル領域CH上に接して配置されている。
 炭化珪素基板10の第1の主面10aは、第1の不純物領域17と第2の不純物領域14とに挟まれたチャネル領域CHと接する第1の領域10dと、第1の領域10dとは異なる第2の領域10fとを含んでいる。第1の主面10aの第1の領域10d上に第1の二酸化珪素領域15bが配置され、第1の主面10aの第2の領域10f上に第2の二酸化珪素領域15cが配置されている。
 第2の二酸化珪素領域15cの厚みT2は、第1の二酸化珪素領域15bの厚みT1よりも大きい。好ましくは、第2の二酸化珪素領域15cの厚みT2は第1の二酸化珪素領域15bの厚みT1の1.5倍以上5倍以下である。
 第1の二酸化珪素領域15bの炭素濃度は、第2の二酸化珪素領域15cの炭素濃度よりも高い。好ましくは、第1の二酸化珪素領域15bの炭素濃度は、第3の二酸化珪素領域15aの炭素濃度よりも高い。第1の二酸化珪素領域15bの炭素濃度はたとえば1×1018cm-3以上程度1×1020cm-3以下程度であり、第2の二酸化珪素領域15cおよび第3の二酸化珪素領域15aの炭素濃度はたとえば1×1017cm-3以上程度1×1019cm-3以下程度である。第1の二酸化珪素領域15b、第2の二酸化珪素領域15cおよび第3の二酸化珪素領域15aの各々の炭素濃度は、たとえばSIMS(Secondary Ion Mass Spectrometry)により測定可能である。
 ゲート電極27は、第1の二酸化珪素領域15bおよび第3の二酸化珪素領域15a上に配置されたゲート電極領域27aと、第2の二酸化珪素領域15c上に配置されたゲート電極領域27bとを含む。ゲート電極領域27aは、炭化珪素基板10との間に第1の二酸化珪素領域15bおよび第3の二酸化珪素領域15aを挟むように第1の二酸化珪素領域15bおよび第3の二酸化珪素領域15aと接して配置されている。また、ゲート電極27は、不純物が添加されたポリシリコン、Al(アルミニウム)などの導電体からなっている。ゲート電極27は、第1の二酸化珪素領域15bおよび第2の二酸化珪素領域15cに接する。
 図2に示すように、炭化珪素基板10の第1の主面10aの法線方向から見て(以下、平面視とも称する)、ゲート電極領域27aとゲート電極領域27bとは電気的に接続されている。また平面視において、ゲート電極領域27aおよびゲート電極領域27bは後述するソースコンタクト電極16を囲うように形成されている。ゲート電極27は後述する層間絶縁膜21と接している。
 ソースコンタクト電極16は、第2の不純物領域14と、p+領域18と、第1の二酸化珪素領域15bとに接触して配置されている。また、ソースコンタクト電極16は、たとえばNiSi(ニッケルシリサイド)など、第2の不純物領域14とオーミックコンタクト可能な材料からなっている。
 ドレイン電極20は、炭化珪素基板10においてドリフト層12が形成される側とは反対側の第2の主面10bに接触して形成されている。このドレイン電極20は、たとえばNiSiなど、n型のベース基板11とオーミックコンタクト可能な材料からなっており、ベース基板11と電気的に接続されている。ドレイン電極20に接してパッド電極23が配置されている。ソースコンタクト電極16およびドレイン電極20は、ゲート電極27に印加されるゲート電極27により、ソースコンタクト電極16およびドレイン電極20の間に流れる電流が制御可能に構成されている。
 層間絶縁膜21は、第1の二酸化珪素領域15bと接し、ゲート電極領域27aを取り囲むように形成されている。層間絶縁膜21は、たとえば絶縁体である二酸化珪素からなっている。ソース配線19は、炭化珪素基板10の第1の主面10a上において、層間絶縁膜21を取り囲み、かつソースコンタクト電極16の上部表面上にまで延在している。また、ソース配線19は、たとえばAlなどの導電体からなり、ソースコンタクト電極16を介して第2の不純物領域14と電気的に接続されている。
 本実施の形態に係るMOSFET1は、JTE(Junction Termination Extension)領域4、ガードリング領域5およびフィールドストップ領域6をさらに有している。JTE領域4およびガードリング領域5の各々は、ウェル領域13と同じ導電型(p型)を有する領域である。JTE領域4およびガードリング領域5の各々の不純物濃度は、ウェル領域13の不純物濃度よりも低い。JTE領域4はウェル領域13と接しているが、ガードリング領域5はウェル領域13と接していない。平面視において、ガードリング領域5はJTE領域4を取り囲むように、JTE領域4の外側に配置されている。ガードリング領域5は複数設けられていても構わない。
 JTE領域4およびガードリング領域5の各々には、たとえばホウ素やアルミニウムなどの不純物が含まれている。当該不純物のドーズ量はたとえば1.3×1013cm-2であり、好ましくは8×1012cm-2以上1.4×1013cm-2以下程度である。
 フィールドストップ領域6はドリフト層12と同じ導電型(n型)を有する領域である。フィールドストップ領域6の不純物濃度はドリフト層12の不純物濃度よりも高い。フィールドストップ領域6に含まれる不純物濃度はたとえば1.0×1018cm-3程度である。フィールドストップ領域6は、平面視においてJTE領域4およびガードリング領域5を囲うように、JTE領域4およびガードリング領域5の外側に配置されている。
 ゲートランナー2は、たとえばアルミニウムなどのゲート電極領域27bよりも電気抵抗率の低い材料から構成されており、ゲート電極領域27bと電気的に接続されている。ゲートランナー2は、p型を有するウェル領域13の上方に配置されている。より詳細には、ゲートランナー2はウェル領域13中であって、チャネル領域CHが形成されない領域の上方に、第2の二酸化珪素領域15cおよびゲート電極領域27bを介して配置されている。
 図3を参照して、平面視においてゲートランナー2はチップの端部10e側に配置されている。ゲートランナー2はチップの角部付近に配置されたゲートパッド7に接している。ゲートパッド7は外部からゲート電圧が印加されるように構成されている。また平面視においてゲートランナー2は、ソース配線19を囲うように配置されている。ソース配線19は外部からソース電流が印加されるように構成されている。
 次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極27の電圧が閾値電圧未満の状態、すなわちオフ状態では、第1の二酸化珪素領域15bの直下に位置するウェル領域13と第1の不純物領域17との間のpn接合が逆バイアスとなり非導通状態となる。一方、ゲート電極27に閾値電圧以上の電圧を印加すると、ウェル領域13の第1の二酸化珪素領域15bと接触する付近であるチャネル領域CHにおいて反転層が形成される。その結果、第2の不純物領域14と第1の不純物領域17とが電気的に接続され、ソース配線19とドレイン電極20との間に電流が流れる。
 次に、本実施の形態におけるMOSFET1の製造方法の一例について、図4~図10を参照して説明する。
