WO2014056733A1 - Unsymmetrisches bisphosphit - Google Patents

Unsymmetrisches bisphosphit Download PDF

Info

Publication number
WO2014056733A1
WO2014056733A1 PCT/EP2013/070210 EP2013070210W WO2014056733A1 WO 2014056733 A1 WO2014056733 A1 WO 2014056733A1 EP 2013070210 W EP2013070210 W EP 2013070210W WO 2014056733 A1 WO2014056733 A1 WO 2014056733A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mixture
mol
ligand
reaction
Prior art date
Application number
PCT/EP2013/070210
Other languages
English (en)
French (fr)
Inventor
Andrea Christiansen
Robert Franke
Dirk Fridag
Dieter Hess
Katrin Marie DYBALLA
Bernd HANNEBAUER
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to KR1020157011943A priority Critical patent/KR101724219B1/ko
Priority to MX2015004616A priority patent/MX2015004616A/es
Priority to SG11201502815PA priority patent/SG11201502815PA/en
Priority to CA2887565A priority patent/CA2887565A1/en
Priority to US14/435,007 priority patent/US9556096B2/en
Priority to JP2015536052A priority patent/JP6246218B2/ja
Priority to EP13773204.6A priority patent/EP2906571B1/de
Priority to ES13773204.6T priority patent/ES2603929T3/es
Priority to CN201380065168.4A priority patent/CN104837851B/zh
Publication of WO2014056733A1 publication Critical patent/WO2014056733A1/de
Priority to ZA2015/03227A priority patent/ZA201503227B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65683Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide

Definitions

  • the invention relates to an asymmetrical bisphosphite, a process for its preparation, and its reaction with metals to mixtures containing complex compounds of the asymmetrical biphosphite and the metal and their use as a catalytically active composition in hydroformylation reactions, wherein the hydroformyl mecanicsin composition in addition to the complex compound of metal and asymmetric Bisphosphite, unbound bisphosphite and at least one other component.
  • Each catalytically active composition has its specific advantages. Depending on the starting material and target product therefore different catalytically active compositions are used.
  • bidentate phosphine ligands and their use in catalysis, including in hydroformylation reactions are disclosed. Ferrocene-bridged bisphosphines are described, for example, in US Pat. Nos.
  • Rhodium monophosphite complexes in catalytically active compositions are suitable for the hydroformylation of branched olefins having internal double bonds, but the n / i selectivity for terminally oxidized compounds is low.
  • EP 0 155 508 discloses the use of bisarylene-substituted monophosphites in the rhodium-catalyzed hydroformylation of sterically hindered olefins, e.g. As isobutene known.
  • the bisphosphites disclosed in EP 1 294 731 have olefin conversions of up to 98% in the hydroformylation of n-octene mixtures.
  • the likewise desired n / i selectivity to nonanal with 36.8% to a maximum of 57.6% is in need of improvement. This is all the more so as that the use of the catalytically active composition in technical processes requires a service life, which is measured in days instead of hours.
  • symmetrically constructed bisphosphites are preferably prepared and used as ligands for hydroformylation.
  • the symmetrically constructed bisphosphite ligands used in the hydroformylation are prepared at low temperatures. Compliance with these low temperatures is imperative because higher temperatures according to these US documents would lead to rearrangements and ultimately to asymmetrically constructed bisphosphites, but this is not desirable here.
  • the symmetric ligand In the hydroformylation reaction of propene, the symmetric ligand has an n / i selectivity of 53 and a reaction rate of 402, whereas the unsymmetrical ligand exhibits only an n / i selectivity of 1.2 and a reaction rate of 280.
  • these asymmetrically structured bisphosphites When used as ligands in transition-metal-catalyzed hydroformylation, these asymmetrically structured bisphosphites thus have significantly lower reactivities and lower n-regioselectivity; See in Rhodium catalyzed hydroformylation, ed. by PWNM van Leeuwen et C. Claver, Kluwer Academic Publishers 2006, AA Dordrecht, NL, pages 45-46. As pointed out by van Leeuwen, the symmetrical bisphosphites have, in addition to higher n / i selectivities, a greater reactivity.
  • the stability - specifically the service life - of the catalytically active composition of respectively used metal, ligands and other components with activating effect in terms of Ligands used Bisphophite a constant task of research. This applies in particular with regard to olefin-containing mixtures, especially in the hydroformylation of mixtures of linear olefins.
  • the phosphite ligand can also be degraded in the course of a hydrolysis reaction by the traces of water formed during the aldehyde condensation.
  • the technical object of the invention is to provide a novel ligand which, in the hydroformylation of unsaturated compounds, does not have the drawbacks previously indicated in the prior art but has the following properties:
  • a long service life means that the hydroformylation-active composition comprising the ligand, among other components, has a low tendency to degrade this ligand and / or the decomposition of this ligand into hydroformylation-inhibiting components, for example the so-called "poisoning phosphites".
  • the invention comprises the following items: a) an unbalanced bisphosphite; b) Process for its preparation c) Mixtures containing at least one complex compound of formula (2), wherein M is a metal of the 4th to 10th group of the Periodic Table of the Elements (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd , Pt) and can form additional bonds and the mentioned under a) bisphosphite, which is not bound to the metal M.
  • M is a metal of the 4th to 10th group of the Periodic Table of the Elements (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd , Pt) and can form additional bonds and the mentioned under a) bisphosphite, which is not bound to the metal M.
  • the process according to the invention for preparing the unsymmetrical bisphosphite (1) comprises the steps:
  • a solvent mixture is used in process step iv).
  • reaction is carried out in process step iv) using an aprotic solvent mixture selected from organic nitrogen compounds, organic esters, aromatics.
  • the organic nitrogen compound is a compound selected from nitriles, amines, amides.
  • a solvent is used in process step iv), which is selected from acetonitrile, triethylamine, dimethylaminobutane, di-iso-propylethylamine, N-methylpyrrolidone, pyridine, ethyl acetate, toluene.
  • the process step iv) takes place in an aprotic-polar solvent, or a mixture which comprises at least one aprotic-polar solvent.
  • aprotic solvent is understood as meaning nonaqueous solvents which do not contain an ionizable proton in the molecule, which are further subdivided into aprotic-apolar and aprotic-polar solvents (see Thieme Römpp online).
  • aprotic-apolar or apolar aprotic solvents comprises aliphatic and aromatic as well as halogenated hydrocarbons (alkanes, alkenes, alkynes, benzene, aromatics having aliphatic or aromatic side chains), perhalogenated hydrocarbons such as carbon tetrachloride and hexafluorobenzene, tetramethylsilane and carbon disulfide.
  • aprotic-polar or dipolar aprotic solvents have strongly polarizing functional groups and therefore show a certain permanent dipole moment, which is added to the now subordinate Van der Waals interactions. Their solubility for polar substances is therefore usually better than that of the aprotic nonpolar solvents.
  • aprotic polar solvents examples include ketones, such as acetone, ethers, esters, ⁇ /, / V-disubstituted amides, such as dimethylformamide, tertiary amines, pyridine, furan, thiophene, 1,1,1-trichloroethane, nitroalkanes, such as nitromethane, nitriles, for example Acetonitrile, sulfoxides such as dimethyl sulfoxide, sulfones, hexamethylphosphoric triamide, liquid sulfur dioxide, selenoxychloride. These have large permittivities (he> 15), dipole moments ( ⁇ > 2.5 D) and ETN values in the range of 0.3-0.5.
  • ketones such as acetone, ethers, esters, ⁇ /, / V-disubstituted amides, such as dimethylformamide, tertiary amines, pyridine, furan,
  • a variant of the process according to the invention comprises the additional process step v) in that the compound (1) is separated off as a solid and suspended in an aprotic solvent mixture.
  • process step v) is carried out in acetonitrile at 75 ° C. or in toluene at 35 ° C.
  • process step v) is carried out. Recrystallization in an aprotic solvent mixture consisting of toluene / heptane or xylene / heptane.
  • an aprotic solvent mixture consisting of toluene / heptane or xylene / heptane.
  • a compound of the formula (2) is also claimed. This comprises the compound according to the formula (1).
  • M is selected from Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt and M can form additional bonds.
  • Co, Rh, Ru, Ir, Fe are preferred; and Rh is particularly preferred.
  • the compound according to formula (2) is formed in situ during the hydroformylation as disclosed in the examples.
  • the compound according to the formula (3) is:
  • M is selected from: Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.
  • Co, Rh, Ru, Ir, Fe are preferred; and Rh is particularly preferred.
  • Mixtures comprise a compound according to formula (2) and / or (3) wherein the mixture additionally comprises a compound according to formula (1) which is not coordinated to M.
  • the mixtures and compositions are claimed.
  • compositions comprise a previously described mixture which, in addition to the mixture, comprises a further component selected from bases, organic amines, buffer solutions, ion exchangers, epoxides.
  • sterically hindered secondary amines compounds having the general formula I are used as further components,
  • Ra, Rb, Rc, Rd, Re and Rf are the same or different hydrocarbon radicals which may also be interconnected.
  • the organic amine has a structure according to formula Ia:
  • R is H, such as the 2,2,6,6-tetramethylpiperidine itself, an organic radical R, a hydroxyl group or a halogen.
  • the organic radical R can also be an organic radical bonded via a heteroatom, for example an oxygen atom, to the 2,2,6,6-tetramethylpiperidine structural unit.
  • the organic radical may have polymeric structures or be an organic radical having 1 to 50 carbon atoms and optionally heteroatoms.
  • the organic radical particularly preferably has carbonyl groups, such as keto, ester or acid amide groups.
  • the organic, optionally heteroatom-containing radical may be in particular a substituted or unsubstituted, aliphatic, alicyclic, aliphatic-alicyclic, heterocyclic, aliphatic-heterocyclic, aromatic, aromatic-aromatic or aliphatic-aromatic hydrocarbon radical having 1 to 50 carbon atoms, wherein the substituted hydrocarbon radicals substituents selected from primary, secondary or tertiary alkyl groups, alicyclic groups, aromatic groups, -N (R 1 ) 2 , -NHR 1 , -NH 2 , fluorine, chlorine, bromine, iodine, -CN, -C (O) -R 1 , -C (O) H or -C (O) O-R 1 , -CF 3 , -OR 1 , -C (O) NR 1 , -OC (O) -R 1 and / or -Si (R 1 ) 3 , with R 1 may have
  • hydrocarbon radicals R 1 may be the same or different.
  • the substituents are preferably limited to those which have no influence to have the reaction itself. Particularly preferred substituents can be selected from the halogens, such as. As chlorine, bromine or iodine, the alkyl radicals, such as.
  • the alkoxy radicals such as.
  • the aryloxy such as.
  • Phenoxy or naphthoxy, -OC (O) R 1 or -C (O) R 1 such as.
  • acetyl propionyl, trimethylacetoxy, triethylacetoxy or triphenylacetoxy
  • the three hydrocarbon radicals having silyl radicals -Si (R 1 ) 3 such as.
  • radicals R those which contain a 2,2,6,6-tetramethylpiperidine radical and, if appropriate, another -N (R 1 ) 2 , -NHR 1 and / or -NH 2 Group included.
  • n 1 to 20, preferably 1 to 10
  • n 1 to 12, preferably 8
  • n 1 to 17, preferably 13
  • compositions containing two or more sterically hindered amines comprises a previously described mixture which comprises, in addition to the mixture, at least one amine having a 2,2,6,6-tetramethylpiperidine moiety.
  • the amine having the formula Ib, sebacic di-4- (2,2,6,6-tetramethylpiperidinyl) ester is preferably used in the process according to the invention.
  • a particularly preferred metal in the composition of the invention is
  • the unsaturated compounds which are hydroformylated in the process of the invention include hydrocarbon mixtures obtained in petrochemical processing plants. These include, for example, so-called C 4 cuts. Typical compositions of C 4 cuts from which most of the polyunsaturated hydrocarbons have been removed and which can be used in the process according to the invention are listed in the following Table 1 (see DE 10 2008 002188).
  • HCC 4 typical of a C 4 mixture obtained from the C 4 cut of a high severity steamer after hydrogenation of the 1,3-butadiene without additional moderation of the catalyst.
  • HCC 4 / SHP Composition HCC 4 in which residues of 1,3-butadiene were further reduced in a selective hydrogenation / SHP process.
  • Tie I typical of a C 4 blend obtained from the C 4 cut of a high severity steamer after the separation of the 1,3-butadiene, for example by NMP extractive rectification.
  • Raff. I / SHP Composition Raff. I, in which residues of 1,3-butadiene were further reduced in a selective hydrogenation process / SHP.
  • CC 4 typical composition of a C 4 cut obtained from a catalytic cracking unit.
  • CC 4 / SHP composition of a C 4 cut in which residues of 1, 3-butadiene were further reduced in a selective hydrogenation / SHP process.
  • the unsaturated compound or its mixture under c) is selected from: Hydrocarbon mixtures from steam cracking plants;
  • Hydrocarbon mixtures from catalytically operated splitting plants such as e.g. FCC cracking plants;
  • Hydrocarbon mixtures from oligomerization processes in homogeneous phase and heterogeneous phases such as the OCTOL, DIMERSOL, Fischer-Tropsch, Polygas, CatPoly, InAlk, Polynaphtha, Selectopol, MOGD, COD, EMOGAS, NExOCTANE or SHOP process;
  • Hydrocarbon mixtures comprising polyunsaturated compounds; unsaturated carboxylic acid derivatives.
  • the mixture comprises unsaturated compounds having 2 to 30 carbon atoms.
  • the mixture comprises unsaturated compounds having 2 to 8 carbon atoms.
  • the mixture has polyunsaturated hydrocarbons.
  • the mixture comprises butadienes.
  • the unsaturated compounds which are hydroformylated in the process of the invention further include unsaturated carboxylic acid derivatives.
  • these unsaturated carboxylic acid derivatives are selected from fatty acid esters.
  • the multiphase reaction mixture according to the invention comprises at least one unsaturated compound as disclosed above and comprises, in addition to hydrocarbon mixtures derived from steam cracking, catalytically operated cracking or oligomerization processes or other sources of monounsaturated and / or polyunsaturated Carbon compounds or unsaturated carboxylic acid derivatives include at least one hydroformylation product of these unsaturated compounds. as listed in the following examples and the particular composition used, as previously disclosed.
  • the complex compounds of the formulas (2) and (3) according to the invention are formed in situ during the hydroformylation reaction.
  • the complex compounds (2) and (3) are present next to the unbound bisphosphite (1).
  • the structure calculation was performed with the BP86 functional and the def SV (P) basis set.
  • Figure 2 in the appendix provides all calculated coordinates, distances and angles of the connection (3).
  • Figures 3 and 4 show Hydroformyl michs issued in a continuously operated pilot plant.
  • the compound (1) according to the invention was tested. Under the chosen reaction conditions, an aldehyde yield was between 80% and 90%. This condition could be reduced to the experimental be kept constant at the end.
  • the ligand of the invention is characterized by a significantly improved stability and activity. This result is surprising, since unsymmetrical substituted bisphosphites lose significantly less activity and selectivity than symmetrically substituted ones, as already described in rhodium-catalyzed hydroformylation, ed.
  • P.W.N.M. van Leeuwen et C. Claver Kluwer Academic Publishers 2006, AA Dordrecht, NL, pages 45-46.
  • the ligand (1) according to the invention in the catalytically active composition is characterized by a significantly better long-term stability than the ligands previously described in the prior art and thus fulfills the stated object.
  • An optimal long-term stability of the catalytically active composition is particularly important in large-scale application, since the ligand in the hydroformylation reaction can be metered on the industrial scale, however, any subsequent dosing negatively affects the efficiency of a large-scale process and makes it possibly unprofitable. Examples
  • TIPB 1, 2,4,5-tetraisopropylbenzene
  • the biphenol (5) used as precursor was prepared according to the following synthesis instructions.
  • Variant 1 ACN / NEt 3
  • the biphenol / triethylamine solution was slowly dropped to the chlorophosphite solution. After a post-reaction time of 1 h, the reaction solution was stirred overnight at 45 ° C.
  • This solid was suspended in degassed ACN for 1.5 h at 75 ° C and separated and washed with warm ACN. Subsequently, the product was in drink. Toluene for 1.5 h at 35 ° C and separated.
  • the target product (1) could be obtained as a white solid (5.0 g, 58%).
  • Variant 4 Conducting a low-temperature test at -20 ° C
  • the unsymmetrical bisphosphite (1) could thus be obtained completely surprisingly and contrary to the prior art even at low temperatures in good yields and excellent purity.
  • the experiments were carried out in 100 ml autoclave from Parr Instrument.
  • the autoclaves are equipped with electric heating.
  • the pressure is maintained by means of mass flow meter and pressure regulator.
  • a precisely defined quantity of starting material can be injected under reaction conditions via a syringe pump.
  • samples can be drawn during the experimental period and analyzed by both GC and LC-MS analysis.
  • Rh precursor Rh (acac) (CO) 2
  • acac acetylacetonate
  • the Rh concentration is 100 ppm based on the total reaction mass used.
  • the excess ligand is molar 4: 1 based on rhodium.
  • the compound (Ib) is added as amine in a ratio of 2: 1 to the ligand.
  • 0.5 g of 1, 2,4,5-tetraisopropylbenzene are added.
  • Reaction temperature is 120 ° C.
  • the relative activities are determined by the ratio of k I order to kO, i. k value at time 0 of the reaction (reaction start), determines and describes the relative decrease in activity during the experimental run.
  • the k-values of the I order are obtained from a plot of (-ln (1-gain)) versus time.
  • the starting material contains 5.9 mol% isobutane, 22.1 mol% n-butane, 45.5 mol -% 1 -butene, 2.1 mol% of isobutene, 17.1 mol% of 2-butenes and 0.2 mol% of 1, 3-butadiene hydroformylated.
  • a precursor 0.0047 g of Rh (acac) (CO) 2 in 40.81 g of toluene were introduced.
  • the ligand used was 0.0659 g of ligand (1) in the catalyst feed solution.
  • the effluent contains 10.1 mol% of 3-methylbutanal (isobutene conversion 72.8 mol%), 63.2 mol% of n-pentanal and 3.2 mol% of 2-methylbutanal (butene 96.3 mol% conversion, regioselectivity to n-pentanal 95.2%) ,
  • the hydrogenation products found in the discharge are 3.5 mol% of isobutane and 15.1 mol% of n-butane.
  • the organic amine 0.0373 g of the compound (Ib) and 0.5166 g of TIPB were added as a GC standard.
  • the educt was metered in after reaching the intended reaction temperature. During the reaction, the pressure was kept constant via a mass flow metering synthesis gas control. Samples were withdrawn from the reaction mixture after 20 hours.
  • the effluent contains 59.9 mol% of n-pentanal and 3.3 mol% of 2-methylbutanal (conversion butene 91.7 mol%, regioselectivity to n-pentanal 94.7%).
  • the hydrogenation products found in the discharge are 0.1 mol% of isobutane and 31.7 mol% of n-butane.
  • the effluent contains 54.2 mol% of aldehydes (regioselectivity to n-nonanal 90.9%). 3.9 mol% of n-octane and 3.2% of nonanol are found as the hydrogenation products in the discharge
  • the ligand used was 0.0672 g of ligand (1) in the catalyst feed solution.
  • As the organic amine 0.0359 g of the compound (Ib) and 0.5035 g of TIPB were added as a GC standard.
  • the educt was metered in after reaching the intended reaction temperature. During the reaction, the pressure was kept constant via a mass flow metering synthesis gas control. Samples were withdrawn from the reaction mixture after 20 hours.
  • the effluent contains 1 .3 mol% propane, 0.7 mol% butanal, 27.5 mol% isobutane, 9.6 mol% n-butane, 13.1 mol% 3-methylbutanal (77.4% isobutene conversion), 39.1 mol% pentanal, 2.1 mol% 2-methylbutanal (conversion n-butenes 96.9%, regioselectivity to n-pentanal 95.0%).
  • the asymmetric isomer (ligand 9, entry 2) of the symmetric biphepho is therefore characterized by a significantly lower activity and by a much poorer selectivity than the symmetric biphephos ligand.
  • the use of both ligands, that is to say the symmetrical biphephos ligand and its asymmetrical isomer, has already been described in rhodium-catalyzed hydroformylation, ed.
  • Table 2 the hydroformylation results of both ligands are shown under comparable conditions.
  • the symmetric biphephos ligand (in the reference Ligand 5a) is characterized by a significantly higher n / i selectivity and a higher activity than its asymmetric isomer (in the reference Ligand 7).
  • the symmetric ligand In the hydroformylation reaction of propene, the symmetric ligand has an n / i selectivity of 53 and a reaction rate of 402, whereas the unsymmetrical ligand exhibits only an n / i selectivity of 1 .2 and a reaction rate of 280. This was confirmed by the own results in Table 3.
  • the ligand (1) according to the invention and its symmetrical isomer (10) were tested under comparable conditions. The following experiments were carried out according to the procedure in Example 2. Only the ligands were exchanged. Table 4 shows the hydroformylation results of cis-2-butene with the ligand (1) according to the invention and its symmetrical isomer, ligand (9).
  • the asymmetric ligand (1) according to the invention (entry 1) has a very good n-pentanal regioselectivity of 94% and good aldehyde yields.
  • Its symmetrical isomer (entry 2), on the other hand, has lower pentanal selectivities of only 90% and significantly lower activities, i. Yields.
  • the unsymmetrical ligand (1) according to the invention is characterized by very good selectivities and activities completely contrary to the prior art. Furthermore, it is in the Ligands according to the invention (1) is shown around a very long-term stable ligand as in the subsequent long-term experiment in a continuously operated plant.
  • This pilot plant consisted essentially of a 20 liter pressure reactor with a downstream condenser and phase separation vessel (gas / liquid) for the gas phase originating from the reactor and a recycle gas compressor, which returns the gas phase from the phase separation vessel back down into the reaction zone. A part of this cycle gas is driven out of the reaction system after the phase separation as exhaust gas.
  • the reactor could be tempered.
  • the reactor system Before hydroformylation, the reactor system was purged with nitrogen free of oxygen. Subsequently, the reactor was filled with 12 liters of catalyst solution.
  • This catalyst solution was composed of 12 kg of isononyl benzoate, 4.5 g of Rh (acac) (CO) 2 , 63 g of bisphosphite ligand (1), 200 g of amine IIb and was previously in a container mixed.
  • the isononyl benzoate was previously stripped with nitrogen to remove oxygen and water from the solvent.
  • the reactor system was purged with synthesis gas free of nitrogen. After the nitrogen content had fallen ⁇ 10% by volume, the reactor system was pressed with synthesis gas to 1, 0 MPa and then heated to 120 ° C.
  • the reactor system After reaching the operating temperature, the reactor system was brought to 1, 7 MPa reaction pressure with synthesis gas.
  • the Rohbutan was driven over an evaporator to drive the Rohbutan gaseous into the cycle gas.
  • reaction products were continuously removed from the reactor via the circulating gas stream and partially condensed out in the condenser at 50 ° C.
  • the condensed phase was continuously driven out of the phase separation vessel.
  • samples were taken from the cycle gas before and after the reactor and analyzed by means of a gas chromatograph.
  • FIG. 3 shows a 1500 h long-term experiment in the hydroformylation of crude butane with the unsymmetrical ligand (1) according to the invention. Throughout the duration of the experiment, consistently high activity, i. Aldehyde yield of an average of 80% are ensured with continued very good regioselectivity.
  • the aldehyde yield fell from initially 70% to 80% after 150 h to 40% to 50%.
  • FIG. 4 shows a 250 h long-term experiment in the hydroformylation of crude butane with the symmetrical comparison ligand biphephos.
  • no long-lasting activity can be ensured in comparison to the ligand according to the invention.
  • the aldehyde yield fell from initially 70% to 80% after 150 h to 40% to 50%.
  • the regio selectivity was still very good.
  • This ligand is characterized by a significantly lower long-term stability.
  • the asymmetric ligand (1) according to the invention is distinguished by a significantly improved stability than the symmetrical comparison ligand biphephos.
  • the ligand (1) according to the invention in the catalytically active composition is characterized by a significantly better long-term stability than the ligands previously described in the prior art and thus fulfills the stated object.
  • An optimal long-term stability of the catalytically active composition is particularly important in large-scale application, since the ligand in the hydroformylation reaction can be metered on the industrial scale, however, any subsequent dosing negatively affects the efficiency of a large-scale process and makes it possibly unprofitable.
  • it is essential to use a long-term stable ligand the In addition to the long-term stability also characterized by good activity and good n / i selectivity. This object is achieved by the ligand (1) according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft ein unsymmetrisches Bisphosphit der Formel (1), ein Verfahren zu dessen Herstellung, sowie dessen Umsetzung mit Metallen zu Gemischen enthaltend Komplexverbindungen aus dem unsymmetrischen Biphosphit und dem Metall sowie deren Verwendung als katalytisch aktive Zusammensetzung in Hydroformylierungsreaktionen, wobei die hydroformylierungsaktive Zusammensetzung neben der Komplexverbindung aus Metall sowie unsymmetrischem Bisphosphit, ungebundenes Bisphosphit und zumindest eine weitere Komponente umfasst.

