WO2014056143A1 - 磷酸铁锂材料及其制备方法 - Google Patents

磷酸铁锂材料及其制备方法 Download PDF

Info

Publication number
WO2014056143A1
WO2014056143A1 PCT/CN2012/082620 CN2012082620W WO2014056143A1 WO 2014056143 A1 WO2014056143 A1 WO 2014056143A1 CN 2012082620 W CN2012082620 W CN 2012082620W WO 2014056143 A1 WO2014056143 A1 WO 2014056143A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
production method
iron phosphate
water
lithium iron
Prior art date
Application number
PCT/CN2012/082620
Other languages
English (en)
French (fr)
Inventor
孔向阳
陈蓉蓉
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to PCT/CN2012/082620 priority Critical patent/WO2014056143A1/zh
Publication of WO2014056143A1 publication Critical patent/WO2014056143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium iron phosphate material and a preparation method thereof.
  • the lithium iron phosphate material provided by the present invention can be used for preparing a positive electrode of a lithium ion battery and any other suitable application of a lithium iron phosphate material.
  • lithium ion batteries are widely used in various electronic devices, and can also be used in electric bicycles and electric vehicles.
  • the lithium cobalt oxide a positive active material of a conventional lithium ion battery, cannot be applied to an electric vehicle battery due to its high cost and poor safety performance.
  • Peridot lithium iron phosphate Padhi et al. first proposed as a positive electrode material for lithium-ion batteries in 1997 (eg: 1997, 144, 1188-1194, Journal of The Electrochemical. Society) . Because lithium iron phosphate is environmentally friendly and inexpensive, and the covalent bond of phosphate provides good chemical stability and safety, it has become a promising lithium ion battery cathode material.
  • Lithium iron phosphate Theoretical capacity of 170 mAh/g, in its structure, the voltage of Fe3+/Fe2+ relative to metallic lithium is 3.4V This voltage is not so high that the electrolyte is decomposed and not too low to reduce the power density.
  • lithium iron phosphate also has disadvantages, its low electron conductivity and slow one-dimensional lithium ion diffusion hinder its high rate charge and discharge (eg: 2004, 7, A131-A134, Electrochemical and Solid-State Letters; 2000, 130, 41-52, Solid State Ionics).
  • lithium iron phosphate materials with micron-sized spherical particles with nanoporous structure are obtained by novel synthesis methods. (eg: 2011, 133, 2132-2135, Journal of the American Chemical Society; 2011, 4, 885-888, Energy and Environmental Science), lithium iron phosphate materials such as micron-sized spherical particles at home and abroad (such as Chinese patents) CN1021447110A ).
  • these methods have certain drawbacks in terms of tap density, conductivity and consistency of materials.
  • the present invention provides a novel lithium iron phosphate material and a method of preparing the same.
  • Applicants have found that for the preparation of lithium iron phosphate, if a certain amount of citrate-containing substance is added and hydrothermal reaction is carried out by microwave heating, the formation of spherical secondary particles of lithium iron phosphate can be greatly promoted.
  • the spherical secondary particles are agglomerated by nanocrystals of lithium iron phosphate, and the spherical particles are independently dispersed.
  • the inch is basically uniform and has a high tap density. The method can greatly reduce the production cycle and production cost of the lithium iron phosphate material, and the batch is stable and can be mass-produced.
  • the salient characteristics of the spherical lithium iron phosphate material formed by the agglomeration of the nanocrystals provided by the present invention are: first, the composition has an olivine phase structure; and second, the morphology is that the nanocrystal aggregates are aggregated into spherical secondary particles, each of which The spherical secondary particles are independently dispersed and the size is substantially uniform; and third, they have excellent electrochemical charge and discharge performance. Its charge and discharge characteristics are: 0.1C discharge gram capacity is greater than 150mAh / g, 10C discharge gram capacity is greater than 90mAh / g.
  • the lithium iron phosphate material provided by the present invention comprises spherical particles, and the electrochemical charge and discharge characteristics thereof are: 0.1 C discharge gram capacity is greater than 150 mAh/g, and 10 C discharge gram capacity is greater than 90 mAh/g.
  • the spherical particles are formed by agglomeration of nanocrystals. More preferably, the nanocrystal size is 10-100 nm.
  • another feature of the lithium iron phosphate material provided by the present invention has a tap density of 1.1 to 1.5 g/cm 3 . More preferably, the lithium iron phosphate material consists essentially of spherical particles of uniform size and mutually dispersed. The size of the spherical particles is typically from 300 nm to 2 ⁇ m.
  • the 'spherical particles' as used in the present invention means that, under the scanning electron microscope, the shape of the lithium iron phosphate material typically tends to be spherical rather than a substantially elliptical or elongated shape or a polygonal shape.
  • the lithium iron phosphate material of the present invention comprises spherical particles of uniform size, and the term "uniform size" as used herein means that the particles of the lithium iron phosphate material exhibit a size which is not visible to the naked eye under a scanning electron microscope. difference. More preferably, the lithium iron phosphate material consists essentially of spherical particles of uniform size.
  • the lithium iron phosphate material consists essentially of spherical particles of uniform size and mutually dispersed.
  • the spherical particles have a size of from 300 nm to 2 ⁇ m; more preferably, the spherical particles have a size of from 1 to 2 ⁇ m, and this size range ensures that the tap density of the material is greater than 1.2 g / cm 3 .
  • the lithium iron phosphate material may contain carbon, and the carbon may be uniformly distributed inside the spherical particles, that is, uniformly dispersed around the lithium iron phosphate nanocrystals, and function to agglomerate the nanocrystals into uniform spherical secondary particles; or, in addition to being in a spherical shape
  • the surface of the spherical particles may also be distributed with a carbon layer. Applicant found that when When the carbon content is from 4 to 9% by weight, the lithium iron phosphate material has the best electrical conductivity. More preferably, the carbon content is from 5 to 7% by weight.
  • a second aspect of the invention provides a method of preparing a lithium iron phosphate material.
  • the Applicant has found that for the preparation of lithium iron phosphate, if a certain amount of citrate-containing material is added, the formation of spherical secondary particles of lithium iron phosphate can be greatly promoted, and then water is heated by microwave heating. Thermal reaction, you can get the rule that the field has been eager to get. A uniform lithium iron phosphate spherical secondary particle material having a high tap density. Therefore, provided by the present invention
  • the reaction raw material for preparing the lithium iron phosphate material comprises a water-soluble substance containing citrate, a water-soluble substance containing iron, a water-soluble substance containing phosphate, and a water-soluble substance containing lithium.
  • the preparation method comprises: subjecting the reaction raw material to a hydrothermal reaction by microwave heating, and then subjecting the reaction product obtained by the hydrothermal reaction to high temperature calcination.
  • the Applicant has also found that, by using the method provided by the present invention, not only a conventionally used divalent iron ion compound can be used as a reaction raw material, but also a ferric ion compound can be used as a reaction raw material. Greatly reduce production costs. Therefore, the iron-containing water-soluble substance is a water-soluble substance containing a divalent iron ion, or a water-soluble substance containing a ferric ion, or a water-soluble substance containing both a divalent iron ion and a ferric ion.
  • the iron-containing water-soluble substance may be selected from one or more of ferric nitrate, ferric chloride, ferric citrate, ferrous sulfate, ferrous oxalate and ferrous acetate.
  • the iron-containing substance is one or more of a substance containing ferric ions, such as iron nitrate, iron chloride, iron citrate or the like.
  • the lithium-containing water-soluble substance may be any suitable lithium ion compound such as lithium hydroxide, lithium carbonate, lithium acetate, lithium oxalate, lithium nitrate, lithium dihydrogen phosphate, lithium phosphate and lemon.
  • the citrate-containing water-soluble substance may be selected from one or more of citric acid, ferric citrate and lithium citrate.
  • the water-soluble substance of the phosphate may be selected from one or more of ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate or phosphoric acid.
