WO2014061357A1 - 色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊 - Google Patents

色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊 Download PDF

Info

Publication number
WO2014061357A1
WO2014061357A1 PCT/JP2013/073503 JP2013073503W WO2014061357A1 WO 2014061357 A1 WO2014061357 A1 WO 2014061357A1 JP 2013073503 W JP2013073503 W JP 2013073503W WO 2014061357 A1 WO2014061357 A1 WO 2014061357A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
sulfonate
less
acid
parastyrene
Prior art date
Application number
PCT/JP2013/073503
Other languages
English (en)
French (fr)
Inventor
真治 尾添
健一 山野井
秀秋 松永
Original Assignee
東ソー有機化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012227996A external-priority patent/JP5930307B2/ja
Priority claimed from JP2012229151A external-priority patent/JP5946094B2/ja
Application filed by 東ソー有機化学株式会社 filed Critical 東ソー有機化学株式会社
Priority to MYPI2015700943A priority Critical patent/MY186412A/en
Priority to US14/432,049 priority patent/US9505713B2/en
Priority to CN201380053883.6A priority patent/CN104736516B/zh
Publication of WO2014061357A1 publication Critical patent/WO2014061357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3566Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing sulfur

Definitions

  • the present invention relates to a high-purity sodium parastyrene sulfonate having an excellent hue, a method for producing the same, a sodium polystyrene sulfonate having an excellent hue using the same, a dispersant using the sodium polystyrene sulfonate, and a garment finishing It relates to synthetic glue.
  • the present invention also relates to sodium parastyrenesulfonate having excellent fluidity and solubility, and a method for producing the same. That is, the present invention relates to sodium parastyrene sulfonate having an appropriate particle size and low moisture content, and having excellent fluidity and solubility, and a method for producing the same.
  • Parastyrene sulfonic acid (salt) typified by sodium parastyrene sulfonate has a radical polymerizable vinyl group, a hydrophobic benzene ring having ⁇ electrons, and a sulfonic acid (salt) group that is a strong electrolyte in the molecule. It is a functional monomer and is used extensively in various industrial fields. For example, in emulsion polymerization, it is used as a reactive emulsifier in order to improve the stability of the emulsion and the water resistance and cationic dye dyeability of the (emulsion) polymer.
  • Polymers and copolymers of sodium parastyrenesulfonate include pigments, antioxidants, various polymers (tackifier resins, chloroprene rubber, polyacrylate esters, polyesters, styrene-butadiene copolymers, polyvinyl chloride, Polyacrylonitrile, polysilicone, conductive polymer, etc.), nanocarbon materials, hot forging release agents and silica particles for abrasives, battery electrode materials (carbon, lithium iron phosphate, lithium manganese phosphate, etc.), for photography It is used as a dispersant for producing various aqueous dispersions such as silver halide.
  • various polymers tackifier resins, chloroprene rubber, polyacrylate esters, polyesters, styrene-butadiene copolymers, polyvinyl chloride, Polyacrylonitrile, polysilicone, conductive polymer, etc.
  • nanocarbon materials hot forging release agents and silica particles for abra
  • polymers of sodium parastyrene sulfonate are used for synthetic finishing pastes such as ironing agents, hair care products, antistatic agents, resist acid generators, water treatment agents, allergen supplements, ion exchange resins, and plating solution additions. It is used as a cleaning agent for semiconductors and hard disks, an additive for fluids for shale oil mining, and a flame retardant for resins.
  • chloroprene rubber adhesive has been used for a long time as a universal adhesive.
  • a method for producing chloroprene rubber is known, for example, chloroprene or chloroprene and a radical polymerizable monomer copolymerizable therewith, an alkali metal salt of disproportionated rosin acid (acting as an emulsifier) and an alkali of a naphthalene sulfonic acid formalin condensate. It emulsifies in water using a metal salt (acting as a dispersant), and a radical polymerization initiator is added to carry out emulsion polymerization.
  • Non-Patent Document 1 A chloroprene rubber adhesive is produced by dissolving the above chloroprene rubber and compounding agents such as tackifier resin, metal oxide, and crosslinking agent in an organic solvent such as toluene, methylcyclohexane, n-hexane, methyl ethyl ketone, and acetate.
  • an excellent hue is required.
  • Patent Documents 5 to 6 it has been conventionally known that sodium parastyrene sulfonate can be produced by a reaction between ⁇ -bromoethylbenzene sulfonic acid and sodium hydroxide (see, for example, Patent Documents 5 to 6).
  • Patent Document 5 a sodium hydroxide aqueous solution containing a small amount of sodium nitrite as a polymerization inhibitor is charged in a reactor under a nitrogen atmosphere, and reacted at 90 ° C. while adding ⁇ -bromoethylbenzenesulfonic acid dropwise thereto.
  • a method is described in which sodium styrenesulfonate crystals are obtained, followed by cooling, centrifugal filtration, and forced flow to produce sodium parastyrenesulfonate hemihydrate.
  • the particle diameter of sodium parastyrene sulfonate is usually only described as being from several ⁇ m to several mm, and there is no description of actual measurement values. It is presumed that the particle diameter is about the same as that currently on the market, that is, the median diameter is about 20 ⁇ m. Further, there is no mention of the relationship among particle size, moisture, solubility, and fluidity.
  • Patent Document 6 discloses a parastyrene sulfonic acid produced by reacting at 90 ° C. while simultaneously feeding a sodium hydroxide aqueous solution containing a trace amount of sodium nitrite as a polymerization inhibitor and ⁇ -bromoethylbenzene sulfonic acid into a reactor at the same time.
  • a method is described in which sodium crystal slurry is continuously withdrawn, centrifugally filtered, and forced flowd to produce sodium parastyrene sulfonate hemihydrate.
  • the shape of sodium parastyrene sulfonate is scaly and the actual measured particle size is described as 160 ⁇ m to 760 ⁇ m.
  • Patent Document 5 there is no mention of the relationship among particle size, moisture, solubility, and fluidity.
  • conventional sodium parastyrene sulfonate having a median diameter of less than 25 ⁇ m has a problem in handling, such as clogging of a charging hopper when used in a large amount in a plant. That is, the fluidity as a powder was insufficient.
  • the median diameter of sodium parastyrene sulfonate exceeds 150 ⁇ m, the fluidity is good, but when using the plant, there is a problem that the rate of dissolution in water decreases and the strainer is blocked. That is, there has been a demand for sodium parastyrene sulfonate having improved fluidity without impairing the solubility of sodium parastyrene sulfonate.
  • Patent Document 7 describes purity, but the content of alkali metal halide is unclear and there is no description of other impurities. Further, there is no mention of the influence of the particle size of sodium parastyrene sulfonate before purification on the purification efficiency, that is, the purity after purification.
  • the present invention has been made in view of the above problems, and its purpose is to provide a high-purity paraffin excellent in hue useful for producing a polymer emulsion such as chloroprene rubber excellent in hue and a synthetic paste for clothing finishing.
  • the object is to provide sodium styrene sulfonate and a sodium styrene sulfonate (co) polymer (hereinafter also referred to as “PSS sodium” or “sodium polystyrene sulfonate”).
  • the present invention also provides a sodium parastyrenesulfonate powder (particles) having a median diameter of 25.00 to 150.00 ⁇ m and a small particle of less than 10.00 ⁇ m of 10.00% or less and having excellent fluidity and solubility. ) To provide.
  • the present inventors have found that high-purity sodium parastyrene sulfonate having reduced iron content and specific impurities, and sodium parastyrene sulfonate produced using the same (both)
  • the present inventors have found that the polymer is excellent in hue and becomes sodium parastyrene sulfonate and PSS sodium useful for producing polymer emulsions such as chloroprene rubber and synthetic paste for garment finishing. .
  • the iron content in sodium parastyrene sulfonate is less than 3.00 ⁇ g / g and sodium bromide is less than 2.50 wt%
  • the peak area ratios of sodium, (c) sodium metastyrene sulfonate, (d) sodium bromostyrene sulfonate, and (e) sodium ⁇ -hydroxyethylbenzenesulfonate determined by high performance liquid chromatography (HPLC) are respectively (a) ⁇ 0.40%, (b) ⁇ 4.00%, (c) ⁇ 8.00%, (d) ⁇ 0.10%, and (e) ⁇ 0.80 (with sodium parastyrenesulfonate) (A) to (e) High purity sodium parastyrene sulfonate (hereinafter referred to as “high purity sodium para
  • the high-purity sodium parastyrenesulfonate excellent in hue of the present invention has an iron content of less than 3.00 ⁇ g / g and sodium bromide of less than 2.50 wt% in the sodium parastyrenesulfonate (a).
  • HPLC peak area ratios determined by chromatography
  • the high-purity parastyrene sulfonic acid of the present invention preferably has a median diameter of 25.00 to 150.00 ⁇ m as measured with a laser diffraction / scattering particle size analyzer of less than 10.00% of small particles of less than 10.00 ⁇ m. Particles having a water content of 10.00 wt% or less and an angle of repose of 55 degrees or less.
  • the high-purity parastyrene sulfonic acid of the present invention more preferably has a median diameter measured by a laser diffraction / scattering particle size analyzer of 40.00 to 90.00 ⁇ m and small particles of less than 10.00 ⁇ m of 3.00% or less. Particles having a water content of 8.00 wt% or less and an angle of repose of 50 degrees or less.
  • the above high-purity sodium parastyrenesulfonate has a sodium bromide content of preferably 0.20 wt% or less.
  • sodium hydroxide and ⁇ -bromoethylbenzenesulfonic acid are simultaneously fed to a reaction kettle at a constant rate to produce sodium parastyrene sulfonate.
  • the total sodium hydroxide weight / total reaction solution weight in the reaction vessel) ⁇ 100] was kept at 10.00 to 20.00 wt% and the ⁇ -bromoethylbenzenesulfonic acid concentration [(total fed ⁇ -bromoethylbenzene fed The weight of the sulfonic acid / the total weight of the reaction solution in the reaction vessel) ⁇ 100] was controlled so as to increase from 0.00 wt% to 30.00 to 50.00 wt% over 1 to 7 hours.
  • the present invention provides a sodium polystyrene sulfonate having excellent hue with the following repeating structural unit A, or the following repeating structural unit A and the following repeating structural unit B, produced using the above-described high-purity sodium parastyrene sulfonate.
  • a sodium polystyrene sulfonate having excellent hue with the following repeating structural unit A, or the following repeating structural unit A and the following repeating structural unit B, produced using the above-described high-purity sodium parastyrene sulfonate.
  • M represents a sodium cation
  • Q represents a radical polymerizable monomer residue
  • n represents an integer of 1 or more
  • m represents an integer of 0 or more.
  • GPC gel permeation chromatography
  • Q in the above repeating structural unit B includes (meth) acrylic acid residue, (meth) acrylic acid ester residue, maleic anhydride residue, maleic acid residue, maleimide residue, (meth) acrylamide residue It is preferably one or more radically polymerizable monomer residues selected from the group consisting of a group, a styrene residue, and a styrene derivative residue.
  • the present invention relates to a dispersant comprising the above-mentioned PSS sodium as an active ingredient, or a garment iron finish produced using PSS sodium as a synthetic paste.
  • the high-purity sodium parastyrene sulfonate of the present invention and the sodium parastyrene sulfonate (co) polymer produced using the same are excellent in hue because of low iron content and other impurities, and various aqueous solutions such as chloroprene rubber. It is useful for improving the hue of dispersions and synthetic pastes for clothing finishing. Further, according to the present invention, sodium parastyrenesulfonate having improved fluidity, which has been a conventional problem, is provided by controlling the particle diameter while maintaining good solubility. Furthermore, the sodium parastyrene sulfonate having a controlled particle size according to the present invention is excellent in purification efficiency when it is highly purified by recrystallization purification or the like.
  • FIG. 1 It is HPLC chromatography of the high purity sodium parastyrene sulfonate of Example 1,
  • shaft shows peak intensity
  • (A), (b), (c), (d), and (e) in FIG. 1 are (a) sodium orthostyrenesulfonate, (b) sodium ⁇ -bromoethylbenzenesulfonate, and (c) meta.
  • FIG. 8 is a HPLC chromatography of sodium parastyrene sulfonate obtained in Example 6 (and used in Example 9).
  • the vertical axis represents peak intensity (absorption intensity of detector, unit is arbitrary).
  • the horizontal axis indicates the elution time (unit: minutes).
  • the iron content in sodium parastyrene sulfonate is less than 3.00 ⁇ g / g and sodium bromide is less than 2.50 wt%
  • the peak area ratios of sodium, (c) sodium metastyrene sulfonate, (d) sodium bromostyrene sulfonate, and (e) sodium ⁇ -hydroxyethylbenzenesulfonate determined by high performance liquid chromatography (HPLC) are respectively (a) ⁇ 0.40%, (b) ⁇ 4.00%, (c) ⁇ 8.00%, (d) ⁇ 0.10%, and (e) ⁇ 0.80% (but sodium parastyrenesulfonate) And (a) to (e) a high-purity sodium parastyrene sulfonate having an excellent hue with
  • excellent hue means that there is no coloration and is almost white or colorless and transparent, but in the present invention, it means that yellowness is particularly low.
  • the yellowness (YI value) of the crystal powder determined by a color difference meter is small and the whiteness (WI value) is high, and the APHA value of the aqueous solution is high.
  • PSS sodium it means that the APHA value, yellowness (YI value), and b value of the PSS sodium aqueous solution obtained with a color difference meter are small.
  • the iron content in sodium parastyrene sulfonate is less than 3.00 ⁇ g / g
  • the sodium bromide content is less than 2.50 wt%
  • e) Sodium ⁇ -hydroxyethylbenzene sulfonate have peak area ratios determined by HPLC of (a) ⁇ 0.20%, (B) ⁇ 0.50%, (c) ⁇ 3.00%, (d) ⁇ 0.10%, and (e) ⁇ 0.20% (ie, sodium parastyrenesulfonate and (a)-( e) High-purity sodium parastyrene sulfonate having a total peak area of 100), and the
  • the sodium PSS of the present invention is not limited to a homopolymer of sodium parastyrene sulfonate, that is, it is not particularly limited as long as it has the repeating structural unit A or the repeating structural units A and B.
  • a random copolymer, a block copolymer, or a graft copolymer may be used.
  • the block copolymer here means that a PSS sodium chain (the above repeating structural unit A) and a polymer chain different from PSS sodium (the above repeating structural unit B) are bonded together in a block form through a covalent bond. And include diblock, triblock, and multiblock types.
  • the graft copolymer is a polymer chain (different from PSS sodium) or a branch of a polymer chain (repeated structural unit B) different from PSS sodium at the trunk of PSS sodium (repeated structural unit A).
  • a branch of PSS sodium (repeated structural unit A) is bonded to the trunk of the recurring structural unit B) via a covalent bond.
  • the feature of the present invention is that the monomer (sodium parastyrene sulfonate) used for the production of PSS sodium is highly purified, which will be described below.
  • Commercially available sodium parastyrene sulfonate usually contains 5.0 to 10.0 wt% of water (crystal water and adhering water). This moisture is the largest impurity contained in sodium parastyrene sulfonate.
  • the present inventors controlled the production conditions such as a method of partially dissolving sodium parastyrene sulfonate containing the above impurities in an aqueous solvent and recrystallizing, a method of washing with pure water, or a reaction temperature, thereby adjusting the iron content.
  • the impurities (a) to (e) are respectively (a) ⁇ 0.20%, (b) ⁇ 0.50%, (c) ⁇ 3.00%, (d) ⁇ 0.10%, ( e) ⁇ 0.20% (however, the sum of sodium parastyrene sulfonate and (a) to (e) peak area is 100), it was found that the color of sodium parastyrene sulfonate is further improved. .
  • the weight average molecular weight determined by GPC of sodium PSS of the present invention is not limited, but is preferably 2,000 to 1,000,000.
  • a dispersant in emulsion polymerization such as chloroprene
  • the emulsion viscosity and stability are considered.
  • a relatively low molecular weight is preferable, for example, 2,000 to 50,000 is preferable.
  • it is preferably a high molecular weight in terms of viscosity and water resistance after drying. 600,000 is preferable. This weight average molecular weight can be easily adjusted by the amount of polymerization initiator or chain transfer agent added to the monomer.
  • Other monomers other than sodium parastyrene sulfonate used in the sodium PSS of the present invention are those in which radical polymerization proceeds by the PSS sodium radical, or a radical that can be a radical polymerization initiator for sodium parastyrene sulfonate. If it is a thing (in other words, what can be radical copolymerized with sodium parastyrene sulfonate), there will be no restriction
  • styrene chlorostyrene, dichlorostyrene, bromostyrene, dibromostyrene, fluorostyrene, trifluorostyrene, nitrostyrene, cyanostyrene, ⁇ -methylstyrene, p-chloromethylstyrene, p-cyanostyrene, p-aminostyrene, p-acetoxystyrene, p-styrenesulfonyl chloride, ethyl p-styrenesulfonyl, methyl p-styrenesulfonyl, propyl p-styrenesulfonyl, p-butoxystyrene, p-hydroxystyrene, 4-vinylbenzoic acid, 3-isopropenyl- Styrenes such as ⁇ , ⁇ '-dimethylbenzyl isocyanate and vinylbenzyltri
  • the usage ratio of the other monomers is 99 wt% or less, preferably about 10 to 90 wt% in the total monomers. If it exceeds 99 wt%, depending on the application, it is possible to impart the characteristics of sodium parastyrene sulfonate to the polymer by copolymerizing a very small amount of sodium parastyrene sulfonate. When used as a dispersant, the characteristics of sodium parastyrene sulfonate are difficult to be exhibited, which is not preferable.
  • the iron removal method is more specifically described.
  • a sulfonic acid type cation exchange resin regenerated with hydrochloric acid is converted into a ⁇ -bromoethylbenzenesulfonic acid aqueous solution (ion exchange capacity of the cation exchange resin).
  • ⁇ -bromoethylbenzenesulfonic acid is filtered off to remove iron ions.
  • the obtained high-purity ⁇ -bromoethylbenzene is then vinylated by a conventional method according to the above chemical reaction formula to obtain sodium parastyrenesulfonate.
  • the vinylation conditions at this time include, for example, a 2.0-3.0 times mole of ⁇ -bromoethylbenzenesulfonic acid and ⁇ -bromoethylbenzenesulfonic acid in a stainless steel reaction kettle equipped with a jacket and equipped with a stirrer.
  • a method of vinylating at 60 to 110 ° C. while simultaneously feeding 2 moles of sodium hydroxide over 2 to 5 hours can be mentioned.
  • a specific example of the purification method of (ii) is that solid-liquid separation of a slurry containing sodium parastyrene sulfonate crystals and water-soluble impurities such as ferrous hydroxide and sodium bromide by centrifugal filtration. Can be used to remove impurities such as iron and sodium bromide from parastyrene sulfonic acid crystals.
  • a specific example of the purification method of (iii) is as follows.
  • water-soluble ferrous hydroxide is precipitated on water-insoluble ferric hydroxide.
  • a sodium parastyrenesulfonate crystal having a large specific gravity is precipitated, and colloidal ferric hydroxide is suspended.
  • Impurities such as ferric hydroxide suspended by decantation and sodium bromide dissolved in water can be removed.
  • the method for removing impurities other than iron is not particularly limited.
  • commercially available sodium parastyrene sulfonate is used as pure water or a water-soluble solvent such as acetone, methanol, ethanol, isopropanol, and acetonitrile. It was poured into a mixed solvent of water, heated at 40 to 70 ° C. for 30 to 1 hour, stirred and partially dissolved, then cooled to 30 ° C. or less over 30 minutes to 2 hours, and washed with sodium parastyrene sulfonate, Alternatively, recrystallization can reduce major impurities such as sodium bromide, isomers, and sodium ⁇ -haloethylbenzenesulfonate. By repeating this operation, impurities other than iron can be reduced. This recrystallization operation is performed once or more, and preferably 1 to 3 times in consideration of productivity and cost.
  • sodium parastyrenesulfonate is dissolved in methanol at a concentration of 5 to 6 wt% (usually at 40 to 50 ° C. for about 10 to 60 minutes) and slowly By cooling to room temperature to around 10 ° C., crystals of sodium parastyrene sulfonate are precipitated, followed by filtration and drying, whereby high purity sodium parastyrene sulfonate can be obtained.
  • the high purity sodium parastyrene sulfonate obtained by the above purification method (1) may be further purified according to the above purification method (2).
  • impurities such as iron and sodium bromide, particularly (a) sodium orthostyrenesulfonate, (b) sodium ⁇ -bromoethylbenzenesulfonate, (c) sodium metastyrenesulfonate, (d) bromostyrenesulfonate
  • the amount of sodium, (e) sodium ⁇ -hydroxyethylbenzenesulfonate can be further reduced.
  • sodium parastyrene sulfonate are within a certain range, which will be described below. That is, in general, sodium parastyrenesulfonate (when M in the above-mentioned “chemical formula 2” is sodium) is produced by the above-described method of “chemical formula 2”, and its shape and particle size are mainly determined by the vinylation step ( It is thought that it depends on the conditions of reaction crystallization.
  • the present inventors have added the sodium parastyrene sulfonate using an aqueous solvent. When washing or recrystallizing and purifying, it was found that the filterability (liquid cutting property) was lowered and the purification could not be performed efficiently.