Description

Unsymmetrisches Bisphosphit
Die Erfindung betrifft ein unsymmetrisches Bisphosphit, ein Verfahren zu dessen Herstellung, sowie dessen Umsetzung mit Metallen zu Gemischen enthaltend Komplexverbindungen aus dem unsymmetrischen Biphosphit und dem Metall sowie deren Verwendung als katalytisch aktive Zusammensetzung in Hydroformylierungsreaktionen, wobei die hydroformylierungsaktive Zusammensetzung neben der Komplexverbindung aus Metall sowie unsymmetrischem Bisphosphit, ungebundenes Bisphosphit und zumindest eine weitere Komponente umfasst.
Die Reaktionen zwischen Olefinverbindungen, Kohlenmonoxid und Wasserstoff in Gegenwart eines Katalysators zu den um ein C-Atom reicheren Aldehyden ist als Hydro- formylierung bzw. Oxierung bekannt. Als Katalysatoren in diesen Reaktionen werden häufig Verbindungen der Übergangsmetalle der VIII. Gruppe des Periodensystems der Elemente verwendet. Bekannte Liganden sind beispielsweise Verbindungen aus den Klassen der Phosphine, Phosphite und Phosphonite mit jeweils dreiwertigen Phosphor P1". Eine gute Übersicht über den Stand der Hydroformylierung von Olefinen findet sich in B. CORNILS, W. A. HERRMANN, "Applied Homogeneous Catalysis with Organometallic Compounds", Vol. 1 & 2, VCH, Weinheim, New York, 1996 bzw. R. Franke, D. Selent, A. Börner,„Applied Hydroformylation", Chem. Rev., 2012, DOI:10.1021/cr3001803.
Jede katalytisch aktive Zusammensetzung hat ihre spezifischen Vorzüge. Je nach Einsatzstoff und Zielprodukt kommen daher unterschiedliche katalytisch aktive Zusammensetzungen zum Einsatz.
Die Patente US 4 694 109 und US 4 879 416 beschreiben Bisphosphinliganden und ihren Einsatz in der Hydroformylierung von Olefinen bei niedrigen Synthesegasdrücken. Besonders bei der Hydroformylierung von Propen werden mit Liganden dieses Typs hohe Aktivitäten und hohe n/i-Selektivitäten (n/i = das Verhältnis von linearem Aldehyd (=n) zu verzweigtem (=iso) Aldehyd)) erreicht. In WO 95/30680 werden zweizähnige Phosphinlig- anden und ihr Einsatz in der Katalyse, unter anderem auch in Hydroformylierungsreaktionen, offen gelegt. Ferrocenverbrückte Bisphosphine werden beispielsweise in den Patentschriften US 4 169 861 , US 4 201 714 und US 4 193 943 als Liganden für Hydro- formylierungen beschrieben. Der Nachteil von zwei- und mehrzähnigen Phosphinliganden ist ein relativ hoher Aufwand, der zu ihrer Darstellung notwendig ist. Daher ist es oftmals nicht rentabel, solche Systeme in technischen Prozessen einzusetzen. Hinzu kommt eine vergleichsweise geringe Aktivität, die durch hohe Verweilzeiten reaktionstechnisch kompensiert werden muss. Dies wiederum führt zu unerwünschten Nebenreaktionen der Produkte.
Rhodium-Monophosphit-Komplexe in katalytisch aktiven Zusammensetzungen sind geeignet für die Hydroformylierung von verzweigten Olefinen mit innenständigen Doppelbindungen, jedoch ist die n/i-Selektivität für endständig oxierte Verbindungen gering. Aus EP 0 155 508 ist die Verwendung von bisarylensubstituierten Monophosphiten bei der rhodiumkatalysierten Hydroformylierung von sterisch gehinderten Olefinen, z. B. Isobuten, bekannt.
Die in EP 1 294 731 offenbarten Bisphosphite weisen bei der Hydroformylierung von n- Octengemischen Olefinumsätze bis zu 98 % auf. Jedoch ist die ebenfalls gewünschte n/i- Selektivität zum Nonanal mit 36,8 % bis maximal 57,6 % verbesserungswürdig. Dies gilt umso mehr, als dass die Verwendung der katalytisch aktiven Zusammensetzung in technischen Prozessen eine Standzeit verlangt, welche sich in Tagen anstelle von Stunden bemisst.
Literaturbekannt ist die Synthese symmetrisch aufgebauter Bisphosphite, wie sie seit US 4769498 offenbart wurden und deren Verwendung in katalytisch aktiven, übergangsmetallhaltigen Zusammensetzungen zur Hydroformylierung ungesättigter Verbindungen.
In US 4769498, wie auch in US 5723641 werden bevorzugt symmetrisch aufgebaute Bisphosphite hergestellt und als Liganden zur Hydroformylierung verwendet. Die in der Hydroformylierung verwendeten symmetrisch aufgebauten Bisphosphitliganden werden bei tiefen Temperaturen hergestellt. Die Einhaltung dieser tiefen Temperaturen ist zwingend erforderlich, da höhere Temperaturen gemäß dieser US-Schriften zu Umlagerungen und letztlich zu unsymmetrisch aufgebauten Bisphosphiten führen würde, was aber hier nicht erwünscht ist.
In W095/28228 sowie US5512695 wird die Synthese von unsymmetrischen Bisphosphiten beschrieben. Hierbei wird die Synthese bei Raumtemperatur und/oder bei erhöhter Temperatur durchgeführt. In WO 95/28228 auf Seite 19 wird die Synthese und die Verwendung des unsymmetrischen Liganden A in der Hydrocyanierung beschrieben, der die unsymmetrische Variante des so genannten (symmetrischen) Biphephosliganden darstellt (siehe unsymmetrisches Isomer des Biphephos).
Figure imgf000005_0001
Biphephos unsymmetrisches Isomer des Biphephos
Die Verwendung beider Liganden, also des symmetrischen Biphephosliganden und seines unsymmetrischen Isomers ist ebenfalls in der Hydroformylierung beschrieben. In Rhodium-catalyzed Hydroformylation, ed. by P.W. N.M. van Leeuwen et C. Claver, Kluwer Academic Publishers 2006, AA Dordrecht, NL, Seite 45-46, Tabelle 2 sind die Hydro- formylieriungsergebnisse beider Liganden unter vergleichbaren Bedingungen dargestellt. Dabei geht deutlich hervor, dass sich der symmetrische Biphephosligand (in der Literaturstelle Ligand 5a) durch eine deutlich höhere n/i-Selektivität und eine höhere Aktivität auszeichnet als sein unsymmetrisches Isomer (in der Literaturstelle Ligand 7). In der Hydroformylierungsreaktion von Propen weist der symmetrische Ligand eine n/i- Selektivität von 53 und eine Reaktionsrate von 402 auf, wohingegen der unsymmetrische Ligand lediglich eine n/i-Selektivität von 1.2 und eine Reaktionsrate von 280 auf.
Diese unsymmetrisch aufgebauten Bisphosphite weisen bei der Verwendung als Ligand in der übergangsmetallkatalysierten Hydroformylierung somit deutlich geringere Reaktivitäten und geringere n-Regioselektivität auf; siehe in Rhodium-catalyzed Hydroformylation, ed. by P.W. N.M. van Leeuwen et C. Claver, Kluwer Academic Publishers 2006, AA Dordrecht, NL, Seite 45-46. Wie von van Leeuwen ausgeführt, weisen die symmetrischen Bisphosphite neben höheren n/i-Selektivitäten auch eine größere Reaktivität auf. Neben dem Bestreben einer hohen Reaktivität und n/i-Selektivität in Bezug auf die zu carbonylierenden, ungesättigten Verbindungen ist die Stabilität - konkret die Standzeit - der katalytisch aktiven Zusammensetzung aus jeweils verwendetem Metall, Liganden sowie weiteren Komponenten mit aktivierender Wirkung mit Blick auf die als Liganden eingesetzten Bisphophite eine ständige Aufgabe der Forschung. Dies gilt insbesondere hinsichtlich olefinhaltiger Gemische, speziell in der Hydroformylierung von Gemischen linearer Olefine.
In US 5364950, wie auch in US 5763677 und in „Catalyst Separation, Recovery and Recycling", herausgegeben v. DJ. Cole-Hamilton, R.P. Tooze, 2006, NL, Seiten 25-26, wird die Bildung von sogenannten„Poisoning Phosphites" als Neben- bzw. Ligandenab- baureaktion beschrieben. Diese„Poisoning Phosphites" bilden sich bei der Verwendung von arylphosphit-modifizierten Rhodium-Komplexen während der Hydroformylierungsre- aktion. Hierbei kommt es im Zuge des Ligandenabbaus zu einem Austausch einer A- rylgruppe durch eine Alkylgruppe des Hydroformylierungsproduktes.
Neben der Bildung der unerwünschten„Poisoning Phosphites" kann der Phosphitligand auch im Zuge einer Hydrolysereaktion durch die bei der Aldehydkondensation gebildeten Wasserspuren abgebaut werden.
Eine Konsequenz aus diesen Abbaureaktionen der Liganden ist, dass die Konzentration an hydroformylierungsaktiven Rhodiumkomplexspezies im Laufe der Zeit abnimmt und mit einem Verlust an Reaktivität einher geht.
Es ist allgemein bekannt, dass bei einer kontinuierlichen Fahrweise der Hydroformylierung Ligand/en und - gegebenenfalls weitere Komponenten - während des Reaktionsverlaufs nachdosiert, d. h. nach Reaktionsbeginn zusätzlich zugegeben werden müssen (siehe DE 10 2008 002 187 A1 ).
Die technische Aufgabe der Erfindung ist die Bereitstellung eines neuen Liganden, welcher in der Hydroformylierung von ungesättigten Verbindungen nicht die aus dem Stand der Technik zuvor aufgezeigten Nachteile, sondern die folgenden Eigenschaften aufweist:
1 ) eine hohe Aktivität,
2) eine hohe n-Regioseliktivität in Bezug auf die Hydroformylierung,
3) eine hohe Standzeit und Langzeitstabilität. Eine hohe Standzeit bedeutet, dass die hydroformylierungsaktive Zusammensetzung, welche den Liganden neben weiteren Komponenten umfasst, eine geringe Tendenz zum Abbau dieses Liganden und/oder den Zerfall dieses Liganden in hydroformylierungs- inhibierende Komponenten, wie z.B. die sogenannten„Poisoning Phosphites" aufweist.
Die Aufgabe wird gelöst durch eine Verbindung gemäß Formel (1 ):
Figure imgf000007_0001
Die Erfindung umfasst folgende Gegenstände: a) ein unsymmetrisch aufgebautes Bisphosphit; b ) Verfahren zu dessen Herstellung c) Gemische enthaltend zumindest eine Komplexverbindung der Formel (2), wobei M ein Metall der 4. bis 10. Gruppe des Periodensystems der Elemente (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) darstellt und zusätzliche Bindungen eingehen kann sowie das unter a) genannte Bisphosphit, welches nicht an das Metall M gebunden ist.
Figure imgf000008_0001
d) Zusammensetzungen, enthaltend das unter a) genannte Bisphosphit, Metalle der 4. bis 10. Gruppe des Periodensystems der Elemente (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) sowie freies, d.h. ungebundenes Bisphosphit und zumindest eine weitere Komponente, ausgewählt aus der Gruppe, welche Basen, organische Amine, Epoxide, Ionenaustauscher, Puffersysteme umfasst. ; e) Verfahren zur Hydroformylierung ungesättigter Verbindungen und deren Gemischen unter Verwendung von Zusammensetzungen nach d), eines Gasgemisches bestehend aus Kohlenmonoxid und Wasserstoff, ungesättigter Verbindungen und deren Gemischen unter den für eine Hydroformylierung erforderlichen Reaktionsbedingungen; f) Mehrphasiges Reaktionsgemisch bestehend aus: f1 ) mindestens einer Zusammensetzung nach d); f2) einem Gasgemisch bestehend aus Kohlenmonoxid und Wasserstoff; f3) mindestens einer ungesättigten Verbindung als Substrat; f4) mindestens einem Hydroformylierungsprodukt aus den Substraten.
Das erfindungsgemäße Verfahren zur Herstellung des unsymmetrischen Bisphosphits (1 ) umfasst die Schritte::
i) oxidative Kopplung von 2,4-Dimethylphenol zu 3, 3', 5, 5'-Tetramethyl-2,2'- dihydroxybiphenyl;
ii) oxidative Kopplung von 3-tert.-Butyl-4-Hydroxyanisol zu 5, 5'-Dimethoxy-3, 3'-di- tert.-Butyl-2, 2'-dihydroxybiphenyl;
iii) Umsetzung von 3, 3', 5, 5'-Tetramethyl-2,2'-dihydroxybiphenyl aus i) mit PCI3 zum Phosphorochloriditderivat unter Inertgasatmosphäre;
iv) Umsetzung von zumindest 2 Äquivalenten des Phophorochloriditderivats aus iii) mit 1 Äquivalent des 5, 5'-Dimethoxy-3, 3'-di-tert.-Butyl-2, 2'-dihydroxybiphenyl aus ii) unter Inertgasatmosphäre.
In einer Variante des Verfahrens wird im Verfahrensschritt iv) ein Lösungsmittelgemisch verwendet.
In einer Variante des Verfahrens erfolgt die Umsetzung in Verfahrensschritt iv) unter Verwendung eines aprotischen Lösungsmittelgemisch ausgewählt aus organischen Stickstoffverbindungen, organischen Estern, Aromaten.
In bevorzugten Varianten des Verfahrens ist die organische Stickstoffverbindung eine Verbindung ausgewählt unter Nitrilen, Aminen, Amiden.
In besonders bevorzugten Varianten des Verfahrens wird ein Lösungsmittel im Verfahrensschritt iv) verwendet, welches ausgewählt ist aus Acetonitril, Triethylamin, Dimethyl- aminobutan, Di-iso-propylethylamin, N-Methylpyrrolidon, Pyridin, Ethylacetat, Toluol.
In besonders bevorzugten Varianten des Verfahrens erfolgt der Verfahrensschritt iv) in einem aprotisch-polaren Lösungsmittel, oder einem Gemisch, welches mindestens ein aprotisch-polares Lösungsmittel umfasst.
Unter dem Begriff aprotisches Lösungsmittel werden im Rahmen dieser Anmeldung nichtwäßrige Lösemittel, die kein ionisierbares Proton im Molekül enthalten, verstanden, welche weiter in aprotisch-unpolare und aprotisch-polare Lösungsmittel unterteilt sind (siehe Thieme Römpp online).
Unter der Bezeichnung aprotisch-unpolare oder apolar aprotische Lösungsmittel werden aliphatische und aromatische sowie halogenierte Kohlenwasserstoffe (Alkane, Alkene, Alkine, Benzol, Aromaten mit aliphatischen oder aromatischen Seitenketten), perhaloge- nierte Kohlenwasserstoffe wie Tetrachlorkohlenstoff und Hexafluorbenzol, Tetramethyl- silan und Schwefelkohlenstoff zusammengefasst. Aprotisch-unpolare Lösemittel sind durch niedrige relative Permittivitäten (er <15), niedrige Dipolmomente (μ <2,5 D) und niedrige ETN-Werte (0,0-0,3; ETN = normalisierte Werte der empirischen Parameter der Lösemittelpolarität) charakterisiert. Aprotisch-unpolare Lösemittel sind lipophil und hydrophob. Zwischen ihren Molekülen herrschen Van-der-Waals-Wechselwirkungen.
Die unter dem Begriff aprotisch-polare oder dipolar aprotische Lösungsmittel zusammen- gefassten Lösungsmittel besitzen stark polarisierende funktionelle Gruppen und zeigen daher ein gewisses permanentes Dipolmoment, das zu den nun untergeordneten Van- der-Waals-Wechselwirkungen hinzukommt. Ihr Lösevermögen für polare Stoffe ist somit in der Regel besser als das der aprotisch-unpolaren Lösungsmittel. Beispiele aprotisch- polarer Lösungsmittel sind Ketone wie Aceton, Ether, Ester, Λ/,/V-disubstituierte Amide wie Dimethylformamid, tertiäre Amine, Pyridin, Furan, Thiophen, 1 ,1 ,1 -Trichlorethan, Nitroal- kane wie Nitromethan, Nitrile wie Acetonitril, Sulfoxide wie Dimethylsulfoxid, Sulfone, Hexamethylphosphorsäuretriamid, flüssiges Schwefeldioxid, Selenoxychlorid. Diese besitzen große Permittivitäten (er >15), Dipolmomente (μ >2,5 D) und ETN-Werte im Bereich von 0,3-0,5.
Eine Variante des erfindungsgemäßen Verfahrens umfasst den zusätzlichen Verfahrensschritt v), indem die Verbindung (1 ) als Feststoff abgetrennt und in einem aprotischen Lösungsmittelgemisch suspendiert wird.
In einer weiteren Variante des Verfahrensschritts v) wird die als Feststoff abgetrennte Verbindung (1 ) in einem aprotischen Lösungsmittelgemisch umkristallisiert.
In besonders bevorzugten Varianten des erfindungsgemäßen Verfahrens erfolgt Ver fahrensschritt v) Suspendieren in Acetonitril bei 75 °C oder in Toluol bei 35 °C.
