WO2014064888A1 - 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法 - Google Patents

電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法 Download PDF

Info

Publication number
WO2014064888A1
WO2014064888A1 PCT/JP2013/005840 JP2013005840W WO2014064888A1 WO 2014064888 A1 WO2014064888 A1 WO 2014064888A1 JP 2013005840 W JP2013005840 W JP 2013005840W WO 2014064888 A1 WO2014064888 A1 WO 2014064888A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
bus bar
thin
electrode
Prior art date
Application number
PCT/JP2013/005840
Other languages
English (en)
French (fr)
Inventor
高志 瀬戸
敏哉 清水
佳之 古小路
山西 伸和
康広 浅井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201380055124.3A priority Critical patent/CN104737328B/zh
Priority to JP2014543131A priority patent/JP6239523B2/ja
Priority to US14/429,355 priority patent/US9673430B2/en
Publication of WO2014064888A1 publication Critical patent/WO2014064888A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device in which a plurality of secondary battery cells are stacked, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device, and more particularly to an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle.
  • a power supply device for driving to drive a vehicle mounted on a vehicle and a stationary power supply device for storing electricity for home use and factory use have been developed.
  • a large number of rechargeable secondary battery cells are connected in series to form a battery stack, and a plurality of battery stacks are connected in series as necessary. Or they are connected in parallel.
  • a battery stack for example, a plurality of rectangular battery cells are stacked with a spacer interposed therebetween, and fastened with a bind bar.
  • the electrode terminals of adjacent battery cells are connected by a bus bar.
  • the bus bar is welded to the electrode terminal by laser welding (see Patent Document 1).
  • Such battery cells have variations such as battery cell manufacturing tolerances. Further, as the plurality of battery cells are stacked, such variations are accumulated, and the error of the fixed portion of the electrode terminal increases. In order to absorb such an error, a method has been adopted in which a long hole is opened in the bus bar 2230 as shown in FIG. 25 and a welding ring 2235 is interposed to be welded to the electrode terminal 2220 of the battery cell 2201.
  • the welding ring is arranged at a predetermined position with a parts feeder, the position is imaged with a camera, the position is adjusted by image processing, and then the laser beam is irradiated to perform welding. Has been adopted.
  • this method has a problem that it takes time to arrange and position the weld ring.
  • the number of battery cells used in power supply devices has increased, and as a result, the number and positions of welding cells have increased, and as a result, the reduction of tact time during manufacturing has become a problem. ing.
  • JP 2011-60623 A JP 2012-138190 A JP 2008-146944 A JP 2009-231145 A
  • a main object of the present invention is to provide a power supply device capable of welding in a shorter time without using a welding ring, a vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device.
  • the power supply device includes a plurality of battery cells including electrode portions, and a bus bar for connecting the electrode portions of the battery cells. Is formed with a thin portion having a thickness thinner than that of other portions at least at a part of the edge thereof, and can be welded to the electrode portion of the battery cell with the thin portion.
  • the edge of the bus bar is formed in a concave shape, and the thin portion can be formed in the concave portion.
  • the width of the thin portion can be made smaller than 1 ⁇ 2 of the electrode portion.
  • the electrode portion includes a pedestal portion and an electrode terminal protruding from the pedestal portion, and the thin portion is disposed on a side surface of the electrode terminal.
  • the electrode terminal has a columnar shape, and the concave portion can be formed in a half moon shape along the columnar shape of the electrode terminal.
  • the radius of the half-moon-shaped portion can be made larger than the radius of the electrode terminal. According to the above configuration, an advantage that the position of the electrode terminal is arranged in the half-moon-shaped portion can be adjusted to absorb the displacement of the electrode terminal.
  • the thin portion of the bus bar can be formed to be elastically deformable.
  • the bus bar can be bent into a mountain shape in a sectional view.
  • the thin portion of the bus bar can be bent in the direction opposite to the mountain-shaped bending direction.
  • the thin portion can be welded to the electrode portion with a fiber laser.
  • the thin-walled portion can be accurately melted with a high-power laser beam having a thin beam diameter, and the reliability of welding can be improved.
  • the bus bar can be a clad material joined with dissimilar metals.
  • a traveling motor that is supplied with power from the power supply device, a vehicle main body including the power supply device and the motor, And a wheel driven by a motor to cause the vehicle body to travel.
  • the power supply device includes a power supply controller that controls charging / discharging of the power supply device, and the power supply controller enables charging of the power supply device with external power, and It can be controlled to charge the power supply device.
  • the manufacturing method of a power supply device is a manufacturing method of a power supply device provided with the some battery cell provided with an electrode part, and the electroconductive bus bar which connects the electrode parts of each battery cell, Comprising: Said bus bar Is a top surface of the battery cell stack in which the plurality of battery cells are stacked in a state where the cross-sectional view is bent into a mountain shape, and on each upper surface of the opposing electrode portion between adjacent battery cells, Arranging a thin portion formed on at least a part of an edge of the bus bar; irradiating the thin portion with laser light; penetrating the thin portion and melting it together with the electrode portion; and welding them. And a step of performing. Thereby, at the time of welding a bus bar, the thin part can be directly welded to the electrode part, and there is no need to use a separate member such as a welding ring, and the advantage that the welding process can be saved can be obtained.
  • FIG. 6A is a plan view of the bus bar of FIG. 5
  • FIG. 6B is a vertical cross-sectional view of the bus bar of FIG. 5 taken along the line VIB-VIB.
  • FIG. 6A is a plan view of the bus bar of FIG. 5
  • FIG. 6B is a vertical cross-sectional view of the bus bar of FIG. 5 taken along the line VIB-VIB.
  • FIG. 6 is a schematic plan view of a bus bar according to Embodiment 2.
  • FIG. 6 is a schematic plan view of a bus bar according to Embodiment 3.
  • FIG. 11A is a plan view of the bus bar according to Embodiment 4, and
  • FIG. 11B is a vertical cross-sectional view of the bus bar in FIG. 11A along the line XIB-XIB. It is a top view which shows the power supply device which connected the battery cell in parallel. It is a top view which shows the example of a connection of the bus-bar which concerns on a comparative example. It is a top view which shows the example of a connection of the bus-bar which concerns on embodiment.
  • 10 is a schematic plan view of a bus bar according to Embodiment 5.
  • FIG. 5 is a schematic plan view of a bus bar according to Embodiment 5.
  • FIG. 17A is a plan view of the bus bar according to Embodiment 3
  • FIG. 17B is a vertical sectional view of the bus bar in FIG. 17A along the line XVIIB-XVIIB.
  • FIG. 6 is a vertical sectional view of a bus bar according to a fourth embodiment.
  • FIG. 19A is a plan view showing a bus bar according to Embodiment 8
  • FIG. 19B is a vertical sectional view taken along line XIXB-XIXB in FIG. 19A.
  • 20A is a plan view showing the bus bar according to Embodiment 9, and FIG.
  • 20B is a vertical sectional view taken along line XXB-XXB in FIG. 20A. It is a top view which shows the position which laser-welds the bus-bar of FIG. It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive
  • the embodiment described below exemplifies a power supply device, an electric vehicle including the power supply device, a power storage device, and a method of manufacturing the power supply device for embodying the technical idea of the present invention.
  • the manufacturing method of the power supply device, the electric vehicle including the power supply device, the power storage device, and the power supply device is not specified as follows.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 is an exploded perspective view of the power supply apparatus 100 according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of the power supply apparatus 100 of FIG. 1
  • FIG. 3 is a schematic plan view of the power supply apparatus 100 of FIG.
  • FIG. 4 shows a schematic plan view of the bus bar holder 8 removed from FIG.
  • the power supply device 100 shown in these drawings includes a plurality of battery cells 1, spacers 50 interposed between the battery cells 1, and battery stacks 2 in which the battery cells 1 and the spacers 50 are alternately stacked. End plates 3 respectively disposed on the end surfaces and fastening means 4 for fastening the end plates 3 to each other are provided. (Battery cell 1)
  • the battery cell 1 is a square battery that is wider than the thickness, in other words, is thinner than the width.
  • a plurality of the battery cells 1 are stacked in the thickness direction to form a battery stack 2.
  • Each battery cell 1 is a lithium ion secondary battery.
  • the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the battery cell 1 of FIG. 2 is a battery having a rectangular shape with both wide surfaces, and the battery stack 2 is formed by laminating both surfaces so as to face each other.
  • Each battery cell 1 is provided with positive and negative electrode portions 20 at both end portions of the sealing plate 10 on the upper surface, and a gas discharge port 12 of the gas discharge valve 11 is provided at the center portion.
  • Each electrode portion 20 includes a pedestal portion 22 and an electrode terminal 21 protruding from the pedestal portion 22.
  • the electrode terminal 21 is formed in a cylindrical shape.
  • the rectangular battery cell 1 has a sealing plate 10 that seals the opening of an outer can that is formed by pressing a metal plate into a cylindrical shape that closes the bottom.
  • the sealing plate 10 is a flat metal plate, and its outer shape is the shape of the opening of the outer can.
  • the sealing plate 10 is laser welded and fixed to the outer peripheral edge of the outer can so as to airtightly close the opening of the outer can.
  • the sealing plate 10 fixed to the outer can has positive and negative electrode portions 20 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode portions 20.