  • the present invention is a particle having a median diameter of 25.00 to 150.00 ⁇ m and a small particle of less than 10.00 ⁇ m of 10.00% or less measured with a laser diffraction / scattering particle size analyzer, and having a water content of 10 It is sodium parastyrene sulfonate characterized by having 0.000 wt% or less and an angle of repose of 55 degrees or less.
  • the median diameter is 40.00 to 90.00 ⁇ m
  • small particles less than 10.00 ⁇ m are 3.00% or less
  • moisture is 8.00 wt% or less
  • the angle of repose is 50 degrees or less. More preferably.
  • the aqueous sodium solvent is used to wash the sodium parastyrene sulfonate, or When recrystallizing and purifying, filterability (liquid cutting property) is lowered and purification cannot be performed efficiently. On the other hand, if it exceeds 150.0 ⁇ m, the fluidity is good (as a result of less moisture), and the filterability during washing or recrystallization purification using an aqueous solvent is good, but the solubility is poor.
  • the reaction crystallization conditions that is, ⁇ -bromoethylbenzenesulfonic acid as a raw material and water are used.
  • the crystallization rate may be controlled by adjusting the feed conditions and reaction temperature of sodium oxide.
  • small particles of less than 10.00 ⁇ m 10.00% or less preferably 3.00% or less, it is necessary to control the median diameter to be 25.00 ⁇ m or more by the above-described method.
  • small grains of less than 10.00 ⁇ m are reduced.
  • the sodium parastyrene sulfonate of the present invention is a particle having a median diameter in the above specific range, but is preferably “ellipsoidal secondary particle”.
  • the “ellipsoidal secondary particles” are elliptical particles as shown in the electron micrograph of FIG. 5 and a large number of crystals of sodium parastyrenesulfonate hemihydrate (primary particles). Are aggregated by physical force.
  • the resulting particles are "ellipsoidal secondary particles", such as the crystallization speed and stirring conditions during the reaction crystallization, the forced flow described later It is considered that physical force acts on the primary particles and aggregates.
  • Sodium parastyrene sulfonate is preferably hemihydrate because of its excellent storage stability, and the water (crystal water) in 100% pure sodium parastyrene sulfonate hemihydrate is theoretically 4.18 wt%. is there. Therefore, moisture exceeding 4.18 wt% is adhering water. As the median diameter of sodium parastyrene sulfonate is smaller, the amount of adhering water increases due to the increase in the total surface area, resulting in a decrease in fluidity. It is thought that the fluidity has improved.
  • the sodium parastyrene sulfonate of the present invention is a hemihydrate having a water content of 10.00% by weight or less, preferably 8.0% by weight or less, more preferably 4.5 to 7.0% by weight. is there. If the water content exceeds 10% by weight, the fluidity is lowered regardless of the particle size of sodium parastyrene sulfonate, and the purity of the product is meant to be lowered.
  • the sodium parastyrenesulfonate of the present invention as a hemihydrate having a water content of 10% or less
  • the above-mentioned reaction crystallization conditions that is, feed of ⁇ -bromoethylbenzenesulfonic acid and sodium hydroxide as raw materials are used.
  • the median diameter may be 25.00 ⁇ m or more.
  • the sodium parastyrene sulfonate of the present invention has an angle of repose defined by the following description of 55 degrees or less, preferably 50 degrees or less. When it exceeds 55 degrees, fluidity will be inferior. When the angle of repose is 55 degrees or less, it is excellent in fluidity, and troubles such as clogging in a hopper are solved when used in a large amount in a factory. In order to reduce the angle of repose, the fluidity of the powder may be increased. Although the relationship between fluidity and the structure and composition of sodium parastyrene sulfonate powder is not necessarily clear, it is considered that the influence of moisture in the powder is large. That is, it is considered that as the particle size of the powder is smaller, the water content increases due to the increase in the total surface area, resulting in a decrease in fluidity, and the water content can be adjusted by controlling the particle size described above.
  • the solubility of sodium parastyrenesulfonate of the present invention in water is preferably 200 seconds or less, more preferably 160 seconds or less. Although there is no harmful effect due to too high solubility, if it exceeds 200 seconds, when using a large amount of sodium parastyrene sulfonate as a chemical raw material in a factory, problems such as decreased productivity and clogging of the strainer occur. It tends to occur and is not preferable. This solubility can be adjusted by controlling the particle size described above.
  • the method for producing sodium parastyrene sulfonate is not particularly limited.
  • sodium hydroxide concentration in the reaction kettle [(weight of fed total sodium hydroxide / total weight of reaction solution in the reaction kettle) ⁇ 100 ] In the range of 10.00 to 20.00 wt%, and ⁇ -bromoethylbenzenesulfonic acid concentration [(weight of fed total ⁇ -bromoethylbenzenesulfonic acid / total reaction solution weight in reaction kettle) ⁇ 100] It is important to carry out the reaction crystallization at 60 to 110 ° C.
  • the produced slurry of sodium parastyrene sulfonate is preferably cooled to 10 to 40 ° C., and then solid-liquid separated by, for example, a centrifugal filter to obtain a wet cake of sodium parastyrene sulfonate. Then, the wet cake is forced to flow, for example, at 20 to 40 ° C. for 5 to 30 minutes using a uniaxial screw blender, whereby the sodium parastyrenesulfonate hemihydrate of the present invention can be produced. .
  • the sodium parastyrene sulfonate produced in the present invention is controlled in particle size by improving the reaction crystallization conditions, and has improved fluidity while maintaining excellent solubility.
  • high-purity sodium parastyrenesulfonate can be efficiently produced, the utility value is high in the industrial fields described above.
  • the manufacturing method of the PSS sodium of this invention is demonstrated.
  • the method by general radical polymerization is illustrated as a 1st example.
  • a reaction vessel is charged with a homogeneous solution of water or an aqueous solvent and sodium parastyrene sulfonate, and if necessary, a mixture of other monomers capable of radical copolymerization with sodium parastyrene sulfonate, and if necessary a molecular weight regulator And deoxidizing the system, heating to a predetermined temperature, and then polymerizing while adding a radical polymerization initiator.
  • each monomer is adjusted to a polymerization initiator or molecular weight control. It is preferable to add it little by little to the reaction vessel together with the agent.
  • PSS sodium can be produced by finely dispersing or emulsifying an aqueous solution of a water-soluble monomer such as sodium parastyrene sulfonate in oil, followed by polymerization (so-called reverse emulsion polymerization) while adding a radical polymerization initiator. it can.
  • the reaction solvent is not particularly limited, but the solubility of sodium parastyrene sulfonate and other copolymerizable monomers (comonomer), use as a dispersant in emulsion polymerization, use as a synthetic glue in clothing finishes
  • a mixture of water and a water-soluble solvent is preferable.
  • the water-soluble solvent is not limited as long as it is a composition in which a mixture of sodium parastyrene sulfonate and a comonomer is dissolved.
  • acetone, tetrahydrofuran, dioxane, methanol, ethanol, n-propanol, isopropanol, methoxyethanol, 2- Ethoxyethanol, 2-butoxyethanol, butanol, ethylene glycol, 1-methoxy-2-propanol, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol, glycerin, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, etc. can give.
  • Acetone, ethanol, isopropanol, tetrahydrofuran, dioxane, dimethyl sulfoxide, N-methylpyrrolidone, and dimethylformamide are preferable.
  • the amount of water or aqueous solvent used as the reaction solvent is usually 150 to 2,000 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • the molecular weight regulator is not particularly limited.
  • radical polymerization initiator examples include di-t-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide.
  • persulfate Peroxides such as aluminum, ammonium persulfate, hydrogen peroxide, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile),
  • reducing agents such as ascorbic acid, erythorbic acid, aniline, a tertiary amine, longgarite, hydrosulfite, sodium sulfite, sodium thiosulfate, as needed.
  • the amount of radical polymerization initiator used is usually 0.1 to 10 parts by weight per 100 parts by weight of the total amount of monomers.
  • Polymerization conditions are not particularly limited, but may be heated at 20 to 120 ° C. for 4 to 50 hours in an inert gas atmosphere, and may be appropriately adjusted depending on the polymerization solvent, the monomer composition, and the polymerization initiator species.
  • the PSS sodium of the present invention can be produced by the above general radical polymerization, but if a living polymerization method is applied, the molecular weight distribution can be narrowed or a block copolymer can be produced.
  • the living radical polymerization method is more preferred.
  • the living radical polymerization method include an atom transfer polymerization method, a stable nitroxyl-mediated polymerization method, a reversible addition-cleavage transfer polymerization method, and an organic tellurium-mediated polymerization method (Polymer Papers, vol. 329, 2007), iodine transfer polymerization method (Japanese Patent Laid-Open No.
  • the living radical polymerization As a specific example of the living radical polymerization, after living radical polymerization of a radical polymerizable monomer other than sodium parastyrene sulfonate in an aqueous solvent, the sodium parastyrene sulfonate of the present invention is added, and the living radical polymerization is continued, or After living radical polymerization of sodium parastyrene sulfonate in an aqueous solvent, another radical polymerizable monomer is added and the living radical polymerization is continued.
  • a PSS block copolymer can be produced by performing such living radical polymerization.
  • the PSS sodium of the present invention may be randomly copolymerized with a monomer capable of radical copolymerization with sodium parastyrene sulfonate, if necessary.
  • a monomer capable of radical copolymerization with sodium parastyrene sulfonate if necessary.
  • lifted the monomer described by description of the PSS sodium block copolymer.
  • a method for producing chloroprene rubber will be described. These production methods are not particularly limited, and known methods can be applied (for example, see the above-mentioned Japanese Patent No. 3601136).
  • a reactor equipped with a stirrer and a temperature control jacket is charged with monomers such as water, chloroprene, emulsifiers, dispersants, molecular weight regulators, and pH adjusters as necessary to remove oxygen in the system.
  • monomers such as water, chloroprene, emulsifiers, dispersants, molecular weight regulators, and pH adjusters as necessary to remove oxygen in the system.
  • polymerization may be performed at a predetermined temperature while adding a radical initiator.
  • a radical initiator and a reducing agent may be used in combination and polymerized at a low temperature.
  • the polymerization temperature is 10 to 50 ° C., and the polymerization is carried out for 3 to 10 hours.
  • a polymerization inhibitor is added to stop the polymerization.
  • the molecular weight regulator, the polymerization initiator, and the reducing agent those used in the production of PSS sodium can be used.
  • a hard component such as polymethyl methacrylate may be graft-polymerized to impart polarity and cohesive strength to the chloroprene rubber obtained above.
  • the emulsifier is not particularly limited.
  • examples of the anionic emulsifier include rosinate, fatty acid salt, alkenyl succinate, alkyl ether carboxylate, alkyl diphenyl ether disulfonate, alkane sulfonate.
  • alkylpropenylphenol polyethylene oxide adduct alkylpropenylphenol polyethylene oxide adduct, allylalkylphenol polyethylene oxide adduct, polyoxyethylene fatty acid ester, Lioxyethylene sorbitan fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, alkylpolyglucoxide, sucrose fatty acid ester, polyoxyethylene polyoxypropylene glycol, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, hydroxyethylcellulose, polyacrylamide, polymethacrylic Amide, polydimethylaminoethyl methacrylate, polydimethylaminoethyl acrylate, polydiethylaminoethyl methacrylate, polydiethylaminoethyl acrylate, poly-t-butylethylaminoethyl methacrylate, poly-t-butylaminoethy
  • Examples of the cationic emulsifier include alkylamine salts, alkyl Type quaternary ammonium salts, fatty acid amidoamine salts, alkylamino acid salts and the like.
  • Examples of amphoteric emulsifiers include alkyldimethylaminoacetic acid betaine, alkyldimethylaminosulfobetaine, and alkylsulfobetaine.
  • dispersant examples include naphthalene sulfonate formalin condensate, taurine derivative, polystyrene sulfonic acid (salt), polystyrene sulfonic acid / methacrylic acid copolymer (salt), polystyrene sulfonic acid / acrylic acid copolymer (salt).
  • the high-purity sodium parastyrene sulfonate of the present invention has a markedly superior hue compared to conventional products. Therefore, the high-purity sodium parastyrene sulfonate and the PSS sodium obtained using the same are produced in polymer emulsions such as chloroprene rubber. Is a very useful reactive emulsifier and dispersant.
  • PSS sodium excellent in hue produced in the present invention can be used as a dispersant for producing the polymer emulsion such as chloroprene rubber described above, and is a synthetic glue for clothing iron finishing in which hue is important, personal care It is extremely useful as a dispersant for producing various aqueous dispersions such as articles, antistatic agents, and pigments.
  • the specific embodiments thereof when used as a synthetic paste in a garment iron finish, the specific embodiments thereof include a silicone polymer (functioning as a smoothing agent) and propylene glycol (functioning as a stabilizer) in the PPS sodium aqueous solution of the present invention. ), Preservatives, fragrances and the like.
  • Model LC-8020 manufactured by Tosoh Corporation (Degasser: SD-8022, pump: CCPM-II, column oven: CO-8020, UV-visible detector: UV-8020)
  • Column TSKgel ODS-80TsQA (4.6 mm ⁇ 25 cm)
  • Eluent A solution)
  • Water / acetonitrile volume ratio 95/5 + 0.1 wt% trifluoroacetic acid
  • Gradient condition 100% of A solution up to 55 minutes, Liquid B 100% from 55 to 95 minutes
  • Flow rate 0.8 ml / min
  • UV detection condition 230 nm
  • column temperature room temperature
  • injection amount 20 ⁇ l
  • A 100 ⁇ ⁇ [0.01031 ⁇ (ab) ⁇ f] / (S ⁇ 5/500) ⁇
  • S Sample amount (g)
  • Each peak detected by HPLC was previously identified by the following method. After separating each component detected by HPLC and treating with cation exchange resin to convert parastyrene sulfonate to sulfonic acid type, methyl ester of sulfonic acid group with diazomethane, gas chromatograph mass spectrometry (Hitachi, Ltd.) M-80B), Fourier transform infrared analysis (Perkin Elmer, System 2000), organic element analysis (Yanaco, CHN coder MT-3), and nuclear magnetic resonance analysis (Varian, VXR-300) And the structure was determined.
  • a 15 wt% sodium parastyrene sulfonate and 15 wt% sodium polystyrene sulfonate aqueous solution sample was transferred to the square cell and set to read the APHA value (standard of APHA 0 to 500) Converted from a calibration curve created using the solution).
  • ⁇ Evaluation of hue of chloroprene rubber solution> A 5 wt% toluene solution of chloroprene rubber was prepared, and the hue (yellowness) was evaluated by measuring the absorbance at a wavelength of 440 nm using an absorptiometer U-1500 manufactured by Hitachi, Ltd. The smaller the value, the lighter the color. ⁇ Evaluation of heat aging resistance of hue> After heating the chloroprene rubber in a gear oven at 70 ° C. for 3 days, the hue of the solution was evaluated by the above method.
  • Model Tosoh Corporation, LC-8020 (Degasser: SD-8022, pump: DP-8020, column oven: CO-8020, UV-visible detector: UV-8020)
  • Column TSK guardcolumn ⁇ + TSK gel ⁇ -6000 + TSK gel ⁇ -3000
  • Example 1 (Production of high-purity sodium parastyrene sulfonate, sodium PSS, and evaluation example 1 as a synthetic paste for a garment ironing agent) ⁇ Production of ⁇ -bromoethylbenzenesulfonic acid with reduced iron content>
  • a polypropylene beaker 600 ml of a cation exchange resin [manufactured by Organo Corporation, Amberlite RB-120 (regenerated with hydrochloric acid)] and 400 g of a 73 wt% ⁇ -bromoethylbenzenesulfonic acid aqueous solution were collected and made of Teflon (polytetrafluoroethylene).
  • the mixture was slowly stirred at room temperature for 5 hours using a stirring blade. Thereafter, the ion exchange resin was filtered off with a glass filter, and the concentration of the filtrate was adjusted with a rotary evaporator to obtain 350 g of a 70 wt% ⁇ -bromoethylbenzenesulfonic acid aqueous solution.
  • the iron content in the aqueous solution was 0.34 ⁇ g / g.
  • ⁇ -bromoethylbenzene sulfonic acid an intermediate product obtained in the manufacturing process of sodium parastyrene sulfonate was used.
  • the obtained slurry of sodium parastyrene sulfonate crystals was cooled to 30 ° C., and then solid-liquid separated with a centrifuge to obtain 446 parts by weight of a wet cake of sodium parastyrene sulfonate.
  • the purity of the sodium parastyrene sulfonate is 88.8 wt%, the water content is 6.5 wt%, the iron content is 0.56 ⁇ g / g, the sodium bromide content is 2.00 wt%, and the organic impurities such as isomers are (a) They were 0.16%, (b) 0.43%, (c) 2.65%, (d) 0.04%, and (e) 0.15% (the HPLC chart is shown in FIG. 1).
  • the median diameter of the sodium parastyrene sulfonate was 81 ⁇ m, 0.5% of small particles less than 10,000 ⁇ m, the angle of repose was 46 degrees, and the dissolution time in water was 165 seconds.
  • the sodium parastyrene sulfonate has a WI value of 95.7, a YI value of 5.8, and a 15 wt% aqueous solution with an APHA value of 30, which is clearly superior to the conventional product (Comparative Example 1). Indicated.
  • Example 2 (Production of high-purity sodium parastyrene sulfonate, sodium PSS, and evaluation example 2 as a synthetic paste for a garment iron finish) ⁇ Production of high purity sodium parastyrene sulfonate> A stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 1,000 g of high-purity sodium parastyrenesulfonate obtained in Example 1, 1 g of sodium nitrite, 20 g of caustic soda, and 950 g of pure water. For 1 hour.
  • the median diameter of the sodium parastyrene sulfonate was 63%, the small particles of less than 10,000 ⁇ m were 2.0%, the angle of repose was 49 degrees, and the dissolution time in water was 155 seconds.
  • the sodium parastyrene sulfonate has a WI value of 95.5, a YI value of 2.9, and a 15 wt% aqueous solution with an APHA value of 15, which is clearly superior to the conventional product (Comparative Example 1). Indicated. Furthermore, although the reason is not clear, even if the iron content is the same level as in Example 1, it is clear that the hue is further improved by reducing impurities such as sodium bromide and isomers.
  • Example 3 (Production of PSS sodium and chloroprene rubber and evaluation example 1) ⁇ Production of sodium polystyrene sulfonate> A 1 L glass flask equipped with a reflux condenser, a nitrogen inlet tube, and a paddle type stirrer was charged with 84.00 g of pure water and heated in an oil bath at 85 ° C. in a nitrogen atmosphere. Here, a separately prepared sodium parastyrenesulfonate aqueous solution (1933.00 g sodium parastyrenesulfonate obtained in Example 1 and 8.56 g thioglycerol dissolved in pure water 700.00) was started for 73 minutes.
  • Example 4 (Production and Evaluation Example 2 of PSS Sodium and Chloroprene Rubber) ⁇ Production of sodium polystyrene sulfonate> A 1 L glass flask equipped with a reflux condenser, a nitrogen inlet tube, and a paddle type stirrer was charged with 120.00 g of pure water and heated in an oil bath at 85 ° C. in a nitrogen atmosphere.
  • sodium parastyrene sulfonate aqueous solution [210.00 g sodium parastyrene sulfonate obtained in Example 2, 19.98 g methacrylic acid, 6.21 g thioglycerol, and 39.45 wt% sodium hydroxide aqueous solution 23 .98 g dissolved in pure water 850.00] for 85 minutes, initiator aqueous solution (2,2′-azobis- (2-amidinopropane) dihydrochloride 3.33 g dissolved in pure water 120.00 g ) was added dropwise over 140 minutes to carry out polymerization.
  • the oil bath temperature was raised to 90 ° C., and the polymerization was further continued for 3 hours to obtain an aqueous polystyrene sulfonate / sodium methacrylate copolymer aqueous solution as PSS sodium.
  • the number average molecular weight Mn of the polystyrene sulfonate sodium / sodium methacrylate copolymer determined by GPC was 5,600, and the weight average molecular weight Mw was 8,900.
  • the polymer was designated as PSS-4.
  • the APHA value of the 15 wt% aqueous solution of PSS-4 is 10, which clearly shows that the hue is superior to that of the conventional product (Comparative Example 1). Furthermore, although the reason is not clear, even if the iron content is the same level as in Example 3, it is clear that the hue is further improved by reducing impurities such as sodium bromide and isomers.
  • Example 5 (Production of high-purity sodium parastyrene sulfonate, sodium PSS, and evaluation example 3 as a synthetic paste for a garment iron finish) ⁇ Production of high purity sodium parastyrene sulfonate>
  • ⁇ Production of high purity sodium parastyrene sulfonate> To a stainless steel reactor equipped with a stirrer equipped with a jacket, commercially available sodium parastyrenesulfonate (moisture content is 10.4 wt%, iron content is 5.12 ⁇ g / g, sodium bromide is 2.30 wt%, organic compounds such as isomers) Impurities are (a) 0.38%, (b) 3.87%, (c) 7.77%, (d) 0.06%, (e) 0.73%) (1,000 g) 1 g of sodium nitrate, 20 g of caustic soda and 950 g of pure water were charged and stirred at 40 ° C.
  • the median diameter of the sodium parastyrene sulfonate was 18.6 ⁇ m, the small particles of less than 10,000 ⁇ m was 14.3%, the angle of repose was 59 degrees, and the dissolution time in water was 130 seconds.