In besonders bevorzugten Varianten des erfindungsgemäßen Verfahrens erfolgt Ver fahrensschritt v) Umkristallisation in einem aprotischen Lösungsmittelgemisch bestehend aus Toluol/Heptan oder Xylol/Heptan. Neben der Verbindung gemäß der Formel (1 ) wird auch eine Verbindung gemäß der Formel (2) beansprucht. Diese umfasst die Verbindung gemäß der Formel (1 ).
Verbindung gemäß der Formel (2):
Figure imgf000011_0001
(2) wobei M ausgewählt ist aus Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt und M zusätzliche Bindungen eingehen kann.
Hierbei sind Co, Rh, Ru, Ir, Fe bevorzugt; und Rh besonders bevorzugt.
Die Verbindung gemäß der Formel (2) wird in-situ während der Hydroformylierung gebildet, wie es in den Beispielen offenbart wird.
In einer besonderen Ausführungsform der Erfindung liegt die Verbindung gemäß der Formel (3) vor:
Figure imgf000012_0001
(3) wobei M ausgewählt ist aus: Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.
Hierbei sind Co, Rh, Ru, Ir, Fe bevorzugt; und Rh besonders bevorzugt.
Neben den reinen Verbindungen werden auch Gemische beansprucht, welche diese umfassen.
Gemische umfassen eine Verbindung gemäß der Formel (2) und/oder (3), wobei das Gemisch zusätzliche eine Verbindung gemäß der Formel (1 ) umfasst, welche nicht an M koordiniert ist. Neben den Gemischen werden auch Zusammensetzungen beansprucht.
Die Zusammensetzungen umfassen ein zuvor beschriebenes Gemisch, welche zusätzlich zu dem Gemisch eine weitere Komponente aufweisen ausgewählt aus Basen, organische Amine, Pufferlösungen, Ionenaustauscher, Epoxide.
In US 4567306, US 5364950, US 5741942 und US 5763677 werden Beispiele für diese weiteren Komponenten offenbart.
In einer bevorzugten Ausführungsform werden als weitere Komponenten sterisch gehinderte sekundäre Amine Verbindungen mit der allgemeinen Formel I eingesetzt,
Figure imgf000013_0001
wobei Ra, Rb, Rc, Rd, Re und Rf gleiche oder unterschiedliche Kohlenwasserstoffreste die auch untereinander verbunden sein können, sind.
In einer bevorzugten Ausführungsform weist das organische Amin eine Struktur gemäß Formel la auf:
Figure imgf000013_0002
la mit R gleich H, wie das 2,2,6,6-Tetramethylpiperidin selbst, einem organischen Rest R, einer Hydroxylgruppe oder einem Halogen.
Der organische Rest R kann auch ein über ein Heteroatom, beispielsweise ein Sauerstoffatom, an die 2,2,6,6-Tetramethylpiperidin-Struktureinheit gebundener, organischer Rest sein. Insbesondere kann der organische Rest polymere Strukturen aufweisen oder ein 1 bis 50 Kohlenstoffatome und gegebenenfalls Heteroatome aufweisender organischer Rest sein. Besonders bevorzugt weist der organische Rest Carbonylgruppen, wie Keto-, Ester- oder Säureamid-Gruppen auf. Der organische, gegebenenfalls Heteroatome aufweisende Rest kann insbesondere ein substituierter oder unsubstituierter, aliphatischer, alicyclischer, aliphatisch-alicyclischer, heterocyclischer, aliphatisch- heterocyclischer, aromatischer, aromatisch-aromatischer oder aliphatisch-aromatischer Kohlenwasserstoffrest mit 1 bis 50 Kohlenstoffatomen sein, wobei die substituierten Kohlenwasserstoffreste Substituenten, ausgewählt aus primären, sekundären oder tertiären Alkylgruppen, alicyclischen Gruppen, aromatischen Gruppen, -N(R1)2, -NHR1, - NH2, Fluor, Chlor, Brom, Jod, -CN, -C(0)-R1, -C(0)H oder -C(0)0-R1, -CF3, -O-R1, - C(0)N-R1, -OC(0)-R1 und/oder -Si(R1)3, mit R1 gleich einem monovalenten, bevorzugt 1 bis 20 Kohlenstoffatome aufweisenden Kohlenwasserstoffrest, aufweisen können. Sind mehrere Kohlenwasserstoffreste R1 vorhanden, so können diese gleich oder unterschiedlich sein. Die Substituenten sind vorzugsweise beschränkt auf solche, die keinen Einfluss auf die Reaktion selbst haben. Besonders bevorzugte Substituenten können ausgewählt sein aus den Halogenen, wie z. B. Chlor, Brom oder Jod, den Alkylresten, wie z. B. Methyl, Ethyl, Propyl, iso-Propyl, Butyl, sec-Butyl, t-Butyl, neo-Pentyl, sec-Amyl, t-Amyl, iso-Octyl, t-Octyl, 2-Ethylhexyl, iso-Nonyl, iso-Decyl oder Octadecyl, den Arylresten, wie z. B. Phenyl, Naphthyl oder Anthracyl, den Alkylarylresten, wie z. B. Tolyl, Xylyl, Dimethyl- phenyl, Diethylphenyl, Trimethylphenyl, Triethylphenyl oder p-Alkylphenyl, den Aralkylres- ten, wie z. B. Benzyl oder Phenylethyl, den alicyclischen Resten, wie z. B. Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclohexylethyl oder 1 -Methylcyclohexyl, den Alkoxyresten, wie z. B. Methoxy, Ethoxy, Propoxy, Butoxy oder Pentoxy, den Aryloxyresten, wie z. B. Phenoxy oder Naphthoxy, -OC(0)R1 oder -C(0)R1, wie z. B. Acetyl, Propionyl, Trimethylacetoxy, Triethylacetoxy oder Triphenylacetoxy, und den drei Kohlenwasserstoffreste aufweisenden Silylresten -Si(R1)3, wie z. B. Trimethylsilyl, Triethylsilyl oder Triphenylsilyl. Besonders bevorzugt sind Verbindungen der Formel IIa, die als Reste R solche aufweisen, die einen 2,2,6,6,-Tetramethylpiperidin-Rest und gegebenenfalls eine weitere -N(R1)2, -NHR1 und/oder -NH2 Gruppe enthalten.
Als sekundäre Amine, die eine Struktureinheit gemäß Formel I aufweisen, können ganz besonders bevorzugt die nachfolgend aufgeführten Verbindungen mit den Strukturformeln Ib bis Ig oder deren Derivate eingesetzt werden.
Figure imgf000014_0001
Ib
Figure imgf000014_0002
Ic
mit n = 1 bis 20, vorzugsweise 1 bis 10
Figure imgf000015_0001
ld
Figure imgf000015_0002
le
mit n = 1 bis 12, vorzugsweise 8
Figure imgf000015_0003
If
mit n = 1 bis 17, vorzugsweise 13
Figure imgf000015_0004
■g
Es können auch Gemische, enthaltend zwei oder mehrere sterisch gehinderte Amine, eingesetzt werden. Die Zusammensetzung umfasst ein zuvor beschriebenes Gemisch, welche zusätzlich zu dem Gemisch zumindest ein Amin mit einer 2,2,6, 6-Tetramethylpiperidineinheit aufweist. Insbesondere wird im erfindungsgemäßen Verfahren das Amin mit der Formel Ib, Seba- cinsäuredi-4-(2,2,6,6-tetramethylpiperidinyl)ester, bevorzugt eingesetzt.
Ein besonders bevorzugtes Metall in der erfindungsgemäßen Zusammensetzung ist
Rhodium.
Des Weiteren wird ein Verfahren zur Hydroformylierung von ungesättigten Verbindungen und deren Gemischen beansprucht, welches diese Zusammensetzungen verwendet.
Verfahren zur Hydroformylierung einer ungesättigten Verbindung oder eines Gemisches von ungesättigten Verbindungen umfassend die Verfahrensschritte:
a) Vorlegen einer Verbindung nach den Formeln (1 ), (2) und/oder (3) oder Zusammensetzung enthaltend die Verbindungen der Formeln (1 ), (2) und (3) zusammen mit einer weiteren Komponente ausgewählt aus Basen, organischen Aminen, Pufferlösungen, Ionenaustauschern, Epoxiden,
b) Einleiten eines Gasgemisches umfassend Kohlenmonoxid und Wasserstoff, c) Zugabe mindestens einer ungesättigten Verbindung oder eines Gemisches von ungesättigten Verbindungen.
Die ungesättigten Verbindungen, welche in dem erfindungsgemäßen Verfahren hydro- formyliert werden, umfassen Kohlenwasserstoffgemische, die in petrochemischen Verarbeitungsanlagen anfallen. Hierzu gehören beispielsweise sogenannte C4-Schnittte. Typische Zusammensetzungen von C4-Schnitten, aus denen der größte Teil der mehrfach ungesättigten Kohlenwasserstoffe entfernt worden ist und die im erfindungsgemäßen Verfahren eingesetzt werden können, sind in der folgenden Tabelle 1 aufgelistet (siehe DE 10 2008 002188).
Tabelle V.
Dampfspaltanlage Dampfspaltanlage Katalytische Spaltanlage
Komponente HCC4 HCC4 / Raff. I Raff. I / SHP CC4 CC4 / SHP
SHP
Isobutan 1 - 4.5 1 - 4.5 1 .5 - 8 1 .5 - 8 37 37
[Massen-%] n-Butan 5-8 5-8 6-15 6-15 13 13
[Massen-%]
E-2-Buten 18-21 18-21 7 - 10 7 - 10 12 12
[Massen-%]
1 -Buten 35-45 35-45 15-35 15-35 12 12
[Massen-%]
Isobuten 22-28 22-28 33-50 33-50 15 15
[Massen-%]
Z-2-Buten 5-9 5-9 4-8 4-8 11 11
[Massen-%]
1,3-Butadien 500 - 8000 0-50 50 - 8000 0-50 < 10000 0-50
[Massen- ppm]
Erläuterung:
HCC4: typisch für eine C4 Mischung, die aus dem C4-Schnitt einer Dampfspaltanlage (High Severity) nach der Hydrierung des 1,3-Butadiens ohne zusätzliche Moderation des Katalysators erhalten wird.
HCC4 / SHP: Zusammensetzung HCC4, bei dem Reste an 1,3-Butadien in einem Selektivhydrierungsprozess/SHP weiter reduziert wurden.
Raff. I (Raffinat I): typisch für eine C4 Mischung, die aus dem C4-Schnitt einer Dampfspaltanlage (High Severity) nach der Abtrennung des 1,3-Butadiens, beispielsweise durch eine NMP-Extraktivrektifikation, erhalten wird.
Raff. I / SHP: Zusammensetzung Raff. I, bei dem Reste an 1,3-Butadien in einem Selektivhydrierungsprozess/SHP weiter reduziert wurden.
CC4: typische Zusammensetzung eines C4-Schnitts, das aus einer katalytischen Spaltanlage erhalten wird.
CC4 / SHP: Zusammensetzung eines C4-Schnitts, bei dem Reste an 1 ,3-Butadien in einem Selektivhydrierungsprozess/SHP weiter reduziert wurden.
In einer Variante des Verfahrens ist die ungesättigte Verbindung oder deren Gemisch unter c) ausgewählt aus: Kohlenwasserstoffgemischen aus Dampfspaltanlagen;
Kohlenwasserstoffgemischen aus katalytisch betriebenen Spaltanlagen, wie z.B. FCC-Spaltanlagen;
Kohlenwasserstoffgemischen aus Oligomerisierungsprozessen in homogener Phase sowie heterogenen Phasen, wie z.B. dem OCTOL-, DIMERSOL-, Fischer- Tropsch-, Polygas-, CatPoly-, InAlk-, Polynaphtha-, Selectopol-, MOGD-, COD-, EMOGAS-, NExOCTANE- oder SHOP-Prozess;
Kohlenwasserstoffgemischen umfassend mehrfach ungesättigte Verbindungen; ungesättigten Carbonsäurederivaten.
In einer Variante des Verfahrens weist das Gemisch ungesättigte Verbindungen mit 2 bis 30 Kohlenstoffatomen auf.
In einer Variante des Verfahrens weist das Gemisch ungesättigte Verbindungen mit 2 bis 8 Kohlenstoffatomen auf.
In einer weiteren Variante des Verfahrens weist das Gemisch mehrfach ungesättigte Kohlenwasserstoffe auf. In einer besonderen Ausführungsform umfasst das Gemisch Butadiene.
Die ungesättigten Verbindungen, welche in dem erfindungsgemäßen Verfahren hydro- formyliert werden, umfassen weiterhin ungesättigte Carbonsäurederivate. In einer besonderen Ausführungsform sind diese ungesättigten Carbonsäurederivate ausgewählt unter Fettsäureestern.
Die Durchführung des erfindungsgemäßen Verfahrens erfolgt in unterschiedlichen Ausführungsformen, welche in den Beispielen im Detail offenbart werden.
Das erfindungsgemäße mehrphasige Reaktionsgemisch umfasst neben einem aus Kohlenmonoxid und Wasserstoff bestehenden Gasgemisch mindestens eine ungesättigte Verbindung, wie sie zuvor offenbart wurde und umfasst neben Kohlenwasserstoffgemischen, welche aus Dampfspalt-, katalytisch betriebenen Spaltanlagen oder Oligomerisierungsprozessen stammen oder andere Quellen von einfach ungesättigten und/oder mehrfach ungesättigten Kohlenstoffverbindungen oder ungesättigte Carbonsäurederivate beinhalten, mindestens ein Hydroformylierungsprodukt dieser ungesättigten Verbindun- gen, wie sie in den nachfolgenden Beispielen aufgeführt sind und die jeweils verwendete Zusammensetzung, wie sie zuvor offenbart wurde.
Figurenbeschreibung: Berechnung der Komplexverbindung (3)
Die erfindungsgemäßen Komplexverbindungen der Formeln (2) und (3) werden in-situ während der Hydroformylierungsreaktion gebildet.
In einer besonderen Ausführungsform der Erfindung liegen die Komplexverbindungen (2) und (3) neben dem ungebundenen Bisphosphit (1 ) vor.
Die Charakterisierung des Hydridocarbonylkomplexes des Liganden (1 ) mit Rhodium als Metall, der erfindungsgemäßen Verbindung (3), erfolgte mittels theoretischer Berechnungen. Das Ergebnis ist in der Figur 1 im Anhang dargestellt.
Die Strukturberechnung wurde mit dem BP86-Funktional und dem def-SV(P)-Basissatz durchgeführt.
Die Strukturberechnungen für die Modellstrukturen erfolgten mit dem Turbomole- Programmpaket (R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett, 1989, 162, 16; TURBOMOLE V6.3 201 1 , a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007. http://www.turbomole.com) auf Basis der Dichtefunktionaltheorie (DFT). Verwendet wurde das BP86-Funktional (S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. , 1980, 58, 1200; A. D. Becke, Phys. Rev. A, 1988, 38, 3098; J. Perdew, Phys. Rev. B, 1986, 33, 8822) und der def-SV(P)-Basissatz (A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571 ).
Figur 2 im Anhang liefert alle berechneten Koordinaten, Abstände und Winkel der Verbindung (3).
Die Figuren 3 und 4 zeigen Hydroformylierungsversuche in einer kontinuierlich betriebenen Versuchsanlage. In einer ersten Versuchsreihe (Figur 3) wurde die erfindungsgemäße Verbindung (1 ) getestet. Unter den gewählten Reaktionsbedingungen stellte sich eine Aldehydausbeute zwischen 80% und 90% ein. Dieser Zustand konnte bis zum Versuchs- ende konstant gehalten werden. Die prozentuale Verteilung zwischen n-Pentanal und 2- Methylbutanal, bzw. die Regio-Selektivität, betrug 92 % zu 8 %.
In der zweiten Versuchsreihe (Figur 4) wurde unter den gleichen Versuchsbedingungen die Vergleichsverbindung Biphephos verwendet. Unter den gewählten Reaktionsbedingungen fiel die Aldehydausbeute von anfänglich 70 % bis 80% nach 150 h auf 40% bis 50% ab. Die prozentuale Verteilung zwischen n-Pentanal und 2-Methylbutanal, bzw. die Regio-Selektivität, betrug 95 % zu 5 %. D.h. dieser Ligand zeichnet sich durch eine deutlich geringere Langzeitstabilität als der erfindungsgemäße Ligand (1 ) aus. Diese ist jedoch für einen großtechnischen Prozess entscheidend, da sie die Wirtschaftlichkeit eines solchen stark beeinflusst.
Folglich zeichnet sich der erfindungsgemäße Ligand durch eine deutlich verbesserte Stabilität und Aktivität aus. Dieses Ergebnis ist überraschend, da unsymmetrische substituierte Bisphosphite gegenüber symmetrisch substituierten deutlich an Aktivität und Selektivität einbüßen, wie bereits in Rhodium-catalyzed Hydroformylation, ed. by P.W.N.M. van Leeuwen et C. Claver, Kluwer Academic Publishers 2006, AA Dordrecht, NL, Seite 45-46 ausgeführt wird.
Der erfindungsgemäße Ligand (1 ) in der katalytisch aktiven Zusammensetzung zeichnet sich durch eine deutlich bessere Langzeitstabilität als die bisher im Stand der Technik beschriebenen Liganden aus und erfüllt somit die gestellte Aufgabe. Eine optimale Langzeitstabilität der katalytisch aktiven Zusammensetzung ist insbesondere in der großtechnischen Anwendung von Bedeutung, da der Ligand in der Hydroformylierungsreaktion großtechnisch zwar nachdosiert werden kann, jede Nachdosierung jedoch die Wirtschaftlichkeit eines großtechnischen Prozesses negativ beeinflusst und ihn ggf. unrentabel macht. Beispiele
Allgemeine Reaktionsgleichung
Figure imgf000021_0001
Abkürzungen:
VE-Wasser = demineralisiertes Wasser
KPG = Kerngezogenes Präzisions-Glasgerät
ACN = Acetonitril
EtOAc = Ethylacetat
acac = acetylacetonat
NEt3 = Triethylamin
TIPB = 1 ,2,4,5-Tetraisopropylbenzol