 まず基板準備工程(S10:図4)が実施される。具体的には、図5を参照して、たとえばポリタイプ4Hの六方晶炭化珪素からなるベース基板11が準備され、ベース基板11上にエピタキシャル成長によりn型(第1導電型)のドリフト層12が形成される。ドリフト層12にはたとえばN(窒素)イオンなどの不純物が含まれている。以上の様に、主面を10aを有しかつ第1導電型を有するドリフト層12を含む炭化珪素基板10が準備される。炭化珪素基板10の第1の主面10aは、たとえば(0001)面から8°程度オフした面であってもよく、(0-33-8)面であってもよい。好ましくは、第1の主面10aは、{000-1}面に対して、巨視的に62°±10°のオフ角を有する面である。
 次にウェル領域形成工程が実施される。具体的には、図6を参照して、たとえばAl(アルミニウム)イオンがドリフト層12にイオン注入されることによりウェル領域13が形成される。次に、第2の不純物領域14を形成するためのイオン注入が実施される。具体的には、たとえばP(リン)イオンがウェル領域13に注入されることにより、ウェル領域13内に第2の不純物領域14が形成される。さらに、p+領域18を形成するためのイオン注入が実施される。具体的には、たとえばAlイオンがウェル領域13に注入されることにより、ウェル領域13内であって、第2の不純物領域14と接するp+領域18が形成される。上記イオン注入は、たとえばドリフト層12の第1の主面10a上に二酸化珪素からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。
 同様に、たとえばAl(アルミニウム)イオンがドリフト層12にイオン注入されることによりJTE領域4およびガードリング領域5が形成され、たとえばP(リン)イオンがドリフト層12にイオン注入されることにより、フィールドストップ領域6が形成される。
 以上の様に、n型を有する第1の不純物領域17と、第1の不純物領域17と接しかつn型と異なるp型を有するウェル領域13と、ウェル領域13によって第1の不純物領域17と隔てられかつn型を有する第2の不純物領域14と、ウェル領域13に接するJTE領域4と、ガードリング領域5と、フィールドストップ領域6とを含む炭化珪素基板10(図6参照)が準備される。なお、当該炭化珪素基板10は、互いに対向する第1の主面10aおよび第2の主面10bを有する。第1の主面10aは、第1の不純物領域17と第2の不純物領域14とに挟まれたチャネル領域CH(図1参照)と接する第1の領域10dと、第1の領域10dとは異なる第2の領域10fとを含む。
 次に、活性化アニール工程が実施される。具体的には、たとえばアルゴンなどの不活性ガス雰囲気中において、上記炭化珪素基板10をたとえば1700℃程度に加熱して、30分間程度保持する熱処理が実施される。これにより注入された不純物が活性化する。
 次に、珪素を含む材料形成工程(S20:図4)が実施される。具体的には、図7を参照して、ウェル領域13と、JTE領域4と、ガードリング領域5と、フィールドストップ領域6と接するように珪素を含む材料22aが形成される。好ましくは、珪素を含む材料22は、炭化珪素基板10の第1の主面10aの端部10eに接するように形成される。また珪素を含む材料22は、チャネル領域CH(図1参照)と接する第1の領域10dと異なる第2の領域10fに接して形成される。また本実施の形態では、一対のウェル領域13に挟まれた第1の不純物領域17の表面10cにも、珪素を含む材料22bが形成される。
 珪素を含む材料22a、22bとは、たとえばポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素などであり、単結晶珪素であってもよい。好ましくは、珪素を含む材料22とは主成分が珪素からなる材料である。より好ましくは、珪素を含む材料22とは炭化珪素よりも酸化しやすい材料である。珪素を含む材料22の厚みはたとえば60nm程度である。なお、第1の不純物領域17はJFET領域である。
 珪素を含む材料を形成する工程では、たとえば炭化珪素基板10の第1の主面10aにポリシリコンを堆積させた後、ウェットエッチングやドライエッチングなどでパターニングを行うことで、第2の領域10fに形成を含む材料22aが形成され、かつ第1の不純物領域17に接する炭化珪素基板10の表面10cに珪素を含む材料22bが形成される。
 なお第1の不純物領域17の表面10cに形成された珪素を含む材料の幅W2(当該表面10cに平行な方向の距離)は、第1の不純物領域の幅W1(つまり一対のウェル領域13の間の最短距離)よりも小さいことが好ましい。第1の不純物領域の幅W1はたとえば2.5μm程度以上3.0μm程度以下である。
 次に、二酸化珪素層形成工程(S30:図4)が実施される。二酸化珪素層形成工程は、第1の領域10d上にゲート絶縁膜の一部となる第1の二酸化珪素領域15bを形成する工程と、珪素を含む材料22aを酸化して第2の二酸化珪素領域15cを形成する工程とを有する。具体的には、第2の領域10f上の珪素を含む材料22aおよび第1の不純物領域17の表面10cに形成された珪素を含む材料22b(第2の珪素を含む領域)が酸化されてそれぞれ第2の二酸化珪素領域15cおよび第3の二酸化珪素領域15aが形成される。同様に、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域13の第1の領域10dが酸化されて第1の二酸化珪素領域15bが形成される。より具体的には、酸素雰囲気中において、珪素を含む材料22a、22bが形成され、かつウェル領域13の第1の領域10dが露出された炭化珪素基板10を、たとえば1300℃程度に加熱して1時間程度保持する熱処理が実施される。
 図8を参照して、二酸化珪素層15は、第1の不純物領域17の表面10c上の第3の二酸化珪素領域15aと、第1の不純物領域17と第2の不純物領域14に挟まれたウェル領域13の第1の領域10d上の第1の二酸化珪素領域15bと、第2の領域10f上の第2の二酸化珪素領域15cとを含む。第1の二酸化珪素領域15bの厚みを第1の厚みT1とし、第2の二酸化珪素領域15cの厚みを第2の厚みT2としたとき、第2の厚みT2は第1の厚みT1よりも大きい。たとえば、第1の厚みT1は50nm程度であり、第2の厚みT2は180nm程度である。好ましくは、第3の二酸化珪素領域15aの厚みを第3の厚みT3としたとき、第3の厚みT3は第1の厚みT1よりも大きい。なお、第2の厚みT2と第3の厚みT3とは同じ程度である。
 好ましくは、第2の二酸化珪素領域15cの厚みT2は、第1の二酸化珪素領域15bの厚みT1の1.5倍以上5倍以下であり、より好ましくは3倍以上5倍以下である。好ましくは、第2の二酸化珪素領域15cの炭素濃度は、第1の二酸化珪素領域15bの炭素濃度よりも低い。
 本実施の形態においては、二酸化珪素層を形成する工程において、第1の不純物領域17の表面10c上に配置された珪素を含む材料22bおよび第2の領域10f上に配置された珪素を含む材料22aの各々を酸化する工程およびウェル領域13の第1の領域10dを酸化する工程が同時に行われる。珪素を含む材料22a、22bの各々はほぼ完全に酸化されて二酸化珪素となり、ウェル領域13の炭化珪素からなる第1の領域10dも酸化されて二酸化珪素となる。たとえば、珪素を含む材料22a、22bの各々の厚みが60nm程度であるとき、当該材料22a、22bの各々が酸化されて形成された二酸化珪素層の各々の厚みは180nm程度となる。なお、第3の二酸化珪素領域15aの幅W3は、第1の不純物領域17の幅W1と同等か小さいことが好ましい。