  • the molar ratio of iron to phosphate is from 0.9 to 1.1:1; the molar ratio of iron to lithium is 0.9 to 1.1:1; the molar ratio of phosphate to lithium is maintained at 0.9 to 1.1:1. More preferably, the molar ratio of iron, phosphate and lithium is 0.95 : 0.95 : 1 .
  • the main principle of the preparation method of the present invention is to synthesize iron hydroxyphosphate and its precursor by hydrothermal reaction, and then obtain a lithium iron phosphate material by high-temperature lithiation reaction.
  • the starting material contains lithium, iron and phosphorus compounds.
  • the lithium-containing compound is uniformly distributed in the iron hydroxyphosphate, and the mixture precursor is subjected to high-temperature lithiation reaction to obtain Lithium iron phosphate material.
  • the specific implementation method is as follows:
  • the first reaction pathway, the preparation method thereof may include the following steps:
  • a water-soluble substance containing iron and a water-soluble substance containing a phosphate in the raw material are respectively disposed in a solution with water.
  • Step 1 The obtained iron-containing aqueous solution and the phosphate-containing aqueous solution are uniformly mixed to obtain a raw material liquid phase mixture.
  • the raw material ratio is preferably from 0.9 to 1.1 in terms of a molar ratio of iron to phosphate.
  • step 3 adding citric acid to the liquid phase mixture obtained in step 2) to adjust the pH of the solution; preferably, adjusting the pH to 3-5.
  • step 4 Dissolving the lithium-containing water-soluble substance and water into a solution, and step 4
  • the reaction product obtained is uniformly mixed, and the molar ratio of the raw material to the iron and lithium is preferably 0.9 to 1.1.
  • step 6) drying the liquid mixture obtained in step 5) to obtain a solid phase material
  • the solid phase material obtained in the step 6) is calcined to obtain the lithium iron phosphate material.
  • the reaction route is to first dissolve the raw materials containing phosphate, iron ions and citrate in deionized water, uniformly mix, microwave hydrothermal reaction, and the reaction product is dried and passed through X.
  • Diffraction analysis which is a substance of iron hydroxyphosphate.
  • the product was analyzed by scanning electron microscopy and its morphology was spherical.
  • the iron hydroxyphosphate synthesized by the reaction is mixed with a substance containing lithium ions, and calcined at a high temperature in a reducing atmosphere to finally form spherical particles of lithium iron phosphate.
  • the second reaction pathway, the preparation method thereof can include the following steps:
  • a water-soluble substance containing iron, a water-soluble substance containing lithium, and a water-soluble substance containing a phosphate in the raw material are respectively disposed in a solution with water.
  • Step 1 The obtained aqueous solution containing iron, lithium and phosphate is uniformly mixed to obtain a raw material liquid phase mixture.
  • the molar ratio of iron, phosphate and lithium is preferably 0.95 : 0.95 : 1 .
  • step 3 adding citric acid to the liquid phase mixture of the raw material in step 2) to adjust the pH of the solution; preferably, adjusting the pH to 3-5.
  • the solid phase material obtained in the step 5) is calcined to obtain the lithium iron phosphate material.
  • a raw material containing phosphate, iron, citrate and lithium is dissolved in deionized water, uniformly mixed, and then hydrothermally reacted in a microwave.
  • This step of the reaction forms a precursor of a mixture of iron hydroxyphosphate and lithium ion.
  • lithium ions can be uniformly distributed on the surface of iron hydroxyphosphate, which can make lithium ions more fully contact with iron hydroxyphosphate, and can form a more pure phase of lithium iron phosphate during calcination. Therefore, the preparation method of the present invention is preferably a second reaction route.
  • the water is preferably deionized water.
  • the reaction materials include When the two substances of ferric citrate and lithium dihydrogen phosphate are the best, the reaction effect is the best. First of all, the acquisition of these two substances is relatively easy and the production cost is relatively low. Secondly, there is no excess reaction product to be eluted after the reaction of the two reaction materials. For example, when the molar ratio of ferric citrate to lithium dihydrogen phosphate is 1 When it is left and right, iron, phosphate, and lithium eventually form lithium iron phosphate, and citric acid can be used as a carbon source, and carbon can be produced inside the lithium iron phosphate particles to improve conductivity.
  • the concentration of ferric citrate is 0.3 ⁇ 5mol/L.
  • the concentration of lithium dihydrogen phosphate is 0.3 ⁇ 5mol/L, and the reaction effect is better.
  • the raw material mixture may be adjusted to have a pH in the range of 3 to 5 with citric acid.
  • the preparation method may further include: heating the raw material mixture to promote dissolution of the reaction raw material. .
  • the heating temperature is 80 °C.
  • the Applicant has found that the technical effect of the present invention can be very easily repeated by means of microwave heating, that is, the lithium iron phosphate material is prepared as spherical secondary particles of uniform size and has a high tap density. For its principle, further research and confirmation is needed.
  • the microwave heating temperature is 170 o C or more, and the reaction effect is good. More preferably, the microwave heating temperature is from 170 o C to 250 o C . Most preferably, the microwave heating temperature is 200 o C.
  • the reaction time is greatly reduced.
  • the hydrothermal reaction of a general heater is employed, and the reaction time required is usually several tens of hours.
  • the reaction time can be shortened to tens of minutes, or even About 10 minutes. Therefore, in the method of the present invention, after the reaction temperature reaches the temperature of the microwave heating, the reaction time may be from 10 minutes to 30 minutes. More preferably, the reaction time is 20 Minutes.
  • the reaction vessel may be a sealed container, such as a closed pressure vessel, or Continuously open pressure vessels, such as Continuously open tubular pressure reactor.
  • a sealed container such as a closed pressure vessel
  • Continuously open pressure vessels such as Continuously open tubular pressure reactor.
  • microwave heating There is no special requirement for the method of microwave heating used, as long as the reaction vessel can be heated.
  • Various existing microwave heating devices can be used, and the shape and structure of the existing microwave heating device can be slightly modified according to practical applications, so that the microwave energy can be efficiently and quickly transferred to the reaction container.
  • the microwave hydrothermal reaction When the microwave hydrothermal reaction is completed, it can be The resulting reaction product is dried. Preferably, the drying is carried out under vacuum conditions, and the water is removed by evaporation to avoid the generation of impurities.
  • the drying temperature is preferably from 60 to 100 °C. More preferably, the drying temperature is 80 °C.
  • the last step is to hydrothermally react to obtain a reaction product for calcination.
  • the applicant found out that the calcination temperature was 650. Above °C, the obtained lithium iron phosphate material is ideal. More preferably, the calcination temperature is 650 to 800 °C. Further, the calcination is preferably carried out under a reducing atmosphere.
  • the reducing atmosphere may be: at In the hydrogen-argon mixed gas, the mass percentage of hydrogen is 2 to 5%.
  • the calcination time is preferably from 1 to 3 hours.
  • a carbon-containing substance may be added during calcination to form conductive carbon and uniformly distributed.
  • the carbonaceous material may be one or more of sucrose, glucose, citric acid and the like.
  • a third aspect of the present invention provides the use of the lithium iron phosphate material of the present invention for preparing a battery positive electrode material.
  • a fourth aspect of the present invention provides a battery positive electrode prepared from the lithium iron phosphate material of the present invention.
  • the secondary particles of the nanocrystalline lithium iron phosphate material provided by the invention are spherical, and the spheres are independently dispersed, the size is uniform, and the tap density is high.
  • Example 1 is an X of a lithium iron phosphate material prepared in Example 1 of the present invention.
  • Figure 2 is a SEM of spherical lithium iron phosphate prepared in Example 1 of the present invention.
  • the photo in the form of a monodisperse spherical particle, is uniform in size and has a size of about 1 micron.
  • Figure 3 is another SEM photograph of a spherical lithium iron phosphate prepared in Example 1 of the present invention, the spherical particles being of a size 20 ⁇ 100nm grains are aggregated.