Synthese des 2,2'-Bis(3,5-dimethylphenol) (5)
Das als Vorstufe eingesetzte Biphenol (5) wurde nach folgender Synthesevorschrift hergestellt.
Figure imgf000022_0001
In einem 500 ml Schlenk mit KPG-Rührer, Zwischenaufsatz und Glasrührer wurden 1 ,42 g
(0,005 mol) Eisen(ll)-sulfatheptahydrat und 12,35 g (0,1 mol) 2,4-Dimethylphenol in
150 ml VE-Wasser und 5 ml Cyclohexan vorgelegt und auf 40 °C erwärmt.
In einem 100 ml Becherglas löste man 25.36 g (0,146 mol) Natriumperoxodisulfat in 80 ml
VE-Wasser. Zum Start der Reaktion wurde eine kleine Portion Na2S208-Lösung zum
Phenol gegeben. Anschließend wurde alle 10 min eine kleinere Portion der Lösung hinzugegeben. Nach 30 min war die Na2S208-Lösung Zugabe beendet.
Nach einer Reaktionszeit von 5h wurde zur Reaktionslösung 300 ml Cyclohexan und
200 ml Wasser hinzugegeben, 20 min rühren gelassen, dann warm in den Scheidetrichter überführt.
Die organische Phase wurde abgetrennt und bis zur Trockene eingeengt. Das Produkt (5) konnte in 69%iger Ausbeute (10,6 g) erhalten werden.
Alle nachfolgenden Präparationen wurden mit Standard-Schlenk-Technik unter Schutzgas durchgeführt. Die Lösungsmittel wurden vor Gebrauch über geeigneten Trocknungsmitteln getrocknet (Purification of Laboratory Chemicals, W. L. F. Armarego (Autor), Christina Chai (Autor), Butterworth Heinemann (Elsevier), 6. Auflage, Oxford 2009).
Die Charakterisierung der Produkte erfolgte mittels NMR-Spektroskopie. Chemische Verschiebungen (δ) werden in ppm angegeben. Die Referenzierung der 31P-NMR-Signale erfolgte gemäß: SR3iP = SRiH * (BF3iP / BF1H) = SRiH * 0,4048. (Robin K. Harris, Edwin D. Becker, Sonia M. Cabral de Menezes, Robin Goodfellow, and Pierre Granger, Pure Appl. Chem., 2001 , 73, 1795-1818; Robin K. Harris, Edwin D. Becker, Sonia M. Cabral de Menezes, Pierre Granger, Roy E. Hoffman and Kurt W. Zilm, Pure Appl. Chem., 2008, 80, 59-84). Mittels der 31P-NMR wurde der Gehalt des Liganden (1 ) bestimmt, wobei dieser unsymmetrische Ligand durch zwei Phosphorsignale charakterisiert wird. Synthese des 2,2'-Bis-(3,5-dimethylphenol)chlorophosphits (6)
Figure imgf000023_0001
In einem sekurierten 2 L Schlenk mit Magnetrührer wurden 440 ml Phosphortrichlond vorgelegt. In einem zweiten sekurierten 1 L Schlenk wurden 120 g 2,2' -Bis-(3,5- dimethylphenol) eingewogen und unter Rühren 500 ml getrocknetes Toluol hinzugefügt. Die Biphenol-Toluol-Suspension wurde innerhalb von 4 h bei 63°C zum Phosphortrichlond dosiert. Nach vollständiger Zugabe wurde die Reaktionsmischung über Nacht bei Temperatur gerührt. Am nächsten Morgen wurde die Lösung in der Wärme (45°C) eingeengt und das Produkt konnten in 96,5%iger Ausbeute (153 g) erhalten werden. 31P-NMR: 175,59 (94,8% 2,2'-Bis-(3,5-dimethylphenol)chlorophosphit), 4,4% diverse PCI-Verbindungen, 0,8% P-H-Verbindung.
Erfindungsgemäße Synthesevariationen zur Herstellung des reinen Ligand
Figure imgf000023_0002
Variante 1 : ACN/NEt3 In einem 1000 ml Schlenk wurde unter Schutzgas 38,75 g (0,121 mol) 2,2'-Bis-(3,5- dimethylphenyl)chlorophosphit in 150 ml entgastem ACN gelöst und auf 35°C erwärmt. In einem zweiten Schlenk (500 ml) wurden 20,1 g (0,056 mol) 3,3'-Di-tert.-butyl-5,5'- dimethoxy-[1 ,1 '-biphenyl]-2,2'diol in 150 ml entgastem ACN gelöst und unter Rühren mit 40,9 ml entgastem Triethylamin (0,29 mol) versetzt. Dann wurde langsam die Biphenol/Trietylamin-Lösung zu der Chlorophosphitlösung getropft. Nach einer Nachreaktionszeit von 1 h wurde die Reaktionslösung über Nacht bei 45°C gerührt.
Dieser Feststoff wurde in entgastem ACN 1.5h bei 75°C suspendiert und abgetrennt und mit warmen ACN nachgewaschen. Anschließend wurde das Produkt in getr. Toluol 1.5h bei 35°C suspendiert und nachgewaschen. Das Zielprodukt (1 ) konnte als weißer Feststoff (33 g, 66%) erhalten werden. 31P-NMR (202,4 MHz, toluene-d8): 142,5 und 140,9 (100%)
Variante 2: EtOAc/NEt3
In einem 100 ml Schlenk wurde unter Schutzgas 7,3 g (21 ,0 mmol) 2,2'-Bis-(3,5- dimethylphenyl)chlorophosphit in 15 ml entgastem Ethylacetat gelöst und auf 35°C erwärmt. In einem zweiten Schlenk (100 ml) wurden 3,9 g (9,5 mmol) 3,3'-Di-tert.-butyl-5,5'- dimethoxy-[1 ,1 '-biphenyl]-2,2'diol in 7,0 ml NEt3 gelöst. Anschließend wurde die Biphenol/Triethylamin-Lösung langsam innerhalb von 20 Minuten zu der Chlorophosphitlösung getropft. Die Lösung wurde eine weitere Stunde bei 35°C und anschließend über Nacht bei 45°C gerührt.
Dieser Feststoff wurde in entgastem ACN 1 .5h bei 75°C suspendiert und abgetrennt und mit warmen ACN nachgewaschen. Anschließend wurde das Produkt in getr. Toluol 1 .5h bei 35°C suspendiert und abgetrennt.
Das Zielprodukt (1 ) konnte als weißer Feststoff (5.0 g, 58%) erhalten werden. 31P-NMR (202,4 MHz, toluene-ds): 142,5 und 140,9 (100%).
Variante 3: EtOAc/Pyridin
In einem 250 ml Schlenk wurde unter Schutzgas 10,07 g (31 ,0 mmol) 2,2'-Bis-(3,5- dimethylphenyl)chlorophosphit in 20 ml entgastem Ethylacetat gelöst und auf 45°C erwärmt. In einem zweiten Schlenk (50 ml) wurden 5,54 g (15 mmol) 3,3'-Di-tert.-butyl-5,5'- dimethoxy-[1 ,1 '-biphenyl]-2,2'diol in 26 ml Ethylacetat und 5,2 ml entgastem Pyridin gelöst. Anschließend wurde die Biphenol/Pyridin-Lösung langsam innerhalb von 30 Minuten zu der Chlorophosphitlösung getropft. Die Lösung wurde über Nacht bei 45°C gerührt.
Am nächsten Tag wurde die Lösung filtriert und der Feststoff mit ACN gewaschen. Das Zielprodukt konnte als weißer Feststoff (4,2g, 31 %) erhalten werden. 31P-NMR (202,4 MHz, toluene-ds): 142,2 und 141 ,1 (100%).
Variante 4: Durchführung eines Tieftemperaturversuches bei -20°C
In einem 250 ml Schlenk wurde unter Schutzgas 8,0 g (0,025 mol) 2,2'-Bis-(3,5- dimethylphenyl)chlorophosphit in 30 ml entgastem ACN gelöst und auf -20°C gekühlt. In einem zweiten Schlenk (100 ml) wurden 4,32 g (0,012 mol) 3,3'-Di-tert.-butyl-5,5'- dimethoxy-[1 ,1 '-biphenyl]-2,2'diol in 30 ml entgastem ACN gelöst und unter Rühren mit 8,5 ml entgastem Triethylamin versetzt. Dann wurde langsam die Biphenol/Trietylamin- Lösung bei -20°C zu der Chlorophosphitlösung getropft. Nach vollständiger Zugabe wurde für weitere 4 Stunden bei -20 °C weiter gerührt. Über Nacht wurde die Reaktionslösung bis zum Morgen bei -10 °C gerührt. Dieses Vorgehen, Reaktionstemperatur über Tag bei - 20 °C und über Nacht bei -10 °C, wurde 3 Tage wiederholt durchgeführt. Im Anschluss daran wurde der Reaktionsansatz innerhalb von 3 Stunden auf RT gebracht.
Anschließend wurde die Lösung filtriert und der Feststoff mit kaltem ACN gewaschen. Das Zielprodukt konnte als weißer Feststoff (7,6 g, 70%) erhalten werden. 31P-NMR (202,4 MHz, toluene-ds): 142,5 und 140,9 (100%).
Das unsymmetrische Bisphosphit (1 ) konnte somit völlig überraschend und entgegen dem Stand der Technik auch bei tiefen Temperaturen in guten Ausbeuten und exzellenter Reinheit erhalten werden.
Aufreinigung des Liganden (1 ):
Neben dem Suspendieren des Liganden in verschiedenen Lösungsmitteln (siehe obiges Beispiel) ist es auch möglich, den Liganden mittels Umkristallisation zu reinigen. Diese Umkristallisation erfolgte nach WO 2012095255. Anstelle o-Xylol kann auch Toluol zur Umkristallisation in analoger Weise verwendet werden. Arbeitsvorschrift für die Hvdroformylierungsexperimente
Versuchsbeschreibung - allgemein
Die Versuche wurden in 100 ml-Autoklaven der Fa. Parr Instrument durchgeführt. Die Autoklaven sind mit einer elektrischen Beheizung ausgerüstet. Die Druckkonstanthaltung erfolgt über Massedurchflußmesser und Druckregler. Während der Versuchszeit kann über eine Spritzenpumpe eine genau definierte Eduktmenge unter Reaktionsbedingungen eingespritzt werden. Über Kapillarleitungen und HPLC-Ventile können während der Versuchszeit Proben gezogen und sowohl über GC- als auch über LC-MS-Analytik untersucht werden.
Versuchsbeschreibung - Langzeitversuch
Der Rh-Precursor (Rh(acac)(CO)2) (acac= acetylacetonat) und der Ligand werden in 40 ml Isononylbenzoat im Autoklaven vorgelegt. Die Rh-Konzentration beträgt 100 ppm bezogen auf die gesamte eingesetzte Reaktionsmasse. Der Ligandüberschuß beträgt molar 4:1 bezogen auf Rhodium.
Als weitere Komponente wird im Verhältnis 2:1 zum Liganden die Verbindung (Ib) als Amin zugegeben. Als GC-Standard werden 0,5 g 1 ,2,4,5-Tetraisopropylbenzol hinzugegeben.
Reaktionstemperatur ist 120 °C. Der Reaktionsdruck beträgt 20 bar Synthesegas (H2:CO=50:50 Vol%).
Als Olefin wurden mit der Spritzenpumpe in Abständen von ca. 1 Tag jeweils 4 ml cis-2- Buten zudosiert. GC-Proben wurden nach 1 , 2, 4 Stunden und vor der nächsten Dosierung gezogen. Es wurden folgende Liganden hinsichtlich ihrer Stabilität untersucht:
Figure imgf000027_0001
Ergebnisse - Langzeitversuche
Die relativen Aktivitäten werden durch das Verhältnis von k I .Ordnung zu kO, d.h. dem k- Wert zum Zeitpunkt 0 der Reaktion (Reaktionsstart), bestimmt und beschreiben die relative Aktivitätsabnahme während der Versuchslaufzeit.
Die k-Werte I .Ordnung erhält man aus einer Auftragung von (-ln(1 -Umsatz)) gegen die Zeit.
Tabelle 2:
Figure imgf000028_0001
Resultat: Der Aktivitätsabfall des Katalysators mit den Liganden Biphephos und (8) ist (Tabelle 2; Einträge 1 -4, 9-12) deutlich stärker als mit dem Liganden (1 ). Bemerkenswert ist, dass die relative Aktivität des Liganden (1 ) nach annähernd der doppelten Reaktionszeit (Tabelle 2; Eintrag 8) immer noch mehr als doppelt so hoch ist wie bei den anderen beiden Liganden nach der halben Reaktionszeit (Tabelle 2; Einträge 4 und 12) bei weiterhin sehr guten n/i-Selektivitäten. Dieses Verhalten wird in den Langzeitversuchen in der kontinuierlich betriebenen Hydroformylierungsanlage (siehe Figuren 3 und 4) bestätigt. Es konnte somit ein unsymmetrischer Ligand hergestellt und in einer hydroformylierungs- aktiven Zusammensetzung verwendet werden, der völlig überraschend und entgegen dem Stand der Technik sehr gute Eigenschaften aufweist und die technische Aufgabe löst.
erfindungsgemäß Erfindungsgemäße Ergebnisse - Substratvariation
Beispiel 1
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 30 bar 5.3 g Propen hydroformyliert. Als Precursor wurden 0.0054 g Rh(acac)(CO)2 in 43.89 g Toluol vorgelegt. Als Ligand wurden 0.0701 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0372 g der Verbindung (Ib) sowie 0.5016 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Es wurden 89.6 mol-% Butanal, 7.9 mol- % 2-Methylpropanal und 2,3 mol-% Propan gebildet. Die Regioselektivität zu n-Butanal beträgt 92.0 %.
Beispiel 2
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 5.6 g cis-2-Buten hydroformyliert. Als Precursor wurden 0.0056 g Rh(acac)(CO)2 in 48.8 g Toluol vorgelegt. Als Ligand wurden 0.0779 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0416 g der Verbindung (Ib) sowie 0.5760 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert.
Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Es wurden 80.0 mol-% Pentanal, 5.2 mol-% 2-Methylbutanal und 3.7 mol-% n-Butan gebildet. Die Regioselektivität zu n-Pentanal beträgt 94.0 %.
Beispiel 3
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 6.3 g Isobuten hydroformyliert. Als Precursor wurden 0.0046 g Rh(acac)(CO)2 in 39.8 g Toluol vorgelegt. Als Ligand wurden 0.0636 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0339 g der Verbindung (Ib) und 0.4701 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Es wurden 72.9 mol-% 3-Methylbutanal, 0.1 mol-% Pivalinaldehyd und 4.4 mol-% iso-Butan gebildet.
Beispiel 4
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 6.7 g eines C-4-Gemisches mit folgender Zusammensetzung: 2.9 mol-% Isobutan, 9,9 mol-% n- Butan, 28.7 mol-% 1 -Buten, 43.5 mol-% Isobuten, 14,6 mol % 2-Butene und 0.2 mol % 1 ,3-Butadien hydroformyliert. Als Precursor wurden 0.0049 g Rh(acac)(CO)2 in 42.38 g Toluol vorgelegt. Als Ligand wurden 0.0697 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0374 g der Verbindung (Ib) sowie 0.5069 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 32.86 % 3- Methylbutanal (Umsatz Isobuten 75.6 mol -%), 39.0 mol-% n-Pentanal und 1 .8 mol-% 2- Methylbutanal (Umsatz Butene 76.5 mol-%, Regioselektivität zu n-Pentanal 95.6 %). Als Hydrierprodukte werden im Austrag 4.7 mol-% Isobutan und 1 1 .3 mol % n-Butan gefunden.
Beispiel 5
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 6.5 g ein C-4-Gemisch mit folgender Zusammensetzung: 5.9 mol-% Isobutan, 15.6 mol-% n- Butan, 52.9 mol-% 1 -Buten, 0.1 mol-% Isobuten, 24.8 mol % 2-Butene und 0.5 mol % 1 ,3- Butadien hydroformyliert. Als Precursor wurden 0.0052 g Rh(acac)(CO)2 in 45.05 g Toluol vorgelegt. Als Ligand wurden 0.0727 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0377 g der Verbindung (Ib) sowie 0.5314 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegas- regelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 0.14 mol-% 3- Methylbutanal, 69.5 mol-% n-Pentanal und 3.67 mol-% 2-Methylbutanal (Umsatz Butene 94.2 mol-%, Regioselektivität zu n-Pentanal 96.5 %). Als Hydrierprodukte werden im Austrag 5.64 mol-% Isobutan und 18.55 mol % n-Butan gefunden.
Beispiel 6
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 7.0 g eines C-4-Gemisches mit folgender Zusammensetzung: Das Edukt enthält 5.9 mol-% Isobutan, 22.1 mol-% n-Butan, 45.5 mol-% 1 -Buten, 2.1 mol-% Isobuten, 17.1 mol % 2- Butene und 0.2 mol % 1 ,3-Butadien hydroformyliert. Als Precursor wurden 0.0047 g Rh(acac)(CO)2 in 40.81 g Toluol vorgelegt. Als Ligand wurden 0.0659 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0342 g der Verbindung (Ib) und 0.4814 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 1 .5 mol-% 3-Methylbutanal (Umsatz Isobuten 71 .6 mol-%), 61.9 mol-% n- Pentanal und 2.9 mol-% 2-Methylbutanal (Umsatz Butene 93.3 mol-%, Regioselektivität zu n-Pentanal 95.5 %). Als Hydrierprodukte werden im Austrag 5.3 mol-% Isobutan und 23.4 mol % n-Butan gefunden.
Beispiel 7
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 7.1 g eines C-4-Gemisches mit folgender Zusammensatzung: 3.5 mol-% Isobutan, 13.0 mol-% n-Butan, 47.3 mol-% 1 -Buten, 13.9 mol-% Isobuten, 21 .6 mol % 2-Butene und 0.4 mol % 1 ,3-Butadien hydroformyliert. Als Precursor wurden 0.0048 g Rh(acac)(CO)2 in 43.88 g Toluol vorgelegt. Als Ligand wurden 0.0680 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0363 g der Verbindung (Ib) und 0.5092 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 10.1 mol-% 3- Methylbutanal (Umsatz Isobuten 72.8 mol-%), 63.2 mol-% n-Pentanal und 3.2 mol-% 2- Methylbutanal (Umsatz Butene 96.3 mol-%, Regioselektivität zu n-Pentanal 95.2 %). Als Hydrierprodukte werden im Austrag 3.5 mol-% Isobutan und 15.1 mol % n-Butan gefunden.