 なお、炭化珪素基板10の第1の主面10aが酸化されてゲート絶縁膜を構成する第1の二酸化珪素領域15bが形成される場合、炭化珪素基板10の第1の主面10aから一定の深さの領域が酸化されて二酸化珪素となる。このとき、二酸化珪素の厚みは酸化された炭化珪素基板10の領域の厚みの2倍程度である。
 その後、窒素アニール工程が実施される。具体的には、一酸化窒素雰囲気中において、炭化珪素基板10が1100℃程度の温度でたとえば1時間程度保持される。その後、アルゴンや窒素などの不活性ガス中において、炭化珪素基板10を加熱する熱処理が実施される。当該熱処理において、炭化珪素基板10は1100℃以上1500℃以下の温度で1時間程度保持される。
 次に、ゲート電極形成工程(S40:図4)が実施される。具体的には、図9を参照して、たとえばCVD(Chemical Vapor Deposition)法、フォトリソグラフィおよびエッチングにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極27が形成される。ゲート電極27は、第1の二酸化珪素領域15bおよび第3の二酸化珪素領域15a上に配置されたゲート電極領域27aと、第2の二酸化珪素領域15c上に配置されたゲート電極領域27bとを含む。図2に示すように、ゲート電極領域27aおよびゲート電極領域27bは電気的に接続されている。図10を参照して、その後、たとえばCVD法により、絶縁体である二酸化珪素からなる層間絶縁膜21が、ゲート電極領域27aを取り囲むように形成される。また当該層間絶縁膜21が、ゲート電極領域27bの表面の一部が露出するようにゲート電極領域27bに接して形成される。次に、フォトリソグラフィおよびエッチングによりソースコンタクト電極16を形成する領域の層間絶縁膜21と第1の二酸化珪素領域15bの一部が除去される。
 次に、オーミック電極形成工程が実施される。具体的には、炭化珪素基板10の第1の主面10aにおいて第2の不純物領域14およびp+領域18と接するように、たとえば蒸着法により金属膜が形成される。金属膜はたとえばNi(ニッケル)である。金属膜はたとえばTi(チタン)原子およびAl(アルミニウム)原子を含んでいてもよい。金属膜はたとえばNi原子およびSi(シリコン)原子を含んでいてもよい。金属膜が形成された後、当該金属膜をたとえば1000℃程度で加熱することにより、ニッケル膜が加熱されてシリサイド化されることにより、炭化珪素基板10の第2の不純物領域14とオーミック接触するソースコンタクト電極16が形成される。同様に、炭化珪素基板10の第2の主面10bに接して、Niなどの金属膜が形成され、当該金属膜を加熱することによりドレイン電極20が形成される。
 次に、ゲートランナー形成工程(S50:図4)が実施される。具体的には、図10を参照して、たとえば蒸着法により、導電体であるAlからなるゲートランナー2が、ゲート電極領域27bと電気的に接続され、かつ第2の二酸化珪素領域15cに対向した位置に配置される。ゲートランナー2は、層間絶縁膜21と接し、ゲート電極領域27bを介してゲート電極領域27aとも電気的に接続されている。ゲートランナー2はゲート電極領域27aよりも電気抵抗率の低い材料から構成される。ゲートランナーを形成する工程は、ゲートランナー2に電圧を印加するためのゲートパッド7を形成する工程を含んでもよい。
 図1に示すように、ゲートランナー2は第2の不純物領域14およびp+領域18よりも外側(炭化珪素基板10の端部10eに近い側)に形成されることが好ましい。また、ゲートランナー2は、JTE領域4、ガードリング領域5およびフィールドストップ領域6よりも内側(炭化珪素基板10の端部10eから遠い側)に形成されることが好ましい。本実施の形態において、ゲートランナー2はp型を有するウェル領域13の上方に配置されている。
 ソース配線19は、層間絶縁膜21を取り囲み、かつソースコンタクト電極16と接するように形成される。好ましくは、図2に示すように、平面視においてゲートランナー2に囲まれるように配置されたソース配線19が形成される。ゲートランナー2とソース配線19は同時に形成されてもよい。また、たとえばAlからなるパッド電極23がドレイン電極20と接して形成される。以上の手順により、本実施の形態に係るMOSFET1(図1参照)が完成する。
 なお、本実施の形態においては、第1導電型がn型であり、第2導電型がp型である場合について説明したが本発明はこの形態に限定されない。たとえば、第1導電型がp型であり、第2導電型がn型であっても構わない。
 また、本実施の形態において、炭化珪素半導体装置として縦型MOSFETを例に挙げて説明したが本発明はこの形態に限定されない。たとえば、炭化珪素半導体装置は、たとえば横型MOSFETでも構わない。また、MOSFETはプレナー型であってよいし、トレンチ型であってもよい。さらに、炭化珪素半導体装置はIGBT(Insulated Gate Bipolar Transistor)などであっても構わない。
 次に、本実施の形態に係るMOSFET1およびその製造方法の作用効果について説明する。
 本実施の形態に係るMOSFET1およびその製造方法によれば、第2の領域10f上に珪素を含む材料22aが形成された後、当該珪素を含む材料22aを酸化して第2の二酸化珪素領域15cが形成される。第2の二酸化珪素領域15cに対向した位置に配置されたゲートランナー2が形成される。これにより、炭化珪素基板10の表面荒れを抑制しつつ、炭化珪素基板10とゲートランナー2との絶縁性能を向上させることができる。
 また本実施の形態に係るMOSFET1の製造方法によれば、第1の二酸化珪素領域15bを形成する工程および第2の二酸化珪素領域15cを形成する工程は、第1の領域10dと珪素を含む材料22aとを同時に酸化することにより行われる。これにより、効率的に第1の二酸化珪素領域15bと第2の二酸化珪素領域15cとが形成される。