  • Figure 4 is a SEM photograph of a spherical lithium iron phosphate prepared in Example 2 of the present invention, It exhibits a monodisperse spherical particle morphology with uniform size and a size of about 300 nm.
  • Fig. 5 is a graph showing charge and discharge curves of a lithium iron phosphate material prepared in Example 1 of the present invention as a positive electrode material.
  • Figure 6 is a view of the prepared spherical iron hydroxyphosphate precursor prepared by the embodiment 3 of the present invention. The result of diffraction, in which the peak position of the material is substantially identical to the peak position of the iron hydroxyphosphate of the standard card.
  • Figure 7 is a SEM photograph of a spherical precursor of iron hydroxyphosphate prepared in Example 3 of the present invention, wherein the spherical particle size is 1 About micrometers.
  • Figure 8 is a SEM photograph of a final spherical lithium iron phosphate prepared in Example 3 of the present invention, in which spherical particles are of a size The crystal grains of 20 to 100 nm are aggregated, and the spherical size is about 1-2 ⁇ m.
  • Figure 1 shows the XRD of the prepared lithium iron phosphate material.
  • the spectral line in which the peak position of the material is exactly the same as the peak position of the standard card, can prove that the material is a pure phase of lithium iron phosphate and contains a small amount of carbon.
  • the synthetic lithium iron phosphate is a monodisperse sphere with a size of about 1 ⁇ m, as shown in Fig. 2. Shown. It can be seen from Fig. 3 that the lithium iron phosphate sphere is formed by self-assembly growth of small crystal grains of 20 to 100 nm.
  • the lithium iron phosphate material has been tested to have a tap density of 1.3 g /cm 3 , which is 0.3 g /cm 3 higher than the tap density of the industrial lithium iron phosphate of 0.8 g / cm 3 to 1 g / cm 3 . 0.5 g/cm 3 .
  • the lithium iron phosphate material was used as a positive electrode material to detect the charge and discharge of 0.1C, 1C, 5C and 10C at room temperature, as shown in Fig. 5. It can be seen from Fig. 5 that the lithium iron phosphate material is used as a positive electrode material at room temperature.
  • the discharge capacities of C, 1C, 5C and 10C are 160 mAh/g, 130 mAh/g, 110 mAh/g and 96 mAh/g, respectively, which is superior to the currently produced lithium iron phosphate materials.
  • the prepared lithium iron phosphate material has a monodisperse spherical shape and is uniform in size and size. About 300 nm.
  • This embodiment shows that the diameter of the secondary spherical particles of lithium iron phosphate can be adjusted by changing the concentration of the aqueous solution of the raw material, and the obtained particle form is substantially uniform spherical. If the concentration of the aqueous solution of the raw material is configured to be low, spherical secondary particles having a smaller diameter can be obtained. In addition, the diameter of the spherical secondary particles can also be regulated by process parameters such as reaction time and calcination temperature, but the main influencing factor is the concentration of the aqueous solution of the raw material.
  • the spherical lithium iron phosphate having such a small diameter has substantially the same electrochemical performance as the lithium iron phosphate material obtained in Example 1, but the tap density is lower than that of the lithium iron phosphate material obtained in Example 1, generally 1.1 g / cm. 3 or so.
  • reaction liquid obtained in the step (1) is added to the reaction vessel and sealed, and heated to 200 ° C in the microwave to keep the temperature 20 After a minute, the reaction product was washed by filtration and dried under vacuum at 80 ° C to obtain a precursor.
  • Figure 6 shows the X of the precursor obtained in step (2) As a result of the ray diffraction, it can be seen from the line that the peak position of the material is substantially identical to the standard card peak position of the iron hydroxyphosphate, and the product can be proved to be iron hydroxyphosphate.
  • the bit indicates that the iron hydroxyphosphate is a self-assembled monodisperse sphere with a uniform size of about 1 micron.