  • the sodium parastyrene sulfonate had a WI value of 95.0, a YI value of 7.5, and a 15 wt% aqueous solution with an APHA value of 80, which was inferior to those of Examples 1 and 2, but the conventional product (Comparative Example 1 ) was clearly superior to that of). Furthermore, although the reason is not clear, even if the iron content is equivalent to that of Comparative Example 5, it is clear that the hue is further improved by reducing impurities such as sodium bromide and isomers.
  • the oil bath temperature was raised to 90 ° C., and the polymerization was further continued for 3 hours to obtain a sodium polystyrenesulfonate aqueous solution.
  • the number average molecular weight Mn of polystyrene sulfonate sodium determined by GPC was 160,000, and the weight average molecular weight Mw was 340,000.
  • the polymer was designated PSS-5.
  • the APHA value of the 15 wt% aqueous solution of PSS-5 is 100, and it is clear that it has an excellent hue as compared with Comparative Example 1.
  • the WI value was 90.2, the YI value was 16.5, and the APHA value of the 15 wt% aqueous solution was 220.
  • the hue was clearly inferior to that of the high-purity sodium parastyrenesulfonate of Example 1.
  • the median diameter of the sodium parastyrene sulfonate was 22.6 ⁇ m, small particles of less than 10,000 ⁇ m were 12.6%, the angle of repose was 60 degrees, and the dissolution time in water was 132 seconds.
  • Sodium polystyrene sulfonate was synthesized under the same conditions as in Example 1 using the sodium parastyrene sulfonate.
  • the number average molecular weight Mn determined by GPC was 160,000, and the weight average molecular weight Mw was 350,000.
  • the polymer was designated PSS-6.
  • the APHA value of the 15 wt% aqueous solution of PSS-6 was 250, and the hue was clearly inferior compared with the raw materials sodium parastyrene sulfonate and sodium polystyrene sulfonate of Example 1.
  • the hue of the dough impregnated with a 15 wt% aqueous solution of PSS-6 and iron-dried was slightly inferior to Example 1 in visual evaluation.
  • the b value of the dough is -3.8 (the b value of the original dough is -6.8), the YI value is -8.3 (the YI value of the original dough is -13.7), not yellow
  • the result showed the degree of blue, the hue clearly separated from the original fabric as compared with Example 1. That is, even with a small coating amount, the inferiority of the hue with respect to Example 1 is clear.
  • Table 1 The above evaluation results are summarized in Table 1.
  • Comparative Example 2 (Production of PSS sodium and evaluation 5 as a synthetic paste for garment ironing agent) Sodium polystyrene sulfonate was synthesized under the same conditions as in Example 2 using the same commercially available sodium parastyrene sulfonate A as in Comparative Example 1. The number average molecular weight Mn determined by GPC was 150,000, and the weight average molecular weight Mw was 340,000. The polymer was designated PSS-7. The APHA value of the 15 wt% aqueous solution of PSS-7 was 210, and the hue was clearly inferior to that of the raw material sodium parastyrene sulfonate and sodium polystyrene sulfonate of Example 2.
  • the azo initiator 2,2′-azobis- (2-amidinopropane) dihydrochloride which has been reported to not adversely affect the hue of sodium polystyrene sulfonate, ie to obtain a good hue (for example, special It is clear that even when using Japanese Utility Model Laid-Open No. 11-181004, a sufficient hue cannot be obtained if the raw material parastyrene sulfonate contains a specific impurity.
  • the hue of the dough impregnated with a 15 wt% aqueous solution of PSS-7 and iron-dried was slightly inferior to Example 2 in visual evaluation.
  • the b value of the fabric is -4.2 (the b value of the original fabric is -6.8), the YI value is -8.8 (the YI value of the original fabric is -13.7), not yellow
  • the result showed the degree of blue, the hue clearly separated from the original fabric as compared with Example 2. That is, even with a small coating amount, the inferiority of the hue with respect to Example 2 is clear.
  • Table 1 The above evaluation results are summarized in Table 1.
  • Comparative Example 3 (Production of PSS Sodium and Evaluation Example 6 as Synthetic Paste for Clothes Ironing Agent) ⁇ Production of sodium parastyrene sulfonate> A stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 1,500 g of commercially available sodium parastyrenesulfonate, 3.0 g of sodium nitrite, and 10,800 g of isopropanol as in Comparative Examples 1 and 2, and stirred and dispersed. Then, 2,700 g of pure water was added, and the mixture was stirred at 70 ° C. for 1 hour in a nitrogen atmosphere.
  • the WI value was 93.5
  • the YI value was 12.5
  • the APHA value of the 15 wt% aqueous solution was 150, which was clearly inferior to the high-purity sodium parastyrene sulfonate of Example 1.
  • the median diameter of the sodium parastyrene sulfonate was 12.1% for small particles less than 10,000 ⁇ m
  • the repose angle was 59 degrees
  • the dissolution time in water was 123 seconds.
  • Example 2 Sodium polystyrene sulfonate was synthesized under the same conditions as in Example 1 using the sodium parastyrene sulfonate.
  • the number average molecular weight Mn determined by GPC was 180,000, and the weight average molecular weight Mw was 380,000.
  • the polymer was designated PSS-8.
  • the APHA value of the 15 wt% aqueous solution of PSS-8 was 170, and the hue was clearly inferior to that of sodium polystyrene sulfonate of Example 1.
  • the iron content in sodium parastyrene sulfonate is large, it is clear that the increase in APHA after conversion to a polymer is also large.
  • the obtained slurry of sodium parastyrene sulfonate crystals was cooled to 30 ° C., and then solid-liquid separated with a centrifugal separator to obtain 451 parts by weight of a wet cake of sodium parastyrene sulfonate.
  • the purity was 82.7 wt%
  • the moisture was 10.5 wt%
  • the iron content was 1.05 ⁇ g / g
  • the sodium bromide was 2.51 wt%
  • the organic impurities such as isomers were (A) 0.40%, (b) 4.20%, (c) 8.20%, (d) 0.10%, (e) 0.72%.
  • the WI value was 93.0, the YI value was 10.1, and the APHA value of the 15 wt% aqueous solution was 120.
  • the hue was clearly inferior to that of the high-purity sodium parastyrenesulfonate of Example 1. That is, it is clear that even if the iron content in sodium parastyrene sulfonate is less than 3.00 ⁇ g / g, a sufficient hue cannot be obtained when there are many organic impurities such as sodium bromide and isomers.
  • the median diameter of the sodium parastyrene sulfonate was 20.6 ⁇ m, the particles smaller than 10,000 ⁇ m were 14.3%, the angle of repose was 60 degrees, and the dissolution time in water was 126 seconds.
  • Example 1 Sodium polystyrene sulfonate was synthesized under the same conditions as in Example 1 using the sodium parastyrene sulfonate.
  • the number average molecular weight Mn determined by GPC was 160,000, and the weight average molecular weight Mw was 350,000.
  • the polymer was designated PSS-9.
  • the APHA value of the 15 wt% aqueous solution of PSS-9 was 150, and the hue was clearly inferior to that of sodium polystyrene sulfonate of Example 1.
  • Comparative Example 5 (Production of sodium PSS and chloroprene rubber and Evaluation Example 3) ⁇ Production of sodium polystyrene sulfonate>
  • Example 4 in place of the high-purity sodium parastyrene sulfonate, the commercially available sodium parastyrene sulfonate used in Comparative Example 1 was used.
  • a copolymer aqueous solution was synthesized.
  • the number average molecular weight Mn of polystyrene sodium sulfonate / sodium methacrylate copolymer determined by GPC was 5,300, and the weight average molecular weight Mw was 9,100.
  • the polymer was designated PSS-10.
  • the APHA value of the 15 wt% aqueous solution of PSS-10 was 210, which was clearly inferior in hue as compared with the sodium polystyrene sulfonate / sodium methacrylate copolymer of Example 4.
  • ⁇ Manufacture of chloroprene rubber> chloroprene rubber was used under the same conditions as in Example 4 except that the polystyrenesulfonic acid / methacrylic acid copolymer sodium salt obtained above was used instead of the polystyrenesulfonic acid / methacrylic acid copolymer sodium salt. 71 parts by weight were obtained.
  • the WI value was 91.0, the YI value was 16.0, and the APHA value of the 15 wt% aqueous solution was 200.
  • the hue was clearly inferior to that of the high-purity sodium parastyrenesulfonate of Example 1.
  • the median diameter of the sodium parastyrene sulfonate was 21.3 ⁇ m, 12.7% of small particles less than 10,000 ⁇ m, the angle of repose was 59 degrees, and the dissolution time in water was 122 seconds.
  • Sodium polystyrene sulfonate was synthesized under the same conditions as in Example 1 using the sodium parastyrene sulfonate.
  • the number average molecular weight Mn determined by GPC was 160,000, and the weight average molecular weight Mw was 350,000.
  • the polymer was designated PSS-11.
  • the APHA value of the 15 wt% aqueous solution of PSS-11 was 230, and the hue was clearly inferior to that of the raw material sodium parastyrene sulfonate and sodium polystyrene sulfonate of Example 1.
  • the hue of the dough impregnated with a 15 wt% aqueous solution of PSS-11 and iron-dried was slightly inferior to that of Example 1 by visual evaluation.
  • the b value of the fabric is -4.2 (the b value of the original fabric is -6.8), the YI value is -8.8 (the YI value of the original fabric is -13.7), not yellow
  • the result showed the degree of blue, the hue clearly separated from the original fabric as compared with Example 1. That is, even with a small coating amount, the inferiority of the hue with respect to Example 1 is clear.
  • Table 1 The above evaluation results are summarized in Table 1.
  • Example 6 A stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 1750 wt% sodium hydroxide aqueous solution 750KG and sodium nitrite 2.5KG, heated to 90 ° C., and at the same temperature in the same manner as in Example 1.
  • the prepared 73 wt% ⁇ -bromoethylbenzenesulfonic acid aqueous solution 2,000 KG and 48 wt% sodium hydroxide 950 KG were separately introduced at a constant rate over 4 hours (the sodium hydroxide concentration in the reaction kettle was 11. Gradually increased from 66 wt% to 14.69 wt% 4 hours after the start of the reaction (at the end of the reaction).
  • the concentration of ⁇ -bromoethylbenzenesulfonic acid increased from 0.00 wt% at the start of the reaction to 4 hours after the start of the reaction (at the end of the reaction). Gradually increase to 39.43 wt%)), and react and crystallize sodium parastyrene sulfonate, and let the slurry take 2 hours And cooled to 40 ° C. Thereafter, solid-liquid separation was performed by centrifugation. Separation was extremely easy, and after 30 minutes of shaking, a high-purity wet cake 940KG having a sodium styrenesulfonate content of 88.5 wt% was obtained. The wet cake was forced to flow for 60 minutes at 40 ° C.
  • the obtained sodium parastyrene sulfonate had a median diameter of 63.1 ⁇ m, a small particle of less than 10.00 ⁇ m 1.50%, a moisture content of 7.1 wt%, an angle of repose of 47 degrees, and a dissolution time in water of 160 seconds. Although the fluidity is slightly inferior to that of Comparative Example 8, the solubility is far superior, so that it is clear that the balance between fluidity and solubility is excellent.
  • the numerical values of impurities such as sodium bromide and organic impurities are as shown in Table 2. Further, the microtrack particle size distribution of the sodium parastyrenesulfonate obtained in Example 6 is shown in FIG. 4, the electron microscope image is shown in FIG. 5, and the HPLC chromatography is shown in FIG.
  • Example 7 In Example 6, instead of feeding the ⁇ -bromoethylbenzene sulfonic acid aqueous solution and the sodium hydroxide aqueous solution at a constant rate of 4 hours, all of them were fed at a constant rate of 2.5 hours under the same conditions as in Example 6, except that parastyrene sulfone was used.
  • Sodium hydroxide was crystallized from the reaction (the sodium hydroxide concentration in the reaction vessel gradually increased from 11.66 wt% at the start of the reaction to 14.69 wt% at 2.5 hours after the start of the reaction (at the end of the reaction).
  • the concentration of ethylbenzenesulfonic acid gradually increased from 0.00 wt% at the start of the reaction to 39.43 wt% after 2.5 hours of reaction start (at the end of the reaction)), and then the slurry was cooled to 40 ° C. over 2 hours. . Thereafter, solid-liquid separation was performed by centrifugation. Separation was very easy, and after 30 minutes of shaking, a high-purity wet cake 930KG having a sodium styrenesulfonate content of 88.9 wt% was obtained. The wet cake was forced to flow for 60 minutes at 40 ° C. and a rotation speed of 20 rpm using a uniaxial screw blender.
  • the obtained sodium parastyrene sulfonate had a median diameter of 110 ⁇ m, 0.00% small particles less than 10.00 ⁇ m, a water content of 6.1 wt%, and an angle of repose of 43 degrees.
  • the dissolution time in water is 200 seconds, and it is clear that the balance between fluidity and solubility is excellent as compared with Comparative Example 8.
  • the numerical values of impurities such as sodium bromide and organic impurities are as shown in Table 2.
  • Example 8 In Example 6, instead of feeding the ⁇ -bromoethylbenzenesulfonic acid aqueous solution and the sodium hydroxide aqueous solution at a constant rate of 4 hours, all of them were fed at a constant rate of 5 hours under the same conditions as in Example 6, and sodium parastyrenesulfonate (The sodium hydroxide concentration in the reaction kettle gradually increased from 11.66 wt% at the start of the reaction to 14.69 wt% after 5 hours from the start of the reaction (at the end of the reaction). Was gradually increased from 0.00 wt% at the start of the reaction to 39.43 wt% 5 hours after the start of the reaction (at the end of the reaction), and the slurry was cooled to 40 ° C.
  • Example 9 Purification
  • a stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 1,000 g of sodium parastyrene sulfonate obtained in Example 6, 1.0 g of sodium nitrite, 20.0 g of sodium hydroxide and 950.0 g of pure water, and a nitrogen atmosphere.
  • the mixture was stirred at 40 ° C. for 1 hour.
  • solid-liquid separation was performed with a centrifuge to obtain 898.0 g of a wet cake of high-purity sodium parastyrenesulfonate.
  • the obtained high-purity sodium parastyrene sulfonate after purification had a median diameter of 48 ⁇ m, a water content of 8.6 wt%, an angle of repose of 50 degrees, and a small particle of less than 10.00 ⁇ m was 2.5%.
  • the dissolution time in water was 130 seconds. Although the solubility is slightly inferior to Comparative Examples 7 and 9, the fluidity is far superior, so that it is clear that the balance between fluidity and solubility is excellent.
  • the purity of the sodium parastyrene sulfonate is 89.1%
  • the water content is 8.6 wt%
  • the sodium bromide content is 0.20 wt%
  • the organic impurities such as isomers are (a) 0.06%, (b ) 0.03%, (c) 1.34%, (d) 0.10%, (e) 0.00%.
  • the purity of sodium parastyrene sulfonate before purification is 88.5%, moisture is 7.1 wt%, sodium bromide content is 2.10 wt%, and organic impurities such as isomers are (a) 0.16% (B) 0.43%, (c) 2.64%, (d) 0.12%, (e) 0.48% (however, sodium parastyrenesulfonate and (a) to (e) peak areas) Is 100)), and it is clear that the degree of purification is higher than that of Comparative Example 9. This is probably because the centrifugal filterability was good and the solid-liquid separation proceeded smoothly.
  • Comparative Example 7 sodium parastyrene sulfonate having a small particle size
  • sodium parastyrene sulfonate 13.60% of median diameters of 19.8 ⁇ m and less than 10.00 ⁇ m
  • FIG. 6 shows a microtrack particle size distribution
  • FIG. 7 shows an electron microscope image
  • dissolution time in water was 130 seconds.
  • the numerical values of impurities such as sodium bromide and organic impurities are as shown in Table 2.
  • the purity of the sodium parastyrene sulfonate is 85.5%
  • the water content is 10.8 wt%
  • the sodium bromide content is 1.10 wt%
  • the organic impurities such as isomers are (a) 0.22%, (b ) 2.80%, (c) 6.93%, (d) 0.05%, (e) 0.20%.
  • the purity of sodium parastyrene sulfonate before purification is 83.4%
  • moisture is 10.4 wt%
  • sodium bromide content is 2.10 wt%
  • organic impurities such as isomers are (a) 0.35%, (B) 3.46%, (c) 7.74%, (d) 0.06%, (e) 0.70% (however, sodium parastyrenesulfonate and (a) to (e) of the peak area)
  • the sum is 100), and it is clear that the degree of purification is lower than that in Example 9. This is probably because the centrifugal filterability was poor and solid-liquid separation did not proceed smoothly.
  • Comparative Example 8 sodium parastyrene sulfonate having a large particle size
  • a stainless steel reactor equipped with a stirrer equipped with a jacket 179KG of 70wt% ⁇ -bromoethylbenzenesulfonic acid aqueous solution per hour and 203KG of 25wt% sodium hydroxide (containing 0.2wt% sodium nitrite) at a reaction temperature of 60 ° C
  • sodium parastyrene sulfonate were crystallized by reaction (the sodium hydroxide concentration in the reaction kettle was 13.29 wt% from the start of the reaction to 1 hour after the start of the reaction.
  • the bromoethylbenzenesulfonic acid concentration is also high at 32.80 wt% from the start of the reaction to 1 hour after the start of the reaction).
  • the crystallization slurry was withdrawn 382 KG per hour continuously every 5 minutes.
  • the slurry was cooled to 40 ° C. over 2 hours and solid-liquid separated by centrifugation. After 30 minutes of shaking, a wet cake having a sodium styrenesulfonate content of 85.1 wt% was obtained.
  • the wet cake was forced to flow for 60 minutes at 40 ° C. and a rotation speed of 20 rpm using a uniaxial screw blender.
  • the obtained sodium parastyrene sulfonate had a median diameter of 160 ⁇ m, 0.00% small granules less than 10 ⁇ m, a moisture content of 5.9 wt%, and an angle of repose of 45 degrees.
  • the dissolution time in water is 270 seconds, which is clearly inferior in solubility as compared with Examples 6 and 7.
  • the numerical values of impurities such as sodium bromide and organic impurities are as shown in Table 2.
  • Comparative Example 9 A stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 35 wt% sodium hydroxide 1054KG and sodium nitrite 1.2KG, heated to 90 ° C, and stirred in a nitrogen atmosphere with 70wt% ⁇ -bromoethylbenzenesulfonic acid.
  • Aqueous solution 1,012KG was introduced over a constant rate of 3 hours, and sodium parastyrene sulfonate was reacted and crystallized (the sodium hydroxide concentration in the reaction vessel was high at 34.96 wt% at the start of the reaction, and 3 hours after the start of the reaction (At the end of the reaction) gradually decreases to 17.85 wt%, and the concentration of ⁇ -bromoethylbenzenesulfonic acid gradually increases from 0.00 wt% at the start of the reaction to 34.29 wt% after 3 hours (at the end of the reaction). The slurry was cooled to 40 ° C. over 2 hours. Thereafter, solid-liquid separation was performed by centrifugation.
  • a wet cake 980KG having a sodium styrenesulfonate content of 84.2 wt% was obtained.
  • the wet cake was forced to flow for 60 minutes at 40 ° C. and a rotation speed of 20 rpm using a uniaxial screw blender.
  • the obtained sodium parastyrene sulfonate had a median diameter of 22.0 ⁇ m, a small particle of less than 10.00 ⁇ m of 12.50 wt%, a water content of 10.2 wt%, and an angle of repose of 59 degrees.
  • Example 9 a stainless steel reactor equipped with a stirrer equipped with a jacket was charged with 1,000 g of the above sodium parastyrene sulfonate, 1.0 g of sodium nitrite, 20.0 g of sodium hydroxide and 950.0 g of pure water. Stir for 1 hour at ° C. Then, after cooling to room temperature over 3 hours, solid-liquid separation was performed with a centrifugal separator to obtain 891.0 g of a high purity sodium parastyrene sulfonate wet cake.
  • the purity of sodium parastyrene sulfonate after the above purification is 85.5%, the moisture is 10.5 wt%, the sodium bromide content is 1.21 wt%, the organic impurities such as isomers are (a) 0.15%, ( b) 2.56%, (c) 6.20%, (d) 0.03%, (e) 0.20%.
  • the purity of sodium parastyrene sulfonate before purification is 84.2%
  • moisture is 10.2 wt%
  • sodium bromide content is 2.20 wt%
  • organic impurities such as isomers are (a) 0.41% (B) 3.21%, (c) 7.12%, (d) 0.05%, (e) 0.70% (however, sodium parastyrenesulfonate and (a) to (e) peak areas) Is 100), and it is clear that the degree of purification is lower than that in Example 9. This is probably because the centrifugal filterability was poor and solid-liquid separation did not proceed smoothly.
  • High purity sodium parastyrene sulfonate having improved hue according to the present invention, and sodium polystyrene sulfonate produced using the same are excellent in hue. It is useful for applications such as synthetic pastes for ironing, personal care products, antistatic agents, flame retardants for transparent resins, and the like.
  • the high purity sodium parastyrene sulfonate of the present invention is excellent in fluidity and solubility, and is a reactive emulsifier for emulsion polymerization, pigments, antioxidants, various polymers (tackifying resin, chloroprene rubber, polyacrylic).
  • Acid ester polyester, styrene / butadiene copolymer, polyvinyl chloride, silicone polymer, conductive polymer, etc.), nanocarbon material, hot forging release agent (slurry such as silica particles), battery electrode material (carbon, phosphorus) It has high utility value in a wide range of industrial fields, such as production of dispersants required for aqueous dispersions such as lithium iron oxide, lithium manganese phosphate, chemical mechanical polishing (so-called CMP) slurry, and photographic silver halide.
  • CMP chemical mechanical polishing
  • A Absorption peak of sodium orthostyrenesulfonate
  • b Absorption peak of sodium ⁇ -bromoethylbenzenesulfonate
  • c Absorption peak of sodium metastyrenesulfonate
  • d Absorption peak of sodium bromostyrenesulfonate
  • E Absorption peak of sodium ⁇ -hydroxyethylbenzenesulfonate NaSS (para form): Absorption peak of sodium parastyrenesulfonate elution solvent: Absorption peak derived from eluent (switching)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 ポリマーエマルジョンを製造するための反応性乳化剤や分散剤、あるいは衣料アイロン仕上げ用の合成糊として有用な色相に優れた高純度パラスチレンスルホン酸ナトリウム、及びこれを用いた色相が優れたポリスチレンスルホン酸ナトリウム、あるいは良好な溶解性を維持したまま、流動性が改良されたパラスチレンスルホン酸ナトリウムを提供する。 β-ブロモエチルベンゼンスルホン酸水溶液と水酸化ナトリウム水溶液を、特定の条件下で反応させて、粒径を制御することによって、流動性と溶解性のバランスが改良されたパラスチレンスルホン酸ナトリウム粒子を得て、さらに異性体などの不純物低減によって色相の優れた高純度パラスチレンスルホン酸ナトリウムを得る。