Beispiel 8
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 5.8 g eines C-4-Gemisches mit folgender Zusammensetzung: 0.1 mol-% Isobutan, 27.6 mol-% n-Butan, 27.9 mol-% 1 -Buten, 0.1 mol-% Isobuten und 44.0 mol % 2-Butene hydroformy- liert. Als Precursor wurden 0.0051 g Rh(acac)(CO)2 in 43.77 g Toluol vorgelegt. Als Ligand wurden 0.0699 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0373 g der Verbindung (Ib) und 0.5166 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 59.9 mol-% n-Pentanal und 3.3 mol-% 2- Methylbutanal (Umsatz Butene 91.7 mol-%, Regioselektivität zu n-Pentanal 94.7 %). Als Hydrierprodukte werden im Austrag 0.1 mol-% Isobutan und 31 .7 mol % n-Butan gefunden.
Beispiel 9
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 6.0 g eines C-4-Gemisches mit folgender Zusammensetzung: 63.6 mol-% n-Butan, 1 .0 mol-% 1 -Buten und 35.8 mol % 2-Butene hydroformyliert. Als Precursor wurden 0.0041 g Rh(acac)(CO)2 in 35.88 g Toluol vorgelegt. Als Ligand wurden 0.0573 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0306 g der Verbindung (Ib) und 0.4235 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 29.7 mol-% n-Pentanal und 1.9 mol-% 2-Methylbutanal (Umsatz Butene 85.3 mol- %, Regioselektivität zu n-Pentanal 94.0 %).
Beispiel 10
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 5.0 g n-Octene hydroformyliert. Als Precursor wurden 0.0049 g Rh(acac)(CO)2 in 41 .29 g Toluol vorgelegt. Als Ligand wurden 0.0669 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0378 g der Verbindung (Ib) und 0.5030 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 54.2 mol-% Aldehyde (Regioselektivität zu n-Nonanal 90.9 %). Als Hydrierprodukte werden im Austrag 3.9 mol % n-Octan und 3.2 % Nonanol gefunden
Beispiel 1 1
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 7.0 g
I , 3-Butadien hydroformyliert. Als Precursor wurden 0.0054 g Rh(acac)(CO)2 in 46.82 g Toluol vorgelegt. Als Ligand wurden 0.0770 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0413 g der Verbindung (Ib) und 0.5599 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Austrag enthält 0.2 mol-% n-Butan,
I I .3 % n-Butene, 12.9 % Aldehyde und 1 1 .5 mol-% 4-Vinyl-Cyclohexen. Der Gesamtumsatz an 1 -3-Butadien beträgt 37.2 %.
Beispiel 12
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 5.6 g Ölsäuremethylester hydroformyliert. Als Precursor wurden 0.0052 g Rh(acac)(CO)2 in 44.06 g Toluol vorgelegt. Als Ligand wurden 0.0689 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0375 g der Verbindung (Ib) und 0.5260 g TI PB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Aus 1H- und 13C-NMR-Spektren wurden eine Aldehydausbeute von 49.5 mol-% berechnet. Die Regioselektivität zu endständigen Aldeyden beträgt 20.6 mol-%. Der Doppelbindungsanteil beträgt 35.9 mol- %.
Beispiel 13
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 6.9 g eines Kohlenwasserstoffgemisches aus katalytisch betriebenen Spaltanlagen mit folgender Zusammensetzung: 1 .5 mol-% Propan, 0.8 mol-% Propen, 28.1 mol-% Isobutan, 8.1 mol-% n-Butan, 16.4 mol-% 1 -Buten, 16.9 mol-% Isobuten, 28.2 mol-% 2-Butene, 0.5 mol- % 1 ,3-Butadien und Anteile an C5-Olefinen und -Kohlenwasserstoffen hydroformyliert. Als Precursor wurden 0.0048 g Rh(acac)(CO)2 in 43.39 g Toluol vorgelegt. Als Ligand wurden 0.0672 g Ligand (1 ) in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0359 g der Verbindung (Ib) und 0.5035 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen.
Der Austrag enthält 1 .3 mol-% Propan, 0.7 mol-% Butanal, 27.5 mol-% Isobutan, 9.6 mol- % n-Butan, 13.1 mol-% 3-Methylbutanal (77.4 % Isobutenumsatz), 39.1 mol-% Pentanal, 2.1 mol % 2-Methylbutanal (Umsatz n-Butene 96.9 %, Regioselektivtät zu n-Pentanal 95.0 %).
Beispiel 14
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 50 bar 1 .8 g Ethen hydroformyliert. Als Precursor wurden 0.0050 g Rh(acac)(CO)2 in 42.68 g Toluol vorgelegt. Als Ligand wurden 0.0668 g Ligand (1 ) in der Katalysatoransatzlösung einge- setzt. Als organisches Amin wurden 0.0363 g der Verbindung (Ib) und 0.5095 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert. Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 20 Stunden gezogen. Der Umsatz zu Propanal beträgt 98.7 %.
Vergleichsversuch - Unsymmetrische und symmetrische Liganden
Neben der Testung des erfindungsgemäßen unsymmetrischen Liganden (1 ) mit verschiedenen Substraten wurden weiterhin symmetrische Liganden und ihr entsprechendes unsymmetrisches Isomer unter vergleichbaren Bedingungen getestet.
Zunächst wurde der im Stand der Technik bereits erwähnte symmetrische Biphephoslig- and und sein unsymmetrisches Isomer (9) getestet. Die Verbindung (9) wurde analog der Synthesevorschrift in WO 95/28228 auf Seite 19 hergestellt.
Figure imgf000035_0001
Biphephos '
Die Versuche wurden nach der nachfolgenden Vorschrift durchgeführt: Beispiel 15
In einem 100 ml-Autoklaven der Fa. Parr Instruments wurde bei 120 °C und 20 bar 5.7 g cis-2-Buten hydroformyliert. Als Precursor wurden 0.0054 g Rh(acac)(CO)2 in 51.5 g Diphyl (Gemisch aus ca. 73,5% Diphenyloxid und 26,5% Diphenyl) vorgelegt. Als Ligand wurden 0.0779 g des entsprechenden Liganden in der Katalysatoransatzlösung eingesetzt. Als organisches Amin wurden 0.0416 g der Verbindung (Ib) sowie 0.5760 g TIPB als GC-Standard zugefügt. Das Edukt wurde nach Erreichen der vorgesehenen Reaktionstemperatur zudosiert.
Während der Reaktion wurde der Druck über eine Synthesegasregelung mit Massedurchflussmesser konstant gehalten. Proben wurden aus der Reaktionsmischung nach 12 Stunden gezogen.
Die Ergebnisse sind in der Tabelle 3 dargestellt.
Tabelle 3:
Figure imgf000036_0001
Das unsymmetrische Isomer (Ligand 9; Eintrag 2) des symmetrischen Biphephos zeichnet sich also durch eine deutlich geringere Aktivität sowie durch eine viel schlechtere Selekti- vität als der symmetrische Biphephosligand aus. Dies entspricht dem Stand der Technik. Die Verwendung beider Liganden, also des symmetrischen Biphephosliganden und seines unsymmetrischen Isomers ist bereits in Rhodium-catalyzed Hydroformylation, ed. by P.W.N.M. van Leeuwen et C. Claver, Kluwer Academic Publishers 2006, AA Dord- recht, NL beschrieben. Auf Seite 45-46, Tabelle 2 sind die Hydroformylierungsergebnisse beider Liganden unter vergleichbaren Bedingungen dargestellt. Dabei geht deutlich hervor, dass sich der symmetrische Biphephosligand (in der Literaturstelle Ligand 5a) durch eine deutlich höhere n/i-Selektivität und eine höhere Aktivität auszeichnet als sein unsymmetrisches Isomer (in der Literaturstelle Ligand 7). In der Hydroformylierungsreak- tion von Propen weist der symmetrische Ligand eine n/i-Selektivität von 53 und eine Reaktionsrate von 402 auf, wohingegen der unsymmetrische Ligand lediglich eine n/i- Selektivität von 1 .2 und eine Reaktionsrate von 280 auf. Dies konnte durch die eigenen Ergebnisse in Tabelle 3 noch einmal bestätigt werden. Weiterhin wurden der erfindungsgemäße Ligand (1 ) und sein symmetrisches Isomer (10) unter vergleichbaren Bedingungen getestet. Die nachfolgenden Versuche wurden nach der Vorschrift in Beispiel 2 durchgeführt. Lediglich die Liganden wurden ausgetauscht. In Tabelle 4 sind die Hydroformylierungsergebnisse von cis-2-Buten mit dem erfindungsge- mäßen Liganden (1 ) und seinem symmetrischen Isomeren, Ligand (9), dargestellt.
Figure imgf000037_0001
(1 ) (10)
Tabelle 4:
Figure imgf000037_0002
Der erfindungsgemäße unsymmetrische Ligand (1 ) (Eintrag 1 ) weist eine sehr gute n- Pentanal-Regioselektivität von 94% und gute Aldehydausbeuten auf. Sein symmetrisches Isomer (Eintrag 2) hingegen weist geringere Pentanalselektivitäten von lediglich 90% und deutlich geringere Aktivitäten, d.h. Ausbeuten aus.
Dieses Ergebnis ist überraschend, da unsymmetrische substituierte Bisphosphite gegenüber symmetrisch substituierten deutlich an Aktivität und Selektivität einbüßen, wie im Stand der Technik beschrieben und durch die obigen Vergleichsversuche mit dem Liganden Biphephos und seinem unsymmetrischen Isomer (9) bestätigt. Somit zeichnet sich der erfindungsgemäße unsymmetrische Ligand (1 ) völlig entgegen dem Stand der Technik durch sehr gute Selektivitäten und Aktivitäten aus. Weiterhin handelt es sich bei dem erfindungsgemäßen Liganden (1 ) um einen sehr langzeitstabilen Liganden wie in dem nachfolgenden Langzeitversuch in einer kontinuierlich betriebenen Anlage gezeigt wird.
Vergleichsversuch - Langzeitversuch
In einer ersten Versuchsreihe wurde die erfindungsgemäße Verbindung (1 ) getestet. In der zweiten Versuchsreihe wurde unter den gleichen Versuchsbedingungen die Vergleichsverbindung Biphephos verwendet:
Figure imgf000038_0001
Biphephos
Eine Hydroformylierung von Buten/Butan-Mischungen wurde in einer kontinuierlich betriebenen Versuchsanlage durchgeführt.
Diese Versuchsanlage bestand im Wesentlichen aus einem 20 Liter fassenden Druckreaktor mit einem nachgeschalteten Kondensator und Phasentrennbehälter (Gas/Flüssigkeit) für die aus dem Reaktor stammende Gasphase sowie einem Kreisgasverdichter, der die Gasphase aus dem Phasentrennbehälter wieder unten in die Reaktionszone zurück führt. Ein Teil dieses Kreisgases wird nach der Phasentrennung als Abgas aus dem Reaktionssystem gefahren.
Um eine optimale Gasverteilung im Reaktorsystem zu realisieren, wurde hier ein Gasverteilerring mit Bohrungen verbaut.
Über installierte Heiz- und Kühlvorrichtungen konnte der Reaktor temperiert werden.
Vor der Hydroformylierung wurde das Reaktorssystem mit Stickstoff frei von Sauerstoff gespült. Anschließend wurde der Reaktor mit 12 Liter Katalysatorlösung gefüllt.
Diese Katalysatorlösung setzte sich aus 12 kg Isononylbenzoat, 4.5 g Rh(acac)(CO)2, 63 g Bisphosphit-Ligand (1 ), 200g Amin IIb zusammen und wurde vorher in einem Behälter gemischt. Das Isononylbenzoat wurde zuvor mit Stickstoff gestrippt, um Sauerstoff und Wasser aus dem Lösemittel zu entfernen.
Anschließend wurde das Reaktorsystem mit Synthesegas frei von Stickstoff gespült. Nachdem der Stickstoffgehalt < 10 Vol% gefallen war, wurde das Reaktorsystem mit Synthesegas auf 1 ,0 MPa aufgedrückt und anschließend auf 120 °C aufgeheizt.
Nach Erreichen der Betriebstemperatur wurde das Reaktorsystem mit Synthesegas auf 1 ,7 MPa Reaktionsdruck gebracht.
Danach wurde die Zugabe der Ausgangsstoffe gestartet. Das Rohbutan wurde über einen Verdampfer gefahren, um das Rohbutan gasförmig in das Kreisgas zu fahren.
Folgende Durchsätze wurden eingestellt:
0,3 kg/h Rohbutan (eine Mischung aus 35 % 2-Butenen und n-Butan und 1 -Buten Konzentrationen von ca. 1 %) 75 Nl/h Synthesegas (50 Vol% H2 und 50 Vol% CO).
Zur täglichen Dosierung der Verbindung (1 ) und Amins IIb wurde eine 1 ,4%ige Lösung des Bisphosphit-Liganden I in n-Pentanal angesetzt, welches zuvor durch Strippen mit Stickstoff von restlichen C4-Kohlenwasserstoffen (< 3 %) befreit wurde. Das Amin IIb wurde in einem dreifachen molaren Überschuss zur Verbindung (1 ) eingesetzt. Zur besseren Stabilisierung dieser Lösung wurde das Amin IIb vor dem Bisphosphit-Liganden (1 ) zur Lösung gegeben.
Die Reaktionsprodukte wurden kontinuierlich über den Kreisgasstrom aus dem Reaktor entfernt und im Kondensator bei 50 °C partiell auskondensiert. Die auskondensierte Phase wurde kontinuierlich aus dem Phasentrennbehälter gefahren. Zur Ausbeutebestimmung wurden aus dem Kreisgas vor und nach Reaktor Proben gezogen und mittels Gaschromatograph analysiert.
Durch eine tägliche Dosierung der oben beschriebenen Ligandenlösung, konnte der Umsatz und die Regioselektivität konstant gehalten werden.
Zur Bestimmung des Reaktorinhaltes wurden Proben aus dem Reaktor entnommen und mittels Flüssigchromatographie (HLPC) untersucht.
Unter den gewählten Reaktionsbedingungen stellte sich eine Aldehydausbeute zwischen 80% und 90% ein. Dieser Zustand konnte bis zum Versuchsende konstant gehalten werden. Die prozentuale Verteilung zwischen n-Pentanal und 2-Methylbutanal, bzw. die Regio-Selektivität, betrug 92 % zu 8 %.
In der stationären Phase des Versuches konnte kein Rhodiumabbau verzeichnet werden. Die Ergebnisse sind in Figur 3 dargestellt.
Figur 3 zeigt einen 1500 h Langzeitversuch in der Hydroformylierung von Rohbutan mit dem erfindungsgemäßen unsymmetrischen Liganden (1 ). Während der gesamten Versuchsdauer konnte eine konstant hohe Aktivität, d.h. Aldehydausbeute von durchschnittlich 80% gewährleistet werden bei weiterhin sehr guter Regioselektivität.
In der zweiten Versuchsreihe wurde anstelle der erfindungsgemäßen Verbindung (1 ) 55 g der Vergleichsverbindung Biphephos eingesetzt. Die Ergebnisse sind in Figur 4 dargestellt.
Unter den gewählten Reaktionsbedingungen fiel die Aldehydausbeute von anfänglich 70 % bis 80% nach 150 h auf 40% bis 50% ab. Die prozentuale Verteilung zwischen n- Pentanal und 2-Methylbutanal, bzw. die Regio-Selektivität, betrug 95 % zu 5 %.
In der stationären Phase des Versuches konnte kein Rhodiumabbau verzeichnet werden.
Figur 4 zeigt einen 250 h Langzeitversuch in der Hydroformylierung von Rohbutan mit dem symmetrischen Vergleichsliganden Biphephos. Hierbei kann im Vergleich zu dem erfindungsgemäßen Liganden keine langandauernde Aktivität gewährleistet werden. Unter den gewählten Reaktionsbedingungen fiel die Aldehydausbeute von anfänglich 70 % bis 80% nach 150 h auf 40% bis 50% ab. Die Regio-Selektivität war weiterhin sehr gut. D.h dieser Ligand zeichnet sich durch eine deutlich geringere Langzeitstabiltät.
Folglich zeichnet sich der erfindungsgemäße unsymmetrische Ligand (1 ) durch eine deutlich verbesserte Stabilität aus als der symmetrische Vergleichsligand Biphephos.
Der erfindungsgemäße Ligand (1 ) in der katalytisch aktiven Zusammensetzung zeichnet sich durch eine deutlich bessere Langzeitstabilität als die bisher im Stand der Technik beschriebenen Liganden aus und erfüllt somit die gestellte Aufgabe. Eine optimale Langzeitstabilität der katalytisch aktiven Zusammensetzung ist insbesondere in der großtechnischen Anwendung von Bedeutung, da der Ligand in der Hydroformylierungsreaktion großtechnisch zwar nachdosiert werden kann, jede Nachdosierung jedoch die Wirtschaftlichkeit eines großtechnischen Prozesses negativ beeinflusst und ihn ggf. unrentabel macht. Somit ist es essentiell einen möglichst langzeitstabilen Liganden einzusetzen, der sich neben der Langzeitstabilität auch durch eine gute Aktivität und eine gute n/i- Selektivität auszeichnet. Diese Aufgabe wird durch den erfindungsgemäßen Liganden (1 ) erfüllt.