  • a gas discharge valve 11 is provided inside the gas discharge port 12.
  • the spacer 50 is made of an insulating member in order to insulate the outer cans of the battery cells 1 from each other.
  • the end plate 3 is made of a highly rigid member such as a metal.
  • the fastening means 4 is similarly composed of a highly rigid metal plate or the like.
  • the metal plate is bent in a U shape in a sectional view, and the end portion is fixed to the end plate 3 by screwing or the like.
  • the fastening means can be used not only for fastening the battery stack 2 but also as a member for fixing the gas duct 6 to the upper surface of the battery stack 2.
  • the second fastening means 5 is provided on the upper surface of the battery stack 2.
  • a 2nd fastening means can be abbreviate
  • the gas duct can be omitted. (Bus bar holder 8)
  • the bus bar holder 8 is fixed to the upper surface of the battery stack 2.
  • the bus bar holder 8 is made of an insulating member, and covers the upper surface of the battery cell 1 in order to avoid unintentional conduction between the bus bar 30 and the battery cell 1.
  • the bus bar holder 8 has an opening window 24 for exposing the electrode terminal 21 in the state of being fixed to the upper surface of the battery stack 2 in order to electrically connect each electrode terminal 21. Thereby, the electrode terminal 21 is exposed from the opening window 24 while insulating the upper surface of the battery cell 1 except for the part necessary for the electrical connection, thereby maintaining the electrical connection between the electrode terminals 21.
  • the bus bar holder 8 is fixed by the second fastening means 5 as shown in the exploded perspective view of FIG.
  • the second fastening means 5 is pressed from the upper surface of the bus bar holder 8, and the end of the second fastening means 5 is screwed to the upper surface of the end plate 3.
  • the bus bar holder 8 is fixed to the upper surface of the battery stack 2 via the second fastening means 5.
  • the bus bar holder fixing structure is not limited to this configuration.For example, the bus bar holder is directly screwed to the end plate, or a fitting structure such as a claw is provided on the bus bar holder to be fitted to the bus bar or the fastening means. Other known fixing structures can be used as appropriate. (Gas duct 6)
  • the gas duct 6 is a hollow cylindrical body that extends in the stacking direction of the battery cells 1 and opens a duct discharge portion 6x at an end portion.
  • a connection opening is opened at a position corresponding to the gas discharge valve 11 of each battery cell 1.
  • Each of the connection openings communicates with the gas discharge port 12 in a state where the gas discharge valve 11 is opened, and the high-pressure gas discharged from the battery cell 1 is guided into the gas duct 6. Further, the inside of the gas duct 6 is closed at one end, and the duct discharge portion 6x is opened at the other end.
  • the duct discharge part 6x is connected with a gas discharge path, and discharges gas safely to the outside.
  • the gas duct 6 is positioned on the upper surface of the battery stack 2 so that each connection opening communicates with the gas discharge valve.
  • the cross section in the extending direction of the gas duct 6 is formed in a horizontally long rectangular shape.
  • the internal shape of the gas duct can be any shape such as a tubular shape or an inverted U shape or U shape.
  • the second fastening means 5 also serves as a fixing structure for the gas duct 6. That is, the flange portion 6a is formed around the gas duct 6, an opening is provided in the second fastening means 5, and the second fastening means 5 is covered from above the gas duct 6 so that the gas duct 6 passes through the opening portion.
  • the gas duct 6 is fixed to the upper surface of the bus bar holder 8 by pressing the peripheral flange 6 a around the opening 6. (Circuit board 9)
  • a circuit board 9 on which an electronic circuit is mounted is fixed on the upper surface of the gas duct 6.
  • the electronic circuit mounted on the circuit board 9 can be a protection circuit or a control circuit for monitoring the voltage of the battery cell 1 or the like.
  • the circuit board 9 is shorter than the length of the gas duct 6 in the longitudinal direction, and is wider than the gas duct 6 in the width direction of the gas duct 6 intersecting the longitudinal direction. (Voltage detection line)
  • a voltage detection line for detecting the voltage is fixed to each bus bar 30.
  • the voltage detection line is composed of a conductive lead, a harness, a flexible printed circuit board (FPC), or the like, and has one end connected to the circuit board.
  • FPC flexible printed circuit board
  • the voltage detection line configured by FPC is fixed to the upper surface of the bus bar 30.
  • Each battery cell 1 includes a pair of positive and negative electrode portions 20.
  • the electrode portions 20 of adjacent battery cells 1 are connected to each other by a conductive bus bar 30.
  • the bus bar 30 can be connected in series or in parallel.
  • 12 battery cells are connected in series by connecting the positive electrode terminal and the negative electrode terminal of the adjacent battery cell 1 with the bus bar 30.
  • the bus bar 30 is melted and fixed to the electrode unit 20 by laser welding.
  • the laser light for example, a fiber laser can be preferably used.
  • the fiber laser has the advantage that the spot diameter can be made smaller and the output is higher than that of a normal YAG laser or the like. For this reason, it is suitable for precise laser welding. (Bus bar 30)
  • the bus bar 30 is preferably made of a metal plate having excellent conductivity and suitable for laser welding.
  • a perspective view of the bus bar 30 is shown in FIG. 5, and a plan view and a cross-sectional view are shown in FIGS. 6A and 6B, respectively.
  • the bus bar 30 is formed of a plate material having a substantially uniform thickness.
  • a thick low-resistance portion made of a metal plate having high conductivity is used.
  • the thick part 31 of the bus bar 30 thus configured is a clad material in which different metal plates are combined so that the positive electrode part 20 and the negative electrode part 20 of the battery cell 1 can be easily welded.
  • the positive electrode is often an aluminum plate and the negative electrode is a copper plate.
  • the bus bar 30 is uniformly formed of either an aluminum plate or a copper plate, either the positive electrode or the negative electrode may be bonded between different metals of copper and aluminum, and the strength may be weakened. Therefore, the bus bar 30 is composed of a clad material that combines a copper plate and an aluminum plate, and the aluminum plate is brought into contact with the positive electrode and the copper plate is brought into contact with the negative electrode so as to be electrically connected to each other, so that the same kind of metals are welded to each other and reliability of joining Can be increased. (Thin part 32)
  • a thin portion 32 is partially formed at both ends of the thick portion 31 of the bus bar 30.
  • This thin portion includes a welded portion 33 to be welded to the flat surface of the pedestal portion.
  • the thin portion 32 is formed thinner than the thick portion 31 at the center of the bus bar 30 as shown in the cross-sectional view of FIG. 6B in order to facilitate melting when the bus bar 30 is welded to the electrode portion 20.
  • the thin portion 32 is formed in a step shape in a cross-sectional view. The thinner the bus bar, the easier it is to weld, while the current resistance increases.
  • the thin-walled portion is formed in a stepped shape in which the edge of the bus bar is cut out on the upper surface side. In this way, by forming the thinned portion in a shape where the upper surface side is cut out rather than from the lower surface side of the bus bar edge, the lower surface side can be brought into contact with the pedestal portion to be welded over a wide area, and the thinned portion is laser It can be reliably welded by light penetration.
  • the edge of the bus bar 30 is preferably not a straight line but a non-linear shape.
  • the distance of the welding part 33 can be lengthened and intensity
  • it can be recessed in a plan view so that the edge is turned.
  • the electrode terminal 21 can be used as a guide when positioning the bus bar 30.
  • the bus bar 30 is arranged by the parts feeder, the circular shape of the end face of the electrode terminal 21 is detected by image processing, and the bus bar 30 can be easily arranged along this.
  • both ends of the bus bar 30 in the longitudinal direction are formed with a semi-circular thin portion 32 with a constant width d along the periphery of the electrode terminal 21.
  • the radius of the curved portion is preferably made larger than the radius of the electrode terminal 21. Accordingly, the electrode terminal 21 can be disposed in the concave portion 34. That is, as shown in the plan view of FIG. 4, the contact area between the back surface of the thick portion 31 and the pedestal portion 22 can be increased by the amount that allows the thick portion 31 to be close to the electrode terminal 21.
  • the distance between the electrode terminals 21 varies when the battery cells are stacked.
  • the edge of the bus bar 30 is formed as the concave portion 34, so that the positional deviation of the electrode terminal 21 can be absorbed. That is, when the electrode terminal 21 is arranged in the concave portion 34, the gap between the electrode terminal 21 and the edge of the bus bar 30 is absorbed by designing in advance so that a slight gap is formed between the two. it can.
  • the distance to be welded can be increased as compared with the case where the edge of the bus bar 30 is linear as described above, and the joint strength is correspondingly increased. Be improved.
  • the edge of the bus bar 30 concave, it can be used for both absorbing the displacement of the electrode terminal 21 and improving the bonding strength.
  • the concave portion 34 of the thin portion 32 is set as an open end, it is possible to cope with the limit especially when the distance between the electrode terminals 21 is longer than the expected value. That is, as shown in FIG. 25, in the method of forming a long hole in the bus bar and adjusting with a welding ring, only the length of the long hole can be adjusted. Therefore, for example, the battery cell expands to increase the distance between the battery cells. Then, there was a possibility that the bus bar was broken. On the other hand, if it is the concave part 34 made into the open end without making it a closed hole shape, such a fracture
  • the thin portion 32 is irradiated with laser light.
  • the laser beam is applied to a region indicated by cross hatching in the plan view of FIG. Further, the laser light is irradiated from above the bus bar 30b as shown by a thick line in the cross-sectional view of FIG. Thereby, the thin portion 32 is melted and welded to the lower pedestal portion 22.