Description

色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
 本発明は、色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊に関する。
 また、本発明は、流動性と溶解性にも優れるパラスチレンスルホン酸ナトリウム、ならびにその製造方法に関する。すなわち、適度な粒径で低水分のパラスチレンスルホン酸ナトリウムであり、流動性および溶解性に優れたパラスチレンスルホン酸ナトリウム、ならびにその製造方法に関するものである。
 パラスチレンスルホン酸ナトリウムに代表されるパラスチレンスルホン酸(塩)は、分子内にラジカル重合性ビニル基、π電子を有する疎水性のベンゼン環、および強電解質であるスルホン酸(塩)基を有する機能性モノマーであり、産業上の様々な分野で重用されている。例えば、エマルジョン重合において、エマルジョンの安定性、および(エマルジョン)ポリマーの耐水性やカチオン染料染色性を向上させるため、反応性乳化剤として使用されている。また、パラスチレンスルホン酸ナトリウムの重合体や共重合体は、顔料、酸化防止剤、各種ポリマー(粘着付与樹脂、クロロプレンゴム、ポリアクリル酸エステル、ポリエステル、スチレン-ブタジエン共重合体、ポリ塩化ビニル、ポリアクリロニトリル、ポリシリコーン、導電性ポリマーなど)、ナノカーボン材料、熱間鍛造離型剤や研磨材用のシリカ粒子、電池電極材料(カーボン、リン酸鉄リチウム、リン酸マンガンリチウムなど)、写真用ハロゲン化銀などの各種水性分散体を製造するための分散剤として使用されている。さらに、パラスチレンスルホン酸ナトリウムの重合体は、アイロン剤などの衣料仕上げ用の合成糊、ヘアケア用品、帯電防止剤、レジスト酸発生剤、水処理剤、アレルゲン補足剤、イオン交換樹脂、メッキ液添加剤、半導体やハードディスク製造用の洗浄剤、シェールオイル採掘用流体の添加剤、樹脂の難燃剤として利用されている。
 上記の利用分野において、パラスチレンスルホン酸ナトリウム、およびその(共)重合体に対して、種々の改良が求められている。そのうち、多くの用途に共通する改良ニーズは色相である。特に、接着剤、塗料用のポリマーエマルジョン、アイロン剤などの衣料仕上げ用の合成糊、帯電防止剤、透明樹脂用の難燃剤、および写真用ハロゲン化銀乳剤などの用途では、パラスチレンスルホン酸ナトリウムおよびその(共)重合体の色相は、製品価値に直接影響する重要因子である。すなわち、工業的に入手可能な従来のパラスチレンスルホン酸ナトリウム、およびその(共)重合体は、淡黄色から淡黄褐色を呈しており、淡色化または無色化が強く求められている。
 パラスチレンスルホン酸ナトリウムの色相については、不純物の影響が示唆されている(例えば、特許文献1)。しかし、肝心の不純物については、金属ハロゲン化物について言及されているのみであり、その他の具体的な色相については一切言及されていない。また、パラスチレンスルホン酸ナトリウム(共)重合体の色相については、重合開始剤の影響が示唆されている(例えば、特許文献2)。しかし、原料であるパラスチレンスルホン酸ナトリウムに含まれる鉄分やその他の不純物およびそれらの色相への影響については一切言及されていない。
 また、古くから万能接着剤として、クロロプレンゴム系接着剤が使用されている。クロロプレンゴムの製造法は公知であり、例えば、クロロプレンまたはクロロプレンおよびそれと共重合可能なラジカル重合性モノマーを、不均化ロジン酸のアルカリ金属塩(乳化剤として作用)とナフタレンスルホン酸ホルマリン縮合物のアルカリ金属塩(分散剤として作用)を用いて水中に乳化し、ラジカル重合開始剤を添加してエマルジョン重合する。得られたクロロプレンゴムエマルジョン中の未反応モノマーを、水蒸気蒸留法によって除去する。最後に、凍結凝固などの方法でエマルジョンからクロロプレンゴムを取り出し、水洗、乾燥することにより、固形のクロロプレンゴムが製造できる(例えば、非特許文献1)。上記クロロプレンゴム、および粘着付与樹脂、金属酸化物、架橋剤などの配合剤をトルエン、メチルシクロヘキサン、n-ヘキサン、メチルエチルケトン、酢酸エステルなどの有機溶剤に溶解することによって、クロロプレンゴム系接着剤が製造されている。クロロプレンゴム系接着剤を履物やスポーツ用品などの製造に使用する場合、優れた色相(可能な限り無色に近いこと)が要求される。
 そこで、接着剤の色相を改良する方法として、上記ナフタレンスルホン酸ホルマリン縮合物のアルカリ金属塩の代わりに、変色し難いスチレンスルホン酸(共)重合体のアルカリ金属塩を分散剤として用いる方法が提案されている(例えば、特許文献3)。確かに色相は改善されるが、必ずしも満足できるものではなく、さらなる改良が求められている。また、使用されるポリスチレンスルホン酸ナトリウム(共)重合体の色相に関しては一切言及されていない。
 また、アイロン剤などの衣料仕上げ剤に使用される合成糊として、ポリスチレンスルホン酸ナトリウムが知られている(特許文献4)。本用途において色相は極めて重要であり、合成糊の一層の無色化が求められているが、ポリスチレンスルホン酸ナトリウムの色相に関する記載は一切ない。
 一方、従来から、パラスチレンスルホン酸ナトリウムは、β-ブロモエチルベンゼンスルホン酸と水酸化ナトリウムとの反応によって製造できることが知られている(例えば、特許文献5~6参照)。
 特許文献5には、窒素雰囲気下、反応器に重合禁止剤として微量の亜硝酸ナトリウムを含む水酸化ナトリウム水溶液を仕込み、ここへβ-ブロモエチルベンゼンスルホン酸を滴下しながら90℃で反応させ、パラスチレンスルホン酸ナトリウムの結晶を得た後、冷却、遠心濾過、および強制流動してパラスチレンスルホン酸ナトリウムの半水和物を製造する方法が記載されている。パラスチレンスルホン酸ナトリウムの粒径については、通常、数μm~数mmであると記載されているのみであり、実測値の記載はない。現在、市場に流通しているものと同程度の粒径、すなわち、20μm程度のメジアン径を有するものと推測される。また、粒径、水分、溶解性、および流動性の関係については一切言及されていない。
 特許文献6には、反応器に重合禁止剤として微量の亜硝酸ナトリウムを含む水酸化ナトリウム水溶液、およびβ-ブロモエチルベンゼンスルホン酸をそれぞれ同時にフィードしながら90℃で反応させ、生成したパラスチレンスルホン酸ナトリウム結晶スラリーを連続的に抜出し、遠心濾過、および強制流動してパラスチレンスルホン酸ナトリウムの半水和物を製造する方法が記載されている。パラスチレンスルホン酸ナトリウムの形状は鱗片状であり、粒径の実測値は160μm~760μmと記載されている。また、特許文献5と同様、粒径、水分、溶解性、および流動性の関係については一切言及されていない。
 しかしながら、従来のメジアン径が25μm未満のパラスチレンスルホン酸ナトリウムは、プラントで大量使用する際、投入ホッパーの詰まりが発生するなど、取扱い性に課題があった。すなわち、粉体としての流動性が不足していた。一方、パラスチレンスルホン酸ナトリウムのメジアン径が150μmを超えると、流動性は良好だが、プラント使用の際、水への溶解速度が低下し、ストレーナーが閉塞するなどの問題があった。すなわち、パラスチレンスルホン酸ナトリウムの溶解性を損なうことなく、流動性が向上したパラスチレンスルホン酸ナトリウムが求められていた。
 また近年、上記した半導体、ハードディスク製造用の洗浄剤、電子材料用フィルムの帯電防止剤、導電性ポリマー用の分散剤、写真用ハロゲン化銀乳剤など、特に電子材料用途において、パラスチレンスルホン酸(塩)およびパラスチレンスルホン酸(塩)重合体に含まれる臭化ナトリウム、未反応β-ブロモエチルベンゼンスルホン酸およびパラスチレンスルホン酸ナトリウムの核臭素化物など、余剰の金属や臭素分など、不純物の低減が求められている。臭化ナトリウムなどの不純物は、水性溶媒による洗浄や再結晶によって低減できることが知られている(例えば、特許文献7)。特許文献7には純度が記載されているが、ハロゲン化アルカリ金属の含量は不明瞭であり、その他の不純物に関する記載は一切ない。また、精製前のパラスチレンスルホン酸ナトリウムの粒径が、精製効率、すなわち精製後の純度に及ぼす影響については一切言及されていない。
特開昭51-138645号公報 特開平11-181004号公報 特許3601136号 特許2808205号 特許第3601222号公報 特許第3890642号公報 特公昭58-22477号公報
接着の技術、21巻、4号、14~19頁、2002年、日本接着学会発行
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、色相に優れたクロロプレンゴム等のポリマーエマルジョンや衣料仕上げ用合成糊を製造するのに有用な色相に優れた高純度パラスチレンスルホン酸ナトリウムおよびスチレンスルホン酸ナトリウム(共)重合体(以下「PSSナトリウム」、あるいは、「ポリスチレンスルホン酸ナトリウム」ともいう)を提供することにある。
 また、本発明は、メジアン径が25.00~150.00μm、10.00μm未満の小粒が10.00%以下である、流動性、溶解性に優れたパラスチレンスルホン酸ナトリウムの粉体(粒子)を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究を行った結果、鉄分および特定の不純物を低減した高純度パラスチレンスルホン酸ナトリウムおよびこれを用いて製造されたパラスチレンスルホン酸ナトリウム(共)重合体が極めて色相に優れ、クロロプレンゴム等のポリマーエマルジョンや衣料仕上げ用の合成糊を製造するのに有用なパラスチレンスルホン酸ナトリウムおよびPSSナトリウムになることを見出し、本発明を完成するに至った。
 また、本発明者らは、上記課題を解決すべく鋭意研究を行った結果、特定の条件で製造されたメジアン径が25.00~150.00μm、10.00μm未満の小粒が10.00%以下のパラスチレンスルホン酸ナトリウムが、流動性と溶解性のバランスに優れ、さらに、水性溶媒を用いて当該パラスチレンスルホン酸ナトリウムを精製し、高純度化する際に、極めて効率よく精製できることを見出し、本発明を完成するに至った。
 本発明は、パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの高速液体クロマトグラフィー(HPLC)で求めたピーク面積比が、各々(a)≦0.40%、(b)≦4.00%、(c)≦8.00%、(d)≦0.10%、および(e)≦0.80(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である色相が優れた高純度パラスチレンスルホン酸ナトリウム(以下「高純度パラスチレンスルホン酸ナトリウム」ともいう)に関する。
 ここで、本発明の色相が優れた高純度パラスチレンスルホン酸ナトリウムは、パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの、高速液体クロマトグラフィー(以下、HPLCと言う)で求めたピーク面積比が、各々(a)≦0.20%、(b)≦0.50%、(c)≦3.00%、(d)≦0.10%、および(e)≦0.20%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)であることがさらに好ましい。
 さらに、本発明の高純度パラスチレンスルホン酸は、好ましくはレーザー回折・散乱式粒度分析計で測定したメジアン径が25.00~150.00μm、10.00μm未満の小粒が10.00%以下の粒子であって、水分が10.00wt%以下、および安息角が55度以下である。
 本発明の高純度パラスチレンスルホン酸は、さらに好ましくは、レーザー回折・散乱式粒度分析計で測定したメジアン径が40.00~90.00μm、10.00μm未満の小粒が3.00%以下の粒子であって、水分が8.00wt%以下、および安息角が50度以下である。
 以上の高純度パラスチレンスルホン酸ナトリウムは、臭化ナトリウム含量が好ましくは0.20wt%以下である。
 次に、本発明は、反応釜へ水酸化ナトリウムとβ-ブロモエチルベンゼンスルホン酸を一定速度で同時フィードし、パラスチレンスルホン酸ナトリウムを製造する方法において、反応釜内の水酸化ナトリウム濃度〔(フィードした全水酸化ナトリウムの重量/反応釜内の全反応液重量)×100〕を10.00~20.00wt%に保ち、かつ、β-ブロモエチルベンゼンスルホン酸濃度〔(フィードした全β-ブロモエチルベンゼンスルホン酸の重量/反応釜内の全反応液重量)×100〕を、1~7時間かけて0.00wt%から30.00~50.00wt%に増加させるように制御しながら、60~110℃で1~7時間反応晶析させ、固液分離して得られた湿潤ケーキを強制流動することを特徴とする上記流動性と溶解性に優れる高純度パラスチレンスルホン酸ナトリウムの製造方法に関する。
 次に、本発明は、上記高純度パラスチレンスルホン酸ナトリウムを用いて製造される、下記繰り返し構造単位A、あるいは下記繰り返し構造単位Aおよび下記繰り返し構造単位Bを有する色相が優れたポリスチレンスルホン酸ナトリウムに関する。
Figure JPOXMLDOC01-appb-C000002
〔繰り返し構造単位A、B中、Mはナトリウムカチオンを、Qはラジカル重合性モノマー残基を表し、nは1以上の整数を、mは0以上の整数を表す。〕
 ここで、本発明のPSSナトリウムのゲル浸透クロマトグラフィー(以下、GPCと言う)で求めた重量平均分子量は2千~100万が好ましい。
 また、上記繰り返し構造単位B中のQとしては、(メタ)アクリル酸残基、(メタ)アクリル酸エステル残基、無水マレイン酸残基、マレイン酸残基、マレイミド残基、(メタ)アクリルアミド残基、スチレン残基、スチレン誘導体残基からなる群より選ばれる1種以上のラジカル重合性モノマー残基であるのが好ましい。
 次に、本発明は、上記のPSSナトリウムを有効成分とする分散剤、あるいはPSSナトリウムを合成糊として用いて製造される衣料アイロン仕上げ剤に関する。
 本発明の高純度パラスチレンスルホン酸ナトリウムおよびこれを用いて製造されてなるパラスチレンスルホン酸ナトリウム(共)重合体は、鉄分やその他の不純物が少ないために色相が優れ、クロロプレンゴムなどの各種水性分散体や衣料仕上げ用合成糊の色相を改良するのに有用である。
 また、本発明により、粒径を制御することによって、良好な溶解性を維持したまま、従来の課題だった流動性が向上したパラスチレンスルホン酸ナトリウムが提供される。さらに、本発明の粒径が制御されたパラスチレンスルホン酸ナトリウムは、再結晶精製などによる高純度化に際して、精製効率が優れる。
実施例1の高純度パラスチレンスルホン酸ナトリウムのHPLCクロマトグラフィーであり、図1中、縦軸はピーク強度(検出器の吸収強度であり、単位は任意)を示し、横軸は溶出時間(単位は分)を示す。図1中の(a)、(b)、(c)、(d)、(e)は、それぞれ(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの強度を示す。 比較例1の低純度パラスチレンスルホン酸ナトリウムのHPLCクロマトグラフィーである。その他は、図1の説明と同様である。 実施例の安息角測定に用いられる安息角測定装置と、これに用いられる分度器、および電子上皿天秤の構成図である。 実施例6のパラスチレンスルホン酸ナトリウムのマイクロトラック粒径分布を示す。 実施例6のパラスチレンスルホン酸ナトリウムの走査型電子顕微鏡像〔倍率500倍〕を示す。 比較例7のパラスチレンスルホン酸ナトリウムのマイクロトラック粒径分布を示す。 比較例7のパラスチレンスルホン酸ナトリウムの走査型電子顕微鏡像〔倍率500倍〕を示す。 実施例6で得た(および実施例9で使用した)パラスチレンスルホン酸ナトリウムのHPLCクロマトグラフィーであり、図8中、縦軸はピーク強度(検出器の吸収強度であり、単位は任意)を示し、横軸は溶出時間(単位は分)を示す。
 本発明は、パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの高速液体クロマトグラフィー(HPLC)で求めたピーク面積比が、各々(a)≦0.40%、(b)≦4.00%、(c)≦8.00%、(d)≦0.10%、および(e)≦0.80%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である色相が優れた高純度パラスチレンスルホン酸ナトリウム、ならびにこれを用いて製造される上記繰り返し構造単位A、または上記繰り返し構造単位AおよびBを有する色相が優れたPSSナトリウムである。
 ここで、「色相が優れた」とは着色がなく、白色または無色透明に近いことを意味するが、本発明では特に黄色度が低いことを意味する。具体的には、高純度パラスチレンスルホン酸ナトリウムの場合は、色差計で求めた結晶粉体の黄色度(YI値)が小さくて白色度(WI値)が高いこと、および水溶液のAPHA値が小さいことを言い、またPSSナトリウムの場合は、色差計で求めたPSSナトリウム水溶液のAPHA値、黄色度(YI値)、およびb値が小さいことを言う。
 本発明では、パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウム分が2.50wt%未満、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの、HPLCで求めたピーク面積比が、各々(a)≦0.20%、(b)≦0.50%、(c)≦3.00%、(d)≦0.10%、および(e)≦0.20%(すなわち、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である高純度パラスチレンスルホン酸ナトリウム、ならびにこれを用いて製造される上記繰り返し構造単位A、または上記繰り返し構造単位AおよびBを有するPSSナトリウムであることが好ましい。
 本発明のPSSナトリウムは、パラスチレンスルホン酸ナトリウムのホモポリマーに限定される訳ではなく、すなわち上記繰り返し構造単位A、あるいは上記繰り返し構造単位AおよびBを有するものであれば特に限定されるものではなく、ランダム共重合体、ブロック共重合体、またはグラフト共重合体であっても良い。ここで言うブロック共重合体とは、PSSナトリウム鎖(上記繰り返し構造単位A)とPSSナトリウムとは異なるポリマー鎖(上記繰り返し構造単位B)とが、共有結合を介してお互いがブロック的に結合したものであり、ジブロック、トリブロック、マルチブロック型などのタイプが含まれる。また、グラフト共重合体とは、PSSナトリウム(上記繰り返し構造単位A)の幹に、PSSナトリウムとは異なるポリマー鎖(上記繰り返し構造単位B)の枝が、あるいは、PSSナトリウムとは異なるポリマー鎖(上記繰り返し構造単位B)の幹に、PSSナトリウム(上記繰り返し構造単位A)の枝が共有結合を介してお互いが枝(グラフト)状に結合したものである。
 本発明の特徴は、PSSナトリウムの製造に用いるモノマー(パラスチレンスルホン酸ナトリウム)を高純度化したことであり、以下に説明する。
 市販のパラスチレンスルホン酸ナトリウムは、通常、5.0~10.0wt%の水分(結晶水および付着水)を含む。この水分がパラスチレンスルホン酸ナトリウムに含まれる最大の不純物である。本発明のポイントは、下記パラスチレンスルホン酸塩の一般的な製造法から判るように、水に次ぐ主要不純物である臭化ナトリウム(下式においてM=ナトリウムの場合)の他に、未反応臭素化中間体、有機異性体、および鉄分が不純物として含まれることを見出したこと、および、これらの不純物を低減することによって、パラスチレンスルホン酸ナトリウムの色相が大幅に向上することを見出したことである。
Figure JPOXMLDOC01-appb-C000003
 パラスチレンスルホン酸ナトリウムに含まれる水分以外の不純物を詳細に分析した結果、主要不純物である臭化ナトリウムの他に、微量の鉄分、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムが含まれることが判明した。
 本発明者らは、上記不純物を含むパラスチレンスルホン酸ナトリウムを水性溶媒に一部溶解し、再結晶する方法、純水で洗浄する方法または反応温度などの製造条件をコントロールすることにより、鉄分3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの高速液体クロマトグラフィー(HPLC)で求めたピーク面積比が、各々(a)≦0.40%、(b)≦4.00%、(c)≦8.00%、(d)≦0.10%、および(e)≦0.80%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である高純度パラスチレンスルホン酸ナトリウムを製造したところ、パラスチレンスルホン酸ナトリウムの色相が著しく向上することを見出した。さらに、上記不純物(a)~(e)を各々(a)≦0.20%、(b)≦0.50%、(c)≦3.00%、(d)≦0.10%、(e)≦0.20%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)に低減したところ、パラスチレンスルホン酸ナトリウムの色相がさらに向上することを見出した。
 さらに、これを用いて、従来のラジカル重合法によって高純度のPSSナトリウムを製造したところ、PSSナトリウムの色相が著しく向上することを見出した。当該高純度パラスチレンスルホン酸ナトリウム、およびPSSナトリウムは色相が極めて優れるため、上記した各種産業分野での利用価値が極めて高い。例えば、当該PSSナトリウムを分散剤に用いて、(クロロプレンゴムエマルジョンおよび)クロロプレンゴムを製造したところ、従来のPSSナトリウムを用いた場合と比較して、クロロプレンゴムの色相がさらに向上することを見出した。また、衣料アイロン仕上げ剤用の合成糊として当該PSSナトリウムを使用したところ、PSSナトリウムを施した生地の色相が、従来のPSSナトリウムを施した場合に比べてさらに向上することを見出した。
 パラスチレンスルホン酸ナトリウムの色相が向上した理由は必ずしも明確ではないが、鉄分およびその他不純物の低減による相乗効果と考えられ、PSSナトリウムの色相が向上した理由は、これらに加え、メタ体、核臭素化体などの異性体やβ-ハロエチルベンゼンスルホン酸ナトリウムの低減によってPSSナトリウムの化学的安定性が向上したためと考えられる。
 本発明のPSSナトリウムのGPCで求めた重量平均分子量に制限はないが、2千~100万が好ましく、クロロプレンなどのエマルジョン重合における分散剤として使用する場合は、エマルジョン粘度と安定性などを考慮すると、比較的低分子量が好ましく、例えば、2千~5万が好ましい。一方、エマルジョン重合以外の用途、例えば、衣料仕上げ用の合成糊として使用する場合は、粘度や乾燥後の耐水性の点で高分子量体である方が好ましく、取扱い性を考慮すると、5万~60万が好ましい。
 この重量平均分子量は、モノマーに対する重合開始剤や連鎖移動剤の添加量によって容易に調整することができる。