Claims

Patentansprüche
1 . Verbindung der Formel (1 ):
Figure imgf000042_0001
(1 )
2. Verfahren zur Herstellung einer Verbindung nach Anspruch 1 umfassend die Verfahrensschritte:
i) oxidative Kopplung von 2,4-Dimethylphenol zu 3, 3', 5, 5"-Tetramethyl-2,2'- dihydroxybiphenyl;
ii) oxidative Kopplung von 3-tert.-Butyl-4-Hydroxyanisol zu 5, 5'-Dimethoxy-3, 3'-di- tert.-Butyl-2, 2'-dihydroxybiphenyl;
iii) Umsetzung von 3, 3', 5, 5"-Tetramethyl-2,2'-dihydroxybiphenyl aus i) mit PCI3 zum Phosphorochloriditderivat unter Inertgasatmosphäre;
iv) Umsetzung von zumindest 2 Äquivalenten des Phophorochloriditderivats aus iii) mit 1 Äquivalent des 5, 5'-Dimethoxy-3, 3'-di-tert.-Butyl-2, 2'-dihydroxybiphenyl aus ii) unter Inertgasatmosphäre.
3. Verfahren nach Anspruch 2,
wobei im Verfahrensschritt iv) ein Lösungsmittelgemisch verwendet wird.
4. Verfahren nach Anspruch 3,
wobei das Lösungsmittelgemisch, welches im Verfahrensschritt iv) verwendet wird, ausgewählt ist aus organischen Stickstoffverbindungen, organischen Estern, Aromaten.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass die organische Stickstoffverbindung eine Verbindung ist ausgewählt unter Nitrilen, Aminen, Amiden.
6. Verfahren nach einem der Ansprüche 2 bis 5,
zusätzlich umfassend den Verfahrensschritt v), indem die Verbindung (1 ) als Feststoff abgetrennt und in einem aprotischen Lösungsmittelgemisch suspendiert und/oder umkristallisiert wird.
7. Verbindung gemäß der Formel (2):
Figure imgf000043_0001
(2) wobei M ausgewählt ist aus Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt und M zusätzliche Bindungen eingehen kann.
8. Verbindung gemäß der Formel (3):
Figure imgf000044_0001
(3) wobei M ausgewählt ist aus: Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.
9. Verbindung nach Anspruch 8, wobei M Rh ist.
10. Gemisch umfassend eine Verbindung gemäß der Formel (2) und/oder (3),
wobei das Gemisch zusätzlich eine Verbindung gemäß der Formel (1 ) umfasst, welche nicht an M gebunden ist.
1 1. Zusammensetzung umfassend ein Gemisch nach Anspruch 10,
welche zusätzlich zu dem Gemisch eine weitere Komponente aufweist ausgewählt aus Basen, organische Amine, Pufferlösungen, Epoxide, Ionenaustauscher.
12. Zusammensetzung nach Anspruch 1 1 ,
wobei das organische Amin zumindest eine 2,2,6,6-Tetramethylpiperidineinheit aufweist.
13. Zusammensetzung nach Anspruch 1 1 ,
wobei die weitere Komponente ein Sebacinsäuredi-4-(2,2,6,6-tetramethylpiperidinyl)- ester ist.
14. Verfahren zur Hydroformylierung einer ungesättigten Verbindung oder eines Gemisches von ungesättigten Verbindungen umfassend die Verfahrensschritte: a) Vorlegen einer Verbindung nach Anspruch 1 oder einer Zusammensetzung nach den Ansprüchen 1 1 bis 13,
b) Einleiten eines Gasgemisches umfassend Kohlenmonoxid und Wasserstoff c) . Zugabe mindestens einer ungesättigten Verbindung oder eines Gemisches von ungesättigten Verbindungen.
15. Verfahren nach Anspruch 14,
wobei die ungesättigte Verbindung oder deren Gemisch ausgewählt sind aus:
- Kohlenwasserstoffgemischen aus Dampfspaltanlagen;
- Kohlenwasserstoffgemischen aus katalytisch betriebenen Spaltanlagen;
- Kohlenwasserstoffgemischen aus Oligomerisierungsprozessen;
- Kohlenwasserstoffgemischen umfassend mehrfach ungesättigte Verbindungen;
- ungesättigten Carbonsäurederivaten.
16. Verfahren nach Anspruch 14 oder 15,
dadurch gekennzeichnet, dass das Gemisch ungesättigte Verbindungen mit 2 bis 30 Kohlenstoffatomen aufweist.
17. Verfahren nach einem der Ansprüche 14 bis 16,
dadurch gekennzeichnet, dass das Gemisch ungesättigte Verbindungen mit 2 bis 8 Kohlenstoffatomen aufweist.
18. Verfahren nach einem der Ansprüche 14 bis 17,
dadurch gekennzeichnet, dass die ungesättigten Carbonsäurederivate ausgewählt sind unter Fettsäureestern.
PCT/EP2013/070210 2012-10-12 2013-09-27 Unsymmetrisches bisphosphit WO2014056733A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020157011943A KR101724219B1 (ko) 2012-10-12 2013-09-27 비대칭 비스포스파이트
MX2015004616A MX2015004616A (es) 2012-10-12 2013-09-27 Bifosfito asimetrico.
SG11201502815PA SG11201502815PA (en) 2012-10-12 2013-09-27 Asymmetrical bisphosphite
CA2887565A CA2887565A1 (en) 2012-10-12 2013-09-27 Asymmetrical bisphosphite
US14/435,007 US9556096B2 (en) 2012-10-12 2013-09-27 Unsymmetric bisphosphite
JP2015536052A JP6246218B2 (ja) 2012-10-12 2013-09-27 非対称ビスホスフィット
EP13773204.6A EP2906571B1 (de) 2012-10-12 2013-09-27 Unsymmetrisches bisphosphit
ES13773204.6T ES2603929T3 (es) 2012-10-12 2013-09-27 Bisfosfito asimétrico
CN201380065168.4A CN104837851B (zh) 2012-10-12 2013-09-27 不对称的双亚磷酸酯
ZA2015/03227A ZA201503227B (en) 2012-10-12 2015-05-11 Asymmetrical bisphosphite