  • the laser beam is irradiated so as to penetrate the thin portion 32 and melt the pedestal portion 22.
  • a fiber laser can be suitably used as described above. Note that it is not necessary to completely melt all of the thin portion 32, it is sufficient that the thin portion 32 is melted to such an extent that sufficient welding is realized, and it is sufficient that a part of the thin portion 32 remains without being melted. (Embodiments 2 and 3)
  • the edge of the bus bar is formed in a semicircular shape.
  • the shape of the edge of the bus bar is not limited to this, and a shape other than a straight line can be used as appropriate.
  • the electrode terminal 21B has a hexagonal shape in plan view, and the concave portion of the end of the bus bar 30B has an inverted isosceles trapezoidal shape accordingly.
  • a thin portion 32B is formed in the concave portion.
  • the electrode terminal 21C has a quadrangular shape in plan view, and the concave portion of the edge of the bus bar 30C is also opened in a U-shape accordingly. A portion 32C is formed.
  • the planar view shape of the electrode terminal 21 is not limited to a cylindrical shape, and any shape such as a polygonal shape or an elliptical shape can be used, and the shape of the concave portion of the edge of the bus bar is also corresponding to this. It can be appropriately modified.
  • the concave portion is formed at only one place in the approximate center of the end surface of the bus bar has been described. However, two or more concave portions can be formed.
  • thin portions may also be provided at a plurality of locations. Thereby, the distance of the welding part 33 can be lengthened.
  • the plurality of concave portions may not be all the same shape, but may be formed in different shapes and patterns.
  • the central concave portion can be formed large, and smaller concave portions can be formed on both sides thereof.
  • it may be formed in a wave shape or a saw blade shape. In this way, the effect of increasing the joint strength by increasing the distance welded to the base portion 22 is obtained. (Embodiment 4)
  • the thin portion is partially formed on the edge of the thick portion 31 of the bus bar.
  • a thin portion can also be formed on the entire surface of the edge of the bus bar.
  • FIG. 11 Such an example is shown in FIG. 11 as a second embodiment.
  • the bus bar 30D shown in this figure has a width a from the end edge of the thick portion 31 to a thin portion 32D.
  • the width of the thin portion 32 ⁇ / b> D is preferably smaller than 1 ⁇ 2 of the width of the pedestal portion 22.
  • a concave portion can be formed at the center of the thin portion 32D as in the first embodiment. Thereby, as described above, the displacement of the electrode terminal 21 can be absorbed.
  • this bus bar 30 connects the electrode portions of the stacked battery cells, there is an advantage that even if the positions of the electrode portions vary in the state where the battery cells are stacked, it can be handled. That is, as shown in the plan view of FIG. 13, when three or more (six in the example of FIG. 13) battery cells 1 are connected by one bus bar 1330, the bus bar is inserted to insert each electrode terminal 21. Due to the restriction of the size of the connection hole opened at 1330, there was a limit to the correspondence of the displacement of the electrode terminal 21 in the horizontal direction. Furthermore, since the battery cell 1 may be displaced in the height direction, it becomes more difficult to cope with it.
  • the configuration in which the shape of the concave portion of the edge of the bus bar is formed according to the shape of the electrode terminal has been described.
  • the electrode terminal protruding from the pedestal portion is not necessarily essential in welding with the bus bar, and can be omitted. That is, in the above embodiment, the bus bar is welded to the pedestal portion instead of the electrode terminal.
  • the electrode terminal is not directly welded in the present embodiment. For this reason, an electrode terminal is not necessarily essential, and it is also possible to omit this.
  • FIG. 15 is a power supply device 500 according to the fifth embodiment.
  • the thin portion 32 of the bus bar 30 can be fixed at an arbitrary position on the pedestal portion 22 'regardless of the electrode terminals.
  • the electrode terminal 21 is used as a positioning guide as described above. That is, the shape of the electrode terminal 21 is detected by image processing, and the bus bar 30 is arranged with this position as a reference. Thus, the electrode terminal 21 functions as a positioning guide that determines the fixing position of the bus bar 30. If the electrode terminal is not provided as in the fifth embodiment, as another positioning guide instead of the electrode terminal, for example, a mark is engraved and printed at an arbitrary position of the pedestal portion, or the rectangular outline of the pedestal portion Etc. can be used. Furthermore, as shown in FIG. 20 to be described later, one or more holes may be opened in the bus bar to form a positioning guide. (Embodiment 6)
  • both ends of the bus bar 30E by bending the thick portion 31 into a mountain shape, both ends thereof can be protruded relatively downward.
  • the bus bar is made of a clad material of a different metal as described above, it can be easily formed in such a mountain shape by slightly inclining the surfaces where the different metals are joined.
  • a bus-bar with respect to a battery cell using a jig
  • the edge of the bus bar is elastically deformed by the applied stress, and the gap with the pedestal portion can be eliminated.
  • the edge of the bus bar 30E is bent into a valley shape opposite to the mountain shape as shown in the cross-sectional view of FIG. 17B. As a result, the thin portion 32E at the edge of the bus bar 30E is easily elastically deformed.
  • the bus bar 30F shown in the cross-sectional view of FIG. 18 as Embodiment 7 has a shape in which the central portion is curved. Even in such a shape, the effect that the thin portion 32F can be elastically deformed as described above is obtained. (Embodiment 8)
  • the thick wall portion of the bus bar can be bent, but also the edge of the bus bar can be bent in the opposite direction.
  • FIG. 19 Such an example is shown in FIG. 19 as an eighth embodiment.
  • the thin-walled portion 32G can be bent with the pedestal portion in a wider area, and a gap is generated during laser welding. You can avoid that.
  • the battery cells constituting the battery stack have a problem of being displaced up and down during assembly, but according to this configuration, the thin part is formed in an arc shape, so that the pedestal part is located near the bent part. Can be contacted.
  • the present invention is not limited to this configuration, and the welded portion can be provided linearly along the bent portion of the thin portion.
  • FIGS. 20 and 21 Such an example is shown in FIGS. 20 and 21 as a ninth embodiment.
  • the bus bar 30H can smoothly weld the welded portion by scanning the laser beam linearly during laser welding.
  • the distance for laser welding is shorter than in the example in which the welded portion 33 is concave, the area of the welded portion is reduced and the strength is reduced. Therefore, as shown by a broken line in the plan view of FIG.
  • the area of the welded portion 33H is gained to increase the bonding strength. Can be improved.
  • the plurality of welded portions 33H are provided by being shifted from the bent portion toward the edge of the bus bar 30H.
  • the weld strength can be similarly lengthened and the joint strength can be improved by meandering the welded portion in a wavy or zigzag shape along the bent portion of the thin-walled portion. (Bus bar positioning guide 36)
  • a positioning guide can be formed on the bus bar.
  • the positioning guide for example, a concave shape formed on the edge of the bus bar can be used.
  • one or more through holes may be opened in the bus bar.
  • the bus bar 30H has a round hole-like through hole formed in the thin portion 32H at the end edge.
  • a through hole is opened at each corner of the edge of the bus bar 30H.
  • a second through hole 37 is also opened at the center of the thick portion 31H of the bus bar 30H.
  • the second through hole 37 is distinguished from these by making the diameter larger than the through hole.
  • a notch can be formed in a part of the outer shape of the bus bar to regulate the posture and the top and bottom.
  • a U-shaped recess 38 is formed in the upper left of the thick portion 31H of the bus bar 30H. Using the depression 38 as a clue, the vertical posture of the point-symmetric bus bar 30H can be specified.
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 22 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • 94 a vehicle main body 90 on which the power supply device 100 and the motor 93 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (Power supply for electric vehicles)
  • FIG. 23 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for moving bodies but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 100 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 100 drives the load LD after charging the battery unit 82 with the charging power supply CP. For this reason, the power supply apparatus 100 includes a charging mode and a discharging mode.
  • the load LD and the charging power source CP are connected to the power supply device 100 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 100.
  • the power supply controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 100.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 100 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply device 100 at the same time.
  • the load LD driven by the power supply device 100 is connected to the power supply device 100 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 100.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 100.
  • the power controller 84 also includes a communication interface for communicating with external devices.
  • the host device HT is connected according to an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • a power supply device, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device according to the present invention include a plug-in hybrid electric vehicle, a hybrid electric vehicle, and an electric vehicle that can switch between an EV traveling mode and an HEV traveling mode. It can utilize suitably as power supplies, such as. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 溶接リングを使用することなく短時間でバスバーの溶接を可能とする。電源装置(100)は、電極部(20)を備える複数の電池セル(1)と、電池セル(1)の電極部(20)を接続するためのバスバー(30)とを備える。バスバー(30)は、その端縁の少なくとも一部に、厚さを他の部分よりも薄くした薄肉部を形成しており、薄肉部でもって、電池セル(1)の電極部(20)と溶接する。電極部(20)は、台座部(22)と、台座部(22)から突出された電極端子(21)とを備えており、電極端子(21)の側面に薄肉部(32)を配置している。これにより、バスバー(30)の溶接時には薄肉部(32)を電極部(20)に直接溶接することができ、溶接リングなどの別部材を使用する必要をなくして、溶接工程を省力化できる。