 本発明のPSSナトリウムに用いるパラスチレンスルホン酸ナトリウム以外の他のモノマーとしては、PSSナトリウムラジカルによってラジカル重合が進行するもの、またはパラスチレンスルホン酸ナトリウムに対してラジカル重合開始剤になり得るラジカルを生じるもの(換言すれば、パラスチレンスルホン酸ナトリウムとラジカル共重合できるもの)であれば特に制限はない。例えば、スチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ジブロモスチレン、フロロスチレン、トリフロロスチレン、ニトロスチレン、シアノスチレン、α-メチルスチレン、p-クロロメチルスチレン、p-シアノスチレン、p-アミノスチレン、p-アセトキシスチレン、塩化p-スチレンスルホニル、エチルp-スチレンスルホニル、メチルp-スチレンスルホニル、プロピルp-スチレンスルホニル、p-ブトキシスチレン、p-ヒドロキシスチレン、4-ビニル安息香酸、3-イソプロペニル-α,α’-ジメチルベンジルイソシアネート、ビニルベンジルトリメチルアンモニウムクロライドなどのスチレン類、イソブチルビニルエーテル、エチルビニルエーテル、2-フェニルビニルアルキルエーテル、ニトロフェニルビニルエーテル、シアノフェニルビニルエーテル、クロロフェニルビニルエーテル、クロロエチルビニルエーテルなどのビニルエーテル類、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸オクチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ボルニル、アクリル酸2-エトキシエチル、アクリル酸2-ブトキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸テトラヒドロフルフリル、アクリル酸メトキシエチレングリコール、アクリル酸エチルカルビトール、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸3-(トリメトキシシリル)プロピル、ポリエチレングリコールアクリレート、アクリル酸グリシジル、2-(アクリロイルオキシ)エチルフォスフェート、アクリル酸2,2,3,3-テトラフロロプロピル、アクリル酸2,2,2-トリフロロエチル、アクリル酸2,2,3,3,3-ペンタフロロプロピル、アクリル酸2,2,3,4,4,4-ヘキサフロロブチルなどのアクリル酸エステル類、メタクリル酸メチル、メタクリル酸t-ブチル、メタクリル酸sec-ブチル、メタクリル酸i-ブチル、メタクリル酸i-プロピル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸オクチル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ボルニル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸グリシジル、ポリエチレングリコールメタクリレート、メタクリル酸2-ヒドロキシエチル、メタクリル酸テトラヒドロフルフリル、メタクリル酸メトキシエチレングリコール、メタクリル酸エチルカルビトール、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、2-(メタクリロイルオキシ)エチルフォスフェート、メタクリル酸2-(ジメチルアミノ)エチル、メタクリル酸2-(ジエチルアミノ)エチル、メタクリル酸3-(ジメチルアミノ)プロピル、メタクリル酸2-(イソシアナート)エチル、メタクリル酸2,4,6-トリブロモフェニル、メタクリル酸2,2,3,3-テトラフロロプロピル、メタクリル酸2,2,2-トリフロロエチル、メタクリル酸2,2,3,3,3-ペンタフロロプロピル、メタクリル酸2,2,3,4,4,4-ヘキサフロロブチル、ジアセトンメタクリレートなどのメタクリル酸エステル類、イソプレンスルホン酸、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2,3-ジクロロ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、2-(N-ピペリジルメチル)-1,3-ブタジエン、2-トリエトキシメチル-1,3-ブタジエン、2-(N,N-ジメチルアミノ)-1,3-ブタジエン、N-(2-メチレン-3-ブテノイル)モルホリン、2-メチレン-3-ブテニルホスホン酸ジエチルなどの1,3-ブタジエン類、N-フェニルマレイミド、N-(クロロフェニル)マレイミド、N-(メチルフェニル)マレイミド、N-(イソプロピルフェニル)マレイミド、N-(スルフォフェニル)マレイミド、N-メチルフェニルマレイミド、N-ブロモフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-(ニトロフェニル)マレイミド、N-ベンジルマレイミド、N-(4-アセトキシ-1-ナフチル)マレイミド、N-(4-オキシ-1-ナフチル)マレイミド、N-(3-フルオランチル)マレイミド、N-(5-フルオレセイニル)マレイミド、N-(1-ピレニル)マレイミド、N-(2,3-キシリル)マレイミド、N-(2,4-キシリル)マレイミド、N-(2,6-キシリル)マレイミド、N-(アミノフェニル)マレイミド、N-(トリブロモフェニル)マレイミド、N-[4-(2-ベンゾイミダゾリル)フェニル]マレイミド、N-(3,5-ジニトロフェニル)マレイミド、N-(9-アクリジニル)マレイミド、マレイミド、N-(スルフォフェニル)マレイミド、N-シクロヘキシルマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-メトキシフェニルマレイミドなどのマレイミド類、フマル酸ジブチル、フマル酸ジプロピル、フマル酸ジエチル、フマル酸ジシクロヘキシルなどのフマル酸ジエステル類、フマル酸ブチル、フマル酸プロピル、フマル酸エチルなどのフマル酸モノエステル類、マレイン酸ジブチル、マレイン酸ジプロピル、マレイン酸ジエチルなどのマレイン酸ジエステル類、マレイン酸ブチル、マレイン酸プロピル、マレイン酸エチル、マレイン酸ジシクロヘキシルなどのマレイン酸モノエステル類、無水マレイン酸、無水シトラコン酸などの酸無水物、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、2-ヒドロキシエチルアクリルアミド、N,N-ジエチルアクリルアミド、アクリロイルモルホリン、N,N-ジメチルアミノプロピルアクリルアミド、イソプロピルアクリルアミド、N-メチロールアクリルミド、スルフォフェニルアクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-1-メチルスルホン酸、ジアセトンアクリルアミド、アクリルアミドアルキルトリアルキルアンモニウムクロライドなどのアクリルアミド類、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、2-ヒドロキシエチルメタクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロールメタクリルアミド、メタクリロイルモルホリン、N,N-ジメチルアミノプロピルメタクリルアミド、イソプロピルメタクリルアミド、2-メタクリルアミド-2-メチルプロパンスルホン酸、メタクリルアミドアルキルトリアルキルアンモニウムクロライドなどのメタクリルアミド類、その他、ビニルピロリドン、スルフォフェニルイタコンイミド、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-シアノエチルアクリレート、シトラコン酸、無水シトラコン酸、ビニル酢酸、プロピオン酸ビニル、ピバリン酸ビニル、バーサミック酸ビニル、クロトン酸、イタコン酸、フマル酸、マレイン酸、モノ2-(メタクリロイルオキシ)エチルフタレート、モノ2-(メタクリロイルオキシ)エチルサクシネート、モノ2-(アクリロイルオキシ)エチルサクシネート、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルジメトキシシラン、アクロレイン、ビニルメチルケトン、N-ビニルアセトアミド、N-ビニルホルムアミド、ビニルエチルケトン、ビニルスルホン酸、アリルスルホン酸、デヒドロアラニン、二酸化イオウ、イソブテン、N-ビニルカルバゾール、ビニリデンジシアニド、パラキノジメタン、クロロトリフルオロエチレン、テトラフルオロエチレン、ノルボルネン、N-ビニルカルバゾール、アクリル酸、メタクリル酸等が挙げられる。これらの中で、パラスチレンスルホン酸(塩)との共重合性や入手性などを考慮すると、メタクリル酸(塩)、メタクリル酸メチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸グリシジル、無水マレイン酸、マレイン酸(塩)、N-フェニルマレイミド、N-シクロヘキシルマレイミド、メタクリルアミド、メタクリロイルモルホリン、スチレン、スチレン誘導体が好ましい。
 上記の他のモノマーの使用割合は、全モノマー中に99wt%以下、好ましくは10~90wt%程度である。99wt%を超えると、用途によっては極少量のパラスチレンスルホン酸ナトリウムの共重合によって、ポリマーにパラスチレンスルホン酸ナトリウムの特長を付与することができるが、本発明の主用途である衣料仕上げ剤や分散剤に利用する場合、パラスチレンスルホン酸ナトリウムの特徴が発現し難くなり、好ましくない。
 次に、本発明の高純度パラスチレンスルホン酸ナトリウムの製造法について説明する。
 (1)本発明において最も重要な微量不純物である鉄分の除去方法としては、
 (i)パラスチレンスルホン酸の前駆体である、β-ブロモエチルベンゼンスルホン酸を強酸型カチオン交換樹脂で処理することにより、鉄イオンを除去する方法、
 (ii)β-ブロモエチルベンゼンスルホン酸と水酸化ナトリウムとの反応晶析で得られるパラスチレンスルホン酸ナトリウムから、水溶性の水酸化第一鉄を濾別する方法、
 (iii)パラスチレンスルホン酸ナトリウムのアルカリ水溶液に空気を吹き込んだり、酸化剤を添加して水不溶性の水酸化第二鉄を析出させ、濾別する方法
などがある。
 (i)の精製方法の場合、さらに具体的に鉄分の除去法を示すと、例えば、塩酸で再生したスルホン酸型カチオン交換樹脂を、β-ブロモエチルベンゼンスルホン酸水溶液(カチオン交換樹脂のイオン交換容量の70~80%)に投入し、室温で3~6時間ゆっくり撹拌した後、β-ブロモエチルベンゼンスルホン酸を濾別することにより、鉄イオンを除去することができる。
 なお、得られた高純度のβ-ブロモエチルベンゼンを用いて、次いで上記の化学反応式に従い、常法によりビニル化してパラスチレンスルホン酸ナトリウムを得ればよい。すなわち、この際のビニル化の条件としては、例えば、ジャケットを備えた攪拌機付のステンレス製反応釜に、β-ブロモエチルベンゼンスルホン酸およびβ-ブロモエチルベンゼンスルホン酸の2.0~3.0倍モル、例えば2倍モルの水酸化ナトリウムを2~5時間かけて同時にフィードしながら、60~110℃でビニル化する方法が挙げられる。
 また、(ii)の精製方法の具体例を示すと、パラスチレンスルホン酸ナトリウムの結晶および水酸化第一鉄や臭化ナトリウムなどの水溶性不純物を含むスラリーを、遠心濾過によって固液分離することによって、パラスチレンスルホン酸結晶から、鉄分や臭化ナトリウムなどの不純物を除去する方法が挙げられる。
 さらに、(iii)の精製方法の具体例を示すと、パラスチレンスルホン酸ナトリウムのアルカリ水溶液に空気を吹き込むことにより、水溶性の水酸化第一鉄を水不溶性の水酸化第二鉄に析出させた後、遠心分離機にかけることにより、比重が大きいパラスチレンスルホン酸ナトリウム結晶を沈降させ、コロイド状の水酸化第二鉄を浮遊させる。デカンテーションにより浮遊した水酸化第二鉄と水に溶解している臭化ナトリウムなどの不純物を除去することができる。
 (2)鉄以外の不純物を除去する方法は、特に限定するものではないが、例えば、市販のパラスチレンスルホン酸ナトリウムを純水、またはアセトン、メタノール、エタノール、イソプロパノール、アセトニトリルなどの水溶性溶媒と水の混合溶媒に投入し、40~70℃で30~1時間加熱、撹拌、一部溶解させた後、30分~2時間かけて30℃以下まで冷却し、パラスチレンスルホン酸ナトリウムを洗浄、または再結晶することによって、臭化ナトリウム、異性体、およびβ-ハロエチルベンゼンスルホン酸ナトリウムなどの主要不純物を低減できる。この操作を繰返すことにより、鉄以外の不純物を低減できる。この再結晶化の操作は1回以上、生産性やコストを考慮すると、好ましくは1~3回である。
 さらに具体的に上記(2)の精製方法を示すと、例えばパラスチレンスルホン酸ナトリウムを、5~6wt%濃度でメタノールに加熱溶解し(通常、40~50℃で10~60分程度)、ゆっくり常温~10℃付近まで冷却することにより、パラスチレンスルホン酸ナトリウムの結晶を析出させた後、濾過、乾燥することによって、高純度パラスチレンスルホン酸ナトリウムを得ることができる。
 以上の精製方法(1)で処理して得られる高純度パラスチレンスルホン酸ナトリウムは、さらに上記の精製方法(2)にしたがって精製処理してもよい。この処理により、鉄分、臭化ナトリウムなどの不純物、特に(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの量をさらに低減させることができる。
 本発明のもう一つの特徴は、パラスチレンスルホン酸ナトリウムの粒径、水分などを一定範囲にした点にあり、以下に説明する。
 すなわち、一般にパラスチレンスルホン酸ナトリウム(上記の「化2」中のMがナトリウムの場合)は上記の「化2」の方法で製造されており、その形状と粒径は、主としてビニル化工程(反応晶析)の条件によって左右されると考えられる。
 化学原料として、パラスチレンスルホン酸ナトリウムを工場で大量使用する際、メジアン径が25.00μm未満と小さい場合、水への溶解性は良好だが、流動性が不足し、原料投入ホッパーの目詰まりが起り易くなり、一方、メジアン径が150.00μmを超えると、流動性は良好となるが、水への溶解速度が著しく低下し、ストレーナーの目詰まりが起り易くなることを見出した。
 また、本発明者らは、パラスチレンスルホン酸ナトリウムのメジアン径が25.00μm未満、または10.00μm未満の小粒が10.00%を超える場合、水性溶媒を用いて当該パラスチレンスルホン酸ナトリウムを洗浄、または再結晶精製する際、濾過性(液切れ性)が低下し、効率良く精製できないことを見出した。
 かくて、本発明は、レーザー回折・散乱式粒度分析計で測定したメジアン径が25.00~150.00μm、10.00μm未満の小粒が10.00%以下の粒子であって、水分が10.00wt%以下、および安息角が55度以下であることを特徴とするパラスチレンスルホン酸ナトリウムである。流動性と溶解性のバランスの面から、メジアン径が40.00~90.00μm、10.00μm未満の小粒が3.00%以下、水分が8.00wt%以下、および安息角が50度以下であるのがさらに好ましい。
 上記のように、パラスチレンスルホン酸ナトリウムのメジアン径が25.00μm未満、または10.00μm未満の小粒が10.00%を超える場合、水性溶媒を用いて当該パラスチレンスルホン酸ナトリウムを洗浄、または再結晶精製する際、濾過性(液切れ性)が低下し、効率良く精製できない。一方、150.0μmを超えると、(水分が少なくなる結果)流動性は良好であり、水性溶媒を用いて洗浄、または再結晶精製する際の濾過性も良好であるが、溶解性が劣る。
 ここで、上記メジアン径を25.00~150.00μm、好ましくは40.00~90.00μmの範囲に調整するには、上記反応晶析条件、すなわち原料であるβ-ブロモエチルベンゼンスルホン酸と水酸化ナトリウムのフィード条件と反応温度を調整することにより、晶析速度を制御すればよい。
 また、10.00μm未満の小粒を10.00%以下、好ましくは3.00%以下にするには、上記した方法によって、メジアン径が25.00μm以上となるように制御すれば良く、必然的に10.00μm未満の小粒は減少する。
 本発明のパラスチレンスルホン酸ナトリウムは、上記特定範囲のメジアン径を有する粒子であるが、「楕円盤状二次粒子」であることが好ましい。ここで、「楕円盤状二次粒子」とは、図5の電子顕微鏡写真に示したような楕円盤状の粒子であり、多数のパラスチレンスルホン酸ナトリウム半水和物の結晶(一次粒子)が物理的な力で凝集したものである。本発明のパラスチレンスルホン酸ナトリウムにおいて、得られる粒子が「楕円盤状二次粒子」となることは詳らかではないが、反応晶析中の晶析速度や撹拌条件、および後記する強制流動などの物理的な力が上記一次粒子に作用して凝集することによるものと考えられる。
 パラスチレンスルホン酸ナトリウムは、保存安定性が優れる理由で半水和物が好ましく、100%純度のパラスチレンスルホン酸ナトリウム半水和物中の水分(結晶水)は、理論上4.18wt%である。従って、4.18wt%を超える水分は付着水である。パラスチレンスルホン酸ナトリウムのメジアン径が小さいほど、トータル表面積の増大によって付着水が増加する結果、流動性が低下し、一方、メジアン径が大きいほど、トータル表面積の低減によって付着水が減少する結果、流動性が良好になったと考えられる。付着水の増加は、流動性の低下のみならず、パラスチレンスルホン酸ナトリウムの純度(製品有姿重量当たりのパラスチレンスルホン酸ナトリウム含量)低下を意味するので、実用上好ましくない。
 この点から、本発明のパラスチレンスルホン酸ナトリウムは、水分が10.00重量%以下、好ましくは8.0重量%以下、さらに好ましくは4.5~7.0重量%の半水和物である。水分が10重量%を超えると、パラスチレンスルホン酸ナトリウムの粒径に関わらず流動性が低下し、また、製品有姿の純度低下を意味するので好ましくない。このように、本発明のパラスチレンスルホン酸ナトリウムを水分が10%以下の半水和物として得るには、上記反応晶析条件、すなわち原料であるβ-ブロモエチルベンゼンスルホン酸と水酸化ナトリウムのフィード条件と反応温度を調整し、晶析速度を制御することによって、メジアン径が25.00μm以上となるようにすればよい。
 また、本発明のパラスチレンスルホン酸ナトリウムは、後記で定義される安息角が55度以下、好ましくは50度以下である。55度を超えると、流動性が劣るものとなる。安息角が55度以下であると、流動性に優れ、工場で大量使用する際に、ホッパーでの目詰まりなどのトラブルが解消され好ましい。安息角を小さくするためには、粉体の流動性を高くすればよい。流動性とパラスチレンスルホン酸ナトリウム粉体の構造、組成との関係は必ずしも明らかではないが、粉体中の水分の影響が大きいと考えられる。すなわち、粉体の粒径が小さいほど、全表面積の増大によって水分が増大する結果、流動性が低下するものと考えられ、水分は上記した粒径制御により調整することができる。
 なお、本発明のパラスチレンスルホン酸ナトリウムの水への溶解性(後記「溶解速度の測定」を参照)は、好ましくは200秒以下、さらに好ましくは160秒以下である。溶解性が高すぎることによる弊害はないが、200秒を超えると、化学原料としてパラスチレンスルホン酸ナトリウムを工場で大量使用する際に、生産性が低下したり、ストレーナーの目詰まりなどのトラブルが起り易くなり好ましくない。この溶解性は、上記した粒径制御により調整することができる。
 次に、本発明のパラスチレンスルホン酸ナトリウムの製造法について説明する。パラスチレンスルホン酸ナトリウムの製造法は、特に限定するものではないが、例えば、反応釜内の水酸化ナトリウム濃度〔(フィードした全水酸化ナトリウムの重量/反応釜内の全反応液重量)×100〕を10.00~20.00wt%に保ち、かつ、β-ブロモエチルベンゼンスルホン酸濃度〔(フィードした全β-ブロモエチルベンゼンスルホン酸の重量/反応釜内の全反応液重量)×100〕を、1~7時間かけて0.00wt%から30.00~50.00wt%まで増加させるようにフィードしながら、60~110℃で1~7時間反応晶析させることが重要である。生成したパラスチレンスルホン酸ナトリウムのスラリーを、好ましくは10~40℃まで冷却後、例えば遠心濾過器で固液分離して、パラスチレンスルホン酸ナトリウムの湿潤ケーキを得る。次いで、当該湿潤ケーキを一軸のスクリュー式ブレンダーを用いて、例えば20~40℃で5~30分強制流動させることにより、本発明のパラスチレンスルホン酸ナトリウムの半水和物を製造することができる。
 全反応液中の濃度が20wt%を超える水酸化ナトリウム水溶液に、例えば、濃度70wt%のβ-ブロモエチルベンゼンスルホン酸をフィードすると(例えば、特許第3601222号公報)、得られるパラスチレンスルホン酸ナトリウム結晶が小さくなりすぎるため、水分が多く、流動性が劣るパラスチレンスルホン酸ナトリウム半水和物が得られる。また、水性溶媒を用いて洗浄または再結晶精製する際、固液分離性が低下して精製効率が悪化する。一方、全反応液中の水酸化ナトリウム濃度が20wt%以下であっても、β-ブロモエチルベンゼンスルホン酸のフィード速度が速すぎる場合(特許第3890642号公報)、例えば、フィード開始1時間以内に全反応液中のβ-ブロモエチルベンゼンスルホン酸濃度が40wt%を超えると、得られるパラスチレンスルホン酸ナトリウム結晶が大きくなりすぎるため、流動性は良好だが溶解性が悪いパラスチレンスルホン酸ナトリウム半水和物が得られる。
 本発明で製造されるパラスチレンスルホン酸ナトリウムは、反応晶析条件の改良によって、粒径を制御したものであり、優れた溶解性を維持したまま、流動性が向上しているため、取扱い性が良く、さらに、高純度なパラスチレンスルホン酸ナトリウムを効率よく製造できるため、上記した産業分野において利用価値が高い。
 次に、本発明のPSSナトリウムの製造法について説明する。
 PSSナトリウムの製造法は、特に限定するものではないが、第1例として、一般的なラジカル重合による方法を例示する。例えば、反応容器に水または水性溶媒ならびにパラスチレンスルホン酸ナトリウム、および必要に応じてパラスチレンスルホン酸ナトリウムとラジカル共重合可能な他のモノマーの混合物の均一溶液を仕込み、必要に応じて分子量調節剤を加え、系内を脱酸素した後、所定温度に加熱し、ラジカル重合開始剤を添加しながら重合すれば良い。この際、急激な重合を避けるため、および低分子量域での分子量制御性を考慮する場合、最初に全てのモノマー混合物を反応容器に仕込むのではなく、各々のモノマーを、重合開始剤や分子量調節剤と共に、反応容器に少量ずつ連続添加するのが好ましい。また、パラスチレンスルホン酸ナトリウムなど、水溶性モノマーの水溶液を油中に微分散または乳化した後、ラジカル重合開始剤を添加しながら重合(所謂、逆相エマルジョン重合)することによってもPSSナトリウムを製造できる。
 反応溶媒は特に限定するものではないが、パラスチレンスルホン酸ナトリウムおよび共重合可能な他のモノマー(コモノマー)の溶解性、ならびにエマルジョン重合における分散剤としての利用、衣料仕上げ剤における合成糊としての利用を考慮すると、水および水溶性溶剤の混合物が好ましい。水溶性溶剤としては、パラスチレンスルホン酸ナトリウムとコモノマーの混合物が溶解する組成であれば制限はないが、例えば、アセトン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、n-プロパノール、イソプロパノール、メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、ブタノール、エチレングリコール、1-メトキシ-2-プロパノール、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール、グリセリン、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン等があげられる。好ましくは、アセトン、エタノール、イソプロパノール、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン、およびジメチルホルムアミドである。
 反応溶媒である水または水性溶媒の使用量は、モノマー全量100重量部に対し、通常、150~2,000重量部である。
 分子量調節剤は特に限定されるものではないが、例えば、ジイソプロピルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジエチルチウラムジスルフィド、2,2’-ジチオジプロピオン酸、3,3’-ジチオジプロピオン酸、4,4’-ジチオジブタン酸、2,2’-ジチオビス安息香酸などのジスルフィド類、n-ドデシルメルカプタン、オクチルメルカプタン、t-ブチルメルカプタン、チオグリコール酸、チオ酢酸、チオリンゴ酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオサリチル酸、3-メルカプト安息香酸、4-メルカプト安息香酸、チオマロン酸、ジチオコハク酸、チオマレイン酸、チオマレイン酸無水物、ジチオマレイン酸、チオグルタール酸、システイン、ホモシステイン、5-メルカプトテトラゾール酢酸、3-メルカプト-1-プロパンスルホン酸、3-メルカプトプロパン-1,2-ジオール、メルカプトエタノール、1,2-ジメチルメルカプトエタン、2-メルカプトエチルアミン塩酸塩、6-メルカプト-1-ヘキサノール、2-メルカプト-1-イミダゾール、3-メルカプト-1,2,4-トリアゾール、システイン、N-アシルシステイン、グルタチオン、N-ブチルアミノエタンチオール、N,N-ジエチルアミノエタンチオール、チオフェノール、アミノチオフェノール、などのメルカプタン類、ヨードホルムなどのハロゲン化炭化水素、ジフェニルエチレン、p-クロロジフェニルエチレン、p-シアノジフェニルエチレン、α-メチルスチレンダイマー、ベンジルジチオベンゾエート、2-シアノプロプ-2-イルジチオベンゾエート、有機テルル化合物、イオウ、亜硫酸ナトリウム、亜硫酸カリウム、重亜硫酸ナトリウム、重亜硫酸カリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム等が挙げられる。
 分子量調節剤の使用量は、モノマー全量100重量部に対し、通常、0.1~10重量部である。