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102012218627.1 2012-10-12
DE102012218627 2012-10-12
DE102012218630.1 2012-10-12
DE102012218629.8 2012-10-12
DE102012218630 2012-10-12
DE102012218625.5 2012-10-12
DE102012218625 2012-10-12
DE102012218629 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014056733A1 true WO2014056733A1 (de) 2014-04-17

Family

ID=49237234

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/EP2013/070210 WO2014056733A1 (de) 2012-10-12 2013-09-27 Unsymmetrisches bisphosphit
PCT/EP2013/070226 WO2014056736A1 (de) 2012-10-12 2013-09-27 Gemisch von bisphosphiten und dessen verwendung als katalysatorgemisch in der hydroformylierung
PCT/EP2013/070238 WO2014056737A1 (de) 2012-10-12 2013-09-27 Gemisch aus verschiedenen unsymmetrischen bisphosphiten und dessen verwendung als katalysatorgemisch in der hydroformylierung
PCT/EP2013/070208 WO2014056732A1 (de) 2012-10-12 2013-09-27 Langzeitstabiles verfahren zur herstellung von c5-aldehyden
PCT/EP2013/070224 WO2014056735A1 (de) 2012-10-12 2013-09-27 Gemische konstitutionsisomerer bisphosphite

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/EP2013/070226 WO2014056736A1 (de) 2012-10-12 2013-09-27 Gemisch von bisphosphiten und dessen verwendung als katalysatorgemisch in der hydroformylierung
PCT/EP2013/070238 WO2014056737A1 (de) 2012-10-12 2013-09-27 Gemisch aus verschiedenen unsymmetrischen bisphosphiten und dessen verwendung als katalysatorgemisch in der hydroformylierung
PCT/EP2013/070208 WO2014056732A1 (de) 2012-10-12 2013-09-27 Langzeitstabiles verfahren zur herstellung von c5-aldehyden
PCT/EP2013/070224 WO2014056735A1 (de) 2012-10-12 2013-09-27 Gemische konstitutionsisomerer bisphosphite

Country Status (13)

Country Link
US (5) US9499463B2 (de)
EP (5) EP2906572B1 (de)
JP (5) JP6335905B2 (de)
KR (5) KR101717864B1 (de)
CN (5) CN104837852B (de)
AR (4) AR092987A1 (de)
CA (4) CA2887580A1 (de)
ES (4) ES2615677T3 (de)
MX (4) MX2015004527A (de)
SG (5) SG11201502815PA (de)
TW (1) TW201422632A (de)
WO (5) WO2014056733A1 (de)
ZA (4) ZA201503226B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218172A (ja) * 2014-05-20 2015-12-07 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG カーボネート基を有する、新規モノホスファイト配位子
US9272973B2 (en) 2012-10-12 2016-03-01 Evonik Industries Ag Stable long-term method for producing C5-aldehydes
EP3029055A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Monophosphite die einen unsymmetrischen Biaryl-Baustein aufweisen
EP3029048A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Bisphosphite die einen unsymmetrischen Biphenol-Flügel-Baustein aufweisen
EP3029050A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Bisphosphite die eine Naphthyl-Phenyl-Einheit als Flügel-Baustein aufweisen
CN105669754A (zh) * 2014-12-04 2016-06-15 赢创德固赛有限公司 具有萘基-苯基单元作为侧翼单元和2,3’-联苯酚单元作为中心单元的双亚磷酸酯
US20180126366A1 (en) * 2016-11-08 2018-05-10 Evonik Degussa Gmbh Phosphorous acid p,p'-[5,5',6,6'-tetramethyl-3,3'-bis(1-methylethyl)[1,1'-biphenyl]-2,2'-diyl] p,p,p',p'-tetrakis(2,4-dimethylphenyl) ester in hydroformylation
US10526356B2 (en) 2016-11-08 2020-01-07 Evonik Degussa Gmbh Bisphosphites having 2,4-tert-butylphenyl units and use thereof as ligands in hydroformylation
EP4091712A1 (de) 2021-05-18 2022-11-23 Evonik Operations GmbH Verfahren zur regenerierung eines katalysators für die hydroformylierung von olefinen in der gasphase

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202779A1 (de) 2012-02-23 2013-08-29 Evonik Oxeno Gmbh Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches
DE102013217174A1 (de) * 2013-08-28 2015-03-05 Evonik Industries Ag Zusammensetzung und deren Verwendung in Verfahren zur Hydroformylierung von ungesättigten Verbindungen
DE102013217166A1 (de) * 2013-08-28 2015-03-05 Evonik Industries Ag Verfahren zur Hydroformylierung von ungesättigten Verbindungen durch SILP-Katalyse
DE102014201756A1 (de) 2014-01-31 2015-08-06 Evonik Degussa Gmbh Reinigung chlorverschmutzter Organophosphorverbindungen
DE102014209536A1 (de) * 2014-05-20 2015-11-26 Evonik Degussa Gmbh Herstellung qualitativ hochwertiger Oxo-Alkohole aus unsteten Rohstoffquellen
DE102015202722A1 (de) 2014-05-20 2015-11-26 Evonik Degussa Gmbh Verfahren zur katalytischen Herstellung von Aldehyden aus Olefinen unter Einsatz von Monophosphit-Gemischen
EP3029058B1 (de) 2014-12-04 2019-02-27 Evonik Degussa GmbH Bisphosphite die einen unsymmetrischen biaryl-zentral-baustein aufweisen
EP3029045B1 (de) * 2014-12-04 2018-06-13 Evonik Degussa GmbH Bisphosphite die eine 2,3 -Biphenol-Einheit als Zentral-Baustein aufweisen
EP3075449A1 (de) 2015-04-02 2016-10-05 Evonik Degussa GmbH Verfahren zur untersuchung der langzeiteigenschaften homogener katalysatorsysteme im kontinuierlichen betrieb
ES2701843T3 (es) 2015-11-19 2019-02-26 Evonik Degussa Gmbh Influencia de la viscosidad de mezclas de ésteres basadas en n-buteno mediante empleo selectivo de eteno en la obtención de productos previos de ésteres
RU2751511C9 (ru) * 2016-02-11 2021-08-18 Дау Текнолоджи Инвестментс Ллк Способы превращения олефинов в спирты, простые эфиры или их комбинации
EP3246303B8 (de) 2016-05-19 2020-01-01 Evonik Operations GmbH Herstellung von n-pentanal aus butenarmen einsatzstoffgemischen
US10227279B2 (en) 2016-09-12 2019-03-12 Evonik Degussa Gmbh Dehydrogenation of LPG or NGL and flexible utilization of the olefins thus obtained
JP2020523297A (ja) * 2017-06-13 2020-08-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 1,6−ヘキサンジオール誘導体を製造するためのヒドロホルミル化方法
CN109666044B (zh) * 2018-07-04 2021-03-05 浙江大学 基于[2.2]对环芳烷骨架的有机磷化合物及其中间体和制备方法与用途
CN110862307A (zh) * 2018-08-27 2020-03-06 中国石油化工股份有限公司 一种混合碳四氢甲酰化反应制备醛的方法
SE543296C2 (en) * 2019-07-05 2020-11-17 Perstorp Ab A use of epoxide in order to reduce the formation of heavy ends in a hydroformylation process
EP4074720B1 (de) * 2021-04-16 2023-07-19 Evonik Operations GmbH Gemisch von bisphosphiten mit einem offenen und einem geschlossenen flügelbaustein und dessen verwendung als katalysatorgemisch in der hydroformylierung
EP4074686B1 (de) 2021-04-16 2023-05-31 Evonik Operations GmbH Verfahren zur herstellung von biphenyl-2,2'-diolen
EP4198011A1 (de) 2021-12-17 2023-06-21 Evonik Operations GmbH Verfahren zur hydroformylierung von olefinen unter einsatz von pt und dpephos
EP4273119A1 (de) 2022-05-03 2023-11-08 Evonik Operations GmbH Verfahren zur herstellung von c5-aldehyden
CN114988992A (zh) * 2022-05-31 2022-09-02 中海油天津化工研究设计院有限公司 一种干气乙烯氢甲酰化制备丙醛的方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169861A (en) 1977-08-19 1979-10-02 Celanese Corporation Hydroformylation process
US4193943A (en) 1976-01-19 1980-03-18 Celanese Corporation Hydroformylation catalysts
US4201714A (en) 1977-08-19 1980-05-06 Celanese Corporation Stabilized catalyst complex of rhodium metal, bidentate ligand and monodentate ligand
EP0155508A1 (de) 1984-02-17 1985-09-25 Union Carbide Corporation Durch Übergangsmetall-Komplexverbindungen katalysierte Reaktionen
US4567306A (en) 1983-12-23 1986-01-28 Davy Mckee (London) Limited Continuous process for the production of aldehydes by hydroformylation of olefins
US4694109A (en) 1986-06-13 1987-09-15 Eastman Kodak Company Chelate ligands for low pressure hydroformylation catalyst and process employing same
US4769498A (en) 1985-09-05 1988-09-06 Union Carbide Corporation Transition metal complex catalyzed processes
US4879416A (en) 1987-11-23 1989-11-07 Eastman Kodak Company Preparation of bidentate ligands
US5364950A (en) 1992-09-29 1994-11-15 Union Carbide Chimicals & Plastics Technology Corporation Process for stabilizing phosphite ligands in hydroformylation reaction mixtures
WO1995028228A1 (en) 1994-04-14 1995-10-26 E.I. Du Pont De Nemours And Company Bidentate phosphite and nickel catalyst compositions for hydrocyanation of monoolefins
WO1995030680A1 (en) 1994-05-06 1995-11-16 Dsm N.V. Bidentate phosphine ligand
US5512695A (en) 1994-04-14 1996-04-30 E. I. Du Pont De Nemours And Company Bidentate phosphite and nickel catalyst compositions for hydrocyanation of monoolefins
US5723641A (en) 1993-11-23 1998-03-03 E. I. Du Pont De Nemours And Company Processes and catalyst compositions for hydrocyanation of monoolefins
US5741942A (en) 1996-11-26 1998-04-21 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
US5763677A (en) 1995-12-06 1998-06-09 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation processes
EP1294731A1 (de) 2000-06-28 2003-03-26 Oxeno Olefinchemie GmbH Bisphosphitverbindungen, deren metallkomplexe und verwendung der verbindungen und komplexe in der olefinhydroformylierung
DE102008002188A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
WO2012095255A1 (de) 2011-01-13 2012-07-19 Evonik Oxeno Gmbh Verfahren zur aufreinigung von biphephos

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1071179A (en) 1974-08-23 1980-02-05 Thomas F. Rutledge Oxidative coupling of alkylphenols, alkoxyphenols, and naphthols, catalyzed by metal complexes of amino carboxylic and amino sulfonic acids
US4067890A (en) 1975-02-18 1978-01-10 Ici America Inc. Oxidative coupling of alkylphenols, alkoxyphenols and naphthols catalyzed by metal complexes of amino carboxylic and amino sulfonic acids
US4248802A (en) 1975-06-20 1981-02-03 Rhone-Poulenc Industries Catalytic hydroformylation of olefins
DE2965157D1 (en) 1979-03-21 1983-05-11 Davy Mckee London Process for the production of aldehydes by hydroformylation of alkenes
US4748261A (en) 1985-09-05 1988-05-31 Union Carbide Corporation Bis-phosphite compounds
US4885401A (en) 1985-09-05 1989-12-05 Union Carbide Corporation Bis-phosphite compounds
DE4026406A1 (de) 1990-08-21 1992-02-27 Basf Ag Rhodiumhydroformylierungskatalysatoren mit bis-phosphit-liganden
DE4210026A1 (de) 1992-03-27 1993-09-30 Hoechst Ag Decylalkoholgemische, daraus erhältliche Phthalsäureester und ihre Verwendung als Weichmacher
US5312996A (en) 1992-06-29 1994-05-17 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process for producing 1,6-hexanedials
US5288918A (en) 1992-09-29 1994-02-22 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process
US5886237A (en) * 1996-04-24 1999-03-23 Union Carbide Chemicals & Plastics Technology Corporation Processes for producing alkenals and alkenols
ZA986369B (en) * 1997-07-29 2000-01-17 Du Pont Hydrocyanation of diolefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles.
MY124170A (en) * 1997-07-29 2006-06-30 Invista Tech Sarl Hydrocyanation processes and multidentate phosphite ligand and nickel catalyst compositions therefor
US6635775B1 (en) 2000-02-04 2003-10-21 Finetex, Inc. Reduced odor esters and process for producing same
DE10034360A1 (de) 2000-07-14 2002-01-24 Oxeno Olefinchemie Gmbh Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen
DE10048301A1 (de) 2000-09-29 2002-04-11 Oxeno Olefinchemie Gmbh Stabilisierung von Rhodiumkatalysatoren für die Hydroformylierung von Olefinen
DE10108476A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108475A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
DE10108474A1 (de) 2001-02-22 2002-09-12 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
US6960699B2 (en) 2002-03-15 2005-11-01 Oxeno Olefinchemie Gmbh Method for the hydroformylation of olefins
DE10217186A1 (de) 2002-04-18 2003-11-13 Oxeno Olefinchemie Gmbh Benzoesäureisononylester und deren Verwendung
DE10220799A1 (de) 2002-05-10 2003-12-11 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von C13-Alkoholgemischen
DE10220801A1 (de) 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10225282A1 (de) 2002-06-07 2003-12-18 Celanese Chem Europe Gmbh Verfahren zur Herstellung von Aldehyden
AU2003250219A1 (en) 2002-08-31 2004-04-30 Oxeno Olefinchemie Gmbh Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters
MXPA05002283A (es) 2002-08-31 2005-06-08 Oxeno Olefinchemie Gmbh Procedimiento para la hidroformilacion de compuestos olefinicamente insaturados, en particular olefinas, en presencia de esteres de acido carbonico ciclicos.
US7015360B2 (en) * 2003-03-28 2006-03-21 Dow Global Technologies, Inc. Asymmetric catalysts prepared from optically active bisphosphites bridged by achiral diols
DE10360771A1 (de) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von dreiwertigen Organophosphor-Verbindungen
DE102004033410A1 (de) 2004-02-14 2005-09-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen
DE102004059292A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Alkoholen aus Olefinen durch Hydroformylierung und Hydrierung
DE102004059293A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen
DE102005042464A1 (de) 2005-09-07 2007-03-08 Oxeno Olefinchemie Gmbh Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen
DE102005046250B4 (de) 2005-09-27 2020-10-08 Evonik Operations Gmbh Anlage zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren
DE102006003618A1 (de) 2006-01-26 2007-08-02 Oxeno Olefinchemie Gmbh Verfahren zur Abtrennung von Metall-Komplexkatalysatoren aus Telomerisationsgemischen
KR101381015B1 (ko) * 2006-04-04 2014-04-04 가부시키가이샤 구라레 비스포스파이트 및 제 8 ∼ 10 족 금속 화합물을 사용한 알데히드의 제조 방법, 그리고 그 비스포스파이트
US7888414B2 (en) 2006-06-20 2011-02-15 Chemtura Corporation Liquid phosphite blends as stabilizers
MX2009005612A (es) * 2006-11-30 2009-06-08 Basf Se Proceso para la hidroformilacion de olefinas.
KR100964098B1 (ko) * 2007-04-09 2010-06-16 주식회사 엘지화학 포스파이트 리간드를 포함하는 촉매 조성물 및 이를 이용한히드로포르밀화 방법
DE102007061649A1 (de) 2007-12-20 2009-07-02 Evonik Oxeno Gmbh Einstufiges kontinuierliches Verfahren zur Hydroformylierung von höheren Olefinen oder Olefingemischen
DE102007061648A1 (de) 2007-12-20 2009-07-02 Evonik Oxeno Gmbh Mehrstufiges kontinuierliches Verfahren zur Hydroformylierung von höheren Olefinen oder Olefingemischen
PL2703380T3 (pl) * 2008-07-03 2016-05-31 Dow Technology Investments Llc Sposób obróbki produktu wyjściowego z hydroformylowania
DE102009001225A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom
DE102009001230A1 (de) 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen
DE102009001594A1 (de) 2009-03-17 2010-09-30 Evonik Oxeno Gmbh Verfahren zur Herstellung von alpha, beta-ungesättigten C10-Aldehyden
DE102009027406A1 (de) 2009-07-01 2011-01-05 Evonik Oxeno Gmbh Verfahren zur Herstellung von geruchsarmen n-Butan
RU2566769C9 (ru) 2009-07-23 2016-07-10 Эвоник Файберс Гмбх Полиимидные мембраны из полимеризационных растворов
DE102009045139A1 (de) 2009-09-30 2011-03-31 Evonik Oxeno Gmbh Herstellung von alpha,beta-ungesättigten Aldehyden mittels einer Reaktionsmischpumpe
DE102009047351A1 (de) 2009-12-01 2011-06-09 Evonik Goldschmidt Gmbh Komposit-Siliconmembranen mit hoher Trennwirkung
DE102010030209A1 (de) 2010-06-17 2011-12-22 Evonik Oxeno Gmbh Energieeffiziente Synthese von aliphatischen Adelhyden aus Alkanen und Kohlendioxid
DE102011002639A1 (de) * 2011-01-13 2012-07-19 Evonik Oxeno Gmbh Verfahren zur Herstellung von Biphephos
DE102012202779A1 (de) 2012-02-23 2013-08-29 Evonik Oxeno Gmbh Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches
CA2887580A1 (en) * 2012-10-12 2014-04-17 Evonik Degussa Gmbh Mixture of constitutional isomer bisphosphites