 さらに本実施の形態に係るMOSFET1およびその製造方法によれば、第2の二酸化珪素領域15cの第2の厚みT2は、第1の二酸化珪素領域15bの第1の厚みT1の1.5倍以上5倍以下である。第1の厚みT1が第2の厚みT2の1.5倍以上であれば、第1の二酸化珪素領域15bの炭素濃度を第2の二酸化珪素領域15cの炭素濃度よりも効率的に高くすることができる。一方、第1の厚みT1が第2の厚みT2の5倍以下であれば、第2の二酸化珪素領域15cに形成されるゲート電極領域27bと、第1の二酸化珪素領域15bに形成されるゲート電極領域27aとの段差が大きくなり過ぎないので、ゲート電極27を断絶することなく形成することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、平面視においてゲートランナー2に囲まれるように配置されたソース配線19を形成する工程をさらに有する。これにより、チップの外周領域全体からゲート電極27に対して効率的に電圧を印加することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、ゲートランナー2は第2の不純物領域14よりも外側に形成される。これにより、ゲートランナー2はソース配線19よりも外側に形成される。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、ゲートランナー2はJTE領域4よりも内側に形成される。これにより、MOSFET1の耐圧劣化を抑制することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、第2の二酸化珪素領域15cは第1の主面10aの端部10eに接するように形成される。これにより、ゲートランナー2と炭化珪素基板10との耐圧をさらに向上することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、第1の不純物領域17に接して第2の珪素を含む材料22bを形成する工程と、第2の珪素を含む材料22bを酸化することにより第3の二酸化珪素領域15aを形成する工程とをさらに有する。これにより、第1の不純物領域17上に厚い二酸化珪素領域が形成される。結果として、ゲート絶縁膜近傍の静電容量が低減されるので、MOSFET1のスイッチング特性を向上することができる。
 さらに本実施の形態に係るMOSFET1の製造方法によれば、第2の二酸化珪素領域15cが形成される工程および第3の二酸化珪素領域15aが形成される工程が同時に行われる。これにより、効率的に第2の二酸化珪素領域15cおよび第3の二酸化珪素領域15aが形成される。
 (実施の形態2)
 図11および図12を参照して、実施の形態2における炭化珪素半導体装置であるMOSFET1の構成について説明する。実施の形態2に係るMOSFET1は、ゲートランナー2がチップの中央付近に配置されている点において実施の形態1に係るMOSFET1と異なっており、他の構成に関しては同様である。
 図11を参照して、本実施の形態に係るMOSFET1におけるゲートランナー2は、断面視(図11の視野)において、2つのソースコンタクト電極16に挟まれた第2の二酸化珪素領域15cに対向する位置に配置されている。断面視において、第2の二酸化珪素領域15cに接するウェル領域13は、2つのp+領域18と2つの第2の不純物領域14とを含む。断面視において、当該p+領域18の一端は第2の不純物領域14と接し、他端はウェル領域13と接する。また断面視において、第2の不純物領域14およびp+領域18の各々は、第1の主面10aの法線に対して線対称の位置に配置されている。
 図12を参照して、本実施の形態に係るMOSFET1におけるゲートランナー2は、平面視において、チップ1の中央付近に直線的に延びて配置されている。ゲートランナー2は、チップ1の端部10e側に配置されたゲートパッド7と接続されている。ゲートパッド7は外部からゲート電圧が印加されるように構成されている。また平面視においてソース配線19はゲートランナー2およびゲートパッド7を挟むように配置されている。ソース配線19は外部からソース電流が印加されるように構成されている。
 図18を参照して、ゲートランナー2は、ゲートパッド7から枝分かれ状に延伸するように形成されていても構わない。ゲートパッド7はチップ1の中央付近に配置されており、当該ゲートパッド7からチップの中央を直線状に延伸するゲートランナー部と、ゲートパッド7の左右側の各々から直線状に延伸し、チップ1の端部10e付近で90°程度折れ曲がり、端部10eと平行な方向に沿って延伸するゲートランナー部とを有していても構わない。またゲートランナー2はソース配線19に囲まれて形成されても構わない。
 次に、本実施の形態におけるMOSFET1の製造方法の一例について、図13~図17を参照して説明する。
 まず基板準備工程(S10:図4)が実施される。具体的には、実施の形態1で説明した方法と同様の方法で炭化珪素基板10が準備される。具体的には、たとえばポリタイプ4Hの六方晶炭化珪素からなるベース基板11が準備され、ベース基板11上にエピタキシャル成長によりn型(第1導電型)のドリフト層12が形成される。
 図13を参照して、次に、たとえばAl(アルミニウム)イオンがドリフト層12にイオン注入されることによりウェル領域13が形成される。次に、第2の不純物領域14を形成するためのイオン注入が実施される。具体的には、たとえばP(リン)イオンがウェル領域13に注入されることにより、ウェル領域13内に第2の不純物領域14が形成される。さらに、p+領域18を形成するためのイオン注入が実施される。具体的には、たとえばAlイオンがウェル領域13に注入されることにより、ウェル領域13内であって、第2の不純物領域14と接するp+領域18が形成される。上記イオン注入は、たとえばドリフト層12の第1の主面10a上に二酸化珪素からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。
 以上の様に、n型を有する第1の不純物領域17と、第1の不純物領域17と接しかつn型と異なるp型を有するウェル領域13と、ウェル領域13によって第1の不純物領域17と隔てられかつn型を有する第2の不純物領域14とを含む炭化珪素基板10が準備される。なお、当該炭化珪素基板10は、互いに対向する第1の主面10aおよび第2の主面10bを有する。第1の主面10aは、第1の不純物領域17と第2の不純物領域14とに挟まれたチャネル領域CHと接する第1の領域10dと、第1の領域10dとは異なる第2の領域10fとを含む。
 次に、活性化アニール工程が実施される。具体的には、たとえばアルゴンなどの不活性ガス雰囲気中において、上記炭化珪素基板10をたとえば1700℃程度に加熱して、30分間程度保持する熱処理が実施される。これにより注入された不純物が活性化する。
 次に、珪素を含む材料形成工程(S20:図4)が実施される。具体的には、図14を参照して、ウェル領域13中における領域であって、p+領域18に対して第2の不純物領域と反対側の領域上に珪素を含む材料22aが形成される。なお、当該領域は、チャネル領域CH(図11参照)と接する第1の領域10dと異なる第2の領域10fを含む。また本実施の形態では、一対のウェル領域13に挟まれた第1の不純物領域17の表面10cにも、珪素を含む材料22bが形成される。
 珪素を含む材料22a、22bとは、たとえばポリシリコン、アモルファスシリコンおよびアモルファス炭化珪素などであり、単結晶珪素であってもよい。好ましくは、珪素を含む材料22とは主成分が珪素からなる材料である。より好ましくは、珪素を含む材料22とは炭化珪素よりも酸化しやすい材料である。珪素を含む材料22の厚みはたとえば60nm程度である。なお、第1の不純物領域17はJFET領域である。
 珪素を含む材料を形成する工程では、たとえば炭化珪素基板10の第1の主面10aにポリシリコンを堆積させた後、ウェットエッチングやドライエッチングなどでパターニングを行うことで、第2の領域10fに形成を含む材料22aが形成され、かつ第1の不純物領域17に接する炭化珪素基板10の表面10cに珪素を含む材料22bが形成される。