 上記ラジカル重合開始剤としては、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート、過硫酸カリウム、過硫酸アンモニウム、過酸化水素などのパーオキサイド類、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス{2-メチル-N-[1,1’-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス{2-(2-イミダゾリン-2-イル)プロパン]ジサルフェートジハイドレート、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル)プロパン]}ジハイドロクロライド、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジハイドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラハイドレートなどのアゾ化合物等があげられる。また、必要に応じて、アスコルビン酸、エリソルビン酸、アニリン、三級アミン、ロンガリット、ハイドロサルファイト、亜硫酸ナトリウム、チオ硫酸ナトリウムなどの還元剤を併用しても良い。
 ラジカル重合開始剤の使用量は、モノマー全量100重量部に対し、通常、0.1~10重量部である。
 重合条件は特に限定するものではないが、不活性ガス雰囲気下、20~120℃で、4~50時間加熱すれば良く、重合溶媒、モノマー組成、および重合開始剤種によって適宜調整すれば良い。
 本発明のPSSナトリウムは、上記の一般的なラジカル重合でも製造できるが、リビング重合法を適用すれば分子量分布を狭くしたり、ブロック共重合体を製造することもできる。
 パラスチレンスルホン酸ナトリウムのような極性モノマーに対しては、リビングラジカル重合法がより好ましい。
 リビングラジカル重合法としては、例えば、原子移動重合法、安定ニトロキシル媒介重合法、可逆的付加解裂移動重合法、有機テルル媒介重合法(高分子論文集、vol.64、No.6、pp.329、2007年)、ヨウ素移動重合法(特開2007-92014号公報;高分子論文集、vol.59、No.10、798頁、2010年;触媒、vol.54、No.4、257頁、2012年)、ホスフィンと二硫化炭素のコンプレックスを用いる重合法(特開2006-233012号公報)、トリアルキルボランを用いる方法(接着、50巻、4号、23頁、2006年)、α-メチルスチレンダイマーを用いる方法(特開2000-169531号公報)があげられ、これらの方法が本発明にも適用できる。
 リビングラジカル重合の具体例としては、水性溶媒中でパラスチレンスルホン酸ナトリウム以外のラジカル重合性モノマーをリビングラジカル重合後、本発明のパラスチレンスルホン酸ナトリウムを加え、さらにリビングラジカル重合を継続、または、水性溶媒中でパラスチレンスルホン酸ナトリウムをリビングラジカル重合後、他のラジカル重合性モノマーを加え、さらにリビングラジカル重合を継続する。例えば、このようなリビングラジカル重合を行うことにより、PSSブロック共重合体を製造することができる。
 本発明のPSSナトリウムは、必要に応じて、パラスチレンスルホン酸ナトリウムとラジカル共重合可能なモノマーをランダム共重合しても良い。特に制限はないが、例えば、PSSナトリウムブロック共重合体の説明で記載したモノマーがあげられる。
 次に、クロロプレンゴムの製造法について説明する。これらの製造法については特に限定されるものではなく、公知の方法が適用できる(例えば、上記の特許第3601136号公報参照)。
 例えば、攪拌機と温度調節用のジャケットを備えた反応容器に、水、クロロプレン等のモノマー、乳化剤、分散剤、分子量調節剤、および必要に応じてpH調整剤を仕込み、系内の酸素を除去し、モノマーを十分乳化させた後、ラジカル開始剤を添加しながら所定温度で重合すれば良い。よりクロロプレンの結晶性や凝集力を高めたい場合には、ラジカル開始剤と還元剤を併用し、低温で重合すれば良い。重合温度は10~50℃で、3~10時間重合し、所望の重合転化率に達したところで、重合禁止剤を添加して重合を停止する。分子量調節剤、重合開始剤および還元剤としては、PSSナトリウムの製造で用いるものが使用できる。さらに、上記で得られたクロロプレンゴムに、極性と凝集力を付与するため、ポリメタクリル酸メチルなどの硬質成分をグラフト重合しても良い。
 上記乳化剤としては、特に限定されるものではないが、アニオン性乳化剤としては、例えば、ロジン酸塩、脂肪酸塩、アルケニルコハク酸塩、アルキルエーテルカルボン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、アルキルサクシネートスルホン酸塩、ポリオキシエチレン多環式フェニルエーテル硫酸エステル塩、α-オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、ポリアクリル酸エステルアクリル酸共重合体、ポリメタクリル酸エステルメタクリル酸共重合体、ポリアクリルアミドアクリル酸共重合体、ポリメタクリルアミドメタクリル酸共重合体、アルキルスルホコハク酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルプロペニルフェノールポリエチレンオキサイド付加物の硫酸エステル塩、アリルアルキルフェノールポリエチレンオキサイド付加物の硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテル燐酸エステル塩、高級脂肪酸アミドのスルホン酸塩、高級脂肪酸アルキロールアミドの硫酸エステル塩等があげられ、ノニオン性乳化剤としては、例えば、ポリオキシアルキレンアルキルアミン、アルキルアルカノールアミド、アミンオキシド系ノニオン乳化剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン多環式フェニルエーテル、アルキルプロペニルフェノールポリエチレンオキサイド付加物、アリルアルキルフェノールポリエチレンオキサイド付加物、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、アルキルポリグルコキシド、ショ糖脂肪酸エステル、ポリオキシエチレンポリオキシプロピレングリコール、ポリビニルアルコール、カルボキシルメチルセルロース、ポリビニルピロリドン、ヒドロキシエチルセルロース、ポリアクリルアミド、ポリメタクリルアミド、ポリジメチルアミノエチルメタクリレート、ポリジメチルアミノエチルアクリレート、ポリジエチルアミノエチルメタクリレート、ポリジエチルアミノエチルアクリレート、ポリt-ブチルエチルアミノエチルメタクリレート、ポリt-ブチルアミノエチルアクリレート、ポリジメチルアミノエチルメタクリレート/メチルメタクリレート共重合体、ポリジメチルアミノエチルアクリレート/メチルメタクリレート共重合体、ポリジメチルアミノエチルメタクリレート/ブチルアクリレート共重合体、ポリジメチルアミノエチルアクリレート/エチルアクリレート共重合体等があげられ、カチオン性乳化剤としては、例えば、アルキルアミン塩、アルキル型四級アンモニウム塩、脂肪酸アミドアミン塩、アルキルアミノ酸塩等があげられ、両性乳化剤としては、例えば、アルキルジメチルアミノ酢酸ベタイン、アルキルジメチルアミノスルホベタイン、アルキルスルホベタイン等があげられる。
 上記分散剤としては、例えば、ナフタレンスルホン酸塩ホルマリン縮合物、タウリン誘導体、ポリスチレンスルホン酸(塩)、ポリスチレンスルホン酸/メタクリル酸共重合体(塩)、ポリスチレンスルホン酸/アクリル酸共重合体(塩)、ポリスチレンスルホン酸/アクリル酸エステル共重合体(塩)、スチレンスルホン酸/マレイン酸共重合体(塩)、スチレンスルホン酸/アクリルアミド共重合体(塩)、スチレンスルホン酸/メタクリルアミド共重合体(塩)、スチレンスルホン酸/2-ヒドロキシエチルメタクリレート共重合体(塩)、スチレンスルホン酸/ビニルピロリドン共重合体(塩)、ポリビニルホスホン酸共重合体(塩)、ポリビニルスルホン酸共重合体(塩)、ポリイソプレンスルホン酸共重合体(塩)等があげられ、特に好ましくは本発明の高純度PSSナトリウムである。
 本発明の高純度パラスチレンスルホン酸ナトリウムは、従来品に比べて著しく色相が優れるため、高純度パラスチレンスルホン酸ナトリウム、およびこれを用いて得られるPSSナトリウムは、クロロプレンゴムなどのポリマーエマルジョンの製造において極めて有用な反応性乳化剤および分散剤となる。
 本発明で製造される色相が優れたPSSナトリウムは、上記で説明したクロロプレンゴムなどのポリマーエマルジョンを製造するための分散剤として利用できる他、色相が重要な衣料アイロン仕上げ用の合成糊、パーソナルケア用品、帯電防止剤、および顔料などの各種水性分散体を製造するための分散剤として極めて有用である。ここで、衣料用アイロン仕上げ剤における合成糊として用いる場合には、その具体的実施態様としては、本発明のPPSナトリウム水溶液に、シリコーンポリマー(平滑剤として機能)、プロピレングリコール(安定化剤として機能)、防腐剤、香料などを配合する例が挙げられる。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。
 なお、以下の実施例において、β-ハロエチルベンゼンスルホン酸、パラスチレンスルホン酸ナトリウム、PSSナトリウム、クロロプレンゴムの分析および評価は以下の条件で実施した。
<ICP-MSによるβ-ハロエチルベンゼンスルホン酸およびパラスチレンスルホン酸ナトリウム中の鉄分の定量>
 試料約0.1gを25mlポリメスフラスコに精秤し、68%高純度硝酸1mlを添加し、メスアップ後、パーキンエルマー社製、誘導結合プラズマ質量分析装置NexION300Sにより鉄分を定量した。
<HPLCによるβ-ブロモエチルベンゼンスルホン水溶液濃度の測定>
 試料を下記溶離液Aで溶解して濃度1.2~1.5mg/mlの溶液を調製し、HPLC分析を実施した。測定条件は以下のとおりである。なお、70wt%β-ブロモエチルベンゼンスルホン水溶液を標準として検量線を作成した。
 機種=東ソー社製 LC-8020
(デガッサー:SD-8022、ポンプ:CCPM-II、カラムオーブン:CO-8020、紫外可視検出器:UV-8020)
 カラム=TSKgel ODS-80TsQA(4.6mm×25cm)
 溶離液=A液)水/アセトニトリル体積比=95/5+0.1wt%トリフルオロ酢酸
     B液)水/アセトニトリル体積比=80/20+0.1wt%トリフルオロ酢酸
 グラジエント条件=55分までA液100%、55分~95分までB液100%
 流量=0.8ml/min、UV検出条件=230nm、カラム温度=常温、注入量=20μl
<パラスチレンスルホン酸ナトリウム中の水分の定量>
 試料2gを0.1mgの桁まで秤量瓶(直径55mm×高さ30mm)に秤取り、乾燥機(105±5℃)で90分乾燥した。直ちにデシケータに移して室温まで冷却後、その質量を0.1mgの桁まで量り、次式から水分を算出した。
 水分(wt%)=100×〔(a-b)/S〕
 a=乾燥前の試料と秤量瓶の重量(g)、b=乾燥後の試料と秤量瓶の重量(g)、S=試料量(g)
<試料中のスチレンスルホン酸ナトリウム分(純分)の定量>
 酸化還元滴定法により、活性二重結合を定量し、試料中のスチレンスルホン酸ナトリウム含量(すなわち、パラ体の他、オルソ、メタ体も含む)とした。
(1)器具および装置
 1)秤量瓶:直径50mm、深さ70mm
 2)500ml、1000mlメスフラスコ
 3)500ml共栓付三角フラスコ
 3)電子化学天秤
(2)試薬
 1)臭素液:臭化カリウム(KBr)22.00g、臭素酸カリウム(KBrO)3.00gを純水に溶解し、全体を1000mlとした。
 2)硫酸水溶液(濃硫酸/純水体積比=1/1)
 3)ヨウ化カリウム水溶液(200g/L)
 4)0.1mol/Lチオ硫酸ナトリウム水溶液
 5)でんぷん水溶液:6.00gのでんぷんを純水に溶解し、全体を1000mlとした。
(3)操作
 1)試料20gを0.1mgの桁まで秤量瓶に秤取る。
 2)500mlメスフラスコに純水で洗い移し、液量を約400mlとする。
 3)磁気回転子を入れて撹拌し、試料を溶解する。
 4)回転子を取り出し、純水で標線を合わせて振り混ぜ、検液とする。
 5)純水200mlを入れた500ml共栓付三角フラスコに臭素液25mlを加える。
 6)検液5mlを加えた後、硫酸水溶液10mlを加えて密栓し、20分間放置する。
 7)ヨウ化カリウム水溶液10mlを素早く加えて10分間放置する。
 8)チオ硫酸ナトリウム水溶液で滴定し、溶液の黄色が薄くなってから、指示薬として、でんぷん溶液1mlを加え、生じたヨウ素でんぷんの青色が消えるまで滴定する。
 9)別に空試験として、純水200mlを加えて共栓付三角フラスコに臭素液25mlを加え、ヨウ化カリウム水溶液10ml、硫酸水溶液10mlを素早く加え、8)の操作を行う。
(4)計算
 次式によってスチレンスルホン酸ナトリウム含量を算出する。
 A=100×{[0.01031×(a-b)×f]/(S×5/500)}
 A:スチレンスルホン酸ナトリウム含量(%)
 a:空試験に要したチオ硫酸ナトリウム水溶液(ml)
 b:本試験に要したチオ硫酸ナトリウム水溶液(ml)
 f:チオ硫酸ナトリウム水溶液の力価
 S:試料量(g)
<パラスチレンスルホン酸ナトリウム中の臭化ナトリウムの定量>
(1)試料の調製
 試料20gを0.1mgの桁まで秤量瓶(50mmφ×70mm)に秤取り、500mlメスフラスコに純水で洗い移し、液量を約400mlとした。磁気撹拌子を入れて攪拌、溶解後、撹拌子を取出し、標線まで純水を加えて振り混ぜた。当該溶液5mlを100mlメスフラスコに正しく採取し、標線まで純水を加えて試料溶液とした。
 上記試料溶液および混合標準液(関東化学(株)製の標準液を用い、Br=5,000μg/100ml、Cl=500μg/100ml、SO=2,000μg/100mlとなるように調製)をイオンクロマトグラフに注入し、各ピーク面積から試料中の臭化ナトリウム量を算出した。
(2)測定条件
 機種=東ソー社製、イオンクロマトグラフィーシステム8020
 カラム=TSK-Gel IC-Anion-PW
 カラム温度=40℃
 試料注入量=100μl
 流量=0.7ml
 溶離液=フタル酸水素カリウム5gとアセトニトリル300mlに純水を加えてトータル3000mlに調製した。
(3)計算
 次式によって臭化ナトリウム(NaBr)の含有量を算出した。
 A=〔〔(5,000μg×1.288×a/b)+(500μg×2.899×c/d)〕/(S×5/500)〕×10-4
 A:臭化ナトリウム(NaBr)の含有量(%)
 a:試料面積(Br)
 b:標準面積(Br)
 c:試料面積(Cl)
 d:標準面積(Cl)
 S:試料量(g)
<HPLCによるパラスチレンスルホン酸ナトリウム中の不純物の分析>
 測定条件は上記β-ブロモエチルベンゼンスルホン水溶液濃度の測定と同じである。パラスチレンスルホン酸ナトリウム(結晶水および付着水を含む有姿の試料)試料を上記溶離液Aで溶解して濃度0.5mg/mlの溶液を調製し、HPLC分析を実施した。各不純物(a)~(e)の含有率は、パラスチレンスルホン酸ナトリウムと本条件で検出される(a)~(e)のHPLCピーク面積の総和を100とした面積比である。
 なお、HPLCで検出される各ピークは、予め下記の方法で同定した。
 HPLCで検出される各成分を分取し、カチオン交換樹脂で処理してパラスチレンスルホン酸塩をスルホン酸型へ変換した後、スルホン酸基をジアゾメタンでメチルエステル化し、ガスクロマトグラフ質量分析(日立製作所製M-80B)、フーリエ変換赤外分析(パーキンエルマー社製、System2000)、有機元素分析(ヤナコ製、CHNコーダーMT-3)、および核磁気共鳴分析(バリアン社製、VXR-300)を実施し、構造を決定した。
<形状観察>
 電界放出形走査型電子顕微鏡(日立製作所製S-4500)を用い、加速電圧15kVで観察した。
<粒径分布の測定>
 試料0.55gとイソプロパノール15.0gを30mlガラス製サンプル瓶に採取し、超音波洗浄機で、25℃以下に保ちながら4分間処理してスラリーを調製後、レーザー回折・散乱式粒度分析計マイクロトラックHRA(日機装株式会社製)を用い、下記の条件で粒度(メジアン径)分布測定を行なった。
 Particle Transparency    =Transp
 Spherical Particles      =No
 Particle Refractive Index=1.55
 Fluid Refractive Index   =1.38
<安息角の測定>
(1)
器具および装置
 1)安息角測定装置、2)分度器、および3)電子上皿天秤は、図3のとおりの構成とした。
(2)
操作
 1)試料80gを、装置のロートを通してシャーレ上に自然落下させる。
 2)シャーレ上にできた円錐の頂角(a)を分度器で整数の桁まで読みとる。
 3)この操作を3回繰り返し、円錐の頂角(a)の平均値を求める。
(3)
計算
 次式によって安息角を算出する。安息角が小さいほど流動性が優れる。
 A=( 180 -a )/2
 ここに、A:安息角(度)、a:円錐の頂角(度)
<溶解速度〔水への溶解性〕の測定>
 25℃の恒温室で、20mlガラス製サンプルビン(外径27mm×深さ55mm)にパラスチレンスルホン酸ナトリウム粉体(不純物や水分を含む有姿)を1.00g精秤した後、イオン交換水9.00gを素早く加えた。その後、当該サンプル瓶の上下を1秒間に1サイクルの周期で逆転させ、パラスチレンスルホン酸ナトリウムが溶解するまでの時間を目視判定した。
<色差計によるパラスチレンスルホン酸ナトリウムの白色度と黄色度の測定>
 色差計(日本電色工業株式会社製、C-106)の電源を入れ30分間安定させた後、投光レンズ(30mmφ)および試料台(30mmφ)を取付け、標準合わせを行った。試料3.0gをセルに秤取り、1KGの重りを30秒間置いた後、セル低部に空間、シワがないことを確認した。色差計で測定し、白色度(WI値)と黄色度(YI値)を読み取った。
<パラスチレンスルホン酸ナトリウムおよびポリスチレンスルホン酸ナトリウム水溶液のAPHA値の測定>
 色差計(日本電色工業株式会社製、C-106)の電源を入れ30分間安定させた後、測定方法を透過に変更し、投光レンズ(30mmφ)および試料台(30mmφ)を取付け、標準白板および0-CAL板をセットし、零校正を行った。角セルに水を入れて標準校正を行った後、15wt%パラスチレンスルホン酸ナトリウムおよび15wt%ポリスチレンスルホン酸ナトリウム水溶液サンプルを角セルに移し入れてセットしAPHA値を読み取った(APHA0~500の標準液を用いて作成した検量線から換算した)。
<衣料アイロン仕上げ剤用の合成糊としての色相評価>
 直径5cmの円形に裁断した市販ポリエステル綿混紡白色生地を15wt%ポリスチレンスルホン酸ナトリウムの15wt%水溶液(純分換算)に浸漬した。生地全体に水溶液を馴染ませた後、ピンセットで引上げ、余分な水溶液を振り切った後、180℃のアイロンで3分間乾燥し(アイロンは動かさずに固定)、試験片を作製した。試験片の色相は目視および上記色差計で分析した。
 色差計(日本電色工業株式会社製、C-106)の電源を入れ30分間安定させた後、投光レンズ(30mmφ)および試料台(30mmφ)を取付け、標準合わせを行った。試料台の裏にサンプル生地を固定した後、試料台に黒いボックスを被せて外からの光を遮断し色相を測定した。黄色度を表すYI値、黄味と青味を表すb値から、衣料アイロン仕上げ剤用の合成糊としての性能を簡易的に判定した。
<クロロプレンゴム溶液の色相評価>
 クロロプレンゴムの5wt%トルエン溶液を調製し、日立製作所(株)製の吸光光度計 U-1500を用いて波長440nmの吸光度測定により色相(黄色性)を評価した。数値が小さいほど淡色で良い。
<色相の耐熱老化性の評価>
 クロロプレンゴムをギヤオーブン中70℃×3日加熱後、上記方法で溶液の色相を評価した。
<GPC分子量およびモノマー重合転化率の測定>
 モノマー重合転化率およびPSSナトリウムの分子量は、下記の条件で測定した。
 機種=東ソー製、LC-8020
(デガッサー:SD-8022、ポンプ:DP-8020、カラムオーブン:CO-8020、紫外可視検出器:UV-8020)
 カラム=TSK guardcolumn α+TSK gel α-6000+TSK gel α-3000
 溶離液=リン酸緩衝液(pH=7)とアセトニトリルの体積比9:1溶液
(上記リン酸緩衝液は、0.08モルのKH2POと0.12モルのNa2HPO4を純水に溶解し、全量1Lにして調製した。)
 カラム温度=40℃、流量=0.6ml/min
 検出器=UV検出器(波長230nm)、注入量=100μl
 検量線=創和科学製の単分散ポリスチレンスルホン酸ナトリウム(3K、15K、41K、300K、1000K、2350K、5000K)のピークトップ分子量と溶出時間から作成した。
 実施例1(高純度パラスチレンスルホン酸ナトリウム、PSSナトリウムの製造、および衣料アイロン剤用の合成糊としての評価例1)
<鉄分の低減されたβ-ブロモエチルベンゼンスルホン酸の製造>
 ポリプロピレン製ビーカーにカチオン交換樹脂〔オルガノ社製、アンバーライトRB-120(塩酸で再生したもの)〕600mlと73wt%β-ブロモエチルベンゼンスルホン酸水溶液400gを採取し、テフロン(ポリテトラフルオロエチレン)製の撹拌羽根を用いて常温で5時間ゆっくり撹拌した。その後、ガラスフィルターでイオン交換樹脂を濾別し、濾液をロータリーエバポレーターで濃度調整し、70wt%のβ-ブロモエチルベンゼンスルホン酸水溶液350gを得た。水溶液中の鉄分は0.34μg/gであった。
 なお、β-ブロモエチルベンゼンスルホン酸は、パラスチレンスルホン酸ナトリウムの製造工程で得られる中間製品を用いた。
<高純度パラスチレンスルホン酸ナトリウムの製造>
 ジャケットを備えた攪拌機付のステンレス製反応器に12%苛性ソーダ水溶液390重量部と亜硝酸ソーダ1.2重量部を仕込み、撹拌しながら70℃まで昇温した。これを90℃に維持して、撹拌下、窒素雰囲気下、48%苛性ソーダ水溶液660重量部と上記で得た70wt%β-ブロモエチルベンゼンスルホン酸水溶液1,012重量部とを3時間かけて滴下した。得られたパラスチレンスルホン酸ナトリウム結晶のスラリーを30℃まで冷却後、遠心分離機で固液分離して、パラスチレンスルホン酸ナトリウムの湿潤ケーキ446重量部を得た。
 上記パラスチレンスルホン酸ナトリウムの純度は88.8wt%、水分は6.5wt%、鉄分は0.56μg/g、臭化ナトリウム分は2.00wt%、異性体等の有機不純物は、(a)0.16%、(b)0.43%、(c)2.65%、(d)0.04%、(e)0.15%だった(図1にHPLCチャートを示した)。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は81μm、10,00μm未満の小粒は0.5%、安息角は46度で、水への溶解時間は165秒であった。
 上記パラスチレンスルホン酸ナトリウムのWI値は95.7、YI値は5.8、および15wt%水溶液のAPHA値は30であり、従来品(比較例1)と比較して明らかに優れた色相を示した。
<高純度ポリスチレンスルホン酸ナトリウムの製造>
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水100.00gを仕込み、窒素雰囲気下、85℃のオイルバスで加熱した。ここに、別途調製したパラスチレンスルホン酸ナトリウム水溶液〔上記で得た高純度パラスチレンスルホン酸ナトリウム240.00gを純水824.00に溶解したもの〕を86分、開始剤水溶液(過硫酸アンモニウム2.00gを純水121.00gに溶解したもの)を220分かけて滴下し、重合を行った。重合を開始して3時間後、オイルバス温度を90℃に昇温し、更に3時間重合を継続し、ポリスチレンスルホンナトリウム水溶液を得た。
 GPCで求めたポリスチレンスルホンナトリウムの数平均分子量Mnは170,000、重量平均分子量Mwは360,000だった。当該ポリマーをPSS-1とした。
 上記PSS-1の15wt%水溶液のAPHA値は50であり、従来品(比較例1)と比較して明らかに優れた色相を示した。色相の差は目視観察でも歴然としていた。
<衣料アイロン仕上げ剤用の合成糊としての評価>