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193943A (en) 1976-01-19 1980-03-18 Celanese Corporation Hydroformylation catalysts
US4201714A (en) 1977-08-19 1980-05-06 Celanese Corporation Stabilized catalyst complex of rhodium metal, bidentate ligand and monodentate ligand
US4169861A (en) 1977-08-19 1979-10-02 Celanese Corporation Hydroformylation process
US4567306A (en) 1983-12-23 1986-01-28 Davy Mckee (London) Limited Continuous process for the production of aldehydes by hydroformylation of olefins
EP0155508A1 (de) 1984-02-17 1985-09-25 Union Carbide Corporation Durch Übergangsmetall-Komplexverbindungen katalysierte Reaktionen
US4769498A (en) 1985-09-05 1988-09-06 Union Carbide Corporation Transition metal complex catalyzed processes
US4694109A (en) 1986-06-13 1987-09-15 Eastman Kodak Company Chelate ligands for low pressure hydroformylation catalyst and process employing same
US4879416A (en) 1987-11-23 1989-11-07 Eastman Kodak Company Preparation of bidentate ligands
US5364950A (en) 1992-09-29 1994-11-15 Union Carbide Chimicals & Plastics Technology Corporation Process for stabilizing phosphite ligands in hydroformylation reaction mixtures
US5723641A (en) 1993-11-23 1998-03-03 E. I. Du Pont De Nemours And Company Processes and catalyst compositions for hydrocyanation of monoolefins
WO1995028228A1 (en) 1994-04-14 1995-10-26 E.I. Du Pont De Nemours And Company Bidentate phosphite and nickel catalyst compositions for hydrocyanation of monoolefins
US5512695A (en) 1994-04-14 1996-04-30 E. I. Du Pont De Nemours And Company Bidentate phosphite and nickel catalyst compositions for hydrocyanation of monoolefins
WO1995030680A1 (en) 1994-05-06 1995-11-16 Dsm N.V. Bidentate phosphine ligand
US5763677A (en) 1995-12-06 1998-06-09 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation processes
US5741942A (en) 1996-11-26 1998-04-21 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
EP1294731A1 (de) 2000-06-28 2003-03-26 Oxeno Olefinchemie GmbH Bisphosphitverbindungen, deren metallkomplexe und verwendung der verbindungen und komplexe in der olefinhydroformylierung
EP1294731B1 (de) * 2000-06-28 2004-02-18 Oxeno Olefinchemie GmbH Bisphosphitverbindungen, deren metallkomplexe und verwendung der verbindungen und komplexe in der olefinhydroformylierung
DE102008002188A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Abtrennung von 1-Buten aus C4-haltigen Kohlenwasserstoffströmen durch Hydroformylierung
DE102008002187A1 (de) 2008-06-03 2009-12-10 Evonik Oxeno Gmbh Verfahren zur Herstellung von C5-Aldehydgemischen mit hohem n-Pentanalanteil
WO2012095255A1 (de) 2011-01-13 2012-07-19 Evonik Oxeno Gmbh Verfahren zur aufreinigung von biphephos

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Catalyst Separation, Recovery and Recycling", 2006, pages: 25 - 26
"Rhodium-catalyzed Hydroformylation", 2006, KLUWER ACADEMIC PUBLISHERS, pages: 45 - 46
A. D. BECKE, PHYS. REV. A, vol. 38, 1988, pages 3098
A. SCHÄFER; H. HORN; R. AHLRICHS, J. CHEM. PHYS., vol. 97, 1992, pages 2571
B. CORNILS; W. A. HERRMANN, APPLIED HOMOGENEOUS CATALYSIS WITH ORGANOMETALLIC COMPOUNDS, vol. 1-2, 1996
J. PERDEW, PHYS. REV. B, vol. 33, 1986, pages 8822
P.W.N.M. VAN LEEUWEN; C. CLAVER: "Rhodium-catalyzed Hydroformylation", 2006, KLUWER ACADEMIC PUBLISHERS, pages: 45 - 46
R. AHLRICHS; M. BÄR; M. HÄSER; H. HORN; C. KÖLMEL, CHEM. PHYS. LETT., vol. 162, 1989, pages 16
R. FRANKE; D. SELENT; A. BÖRNER: "Applied Hydroformylation", CHEM. REV., 2012
ROBIN K. HARRIS; EDWIN D. BECKER; SONIA M. CABRAL DE MENEZES; PIERRE GRANGER; ROY E. HOFFMAN; KURT W. ZILM, PURE APPL. CHEM., vol. 80, 2008, pages 59 - 84
ROBIN K. HARRIS; EDWIN D. BECKER; SONIA M. CABRAL DE MENEZES; ROBIN GOODFELLOW; PIERRE GRANGER, PURE APPL. CHEM., vol. 73, 2001, pages 1795 - 1818
S. H. VOSKO; L. WILK; M. NUSAIR, CAN. J. PHYS., vol. 58, 1980, pages 1200
W. L. F. ARMAREGO; CHRISTI- NA CHAI: "Purification of Laboratory Chemicals", 2009, ELSEVIER

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272973B2 (en) 2012-10-12 2016-03-01 Evonik Industries Ag Stable long-term method for producing C5-aldehydes
US9409844B2 (en) 2012-10-12 2016-08-09 Evonik Degussa Gmbh Mixture of different asymmetrical bisophosphites and use thereof as a catalyst mixture in hydroformylation
JP2015218172A (ja) * 2014-05-20 2015-12-07 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG カーボネート基を有する、新規モノホスファイト配位子
EP3029050A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Bisphosphite die eine Naphthyl-Phenyl-Einheit als Flügel-Baustein aufweisen
US9617290B2 (en) 2014-12-04 2017-04-11 Evonik Degussa Gmbh Bisphosphites having an outer naphthyl-phenyl unit
CN105669755A (zh) * 2014-12-04 2016-06-15 赢创德固赛有限公司 具有不对称的联苯酚侧翼单元的双亚磷酸酯
CN105669754A (zh) * 2014-12-04 2016-06-15 赢创德固赛有限公司 具有萘基-苯基单元作为侧翼单元和2,3’-联苯酚单元作为中心单元的双亚磷酸酯
JP2016108341A (ja) * 2014-12-04 2016-06-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 非対称のビアリール構成単位を有するモノホスフィット
EP3029055A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Monophosphite die einen unsymmetrischen Biaryl-Baustein aufweisen
EP3101022A1 (de) * 2014-12-04 2016-12-07 Evonik Degussa GmbH Monophosphite die einen unsymmetrischen biaryl-baustein aufweisen
EP3029048A1 (de) * 2014-12-04 2016-06-08 Evonik Degussa GmbH Bisphosphite die einen unsymmetrischen Biphenol-Flügel-Baustein aufweisen
US9643987B2 (en) 2014-12-04 2017-05-09 Evonik Degussa Gmbh Monophosphites having an unsymmetric biaryl unit
US9790244B2 (en) 2014-12-04 2017-10-17 Evonik Degussa Gmbh Bisphosphites having an unsymmetric outer biphenol unit
US10214550B2 (en) 2014-12-04 2019-02-26 Evonik Degussa Gmbh Bisphosphites having an unsymmetric outer biphenol unit
US20180126366A1 (en) * 2016-11-08 2018-05-10 Evonik Degussa Gmbh Phosphorous acid p,p'-[5,5',6,6'-tetramethyl-3,3'-bis(1-methylethyl)[1,1'-biphenyl]-2,2'-diyl] p,p,p',p'-tetrakis(2,4-dimethylphenyl) ester in hydroformylation
US10526356B2 (en) 2016-11-08 2020-01-07 Evonik Degussa Gmbh Bisphosphites having 2,4-tert-butylphenyl units and use thereof as ligands in hydroformylation
US11027266B2 (en) 2016-11-08 2021-06-08 Evonik Operations Gmbh Phosphorous acid P,P′-[5,5′,6,6′-tetramethyl-3,3′-bis(l- methylethyl)[1,1′-biphenyl]-2,2′-diyl] P,P,P′,P'-tetrakis(2,4-dimethylphenyl) ester in hydroformylation
EP4091712A1 (de) 2021-05-18 2022-11-23 Evonik Operations GmbH Verfahren zur regenerierung eines katalysators für die hydroformylierung von olefinen in der gasphase
US11951466B2 (en) 2021-05-18 2024-04-09 Evonik Oxeno Gmbh & Co. Kg Process for regenerating a catalyst for the hydroformylation of olefins in the gas phase

Also Published As

Publication number Publication date
TW201422632A (zh) 2014-06-16
US20150266008A1 (en) 2015-09-24
CN104837852B (zh) 2016-11-09
JP6246218B2 (ja) 2017-12-13
EP2802550B1 (de) 2016-01-13
EP2906572A1 (de) 2015-08-19
CN104837853A (zh) 2015-08-12
KR20150065869A (ko) 2015-06-15
CN104837851B (zh) 2017-05-31
SG11201502815PA (en) 2015-05-28
US9499463B2 (en) 2016-11-22
WO2014056736A1 (de) 2014-04-17
EP2906573A1 (de) 2015-08-19
CN104837851A (zh) 2015-08-12
ES2566069T3 (es) 2016-04-08
US20150224488A1 (en) 2015-08-13
WO2014056737A1 (de) 2014-04-17
CA2887565A1 (en) 2014-04-17
KR20150067322A (ko) 2015-06-17
ZA201503232B (en) 2016-01-27
AR092988A1 (es) 2015-05-13
ZA201503227B (en) 2016-01-27
AR092989A1 (es) 2015-05-13
EP2906574A1 (de) 2015-08-19
AR092987A1 (es) 2015-05-13
EP2802550A1 (de) 2014-11-19
JP2015536912A (ja) 2015-12-24
JP2015536303A (ja) 2015-12-21
ZA201503228B (en) 2016-12-21
AR092990A1 (es) 2015-05-13
EP2906571B1 (de) 2016-08-24
ZA201503226B (en) 2016-05-25
ES2614055T3 (es) 2017-05-29
MX2015004616A (es) 2015-07-17
ES2603929T3 (es) 2017-03-02
WO2014056735A1 (de) 2014-04-17
KR101711770B1 (ko) 2017-03-02
KR20150065886A (ko) 2015-06-15
MX2015004527A (es) 2015-07-14
JP2015536302A (ja) 2015-12-21
US9556096B2 (en) 2017-01-31
CA2887580A1 (en) 2014-04-17
EP2906574B1 (de) 2016-11-02
JP2015531402A (ja) 2015-11-02
SG11201502824VA (en) 2015-05-28
US9272973B2 (en) 2016-03-01
ES2615677T3 (es) 2017-06-07
US9206105B2 (en) 2015-12-08
US9409844B2 (en) 2016-08-09
CA2887107A1 (en) 2014-04-17
CN104837853B (zh) 2017-05-10
JP2016500676A (ja) 2016-01-14
CN104781225A (zh) 2015-07-15
MX2015004613A (es) 2015-07-17
KR101724219B1 (ko) 2017-04-06
SG11201502843SA (en) 2015-05-28
CA2887582A1 (en) 2014-04-17
MX2015004528A (es) 2015-07-14
US20150274627A1 (en) 2015-10-01
CN104854118B (zh) 2016-12-14
EP2906573B1 (de) 2016-11-23
JP6335905B2 (ja) 2018-05-30
SG11201502756PA (en) 2015-05-28
CN104854118A (zh) 2015-08-19
EP2906571A1 (de) 2015-08-19
KR101717864B1 (ko) 2017-03-17
CN104837852A (zh) 2015-08-12
EP2906572B1 (de) 2016-11-23
SG11201502777VA (en) 2015-05-28
KR20150070225A (ko) 2015-06-24
KR20150070224A (ko) 2015-06-24
WO2014056732A1 (de) 2014-04-17
US20150290633A1 (en) 2015-10-15
US20150273455A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
EP2906571B1 (de) Unsymmetrisches bisphosphit
EP2091958B1 (de) Bisphosphitliganden für die übergangsmetallkatalysierte hydroformylierung
EP2947090B1 (de) Neue monophosphitliganden mit einer tert-butyloxycarbonyl-gruppe
EP2947088B1 (de) Verfahren zur katalytischen herstellung von aldehyden aus olefinen unter einsatz von monophosphit-gemischen
EP3029013A1 (de) Monophosphite mit Struktureinheit 4,4,5,5-Tetraphenyl-1,3,2-dioxaphospholan als Liganden für Hydroformylierungskatalysatoren
EP2947091B1 (de) Gemische von monophosphitligand und deren verwendung zur katalyse einer hydroformylierungsreaktion
DE102013219506A1 (de) Unsymmetrisches Bisphosphit
EP3318569B1 (de) Bisphosphite mit 2,4-tert.-butylphenyl-einheiten und deren verwendung als liganden in der hydroformylierung
EP2947089B1 (de) Neue monophosphitliganden mit einer carbonat-gruppe
DE102013219508A1 (de) Gemische konstitutionsisomerer Bisphosphite
DE69905545T3 (de) Verfahren zur Herstellung von Aldehyden und Alkoholen
EP3318570B1 (de) Phosphorigsäure-p,p&#39;-[5,5&#39;,6,6&#39;-tetramethyl-3,3&#39;-bis(1-methylethyl)[1,1&#39;-biphenyl]-2,2&#39;-diyl] p,p,p&#39;,p&#39;-tetrakis(2,4-dimethylphenyl)-ester in der hydroformylierung
EP3029055A1 (de) Monophosphite die einen unsymmetrischen Biaryl-Baustein aufweisen
DE102013219512A1 (de) Gemisch aus verschiedenen unsymmetrischen Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung
DE102013219510A1 (de) Gemisch von Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung
EP3088405B1 (de) Neue monophosphitverbindungen mit einer methylgruppe
EP3024837A2 (de) Phosphoramiditderivate in der hydroformylierung von ungesättigten verbindungen
DE102013214378A1 (de) Phosphoramiditderivate in der Hydroformylierung von olefinhaltigen Gemischen
EP3296304A1 (de) Monophosphite mit methylenverbrücktem diphenol und anthracenylrest
EP3088406A1 (de) Neue monophosphitverbindungen mit einer ethergruppe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773204

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013773204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013773204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2887565

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015536052

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14435007

Country of ref document: US

Ref document number: IDP00201502104

Country of ref document: ID

Ref document number: MX/A/2015/004616

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011943

Country of ref document: KR

Kind code of ref document: A