  • the final product formed after calcination is a monodisperse sphere with a size of 1-2 microns.
  • the applicant's test found that the X-ray diffraction results of the final reaction product formed after calcination are basically equivalent to those in Fig. 1, which proves to be lithium iron phosphate material, but has trace impurities; its tap density is 1.2 ⁇ 1.3g/cm 3 , The electrochemical performance was substantially the same as that of the lithium iron phosphate material obtained in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种纳米晶团聚而成的等粒径球形微纳磷酸铁锂及其制备方法,其制备途径是通过微波水热合成,让纳米晶粒自组装形成尺寸均匀的球形二次颗粒,经过热处理,获得均匀一致的磷酸铁锂球形二次颗粒。本发明制备的这种磷酸铁锂材料具有很好导电性以及较高振实密度,以及优良的电化学性能。本发明解决了现有磷酸铁锂正极材料存在导电性差,一致性不高,振实密度低等问题。作为锂离子电池的正极材料,可用以制造高能量密度以及一致性良好的动力电池。

Description

磷酸铁锂材料及其制备方法
技术领域
本发明涉及一种磷酸铁锂材料及其制备方法。本发明所提供的磷酸铁锂材料可用于制备锂离子电池的正极以及其它任何适合应用磷酸铁锂材料的场合。
背景技术
目前锂离子电池广泛地应用于各种电子设备,还可用于电动自行车、电动汽车。传统的锂离子电池的正极活性材料钴酸锂,由于它的高成本和安全性能差,而无法应用于电动汽车的电池。橄榄石型磷酸铁锂,由 Padhi 等在 1997 年首次提出可以作为锂离子电池的正极材料 ( 如: 1997, 144, 1188-1194, Journal of The Electrochemical. Society) 。由于磷酸铁锂具有环境友好性和廉价性,以及磷酸根的共价键可为其提供良好的化学稳定性和安全性,使它成为应用前景很好的锂离子电池正极材料。磷酸铁锂具有 170mAh/g 的理论容量,在它的结构中, Fe3+/Fe2+ 相对金属锂的电压为 3.4V ,此电压不会太高以至于分解电解质,也不会太低以至于减小功率密度。但是,磷酸铁锂也有缺点,它的低电子导电性和缓慢的一维锂离子扩散阻碍了其高倍率充放电 ( 如: 2004, 7, A131-A134, Electrochemical and Solid-State Letters; 2000, 130, 41-52, Solid State Ionics) 。
目前,为了提高导电性,人们做了大量的工作,例如,在磷酸铁锂颗粒表面包覆一层像碳这样的导电材料 ( 如: 2003, 119-121, 770-773, Journal of Power Sources; 2008, 456, 461-465, Journal of Alloys and Compounds; 2009, 156, A79-A83, Journal of The Electrochemical. Society) ,或控制磷酸铁锂晶粒尺寸在纳米级 ( 如: 2008, 112, 14665-14671, Journal of Physical Chemistry C; 2008, 7, 741-747, Nature Materials) ,但往往纳米材料的振实密度较低。目前在众多制备磷酸铁锂的技术方法中,制备球形的磷酸铁锂材料是重要的方向。国外有文献报导,通过新颖的合成方法获得具有纳米多孔结构的微米级球形颗粒的磷酸铁锂材料 ( 如: 2011, 133, 2132-2135, Journal of the American Chemical Society; 2011, 4, 885-888, Energy and Environmental Science) ,国内外如微米级球形颗粒的磷酸铁锂材料(如中国专利 CN1021447110A )。但这些方法在振实密度、材料的导电性以及一致性方面有一定的缺陷。
本领域一直存在获得尺寸均一的、具有较高振实密度的磷酸铁锂材料球形二次颗粒的强烈需求,但现有的制备方法很难获得尺寸均匀的球形二次颗粒,又由于其多孔特性,振实密度也不高,且 制备过程比较复杂 。
发明内容
有鉴于现有技术的上述缺陷,本发明提供一种新的磷酸铁锂材料及其制备方法。申请人发现,对于磷酸铁锂的制备原材料,如果添加一定量的含有柠檬酸根的物质,再采用微波加热的方式进行水热反应,可大大促进磷酸铁锂的球形二次颗粒的形成。这种球形二次颗粒是由磷酸铁锂的纳米晶团聚而成,且球形颗粒独立分散,尺 寸基本均一,并具有较高振实密度。该方法可以大大减少 磷酸铁锂材料的生产周期以及生产成本,而且 批次稳定,可以大规模生产。
本发明所提供的纳米晶团聚形成的球形磷酸铁锂材料的显著性的特征是:其一,成分为具有橄榄石相结构;其二,形貌是纳米晶团聚成球形二次颗粒,每个球形二次颗粒是独立分散的,尺寸是基本一致的;其三,具有优良的电化学充放电性能, 其充放电特性为: 0.1C 放电克容量大于 150mAh/g , 10C 放电克容量大于 90mAh/g 。
因此,本发明所提供的磷酸铁锂材料包含球形颗粒,其电化学充放电特性为: 0.1C 放电克容量大于 150mAh/g , 10C 放电克容量大于 90mAh/g 。优选地, 所述 球形颗粒是由纳米晶团聚形成的。更优选地, 所述 纳米晶尺寸为 10-100nm 。另外,本发明所提供的磷酸铁锂材料的另一个特征其振实密度为 1.1~1.5g/cm3 。更优选地,所述磷酸铁锂材料基本上由尺寸均一的且相互分散的球形颗粒组成。球形颗粒的尺寸典型地 为 300nm 至 2μm 。
本发明所述的'球形颗粒'是指: 在扫描电子显微镜下观察,磷酸铁锂材料的形状典型地趋向于球形,而不是明显的椭圆形或长条形或多边形等形状。优选地,本发明的磷酸铁锂材料包含 尺寸均一的球形颗粒,此处所述的'尺寸均一'指的是 磷酸铁锂材料的颗粒在扫描电子显微镜下显示出的尺寸没有肉眼可见的明显的差异 。更优选地,所述磷酸铁锂材料基本上由尺寸均一的球形颗粒组成。这里所述的'基本上'指的是,在扫描电子显微镜下,大多数球形颗粒(例如 95% 以上)的尺寸没有明显的差异,当然,这并不排除偶尔会有比较大或比较小的颗粒的存在。最优选地,所述磷酸铁锂材料基本上由尺寸均一且相互分散的球形颗粒组成。优选地,球形颗粒的尺寸 为 300nm 至 2μm ;更优选地,球形颗粒的尺寸为 1~2μm ,这一尺寸范围可以保证材料的振实密度大于 1.2g /cm3 。需要特别指出的是,在本发明所属领域,本领域技术人员能够非常清楚地判定颗粒是否典型地 趋向于球形,球形颗粒是否为尺寸均一,以及 磷酸铁锂材料是否基本上由尺寸均一且相互分散的球形颗粒组成。
在本领域所熟知的是,对于磷酸铁锂材料,含有一定量的碳对于提高其导电性能非常有益。本发明提供的 磷酸铁锂材料可以含有碳,碳可以均匀分布在球形颗粒的内部,即均匀弥散在磷酸铁锂纳米晶周围,并起到团聚纳米晶成为均匀的球形二次颗粒的作用;或者,除了在球形颗粒内部含有均匀分布的碳之外,球形颗粒的表面还可以分布有碳层。申请人发现,当 碳的含量为重量比 4 ~ 9% 时,磷酸铁锂材料的导电性能最佳。更优选地, 碳 的含量为重量比 5 ~ 7% 。
本发明的第二个方面是提供磷酸铁锂材料的制备方法。
如前面所述的,申请人发现,对于磷酸铁锂的制备原材料,如果添加一定量的含有柠檬酸根的物质,可大大促进磷酸铁锂的球形二次颗粒的形成,再采用微波加热方式进行水热反应,即可得到本领域一直渴望得到的尺 寸均一的、具有较高振实密度的磷酸铁锂球形二次颗粒材料。因此,在本发明所提供的 磷酸铁锂材料的制备方法中,制备所述磷酸铁锂材料的反应原料包括含柠檬酸根的水溶性物质、含铁的水溶性物质、含磷酸根的水溶性物质、含锂的水溶性物质,所述制备方法包括:通过微波加热的方式使所述反应原料进行水热反应,然后将所述水热反应得到的反应产物进行高温煅烧。
申请人还发现,利用本发明所提供的方法,不仅可以采用传统上经常使用的二价铁离子化合物作为反应原料,还可以采用三价铁离子化合物作为反应原料,这会 大大地降低生产成本。因此,所述的含铁的水溶性物质为含二价铁离子的水溶性物质,或含三价铁离子的水溶性物质,或同时含有二价铁离子与三价铁离子的水溶性物质。所述的含铁的水溶性物质可以选自硝酸铁、氯化铁、柠檬酸铁、硫酸亚铁、草酸亚铁和乙酸亚铁中的一种或几种。在本发明一个优选的实施方式中,所述的含有铁的物质是含有三价铁离子的物质,如硝酸铁、氯化铁、柠檬酸铁等中的一种或几种。
在发明所提供的制备方法中,含锂的水溶性物质可以是任何合适的锂离子化合物,如氢氧化锂、碳酸锂、乙酸锂、草酸锂、硝酸锂、磷酸二氢锂、磷酸锂和柠檬酸锂等中的一种或几种。含柠檬酸根的水溶性物质可以选自柠檬酸,柠檬酸铁和柠檬酸锂中的一种或几种。含 磷酸根的 水溶性 物质可以选自磷酸铵、磷酸二氢铵、磷酸氢二铵或磷酸中的一种或几种。
为了使反应原料能充分反应,优选地,铁和磷酸根的摩尔比为 0.9 ~ 1.1:1 ;铁和锂的摩尔比为 0.9 ~ 1.1:1 ;磷酸根和锂的摩尔比保持为 0.9~1.1 : 1 。更优选地,铁、磷酸根以及锂的摩尔比为 0.95 : 0.95 : 1 。