Description

電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
 本発明は、二次電池セルを複数積層した電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法に関し、特にハイブリッド車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両に搭載されて車両を走行させるモータの電源装置、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源に電力を供給する電源装置及び電源装置を備える車両並びに蓄電装置、電源装置の製造方法に関する。
 車両に搭載されて、車両を走行させる駆動用の電源装置や、家庭用、工場用に蓄電するための定置型の電源装置が開発されている。このような電源装置は、供給する電力を大きくするために、充電可能な二次電池セルを多数、直列に接続して電池積層体を構成し、また必要に応じて複数の電池積層体を直列又は並列に接続している。このような電池積層体は、例えば角形の電池セルを複数、間にスペーサを介在させて積層し、バインドバーで締結する。さらに隣接する電池セルの電極端子同士を、バスバーで接続する。バスバーは、電極端子とレーザ溶接によって溶接される(特許文献1参照)。
 このような電池セルは、電池セルの製造公差などのばらつきがある。また、複数枚の電池セルを積層する程、このようなばらつきも累積されて、電極端子の固定部分の誤差が大きくなる。このような誤差を吸収するため、バスバー2230に図25に示すように長穴を開口して、溶接リング2235を介在させて、電池セル2201の電極端子2220に溶接する方法が採用されてきた。
 この方法では、溶接リングを所定の位置にパーツフィーダで配置し、その位置を、溶接リングをカメラで撮像して画像処理により位置を調整した上で、レーザ光を照射して溶接するという手順が採用されてきた。
 しかしながらこの方法では、溶接リングを配置して位置決めする作業に時間がかかるという問題があった。特に近年の大出力化の要求により、電源装置に使用する電池セルの数が増大しており、これに伴い溶接すべき位置や数も増え、それに伴い製造時のタクトタイムの削減が問題となっている。
特開2011-60623号公報 特開2012-138190号公報 特開2008-146943号公報 特開2009-231145号公報
 本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、溶接リングを使用することなくより短時間で溶接を可能とした電源装置及び電源装置を備える車両並びに蓄電装置、電源装置の製造方法を提供することにある。
課題を解決するための手段及び発明の効果
 上記目的を達成するために、本発明の電源装置によれば、電極部を備える複数の電池セルと、前記電池セルの電極部を接続するためのバスバーとを備える電源装置であって、前記バスバーは、その端縁の少なくとも一部に、厚さを他の部分よりも薄くした薄肉部を形成しており、前記薄肉部でもって、前記電池セルの電極部と溶接することができる。上記構成により、バスバーの溶接時には薄肉部を電極部に直接溶接することができ、溶接リングなどの別部材を使用する必要をなくして、溶接工程を省力化できる利点が得られる。
 また、本発明の他の電源装置によれば、前記バスバーの端縁を、凹状に形成しており、前記凹状部分に、前記薄肉部を形成することができる。上記構成により、バスバーと電極部を溶接する部分の距離を長くして接合強度の向上を図ることができる。
 さらに、本発明の他の電源装置によれば、前記薄肉部の幅が、前記電極部の1/2よりも小さくすることができる。上記構成により、台座部の両側からバスバーを配置する際でも、各バスバーと溶接する領域を適切に確保できる。
 さらにまた、本発明の他の電源装置によれば、前記電極部が、台座部と、前記台座部から突出された電極端子とを備えており、前記電極端子の側面に前記薄肉部を配置することができる。上記構成により、台座部から突出される電極端子をバスバーの位置決め用のガイドとして利用して、バスターの位置決め作業を容易に行える利点が得られる。
 さらにまた、本発明の他の電源装置によれば、前記電極端子が円柱状であり、前記凹状部分を、前記電極端子の円柱状に沿う半月状に形成することができる。上記構成により、電極端子とバスバーとの溶接部分の距離を長くして、接合強度を向上させることができる。
 さらにまた、本発明の他の電源装置によれば、前記半月状部分の半径を、前記電極端子の半径よりも大きくすることができる。上記構成によって、半月状部分に電極端子を配置する位置を調整して、電極端子の位置ずれを吸収できる利点が得られる。
 さらにまた、本発明の他の電源装置によれば、前記バスバーの薄肉部を、弾性変形可能に形成することができる。上記構成により、バスバーを電極部に溶接する際には溶接に係る薄肉部を弾性的に押圧して、溶接部分に隙間が形成させる事態を回避し、溶接の信頼性を向上できる。
 さらにまた、本発明の他の電源装置によれば、前記バスバーを断面視山形状に折曲させることができる。上記構成により、バスバーの両端部分を下面側すなわち電池セル側に突出させて、バスバーと電極部との溶接部分に隙間が形成されることを回避できる。
 さらにまた、本発明の他の電源装置によれば、前記バスバーの薄肉部を、前記山形状折曲方向とは逆向きに折曲させることができる。上記構成により、さらにバスバーの両端を電極部と接触させやすくして、溶接部分に隙間が形成されることを回避できる。
 さらにまた、本発明の他の電源装置によれば、前記薄肉部を前記電極部にファイバーレーザで溶接することができる。上記構成により、細いビーム径の高出力なレーザ光で薄肉部を正確に溶融させることができ、溶接の信頼性を高めることが可能となる。
 さらにまた、本発明の他の電源装置によれば、前記バスバーを、異種金属を接合したクラッド材とすることができる。上記構成により、電極部が異なる金属で構成されている場合に、各電極部を構成する金属と接合させやすい材質を選択して、これらをクラッド材としたバスバーとでき、電極部との接合の信頼性を向上できる。
 さらにまた、電源装置を備える電動車両によれば、上記の電源装置に加え、前記電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることができる。
 さらにまた、蓄電装置によれば、前記電源装置への充放電を制御する電源コントローラを備えており、前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能とできる。
 さらにまた、電源装置の製造方法によれば、電極部を備える複数の電池セルと、各電池セルの電極部同士を接続する導電性のバスバーとを備える電源装置の製造方法であって、前記バスバーを、その断面視を山形状に折曲した状態で、前記複数の電池セルを積層した電池セル積層体の上面であって、隣接する電池セルの間の、対向する電極部の各上面に、該バスバーの端縁の少なくとも一部に形成された薄肉部を配置させる工程と、前記薄肉部にレーザ光を照射して、前記薄肉部を貫通させて前記電極部と共に溶融させて、これらを溶接する工程とを含むことができる。これにより、バスバーの溶接時には薄肉部を電極部に直接溶接することができ、溶接リングなどの別部材を使用する必要をなくして、溶接工程を省力化できる利点が得られる。
本発明の実施の形態1に係る電源装置を示す斜視図である。 図1の電源装置の分解斜視図である。 図1の電源装置の概略平面図である。 図3からバスバーホルダを外した状態を示す概略平面図である。 図4のバスバーの斜視図である。 図6Aは図5のバスバーの平面図、図6Bは図5のバスバーのVIB-VIB線における垂直断面図である。 バスバーと電極部とをレーザ溶接する部分を示す概略平面図である。 バスバーと電極部とをレーザ溶接する状態を示す概略断面図である。 実施の形態2に係るバスバーの概略平面図である。 実施の形態3に係るバスバーの概略平面図である。 図11Aは実施の形態4に係るバスバーの平面図、図11Bは図11AのバスバーのXIB-XIB線における垂直断面図である。 電池セルを並列に接続した電源装置を示す平面図である。 比較例に係るバスバーの接続例を示す平面図である。 実施の形態に係るバスバーの接続例を示す平面図である。 実施の形態5に係るバスバーの概略平面図である。 バスバーと電極部との間に隙間が生じる状態を示す概略断面図である。 図17Aは実施の形態3に係るバスバーの平面図、図17Bは図17AのバスバーのXVIIB-XVIIB線における垂直断面図である。 実施の形態4に係るバスバーの垂直断面図である。 図19Aは実施の形態8に係るバスバーを示す平面図、図19Bは図19AのXIXB-XIXBにおける垂直断面図である。 図20Aは実施の形態9に係るバスバーを示す平面図、図20Bは図20AのXXB-XXBにおける垂直断面図である。 図20のバスバーをレーザ溶接する位置を示す平面図である。 エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。 モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。 蓄電用の電源装置に適用する例を示すブロック図である。 従来のバスバーを溶接リングで溶接する方法を示す分解斜視図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法を例示するものであって、本発明は電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法を以下のものに特定しない。また実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施の形態1)
 本発明の実施の形態1に係る電源装置100から分解斜視図を図1に、図1の電源装置100の分解斜視図を図2に、図1の電源装置100の概略平面図を図3に、図3からバスバーホルダ8を外した概略平面図を図4に、それぞれ示す。これらの図に示す電源装置100は、複数枚の電池セル1と、電池セル1同士の間に介在されるスペーサ50と、電池セル1とスペーサ50とを交互に積層した電池積層体2の各端面にそれぞれ配置されるエンドプレート3と、エンドプレート3同士を締結する締結手段4とを備えている。
(電池セル1)
 電池セル1は、図1及び図2に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池としている。この電池セル1を複数枚、厚さ方向に積層して電池積層体2とする。各電池セル1は、リチウムイオン二次電池である。ただ、電池セルをニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図2の電池セル1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池積層体2としている。各電池セル1は、上面である封口板10の両端部に正負の電極部20を設けて、中央部にはガス排出弁11のガス排出口12を設けている。各電極部20は、台座部22と、この台座部22から突出された電極端子21とを備えている。電極端子21は円柱状に形成される。
 角形の電池セル1は、底を閉塞する筒状に金属板をプレス加工している外装缶の開口部を、封口板10で閉塞して密閉している。封口板10は平面状の金属板で、その外形を外装缶の開口部の形状としている。この封口板10はレーザ溶接して外装缶の外周縁に固定されて外装缶の開口部を気密に閉塞している。外装缶に固定される封口板10は、その両端部に正負の電極部20を固定しており、さらに正負の電極部20の中間にはガス排出口12を設けている。ガス排出口12の内部にはガス排出弁11を設けている。