 次に、二酸化珪素層形成工程(S30:図4)が実施される。二酸化珪素層形成工程は、第1の領域10d上にゲート絶縁膜の一部となる第1の二酸化珪素領域15bを形成する工程と、珪素を含む材料22aを酸化して第2の二酸化珪素領域15cを形成する工程とを有する。具体的には、第2の領域10f上の珪素を含む材料22aおよび第1の不純物領域17の表面10cに形成された珪素を含む材料22bが酸化されてそれぞれ第2の二酸化珪素領域15cおよび第3の二酸化珪素領域15aが形成される。同様に、第1の不純物領域17および第2の不純物領域14に挟まれたウェル領域13の第1の領域10dとが酸化されて第1の二酸化珪素領域15bが形成される。より具体的には、酸素雰囲気中において、珪素を含む材料22a、22bが形成され、かつウェル領域13の第1の領域10dが露出された炭化珪素基板10を、たとえば1300℃程度に加熱して1時間程度保持する熱処理が実施される。
 図15を参照して、二酸化珪素層15は、第1の不純物領域17の表面10c上の第3の二酸化珪素領域15aと、第1の不純物領域17と第2の不純物領域14に挟まれたウェル領域13の第1の領域10d上の第1の二酸化珪素領域15bと、第1の主面10aの第2の領域10f上の第2の二酸化珪素領域15cとを含む。
 本実施の形態においては、二酸化珪素層を形成する工程において、第1の不純物領域17の表面10c上に配置された珪素を含む材料22aおよび第2の領域10f上に配置された珪素を含む材料22bの各々を酸化する工程およびウェル領域13の第1の領域10dを酸化する工程が同時に行われる。珪素を含む材料22a、22bの各々はほぼ完全に酸化されて二酸化珪素となり、ウェル領域13の第1の領域10dも酸化されて二酸化珪素となる。たとえば、珪素を含む材料22a、22bの各々の厚みが60nm程度であるとき、当該材料22a、22bの各々が酸化されて形成された二酸化珪素層の各々の厚みは180nm程度となる。
 その後、窒素アニール工程が実施される。具体的には、一酸化窒素雰囲気中において、炭化珪素基板10が1100℃程度の温度でたとえば1時間程度保持される。その後、アルゴンや窒素などの不活性ガス中において、炭化珪素基板10を加熱する熱処理が実施される。当該熱処理において、炭化珪素基板10は1100℃以上1500℃以下の温度で1時間程度保持される。
 次に、ゲート電極形成工程(S40:図4)が実施される。具体的には、図16を参照して、たとえばCVD法、フォトリソグラフィおよびエッチングにより、高濃度に不純物が添加された導電体であるポリシリコンからなるゲート電極27が形成される。ゲート電極27は、第1の二酸化珪素領域15bおよび第3の二酸化珪素領域15a上に配置されたゲート電極領域27aと、第2の二酸化珪素領域15c上に配置されたゲート電極領域27bとを含む。ゲート電極領域27aおよびゲート電極領域27bは電気的に接続されている。図17を参照して、その後、たとえばCVD法により、絶縁体である二酸化珪素からなる層間絶縁膜21が、ゲート電極領域27aを取り囲むように形成される。また当該層間絶縁膜21が、ゲート電極領域27bの表面の一部が露出するようにゲート電極領域27bに接して形成される。次に、フォトリソグラフィおよびエッチングによりソースコンタクト電極16を形成する領域の層間絶縁膜21と第1の二酸化珪素領域15bの一部が除去される。
 次に、オーミック電極形成工程が実施される。具体的には、炭化珪素基板10の第1の主面10aにおいて第2の不純物領域14およびp+領域18と接するように、たとえば蒸着法により金属膜が形成される。金属膜はたとえばNi(ニッケル)である。金属膜はたとえばTi(チタン)原子およびAl(アルミニウム)原子を含んでいてもよい。金属膜はたとえばNi原子およびSi(シリコン)原子を含んでいてもよい。金属膜が形成された後、当該金属膜をたとえば1000℃程度で加熱することにより、ニッケル膜が加熱されてシリサイド化されることにより、炭化珪素基板10の第2の不純物領域14とオーミック接触するソースコンタクト電極16が形成される。同様に、炭化珪素基板10の第2の主面10bに接して、Niなどの金属膜が形成され、当該金属膜を加熱することによりドレイン電極20が形成される。
 次に、ゲートランナー形成工程(S50:図4)が実施される。具体的には、図11を参照して、たとえば蒸着法により、導電体であるAlからなるゲートランナー2が、ゲート電極領域27bと電気的に接続され、かつ第2の二酸化珪素領域15cに対向した位置に配置される。ゲートランナー2は、層間絶縁膜21と接し、ゲート電極領域27bを介してゲート電極領域27aとも電気的に接続されている。ゲートランナー2はゲート電極領域27aよりも電気抵抗率の低い材料から構成される。ゲートランナーを形成する工程は、ゲートランナー2に電圧を印加するためのゲートパッド7を形成する工程を含んでもよい。
 図11に示すように、ゲートランナー2は、第2の二酸化珪素領域15cに対向する位置に、ゲート電極領域27bと接して形成される。またゲートランナー2は、断面視において2つのソース配線19、19の間に形成される。
 ソース配線19は、層間絶縁膜21を取り囲み、かつソースコンタクト電極16と接するように形成される。好ましくは、図12に示すように、平面視においてゲートランナー2およびゲートパッド7を挟むようにソース配線19が形成される。ゲートランナー2とソース配線19は同時に形成されてもよい。また、たとえばAlからなるパッド電極23がドレイン電極20と接して形成される。以上の手順により、本実施の形態に係るMOSFET1(図11参照)が完成する。
 なお実施の形態2におけるMOSFET1の製造方法において説明していない各工程における条件などは、実施の形態1におけるMOSFET1の製造方法と同様である。
 次に、本実施の形態に係るMOSFET1およびその製造方法の作用効果について説明する。
 本実施の形態に係るMOSFET1の製造方法によれば、平面視においてゲートランナー2を挟むように配置されたソース配線19を形成する工程をさらに有する。これにより、チップ1の中央付近からゲート電極27に対して電圧を印加することができる。
 また本実施の形態に係るMOSFET1の製造方法によれば、ゲートランナー2を形成する工程は、ゲートランナー2に電圧を印加するためのゲートパッド7を形成する工程を含む。ゲートランナー2はゲートパッド7から枝分かれ状に延伸するように形成される。これにより、ゲート電極27の近くまでゲートランナー2を配置することにより、効率的にゲート電極27に対して電圧を印加することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 1 MOSFET(チップ)、2 ゲートランナー、4 JTE領域、5 ガードリング領域、6 フィールドストップ領域、7 ゲートパッド、10 炭化珪素基板、10a 第1の主面、10b 第2の主面、10c 表面、10d 第1の領域、10f 第2の領域、10e 端部、11 ベース基板、12 ドリフト層、13 ウェル領域、14 第2の不純物領域、15 二酸化珪素層、15a 第3の二酸化珪素領域、15b 第1の二酸化珪素領域、15c 第2の二酸化珪素領域、16 ソースコンタクト電極、17 第1の不純物領域(JFET領域)、18 p+領域、19 ソース配線、20 ドレイン電極、21 層間絶縁膜、22,22a,22b 珪素を含む材料、23 パッド電極、27,27a、27b ゲート電極、CH チャネル領域、T1 第1の厚み、T2 第2の厚み、T3 第3の厚み、W1,W2,W3 幅。