本发明的制备方法的主要原理是:采用水热反应合成羟基磷酸铁及其前驱体,然后通过高温锂化反应,得到磷酸铁锂材料。具体实施时,可有两种途径。一种是开始原料不含锂化合物,生成羟基磷酸铁前驱体后,再与含锂化合物进行高温锂化反应,获得磷酸铁锂材料。另外一种是,开始原料包含锂、铁及磷的化合物,水热反应先生成羟基磷酸铁前驱体后,含锂化合物均匀分布在羟基磷酸铁中,将混合物前驱体进行高温锂化反应,获得磷酸铁锂材料。具体的实施方法如下:
第一种反应途径,其制备方法可以包括如下步骤:
1 )将所述原材料中含铁的水溶性物质及含磷酸根的水溶性物质分别与水配置成溶液。
2 )将步骤 1 )得到的含铁的水溶液及含磷酸根的水溶液均匀混合,得到原料液相混合物。其中,原料配比按照铁和磷酸根的摩尔比优选为 0.9 ~ 1.1 。
3 )在步骤 2 )得到的原料液相混合物中加入柠檬酸,调节溶液 pH 值;优选地,调解 pH 值到 3-5 。
4 )将步骤 3 )得到的原料液相混合物加入反应容器,进行微波加热,反应产物烘干。
5 )将含锂的水溶性物质与水配置成溶液,与步骤 4 )中得到反应产物均匀混合,其中,原料配比按照铁和锂的摩尔比优选为 0.9 ~ 1.1 。
6 )将步骤 5 )中得到液相混合物烘干,得到固相物质
7 )将步骤 6 )中得到的固相物质进行煅烧,得到所述磷酸铁锂材料。
这种反应途径是先将含有磷酸根、铁离子以及柠檬酸根的原料溶于去离子水,均匀混合后,微波水热反应,反应产物烘干后,经 X 衍射分析,其为一种羟基磷酸铁的物质。该产物用扫描电镜分析,其形貌为球形。将反应合成的羟基磷酸铁与含锂离子的物质混合,在还原气氛下高温煅烧,最终形成磷酸铁锂球形颗粒。
第二种反应途径,其制备方法可以包括如下步骤:
1 )将所述原材料中含铁的水溶性物质、含锂的水溶性物质以及含磷酸根的水溶性物质分别与水配置成溶液。
2 )将步骤 1 )得到的含铁、锂以及磷酸根的水溶液均匀混合,得到原料液相混合物。其中,铁、磷酸根、锂的摩尔比优选为 0.95 : 0.95 : 1 。
3 )在步骤 2 )得到原料液相混合物中加入柠檬酸,调节溶液的 pH 值;优选地,调解 pH 值至 3-5 。
4 )将步骤 3 )所述原料液相混合物加入反应容器,进行微波加热。
5 )将步骤 4 )中得到液相混合物烘干,得到固相物质。
6 )将步骤 5 )中得到的固相物质进行煅烧,得到所述磷酸铁锂材料。
在第二种反应途径中,将含有磷酸根、铁、柠檬酸根以及锂的原料溶于去离子水,均匀混合后,微波水热反应。这一步反应形成的是羟基磷酸铁与含锂离子的混合物前驱体。这一前驱体中,锂离子能均匀分布在羟基磷酸铁的表面,能使锂离子与羟基磷酸铁更充分地接触,在煅烧过程中能形成更加纯相的磷酸铁锂。因此,本发明的制备方法优选第二种反应途径。
比较以上两种反应途径,都可以得到纳米晶团聚而成的球形磷酸铁锂。相对而言,第二种途径工艺简单,实施效果为佳。
在上述两种反应途径中,所述水优选为去离子水。
申请人还发现,当反应原料包括 柠檬酸铁和磷酸二氢锂这两种物质时,反应效果最佳。首先,这两种物质获取相对比较容易,生产成本比较低。其次,这两种反应原料进行反应后没有多余的需要洗脱的反应产物。例如,当柠檬酸铁和磷酸二氢锂的摩尔比为 1 左右时,铁、磷酸根、锂最终生成磷酸铁锂,柠檬酸可以作为碳源,还能在磷酸铁锂颗粒的内部生产碳,从而提高导电性。而在现有技术中,如采用硫酸根等作为反应原料,最后还需要从反应产物中上洗脱硫酸根,不仅增加生产成本,而且洗脱时也造成反应产物中锂的流失。
进一步,申请人摸索发现, 在在步骤 1 )中,配置好的 柠檬酸铁的浓度为 0.3~5mol/L ,磷酸二氢锂的浓度为 0.3~5mol/L ,反应效果比较好。另外, 所述原料混合物可以用柠檬酸调节 pH 值在 3 ~ 5 范围内。
无论是采用第一种反应途径,还是采用第二种反应途径,为了更好地促进反应原料在水中的溶解,所述制备方法还可以包括:加热所述原料混合物来促进所述反应原料的溶解。优选地,所述加热温度为 80 ℃ 。
申请人发现,采用微波加热的方式可以非常容易重复本发明的技术效果,即制备出磷酸铁锂材料为尺寸均一的球形二次颗粒,且 具有较高振实密度。对于其原理,还需要进一步研究证实。申请还发现, 微波加热的温度为 170 oC 以上,反应效果良好。更优选地, 微波加热的温度为 170 oC ~ 250oC 。最优选地,微波加热的温度为 200oC 。
另外,申请人还发现,采用微波加热的方式的另一个有益的技术效果是,大大缩短反应的时间。在现有技术中,采用一般加热器的水热反应,所需的反应时间通常在数十个小时。而采用微波加热,可将反应时间缩短到几十分钟,甚至是 10 分钟左右。因此,本发明方法中, 当所述反应温度达到所述微波加热的温度以后 ,反应时间可以为 10 分钟~ 30 分钟。更优选地,反应时间为 20 分钟。
在本发明所提供的制备方法中,反应容器既可以是 密封容器,如 密闭的压力容器,也可以是 连续开放的压力容器,如 连续开放的管式压力反应器。所采用的微波加热的方式并无特殊要求,只要能对反应容器进行加热即可。现有的各种微波加热装置皆可使用,也可以根据实际应用,对现有的微波加热装置的形状和结构稍加改动,使微波能有效快速地传递到反应容器中。
当微波水热反应完成后,可以将 所得到的反应产物进行烘干。优选地,所述烘干在真空条件下进行,将水蒸发除去,以免产生杂质。所述烘干温度优选为 60 ~ 100 ℃ 。 更优选地,所述烘干温度为 80 ℃ 。
本发明所提供的制备方法中,最后一步是将水热反应得到反应产物进行煅烧。申请人摸索发现,煅烧温度为 650 ℃ 以上时,得到的磷酸铁锂材料比较理想。更优选地,所述煅烧的温度为 650 ~ 800 ℃ 。另外,煅烧优选在 还原气氛下进行。所述的还原气氛可以是:处于 氢氩混合气体中,氢的质量百分比为 2 ~ 5% 。 煅烧的时间优选为 1 ~ 3 小时。
为了更进一步增强磷酸铁锂材料的导电性,在煅烧时,还可以添加含碳的物质,使形成导电的 碳,并均匀地分布 在磷酸铁锂 球形颗粒内部或表面。所述的 含碳的物质可以为蔗糖、葡萄糖和柠檬酸等中的一种或几种。
本发明的第三个方面是提供本发明中的磷酸铁锂材料在制备电池正极材料中的应用。
本发明的第四个方面是提供一种电池正极,由本发明中的磷酸铁锂材料制备而成。
本发明所提供的纳米晶磷酸铁锂材料的二次颗粒为球形,且球形独立分散,尺 寸均一,具有较高振实密度。
附图说明
图 1 是本发明的实施例 1 所制备的磷酸铁锂材料的 X 衍射的结果,其中,本材料的峰位与标准卡片的峰位完全一致,可证明本材料为磷酸铁锂纯相。
图 2 是本发明的实施例 1 所制备的球形磷酸铁锂的 SEM 照片,呈现单分散的球形颗粒形态,且尺寸均一,尺寸为 1 微米左右。
图 3 是本发明 的实施例 1 所制备的 球形磷酸铁锂的另一 SEM 照片, 球形颗粒 由尺寸在 20~100nm 的晶粒聚集而成。
图 4 是本发明 的实施例 2 所制备的 球形磷酸铁锂的 SEM 照片, 呈现单分散的球形颗粒形态,且尺寸均一,尺寸为 300 纳米左右。
图 5 是本发明 的实施例 1 所制备的 磷酸铁锂材料 作为正极材料的充放电曲线图。
图 6 是本 发明的实施例 3 所制备的所制备的羟基磷酸铁球形前驱体的 X 衍射的结果,其中,本材料的峰位与标准卡片的羟基磷酸铁的峰位基本一致。
图 7 是本 发明的实施例 3 所制备的羟基磷酸铁球形前驱体 SEM 照片,其中,球形颗粒尺寸在 1 微米左右。
图 8 是本 发明的实施例 3 所制备的最终球形磷酸铁锂 SEM 照片,其中,球形颗粒 由尺寸在 20~100nm 的晶粒聚集而成,球形 尺寸 1-2 微米左右。
具体实施方式
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
实施例 1
( 1 )将 3.381g 不含结晶水的柠檬酸铁搅拌溶解到加热至 80 ℃ 的 20ml 去离子水中,配置成柠檬酸铁溶液;采用 1.56g 磷酸二氢锂溶解到 10ml 去离子水中,配置成磷酸二氢锂溶液。
( 2 )将制备的柠檬酸铁溶液加入到磷酸二氢锂溶液中,继续搅拌加热至 80 ℃ ,得到明黄色透明溶液。采用柠檬酸调节混合溶液的 pH 值至 3 左右。
( 3 )将配制的混合水溶液放入反应容器中,密封反应容器,采用微波加热的方式,将密封的反应容器加热至温度 200 ℃ ,反应 20 分钟,所得产物经过 80 ℃ 真空烘干,得到深绿色前驱体。
( 4 )在 700 ℃ 的氢氩混合气保护下( 氢的质量百分比为 2 ~ 5% ) ,将制备的深绿色前躯体同 0.2g 蔗糖均匀混合后,烧结 2 小时,即得到形态为球形颗粒的磷酸铁锂材料。
实施例 1 得到的磷酸铁锂材料的结果如下:
图 1 示出了所制备的磷酸铁锂材料的 XRD 谱线,其中,本材料的峰位与标准卡片的峰位完全一致,可证明本材料为磷酸铁锂纯相,含有少量碳。合成磷酸铁锂为单分散的球形,尺寸为 1μm 左右,如图 2 所示。从图 3 可以发现,该磷酸铁锂球由 20 ~ 100nm 的小晶粒自组装生长形成。
经测试,该磷酸铁锂材料的振实密度为 1.3g /cm3 ,与目前工业生产磷酸铁锂的振实密度 0.8g /cm3 ~ 1g/cm3 相比提高了 0.3g /cm3 ~ 0.5g/cm3 。采用该磷酸铁锂材料作为正极材料,检测在室温下 0.1C 、 1C 、 5C 和 10C 的充放电情况,如图 5 所示,通过图 5 可知在室温下采用该磷酸铁锂材料作为正极材料 0.1C 、 1C 、 5C 和 10C 的放电容量分别为 160mAh/g 、 130mAh/g 、 110mAh/g 和 96mAh/g ,优于目前工业生产的磷酸铁锂材料。
实施例 2
( 1 )将 1.69g 不含结晶水的柠檬酸铁搅拌溶解到加热至 80 ℃ 的 20ml 去离子水中,配置成柠檬酸铁溶液,采用 0.78g 磷酸二氢锂溶解到 10ml 去离子水中,配置成磷酸二氢锂溶液。
( 2 )将这两种溶液均匀混合,搅拌加热至 80 ℃ , 得到明黄色透明溶液。采用柠檬酸调节混合溶液的 pH 值至 4 左右。 .