 上記PSS-1の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに比較例1よりも優れた。生地のb値は-5.4(元の生地のb値は-6.8)、YI値は-11.1(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、比較例1と比べて明らかに元の生地に近い色相を示した。すなわち、僅かな塗布量であっても、従来品(比較例1)に対する色相の優位性が明らかである。以上の評価結果は表1にまとめた。
 実施例2(高純度パラスチレンスルホン酸ナトリウム、PSSナトリウムの製造、および衣料アイロン仕上げ剤用の合成糊としての評価例2)
<高純度パラスチレンスルホン酸ナトリウムの製造>
 ジャケットを備えた攪拌機付のステンレス製反応器に、実施例1で得た高純度パラスチレンスルホン酸ナトリウム1,000g、亜硝酸ナトリウム1g、苛性ソーダ20g、純水950gを仕込み、窒素雰囲気下、60℃で1時間撹拌した。その後、3時間かけて室温まで冷却後、遠心分離機で固液分離して、高純度パラスチレンスルホン酸ナトリウムの湿潤ケーキ899gを得た。
 上記高純度パラスチレンスルホン酸ナトリウムの純度は89.1wt%、水分は8.2wt%、鉄分は0.58μg/g、臭化ナトリウム分は0.20wt%、異性体等の有機不純物は、(a)0.05%、(b)0.00%、(c)1.34%、(d)0.01%、(e)0.01%だった。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は63μm、10,00μm未満の小粒は2.0%、安息角は49度で、水への溶解時間は155秒であった。
 上記パラスチレンスルホン酸ナトリウムのWI値は95.5、YI値は2.9、および15wt%水溶液のAPHA値は15であり、従来品(比較例1)と比較して明らかに優れた色相を示した。さらに、理由は定かでないが、鉄分は実施例1と同じレベルであっても、臭化ナトリウムや異性体などの不純物を低減することによって、色相が一層向上していることが明らかである。
<高純度ポリスチレンスルホン酸ナトリウムの製造>
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水100.00gを仕込み、窒素雰囲気下、85℃のオイルバスで加熱した。ここに、別途調製したパラスチレンスルホン酸ナトリウム水溶液〔上記で得たパラスチレンスルホン酸ナトリウム240.00gを純水824.00に溶解したもの〕を86分、開始剤水溶液(2,2’-アゾビス-(2-アミジノプロパン)二塩酸塩2.00gを純水120.00gに溶解したもの)を220分かけて滴下し、重合を行った。重合を開始して3時間後、オイルバス温度を90℃に昇温し、更に3時間重合を継続し、ポリスチレンスルホン酸ナトリウム水溶液を得た。
 GPCで求めたポリスチレンスルホン酸ナトリウムの数平均分子量Mnは160,000、重量平均分子量Mwは350,000だった。当該ポリマーをPSS-2とした。
 上記PSS-2の15wt%水溶液のAPHA値は10であり、従来品(比較例1)と比較して優れた色相を有することが明らかである。
<衣料アイロン仕上げ剤用の合成糊としての評価>
 上記PSS-2の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに比較例1よりも優れた。生地のb値は-6.0(元の生地のb値は-6.8)、YI値は-12.2(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、比較例1と比べて明らかに元の生地に近い色相を示した。すなわち、僅かな塗布量であっても、従来品(比較例1)に対する色相の優位性が明らかである。以上の評価結果は表1にまとめた。
 実施例3(PSSナトリウムおよびクロロプレンゴムの製造ならびに評価例1)
<ポリスチレンスルホン酸ナトリウムの製造>
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水84.00gを仕込み、窒素雰囲気下、85℃のオイルバスで加熱した。ここに、別途調製したパラスチレンスルホン酸ナトリウム水溶液〔実施例1で得たパラスチレンスルホン酸ナトリウム193.00g、およびチオグリセロール8.56gを純水700.00に溶解したもの〕を73分、開始剤水溶液(2,2’-アゾビス-(2-アミジノプロパン)二塩酸塩5.10gを純水104.00gに溶解したもの)を130分かけて滴下し、重合を行った。重合を開始して3時間後、オイルバス温度を90℃に昇温し、更に3時間重合を継続し、ポリスチレンスルホン酸ナトリウム水溶液を得た。
 GPCで求めたポリスチレンスルホン酸ナトリウムの数平均分子量Mnは4,000、重量平均分子量Mwは5,200だった。当該ポリマーをPSS-3とした。
 上記PSS-3の15wt%水溶液のAPHA値は15であり、従来品(比較例1)と比較して優れた色相を有することが明らかである。
<クロロプレンゴムの製造>
 ジャケットを備えた攪拌機付の10Lステンレス製反応器に、クロロプレン100重量部、n-ドデシルメルカプタン0.12重量部、不均化ロジン酸カリウム3.00重量部、上記ポリスチレンスルホン酸ナトリウム2.00重量部、水酸化ナトリウム0.20重量部、ハイドロサルファイトナトリウム0.005重量部、および純水100重量部を仕込み、窒素雰囲気下、撹拌を開始し、0.35wt%過硫酸カリウム水溶液を連続的に滴下しながら12℃で重合を開始した。重合転化率70%に到達したところで、重合停止剤として2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)を0.05重量部添加して重合を停止させた。エマルジョン中に凝集物は全く認められなかった。
 未反応のクロロプレンをスチームストリッピング法で除去した後、希酢酸でエマルジョンのpHを6に調整し、凍結凝固、水洗、熱風乾燥を行い、固形のクロロプレンゴム71重量部を得た。
<クロロプレンゴムの評価>
 クロロプレンゴム溶液の吸光度(色相)は0.03、耐熱老化後の吸光度は0.04であり、明らかに比較例5より優れる結果であった。以上の評価結果は表1にまとめた。
 実施例4(PSSナトリウムおよびクロロプレンゴムの製造ならびに評価例2)
<ポリスチレンスルホン酸ナトリウムの製造>
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水120.00gを仕込み、窒素雰囲気下、85℃のオイルバスで加熱した。ここに、別途調製したパラスチレンスルホン酸ナトリウム水溶液〔実施例2で得たパラスチレンスルホン酸ナトリウム210.00g、メタクリル酸19.98g、チオグリセロール6.21g、および39.45wt%水酸化ナトリウム水溶液23.98gを純水850.00に溶解したもの〕を85分、開始剤水溶液(2,2’-アゾビス-(2-アミジノプロパン)二塩酸塩3.33gを純水120.00gに溶解したもの)を140分かけて滴下し、重合を行った。重合を開始して3時間後、オイルバス温度を90℃に昇温し、更に3時間重合を継続し、PSSナトリウムとして、ポリスチレンスルホン酸ナトリウム/メタクリル酸ナトリウム共重合体水溶液を得た。
 GPCで求めたポリスチレンスルホン酸ナトリウム/メタクリル酸ナトリウム共重合体の数平均分子量Mnは5,600、重量平均分子量Mwは8,900だった。当該ポリマーをPSS-4とした。
 上記PSS-4の15wt%水溶液のAPHA値は10であり、従来品(比較例1)と比較して優れた色相を有することが明らかである。さらに、理由は定かでないが、鉄分は実施例3と同じレベルであっても、臭化ナトリウムや異性体などの不純物を低減することによって、色相が一層向上していることが明らかである。
<クロロプレンゴムの製造>
 ジャケットを備えた攪拌機付の10Lステンレス製反応器に、クロロプレン100重量部、n-ドデシルメルカプタン0.12重量部、不均化ロジン酸カリウム3.00重量部、上記ポリスチレンスルホン酸ナトリウム/メタクリル酸共重合体ナトリウム共重合体2.00重量部、水酸化ナトリウム0.20重量部、ハイドロサルファイトナトリウム0.005重量部、および純水100重量部を仕込み、窒素雰囲気下、撹拌を開始し、0.35wt%過硫酸カリウム水溶液を連続的に滴下しながら12℃で重合を開始した。重合転化率70%に到達したところで、重合停止剤として2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)を0.05重量部添加して重合を停止させた。エマルジョン中に凝集物は全く認められなかった。
 未反応のクロロプレンをスチームストリッピング法で除去した後、希酢酸でエマルジョンのpHを6に調整し、凍結凝固、水洗、熱風乾燥を行い、固形のクロロプレンゴム71重量部を得た。
<クロロプレンゴムの評価>
 クロロプレンゴム溶液の吸光度(色相)は0.03、耐熱老化後の吸光度は0.04であり、明らかに比較例5よりも優れる結果であった。以上の評価結果は表1にまとめた。
 実施例5(高純度パラスチレンスルホン酸ナトリウム、PSSナトリウムの製造、および衣料アイロン仕上げ剤用の合成糊としての評価例3)
<高純度パラスチレンスルホン酸ナトリウムの製造>
 ジャケットを備えた攪拌機付のステンレス製反応器に、市販のパラスチレンスルホン酸ナトリウム(水分は10.4wt%、鉄分は5.12μg/g、臭化ナトリウムは2.30wt%、異性体等の有機不純物は、(a)0.38%、(b)3.87%、(c)7.77%、(d)0.06%、(e)0.73%のもの)1,000g、亜硝酸ナトリウム1g、苛性ソーダ20g、純水950gを仕込み、窒素雰囲気下、40℃で1時間撹拌した。その後、30分で室温まで冷却後、遠心分離機で固液分離して、高純度パラスチレンスルホン酸ナトリウムの湿潤ケーキ900gを得た。
 上記高純度パラスチレンスルホン酸ナトリウムの純度は83.4wt%、水分は10.2wt%、鉄分は1.03μg/g、臭化ナトリウム分は2.00wt%、異性体等の有機不純物は、(a)0.30%、(b)3.20%、(c)6.40%、(d)0.04%、(e)0.39%だった。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は18.6μm、10,00μm未満の小粒は14.3%、安息角は59度で、水への溶解時間は130秒であった。
 上記パラスチレンスルホン酸ナトリウムのWI値は95.0、YI値は7.5、および15wt%水溶液のAPHA値は80であり、実施例1および2よりも劣ったが、従来品(比較例1)と比較して明らかに優れた色相を示した。さらに、理由は定かでないが、鉄分は比較例5と同等であっても、臭化ナトリウムや異性体などの不純物を低減することによって、色相が一層向上していることが明らかである。
<高純度ポリスチレンスルホン酸ナトリウムの製造>
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水100.00gを仕込み、窒素雰囲気下、85℃のオイルバスで加熱した。ここに、別途調製したパラスチレンスルホン酸ナトリウム水溶液〔上記で得たパラスチレンスルホン酸ナトリウム240.00gを純水824.00に溶解したもの〕を86分、開始剤水溶液(過硫酸アンモニウム2.00gを純水121.00gに溶解したもの)を220分かけて滴下し、重合を行った。重合を開始して3時間後、オイルバス温度を90℃に昇温し、更に3時間重合を継続し、ポリスチレンスルホン酸ナトリウム水溶液を得た。
 GPCで求めたポリスチレンスルホン酸ナトリウムの数平均分子量Mnは160,000、重量平均分子量Mwは340,000だった。当該ポリマーをPSS-5とした。
 上記PSS-5の15wt%水溶液のAPHA値は100であり、比較例1と比較して優れた色相を有することが明らかである。
<衣料アイロン仕上げ剤用の合成糊としての評価>
 上記PSS-5の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに比較例1よりも優れた。生地のb値は-4.9(元の生地のb値は-6.8)、YI値は-10.0(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、比較例1と比べて明らかに元の生地に近い色相を示した。すなわち、僅かな塗布量であっても、比較例1に対する色相の優位性が明らかである。以上の評価結果は表1にまとめた。
 比較例1(PSSナトリウムの製造と衣料アイロン剤用の合成糊としての評価例4)
<ポリスチレンスルホン酸ナトリウムの製造>
 市販Aのパラスチレンスルホン酸ナトリウムを分析した結果、純度は82.9wt%、水分は10.4wt%、鉄分は5.12μg/g、臭化ナトリウムは2.30wt%、異性体等の有機不純物は、(a)0.38%、(b)3.87%、(c)7.77%、(d)0.06%、(e)0.62%であった(図2にHPLCチャートを示した)。また、WI値は90.2、YI値は16.5、および15wt%水溶液のAPHA値は220であり、実施例1の高純度パラスチレンスルホン酸ナトリウムより明らかに色相が劣った。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は20.2μm、10,00μm未満の小粒は12.6%、安息角は60度で、水への溶解時間は132秒であった。
 上記パラスチレンスルホン酸ナトリウムを用い、実施例1と同じ条件でポリスチレンスルホン酸ナトリウムを合成した。GPCで求めた数平均分子量Mnは160,000、重量平均分子量Mwは350,000だった。当該ポリマーをPSS-6とした。
 上記PSS-6の15wt%水溶液のAPHA値は250であり、原料であるパラスチレンスルホン酸ナトリウム、および実施例1のポリスチレンスルホン酸ナトリウムと比較して明らかに色相が劣った。
 上記PSS-6の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに実施例1より劣った。生地のb値は-3.8(元の生地のb値は-6.8)、YI値は-8.3(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、実施例1と比べて明らかに元の生地と離れた色相を示した。すなわち、僅かな塗布量であっても、実施例1に対する色相の劣位性が明らかである。以上の評価結果は表1にまとめた。
 比較例2(PSSナトリウムの製造と衣料アイロン剤用の合成糊としての評価5)
 比較例1と同じ市販Aのパラスチレンスルホン酸ナトリウムを用い、実施例2と同じ条件でポリスチレンスルホン酸ナトリウムを合成した。GPCで求めた数平均分子量Mnは150,000、重量平均分子量Mwは340,000だった。当該ポリマーをPSS-7とした。
 上記PSS-7の15wt%水溶液のAPHA値は210であり、原料であるパラスチレンスルホン酸ナトリウム、および実施例2のポリスチレンスルホン酸ナトリウムと比較して明らかに色相が劣った。ここで、ポリスチレンスルホン酸ナトリウムの色相に悪影響を及ぼさない、すなわち良好な色相が得られると報告されているアゾ開始剤2,2’-アゾビス-(2-アミジノプロパン)二塩酸塩(例えば、特開平11-181004号公報)を使用しても、原料であるパラスチレンスルホン酸塩が特定の不純物を含む場合には、十分な色相は得られないことが明らかである。
 上記PSS-7の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに実施例2より劣った。生地のb値は―4.2(元の生地のb値は-6.8)、YI値は-8.8(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、実施例2と比べて明らかに元の生地と離れた色相を示した。すなわち、僅かな塗布量であっても、実施例2に対する色相の劣位性が明らかである。以上の評価結果は表1にまとめた。
 比較例3(PSSナトリウムの製造と衣料アイロン剤用の合成糊としての評価例6)
<パラスチレンスルホン酸ナトリウムの製造>
 ジャケットを備えた攪拌機付のステンレス製反応器に、比較例1~2と同じ市販Aのパラスチレンスルホン酸ナトリウム1,500g、亜硝酸ナトリウム3.0g、イソプロパノール10,800gを仕込み、撹拌、分散させた後、純水2,700gを加え、窒素雰囲気下、70℃で1時間撹拌した。その後、4時間かけて室温まで冷却後、ヌッチェ濾過し、さらに、遠心分離機で溶媒を取り除くことによって、パラスチレンスルホン酸ナトリウムの湿潤ケーキ1,370gを得た。
 上記精製パラスチレンスルホン酸ナトリウムを分析した結果、純度は85.5wt%、水分は10.8wt%、鉄分は5.10μg/g、臭化ナトリウムは0.45wt%、異性体等の有機不純物は、(a)0.01%、(b)0.01%、(c)1.60%、(d)0.03%、(e)0.03%であった。色相を測定した結果、WI値は93.5、YI値は12.5、および15wt%水溶液のAPHA値は150であり、実施例1の高純度パラスチレンスルホン酸ナトリウムより明らかに色相が劣った。すなわち、臭化ナトリウムおよび異性体等の有機不純物を低減しても、鉄分が多い場合には十分な色相が得られないことが明らかである。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は21.5μm、10,00μm未満の小粒は12.1%、安息角は59度で、水への溶解時間は123秒であった。
 上記パラスチレンスルホン酸ナトリウムを用い、実施例1と同じ条件でポリスチレンスルホン酸ナトリウムを合成した。GPCで求めた数平均分子量Mnは180,000、重量平均分子量Mwは380,000だった。当該ポリマーをPSS-8とした。
 上記PSS-8の15wt%水溶液のAPHA値は170であり、実施例1のポリスチレンスルホン酸ナトリウムと比較して明らかに色相が劣った。さらに、パラスチレンスルホン酸ナトリウムに含まれる鉄分が多い場合、ポリマーに変換後のAPHAの増大も大きいことが明らかである。
<衣料アイロン仕上げ剤用の合成糊としての評価>
 上記PSS-8の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに実施例1より劣った。生地のb値は―4.5(元の生地のb値は-6.8)、YI値は-8.9(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、実施例1と比べて明らかに元の生地と離れた色相を示した。すなわち、僅かな塗布量であっても、実施例1に対する色相の劣位性が明らかである。以上の評価結果は表1にまとめた。
 比較例4(パラスチレンスルホン酸ナトリウム、PSSナトリウム、および衣料アイロン剤用の合成糊としての評価例7)
<パラスチレンスルホン酸ナトリウムの製造>
 ジャケットを備えた攪拌機付のステンレス製反応器に35%苛性ソーダ水溶液1,054重量部と亜硝酸ソーダ1.2重量部を仕込み、撹拌しながら105℃まで昇温した。これを105℃に維持して、撹拌下、窒素雰囲気下、1時間かけて、実施例1で得た70wt%β-ブロモエチルベンゼンスルホン酸水溶液1,012重量部を滴下した。得られたパラスチレンスルホン酸ナトリウム結晶のスラリーを30℃まで冷却後、遠心分離機で固液分離して、パラスチレンスルホン酸ナトリウムの湿潤ケーキ451重量部を得た。
 上記パラスチレンスルホン酸ナトリウムを分析した結果、純度は82.7wt%、水分は10.5wt%、鉄分は1.05μg/g、臭化ナトリウムは2.51wt%、異性体等の有機不純物は、(a)0.40%、(b)4.20%、(c)8.20%、(d)0.10%、(e)0.72%であった。また、WI値は93.0、YI値は10.1、および15wt%水溶液のAPHA値は120であり、実施例1の高純度パラスチレンスルホン酸ナトリウムより明らかに色相が劣った。すなわち、パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満であっても、臭化ナトリウムおよび異性体等の有機不純物が多い場合、十分な色相が得られないことが明らかである。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は20.6μm、10,00μm未満の小粒は14.3%、安息角は60度で、水への溶解時間は126秒であった。
<ポリスチレンスルホン酸ナトリウムの製造>
 上記パラスチレンスルホン酸ナトリウムを用い、実施例1と同じ条件でポリスチレンスルホン酸ナトリウムを合成した。GPCで求めた数平均分子量Mnは160,000、重量平均分子量Mwは350,000だった。当該ポリマーをPSS-9とした。
 上記PSS-9の15wt%水溶液のAPHA値は150であり、実施例1のポリスチレンスルホン酸ナトリウムと比較して明らかに色相が劣った。さらに、パラスチレンスルホン酸ナトリウムに含まれる臭化ナトリウムや異性体等の有機不純物が多い場合、ポリマーに変換後のAPHAの増大も大きいことが明らかである。
<衣料アイロン仕上げ剤用の合成糊としての評価>
 上記PSS-9の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに実施例1より劣った。生地のb値は-4.3(元の生地のb値は-6.8)、YI値は-8.7(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、実施例1と比べて明らかに元の生地と離れた色相を示した。すなわち、僅かな塗布量であっても、実施例1に対する色相の劣位性が明らかである。以上の評価結果は表1にまとめた。
 比較例5(PSSナトリウムおよびクロロプレンゴムの製造、ならびに評価例3)
<ポリスチレンスルホン酸ナトリウムの製造>
 実施例4において、高純度パラスチレンスルホン酸ナトリウムの代わりに、比較例1で用いた市販のパラスチレンスルホン酸ナトリウムを使用した他は、全て実施例4の条件でポリスチレンスルホン酸ナトリウム/メタクリル酸ナトリウム共重合体水溶液を合成した。
 GPCで求めたポリスチレンスルホン酸ナトリウム/メタクリル酸ナトリウム共重合体の数平均分子量Mnは5,300、重量平均分子量Mwは9,100だった。当該ポリマーをPSS-10とした。
 上記PSS-10の15wt%水溶液のAPHA値は210であり、実施例4のポリスチレンスルホン酸ナトリウム/メタクリル酸ナトリウム共重合体と比較して明らかに色相が劣った。
<クロロプレンゴムの製造>
 実施例4において、ポリスチレンスルホン酸/メタクリル酸共重合体ナトリウム塩の代わりに、上記で得たポリスチレンスルホン酸/メタクリル酸共重合体ナトリウム塩を使用した他は、全て実施例4の条件でクロロプレンゴム71重量部を得た。
<クロロプレンゴムの評価>
 クロロプレンゴム溶液の吸光度(色相)は0.15、耐熱老化後の吸光度は0.19であり、実施例4に比べて明らかに劣る結果であった。以上の評価結果は表1にまとめた。
 比較例6(PSSナトリウムの製造と衣料アイロン剤用の合成糊としての評価例8)
<ポリスチレンスルホン酸ナトリウムの製造>
 市販Bのパラスチレンスルホン酸ナトリウムを分析した結果、純度は82.3wt%、水分は10.3wt%、鉄分は2.90μg/g、臭化ナトリウムは2.40wt%、異性体等の有機不純物は、(a)0.35%、(b)4.20%、(c)7.90%、(d)0.05%、(e)0.61%であった。また、WI値は91.0、YI値は16.0、および15wt%水溶液のAPHA値は200であり、実施例1の高純度パラスチレンスルホン酸ナトリウムより明らかに色相が劣った。
 上記パラスチレンスルホン酸ナトリウムのメジアン径は21.3μm、10,00μm未満の小粒は12.7%、安息角は59度で、水への溶解時間は122秒であった。
 上記パラスチレンスルホン酸ナトリウムを用い、実施例1と同じ条件でポリスチレンスルホン酸ナトリウムを合成した。GPCで求めた数平均分子量Mnは160,000、重量平均分子量Mwは350,000だった。当該ポリマーをPSS-11とした。
 上記PSS-11の15wt%水溶液のAPHA値は230であり、原料であるパラスチレンスルホン酸ナトリウム、および実施例1のポリスチレンスルホン酸ナトリウムと比較して明らかに色相が劣った。
 上記PSS-11の15wt%水溶液に含浸させ、アイロン乾燥した生地の色相は、目視評価で僅かに実施例1より劣った。生地のb値は-4.2(元の生地のb値は-6.8)、YI値は-8.8(元の生地のYI値は-13.7)であり、黄色ではなくて青色の度合いを示す結果になったが、実施例1と比べて明らかに元の生地と離れた色相を示した。すなわち、僅かな塗布量であっても、実施例1に対する色相の劣位性が明らかである。以上の評価結果は表1にまとめた。
 