 スペーサ50は、電池セル1の外装缶同士を絶縁するため、絶縁性の部材で構成される。またエンドプレート3は、電池積層体2を積層した状態で締結するため、金属製等の剛性の高い部材で構成される。さらに締結手段4は、同様に剛性の高い金属板等で構成される。ここでは、金属板を断面視コ字状に折曲して、端部をエンドプレート3にねじ止め等により固定している。また締結手段は、電池積層体2の締結のみならず、電池積層体2の上面にガスダクト6を固定する部材として兼用することもできる。ここでは、電池積層体2を側面で締結する締結手段4に加えて、電池積層体2の上面に第二締結手段5を設けている。なお、この構成は一例であって、第二締結手段を省略して電池積層体の側面のみを締結手段で締結することもできる。また、ガスダクトを省略することもできる。
(バスバーホルダ8)
 また電池積層体2の上面には、バスバーホルダ8が固定される。バスバーホルダ8は絶縁性の部材で構成され、バスバー30と電池セル1との意図しない導通を避けるため、電池セル1の上面を被覆する。さらにバスバーホルダ8は、各電極端子21を電気接続させるために、電池積層体2の上面に固定した状態で、電極端子21を表出させるための開口窓24を開口させている。これによって、電気接続に必要な部位を除いて電池セル1の上面を絶縁しつつ、開口窓24から電極端子21を表出させることで、電極端子21同士の電気接続を維持している。
 バスバーホルダ8は、図2の分解斜視図に示すように、第二締結手段5でもって固定される。ここでは、第二締結手段5をバスバーホルダ8の上面から押圧し、第二締結手段5の端部をエンドプレート3の上面に螺合している。これにより第二締結手段5を介してバスバーホルダ8が電池積層体2の上面に固定される。なお、バスバーホルダの固定構造は、この構成に限られず、例えばバスバーホルダをエンドプレートに直接螺合したり、バスバーホルダに爪などの嵌合構造を設けてバスバーや締結手段に嵌合させるなど、他の既知の固定構造を適宜利用することもできる。
(ガスダクト6)
 さらに図2に示す電源装置100は、バスバーホルダ8の上面に、ガスダクト6を固定し、さらにガスダクト6の上面に回路基板9を配置している。ガスダクト6は、電池セル1の積層方向に延長された中空状の筒体であり、端部にダクト排出部6xを開口している。ガスダクト6の底面側には、各電池セル1のガス排出弁11と対応する位置に、連結開口が開口されている。連結開口はそれぞれ、ガス排出弁11が開弁された状態でガス排出口12と連通され、電池セル1から排出される高圧のガスが、ガスダクト6内に案内されるよう構成されている。さらにガスダクト6の内部は、一方の端部を閉塞し、他方の端部にダクト排出部6xを開口させている。ダクト排出部6xは、ガス排出路と連結されて、ガスを安全に外部に排出する。このガスダクト6は、各連結開口がガス排出弁と連通するように位置決めして、電池積層体2の上面に固定されている。図2の例では、ガスダクト6の延長方向における断面を、横長の矩形状に形成している。ただガスダクトの内部形状は、管状、あるいは逆U字状やU字状等、任意の形状とできる。
 なお図2の例では、第二締結手段5は、ガスダクト6の固定構造も兼用している。すなわち、ガスダクト6の周囲に鍔部6aを形成すると共に、第二締結手段5に開口を設け、ガスダクト6の上方から第二締結手段5を、開口部分にガスダクト6を通すように被せると共に、ガスダクト6周囲の鍔部6aを開口の周縁で押圧して、ガスダクト6をバスバーホルダ8の上面に固定する。
(回路基板9)
 さらにガスダクト6の上面には、電子回路を実装した回路基板9が固定されている。回路基板9に実装される電子回路は、電池セル1の電圧等を監視するための保護回路や制御回路等とできる。回路基板9は、ガスダクト6の長手方向の長さよりも短く、かつ長手方向と交差するガスダクト6の幅方向においては、ガスダクト6よりも幅広に形成されている。
(電圧検出線)
 また、各電池セル1のセル電圧を測定するために、各バスバー30には、電圧を検出するための電圧検出線が固定されている。電圧検出線は、導電リードやハーネス、あるいはフレキシブルプリント基板(FPC)等で構成され、一端を回路基板に接続している。図2、図3に示す例では、FPCで構成された電圧検出線を、バスバー30の上面に固定している。
(ファイバーレーザ)
 各電池セル1は、正負の一対の電極部20を備えている。この電池セル1を積層した状態で、隣接する電池セル1の、電極部20同士を導電性のバスバー30で接続している。バスバー30の接続形態によって、電池セル1同士を直列や並列に接続できる。図4の平面図に示す例では、隣接する電池セル1の正極端子と負極端子をそれぞれバスバー30で接続することで、12枚の電池セルを直列に接続している。このバスバー30を電極部20と溶接することで、バスバー30を介して隣接する電池セル1の電極同士を電気接続できる。図4の例では、レーザ溶接によってバスバー30を溶融させて電極部20と固定している。レーザ光には、例えばファイバーレーザが好適に利用できる。ファイバーレーザは、通常のYAGレーザ等と比べて、スポット径を小さくでき、高出力である利点が得られる。このため、精密なレーザ溶接に好適である。
(バスバー30)
 バスバー30は、好ましくは導電性に優れ、かつレーザ溶接に適した金属板で構成される。バスバー30の斜視図を図5に、平面図と断面図を図6A及び図6Bに、それぞれ示す。これらの図に示すようにバスバー30は、ほぼ均一な厚さの板材で構成する。特にバスバー30の抵抗を抑えるため、導電率の高い金属板で構成された厚肉の低抵抗部としている。また、このように構成されたバスバー30の厚肉部31は、電池セル1の正極と負極の電極部20にそれぞれ溶接しやすいよう、異なる金属板を組み合わせたクラッド材とすることが好ましい。例えばリチウムイオン二次電池では、正極をアルミニウム板に、負極を銅板とすることが多い。このためバスバー30をアルミニウム板または銅板のいずれかで均一に構成すると、正極又は負極のいずれか一方で、銅とアルミニウムの異種金属間接合となり、強度が弱くなることがある。そこで、銅板とアルミニウム板を組み合わせたクラッド材でバスバー30を構成し、アルミニウム板を正極に、銅板を負極に、それぞれ接触させて導通させることで、同種の金属同士を溶接させて接合の信頼性を高めることができる。
(薄肉部32)
 また、バスバー30の厚肉部31の両端には、薄肉部32を部分的に形成している。この薄肉部は、台座部の平坦面と溶接される溶接部33を含む。薄肉部32は、バスバー30を電極部20に溶接させる際に溶融させ易くするため、図6Bの断面図に示すようにバスバー30中央の厚肉部31よりも肉薄に形成している。薄肉部32は、図6Bの例では断面視において階段状に形成される。バスバーは薄いほど溶接し易くなる一方、電流抵抗が増大する。そこでバスバー30のほぼ中央に厚肉部31を、その端縁には薄肉部32を形成することで、バスバー30の溶接を容易としつつ、電流抵抗の増大を抑制することができる。また薄肉部は、図6Aに示すようにバスバーの端縁を上面側で切り欠いた段差状に形成している。このように薄肉部をバスバー端縁の下面側からでなく、上面側を切り欠いた形状とすることで、下面側を溶接対象の台座部と広い面積で接触させることができ、薄肉部をレーザ光で貫通させて確実に溶接できる。
 またバスバー30の端縁は、直線状とせず非直線状とすることが好ましい。このようにすることで、バスバー30の端縁に沿って溶接部33を設ける場合、溶接部33の距離を長くして、強度を向上させることができる。例えば、端縁を抉るようにして、平面視において凹状に窪ませる。このように湾曲させることで、溶接部33の距離を稼ぐことができる。また、凹状部分34に電極端子21を配置することで、電極端子21をバスバー30の位置決めの際のガイドに利用できる。例えばパーツフィーダでバスバー30を配置する際に、画像処理で電極端子21の端面の円形を検出して、これに沿うようにバスバー30を配置しやすくできる。
 図6Aの平面図の例では、バスバー30の長手方向の両端を電極端子21の周囲に沿って一定幅dで、半円状に薄肉部32を形成している。このとき湾曲部分の半径を、電極端子21の半径よりも大きくすることが好ましい。これによって凹状部分34に電極端子21を配置できる。すなわち図4の平面図に示すように、厚肉部31を電極端子21に近接できる分、厚肉部31の裏面と台座部22との接触面積を広くすることができる。
 また、電池セルの製造公差や電池セルの膨張などによって、電池セルを積層した際に電極端子21同士間の距離にはばらつきが生じる。そこで、上述の通りバスバー30の端縁を凹状部分34とすることで、このような電極端子21の位置ずれを吸収できる。すなわち、凹状部分34に電極端子21を配置した際に、両者間に若干の隙間が形成されるように予め設計することにより、この隙間によって電極端子21とバスバー30端縁との位置ずれを吸収できる。また、バスバー30の溶接部33を凹状に湾曲させたことで、上述の通りバスバー30端縁を直線状とした場合と比べて溶接される距離を長くすることができ、その分だけ接合強度が向上される。このように、バスバー30の端縁を凹状としたことで、電極端子21の位置ずれの吸収と接合強度の向上とに共用できる。
 さらに、薄肉部32の凹状部分34を開放端としたことで、特に電極端子21間の距離が所期値よりも長くなった場合に限界まで対応できる。すなわち、図25に示すようにバスバーに長穴を形成して溶接リングで調整する方法では、長穴の長さまでしか調整できないため、例えば電池セルが膨張するなどして電池セル間の距離が長くなるとバスバーが破断する可能性があった。これに対して、閉じた穴状とせずに開放端とした凹状部分34であれば、このような破断を回避できる。
 このバスバー30を用いて電極部20と溶接する際には、図7の平面図及び図8の断面図に示すように、電池セル1の上面にバスバー30を台座部22と重ねるように配置する。この状態で、薄肉部32に対してレーザ光を照射する。レーザ光は、図7の平面図においてクロスハッチングで示す領域に照射する。またレーザ光は、図8の断面図において太線で示すように、バスバー30bの上方側から照射する。これにより、薄肉部32を溶融させて、下部の台座部22と溶接する。好ましくは、レーザ光が薄肉部32を貫通して台座部22も溶融させるように照射する。このような高精度で高出力のレーザ加工には、上述の通りファイバーレーザが好適に利用できる。なお、薄肉部32のすべてを完全に溶融させる必要はなく、十分な溶接が実現される程度に溶融されればよく、薄肉部32の一部が溶融されずに残っても足りる。
(実施の形態2、3)
 上記の例では、バスバーの端縁を半円状に形成した例を説明したが、バスバー端縁の形状はこれに限られず、直線状以外の形状が適宜利用できる。例えば、図9に示す実施の形態2に係る電源装置200では、電極端子21Bを平面視六角形状としており、バスバー30B端縁の凹状部分もこれに応じて逆等脚台形状としている。また凹状部分には薄肉部32Bが形成される。さらに図10に示す実施の形態3に係る電源装置300では、電極端子21Cを平面視四角形状とし、バスバー30C端縁の凹状部分もこれに応じてコ字状に開口させており、同様に薄肉部32Cが形成されている。このように、電極端子21の平面視形状は、円柱状に限られるものでなく、多角形状、あるいは楕円形状など、任意の形状が利用でき、これに応じてバスバー端縁の凹状部分の形状も適宜変形できる。また、以上の例では、凹状部分をバスバー端面のほぼ中央に一箇所のみ形成した例を説明したが、2以上の凹状部分を形成することもできる。またこれに従い、薄肉部分も複数箇所に設けてもよい。これによって、溶接部33の距離を長くすることができる。またこの場合において、複数の凹状部分はすべて同じ形状とせずに、異なる形状やパターンに形成することもできる。例えば中央の凹状部分を大きく形成し、その両側にこれよりも小さい凹状部分を形成できる。あるいは、波状や鋸刃状に形成してもよい。このようにして、台座部22と溶接される距離を長くして接合強度を増す効果が得られる。
(実施の形態4)