( 3 )将步骤( 2 )所得的反应液加入到反应釜中并密封,微波加热至 200 ℃ ,保温 20 分钟,反应产物在真空下 80 ℃ 烘干。
( 4 )取烘干后的产物研磨均匀,在通氢氩混合气条件( 氢的质量百分比为 2 ~ 5% ) 下,以 5 ℃ / 分钟的升温速率,升温至 700 ℃ ,并保持恒温 2 小时,此后自然冷却。如图 4 所示,制备得到的磷酸铁锂材料呈现单分散的球形,且尺寸均一,尺寸为 300 纳米左右。
此实施例说明,磷酸铁锂二次球形颗粒的直径可以通过改变配置原料水溶液的浓度进行调控,得到的颗粒形态基本为均匀的球形。配置的原料水溶液的浓度如果较低,可以得到直径较小的球形二次颗粒。此外球形二次颗粒的直径还可通过反应时间,煅烧温度等工艺参数进行调控,但主要影响因素是配置原料水溶液的浓度。
此种直径较小的球形磷酸铁锂,其电化学性能与实施例 1 得到的磷酸铁锂材料基本相当,但振实密度低于实施例 1 得到的磷酸铁锂材料,一般为 1.1g /cm3 左右。
实施例 3
( 1 ) 将 3.675g 不含结晶水的柠檬酸铁搅拌溶解到加热至 80 ℃ 的 20ml 去离子水中,配置成柠檬酸铁溶液,采用 1.725g 磷酸二氢铵溶解到 20ml 去离子水中,配置成磷酸二氢铵溶液;将这两种溶液均匀混合,得到明黄色透明溶液。采用柠檬酸调节混合溶液的 pH 值至 4 左右。
( 2 ) 将步骤( 1 )所得的反应液加入到反应釜中并密封,微波加热至 200 ℃ ,保温 20 分钟,反应产物经过过滤洗涤并在真空下 80 ℃ 烘干,得到前驱体。
( 3 )将 0.63g 氢氧化锂溶解到 20ml 去离子水中,配置成氢氧化锂溶液,添加到步骤( 2 )的反应产物中。充分搅拌分散均匀,将混合物在真空下 80 ℃ 烘干。
( 4 )取烘干后的产物,添加 0.25g 蔗糖 , 混合后研磨均匀,通氢氩混合还原气体,以 5 ℃ / 分钟的升温速率,升温至 700 ℃ ,并保持恒温 2 小时,此后自然冷却。
实施例 3 得到的磷酸铁锂材料的结果如下:
图 6 示出在步骤( 2 )中所得到的前驱体的 X 射线衍射的结果,其中,从图谱线可以看出,本材料的峰位与羟基磷酸铁的标准卡片峰位基本一致,可证明本产物为羟基磷酸铁。
从图 7 可以看出,位表明此羟基磷酸铁为自组装的单分散球形,尺寸基本一致,为 1 微米左右。
从图 8 可以看出,煅烧后最终形成的产物为单分散球形,尺寸为 1-2 微米。
另外,申请人测试发现,煅烧后最终形成的反应产物的 X 射线衍射结果基本与图 1 相当,证明是磷酸铁锂材料,但有微量杂质;其振实密度为 1.2~1.3g/cm3 ,电化学性能与实施例 1 得到的磷酸铁锂材料基本相当。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (42)

  1. 一种磷酸铁锂材料,其特征在于,所述磷酸铁锂材料包含球形颗粒,其电化学充放电特性为:0.1C放电克容量大于150mAh/g,10C放电克容量大于90mAh/g。
  2. 如权利要求1所述的磷酸铁锂材料,其中,所述球形颗粒是由纳米晶团聚形成的。
  3. 如权利要求2所述的磷酸铁锂材料,其中,所述纳米晶尺寸为10-100nm。
  4. 如权利要求1所述的磷酸铁锂材料,其中,所述磷酸铁锂材料的振实密度为1.1~1.5g/cm3。
  5. 如权利要求1所述的磷酸铁锂材料,其中,所述磷酸铁锂材料基本上由尺寸均一的且相互分散的球形颗粒组成。
  6. 如权利要求1所述的磷酸铁锂材料,其中,所述球形颗粒的尺寸为300nm至2μm。
  7. 如权利要求1-6中任一所述的磷酸铁锂材料,其中,所述磷酸铁锂材料还含有碳。
  8. 如权利要求7所述的磷酸铁锂材料,其中,碳的含量为重量比4~9%。
  9. 如权利要求7所述的磷酸铁锂材料,其中,所述球形颗粒内部含有均匀分布的碳。
  10. 如权利要求1-9中任一所述的磷酸铁锂材料的制备方法,其特征在于,制备所述磷酸铁锂材料的反应原料包括含柠檬酸根的水溶性物质、含铁的水溶性物质、含磷酸根的水溶性物质、含锂的水溶性物质,所述制备方法包括:通过微波加热的方式使所述反应原料进行水热反应,然后将所述水热反应得到的反应产物进行高温煅烧。
  11. 如权利要求10所述的制备方法,其中,所述的含铁的水溶性物质为含二价铁离子的水溶性物质,或含三价铁离子的水溶性物质,或同时含有二价铁离子与三价铁离子的水溶性物质。
  12. 如权利要求11所述的制备方法,其中,所述的含铁的水溶性物质选自硝酸铁、氯化铁、柠檬酸铁、硫酸亚铁、草酸亚铁和乙酸亚铁中的一种或几种。
  13. 如权利要求10所述的制备方法,其中,所述的含锂的水溶性物质选自氢氧化锂、碳酸锂、乙酸锂、草酸锂、硝酸锂、磷酸二氢锂、磷酸锂和柠檬酸锂中的一种或几种。
  14. 如权利要求10所述的制备方法,其中,所述的含柠檬酸根的水溶性物质选自柠檬酸,柠檬酸铁和柠檬酸锂中的一种或几种。
  15. 如权利要求10所述的制备方法,其中,所述的含磷酸根的水溶性物质选自磷酸铵、磷酸二氢铵、磷酸氢二铵或磷酸中的一种或几种。
  16. 如权利要求10所述的制备方法,其中,在所述反应原料中,含铁和磷酸根的摩尔比为0.9~1.1:1。
  17. 如权利要求10所述的制备方法,其中,在所述反应原料中,含铁和锂的摩尔比为0.9~1.1:1。
  18. 如权利要求10所述的制备方法,其中,在所述反应原料中,含磷酸根和锂的摩尔比保持为0.9~1.1:1。
  19. 如权利要求10所述的制备方法,其中,所述制备方法包括如下步骤:
    1)将所述原材料中含铁的水溶性物质及含磷酸根的水溶性物质,分别与水配置成溶液;
    2)将步骤1)得到的含铁的水溶液及含磷酸根的水溶液均匀混合,得到原料液相混合物;
    3)在步骤2)得到的原料液相混合物中加入柠檬酸,调节溶液的pH值;
    4)将步骤3)得到的原料液相混合物加入反应容器,进行微波加热,反应产物烘干;
    5)将含锂的水溶性物质与水配置成溶液,与步骤4)中得到反应产物均匀混合;
    6)将步骤5)中得到液相混合物烘干,得到固相物质;
    7)将步骤6)中得到的固相物质进行煅烧,得到所述磷酸铁锂材料。
  20. 如权利要求10所述的制备方法,其中,所述制备方法包括如下步骤:
    1)将所述原材料中含铁的水溶性物质、含锂的水溶性物质以及含磷酸根的水溶性物质分别与水配置成溶液;
    2)将步骤1)得到的含铁、锂以及磷酸根的水溶液均匀混合,得到原料液相混合物;
    3)在步骤2)得到原料液相混合物中加入柠檬酸,调节溶液的pH值;
    4)将步骤3)所述原料液相混合物加入反应容器,进行微波加热;
    5)将步骤4)中得到液相混合物烘干,得到固相物质;
    6)将步骤5)中得到的固相物质进行煅烧,得到所述磷酸铁锂材料。
  21. 如权利要求19或20所述的制备方法,其中,所述水为去离子水。
  22. 如权利要求19或20所述的制备方法,其中,所述原材料包括柠檬酸铁和磷酸二氢锂。
  23. 如权利要求22所述的制备方法,其中,在步骤1)中,配置好的柠檬酸铁溶液的浓度为0.3~5mol/L,磷酸二氢锂溶液的浓度为0.3~5mol/L。
  24. 如权利要求19或20所述的制备方法,其中,所述的调节溶液的pH值是指:用柠檬酸调节pH值在3~5范围内。
  25. 如权利要求19或20所述的制备方法,其中,在所述步骤1)中,所述制备方法还包括:加热所述原料混合物来促进所述反应原料的溶解。
  26. 如权利要求19或20所述的制备方法,其中,所述反应容器为密封容器,或者为连续开放的压力容器。
  27. 如权利要求19或20所述的制备方法,其中,在所述步骤4)中,微波加热的温度为170 oC以上。
  28. 如权利要求27所述的制备方法,其中,所述的微波加热的温度为170 oC~250oC。
  29. 如权利要求28所述的制备方法,其中,所述的微波加热的温度为200oC。
  30. 如权利要求29所述的制备方法,其中,在所述步骤4)中,当所述反应温度达到所述微波加热的温度以后,反应时间为10~30分钟。
  31. 如权利要求30所述的制备方法,其中,所述反应时间为20分钟。
  32. 如权利要求19或20所述的制备方法,其中,所述烘干是指在真空条件下,将水蒸发除去。
  33. 如权利要求32所述的制备方法,其中,所述烘干的温度为60~100℃。
  34. 如权利要求19或20所述的制备方法,其中,所述煅烧的温度为650℃以上。
  35. 如权利要求34所述的制备方法,其中,所述煅烧的温度为650~800℃。
  36. 如权利要求34所述的制备方法,其中,所述煅烧在还原气氛下进行。
  37. 如权利要求36所述的制备方法,其中,所述还原气氛是指处于氢氩混合气体中,其中氢的质量百分比为2~5%。