 
 
 
 
 
 
Figure JPOXMLDOC01-appb-T000004
 
 
 
 
 実施例6
 ジャケットを備えた攪拌機付のステンレス製反応器に、11.7wt%水酸化ナトリウム水溶液750KGと亜硝酸ナトリウム2.5KGを仕込み、90℃まで加熱し、同温度にて、実施例1と同じ方法で調製した73wt%β-ブロモエチルベンゼンスルホン酸水溶液2,000KGと48wt%水酸化ナトリウム950KGとを一定速度で4時間かけ別々に導入し(反応釜内の水酸化ナトリウム濃度は、反応開始時の11.66wt%から反応開始4時間後(反応終了時)の14.69wt%まで徐々に増加、β-ブロモエチルベンゼンスルホン酸濃度は、反応開始時の0.00wt%から反応開始4時間後(反応終了時)の39.43wt%まで徐々に増加)、パラスチレンスルホン酸ナトリウムを反応晶析させ、そのスラリーを2時間かけて40℃まで冷却した。その後遠心分離によって固液分離した。分離は極めて容易であり、30分の振りきりで、スチレンスルホン酸ナトリウム含量が88.5wt%の高純度の湿潤ケーク940KGを得た。この湿潤ケークに対し一軸のスクリューブレンダーを用いて、40℃、20rpmの回転速度で60分間強制流動させた。得られたパラスチレンスルホン酸ナトリウムはメジアン径63.1μm、10.00μm未満の小粒1.50%、水分7.1wt%、安息角47度、および水への溶解時間は160秒であった。比較例8に対して、僅かに流動性は劣るものの、溶解性は遥かに優れることから、流動性と溶解性のバランスが優れることが明らかである。
 なお、臭化ナトリウムや有機不純物などの不純物の数値は、表2に示すとおりであった。
 また、実施例6で得られたパラスチレンスルホン酸ナトリウムのマイクロトラック粒径分布を図4に、電子顕微鏡像を図5に、HPLCクロマトグラフィーを図8に示した。
 実施例7
 実施例6において、β-ブロモエチルベンゼンスルホン酸水溶液と水酸化ナトリウム水溶液を一定速度4時間でフィードした代わりに、一定速度2.5時間でフィードした他は全て実施例6と同じ条件でパラスチレンスルホン酸ナトリウムを反応晶析させ(反応釜内の水酸化ナトリウム濃度は、反応開始時11.66wt%から反応開始2.5時間後(反応終了時)14.69wt%まで徐々に増加、β-ブロモエチルベンゼンスルホン酸濃度は、反応開始時の0.00wt%から反応開始2.5時間後(反応終了時)の39.43wt%まで徐々に増加)、そのスラリーを2時間かけて40℃まで冷却した。その後、遠心分離によって固液分離した。分離は極めて容易であり、30分の振りきりで、スチレンスルホン酸ナトリウム含量が88.9wt%の高純度の湿潤ケーク930KGを得た。この湿潤ケークに対し一軸のスクリューブレンダーを用いて、40℃、20rpmの回転速度で60分間強制流動させた。得られたパラスチレンスルホン酸ナトリウムはメジアン径110μm、10.00μm未満の小粒0.00%、水分6.1wt%、および安息角は43度であった。水への溶解時間は200秒であり、比較例8と比較して、流動性と溶解性のバランスが優れることが明らかである。なお、臭化ナトリウムや有機不純物などの不純物の数値は、表2に示すとおりであった。
 実施例8
 実施例6において、β-ブロモエチルベンゼンスルホン酸水溶液と水酸化ナトリウム水溶液を一定速度4時間でフィードした代わりに、一定速度5時間でフィードした他は全て実施例6と同じ条件でパラスチレンスルホン酸ナトリウムを反応晶析させ(反応釜内の水酸化ナトリウム濃度は、反応開始時11.66wt%から反応開始5時間後(反応終了時)14.69wt%まで徐々に増加、β-ブロモエチルベンゼンスルホン酸濃度は、反応開始時の0.00wt%から反応開始5時間後(反応終了時)の39.43wt%まで徐々に増加)、そのスラリーを2時間かけて40℃まで冷却した。その後、遠心分離によって固液分離した。分離は極めて容易であり、30分の振りきりで、スチレンスルホン酸ナトリウム含量が88.9wt%の高純度の湿潤ケーク950KGを得た。この湿潤ケークに対し一軸のスクリューブレンダーを用いて、40℃、20rpmの回転速度で60分間強制流動させた。得られたパラスチレンスルホン酸ナトリウムはメジアン径37μm、10.00μm未満の小粒3.1%、水分8.6wt%、および安息角51度であった。水への溶解時間は140秒だった。比較例7および9と比較して、僅かに溶解性が劣るものの、流動性は遥かに優れることから、流動性と溶解性のバランスが優れることが明らかである。
 なお、臭化ナトリウムや有機不純物などの不純物の数値は、表2に示すとおりであった
 実施例9(精製)
 ジャケットを備えた攪拌機付のステンレス製反応器に、実施例6で得たパラスチレンスルホン酸ナトリウム1,000g、亜硝酸ナトリウム1.0g、苛性ソーダ20.0g、純水950.0gを仕込み、窒素雰囲気下、40℃で1時間撹拌した。その後、3時間かけて室温まで冷却後、遠心分離機で固液分離して、高純度パラスチレンスルホン酸ナトリウムの湿潤ケーキ898.0gを得た。
 得られた精製後の高純度パラスチレンスルホン酸ナトリウムはメジアン径48μm、水分8.6wt%、安息角50度、および10.00μm未満の小粒は2.5%であった。水への溶解時間は130秒だった。比較例7および9と比較して、僅かに溶解性が劣るものの、流動性は遥かに優れることから、流動性と溶解性のバランスが優れることが明らかである。
 また、上記パラスチレンスルホン酸ナトリウムの純度は89.1%、水分8.6wt%、臭化ナトリウム分は0.20wt%、異性体等の有機不純物は、(a)0.06%、(b)0.03%、(c)1.34%、(d)0.10%、(e)0.00%だった。
 なお、精製前のパラスチレンスルホン酸ナトリウムの純度は88.5%、水分は7.1wt%、臭化ナトリウム分は2.10wt%、異性体等の有機不純物は、(a)0.16%、(b)0.43%、(c)2.64%、(d)0.12%、(e)0.48%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100))であり、比較例9と比べて、精製度が高いことが明らかである。遠心濾過性が良く、固液分離がスムーズに進行したためと考えられる。
 比較例7(粒径が小さいパラスチレンスルホン酸ナトリウム)
 市販のパラスチレンスルホン酸ナトリウムを分析した結果、メジアン径19.8μm、10.00μm未満の小粒13.60%(図6にマイクロトラック粒径分布、図7に電子顕微鏡像を示した)、水分10.40wt%、および安息角59度、水への溶解時間は130秒だった。また、臭化ナトリウムや有機不純物などの不純物の数値は、表2に示すとおりであった。実施例8および9と比較して、溶解性は同等以上だが、流動性が劣り、水分も多い(パラスチレンスルホン酸ナトリウム含量が低い)ことが明らかである。
 次いで、ジャケットを備えた攪拌機付のステンレス製反応器に、上記の市販パラスチレンスルホン酸ナトリウム1,000g、亜硝酸ナトリウム1.0g、苛性ソーダ20.0g、純水950.0gを仕込み、窒素雰囲気下、40℃で1時間撹拌した。その後、3時間かけて室温まで冷却後、遠心分離機で固液分離して、高純度パラスチレンスルホン酸ナトリウムの湿潤ケーキ897.0gを得た。
 得られた精製後のパラスチレンスルホン酸ナトリウムは、メジアン径22.3μm、水分10.8wt%、安息角58度、および10.00μm未満の小粒は3.1%であった。水への溶解時間は128秒だった(結果は表2にまとめた)。
 また、上記パラスチレンスルホン酸ナトリウムの純度は85.5%、水分10.8wt%、臭化ナトリウム分は1.10wt%、異性体等の有機不純物は、(a)0.22%、(b)2.80%、(c)6.93%、(d)0.05%、(e)0.20%だった。
 なお、精製前のパラスチレンスルホン酸ナトリウムの純度は83.4%、水分10.4wt%、臭化ナトリウム分は2.10wt%、異性体等の有機不純物は、(a)0.35%、(b)3.46%、(c)7.74%、(d)0.06%、(e)0.70%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)であり、実施例9と比べて、精製度が低いことが明らかである。遠心濾過性が悪く、固液分離がスムーズに進行しなかったためと考えられる。
 比較例8(粒径が大きいパラスチレンスルホン酸ナトリウム)
 ジャケットを備えた攪拌機付のステンレス製反応器に、反応温度60℃で、1時間当たり70wt%β-ブロモエチルベンゼンスルホン酸水溶液179KGと25wt%水酸化ナトリウム203KG(0.2wt%の亜硝酸ナトリウムを含有)とを別々に連続して導入し、パラスチレンスルホン酸ナトリウムを反応晶析させた(反応釜内の水酸化ナトリウム濃度は、反応開始から反応開始1時間後まで13.29wt%だが、β-ブロモエチルベンゼンスルホン酸濃度も、反応開始時から反応開始1時間後まで32.80wt%と高い)。晶析スラリーを5分毎に間欠的に連続して1時間当たり382KG抜出した。スラリーを2時間かけて40℃まで冷却し、遠心分離によって固液分離した。30分の振りきりで、スチレンスルホン酸ナトリウム含量が85.1wt%の湿潤ケークを得た。この湿潤ケークに対し一軸のスクリューブレンダーを用いて、40℃、20rpmの回転速度で60分間強制流動させた。得られたパラスチレンスルホン酸ナトリウムはメジアン径160μm、10μm未満の小粒0.00%、水分5.9wt%、および安息角45度であった。しかし、水への溶解時間は270秒であり、実施例6および7と比較して、溶解性が劣ることが明らかである。なお、臭化ナトリウムや有機不純物などの不純物の数値は、表2に示すとおりであった。
 比較例9
 ジャケットを備えた攪拌機付のステンレス製反応器に、35wt%水酸化ナトリウム1054KGと亜硝酸ナトリウム1.2KGを仕込み、90℃まで加熱し、窒素雰囲気中、撹拌下、70wt%β-ブロモエチルベンゼンスルホン酸水溶液1,012KGを一定速度3時間かけて導入し、パラスチレンスルホン酸ナトリウムを反応晶析させ(反応開始時の反応釜内の水酸化ナトリウム濃度は34.96wt%と高く、反応開始3時間後(反応終了時)は17.85wt%まで徐々に低下、β-ブロモエチルベンゼンスルホン酸濃度は、反応開始時の0.00wt%から反応開始3時間後(反応終了時)の34.29wt%まで徐々に増加)、そのスラリーを2時間かけて40℃まで冷却した。その後、遠心分離によって固液分離した。40分の振りきりで、スチレンスルホン酸ナトリウム含量が84.2wt%の湿潤ケーク980KGを得た。この湿潤ケークに対し一軸のスクリューブレンダーを用いて、40℃、20rpmの回転速度で60分間強制流動させた。得られたパラスチレンスルホン酸ナトリウムはメジアン径22.0μm、10.00μm未満の小粒12.50wt%、水分10.2wt%、および安息角59度であった。水への溶解時間は127秒だったが、実施例9と比較して、流動性が劣り、水分も多い(パラスチレンスルホン酸ナトリウム含量が低い)ことが明らかである。
 次いで、ジャケットを備えた攪拌機付のステンレス製反応器に、上記パラスチレンスルホン酸ナトリウム1,000g、亜硝酸ナトリウム1.0g、苛性ソーダ20.0g、純水950.0gを仕込み、窒素雰囲気下、40℃で1時間撹拌した。その後、3時間かけて室温まで冷却後、遠心分離機で固液分離して、高純度パラスチレンスルホン酸ナトリウムの湿潤ケーキ891.0gを得た。
 上記精製後のパラスチレンスルホン酸ナトリウムの純度は85.5%、水分10.5wt%、臭化ナトリウム分は1.21wt%、異性体等の有機不純物は、(a)0.15%、(b)2.56%、(c)6.20%、(d)0.03%、(e)0.20%だった。
 なお、精製前のパラスチレンスルホン酸ナトリウムの純度は84.2%、水分は10.2wt%、臭化ナトリウム分は2.20wt%、異性体等の有機不純物は、(a)0.41%、(b)3.21%、(c)7.12%、(d)0.05%、(e)0.70%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)であり、実施例9と比べて、精製度が低いことが明らかである。遠心濾過性が悪く、固液分離がスムーズに進行しなかったためと考えられる。
Figure JPOXMLDOC01-appb-T000005
 本発明の色相が改良された高純度パラスチレンスルホン酸ナトリウム、それを用いて製造されるポリスチレンスルホン酸ナトリウムは、色相が優れるため、顔料分散体やポリマーエマルジョンを製造するための分散剤、衣類洗濯およびアイロン仕上げ用の合成糊、パーソナルケア用品、帯電防止剤、透明樹脂用の難燃剤などの用途に有用である。
 また、本発明の高純度パラスチレンスルホン酸ナトリウムは、流動性と溶解性にも優れ、エマルジョン重合用の反応性乳化剤、および顔料、酸化防止剤、各種ポリマー(粘着付与樹脂、クロロプレンゴム、ポリアクリル酸エステル、ポリエステル、スチレン/ブタジエン共重合体、ポリ塩化ビニル、シリコーンポリマー、導電性ポリマーなど)、ナノカーボン材料、熱間鍛造離型剤(シリカ粒子などのスラリー)、電池電極材料(カーボン、リン酸鉄リチウム、リン酸マンガンリチウムなど)、化学機械研磨(所謂CMP)スラリー、写真用ハロゲン化銀などの水性分散体に必要な分散剤の製造など、幅広い産業分野で利用価値が高い。
 (a):オルソスチレンスルホン酸ナトリウムの吸収ピーク
 (b):β-ブロモエチルベンゼンスルホン酸ナトリウムの吸収ピーク
 (c):メタスチレンスルホン酸ナトリウムの吸収ピーク
 (d):ブロモスチレンスルホン酸ナトリウムの吸収ピーク
 (e):β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの吸収ピーク
 NaSS(para form):パラスチレンスルホン酸ナトリウムの吸収ピーク
 elution solvent:溶離液(切り替え)由来の吸収ピーク

Claims (11)

  1.  パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの高速液体クロマトグラフィー(HPLC)で求めたピーク面積比が、各々(a)≦0.40%、(b)≦4.00%、(c)≦8.00%、(d)≦0.10%、および(e)≦0.80%(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である色相が優れた高純度パラスチレンスルホン酸ナトリウム。
  2.  パラスチレンスルホン酸ナトリウム中の鉄分が3.00μg/g未満、臭化ナトリウムが2.50wt%未満であり、(a)オルソスチレンスルホン酸ナトリウム、(b)β-ブロモエチルベンゼンスルホン酸ナトリウム、(c)メタスチレンスルホン酸ナトリウム、(d)ブロモスチレンスルホン酸ナトリウム、(e)β-ヒドロキシエチルベンゼンスルホン酸ナトリウムの高速液体クロマトグラフィー(HPLC)で求めたピーク面積比が、各々(a)≦0.20%、(b)≦0.50%、(c)≦3.00%、(d)≦0.10%、(e)≦0.20%および(ただし、パラスチレンスルホン酸ナトリウムと(a)~(e)ピーク面積の総和は100)である請求項1記載の色相が優れた高純度パラスチレンスルホン酸ナトリウム。
  3.  レーザー回折・散乱式粒度分析計で測定したメジアン径が25.00~150.00μm、10.00μm未満の小粒が10.00%以下の粒子であって、水分が10.00wt%以下、および安息角が55度以下である、請求項1または2記載の色相が優れた高純度パラスチレンスルホン酸ナトリウム。
  4.  レーザー回折・散乱式粒度分析計で測定したメジアン径が40.00~90.00μm、10.00μm未満の小粒が3.00%以下の粒子であって、水分が8.00wt%以下、および安息角が50度以下である請求項3に記載の色相が優れた高純度パラスチレンスルホン酸ナトリウム。
  5.  臭化ナトリウム含量が0.20wt%以下である請求項1~4いずれかに記載の色相が優れた高純度パラスチレンスルホン酸ナトリウム。
  6.  反応釜へ水酸化ナトリウムとβ-ブロモエチルベンゼンスルホン酸を一定速度で同時フィードし、パラスチレンスルホン酸ナトリウムを製造する方法において、反応釜内の水酸化ナトリウム濃度〔(フィードした全水酸化ナトリウムの重量/反応釜内の全反応液重量)×100〕を10.00~20.00wt%に保ち、かつ、β-ブロモエチルベンゼンスルホン酸濃度〔(フィードした全β-ブロモエチルベンゼンスルホン酸の重量/反応釜内の全反応液重量)×100〕を、1~7時間かけて0.00wt%から30.00~50.00wt%に増加させるように制御しながら、60~110℃で1~7時間反応晶析させ、固液分離して得られた湿潤ケーキを強制流動することを特徴とする請求項1~5いずれかに記載の色相が優れた高純度パラスチレンスルホン酸ナトリウムの製造方法。
  7.  請求項1~5いずれかに記載の色相が優れた高純度パラスチレンスルホン酸ナトリウムを用いて製造される、下記繰り返し構造単位A、あるいは下記繰り返し構造単位Aおよび下記繰り返し構造単位Bを有する色相が優れたポリスチレンスルホン酸ナトリウム。
    Figure JPOXMLDOC01-appb-C000001
    〔繰り返し構造単位A,B中、Mはナトリウムカチオンを、Qは他のラジカル重合性モノマー残基を表し、nは1以上の整数を、mは0以上の整数を表す。〕
  8.  ゲル浸透クロマトグラフィーで求めた重量平均分子量が2千~100万である、請求項7記載の色相が優れたポリスチレンスルホン酸ナトリウム。
  9.  Qが(メタ)アクリル酸残基、(メタ)アクリル酸エステル残基、(メタ)アクリルアミド残基、無水マレイン酸残基、マレイン酸残基、N-フェニルマレイミド残基、N-シクロヘキシルマレイミド残基、スチレン残基およびスチレン誘導体残基からなる群より選ばれる1種または2種以上の組合せとなるラジカル重合性モノマー残基である請求項7または8に記載の色相が優れたポリスチレンスルホン酸ナトリウム。
  10.  請求項7~9の何れか1項に記載の色相が優れたポリスチレンスルホン酸ナトリウムを有効成分とする分散剤。
  11.  請求項7~9の何れか1項に記載の色相が優れたポリスチレンスルホン酸ナトリウムを合成糊として用いて製造されてなる衣料用アイロン仕上げ剤。
PCT/JP2013/073503 2012-10-15 2013-09-02 色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊 WO2014061357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2015700943A MY186412A (en) 2012-10-15 2013-09-02 High-purity sodium p-styrenesulfonate with excellent hue, method for producing the same, poly(sodium p-styrenesulfonate) with excellent hue using the same, and dispersant and synthetic starch for clothing finishing using the poly(sodium p-styrenesulfonate)
US14/432,049 US9505713B2 (en) 2012-10-15 2013-09-02 High-purity sodium p-styrenesulfonate with excellent hue, method for producing the same, poly(sodium p-styrenesulfonate) with excellent hue using the same, and dispersant and synthetic starch for clothing finishing using the poly(sodium p-styrenesulfonate)
CN201380053883.6A CN104736516B (zh) 2012-10-15 2013-09-02 对苯乙烯磺酸钠及其制造方法、聚对苯乙烯磺酸钠及使用其的分散剂和衣料整理用的合成糊

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012227996A JP5930307B2 (ja) 2012-10-15 2012-10-15 流動性と溶解性に優れるパラスチレンスルホン酸ナトリウム、及びその製造方法
JP2012-227996 2012-10-15
JP2012229151A JP5946094B2 (ja) 2012-10-16 2012-10-16 色相が優れた高純度パラスチレンスルホン酸ナトリウム、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
JP2012-229151 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061357A1 true WO2014061357A1 (ja) 2014-04-24

Family

ID=50487934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073503 WO2014061357A1 (ja) 2012-10-15 2013-09-02 色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊

Country Status (5)

Country Link
US (1) US9505713B2 (ja)
CN (1) CN104736516B (ja)
MY (1) MY186412A (ja)
TW (1) TWI579261B (ja)
WO (1) WO2014061357A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659166A (zh) * 2018-06-19 2018-10-16 湖南辰砾新材料有限公司 一种atrp技术的梳型嵌段共聚物陶瓷减水剂
WO2023171597A1 (ja) * 2022-03-09 2023-09-14 東ソー・ファインケム株式会社 高純度4-(2-ブロモエチル)ベンゼンスルホン酸及びそれから誘導される高純度スチレンスルホン酸類とそのポリマー、並びにそれらの製造方法
WO2024046965A1 (en) 2022-09-01 2024-03-07 Agfa-Gevaert Nv Method of preparing a polymer capacitor, a conductive polymer composition, and it's use as a conductive layer in an electronic device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186412A (en) 2012-10-15 2021-07-22 Tosoh Finechem Corp High-purity sodium p-styrenesulfonate with excellent hue, method for producing the same, poly(sodium p-styrenesulfonate) with excellent hue using the same, and dispersant and synthetic starch for clothing finishing using the poly(sodium p-styrenesulfonate)
CN106749907A (zh) * 2016-11-25 2017-05-31 合众(佛山)化工有限公司 一种atrp技术合成的嵌段聚合物分散剂
US11261277B2 (en) * 2017-09-25 2022-03-01 Lg Chem, Ltd. Method of preparing graft copolymer, graft copolymer, and thermoplastic resin molded article
CN109836359B (zh) * 2017-11-27 2021-12-31 荆楚理工学院 一种对苯乙烯磺酸钠的制备方法
CN110243954B (zh) * 2019-05-16 2022-04-22 东莞理工学院 一种造纸废水中松香酸的检测方法
CN113567530A (zh) * 2021-06-22 2021-10-29 邵阳学院 一种具备调控多巴胺氧化功能的自组装膜的制备及应用
CN116875128A (zh) * 2023-07-18 2023-10-13 绍兴翔宇绿色包装有限公司 一种离型膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168239A (ja) * 1989-11-28 1991-07-22 Mita Ind Co Ltd 粒子表面に極性基を有する樹脂粒子およびその製造方法
JPH05239774A (ja) * 1992-02-21 1993-09-17 Kao Corp 衣料用仕上剤
JPH10152465A (ja) * 1996-11-21 1998-06-09 Tosoh Corp スチレンスルホン酸ナトリウム半水和物、それよりなる組成物及びその製造方法
JPH10182591A (ja) * 1996-12-20 1998-07-07 Tosoh Corp スチレンスルホン酸アルカリ金属塩の連続式製造方法
JPH11181004A (ja) * 1997-12-18 1999-07-06 Tosoh Corp ポリスチレンスルホン酸塩水溶液の製造法
JP2005263608A (ja) * 2004-03-22 2005-09-29 Kao Corp カーボンナノチューブ用水性分散剤
WO2013073259A1 (ja) * 2011-11-16 2013-05-23 東ソー有機化学株式会社 高純度パラスチレンスルホン酸(塩)、それを用いたポリスチレンスルホン酸(塩)、およびポリスチレンスルホン酸(塩)を用いた、分散剤、導電性ポリマードーパント、ナノカーボン材料水性分散体、導電性ポリマー水性分散体、ならびにポリスチレンスルホン酸(塩)の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521030B2 (ja) 1973-01-25 1980-06-06
US3939130A (en) * 1974-08-15 1976-02-17 Indicon Inc. Polymers of monomers containing active methylene groups and other ethylenically unsaturated monomers
JPS5223038A (en) 1975-07-03 1977-02-21 Toyo Soda Mfg Co Ltd Process for preparation of styrenesulfonic acid alkali metal salts
JPS5531059A (en) 1978-10-18 1980-03-05 Toyo Soda Mfg Co Ltd Preparation of alkali metal p-styrenesulfonate
CN101823000A (zh) * 2010-04-01 2010-09-08 复旦大学 一种聚对苯乙烯磺酸接枝改性碳纳米管的制备方法
MY186412A (en) 2012-10-15 2021-07-22 Tosoh Finechem Corp High-purity sodium p-styrenesulfonate with excellent hue, method for producing the same, poly(sodium p-styrenesulfonate) with excellent hue using the same, and dispersant and synthetic starch for clothing finishing using the poly(sodium p-styrenesulfonate)
JP5946094B2 (ja) 2012-10-16 2016-07-05 東ソー有機化学株式会社 色相が優れた高純度パラスチレンスルホン酸ナトリウム、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168239A (ja) * 1989-11-28 1991-07-22 Mita Ind Co Ltd 粒子表面に極性基を有する樹脂粒子およびその製造方法
JPH05239774A (ja) * 1992-02-21 1993-09-17 Kao Corp 衣料用仕上剤
JPH10152465A (ja) * 1996-11-21 1998-06-09 Tosoh Corp スチレンスルホン酸ナトリウム半水和物、それよりなる組成物及びその製造方法
JPH10182591A (ja) * 1996-12-20 1998-07-07 Tosoh Corp スチレンスルホン酸アルカリ金属塩の連続式製造方法
JPH11181004A (ja) * 1997-12-18 1999-07-06 Tosoh Corp ポリスチレンスルホン酸塩水溶液の製造法
JP2005263608A (ja) * 2004-03-22 2005-09-29 Kao Corp カーボンナノチューブ用水性分散剤
WO2013073259A1 (ja) * 2011-11-16 2013-05-23 東ソー有機化学株式会社 高純度パラスチレンスルホン酸(塩)、それを用いたポリスチレンスルホン酸(塩)、およびポリスチレンスルホン酸(塩)を用いた、分散剤、導電性ポリマードーパント、ナノカーボン材料水性分散体、導電性ポリマー水性分散体、ならびにポリスチレンスルホン酸(塩)の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659166A (zh) * 2018-06-19 2018-10-16 湖南辰砾新材料有限公司 一种atrp技术的梳型嵌段共聚物陶瓷减水剂
WO2023171597A1 (ja) * 2022-03-09 2023-09-14 東ソー・ファインケム株式会社 高純度4-(2-ブロモエチル)ベンゼンスルホン酸及びそれから誘導される高純度スチレンスルホン酸類とそのポリマー、並びにそれらの製造方法
JP7365444B2 (ja) 2022-03-09 2023-10-19 東ソー・ファインケム株式会社 高純度4-(2-ブロモエチル)ベンゼンスルホン酸及びそれから誘導される高純度スチレンスルホン酸類とそのポリマー、並びにそれらの製造方法
WO2024046965A1 (en) 2022-09-01 2024-03-07 Agfa-Gevaert Nv Method of preparing a polymer capacitor, a conductive polymer composition, and it's use as a conductive layer in an electronic device

Also Published As

Publication number Publication date
US20150246876A1 (en) 2015-09-03
CN104736516A (zh) 2015-06-24
CN104736516B (zh) 2019-11-08
US9505713B2 (en) 2016-11-29
TW201425285A (zh) 2014-07-01
MY186412A (en) 2021-07-22
TWI579261B (zh) 2017-04-21

Similar Documents

Publication Publication Date Title
WO2014061357A1 (ja) 色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
JP5954798B2 (ja) 高純度パラスチレンスルホン酸(塩)、それを用いたポリスチレンスルホン酸(塩)、およびポリスチレンスルホン酸(塩)を用いた、分散剤、導電性ポリマードーパント、ナノカーボン材料水性分散体、導電性ポリマー水性分散体、ならびにポリスチレンスルホン酸(塩)の製造方法
TWI511985B (zh) Surfactant composition
JP5850474B2 (ja) ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法
JP2004518773A (ja) リビングタイプのフリーラジカル重合制御剤、重合方法、これを用いたエマルジョン及びポリマー
JP5201419B2 (ja) 少なくとも1つのハロゲン化ポリマーブロックを含むブロックコポリマーを調製するための水性分散液におけるフリーラジカル重合方法
JP2015105315A (ja) 有機溶剤への溶解性と耐熱性に優れたスチレンスルホン酸リチウム共重合体、ならびに当該スチレンスルホン酸リチウム共重合体を用いた帯電防止剤
US20110144269A1 (en) Dispersing agent and its use
JP5930307B2 (ja) 流動性と溶解性に優れるパラスチレンスルホン酸ナトリウム、及びその製造方法
JP5281278B2 (ja) 乳化重合用界面活性剤組成物
JP5946094B2 (ja) 色相が優れた高純度パラスチレンスルホン酸ナトリウム、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
CN111386287B (zh) 乳液聚合用表面活性剂组合物
JP7032347B2 (ja) 保存安定性に優れたポリスチレンスルホン酸塩水溶液とその製造方法
CN108779189B (zh) 乳液聚合用阴离子性表面活性剂组合物
JP5717632B2 (ja) 分散剤およびその使用
JP6777459B2 (ja) ポリマーエマルション及びその製造方法
KR101927789B1 (ko) 에멀젼 중합을 위한 연장된 계면활성제
JP2011021102A (ja) フマル酸エステル系重合体の製造方法
JP2019104809A (ja) (メタ)アクリル系重合体粒子の製造方法および(メタ)アクリル系重合体粒子
JP2023155952A (ja) スチレンスルホン酸アンモニウム構造単位で分散安定化されたポリマーエマルション組成物及びその製造方法
JP4230817B2 (ja) カチオン性重合体エマルション及びその製造方法
CN110997631B (zh) 高纯度的两亲性芳基磺酸胺盐乙烯基单体及其(共)聚合物
JP3776462B2 (ja) 共重合体の製造方法
JPH06220106A (ja) 共重合体の製造法
JPS5851961B2 (ja) 共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847370

Country of ref document: EP

Kind code of ref document: A1