Claims (13)

  1.  互いに対向する第1の主面および第2の主面を有する炭化珪素基板を準備する工程を備え、
     前記炭化珪素基板は、第1導電型を有する第1の不純物領域と、前記第1の不純物領域と接しかつ前記第1導電型と異なる第2導電型を有するウェル領域と、前記ウェル領域によって前記第1の不純物領域と隔てられかつ前記第1導電型を有する第2の不純物領域とを含み、
     前記第1の主面は、前記第1の不純物領域と前記第2の不純物領域とに挟まれたチャネル領域と接する第1の領域と、前記第1の領域とは異なる第2の領域とを含み、さらに、
     前記第2の領域上に珪素を含む材料を形成する工程と、
     前記第1の領域上に第1の二酸化珪素領域を形成する工程と、
     前記珪素を含む材料を酸化して第2の二酸化珪素領域を形成する工程と、
     前記第1の二酸化珪素領域および前記第2の二酸化珪素領域に接してゲート電極を形成する工程と、
     前記ゲート電極と電気的に接続され、かつ前記第2の二酸化珪素領域に対向した位置に配置されたゲートランナーを形成する工程とを備え、
     前記第2の二酸化珪素領域の厚みは、前記第1の二酸化珪素領域の厚みより大きい、炭化珪素半導体装置の製造方法。
  2.  前記第1の二酸化珪素領域を形成する工程および前記第2の二酸化珪素領域を形成する工程は、前記第1の領域と前記珪素を含む材料とを同時に酸化することにより行われる、請求項1に記載の炭化珪素半導体装置の製造方法。
  3.  前記第2の二酸化珪素領域の厚みは、前記第1の二酸化珪素領域の厚みの1.5倍以上5倍以下である、請求項1または2に記載の炭化珪素半導体装置の製造方法。
  4.  平面視において前記ゲートランナーに囲まれるように配置されたソース配線を形成する工程をさらに備えた、請求項1~3のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  5.  前記ゲートランナーは前記第2の不純物領域よりも外側に形成される、請求項1~4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  6.  前記炭化珪素基板は、前記ウェル領域に接するJTE領域をさらに含み、
     前記ゲートランナーは前記JTE領域よりも内側に形成される、請求項1~5のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  7.  前記第2の二酸化珪素領域は前記第1の主面の端部に接するように形成される、請求項1~6のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  8.  平面視において前記ゲートランナーを挟むように配置されたソース配線を形成する工程をさらに備えた、請求項1~3のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  9.  前記ゲートランナーを形成する工程は、前記ゲートランナーに電圧を印加するためのゲートパッドを形成する工程を含み、
     前記ゲートランナーは前記ゲートパッドから枝分かれ状に延伸するように形成される、請求項1に記載の炭化珪素半導体装置の製造方法。
  10.  前記第1の不純物領域に接して第2の珪素を含む材料を形成する工程と、
     前記第2の珪素を含む材料を酸化することにより第3の二酸化珪素領域を形成する工程をさらに備えた、請求項1~9のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  11.  前記第2の二酸化珪素領域が形成される工程および前記第3の二酸化珪素領域が形成される工程が同時に行われる、請求項10に記載の炭化珪素半導体装置の製造方法。
  12.  互いに対向する第1の主面および第2の主面を有する炭化珪素基板を備え、
     前記炭化珪素基板は、第1導電型を有する第1の不純物領域と、前記第1の不純物領域と接しかつ前記第1導電型と異なる第2導電型を有するウェル領域と、前記ウェル領域によって前記第1の不純物領域と隔てられかつ前記第1導電型を有する第2の不純物領域とを含み、
     前記第1の主面は、前記第1の不純物領域と前記第2の不純物領域とに挟まれたチャネル領域と接する第1の領域と、前記第1の領域とは異なる第2の領域とを含み、さらに、
     前記第1の領域上に配置された第1の二酸化珪素領域と、
     前記第2の領域上に配置された第2の二酸化珪素領域と、
     前記第1の二酸化珪素領域および前記第2の二酸化珪素領域に接するゲート電極と、
     前記ゲート電極と電気的に接続され、かつ前記第2の二酸化珪素領域に対向した位置に配置されたゲートランナーとを備え、
     前記第2の二酸化珪素領域は、前記第1の二酸化珪素領域よりも厚く、
     前記第2の二酸化珪素領域の炭素濃度は、前記第1の二酸化珪素領域の炭素濃度よりも低い、炭化珪素半導体装置。
  13.  前記第2の二酸化珪素領域の厚みは前記第1の二酸化珪素領域の厚みの1.5倍以上5倍以下である、請求項12に記載の炭化珪素半導体装置。
PCT/JP2013/077325 2012-11-28 2013-10-08 炭化珪素半導体装置およびその製造方法 WO2014083942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13859222.5A EP2927939A4 (en) 2012-11-28 2013-10-08 SILICON CARBIDE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
US14/439,144 US9450060B2 (en) 2012-11-28 2013-10-08 Method of manufacturing a silicon carbide semiconductor device
CN201380055165.2A CN112368809A (zh) 2012-11-28 2013-10-08 碳化硅半导体器件及其制造方法
US15/228,127 US9716157B2 (en) 2012-11-28 2016-08-04 Silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012259550A JP5994604B2 (ja) 2012-11-28 2012-11-28 炭化珪素半導体装置およびその製造方法