  38. 如权利要求34所述的制备方法,其中,所述煅烧的时间为1~3小时。
  39. 如权利要求19或20所述的制备方法,其中,所述制备方法还包括:在所述烘干前,添加含碳的水溶性物质。
  40. 如权利要求39所述的制备方法,其中,所述的含碳的水溶性物质选自蔗糖、葡萄糖和柠檬酸中的一种或几种。
  41. 如权利要求10-40所述的制备方法制备得到的磷酸铁锂材料在制备电池正极材料中的应用。
  42. 一种电池正极,其特征在于,由如权利要求10-40所述的制备方法制备得到的磷酸铁锂材料制备而成。
PCT/CN2012/082620 2012-10-09 2012-10-09 磷酸铁锂材料及其制备方法 WO2014056143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082620 WO2014056143A1 (zh) 2012-10-09 2012-10-09 磷酸铁锂材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082620 WO2014056143A1 (zh) 2012-10-09 2012-10-09 磷酸铁锂材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014056143A1 true WO2014056143A1 (zh) 2014-04-17

Family

ID=50476858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082620 WO2014056143A1 (zh) 2012-10-09 2012-10-09 磷酸铁锂材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2014056143A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347873A (zh) * 2014-07-24 2015-02-11 机械科学研究总院先进制造技术研究中心 一种共聚反应制备类球形磷酸铁锂正极材料的制备方法
CN104821399A (zh) * 2015-03-18 2015-08-05 江苏乐能电池股份有限公司 具有核-壳结构的磷酸铁锂正极材料及其制备方法
CN107863530A (zh) * 2017-11-03 2018-03-30 山东科技大学 一种采用菱铁矿制备高密度磷酸铁锂的方法
CN108199042A (zh) * 2018-01-09 2018-06-22 河北工业大学 一种球形磷酸铁锂混合型极片的制备方法
CN108807985A (zh) * 2017-04-26 2018-11-13 中国科学院福建物质结构研究所 橄榄石型锂电池正极材料磷酸亚铁锂的微波水热合成方法
CN110048109A (zh) * 2019-04-25 2019-07-23 桑顿新能源科技有限公司 磷酸铁锂正极材料及其制备方法和电池
CN111348637A (zh) * 2020-03-24 2020-06-30 广东邦普循环科技有限公司 一种纳米磷酸铁锂及其制备方法
CN111933915A (zh) * 2020-09-14 2020-11-13 天津斯科兰德科技有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN113651304A (zh) * 2021-08-09 2021-11-16 天津理工大学 有机碳包覆磷酸铁锂正极材料及其制备方法
CN113772651A (zh) * 2021-09-30 2021-12-10 内蒙古圣钒科技新能源有限责任公司 一种原位生长磷酸铁锂薄膜的制备方法及应用
CN113991070A (zh) * 2021-09-14 2022-01-28 陕西创普斯新能源科技有限公司 一种磷酸铁锂复合材料及其制备方法和应用
CN114084879A (zh) * 2021-11-22 2022-02-25 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114275755A (zh) * 2021-12-14 2022-04-05 河源职业技术学院 一种以鸡蛋壳内膜作为模板制备磷酸铁锂的方法
CN114368765A (zh) * 2021-08-20 2022-04-19 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制工艺与方法
CN114702019A (zh) * 2022-04-18 2022-07-05 福州华复新能源科技有限公司 一种纯液相混料固相烧结生产磷酸铁锂的方法
CN114725318A (zh) * 2022-04-15 2022-07-08 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料及其制备方法、其正极和电池
CN115353084A (zh) * 2022-07-06 2022-11-18 宜宾天原锂电新材有限公司 以二水磷酸铁为原料一步法生产磷酸铁锂的方法
CN115367724A (zh) * 2022-08-20 2022-11-22 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法
CN115463935A (zh) * 2021-10-14 2022-12-13 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN116534820A (zh) * 2023-03-30 2023-08-04 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法
CN116835545A (zh) * 2022-03-24 2023-10-03 中国科学院过程工程研究所 一种磷酸铁脱硫的方法
CN117727914A (zh) * 2024-02-07 2024-03-19 晶科储能科技有限公司 正极材料及其制备方法、二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502563A (zh) * 2011-11-23 2012-06-20 陕西科技大学 一种球状LiFePO4微晶的制备方法
CN102623705A (zh) * 2012-03-30 2012-08-01 江苏锋驰绿色电源有限公司 一种锂离子电池正极材料LiFePO4/C及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502563A (zh) * 2011-11-23 2012-06-20 陕西科技大学 一种球状LiFePO4微晶的制备方法
CN102623705A (zh) * 2012-03-30 2012-08-01 江苏锋驰绿色电源有限公司 一种锂离子电池正极材料LiFePO4/C及其制备方法和应用

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347873A (zh) * 2014-07-24 2015-02-11 机械科学研究总院先进制造技术研究中心 一种共聚反应制备类球形磷酸铁锂正极材料的制备方法
CN104821399A (zh) * 2015-03-18 2015-08-05 江苏乐能电池股份有限公司 具有核-壳结构的磷酸铁锂正极材料及其制备方法
CN108807985A (zh) * 2017-04-26 2018-11-13 中国科学院福建物质结构研究所 橄榄石型锂电池正极材料磷酸亚铁锂的微波水热合成方法
CN107863530A (zh) * 2017-11-03 2018-03-30 山东科技大学 一种采用菱铁矿制备高密度磷酸铁锂的方法
CN108199042A (zh) * 2018-01-09 2018-06-22 河北工业大学 一种球形磷酸铁锂混合型极片的制备方法
CN110048109A (zh) * 2019-04-25 2019-07-23 桑顿新能源科技有限公司 磷酸铁锂正极材料及其制备方法和电池
CN110048109B (zh) * 2019-04-25 2024-04-26 湖南桑瑞新材料有限公司 磷酸铁锂正极材料及其制备方法和电池
CN111348637B (zh) * 2020-03-24 2022-01-07 广东邦普循环科技有限公司 一种纳米磷酸铁锂及其制备方法
CN111348637A (zh) * 2020-03-24 2020-06-30 广东邦普循环科技有限公司 一种纳米磷酸铁锂及其制备方法