 また上記の例では、薄肉部をバスバーの厚肉部31の端縁に部分的に形成している。ただ、バスバーの端縁の全面に薄肉部を形成することもできる。このような例を実施の形態2として図11に示す。この図に示すバスバー30Dは、厚肉部31の端縁から幅aを薄肉部32Dとしている。また薄肉部32Dの幅は、台座部22の幅の1/2よりも小さく形成することが好ましい。このようにすることで、台座部22の両側からバスバーを配置する際でも、各バスバーと溶接する領域を適切に確保できる。例えば図12に示す変形例のように、電池セル1を2本ずつ並列に接続する場合は、電極部20において、電極端子21を挟み込むようにその両側からバスバー30を配置して溶接する必要がある。このような場合でも、各バスバー30と台座部22との溶接を適切に行えるように溶接領域を確保する。
 また、薄肉部32Dの中央には、実施の形態1と同様に凹状部分を形成することもできる。これによって、上述の通り電極端子21の位置ずれを吸収することができる。
 さらに、このバスバー30は、積層した電池セルの電極部同士を接続するため、電池セルを積層した状態で電極部の位置にばらつきが生じても対応できるという利点が得られる。すなわち、図13の平面図に示すように、一本のバスバー1330で3本以上(図13の例では6本)の電池セル1を接続する場合は、各電極端子21を挿入するためにバスバー1330に開口された接続穴の大きさの制約上、水平方向における電極端子21の位置ずれの対応に限界があった。さらに電池セル1は、高さ方向にも位置ずれすることがあるため、その対応は一層困難となる。これに対して、本実施の形態によれば、隣接する電池セルの電極同士、すなわち2箇所の接続のみとしているため、図14の平面図に示すように、電池セル1の位置ずれにも柔軟に対応できる利点が得られる。これは、バスバー30の接続を隣接する電極端子21のみとしたために得られる利点である。また、このようにバスバー30の数を増やしても、溶接する位置は基本的に図13の場合と変わらないため、溶接時間が長くなるデメリットも無い。
(実施の形態5)
 さらに上記の例では、いずれも電極端子の形状に応じてバスバー端縁の凹状部分の形状を形成した構成を説明した。ただ、台座部から突出させた電極端子は必ずしもバスバーとの溶接において必須でなく、これを省略することもできる。すなわち以上の実施の形態においては、バスバーを電極端子でなく、台座部と溶接している。言い換えると、図25に示すような、電極端子に溶接リングを挿通して、溶接リングを介してバスバーと溶接する構成とは異なり、本実施の形態においては電極端子に直接溶接していない。このため、電極端子は必ずしも必須でなく、これを省略することも可能である。このような例を実施の形態5に係る電源装置500として図15に示す。この図に示すように、バスバー30の薄肉部32は、電極端子によらず、台座部22’上の任意の位置に固定できる。
 なお図6A等の例では、上述の通り電極端子21を位置決め用のガイドとして利用している。すなわち電極端子21の形状を画像処理によって検出し、この位置を基準としてバスバー30を配置している。このように電極端子21は、バスバー30の固定位置を決める位置決めガイドとして機能させている。そして実施の形態5のように電極端子を設けない場合は、電極端子に代わる他の位置決めガイドとして、例えば台座部の任意の位置にマークを刻印、印刷したり、あるいは台座部の四角形状の輪郭などを利用することができる。さらに後述する図20に示すように、バスバーに一以上の穴を開口して、位置決めガイドとすることもできる。
(実施の形態6)
 以上のようにしてバスバーと電極部とを溶接リング無しで溶接する際、図16に示すように電極端子21が高さ方向に位置ずれする際の対応が問題となる。すなわち、バスバー30と電極部20とを溶接する部分に隙間があると、溶接の信頼性が低下する。そこで、隙間が生じ難いように、バスバーを電池セルの上面に載置した状態で、バスバーの両端が電極部20に接触し易いように、バスバーを山形に折曲させることが考えられる。このような例を実施の形態6として図17Aの平面図及び図17Bの断面図に示す。これらの図に示すように、バスバー30Eのほぼ中央において、厚肉部31を山形に折曲させることで、その両端を相対的に下方に突出させることができる。上述の通りバスバーを異種金属のクラッド材で構成する場合は、異種金属同士を接合する面を若干傾斜させることで、このような山形に容易に形成できる。
 また、隙間の発生を防ぐには、溶接時においてバスバーを電池セルに対して、治具などを用いて押圧することが好ましい。この際、バスバーの電極部に接触する部分に弾性を持たせることで、加えられた応力によってバスバーの端縁が弾性変形されて、台座部との隙間を無くすことができる。このような弾性変形をバスバーに付与するため、バスバー30Eの端縁を、図17Bの断面図に示すように山形とは逆向きの谷形に折曲させる。これによって、バスバー30E端縁の薄肉部32Eは弾性変形し易くなる。すなわち、溶接時にはバスバー30Eの上方から下向きに押圧することで、両端の接合部分を台座部22に押しつけて、ばね性によって接合面に密着させて隙間を埋めることができる。よって、この状態でレーザ溶接することで、隙間のない確実な溶接が図られ、電気接続の信頼性を向上できる。
(実施の形態7)
 また、以上の例ではバスバーの厚肉部を山形に折曲させた例を説明したが、必ずしも山形に限らず、湾曲させることもできる。実施の形態7として図18の断面図に示すバスバー30Fは、中央部分を湾曲させた形状としており、このような形状でも上記と同様に薄肉部32Fを弾性変形できる効果が得られる。
(実施の形態8)
 また同様に、バスバーの厚肉部を湾曲させるのみならず、バスバーの端縁をこれとは逆向きに湾曲させることもできる。このような例を実施の形態8として図19に示す。この図に示すバスバー30Gのように、台座部と接触する折曲部分を湾曲させることで、より広い面積で薄肉部32Gを台座部と折曲させることができ、レーザ溶接の際に隙間が生じることを回避できる。特に、電池積層体を構成する電池セルは、組付け時に上下に位置ずれする問題があるが、この構成によると、薄肉部が円弧状に形成されるため、折り曲げ部分の近傍で、台座部と接触させることができる。レーザ溶接の際に隙間が生じると、溶接強度が弱くなるため、バスバーと台座部との溶接の溶接強度にバラツキが生じてしまうおそれがあるが、上記構成とすることで、電池セルに位置ずれがあっても薄肉部32Gと台座部を接触させることができるので、溶接強度を一定に保つことができる。また、この観点からは湾曲の曲率半径を大きくすることが好ましい。このように、本明細書において「折曲」との用語には、湾曲も含む意味で使用している。
(実施の形態9)
 以上の例では、溶接部を、薄肉部に形成された凹状部分に沿って設けた例を説明した。ただ本発明は、この構成に限らず、溶接部を薄肉部の折曲部分に沿って直線状に設けることもできる。このような例を実施の形態9として、図20及び図21に示す。このバスバー30Hのは、レーザ溶接の際にレーザ光を直線に走査して溶接部をスムーズに溶接できる。一方、溶接部33を凹状とする例に比べて、レーザ溶接する距離が短くなるため、溶接部分の面積の低下に繋がり、強度が低下する。そこで、図21の平面図において破線で示すように、溶接部33Hを薄肉部32Hの折曲部分に沿って、平行に離間させて複数本設けることで、溶接部33Hの面積を稼いで接合強度を向上させることができる。なお複数本の溶接部33Hは、折曲部分からバスバー30Hの端縁側にずらして設ける。また、溶接部を薄肉部の折曲部分に沿って、波状やジグザグ状に蛇行させることでも、同様に溶接部を長くして接合強度を向上できる。
(バスバー位置決めガイド36)
 なお、バスバーには位置決め用のガイドを形成することもできる。位置決め用のガイドは、例えばバスバーの端縁に形成された凹状が利用できる。さらにこれに加えて、一以上の貫通孔をバスバーに開口してもよい。このような例を図20Aの平面図に示す。このバスバー30Hは、端縁の薄肉部32Hに丸穴状の貫通孔を形成している。バスバー位置決めガイド36を丸穴状とすることで、凹状のような半円形に比べて、画像処理を行い易い利点が得られる。さらにバスバー位置決めガイド36を複数設けることで、回転方向の姿勢を一義的に決定できる。図20Aの例では、バスバー30H端縁の各隅部に貫通孔をそれぞれ開口している。また、バスバー30Hの厚肉部31Hの中央にも、第二貫通孔37を開口している。第二貫通孔37は、貫通孔よりも口径を大きくすることで、これらと区別している。これらを画像処理することで、バスバー30Hの平面方向での姿勢を決定できる。バスバー位置決めガイドはこれに限らず、矩形状としてもよい。またバスバー位置決めガイドは薄肉部に限らず、厚肉部に形成することもできる。あるいは、このような貫通孔を形成することなく、バスバーの外形でもってバスバー位置決めガイドとすることも可能である。
 さらにバスバーの外形の一部に切り欠きを形成して、姿勢や上下を規定できる。図20Aの例では、バスバー30Hの厚肉部31Hの左上にU字状の窪み38を形成している。この窪み38を手掛かりにして、点対称のバスバー30Hの上下の姿勢を特定できる。
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
 図22に、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94と、電源装置100とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
 また、図23に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94と、電源装置100とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体を走行させる車輪97とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
(蓄電用電源装置)
 さらに、この電源装置は、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図24に示す。この図に示す電源装置100は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置100への充電を同時に行うこともできる。
 電源装置100で駆動される負荷LDは、放電スイッチDSを介して電源装置100と接続されている。電源装置100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図24の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。
 本発明に係る電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
100、200、300、500…電源装置
1…電池セル
2…電池積層体
3…エンドプレート
4…締結手段
5…第二締結手段
6…ガスダクト;6a…鍔部;6x…ダクト排出部
8…バスバーホルダ
9…回路基板
10…封口板
11…ガス排出弁
12…ガス排出口
20…電極部
21、21B、21C…電極端子
22、22’…台座部
24…開口窓
30、30B、30C、30D、30E、30F、30G、30H…バスバー
31、31H…厚肉部
32、32B、32C、32D、32E、32F、32G、32H…薄肉部
33、33H…溶接部
34…凹状部分
36…バスバー位置決めガイド
37…第二貫通孔
38…窪み
50…スペーサ
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
1330…バスバー
2201…電池セル
2220…電極端子
2230…バスバー
2235…溶接リング
EV、HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子