JP2012-259550 2012-11-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/439,144 A-371-Of-International US9450060B2 (en) 2012-11-28 2013-10-08 Method of manufacturing a silicon carbide semiconductor device
US15/228,127 Division US9716157B2 (en) 2012-11-28 2016-08-04 Silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2014083942A1 true WO2014083942A1 (ja) 2014-06-05

Family

ID=50827588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077325 WO2014083942A1 (ja) 2012-11-28 2013-10-08 炭化珪素半導体装置およびその製造方法

Country Status (5)

Country Link
US (2) US9450060B2 (ja)
EP (1) EP2927939A4 (ja)
JP (1) JP5994604B2 (ja)
CN (1) CN112368809A (ja)
WO (1) WO2014083942A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269765B2 (en) * 2013-10-21 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having gate wire disposed on roughened field insulating film
US10553633B2 (en) * 2014-05-30 2020-02-04 Klaus Y.J. Hsu Phototransistor with body-strapped base
JP2016154181A (ja) * 2015-02-20 2016-08-25 住友電気工業株式会社 炭化珪素半導体装置
JP2016174030A (ja) 2015-03-16 2016-09-29 株式会社東芝 半導体装置
CN115498042A (zh) 2015-12-18 2022-12-20 罗姆股份有限公司 半导体装置
KR101875634B1 (ko) * 2016-10-27 2018-07-06 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2018135147A1 (ja) * 2017-01-17 2018-07-26 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6815285B2 (ja) * 2017-06-26 2021-01-20 株式会社東芝 半導体装置
CN111406323B (zh) * 2017-12-14 2024-03-01 新电元工业株式会社 宽带隙半导体装置
US11538769B2 (en) * 2018-12-14 2022-12-27 General Electric Company High voltage semiconductor devices having improved electric field suppression
JP7188210B2 (ja) * 2019-03-22 2022-12-13 三菱電機株式会社 半導体装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281764A (ja) * 1985-10-07 1987-04-15 Agency Of Ind Science & Technol 炭化シリコン電界効果トランジスタの製造方法
JPH01289165A (ja) * 1988-05-17 1989-11-21 Fujitsu Ltd 半導体装置の製造方法
JPH11266014A (ja) 1998-03-18 1999-09-28 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2000277514A (ja) * 1999-03-24 2000-10-06 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
WO2010098294A1 (ja) 2009-02-24 2010-09-02 三菱電機株式会社 炭化珪素半導体装置
WO2010119789A1 (ja) * 2009-04-13 2010-10-21 ローム株式会社 半導体装置および半導体装置の製造方法
JP2011129547A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
WO2011125274A1 (ja) * 2010-04-06 2011-10-13 三菱電機株式会社 電力用半導体装置およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217149A (en) * 1976-09-08 1980-08-12 Sanyo Electric Co., Ltd. Method of manufacturing complementary insulated gate field effect semiconductor device by multiple implantations and diffusion
JPH10326837A (ja) * 1997-03-25 1998-12-08 Toshiba Corp 半導体集積回路装置の製造方法、半導体集積回路装置、半導体装置、及び、半導体装置の製造方法
US6048759A (en) * 1998-02-11 2000-04-11 Magepower Semiconductor Corporation Gate/drain capacitance reduction for double gate-oxide DMOS without degrading avalanche breakdown
JP3534056B2 (ja) 2000-08-31 2004-06-07 日産自動車株式会社 炭化珪素半導体装置の製造方法
JP3664158B2 (ja) 2002-02-19 2005-06-22 日産自動車株式会社 炭化珪素半導体装置およびその製造方法
US8866255B2 (en) * 2008-03-12 2014-10-21 Infineon Technologies Austria Ag Semiconductor device with staggered oxide-filled trenches at edge region
US9105715B2 (en) 2009-04-30 2015-08-11 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing the same