CN111933915A (zh) * 2020-09-14 2020-11-13 天津斯科兰德科技有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用
CN113651304A (zh) * 2021-08-09 2021-11-16 天津理工大学 有机碳包覆磷酸铁锂正极材料及其制备方法
CN113651304B (zh) * 2021-08-09 2023-10-13 天津理工大学 有机碳包覆磷酸铁锂正极材料及其制备方法
CN114368765B (zh) * 2021-08-20 2023-09-22 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制方法
CN114368765A (zh) * 2021-08-20 2022-04-19 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制工艺与方法
CN113991070A (zh) * 2021-09-14 2022-01-28 陕西创普斯新能源科技有限公司 一种磷酸铁锂复合材料及其制备方法和应用
CN113772651A (zh) * 2021-09-30 2021-12-10 内蒙古圣钒科技新能源有限责任公司 一种原位生长磷酸铁锂薄膜的制备方法及应用
CN113772651B (zh) * 2021-09-30 2023-02-28 内蒙古圣钒科技新能源有限责任公司 一种原位生长磷酸铁锂薄膜的制备方法及应用
CN115463935B (zh) * 2021-10-14 2023-07-28 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN115463935A (zh) * 2021-10-14 2022-12-13 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN114084879A (zh) * 2021-11-22 2022-02-25 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114084879B (zh) * 2021-11-22 2023-09-12 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114275755B (zh) * 2021-12-14 2023-07-04 河源职业技术学院 一种以鸡蛋壳内膜作为模板制备磷酸铁锂的方法
CN114275755A (zh) * 2021-12-14 2022-04-05 河源职业技术学院 一种以鸡蛋壳内膜作为模板制备磷酸铁锂的方法
CN116835545A (zh) * 2022-03-24 2023-10-03 中国科学院过程工程研究所 一种磷酸铁脱硫的方法
CN114725318A (zh) * 2022-04-15 2022-07-08 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料及其制备方法、其正极和电池
CN114725318B (zh) * 2022-04-15 2023-11-10 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料及其制备方法、其正极和电池
CN114702019A (zh) * 2022-04-18 2022-07-05 福州华复新能源科技有限公司 一种纯液相混料固相烧结生产磷酸铁锂的方法
CN115353084A (zh) * 2022-07-06 2022-11-18 宜宾天原锂电新材有限公司 以二水磷酸铁为原料一步法生产磷酸铁锂的方法
CN115367724B (zh) * 2022-08-20 2023-08-04 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法
CN115367724A (zh) * 2022-08-20 2022-11-22 河北择赛生物科技有限公司 一种利用生物质剂生产磷酸铁锂的方法
CN116534820A (zh) * 2023-03-30 2023-08-04 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法
CN116534820B (zh) * 2023-03-30 2023-11-24 新洋丰农业科技股份有限公司 一种工业磷酸一铵和硫酸亚铁制备高压实磷酸铁的方法
CN117727914A (zh) * 2024-02-07 2024-03-19 晶科储能科技有限公司 正极材料及其制备方法、二次电池
CN117727914B (zh) * 2024-02-07 2024-05-14 晶科储能科技有限公司 正极材料及其制备方法、二次电池

Similar Documents

Publication Publication Date Title
WO2014056143A1 (zh) 磷酸铁锂材料及其制备方法
TWI380492B (en) Crystalline nanometric lifepo4
KR101371356B1 (ko) pH 조절을 이용한 FePO₄제조 방법 및 이를 이용한 리튬이차전지 양극용 LiFePO₄/C 복합재 제조 방법
JP2015525182A (ja) グラフェン基LiFePO4/C複合材料の製造方法
CN103708434B (zh) 磷酸铁锂材料及其制备方法
CN103825019B (zh) 一种四氧化三铁/碳复合材料及其制备方法和其在锂离子电池中的应用
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
Wang et al. Synthesis of nano-LiMnPO4 from MnPO4· H2O prepared by mechanochemistry
TW201010944A (en) Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
Aimable et al. Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water
CN114649517A (zh) 一种锂离子电池用纳米级碳复合磷酸锰铁锂正极材料的制备方法
CN102623701B (zh) 一种低温型纳米磷酸铁锂正极材料的制备方法
JP6182673B2 (ja) リン酸鉄リチウムの製造方法
Xu et al. Synthesis and electrochemical properties of Li3V2 (PO4) 3/C cathode material with an improved sol–gel method by changing pH value
CN113991112A (zh) 一种掺杂纳米二氧化钛磷酸铁锂正极材料的制备方法
CN109950514A (zh) 一种铁酸锂包覆磷酸铁锂的制备方法
CN108807899A (zh) 一种多级球形磷酸钒钠复合正极材料的制备方法
KR101323104B1 (ko) 리튬이온전지용 리튬인산철 양극 활물질의 제조방법
CN107069034B (zh) 一种锂离子电池正极材料及其制备方法和应用
KR101328381B1 (ko) 리튬이온전지용 리튬인산철 양극 활물질의 제조방법 및 이를 이용하여 제조된 리튬이온전지용 리튬인산철 양극 활물질
Yang et al. Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method
CN114583158A (zh) 一种磷酸铁锂-石墨烯强耦合材料及其制备方法
CN110182780B (zh) 一种致密化球形磷酸铁锂及其制备方法
CN109860530B (zh) 一种掺杂钛、铌的碱式磷酸铁铵、磷酸铁锂/碳复合材料及其制备方法和应用
Lim et al. Synthesis and electrochemical properties of LiMPO4 (M= Fe, Mn, Co) nanocrystals in polyol medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 31-08-2015 )

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 31-08-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12886449

Country of ref document: EP

Kind code of ref document: A1