Claims (22)

  1.  電極部を備える複数の電池セルと、
     前記複数の電池セルの電極部同士を接続するバスバーと
    を備える電源装置であって、
     前記電極部は、前記バスバーと対向する平坦面を有する台座部を含み、
     前記バスバーは、
      該バスバーの中央に形成される厚肉部と、
      該バスバーの端縁の少なくとも一部に形成され、前記厚肉部よりも厚さを薄くした薄肉部と
    を含み、
     前記薄肉部は、前記台座部の平坦面と溶接される溶接部を含むことを特徴とする電源装置。
  2.  請求項1に記載の電源装置であって、
     前記薄肉部が、前記バスバーの端縁を、断面視において上面側を切り欠いた段差状に形成されてなることを特徴とする電源装置。
  3.  請求項1又は2に記載の電源装置であって、
     前記薄肉部を、平面視において前記バスバーの端縁から窪ませた凹状に形成してなることを特徴とする電源装置。
  4.  請求項1から3のいずれか一に記載の電源装置であって、
     前記薄肉部の幅が、前記電極部の1/2よりも小さいことを特徴とする電源装置。
  5.  請求項1から4のいずれか一に記載の電源装置であって、
     前記電極部が、前記台座部から突出された電極端子とを備えており、
     前記電極端子の側面に前記薄肉部を配置して、前記台座部と固定してなることを特徴とする電源装置。
  6.  請求項3から5のいずれか一に記載の電源装置であって、
     前記電極端子が円柱状であり、
     前記凹状部分を、前記電極端子の円柱状に沿う半月状に形成してなることを特徴とする電源装置。
  7.  請求項6に記載の電源装置であって、
     前記半月状部分の半径を、前記電極端子の半径よりも大きくしてなることを特徴とする電源装置。
  8.  請求項1から7のいずれか一に記載の電源装置であって、
     前記バスバーの薄肉部は、弾性変形可能に形成してなることを特徴とする電源装置。
  9.  請求項1から8のいずれか一に記載の電源装置であって、
     前記バスバーは断面視山形状に折曲されてなることを特徴とする電源装置。
  10.  請求項9に記載の電源装置であって、
     前記バスバーの薄肉部が、断面視において前記山形状折曲方向とは逆向きに折曲されてなることを特徴とする電源装置。
  11.  請求項10に記載の電源装置であって、
     前記バスバーの薄肉部と厚肉部との界面近傍を、断面視において前記山形状折曲方向とは逆向きに折曲してなることを特徴とする電源装置。
  12.  請求項9から11のいずれか一に記載の電源装置であって、
     前記溶接部を、前記薄肉部と厚肉部との境界よりも端縁側に位置させてなることを特徴とする電源装置。
  13.  請求項3から12のいずれか一に記載の電源装置であって、
     前記溶接部を、前記薄肉部の折曲部分に沿って設けてなることを特徴とする電源装置。
  14.  請求項13に記載の電源装置であって、
     前記溶接部を、前記薄肉部の折曲部分に沿って複数本設けてなることを特徴とする電源装置。
  15.  請求項3から12のいずれか一に記載の電源装置であって、
     前記溶接部を、前記凹状部分に沿って設けてなることを特徴とする電源装置。
  16.  請求項1から15のいずれか一に記載の電源装置であって、
     前記バスバーは、その上面にバスバーの位置決め用のガイドを形成してなることを特徴とする電源装置。
  17.  請求項16に記載の電源装置であって、
     前記バスバー位置決めガイドが、前記バスバーに開口された一以上の貫通孔であることを特徴とする電源装置。
  18.  請求項1から17のいずれか一に記載の電源装置であって、
     前記薄肉部を前記電極部にファイバーレーザで溶接してなることを特徴とする電源装置。
  19.  請求項1から18のいずれか一に記載の電源装置であって、
     前記バスバーを、異種金属を接合したクラッド材としてなることを特徴とする電源装置。
  20.  請求項1から19のいずれか一に記載の電源装置を備える電動車両であって、
     前記電源装置から電力供給される走行用のモータと、
     前記電源装置及び前記モータを搭載してなる車両本体と、
     前記モータで駆動されて前記車両本体を走行させる車輪と
    を備えることを特徴とする電動車両。
  21.  請求項1から19のいずれか一に記載の電源装置を備える蓄電装置であって、
     前記電源装置への充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能としてなることを特徴とする蓄電装置。
  22.  電極部を備える複数の電池セルと、
     各電池セルの電極部同士を接続する導電性のバスバーとを備える電源装置の製造方法であって、
     前記バスバーを、その断面視を山形状に折曲した状態で、前記複数の電池セルを積層した電池セル積層体の上面であって、隣接する電池セルの間の、隣接する電極部の各上面に形成された平坦面を有する台座部に、該バスバーの端縁の少なくとも一部に形成された、中央の厚肉部よりも厚さを薄くした薄肉部を配置させる工程と、
     前記薄肉部にレーザ光を照射して、前記薄肉部を貫通させて、前記薄肉部に含まれる溶接部を前記台座部と共に溶融させて、これらを溶接する工程とを含むことを特徴とする電源装置の製造方法。
PCT/JP2013/005840 2012-10-26 2013-10-01 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法 WO2014064888A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380055124.3A CN104737328B (zh) 2012-10-26 2013-10-01 电源装置以及具备电源装置的电动车辆及蓄电装置、电源装置的制造方法
JP2014543131A JP6239523B2 (ja) 2012-10-26 2013-10-01 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
US14/429,355 US9673430B2 (en) 2012-10-26 2013-10-01 Power source device, electric vehicle comprising power source device, accumulator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-237321 2012-10-26
JP2012237321 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014064888A1 true WO2014064888A1 (ja) 2014-05-01

Family

ID=50544274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005840 WO2014064888A1 (ja) 2012-10-26 2013-10-01 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法

Country Status (4)

Country Link
US (1) US9673430B2 (ja)
JP (1) JP6239523B2 (ja)
CN (1) CN104737328B (ja)
WO (1) WO2014064888A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843731A3 (en) * 2013-08-27 2015-04-22 Samsung SDI Co., Ltd. Battery module
JP2016031806A (ja) * 2014-07-28 2016-03-07 本田技研工業株式会社 蓄電モジュール及び端子間連結部材
WO2016035572A1 (ja) * 2014-09-02 2016-03-10 株式会社オートネットワーク技術研究所 配線モジュール及び蓄電モジュール
JP2016129125A (ja) * 2015-01-09 2016-07-14 株式会社Gsユアサ 蓄電装置
JP2016134336A (ja) * 2015-01-21 2016-07-25 豊田合成株式会社 電池モジュール
JP2016157675A (ja) * 2015-02-24 2016-09-01 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池およびそのモジュール
WO2017130705A1 (ja) * 2016-01-29 2017-08-03 三洋電機株式会社 電源装置及びこれを用いる車両並びにバスバー
US9735413B2 (en) 2014-06-18 2017-08-15 Nissan Motor Co., Ltd. Battery pack tab welding method
KR20180114511A (ko) * 2017-04-10 2018-10-18 도요타 지도샤(주) 조전지
WO2019058938A1 (ja) * 2017-09-20 2019-03-28 パナソニックIpマネジメント株式会社 電池モジュール
WO2019082956A1 (ja) * 2017-10-25 2019-05-02 株式会社ブルーエナジー 蓄電装置
JP2019087477A (ja) * 2017-11-09 2019-06-06 三洋電機株式会社 二次電池
JP2019216039A (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
WO2019239919A1 (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
WO2020026964A1 (ja) * 2018-07-31 2020-02-06 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
JPWO2020194783A1 (ja) * 2019-03-27 2020-10-01
JP2021026946A (ja) * 2019-08-07 2021-02-22 矢崎総業株式会社 積層バスバの製造方法、積層バスバの製造装置及び積層バスバ
JPWO2020003801A1 (ja) * 2018-06-26 2021-08-02 三洋電機株式会社 バッテリシステムとバッテリシステムを備える電動車両及び蓄電装置
CN114245953A (zh) * 2019-08-27 2022-03-25 株式会社自动网络技术研究所 可挠性汇流条、复合汇流条、蓄电组以及可挠性汇流条的制造方法
JP2022522494A (ja) * 2019-04-26 2022-04-19 寧徳時代新能源科技股▲分▼有限公司 電池モジュール、二次電池及びその上蓋組立体
WO2023013210A1 (ja) * 2021-08-05 2023-02-09 株式会社村田製作所 電池パック、電池パックの製造方法、電動車両及び電動工具
JP7488289B2 (ja) 2022-01-17 2024-05-21 プライムプラネットエナジー&ソリューションズ株式会社 部材の接合構造ならびに電池モジュールおよび電池パック

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514336A (zh) * 2016-01-20 2016-04-20 华霆(合肥)动力技术有限公司 一种电池组连接结构
CN113972446A (zh) * 2016-01-29 2022-01-25 三洋电机株式会社 电源装置、车辆、汇流条以及电池单元的电连接方法
DE112016006632T5 (de) * 2016-03-23 2018-12-06 Mitsubishi Electric Corporation Speicherbatteriemodul
KR102272804B1 (ko) * 2016-09-26 2021-07-05 가부시키가이샤 인비젼 에이이에스씨 재팬 조전지
US11059374B2 (en) * 2017-02-21 2021-07-13 Hitachi Automotive Systems, Ltd. Hybrid vehicle control apparatus and hybrid vehicle
JP6790923B2 (ja) * 2017-03-03 2020-11-25 株式会社オートネットワーク技術研究所 接続モジュール
US11742154B2 (en) * 2017-05-24 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Electricity storage module and electricity storage unit
JP7260486B2 (ja) * 2017-12-25 2023-04-18 三洋電機株式会社 電源装置及び電源装置を備える車両並びに蓄電装置
KR102421407B1 (ko) * 2018-03-21 2022-07-15 한국단자공업 주식회사 저항용접이 적용된 자동차 배터리용 회로조립체 및 그 제조방법
JP7006474B2 (ja) * 2018-04-16 2022-01-24 株式会社オートネットワーク技術研究所 接続モジュールおよび蓄電モジュール
JP7045644B2 (ja) * 2018-12-10 2022-04-01 トヨタ自動車株式会社 密閉型電池および組電池
JP7234908B2 (ja) * 2019-11-26 2023-03-08 株式会社豊田自動織機 圧力調整弁構造及び蓄電モジュール
US11742552B1 (en) * 2020-01-03 2023-08-29 Wisk Aero Llc Hybrid battery interconnects
FR3109021B1 (fr) * 2020-04-02 2023-04-14 Elwedys Assemblage de cellules electrochimiques
JP7447771B2 (ja) * 2020-11-25 2024-03-12 トヨタ自動車株式会社 電池モジュール

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134976A (ja) * 1992-12-22 1995-05-23 Honda Motor Co Ltd 防錆構造の電池
JPH0992259A (ja) * 1995-07-19 1997-04-04 Yazaki Corp バッテリの電極ポスト接続端子およびその製造方法
JP2004265610A (ja) * 2003-01-23 2004-09-24 Sony Corp リード端子及び電源装置
JP2010161075A (ja) * 2009-01-06 2010-07-22 Sb Limotive Co Ltd 電池モジュール
WO2011016194A1 (ja) * 2009-08-05 2011-02-10 パナソニック株式会社 密閉型電池およびその製造方法
WO2011067025A1 (de) * 2009-12-04 2011-06-09 Robert Bosch Gmbh Verfahren zur herstellung einer elektrisch leitenden verbindung
WO2012011470A1 (ja) * 2010-07-21 2012-01-26 株式会社 東芝 電池及び組電池
WO2012029235A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 組電池
JP2012151916A (ja) * 2011-01-14 2012-08-09 Jsol Corp 蓄電池システム
JP2013127863A (ja) * 2011-12-16 2013-06-27 Lithium Energy Japan:Kk 蓄電装置及び該蓄電装置に用いられるバスバー
JP2013145739A (ja) * 2011-12-16 2013-07-25 Lithium Energy Japan:Kk 蓄電装置、該蓄電装置の製造方法及び該蓄電装置に用いられるバスバー

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607675B1 (en) 1992-12-22 1996-09-25 Honda Giken Kogyo Kabushiki Kaisha Battery with rust preventive structure
JP2006313793A (ja) * 2005-05-06 2006-11-16 Asahi Glass Co Ltd 蓄電素子
US8568915B2 (en) * 2006-08-11 2013-10-29 Johnson Controls—SAFT Power Solutions LLC Battery with integrally formed terminal
JP5176312B2 (ja) 2006-12-07 2013-04-03 日産自動車株式会社 組電池およびその製造方法
JP2009231145A (ja) 2008-03-24 2009-10-08 Toshiba Corp 二次電池
US20100248010A1 (en) * 2009-01-12 2010-09-30 A123 Systems, Inc. Bi-metallic busbar jumpers for battery systems
CN201365119Y (zh) * 2009-01-16 2009-12-16 东莞新能源科技有限公司 动力电池保护装置
US9159983B2 (en) * 2009-06-19 2015-10-13 Toyota Jidosha Kabushiki Kaisha Battery, vehicle mounting the battery, and device mounting the battery
JP5528746B2 (ja) 2009-09-11 2014-06-25 三洋電機株式会社 組電池
JP5847377B2 (ja) * 2009-12-28 2016-01-20 三洋電機株式会社 電源装置及びこれを備える車両
JP5574183B2 (ja) 2010-12-24 2014-08-20 株式会社Gsユアサ 組電池の計測端子対応接続板
JP5837043B2 (ja) * 2011-03-10 2015-12-24 三洋電機株式会社 組電池および電池接続方法
US9553294B2 (en) 2011-12-16 2017-01-24 Gs Yuasa International Ltd. Electric storage device, manufacturing method of electric storage device, and bus bar used for electric storage device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134976A (ja) * 1992-12-22 1995-05-23 Honda Motor Co Ltd 防錆構造の電池
JPH0992259A (ja) * 1995-07-19 1997-04-04 Yazaki Corp バッテリの電極ポスト接続端子およびその製造方法
JP2004265610A (ja) * 2003-01-23 2004-09-24 Sony Corp リード端子及び電源装置
JP2010161075A (ja) * 2009-01-06 2010-07-22 Sb Limotive Co Ltd 電池モジュール
WO2011016194A1 (ja) * 2009-08-05 2011-02-10 パナソニック株式会社 密閉型電池およびその製造方法
WO2011067025A1 (de) * 2009-12-04 2011-06-09 Robert Bosch Gmbh Verfahren zur herstellung einer elektrisch leitenden verbindung
WO2012011470A1 (ja) * 2010-07-21 2012-01-26 株式会社 東芝 電池及び組電池
WO2012029235A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 組電池
JP2012151916A (ja) * 2011-01-14 2012-08-09 Jsol Corp 蓄電池システム
JP2013127863A (ja) * 2011-12-16 2013-06-27 Lithium Energy Japan:Kk 蓄電装置及び該蓄電装置に用いられるバスバー
JP2013145739A (ja) * 2011-12-16 2013-07-25 Lithium Energy Japan:Kk 蓄電装置、該蓄電装置の製造方法及び該蓄電装置に用いられるバスバー

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843731A3 (en) * 2013-08-27 2015-04-22 Samsung SDI Co., Ltd. Battery module
KR101799224B1 (ko) * 2014-06-18 2017-11-17 닛산 지도우샤 가부시키가이샤 조전지의 탭 용접 방법
US9735413B2 (en) 2014-06-18 2017-08-15 Nissan Motor Co., Ltd. Battery pack tab welding method
JP2016031806A (ja) * 2014-07-28 2016-03-07 本田技研工業株式会社 蓄電モジュール及び端子間連結部材
WO2016035572A1 (ja) * 2014-09-02 2016-03-10 株式会社オートネットワーク技術研究所 配線モジュール及び蓄電モジュール
JP2016051671A (ja) * 2014-09-02 2016-04-11 株式会社オートネットワーク技術研究所 配線モジュール及び蓄電モジュール
US10050249B2 (en) 2014-09-02 2018-08-14 Autonetworks Technologies, Ltd. Wiring module and electrical storage module
JP2016129125A (ja) * 2015-01-09 2016-07-14 株式会社Gsユアサ 蓄電装置
JP2016134336A (ja) * 2015-01-21 2016-07-25 豊田合成株式会社 電池モジュール
JP2016157675A (ja) * 2015-02-24 2016-09-01 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池およびそのモジュール
WO2017130705A1 (ja) * 2016-01-29 2017-08-03 三洋電機株式会社 電源装置及びこれを用いる車両並びにバスバー
JPWO2017130705A1 (ja) * 2016-01-29 2018-11-15 三洋電機株式会社 電源装置及びこれを用いる車両並びにバスバー
US11374290B2 (en) 2016-01-29 2022-06-28 Sanyo Electric Co., Ltd. Power supply device, vehicle in which same is used, and bus bar
KR20180114511A (ko) * 2017-04-10 2018-10-18 도요타 지도샤(주) 조전지
JP2018181552A (ja) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 組電池
US10763483B2 (en) 2017-04-10 2020-09-01 Toyota Jidosha Kabushiki Kaisha Battery pack
KR102115145B1 (ko) * 2017-04-10 2020-05-26 도요타 지도샤(주) 조전지
JP7162193B2 (ja) 2017-09-20 2022-10-28 パナソニックIpマネジメント株式会社 電池モジュール
JPWO2019058938A1 (ja) * 2017-09-20 2020-10-01 パナソニックIpマネジメント株式会社 電池モジュール
WO2019058938A1 (ja) * 2017-09-20 2019-03-28 パナソニックIpマネジメント株式会社 電池モジュール
JP7169287B2 (ja) 2017-10-25 2022-11-10 株式会社ブルーエナジー 蓄電装置
US11522254B2 (en) 2017-10-25 2022-12-06 Blue Energy Co., Ltd. Energy storage apparatus
JPWO2019082956A1 (ja) * 2017-10-25 2020-11-19 株式会社ブルーエナジー 蓄電装置
WO2019082956A1 (ja) * 2017-10-25 2019-05-02 株式会社ブルーエナジー 蓄電装置
JP7167427B2 (ja) 2017-11-09 2022-11-09 三洋電機株式会社 二次電池
JP2019087477A (ja) * 2017-11-09 2019-06-06 三洋電機株式会社 二次電池
JP2019216040A (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
US11962038B2 (en) 2018-06-13 2024-04-16 Autonetworks Technologies, Ltd. Power storage component module
JP2019216039A (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
WO2019239919A1 (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
WO2019239904A1 (ja) * 2018-06-13 2019-12-19 株式会社オートネットワーク技術研究所 蓄電素子モジュール
JP7370680B2 (ja) 2018-06-26 2023-10-30 三洋電機株式会社 バッテリシステムとバッテリシステムを備える電動車両及び蓄電装置
US11677124B2 (en) 2018-06-26 2023-06-13 Sanyo Electric Co., Ltd. Battery system, and electric vehicle and electric storage device including battery system
JPWO2020003801A1 (ja) * 2018-06-26 2021-08-02 三洋電機株式会社 バッテリシステムとバッテリシステムを備える電動車両及び蓄電装置
JPWO2020026964A1 (ja) * 2018-07-31 2021-08-05 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
JP7276894B2 (ja) 2018-07-31 2023-05-18 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
CN112514146B (zh) * 2018-07-31 2023-12-22 三洋电机株式会社 电源装置、具有该电源装置的车辆以及缓冲体
WO2020026964A1 (ja) * 2018-07-31 2020-02-06 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
CN112514146A (zh) * 2018-07-31 2021-03-16 三洋电机株式会社 电源装置、具有该电源装置的车辆以及缓冲体
JP7348270B2 (ja) 2019-03-27 2023-09-20 三洋電機株式会社 電源装置と電源装置を備える電動車両及び蓄電装置
JPWO2020194783A1 (ja) * 2019-03-27 2020-10-01
WO2020194783A1 (ja) * 2019-03-27 2020-10-01 三洋電機株式会社 電源装置と電源装置を備える電動車両及び蓄電装置
US11978924B2 (en) 2019-03-27 2024-05-07 Sanyo Electric Co., Ltd. Power supply device, electric vehicle comprising power supply device, and power storage device
JP7239728B2 (ja) 2019-04-26 2023-03-14 寧徳時代新能源科技股▲分▼有限公司 電池モジュール、二次電池及びその上蓋組立体
JP2022522494A (ja) * 2019-04-26 2022-04-19 寧徳時代新能源科技股▲分▼有限公司 電池モジュール、二次電池及びその上蓋組立体
JP2021026946A (ja) * 2019-08-07 2021-02-22 矢崎総業株式会社 積層バスバの製造方法、積層バスバの製造装置及び積層バスバ
CN114245953A (zh) * 2019-08-27 2022-03-25 株式会社自动网络技术研究所 可挠性汇流条、复合汇流条、蓄电组以及可挠性汇流条的制造方法
WO2023013210A1 (ja) * 2021-08-05 2023-02-09 株式会社村田製作所 電池パック、電池パックの製造方法、電動車両及び電動工具
JP7488289B2 (ja) 2022-01-17 2024-05-21 プライムプラネットエナジー&ソリューションズ株式会社 部材の接合構造ならびに電池モジュールおよび電池パック

Also Published As

Publication number Publication date
JP6239523B2 (ja) 2017-11-29
US9673430B2 (en) 2017-06-06
US20150243947A1 (en) 2015-08-27
CN104737328B (zh) 2017-03-08
JPWO2014064888A1 (ja) 2016-09-08
CN104737328A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP6239523B2 (ja) 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
US11289773B2 (en) Power supply device, vehicle using same, bus bar, and electrical connection method for battery cell using same bus bar
US11374290B2 (en) Power supply device, vehicle in which same is used, and bus bar
CN110268552B (zh) 电源装置
WO2014024430A1 (ja) 電池パック及びこれを備える電動車両並びに蓄電装置
EP2672547B1 (en) Bus bar having a novel structure, and battery module including same
JP6449438B2 (ja) 電源装置及び電源装置を備える車両
WO2014034106A1 (ja) 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
WO2014024448A1 (ja) 電池パック及びこれを備える電動車両並びに蓄電装置
US11777178B2 (en) Battery module, vehicle provided with same, and bus bar
KR101136800B1 (ko) 전지모듈의 제조방법 및 중대형 전지팩
CN113614996B (zh) 电源装置、具备电源装置的电动车辆和蓄电装置
KR20130139472A (ko) 단일 전극단자 결합부를 가진 전지 조합체
JP2020513661A (ja) バッテリーモジュール
JP2012252811A (ja) 電源装置、電源装置を備える車両、バスバー
CN113646958B (zh) 电源装置和具有该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置用紧固构件的制造方法、电源装置的制造方法
WO2021024772A1 (ja) 電源装置及びこれを用いた電動車両並びに蓄電装置
CN113646956A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
WO2019150706A1 (ja) バッテリシステムのショート電流遮断方法及びバッテリシステム、バッテリシステムを備える電動車両及び蓄電装置
CN113632305A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
CN113767512B (zh) 电源装置和具有该电源装置的电动车辆以及蓄电装置、电源装置的制造方法
CN117296199A (zh) 电池单元及其制造方法
CN114447526A (zh) 电池单体组装方法、储存单元及相关的车辆电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429355

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014543131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849744

Country of ref document: EP

Kind code of ref document: A1