CN102484069A (zh) * 2009-09-07 2012-05-30 罗姆股份有限公司 半导体装置及其制造方法
WO2011045834A1 (ja) * 2009-10-14 2011-04-21 三菱電機株式会社 電力用半導体装置
WO2012001837A1 (ja) * 2010-06-30 2012-01-05 三菱電機株式会社 電力用半導体装置
KR20130141338A (ko) * 2010-12-22 2013-12-26 스미토모덴키고교가부시키가이샤 탄화규소 반도체 장치의 제조 방법
JP5677222B2 (ja) * 2011-07-25 2015-02-25 三菱電機株式会社 炭化珪素半導体装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281764A (ja) * 1985-10-07 1987-04-15 Agency Of Ind Science & Technol 炭化シリコン電界効果トランジスタの製造方法
US4757028A (en) * 1985-10-07 1988-07-12 Agency Of Industrial Science And Technology Process for preparing a silicon carbide device
JPH01289165A (ja) * 1988-05-17 1989-11-21 Fujitsu Ltd 半導体装置の製造方法
JPH11266014A (ja) 1998-03-18 1999-09-28 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2000277514A (ja) * 1999-03-24 2000-10-06 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
WO2010098294A1 (ja) 2009-02-24 2010-09-02 三菱電機株式会社 炭化珪素半導体装置
WO2010119789A1 (ja) * 2009-04-13 2010-10-21 ローム株式会社 半導体装置および半導体装置の製造方法
US20120049202A1 (en) * 2009-04-13 2012-03-01 Rohm Co., Ltd Semiconductor device and method of manufacturing semiconductor device
CN102396070A (zh) * 2009-04-13 2012-03-28 罗姆股份有限公司 半导体装置及半导体装置的制造方法
JP2011129547A (ja) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
WO2011125274A1 (ja) * 2010-04-06 2011-10-13 三菱電機株式会社 電力用半導体装置およびその製造方法
JP2012109602A (ja) * 2010-04-06 2012-06-07 Mitsubishi Electric Corp 電力用半導体装置およびその製造方法、ならびにパワーモジュール
KR20120125401A (ko) * 2010-04-06 2012-11-14 미쓰비시덴키 가부시키가이샤 전력용 반도체 장치, 파워 모듈 및 전력용 반도체 장치의 제조 방법
CN102870217A (zh) * 2010-04-06 2013-01-09 三菱电机株式会社 功率用半导体装置及其制造方法
US20130020587A1 (en) * 2010-04-06 2013-01-24 Mitsubishi Electric Corporation Power semiconductor device and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927939A4 *

Also Published As

Publication number Publication date
EP2927939A4 (en) 2016-08-10
CN112368809A (zh) 2021-02-12
EP2927939A1 (en) 2015-10-07
US20150263115A1 (en) 2015-09-17
US20160343820A1 (en) 2016-11-24
US9716157B2 (en) 2017-07-25
JP2014107419A (ja) 2014-06-09
JP5994604B2 (ja) 2016-09-21
US9450060B2 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
US9362121B2 (en) Method of manufacturing a silicon carbide semiconductor device
JP4291875B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2012169224A1 (ja) 半導体装置
WO2015005010A1 (ja) 半導体装置およびその製造方法
JP6135364B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2015032665A (ja) ワイドバンドギャップ半導体装置
WO2015145411A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2015032664A (ja) ワイドバンドギャップ半導体装置
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
JP5751146B2 (ja) 半導体装置およびその製造方法
WO2015049923A1 (ja) 炭化珪素半導体装置
WO2017051616A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2015015938A1 (ja) 炭化珪素半導体装置の製造方法
JP6991476B2 (ja) 半導体装置
JP6862782B2 (ja) 半導体装置および半導体装置の製造方法
WO2014192437A1 (ja) 炭化珪素半導体装置
JP2014127660A (ja) 炭化珪素ダイオード、炭化珪素トランジスタおよび炭化珪素半導体装置の製造方法
WO2015076020A1 (ja) 半導体装置
JP2014060272A (ja) 炭化珪素半導体装置およびその製造方法
JP2015115570A (ja) 炭化珪素半導体装置およびその製造方法
JP6229443B2 (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439144

Country of ref document: US

Ref document number: 2013859222

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE