WO2014050579A1 - キャパシタ用電極活物質およびこれを用いたキャパシタ - Google Patents

キャパシタ用電極活物質およびこれを用いたキャパシタ Download PDF

Info

Publication number
WO2014050579A1
WO2014050579A1 PCT/JP2013/074627 JP2013074627W WO2014050579A1 WO 2014050579 A1 WO2014050579 A1 WO 2014050579A1 JP 2013074627 W JP2013074627 W JP 2013074627W WO 2014050579 A1 WO2014050579 A1 WO 2014050579A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
porous carbon
carbon material
capacitor
electrode
Prior art date
Application number
PCT/JP2013/074627
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
真嶋 正利
石川 真二
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2014538379A priority Critical patent/JP6269495B2/ja
Priority to CN201380050609.3A priority patent/CN104685591B/zh
Priority to US14/432,161 priority patent/US9514894B2/en
Priority to KR1020157006377A priority patent/KR20150063373A/ko
Publication of WO2014050579A1 publication Critical patent/WO2014050579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an electrode active material for a capacitor containing a porous carbon material, and further relates to a capacitor using such an electrode active material for a capacitor, in particular, an electric double layer capacitor (EDLC) or a lithium ion capacitor (LIC).
  • EDLC electric double layer capacitor
  • LIC lithium ion capacitor
  • Non-Patent Document 1 describes that carbon materials having various structures from amorphous to graphite can be produced by chlorinating metal carbides. According to Non-Patent Document 1, the structure and pore size distribution of the generated carbon material vary depending on the type of metal carbide and the reaction conditions.
  • Patent Document 1 describes that a porous carbon material obtained by chlorination of metal carbide is used as an electrode active material of an electric double layer capacitor. More specifically, it is described that TiC is reacted with chlorine at 900 ° C. to 1000 ° C. to produce a porous carbon material having nano-level pores.
  • the present invention relates to an electrode active material.
  • the porous carbon material is considered to have a crystal structure similar to diamond because P k contains a peak component attributed to the (111) plane of the diamond crystal.
  • P k contains a peak component attributed to the (111) plane of the diamond crystal.
  • diamond crystals generally do not have electron conductivity. Therefore, it is predicted that the electron conductivity of the porous carbon material is reduced.
  • the porous carbon material has excellent electronic conductivity despite having a crystal structure similar to diamond. Further, its electronic conductivity is more isotropic than a general carbon material such as graphite. Such excellent isotropy is considered to be derived from a crystal structure similar to diamond.
  • the porous carbon material is excellent in mechanical strength, and even when it has a large specific surface area of 800 m 2 / g or more, the strength required as a capacitor material can be sufficiently maintained. Such excellent mechanical strength is considered to be derived from a crystal structure similar to diamond.
  • the crystallite size determined from the half width of P k is preferably 1.0 nm to 10.0 nm. By setting the crystallite size to 10.0 nm or less, it is considered that the original characteristics of the diamond crystal are suppressed and more excellent electron conductivity is exhibited. Moreover, it is thought that more excellent mechanical strength and isotropic electron conduction can be obtained by setting the crystallite size to 1.0 nm or more.
  • the cumulative volume of pores having a pore diameter of 1 nm or less is preferably 80% or more of the total pore volume. This significantly increases the specific surface area of the porous carbon material, which is more advantageous for the formation of the space charge layer.
  • the porous carbon material When the porous carbon material is produced by a predetermined production method, the porous carbon material has a specific surface area of 800 m 2 / g or more without performing an activation treatment with an alkali or an activation treatment with water vapor. Accordingly, since impurities derived from the activation treatment are not mixed, the content of the alkali metal element in the porous carbon material can be 0 ppm to 400 ppm.
  • the hydrogen content contained in the porous carbon material can be 0 ppm to 100 ppm.
  • Another aspect of the present invention includes a first electrode, a second electrode, a separator interposed between the first electrode and the second electrode, and an electrolyte solution.
  • the first electrode and the second electrode At least one of them relates to a capacitor containing the capacitor electrode active material. Since such a capacitor includes a porous carbon material having excellent electron conductivity, excellent isotropic electron conduction, and excellent mechanical strength as an active material, it has low electrical resistance and excellent cycle characteristics. .
  • the electrolytic solution of the capacitor has lithium ions (Li + ), tetraethylammonium ions (TEA + ), triethylmonomethylammonium ions (TEMA + ), 1-ethyl-3-methylimidazolium ions (EMI + ) and N as cations.
  • the nonaqueous electrolyte is A non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent, and the non-aqueous solvent is an ionic liquid or an organic solvent.
  • the ionic liquid contains as a cation at least one selected from the group consisting of 1-ethyl-3-methylimidazolium ion (EMI + ) and N-methyl-N-propylpyrrolidinium ion (MPPY + ),
  • As anions bis (fluorosulfonyl) imide ion (N (SO 2 F) 2 ⁇ ), bis (trifluoromethanesulfonyl) imide ion (N (SO 2 CF 3 ) 2 ⁇ , bis (pentafluoroethanesulfonyl) imide ion (N ( SO 2 C 2 F 5 ) 2 ⁇ ) and trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), and preferably contains at least one selected from the group consisting of: Excellent ion conductivity and permeability to electrodes.
  • capacitor electrode active material of the present invention By using the capacitor electrode active material of the present invention, a capacitor having low resistance and excellent cycle characteristics can be provided.
  • waveform X is an X-ray diffraction image (waveform X) having a peak attributed to the (111) plane of a diamond crystal, which is an example of a porous carbon material produced by reacting silicon carbide (SiC) with chlorine gas. It is an electron micrograph of the porous carbon material, and is a view showing a carbon microcrystal having a layer structure or an onion structure.
  • FIG. Z shows the X-ray-diffraction image (waveform Z) of a carbon material in contrast with the waveform X.
  • FIG. Z It is a figure which shows the relationship between the heating temperature when making silicon carbide react with chlorine gas, and the weight decreasing rate of silicon carbide. It is a figure which shows the relationship between the heating temperature when making silicon carbide react with chlorine gas, and the specific surface area (t-plot by BET method and Langmuir method) of the produced
  • the capacitor electrode active material of the present invention includes a porous carbon material.
  • the X-ray diffraction image of the porous carbon material by Cuk ⁇ rays has a peak: P d111 attributed to the (111) plane of the diamond crystal.
  • Such a porous carbon material is considered to have at least a part of a crystal structure similar to diamond, and is more excellent in isotropy of electron conduction than, for example, graphite. Therefore, such a porous carbon material has a low electrical resistance and can provide a capacitor with excellent current collection.
  • the potential window can be made wider than that of graphite or amorphous carbon, and the effect of suppressing deterioration due to the high voltage of the electrode can be considered.
  • a porous carbon material having an X-ray diffraction image of Pd111 can maintain a mechanical strength for a long period of time even if the specific surface area is very large, so that a capacitor having high capacity and excellent cycle characteristics can be obtained. Obtainable.
  • the porous carbon material comprises graphite component
  • 2 [Theta] 40 to 50 degrees, i.e. in a range that overlaps with P d111, peaks attributed to the (010) plane of the graphite: P G010 appears.
  • peaks attributed to the (010) plane of the graphite: P G010 appears.
  • a peak belonging to the (002) plane of graphite: PG002 is simultaneously observed.
  • the position of P k may be 2 ⁇ ⁇ 43 degrees.
  • I G002 / I k is preferably 3.0 or less, and more preferably 2.5 or less.
  • the intensity (I) of each peak is the height from the base line of the X-ray diffraction image.
  • the baseline is a signal having a background noise level.
  • the position of the peak attributed to the (002) plane of graphite is 2 ⁇ 42.7 degrees
  • the position of the peak attributed to the (111) plane of diamond is 2 ⁇ 43.9 degrees. From this, it is considered that the component belonging to the (111) plane of diamond increases as the position of P k becomes higher. Therefore, if the position 2 ⁇ of P k is higher than 43 degrees, it is considered that the porous carbon material contains more diamond component.
  • FIG. 1 shows an X-ray diffraction image of an example of a porous carbon material having P d111 .
  • the ratio of I 10 to I k (I 10 / I k1 ) is preferably 3.0 or more, and more preferably 5.0 or more. When such a peak intensity ratio is satisfied, the pores of the porous carbon material are sufficiently developed, which is preferable in terms of capacitance characteristics as a carbon material for capacitors.
  • the peak P d111 attributed to the (111) plane of the diamond crystal is confirmed and that the porous carbon material contains the diamond crystal.
  • the presence of the peak P d111 indicates at least the existence of a crystal structure similar to diamond.
  • the size of a crystallite (that is, a crystallite constituting a crystal similar to diamond) obtained from the half width of P k is preferably, for example, 1.0 nm to 10.0 nm.
  • the structure of the crystallite can be confirmed by an electron microscope of a cross section of the porous carbon material.
  • FIG. 2 shows an electron micrograph of an example of a porous carbon material having an X-ray diffraction image of Cd ⁇ rays having Pd111 .
  • the particle diameter of the carbon microcrystal is about 2 nm. Since the porous carbon material has onion-structured carbon microcrystals as shown in FIG. 2, it is considered that the porous carbon material strongly develops properties similar to diamond. Therefore, although details are not clear, it is presumed that onion-structured carbon microcrystals belong to crystals similar to diamond. Thus, the porous carbon material is not completely amorphous and contains carbon microcrystals having a size of less than 10 nm.
  • the cumulative volume of pores having a pore size of 1 nm or less is preferably 80% or more of the total pore volume, and more preferably 90% or more. .
  • most of the pores of the porous carbon material are micropores of 1 nm or less, and the proportion of mesopores (pore diameter 2 nm to 50 nm) and macropores (pore diameter greater than 50 nm) is small.
  • the specific surface area of the material becomes very large, and the proportion of the area where the space charge layer is formed becomes large. Therefore, a capacitor electrode having a large capacitance can be obtained.
  • the porous carbon material preferably has few impurities. This is because impurities cause internal short circuit of the capacitor, deterioration of cycle characteristics, increase of internal pressure due to gas generation, and the like. Examples of impurities that can be contained in the capacitor electrode active material include alkali metal elements, surface functional groups, and transition metal elements.
  • the porous carbon material does not contain an alkali metal element.
  • the content (mass) of the alkali metal element contained in the porous carbon material is preferably 400 ppm or less, more preferably 100 ppm or less, and 10 ppm or less. It is particularly preferred.
  • alkali metal elements that can be included as impurities include lithium, sodium, potassium, cesium, and the like.
  • the surface functional group is a functional group that can exist on the surface of the porous carbon material.
  • a functional group is usually a hydroxyl group, a carboxyl group, an alkyl group or the like, and contains a hydrogen atom.
  • the surface functional group tends to cause a side reaction with the electrolytic solution in the capacitor. When a side reaction occurs, gas is generated in the capacitor, which causes a reduction in the cycle characteristics of the capacitor. Therefore, the hydrogen content (mass) contained in the porous carbon material is preferably 0 ppm to 100 ppm, and more preferably 50 ppm or less.
  • the porous carbon material does not contain the transition metal element.
  • the transition metal element can be contained in the raw material (for example, metal carbide) of the porous carbon material, but can be reduced to a sufficiently low concentration by controlling the conditions for generating the porous carbon material.
  • the content (mass) of the transition metal element contained in the porous carbon material is preferably 100 ppm or less, and more preferably 10 ppm or less.
  • BET specific surface area of the porous carbon material for example, 800 m 2 / g may be at least, but from the viewpoint of obtaining a capacitor electrode of a high capacity, preferably at least 1000 m 2 / g, more preferably at least 1100 m 2 / g 1200 m 2 / g or more is more preferable, and 1300 m 2 / g or more is particularly preferable.
  • BET specific surface area of the porous carbon material for example 2500 m 2 / g but not more than, 2000 m 2 / g or less are common, not more than 1800 m 2 / g, it is easy to more production. These upper and lower limits can be arbitrarily combined.
  • a preferable range of the BET specific surface area of the porous carbon material can be, for example, 1000 m 2 / g to 2000 m 2 / g, or 1100 m 2 / g to 1800 m 2 / g.
  • the porous carbon material having the above properties is, for example, a metal carbide having an average particle size of 0.1 ⁇ m to 100 ⁇ m, more preferably a metal carbide having an average particle size of 2 ⁇ m to 40 ⁇ m in an atmosphere containing chlorine gas. It can produce
  • the average particle size is a particle size (D50) at which the cumulative volume becomes 50% in the volume-based particle size distribution.
  • D50 particle size
  • a porous carbon material can be efficiently generated from the metal carbide. Further, the time required for producing the porous carbon material can be shortened.
  • a porous body means the state which the particle
  • a porous carbon material and a metal chloride are generated.
  • silicon carbide (SiC) or titanium carbide (TiC) is selected as the metal carbide, and the heating temperature is set to 1100 ° C. or higher, preferably 1200 ° C. or higher, so that an X-ray diffraction image by CuK ⁇ rays can be obtained.
  • a porous carbon material having d111 is obtained.
  • heating temperature is 1500 degrees C or less, and 1400 degrees C or less is more preferable.
  • the porous carbon material generated by heating the metal carbide at the predetermined temperature in an atmosphere containing chlorine gas has a total volume of pores having a pore diameter of 1 nm or less as described above. 80% or more, and further has a sharp pore size distribution of 90% or more. Further, since the specific surface area is large, it is advantageous for forming the space charge layer. Furthermore, since the metal carbide used as a raw material itself is a material that hardly contains impurities, the produced porous carbon material has high purity, and the content of impurities is extremely small. Therefore, a porous carbon material having an alkali metal element content of 10 ppm or less, a hydrogen content of 50 ppm or less, and a transition metal element content of 10 ppm or less can be easily obtained.
  • the metal carbide to be reacted with chlorine gas it is preferable to use at least one selected from the group consisting of SiC and TiC because the generated porous carbon material tends to exhibit properties similar to diamond.
  • the use of SiC makes it possible to obtain a porous carbon material that has smaller properties as graphite and is more excellent in isotropy of electron conduction.
  • FIG. 1 referred to above is an X-ray diffraction image of a porous carbon material produced by reacting SiC with chlorine gas at 1100 ° C.
  • FIG. 2 is a transmission electron of a cross section of the porous carbon material. It is a microscope (TEM) photograph. In FIG. 1, no peaks attributed to graphite are observed.
  • These are derived from silica contained as impurities in SiC.
  • crystal and cristobalite are stable in the capacitor and do not cause side reactions. Therefore, the necessity to limit these contents is very low.
  • silica is used as a raw material for SiC, silica only remains in SiC, and silica is not necessarily contained in SiC.
  • FIG. 3 shows an X-ray diffraction image (waveform Y) of a porous carbon material produced by reacting TiC with chlorine gas at 1000 ° C., and Al 4 C 3 produced by reacting chlorine gas with 1000 ° C.
  • the X-ray diffraction image (waveform Z) of the porous carbon material thus obtained is shown so that it can be compared with the X-ray diffraction image (waveform X) of FIG.
  • SiC is used as the metal carbide
  • the pores of the porous carbon material are most developed.
  • FIG. 4 shows the relationship between the heating temperature (treatment temperature) when silicon carbide is reacted with chlorine gas and the weight reduction rate of the metal carbide.
  • the reaction formula between silicon carbide and chlorine gas is as follows.
  • the molecular weight of SiC is about 40 and the atomic weight of carbon is 12, when the reaction proceeds 100%, the mass of the raw material SiC decreases by about 70%.
  • the reaction proceeds almost 100% when silicon carbide is heated at 1000 ° C. for 4 hours or more in an atmosphere containing chlorine gas, regardless of the particle diameter of SiC as a raw material. it can.
  • the chlorine gas concentration in the atmosphere containing chlorine gas is 9 mol%, and the balance is nitrogen gas.
  • a heating temperature of 1000 ° C. or lower is sufficient as long as the chlorination reaction only proceeds.
  • a porous carbon material having a peak: P d111 in which an X-ray diffraction image by CuK ⁇ rays belongs to the (111) plane of the diamond crystal is generated.
  • FIG. 5 shows the relationship between the heating temperature (Temp.) When silicon carbide is reacted with chlorine gas and the specific surface area (specific surface area) of the porous carbon material to be produced by the BET method and the Langmuir method. Shown for -plot. According to FIG. 5, it is shown that a reaction temperature of about 900 ° C. is sufficient if only the purpose is to obtain a porous carbon material having a large specific surface area. Moreover, it can be understood that the specific surface area tends to decrease somewhat as the heating temperature increases.
  • FIG. 6 shows the relationship between the heating temperature when silicon carbide is reacted with chlorine gas and the pore size distribution (frequency-pore width characteristic diagram) of the porous carbon material to be produced.
  • the distribution peak position slightly shifts in the direction in which the pore diameter increases. This corresponds to the fact that the specific surface area tends to decrease as the heating temperature increases.
  • FIG. 7 shows that the larger the BET specific surface area, the larger the total pore volume. Since the porous carbon material has a larger BET specific surface area and a larger pore volume, the porous carbon material is more suitable as an electrode active material for capacitors. Therefore, the heating temperature when chlorinating a metal carbide does not significantly reduce the BET specific surface area. It is preferable to set the temperature (for example, 1400 ° C. or lower).
  • FIG. 8 shows X-ray diffraction images of porous carbon materials produced by reacting silicon carbide and chlorine gas at 1100 ° C., 1200 ° C., and 1400 ° C. so that they can be compared with each other.
  • FIG. 8 shows that any of the porous carbon materials produced at 1100 ° C. to 1400 ° C. does not have a peak attributed to the (002) plane of graphite: PG002 and is on the (111) plane of the diamond crystal. It shows having an assigned peak: Pd111 .
  • the strength I d111 of P d111 increases as the heating temperature increases. This corresponds to the fact that when the heating temperature is too high, the size of the carbon microcrystal tends to increase.
  • a capacitor including the porous carbon material as an electrode active material will be described.
  • Said porous carbon material is suitable as an electrode active material of an electric double layer capacitor (EDLC) or a lithium ion capacitor (LIC), for example. Therefore, although EDLC and LIC are demonstrated below, the kind of capacitor which can apply said porous carbon material is not specifically limited.
  • the EDLC includes a first electrode, a second electrode, a separator interposed between the first electrode and the second electrode, and an electrolytic solution.
  • at least one of the first electrode and the second electrode includes the porous carbon material as an electrode active material for a capacitor.
  • the first electrode and the second electrode generally have the same configuration.
  • the LIC includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a lithium ion conductive non-aqueous electrolyte.
  • at least one of the positive electrode and the negative electrode includes the porous carbon material as a positive electrode active material or a negative electrode active material.
  • the positive electrode and the negative electrode generally have different configurations.
  • the porous carbon material described above is used for the positive electrode active material, and a material that can occlude and release lithium ions, a material that can be alloyed with lithium ions, or the like is used for the negative electrode active material.
  • the electrode includes an electrode active material and an electrode current collector that holds the electrode active material.
  • the electrode current collector may be a metal foil, but is preferably a metal porous body having a three-dimensional network structure from the viewpoint of obtaining a high-capacity capacitor.
  • the material of the metal porous body used for the positive electrode of LIC or the polarizable electrode of EDLC is preferably aluminum, aluminum alloy or the like.
  • the material of the metal porous body used for the negative electrode of LIC is preferably copper, copper alloy, nickel, nickel alloy, stainless steel or the like.
  • a slurry containing an electrode active material (porous carbon material) is applied to or filled in an electrode current collector, and then the dispersion medium contained in the slurry is removed. It is obtained by rolling a current collector that holds
  • the slurry may contain a binder and a conductive additive in addition to the electrode active material.
  • the dispersion medium for example, N-methyl-2-pyrrolidone (NMP), water or the like is used.
  • the type of the binder is not particularly limited, and for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl pyrrolidone, polyvinyl chloride, polyolefin, styrene butadiene rubber, polyvinyl alcohol, carboxymethyl cellulose and the like can be used.
  • the amount of the binder is not particularly limited, but is, for example, 0.5 to 10 parts by mass per 100 parts by mass of the electrode active material.
  • the type of conductive aid is not particularly limited, and examples thereof include acetylene black, ketjen black, and carbon fiber.
  • the amount of the conductive auxiliary agent is not particularly limited, but is, for example, 0.1 to 10 parts by mass per 100 parts by mass of the electrode active material.
  • activated carbon is generally used, and activated carbon has been subjected to activation treatment.
  • a gas activation method and a chemical activation method are generally used.
  • the gas activation method is a treatment in which a carbon material is brought into contact with water vapor, carbon dioxide gas, oxygen or the like at a high temperature.
  • the chemical activation method is a treatment in which a carbon material is impregnated with an activation chemical and heated in an inert gas atmosphere.
  • the activation chemical potassium hydroxide or the like is used. Therefore, activated carbon contains many impurities.
  • the porous carbon material produced by chlorination of metal carbide hardly contains impurities as already described.
  • lithium titanium oxide, silicon oxide, silicon alloy, tin oxide, tin alloy, graphite, etc. can be used in addition to the porous carbon material.
  • the negative electrode active material of LIC is previously doped with lithium in order to lower the negative electrode potential. This increases the voltage of the capacitor, which is further advantageous for increasing the capacity of the LIC.
  • the doping of lithium is performed when the capacitor is assembled. For example, lithium metal is accommodated in a capacitor container together with a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the assembled capacitor is kept warm in a constant temperature room at around 60 ° C., so that lithium ions are eluted from the lithium metal foil. Occluded by the active material.
  • the amount of lithium doped into the negative electrode active material is preferably such that 5% to 90%, more preferably 10% to 75% of the negative electrode capacity (Cn) is filled with lithium. As a result, the negative electrode potential becomes sufficiently low, and it becomes easy to obtain a high-voltage capacitor.
  • the electrolytic solution of the capacitor contains a cation and an anion.
  • the cation include lithium ion (Li + ), tetraalkylphosphonium ion, tetraalkylammonium ion (for example, tetraethylammonium ion (TEA + ), triethylmonomethylammonium ion (TEMA + )), heterocyclic compound ion (imidazolium skeleton, imidazole)
  • Use of ions having a linium skeleton, a pyridinium skeleton, a pyrrolidinium skeleton, or the like eg, 1-ethyl-3-methylimidazolium ion (EMI + ), N-methyl-N-propylpyrrolidinium ion (MPPY + ))
  • EMI + 1-ethyl-3-methylimidazolium ion
  • MPPY + N-methyl-N-
  • hexafluorophosphate ions PF 6 ⁇
  • perchlorate ions ClO 4 ⁇
  • tetrafluoroborate ions BF 4 ⁇
  • lithium bis (oxalate) borate ions BC 4 O 8) -
  • bis (fluorosulfonyl) imide ion N (SO 2 F) 2 -)
  • bis (trifluoromethanesulfonyl) imide ion N (SO 2 CF 3) 2 -)
  • bis (pentafluoroethane sulfonyl) imide ion N ( SO 2 C 2 F 5 ) 2 ⁇
  • trifluoromethanesulfonate ion CF 3 SO 3 ⁇
  • these may be used alone or in combination of two or more.
  • the electrolytic solution used for EDLC may be an alkaline electrolytic solution or a nonaqueous electrolytic solution.
  • the alkaline electrolyte include alkaline aqueous solutions such as a potassium hydroxide aqueous solution and a sodium hydroxide aqueous solution.
  • the non-aqueous electrolyte for example, a non-aqueous solvent in which a salt of an onium ion (cation) selected from the above and a borate ion (anion) is dissolved is preferably used.
  • the concentration of the salt in the nonaqueous electrolytic solution may be, for example, 0.3 mol / liter to 3 mol / liter.
  • the non-aqueous solvent used for EDLC is not particularly limited, and for example, sulfolane, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile and the like can be used. These may be used alone or in combination of two or more.
  • the onium ion used in EDLC is preferably a tetraalkylammonium ion or tetraalkylphosphonium ion having an alkyl group having 4 or less carbon atoms because it can impart excellent ionic conductivity to the electrolytic solution.
  • Triethylmonomethylammonium ion (TEMA + ) Is particularly preferred.
  • tetrafluoroborate ion (BF 4 ⁇ ) is preferable. Therefore, a specific example of a preferable salt is a salt of TEMA + and BF 4 ⁇ (TEMA-BF 4 ).
  • a non-aqueous solvent in which a lithium salt is dissolved is preferably used as the non-aqueous electrolyte used for LIC.
  • the concentration of the lithium salt in the nonaqueous electrolytic solution may be, for example, 0.3 mol / liter to 3 mol / liter.
  • the lithium salt is not particularly limited, for example, LIClO 4, LiBF 4, LiPF 6, lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (pentafluoroethane sulfonyl) imide ion is preferably . These may be used alone or in combination of two or more.
  • the organic solvent used for LIC is not particularly limited, but from the viewpoint of ionic conductivity, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, formic acid Aliphatic carboxylates such as methyl, methyl acetate, methyl propionate and ethyl propionate, lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetoa Mido, dimethylformamide, dioxolane, acetonitrile
  • An ionic liquid can also be used as a non-aqueous solvent used for LIC.
  • An ionic liquid is a salt that is liquid at room temperature.
  • a salt of an onium ion (cation) selected from the above and an imide ion or sulfonate ion (anion) is preferably used as the ionic liquid.
  • the onium ion is preferably an ion having an imidazolium skeleton, an imidazolinium skeleton, a pyridinium skeleton, a pyrrolidinium skeleton, or the like.
  • the ionic liquid is selected from the group consisting of 1-ethyl-3-methylimidazolium ion (EMI + ) and N-methyl-N-propylpyrrolidinium ion (MPPY + ) as the cation.
  • EMI + 1-ethyl-3-methylimidazolium ion
  • MPPY + N-methyl-N-propylpyrrolidinium ion
  • anions include bis (fluorosulfonyl) imide ion (N (SO 2 F) 2 ⁇ ), bis (trifluoromethanesulfonyl) imide ion (N (SO 2 CF 3 ) 2 ⁇ ), bis (pentafluoroethane It preferably contains at least one selected from the group consisting of (sulfonyl) imide ions (N (SO 2 C 2 F 5 ) 2 ⁇ ) and trifluoromethanesulfonate ions (CF 3 SO 3 ⁇ ).
  • EMI + 1-ethyl-3-methylimidazolium ion
  • anion bis (fluorosulfonyl) imide ion (FSI ⁇ ) and bis (trifluoromethanesulfonyl) imide ion (TFSI ⁇ ) are particularly preferable.
  • EMI-FSI EMI + and FSI ⁇
  • LiFSI lithium bis (fluorosulfonyl) imide
  • Separator Between the pair of electrodes or between the positive electrode and the negative electrode, they can be physically separated to prevent a short circuit, and a separator having ion permeability can be interposed.
  • the separator has a porous material structure and allows ions to permeate by holding the electrolytic solution in the pores.
  • a material for the separator for example, polyolefin, polyethylene terephthalate, polyamide, polyimide, cellulose, glass fiber, or the like can be used.
  • FIG. 9 schematically shows a configuration of an example of a capacitor.
  • the electrode plate group is configured by laminating a plurality of first electrodes (positive electrodes) 41 and second electrodes (negative electrodes) 42 via separators 43.
  • the first electrode 41 includes a first electrode current collector 41a having a three-dimensional network structure, and a particulate first electrode active material 41b filled in a communication hole of the first electrode current collector 41a.
  • the second electrode 42 includes a second electrode current collector 42a having a three-dimensional network structure, and a particulate second electrode active material 42b filled in a communication hole of the second electrode current collector 42a.
  • the electrode plate group is not limited to the laminated type, and can be configured by winding the first electrode 41 and the second electrode 42 via the separator 43.
  • the capacitor 40 is a LIC
  • the porous carbon material includes, for example, (i) a step of generating a porous carbon material and a first metal chloride by heating the first metal carbide in an atmosphere containing chlorine gas; Reducing the first metal chloride by reacting with the second metal to produce the first metal and the second metal chloride; and (iii) reacting the first metal with carbon to produce the first metal chloride.
  • the order of process (iii) and process (iv) is not specifically limited, Which may be performed first and both processes may be performed in parallel.
  • step (i) the first metal carbide (SiC, TiC, etc.) reacts with chlorine gas (Cl 2 ), and the porous carbon material and the first metal chloride (SiCl 4 , TiCl 4, etc.) are reacted. ) And generate.
  • the produced first metal chloride is reduced in step (ii) and taken out as the first metal (Si, Ti, etc.).
  • the extracted first metal is carbonized in step (iii), and the first metal carbide (SiC, TiC, etc.) is regenerated.
  • the regenerated first metal carbide is reused in step (i).
  • step (ii) a second metal chloride (ZnCl 2 , MgCl 2, etc.) is generated.
  • the produced second metal chloride is reduced in step (iv), and the second metal (Zn, Mg, etc.) and chlorine gas (Cl 2 ) are regenerated.
  • the regenerated second metal is reused in the step (ii), and the regenerated chlorine gas is reused in the step (i).
  • all materials other than carbon used in step (iii) are reused. Therefore, according to the manufacturing method, the environmental load is low and the production cost can be suppressed.
  • the first metal carbide to be reacted with chlorine gas is, for example, a powder or a porous body. Thereby, a porous carbon material can be efficiently taken out from the first metal carbide.
  • the first metal carbide for example, at least one selected from the group consisting of SiC and TiC can be used. However, it is considered that SiC is most preferable as a raw material for the porous carbon material having an X-ray diffraction image having a peak attributed to the (111) plane of diamond.
  • other metal carbides may be used as long as a porous carbon material exhibiting a desired X-ray diffraction image can be generated by improving the manufacturing conditions. Examples of other metal carbides include Al 4 C 3 , ThC 2 , B 4 C, CaC 2 , Cr 3 C 2 , Fe 3 C, UC 2 , WC, and MoC. These may be used alone or in combination of two or more.
  • the atmosphere containing chlorine gas may be an atmosphere containing only chlorine gas, or a mixed gas atmosphere of chlorine gas and inert gas.
  • the heating temperature for reacting the first metal carbide and chlorine gas is preferably 1100 ° C. or more and 1500 ° C. or less, and more preferably 1100 ° C. to 1400 ° C., for example.
  • the reaction efficiency between the first metal carbide and the chlorine gas can be increased, and a porous carbon material having a desired X-ray diffraction image and a large specific surface area can be efficiently obtained.
  • the second metal for example, at least one selected from the group consisting of Group 1 elements, Group 2 elements, Group 11 elements and Group 12 elements can be used. Thereby, the reduction reaction of a 1st metal chloride can be advanced efficiently.
  • FIG. 10 is a flowchart showing the flow of each step of an example of the method for producing the porous carbon material.
  • the present manufacturing method includes a step (i) (S11) of generating a porous carbon material, a step (ii) (S12) of reducing the first metal chloride, and the first metal carbide. (Iii) (S13), and (iv) (S14) for reducing the second metal chloride, and these steps are repeated.
  • the porous carbon material derived from SiC can be continuously produced.
  • Step (i) is a step in which the first metal carbide and chlorine gas are brought into contact with each other and heat-treated. In this step, only the first metal contained in the crystal of the first metal carbide reacts with the chlorine gas, and only the first metal escapes from the crystal, forming a porous carbon.
  • This step is performed in an atmosphere containing chlorine gas.
  • the atmosphere containing chlorine gas may be a substantially 100% chlorine gas atmosphere, but may also be a mixed gas atmosphere of chlorine gas and an inert gas (N 2 , He, Ar, Ne, Xe, etc.).
  • the mixing ratio of chlorine gas and inert gas is preferably 1:50 to 1: 1 in terms of flow rate.
  • a first metal chloride (such as SiCl 4 ) is obtained together with the porous carbon material.
  • the first metal chloride is cooled to below the boiling point of the chloride with a cooler or the like, and then recovered.
  • step (i) it is preferable to use powdered or porous metal carbide. This is because the first metal located deeper from the surface of the metal carbide requires a longer time to escape as chloride. By using a powdered or porous metal carbide having a large surface area, the first metal can efficiently escape from the metal carbide. Therefore, the manufacturing time of the porous carbon material can be shortened.
  • the average particle size of the metal carbide is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 2 ⁇ m to 40 ⁇ m. By adjusting the metal carbide to such an average particle diameter in advance, it becomes easy to obtain a porous carbon material having a sharper distribution and a large total pore volume per unit mass. It is also effective to use raw materials having several kinds of average particle diameters in order to increase the packing density of the powder.
  • the first metal chloride is reduced (step (ii)).
  • a second metal that is more easily oxidized than the first metal is used.
  • Group 2 elements include Group 1 elements (Group 1A elements, alkali metals), Group 2 elements (Group 2A elements, alkaline earth metals), Group 11 elements (Group 1B elements) such as Cu, Zn It is preferable to use a Group 12 element (Group 2B element) or the like. These may be used alone or in combination of two or more. Among these, Zn is desirable in that the melting point of chloride is relatively low and the vapor pressure is high. That is, as the step (ii), it is preferable to employ a so-called zinc reduction method. In addition to Zn, Mg, Na, K, Sr, Ba, Ca and the like are also suitable as the second metal.
  • step (iii) the carbonization reaction of the first metal produced in step (ii) (step (iii)) and the reduction reaction of the second metal chloride (step (iv)) are performed.
  • step (iii) the metal carbide is regenerated by reacting the first metal with carbon.
  • a carbon raw material used for carbonization low-cost and easily available materials such as carbon black and natural graphite can be used.
  • the regenerated metal carbide is reused in step (i).
  • step (iv) the second metal and chlorine gas are extracted by electrolysis of the second metal chloride. Specifically, the second metal chloride is separated into the second metal and chlorine gas by electrolyzing the second metal chloride in a high-temperature molten state. The extracted chlorine gas is reused in step (i). Further, the extracted second metal is reused in the step (ii).
  • FIG. 11 schematically shows the configuration of the carbon generator 10.
  • the structure of the zinc reduction apparatus 20 used by process (ii) and process (iv) is simplified and shown.
  • generation apparatus 30 used by process (iii) is shown roughly.
  • the carbon generator 10 includes a reaction furnace 11, a cooling trap 12, and a storage tank 13.
  • the reaction furnace 11 accommodates a mounting shelf 11a for mounting metal carbides over a plurality of stages.
  • the mounting shelf 11a is supported by being suspended from above by a support bar 11b.
  • a gas introduction port 11 c is provided in a portion of the reaction furnace 11 below the mounting shelf 11 a.
  • a mixed gas of chlorine gas and inert gas or substantially 100% chlorine gas is introduced into the reaction furnace 11 from the gas inlet 11c.
  • a heater 11d is provided outside the reaction furnace 11 so as to surround the mounting shelf 11a.
  • the mixed gas or chlorine gas around the metal carbide is heated by the heater 11d so as to have a predetermined temperature of 1100 ° C. or higher and 1500 ° C. or lower.
  • the first metal is released from the metal carbide, and a porous carbon material is generated on the mounting shelf 11a. Further, the first metal chloride and the mixed gas (or chlorine gas) generated by the reaction are discharged to the outside of the reaction furnace 11 from a gas discharge port 11 e provided in the upper part of the reaction furnace 11.
  • the gas discharge port 11 e is connected to the cooling trap 12, and the exhaust from the reaction furnace 11 is cooled by the refrigerant 12 a circulating in the cooling trap 12. Then, the cooled first metal chloride is stored in the storage tank 13 and then sent to the zinc reduction device 20.
  • the mixed gas (or chlorine gas) that has passed through the cooling trap 12 is exhausted to the outside of the carbon generator 10 through the three-way valve 14 or is sent again to the gas inlet 11 c of the reaction furnace 11.
  • the zinc reduction device 20 includes vaporizers 21 and 22, a reaction furnace 23, and a molten salt electrolyzer 24.
  • the first metal chloride stored in the storage tank 13 of the carbon generator 10 is sent to the vaporizer 21 and vaporized.
  • the second metal is vaporized.
  • the first metal chloride and the second metal thus vaporized are sent to the reaction furnace 23.
  • the reaction furnace 23 the first metal chloride and the second metal are reacted at a high temperature, whereby the first metal is taken out and the second metal chloride is generated.
  • the second metal chloride is sent to the molten salt electrolytic cell 24 and separated into the second metal and chlorine gas by electrolysis.
  • the chlorine gas thus taken out is sent to the carbon generator 10, and the second metal is sent to the vaporizer 22.
  • the carbide generating device 30 includes a reaction furnace 31 extending in the vertical direction, a heater 32 embedded in the side wall of the reaction furnace 31, and a mounting shelf 33 disposed in the reaction furnace 31. It has. On the mounting shelf 33, a mixture 34 of the first metal and the carbon raw material (carbon black or natural graphite) is mounted in a plurality of stages. The mounting shelf 33 is supported by being suspended from above by a support bar 33a.
  • An intake port 31a is provided in the lower part of the reaction furnace 31, and an inert gas (N 2 , He, Ar, Ne, Xe, etc.) is introduced from the intake port 31a.
  • the inert gas moves upward in the reaction furnace 31 and is then discharged from an exhaust port 31 b provided in the upper part of the reaction furnace 31.
  • the heater 32 is disposed so as to surround the periphery of the mounting shelf 33, and heats the mixture 34 mounted on the mounting shelf 33.
  • a suitable temperature of the mixture 34 in this step is 1400 ° C. to 1800 ° C. Thereby, a 1st metal and carbon couple
  • Example 1 (I) Synthesis of SiC Reaction in which a mixture of activated carbon (average particle size 20 ⁇ m, specific surface area 80 m 2 / g) and silicon particles (average particle size 100 ⁇ m) was placed on a carbon mounting shelf and set to 900 ° C. A mounting shelf was inserted into the nitrogen gas atmosphere in the furnace. Thereafter, the temperature in the reaction furnace was raised to 1450 ° C. at a temperature rising rate of 10 ° C./min to melt silicon, and in this state, activated carbon and silicon were reacted for 5 hours. The product obtained was beta-type SiC. The obtained SiC was pulverized until the average particle size became 10 ⁇ m.
  • chlorine gas that did not react with SiC in the core tube was refluxed to the core tube by a three-way valve installed on the outlet side of the cooling trap. Thereafter, the chlorine gas in the furnace core tube was removed by Ar gas, the temperature of the carbon mounting shelf was lowered to 400 ° C., and the porous carbon material remaining on the mounting shelf was taken out into the atmosphere.
  • (E) BET specific surface area The BET specific surface area of the porous carbon material was measured by N 2 isothermal adsorption measurement (BELLSORP-mini II manufactured by Bell Japan), and was 1250 m 2 / g.
  • Example 2 A porous carbon material was produced in the same manner as in Example 1 except that TiC was used instead of SiC.
  • I G002 / I k is 2.7, and it is assumed that most of P k is a component of P d111 .
  • the crystallite size obtained from the half width of P k using the Scherrer equation was 1.9 nm.
  • Example 2 When the capacitor of Example 2 was evaluated in the same manner as in Example 1, the capacity per gram of activated carbon was 51 F / g, and the capacity retention rate was 97%.
  • Example 1 A capacitor was produced in the same manner as in Example 1 except that activated carbon having a BET specific surface area of 2100 m 2 / g and an average particle size of 10 ⁇ m was used instead of the SiC-derived porous carbon material used in Example 1. When the pore size distribution of the activated carbon was measured, a peak was observed at 1.9 nm.
  • Comparative Example 2 A capacitor was produced in the same manner as in Example 1 except that carbon nanotubes (CNT) having a BET specific surface area of 600 m 2 / g were used instead of the SiC-derived porous carbon material used in Example 1.
  • CNT carbon nanotubes
  • Comparative Example 3 A porous carbon material was produced in the same manner as in Example 1 except that Al 4 C 3 was used instead of SiC.
  • I G002 / I k is 4.3, and P k is presumed to contain virtually no component of P d111 .
  • the capacitor electrode active material of the present invention can be used for various capacitors such as EDLC and LIC.
  • the capacitor of the present invention is promising as a power source for, for example, an electric vehicle and a hybrid vehicle because of its low electric resistance and excellent cycle characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

多孔質炭素材料を含み、多孔質炭素材料のBET比表面積が、800m2/g以上であり、多孔質炭素材料のCukα線によるX線回折像が、2θ=40~50度にピーク:Pkを有し、かつPkがダイヤモンド結晶の(111)面に帰属されるピーク:Pd111の成分を含んでおり、X線回折像が、グラファイトの(002)面に帰属されるピーク:PG002を有する場合には、PG002の強度:IG002のPkの強度:Ikに対する比(IG002/Ik)が3.0以下である、キャパシタ用電極活物質。

Description

キャパシタ用電極活物質およびこれを用いたキャパシタ
 本発明は、多孔質炭素材料を含むキャパシタ用電極活物質に関し、更には、そのようなキャパシタ用電極活物質を用いたキャパシタ、特に電気二重層キャパシタ(EDLC)やリチウムイオンキャパシタ(LIC)に関する。
 非特許文献1には、金属炭化物を塩素化することにより、非晶質からグラファイトまで、様々な構造を有する炭素材料を製造できることが記載されている。非特許文献1によると、金属炭化物の種類や反応条件によって、生成する炭素材料の構造や細孔径分布は、様々に変化する。
 一方、特許文献1には、金属炭化物の塩素化により得られた多孔質炭素材料を電気二重層キャパシタの電極活物質として用いることが記載されている。より具体的には、TiCを塩素とともに900℃~1000℃で反応させることにより、ナノレベルの細孔を有する多孔質炭素材料を生成させることが記載されている。
特表2004-513529号公報
Volker Presser, Min Heon, and Yury Gogotsi,‘Carbide-Derived Carbons - From Porous Networks to Nanotubes and Graphene’, ADVANCEDFUNCTIONAL MATERIALS, pp.810-833(2011)
 上述のように、多孔質炭素材料を生成させる方法として、金属炭化物を塩素ガスと反応させる方法が知られており、生成した多孔質炭素材料をキャパシタの電極材料として用いることも検討されている。しかし、このような塩素化反応により得られる多孔質炭素材料の構造は様々であり、必ずしもキャパシタ用電極活物質として最適な構造を有するとは言えない。そこで、キャパシタ用電極活物質としての適正をできるだけ高めることができるように、多孔質炭素材料の微細構造を制御することが望まれる。
 本発明の一局面は、多孔質炭素材料を含み、前記多孔質炭素材料のBET比表面積が、800m2/g以上であり、前記多孔質炭素材料のCukα線によるX線回折像が、2θ=40度~50度にピーク:Pkを有し、かつPkがダイヤモンド結晶の(111)面に帰属されるピーク:Pd111の成分を含んでおり、前記X線回折像が、グラファイトの(002)面に帰属されるピーク:PG002を有する場合には、PG002の強度:IG002のPkの強度:Ikに対する比(IG002/Ik)が3.0以下である、キャパシタ用電極活物質に関する。
 上記多孔質炭素材料は、Pkがダイヤモンド結晶の(111)面に帰属されるピークの成分を含むことから、ダイヤモンドに類似する結晶構造を有すると考えられる。ここで、ダイヤモンド結晶は、一般的に電子伝導性を有さないことが知られている。従って、上記多孔質炭素材料についても、電子伝導性が小さくなることが予測される。ところが、上記多孔質炭素材料は、ダイヤモンドに類似する結晶構造を有するにも関わらず、優れた電子伝導性を有する。また、その電子伝導性は、グラファイトのような一般的な炭素材料に比べて等方性に優れている。このような優れた等方性は、ダイヤモンドに類似する結晶構造に由来していると考えられる。更に、上記多孔質炭素材料は、機械的強度に優れており、800m2/g以上の大きな比表面積を有する場合でも、キャパシタ材料として要求される強度を十分に維持することができる。このような優れた機械的強度も、ダイヤモンドに類似する結晶構造に由来していると考えられる。
kの位置は2θ=43度よりも高角度側にあることが好ましい。Pkの位置が2θ=43度より高角度側であれば、上記多孔質炭素材料はダイヤモンド成分をより多く含有すると考えられるからである。
kの強度は、2θ=10度のピークの強度の3倍以上であることが好ましく、5倍以上であることがより好ましい。このようなピーク強度比が満たされる場合には、多孔質炭素材料の細孔が充分発達しており、キャパシタ用炭素材料として静電容量特性上好ましいからである。
 Pkの半価幅から求められる結晶子の大きさは、1.0nm~10.0nmであることが好ましい。結晶子の大きさを10.0nm以下とすることで、ダイヤモンド結晶の本来の特性が抑制され、より優れた電子伝導性が発現するものと考えられる。また、結晶子の大きさを1.0nm以上とすることで、より優れた機械的強度や電子伝導の等方性が得られると考えられる。
 上記多孔質炭素材料の体積基準の細孔径分布においては、1nm以下の細孔径を有する細孔の積算容積が、全細孔容積の80%以上であることが好ましい。これにより、多孔質炭素材料の比表面積が顕著に大きくなり、空間電荷層の形成により有利となる。
 上記多孔質炭素材料は、所定の製造方法により製造される場合には、アルカリによる賦活処理や水蒸気による賦活処理などを施さなくても、800m2/g以上の比表面積を有する。よって、賦活処理に由来する不純物の混入がないことから、上記多孔質炭素材料のアルカリ金属元素の含有量は、0ppm~400ppmとすることが可能である。また、上記多孔質炭素材料に含まれる水素含有量は、0ppm~100ppmとすることが可能である。アルカリ金属元素の含有量が0ppm~400ppmである多孔質炭素材料や、水素含有量が0ppm~100ppmである多孔質炭素材料を用いることにより、キャパシタの充放電時の副反応が顕著に抑制される。
 本発明の別の一局面は、第1電極と、第2電極と、第1電極と第2電極との間に介在するセパレータと、電解液と、を具備し、第1電極および第2電極の少なくとも一方が、上記のキャパシタ用電極活物質を含む、キャパシタに関する。このようなキャパシタは、電子伝導性に優れ、電子伝導の等方性に優れ、かつ機械的強度に優れる多孔質炭素材料を活物質として含むことから、電気抵抗が小さく、サイクル特性に優れている。
 上記キャパシタの電解液は、カチオンとして、リチウムイオン(Li+)、テトラエチルアンモニウムイオン(TEA+)、トリエチルモノメチルアンモニウムイオン(TEMA+)、1-エチル-3-メチルイミダゾリウムイオン(EMI+)およびN-メチル-N-プロピルピロリジニウムイオン(MPPY+)よりなる群から選択される少なくとも1種を含み、かつアニオンとして、ヘキサフルオロリン酸イオン(PF6 -)、過塩素酸イオン(ClO4 -)、テトラフルオロホウ酸イオン(BF4 -)、リチウムビス(オキサレート)ボレートイオン(BC48 -)、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -)、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)よりなる群から選択される少なくとも1種を含むことが好ましい。このような電解液は、イオン電導性や電極への浸透性に優れており、キャパシタの特性を向上させる。
 上記キャパシタが、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、リチウムイオン伝導性の非水電解液と、を具備するリチウムイオンキャパシタである場合、非水電解液は、非水溶媒と、前記非水溶媒に溶解するリチウム塩と、を含み、前記非水溶媒は、イオン性液体または有機溶媒である。イオン性液体は、カチオンとして、1-エチル-3-メチルイミダゾリウムイオン(EMI+)およびN-メチル-N-プロピルピロリジニウムイオン(MPPY+)よりなる群から選択される少なくとも1種を含み、かつアニオンとして、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)およびトリフルオロメタンスルホン酸イオン(CF3SO3 -)よりなる群から選択される少なくとも1種を含むことが好ましい。このような非水電解液は、特に、イオン電導性や電極への浸透性に優れている。
 本発明のキャパシタ用電極活物質を用いることにより、抵抗が小さく、サイクル特性に優れたキャパシタを提供することができる。
炭化珪素(SiC)を塩素ガスと反応させて生成させた多孔質炭素材料の一例の、ダイヤモンド結晶の(111)面に帰属されるピークを有するX線回折像(波形X)である。 同多孔質炭素材料の電子顕微鏡写真であり、層構造またはタマネギ構造を有する炭素微結晶を示す図である。 炭化チタン(TiC)を塩素ガスと反応させて生成させた多孔質炭素材料のX線回折像(波形Y)と、炭化アルミニウム(Al43)を塩素ガスと反応させて生成させた多孔質炭素材料のX線回折像(波形Z)とを、波形Xと対比して示す図である。 炭化珪素を塩素ガスと反応させるときの加熱温度と、炭化珪素の重量減少率との関係を示す図である。 炭化珪素を塩素ガスと反応させるときの加熱温度と、生成する多孔質炭素材料の比表面積(BET法およびLangmuir法によるt-plot)との関係を示す図である。 炭化珪素を塩素ガスと反応させるときの加熱温度と、生成する多孔質炭素材料の細孔径分布との関係を示す図である。 炭化珪素を塩素ガスと反応させて生成させた多孔質炭素材料の全細孔容積とBET比表面積との関係を示す図である。 炭化珪素と塩素ガスとを、1100℃、1200℃および1400℃で反応させて生成させた多孔質炭素材料のX線回折像の対比図である。 キャパシタの一例の構成を示す断面図である。 多孔質炭素材料の製造方法の一例の各工程の流れを示すフロー図である。 多孔質炭素材料を生成させる炭素生成装置の構成を概略的に示す図である。 多孔質炭素材料を生成させるときに生成する金属塩化物を還元する工程において用いられる亜鉛還元装置の構成を簡略化して示す図である。 金属炭化物を生成させる炭化物生成装置の構成を概略的に示す図である。 図3の2θ=40度~48度の部分を拡大した図である。
[キャパシタ用電極活物質]
 まず、キャパシタ用電極活物質について説明する。
本発明のキャパシタ用電極活物質は、多孔質炭素材料を含む。ただし、多孔質炭素材料のCukα線によるX線回折像は、ダイヤモンド結晶の(111)面に帰属されるピーク:Pd111を有する。このような多孔質炭素材料は、ダイヤモンドに類似する結晶構造を少なくとも一部に有すると考えられ、例えばグラファイトよりも電子伝導の等方性に優れている。よって、このような多孔質炭素材料は、電気抵抗が小さく、集電性に優れたキャパシタを得ることが可能である。ダイヤモンド構造を持つことで、電位窓がグラファイトやアモルファスカーボンに比べ広くとることが可能となり、電極の高電圧化による劣化を抑制する効果も考えられる。また、X線回折像がPd111を有する多孔質炭素材料は、比表面積が非常に大きくても、長期間にわたって機械的強度を維持することができるため、高容量でサイクル特性に優れたキャパシタを得ることができる。
より具体的には、多孔質炭素材料のX線回折像は、2θ=40度~50度にピーク:Pkを有し、かつPkはダイヤモンド結晶の(111)面に帰属されるピーク:Pd111の成分を含んでいる。このとき、Pkの全ての成分が、ダイヤモンド結晶の(111)面に帰属される成分であってもよい。すなわちPk=Pd111の関係を有してもよい。
多孔質炭素材料がグラファイト成分を含む場合には、2θ=40度~50度、つまりPd111と重複する範囲に、グラファイトの(010)面に帰属されるピーク:PG010が表れる。この場合、2θ=20度~30度には、グラファイトの(002)面に帰属されるピーク:PG002が同時に観測される。このとき、Pkの位置は2θ<43度となる場合がある。
 以上より、Cukα線によるX線回折像が、グラファイトの(002)面に帰属されるピーク:PG002を有する場合、2θ=40度~50度のPkは、PG010とPd111とが合成されたピークである。このような場合でも、PG002の強度:IG002のPkの強度:Ikに対する比(IG002/Ik)が3.0以下である場合には、IG002に対してIkが非常に大きいため、Pkは少なくともPd111の成分を含むことになる。
 IG002/Ikは3.0以下であることが好ましく、2.5以下であることがさらに好ましい。このようなピーク強度比が満たされる場合には、多孔質炭素材料がグラファイト成分を含むとしても、通常のグラファイトの性質はほとんど発現せず、ダイヤモンドに類似する結晶構造に基づく性質が強く発現する。なお、各ピークの強度(I)は、X線回折像のベースラインからの高さである。ここで、ベースラインとは背景雑音レベルの信号のことである。例えば、図1で2θ=44度付近のベースラインは2θ=35度の強度と2θ=55度の強度の間に直線を引くことで得られる。また2θ=10度ではベースラインを引くことができないので、ベースラインの高さはゼロとし、ピークの強度はX線回折の強度としている。
ところで、グラファイトの(002)面に帰属されるピークの位置は2θ≒42.7度にあり、 一方ダイヤモンドの(111)面に帰属されるピークの位置は2θ≒43.9度である。このことから、Pkの位置が高角度ほどダイヤモンドの(111)面に帰属する成分が多くなると考えられる。したがって、Pkの位置2θが43度より高角度側であれば、上記多孔質炭素材料はダイヤモンド成分をより多く含有すると考えられる。
図1に、Pd111を有する多孔質炭素材料の一例のX線回折像を示す。図1では、2θ=40度~50度に、ダイヤモンド結晶の(111)面に帰属されるブロードなピークPkが存在する。ピークPkが表れる角度位置は、グラファイトの(010)面のピークが表れる位置とほぼ重複するが、グラファイトが存在する場合には、2θ=20度~30度にグラファイトの(002)面に帰属されるピーク:PG002も同時に観測される。図1では、2θ=20度~30度にPG002が観測されないこと、およびPkの位置2θ=43.8度であることから、2θ=40度~50度のブロードなピークは、ダイヤモンド結晶の(111)面に帰属されるピークPd111であることがわかる。ここでPkの位置2θは、ピーク強度(強度のトップ値)の半値を示す2つの角度の平均値とした。
また、図1において、回折角度2θ=10度における強度I10は2θ=40度~50度のピークの強度Ikに比べて約10倍となっている。回折角度2θ=10度は0.8nm~0.9nmの構造を表すものであるから、炭素材料の多孔質性を示すものである。この角度における回折強度が大きいほど細孔が多く形成されていると考えられる。I10のIkに対する比(I10/Ik1)は3.0以上であることが好ましく、5.0以上であることがさらに好ましい。このようなピーク強度比が満たされる場合には、多孔質炭素材料の細孔が充分発達しており、キャパシタ用炭素材料として静電容量特性上好ましい。
 なお、ダイヤモンド結晶の(111)面に帰属されるピークPd111が確認されることと、多孔質炭素材料にダイヤモンド結晶が含まれていることとは、同義ではない。ただし、ピークPd111の存在は、少なくとも、ダイヤモンドに類似する結晶構造の存在を示している。
 Pkの半価幅から求められる結晶子(すなわち、ダイヤモンドに類似する結晶を構成する結晶子)の大きさは、例えば1.0nm~10.0nmであることが望ましい。結晶子の構造は、多孔質炭素材料の断面の電子顕微鏡により確認することができる。結晶子が大きいほど、多孔質炭素材料のダイヤモンドに類似する性質が強くなるとともに、比表面積が小さくなる傾向がある。従って、結晶子の大きさは1.0nm~5.0nmが好ましく、1.0nm~3.0nmであることが更に好ましい。
 ここで、Cukα線によるX線回折像がPd111を有する多孔質炭素材料の一例の、電子顕微鏡写真を図2に示す。図2では、層構造またはタマネギ構造を有する炭素微結晶の存在が確認できる。炭素微結晶の粒子径は2nm程度である。多孔質炭素材料が、図2のように、タマネギ構造の炭素微結晶を有することで、多孔質炭素材料にダイヤモンドに類似する性質が強く発現するものと考えられる。従って、詳細は明らかではないが、タマネギ構造の炭素微結晶が、ダイヤモンドに類似する結晶に帰属されるものと推定される。このように、多孔質炭素材料は、完全なアモルファスではなく、10nm未満の大きさの炭素微結晶を含有している。
 多孔質炭素材料の体積基準の細孔径分布において、1nm以下の細孔径を有する細孔の積算容積は、全細孔容積の80%以上であることが好ましく、90%以上であることが更に好ましい。このように、多孔質炭素材料の細孔のほとんどが1nm以下のマイクロ孔であり、メソ孔(細孔径2nm~50nm)やマクロ孔(細孔径50nm超)の割合が小さいことにより、多孔質炭素材料の比表面積が非常に大きくなるとともに、空間電荷層が形成される面積の割合が大きくなる。よって、大きな静電容量を有するキャパシタ用電極が得られる。
 多孔質炭素材料は、不純物が少ないことが好ましい。不純物は、キャパシタの内部短絡、サイクル特性の低下、ガス発生による内圧上昇などの原因となるからである。キャパシタ用電極活物質に含まれ得る不純物としては、アルカリ金属元素、表面官能基、遷移金属元素などが挙げられる。
 アルカリ金属元素は、充電時に副反応を起こすことから、キャパシタのサイクル特性を低下させる原因となる。従って、多孔質炭素材料は、アルカリ金属元素を含まないことが望ましい。アルカリ金属元素を不純物として含む場合でも、多孔質炭素材料中に含まれるアルカリ金属元素の含有量(質量)は、400ppm以下であることが好ましく、100ppm以下であることが更に好ましく、10ppm以下であることが特に好ましい。なお、不純物として含まれ得るアルカリ金属元素としては、リチウム、ナトリウム、カリウム、セシウムなどが挙げられる。
 表面官能基とは、多孔質炭素材料の表面に存在し得る官能基である。このような官能基は、通常、水酸基、カルボキシル基、アルキル基などであり、水素原子を含んでいる。表面官能基は、キャパシタ内で電解液との副反応を起こし易い。副反応が起ると、キャパシタ内でガスが発生し、キャパシタのサイクル特性を低下させる原因となる。従って、多孔質炭素材料中に含まれる水素含有量(質量)は、0ppm~100ppmであることが好ましく、50ppm以下であることが更に好ましい。
 遷移金属元素は、キャパシタの内部短絡の原因となり得るため、多孔質炭素材料は遷移金属元素を含まないことが望ましい。遷移金属元素は、多孔質炭素材料の原料(例えば金属炭化物)中に含まれ得るが、多孔質炭素材料を生成させる条件を制御することにより、十分に低濃度に低減することが可能である。多孔質炭素材料中に含まれる遷移金属元素の含有量(質量)は、100ppm以下であることが好ましく、10ppm以下であることが更に好ましい。
 多孔質炭素材料のBET比表面積は、例えば800m2/g以上であればよいが、高容量のキャパシタ用電極を得る観点からは、1000m2/g以上が好ましく、1100m2/g以上がより好ましく、1200m2/g以上が更に好ましく、1300m2/g以上が特に好ましい。多孔質炭素材料のBET比表面積は、例えば2500m2/g以下であるが、2000m2/g以下が一般的であり、1800m2/g以下であれば、より製造が容易である。これらの上限と下限は任意に組み合わせることができる。すなわち、多孔質炭素材料のBET比表面積の好ましい範囲は、例えば1000m2/g~2000m2/gであり得るし、1100m2/g~1800m2/gでもあり得る。
 上記のような性質を有する多孔質炭素材料は、例えば、塩素ガスを含む雰囲気中で、平均粒径0.1μm~100μmの金属炭化物、より好ましくは平均粒径2μm~40μmの金属炭化物を、1100℃以上、1500℃以下で加熱することにより生成させることができる。ここで、平均粒径とは、体積基準の粒度分布において累積体積が50%となる粒径(D50)である。以下、他の材料においても同様である。このような範囲の平均粒径を有する粉末状または多孔質体の金属炭化物を用いることで、金属炭化物から多孔質炭素材料を効率良く生成させることができる。また、多孔質炭素材料の製造に要する時間を短くすることができる。なお、多孔質体とは、粉末を構成する粒子が凝集や焼結により結合した状態をいう。
 金属炭化物を塩素ガスと反応させると、多孔質炭素材料と金属塩化物とが生成する。このとき、金属炭化物として、例えば炭化珪素(SiC)または炭化チタン(TiC)を選択するとともに、加熱温度を1100℃以上、好ましくは1200℃以上とすることにより、CuKα線によるX線回折像がPd111を有する多孔質炭素材料が得られる。なお、加熱温度が高くなり過ぎると、生成する多孔質炭素材料の比表面積が減少する傾向があるため、加熱温度は1500℃以下が好ましく、1400℃以下がより好ましい。
 塩素ガスを含む雰囲気中で金属炭化物を上記所定の温度で加熱することにより生成させた多孔質炭素材料は、上記のように、1nm以下の細孔径を有する細孔の積算容積が全細孔容積の80%以上、更には90%以上となるシャープな細孔径分布を有する。また、比表面積が大きいため、空間電荷層の形成に有利である。更に、原料として使用する金属炭化物は、それ自体が不純物を含みにくい材料であることから、生成する多孔質炭素材料は高純度であり、不純物の含有量は極めて小さくなる。よって、アルカリ金属元素の含有量が10ppm以下であり、水素含有量が50ppm以下であり、遷移金属元素の含有量が10ppm以下である多孔質炭素材料を容易に得ることができる。
 塩素ガスと反応させる金属炭化物としては、生成する多孔質炭素材料がダイヤモンドに類似する性質を発現しやすいことから、SiCおよびTiCよりなる群から選択される少なくとも1種を用いることが好ましい。中でも、SiCを用いることにより、グラファイトとしての性質がより小さく、電子伝導の等方性により優れた多孔質炭素材料が得られる。
 先に参照した図1は、SiCを塩素ガスと1100℃で反応させて生成させた多孔質炭素材料のX線回折像であり、図2は、同、多孔質炭素材料の断面の透過型電子顕微鏡(TEM)写真である。図1では、グラファイトに帰属されるピークが全く見られない。
 なお、図1の2θ=22度付近に見られるピークは水晶に帰属され、2θ=26度付近に見られるピークはクリストバライトに帰属される。これらは、SiCに不純物として含まれるシリカに由来する。ただし、水晶やクリストバライトは、キャパシタ内で安定であり、副反応を起こさない。よって、これらの含有量を制限する必要性は極めて低い。また、SiCの原料としてシリカを用いた場合に、シリカがSiC内に残留するに過ぎず、シリカは必ずしもSiCに含まれるものではない。
 一方、図3は、TiCを塩素ガスと1000℃で反応させて生成させた多孔質炭素材料のX線回折像(波形Y)と、Al43を塩素ガスと1000℃で反応させて生成させた多孔質炭素材料のX線回折像(波形Z)とを、図1のX線回折像(波形X)と対比できるように示している。
 図3より、金属炭化物としてAl43を用いた場合には、2θ=40度~50度にブロードなピーク:Pkzが観測されるものの、2θ=20度~30度にも、比較的シャープなピークが観測される。2θ=20度~30度の比較的シャープなピークは、グラファイトの(002)面に帰属されるピーク:PG002である。そして、PG002の強度:IG002のPkzの強度:Ikzに対する比(IG002/Ikz)は4.4である。この場合、IG002の強度が極めて大きいことから、Pkzは、事実上、グラファイトの(010)面に帰属されると考えられる。また、Pkzがダイヤモンド結晶の(111)面に帰属されるPd111の成分を僅かに含んでいるとしても、ダイヤモンドに類似する結晶構造に由来する性質はほとんど得られない。
 次に、金属炭化物としてTiCを用いた場合には、2θ=40度~50度にブロードなピーク:Pkyが観測され、2θ=20度~30度には、グラファイトの(002)面に帰属されるブロードなピーク:PG002が観測される。ここでは、PG002がブロードであり、PG002の強度:IG002のPkyの強度:Ikyに対する比(IG002/Iky)が2.7であることから、グラファイトとしての性質が抑制されている。従って、2θ=40度~50度のPkyの相当な割合がダイヤモンド結晶の(111)面に帰属されるPd111の成分であると推測される。
また、金属炭化物としてAl43を用いた場合、2θ=10度における強度I10は、2θ=40度~50度のピークの強度Ikに比べて約8倍となっている。金属炭化物としてTiCを用いた場合、2θ=10度における強度I10は、2θ=40度~50度のピークの強度Ikに比べて約4倍となっている。金属炭化物としてSiCを用いた場合、2θ=10度における強度I10は2θ=40度~50度のピークの強度Ikに比べて約10倍であることから、金属炭化物としてSiCを用いた場合に、多孔質炭素材料の細孔が最も発達しているといえる。
 図14は、図3の2θ=40度~50度の部分を拡大した図である。SiCを塩素ガスと1100℃で反応させて生成させた多孔質炭素材料は、ピーク位置が最も高角度側にあり、2θ=43度を超えていることが明確にわかる。したがって、金属炭化物としてSiCを用いた多孔質炭素材料は、金属炭化物としてAl43を用いた場合や金属炭化物としてTiCを用いた多孔質炭素材料と比較して、ダイヤモンド成分を最も多く含有するといえる。
 次に、金属炭化物を塩素ガスと反応させるときの加熱温度について説明する。
 まず、図4に、炭化珪素を塩素ガスと反応させるときの加熱温度(処理温度)と、金属炭化物の重量減少率との関係を示す。炭化珪素と塩素ガスとの反応式は、以下の通りである。
 SiC+2Cl2 → SiCl4+C
 SiCの分子量は約40であり、炭素の原子量は12であるため、上記反応が100%進行すると、原料であるSiCの質量は約70%減少する。ここで、図4を参照すると、原料であるSiCの粒子径に関わらず、塩素ガスを含む雰囲気中で炭化珪素を1000℃で4時間以上加熱すれば、反応がほぼ100%進行することが理解できる。ただし、塩素ガスを含む雰囲気中の塩素ガス濃度は9モル%であり、残部は窒素ガスである。
 上記のように、SiCを原料に用いる場合、塩素化反応を進行させるだけであれば、加熱温度は1000℃以下でも十分である。一方、加熱温度を1100℃以上に設定することにより、CuKα線によるX線回折像がダイヤモンド結晶の(111)面に帰属されるピーク:Pd111を有する多孔質炭素材料が生成する。
 また、図5に、炭化珪素を塩素ガスと反応させるときの加熱温度(Temp.)と、生成する多孔質炭素材料の比表面積(specific surface area)との関係を、BET法およびLangmuir法によるt-plotの場合について示す。図5によると、比表面積の大きな多孔質炭素材料を得ることだけが目的であれば、反応温度は900℃程度でも十分であることを示している。また、加熱温度が高くなるに従い、比表面積がやや低減する傾向があることが理解できる。
 更に、図6に、炭化珪素を塩素ガスと反応させるときの加熱温度と、生成する多孔質炭素材料の細孔径分布(頻度-細孔幅特性図)との関係を示す。図6によると、加熱温度が高くなるに従い、分布のピーク位置が、細孔径が大きくなる方向に若干シフトしている。
このことは、加熱温度が高くなるに従い、比表面積が低減する傾向があることと対応している。
 一方、図7に、炭化珪素を塩素ガスと反応させて生成させた多孔質炭素材料の全細孔容積(g/cc=g/cm3)とBET比表面積との関係を示す。図7は、BET比表面積が大きいほど、全細孔容積が大きくなることを示している。多孔質炭素材料は、BET比表面積が大きく、細孔容積が大きいほど、キャパシタ用電極活物質に適していることから、金属炭化物を塩素化するときの加熱温度は、BET比表面積が大きく減少しない温度(例えば1400℃以下)に設定することが好ましい。
 図8は、炭化珪素と塩素ガスとを、1100℃、1200℃および1400℃で反応させて生成させた多孔質炭素材料のX線回折像を相互に対比できるように示している。図8は、1100℃~1400℃で生成させた多孔質炭素材料が、いずれも、グラファイトの(002)面に帰属されるピーク:PG002を有さず、かつダイヤモンド結晶の(111)面に帰属されるピーク:Pd111を有することを示している。ただし、加熱温度が高いほど、Pd111の強度Id111が大きくなる傾向が見られる。このことは、加熱温度が高すぎると、炭素微結晶のサイズが大きくなる傾向があることと対応している。
また、図8のX線回折像においても、炭化珪素と塩素ガスとを、1100℃、1200℃および1400℃で反応させて生成させた多孔質炭素材料の2θ=10度における強度I10は、2θ=40度~50度のピークの強度Ikに比べて10倍以上となっている。
[キャパシタ]
 次に、上記の多孔質炭素材料を電極活物質として含むキャパシタについて説明する。
 上記の多孔質炭素材料は、例えば、電気二重層キャパシタ(EDLC)またはリチウムイオンキャパシタ(LIC)の電極活物質として好適である。よって、以下では、EDLCおよびLICについて説明するが、上記の多孔質炭素材料を適用し得るキャパシタの種類は、特に限定されない。
[電気二重層キャパシタ(EDLC)]
 EDLCは、第1電極と、第2電極と、第1電極と第2電極との間に介在するセパレータと、電解液とを具備する。ここで、第1電極および第2電極の少なくとも一方は、上記の多孔質炭素材料をキャパシタ用電極活物質として含む。EDLCにおいては、第1電極と第2電極は、同じ構成を有することが一般的である。
[リチウムイオンキャパシタ(LIC)]
 LICは、正極と、負極と、正極と負極との間に介在するセパレータと、リチウムイオン伝導性の非水電解液とを具備する。ここで、正極および負極の少なくとも一方は、上記の多孔質炭素材料を正極活物質または負極活物質として含む。LICにおいては、正極と負極は、異なる構成を有することが一般的である。例えば、正極活物質には、上記の多孔質炭素材料が用いられ、負極活物質には、リチウムイオンを吸蔵および放出可能な材料、リチウムイオンと合金化可能な材料などが用いられる。
[キャパシタ用電極]
 電極は、電極活物質およびこれを保持する電極集電体を具備する。
 電極集電体は、金属箔でもよいが、高容量なキャパシタを得る観点からは、三次元網目状の構造を有する金属多孔体であることが好ましい。LICの正極やEDLCの分極性電極に用いる金属多孔体の材質としては、アルミニウム、アルミニウム合金等が好ましい。
一方、LICの負極に用いる金属多孔体の材質としては、銅、銅合金、ニッケル、ニッケル合金、ステンレス鋼等が好ましい。
 キャパシタ用電極は、電極集電体に、電極活物質(多孔質炭素材料)を含むスラリーを塗布または充填し、その後、スラリーに含まれる分散媒を除去し、更に必要に応じて、電極活物質を保持した集電体を圧延することにより得られる。スラリーは、電極活物質の他に、バインダーや導電助剤を含んでもよい。分散媒としては、例えば、N-メチル-2-ピロリドン(NMP)、水等が用いられる。
 バインダーの種類は特に制限されないが、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリビニルクロリド、ポリオレフィン、スチレンブタジエンゴム、ポリビニルアルコール、カルボキシメチルセルロース等を用いることができる。バインダー量は、特に限定されないが、電極活物質100質量部あたり、例えば0.5質量部~10質量部である。
 導電助剤の種類も特に制限されないが、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維等が挙げられる。導電助剤量は、特に限定されないが、電極活物質100質量部あたり、例えば0.1質量部~10質量部である。
 キャパシタ用電極活物質としては、活性炭が一般的であるが、活性炭は賦活処理を経たものである。賦活処理としては、ガス賦活法および薬品賦活法が一般的である。ガス賦活法は、高温下で、炭素材料を、水蒸気、炭酸ガス、酸素等と接触させる処理である。薬品賦活法は、炭素材料に賦活薬品を含浸させ、不活性ガス雰囲気中で加熱する処理である。
賦活薬品としては、水酸化カリウム等が用いられる。従って、活性炭は多くの不純物を含んでいる。一方、金属炭化物の塩素化により生成する多孔質炭素材料は、既に述べたように、不純物をほとんど含まない。
 なお、LICの負極活物質としては、上記の多孔質炭素材料の他に、リチウムチタン酸化物、ケイ素酸化物、ケイ素合金、錫酸化物、錫合金、黒鉛等を用いることもできる。
 LICの負極活物質には、負極電位を低下させるために、予めリチウムをドープしておくことが好ましい。これにより、キャパシタの電圧が高くなり、LICの高容量化に更に有利となる。リチウムのドープは、キャパシタの組み立て時に行われる。例えば、リチウム金属を、正極、負極および非水電解質とともにキャパシタ容器内に収容し、組み立て後のキャパシタを60℃前後の恒温室中で保温することにより、リチウム金属箔からリチウムイオンが溶出し、負極活物質に吸蔵される。負極活物質にドープするリチウム量は、好ましくは負極容量(Cn)の5%~90%、より好ましくは10%~75%がリチウムで満たされる量であることが好ましい。これにより、負極電位が十分に低くなり、高電圧のキャパシタを得ることが容易となる。
 キャパシタの電解液は、カチオンとアニオンとを含んでいる。
 カチオンとしては、リチウムイオン(Li+)、テトラアルキルホスホニウムイオン、テトラアルキルアンモニウムイオン(例えばテトラエチルアンモニウムイオン(TEA+)、トリエチルモノメチルアンモニウムイオン(TEMA+))、ヘテロ環化合物イオン(イミダゾリウム骨格、イミダゾリニウム骨格、ピリジニウム骨格、ピロリジニウム骨格などを有するイオン(例えば1-エチル-3-メチルイミダゾリウムイオン(EMI+)、N-メチル-N-プロピルピロリジニウムイオン(MPPY+)))などを用いることが好ましい。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。なお、アンモニウムイオンなどに含まれるアルキル基は、炭素数4以下の基であることが好ましい。
 また、アニオンとしては、ヘキサフルオロリン酸イオン(PF6 -)、過塩素酸イオン(ClO4 -)、テトラフルオロホウ酸イオン(BF4 -)、リチウムビス(オキサレート)ボレートイオン(BC48 -)、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -)、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)などを用いることが好ましい。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 EDLCに用いる電解液は、アルカリ電解液でもよく、非水電解液でもよい。アルカリ電解液としては、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ性水溶液が挙げられる。非水電解液としては、例えば、上記より選ばれるオニウムイオン(カチオン)と、ホウ酸イオン(アニオン)との塩を溶解した非水溶媒が好ましく用いられる。非水電解液における塩の濃度は、例えば0.3mol/リットル~3mol/リットルであればよい。
 EDLCに用いる非水溶媒は、特に限定されないが、例えば、スルホラン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル等を用いることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 EDLCに用いるオニウムイオンは、電解液に優れたイオン電導性を付与し得ることから、アルキル基の炭素数が4以下であるテトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオンが好ましく、トリエチルモノメチルアンモニウムイオン(TEMA+)が特に好ましい。ホウ酸イオンとしては、テトラフルオロホウ酸イオン(BF4 -)が好ましい。よって、好ましい塩の具体例として、TEMA+とBF4 -との塩(TEMA-BF4)が挙げられる。
 LICに用いる非水電解液としては、リチウム塩を溶解させた非水溶媒が好ましく用いられる。非水電解液におけるリチウム塩の濃度は、例えば0.3mol/リットル~3mol/リットルであればよい。リチウム塩としては、特に限定されないが、例えば、LIClO4、LiBF4、LiPF6、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミドイオンなどが好ましい。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 LICに用いる有機溶媒は、特に限定されないが、イオン伝導度の観点から、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。
これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 LICに用いる非水溶媒として、イオン性液体を用いることもできる。イオン性液体は、常温で液体の塩である。例えば、上記より選ばれるオニウムイオン(カチオン)と、イミドイオンまたはスルホン酸イオン(アニオン)との塩がイオン性液体として好ましく用いられる。オニウムイオンは、例えば、イミダゾリウム骨格、イミダゾリニウム骨格、ピリジニウム骨格、ピロリジニウム骨格等を有するイオンが好ましい。
 より具体的には、イオン性液体は、カチオンとして、1-エチル-3-メチルイミダゾリウムイオン(EMI+)およびN-メチル-N-プロピルピロリジニウムイオン(MPPY+)よりなる群から選択される少なくとも1種を含み、アニオンとして、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -)、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)よりなる群から選択される少なくとも1種を含むことが好ましい。これらの中でも、カチオンとしては、特に1-エチル-3-メチルイミダゾリウムイオン(EMI+)が、イオン導電性に優れる点で好ましい。一方、アニオンとしては、ビス(フルオロスルホニル)イミドイオン(FSI-)、ビス(トリフルオロメタンスルホニル)イミドイオン(TFSI-)が特に好ましい。
 イオン性液体を用いた非水電解液の具体的組成としては、例えば、EMI+とFSI-との塩(EMI-FSI)と、リチウムビス(フルオロスルホニル)イミド(LiFSI)との混合物が挙げられる。このような組成は、金属炭化物の塩素化により得られる多孔質炭素材料との相性がよいと考えられる。EMI-FSIとLiFSIとの混合物において、LiFSIの含有量は、5モル%~30モル%であることが望ましい。このような組成とすることで、優れたイオン電導性と電解液の電極への浸透性との両立に有利となる。
[セパレータ]
 一対の電極間、もしくは正極と負極との間には、これらを物理的に離間させて短絡を防止するとともに、イオン透過性を有するセパレータを介在させることができる。セパレータは、多孔質材構造を有し、細孔内に電解液を保持することで、イオンを透過させる。セパレータの材質としては、例えば、ポリオレフィン、ポリエチレンレテフタラート、ポリアミド、ポリイミド、セルロース、ガラス繊維等を用いることができる。
 図9に、キャパシタの一例の構成を概略的に示す。セルケース45内には、キャパシタ40の主構成要素である極板群と電解液が収容されている。極板群は、複数の第1電極(正極)41と第2電極(負極)42とをセパレータ43を介して積層することにより構成されている。第1電極41は、三次元網目状の構造を有する第1電極集電体41aと、第1電極集電体41aの連通孔に充填された粒子状の第1電極活物質41bとで構成されている。第2電極42は、三次元網目状の構造を有する第2電極集電体42aと、第2電極集電体42aの連通孔に充填された粒子状の第2電極活物質42bとで構成されている。
ただし、極板群は、積層タイプに限らず、第1電極41と第2電極42とをセパレータ43を介して捲回することにより構成することもできる。
 なお、キャパシタ40がLICである場合は、負極42にリチウムが析出するのを防止する観点から、図9に示すように、正極41よりも負極42の寸法を大きくすることが望ましい。
 次に、多孔質炭素材料の工業的な製造方法の一例について、より詳細に説明する。
 多孔質炭素材料は、例えば、(i)塩素ガスを含む雰囲気中で、第1金属炭化物を加熱することにより、多孔質炭素材料と第1金属塩化物とを生成させる工程と、(ii) 第1金属塩化物を、第2金属と反応させて還元することにより、第1金属と第2金属塩化物とを生成させる工程と、(iii)第1金属を炭素と反応させることにより、第1金属炭化物を生成させる工程と、(iv)第2金属塩化物を還元することにより、第2金属および塩素ガスを生成させる工程と、を備える製造方法により、工業的規模で効率的に製造することができる。なお、工程(iii)と工程(iv)の順序は、特に限定されず、どちらを先に行ってもよく、両方の工程を並行して行ってもよい。
 上記製造方法では、工程(i)において、第1金属炭化物(SiC、TiC等)と塩素ガス(Cl2)とが反応し、多孔質炭素材料と第1金属塩化物(SiCl4、TiCl4等)とが生成する。生成した第1金属塩化物は、工程(ii)で還元され、第1金属(Si、Ti等)として取り出される。取り出された第1金属は、工程(iii)で炭化され、第1金属炭化物(SiC、TiC等)が再生される。再生された第1金属炭化物は、工程(i)で再使用される。また、工程(ii)では、第2金属塩化物(ZnCl2、MgCl2等)が生成する。生成した第2金属塩化物は、工程(iv)で還元され、第2金属(Zn、Mg等)と塩素ガス(Cl2)とが再生される。再生された第2金属は、第(ii)工程で再使用され、再生された塩素ガスは、工程(i)で再使用される。以上のように、工程(iii)で用いられる炭素以外の各材料は、全て再利用される。従って、上記製造方法によれば、環境負荷が低く、かつ生産コストを抑えることができる。
 塩素ガスと反応させる第1金属炭化物は、例えば、粉末状または多孔質体である。これにより、第1金属炭化物から多孔質炭素材料を効率良く取り出すことができる。
 第1金属炭化物としては、例えば、SiCおよびTiCよりなる群から選択される少なくとも1種を用いることができる。ただし、X線回折像がダイヤモンドの(111)面に帰属されるピークを有する多孔質炭素材料の原料としては、SiCが最も好ましいと考えられる。一方、製造条件の改良等により、所望のX線回折像を示す多孔質炭素材料を生成させることができるのであれば、他の金属炭化物を用いてもよい。他の金属炭化物としては、Al43、ThC2、B4C、CaC2、Cr32、Fe3C、UC2、WC、MoC等が挙げられる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。
 塩素ガスを含む雰囲気は、塩素ガスだけを含む雰囲気でもよいが、塩素ガスと不活性ガスとの混合ガス雰囲気でもよい。これにより、工程(i)を行う製造設備の安全性を高めることができるとともに、製造設備の劣化を抑制することができる。
 第1金属炭化物と塩素ガスとを反応させる際の加熱温度は、既に述べたように、1100℃以上、1500℃以下であることが好ましく、例えば1100℃~1400℃がより好ましい。これにより、第1金属炭化物と塩素ガスとの反応効率を高めることができるとともに、所望のX線回折像を示し、かつ比表面積の大きな多孔質炭素材料を効率良く得ることができる。
 第2金属としては、例えば、第1族元素、第2族元素、第11族元素および第12族元素よりなる群から選択される少なくとも1種を用いることができる。これにより、第1金属塩化物の還元反応を効率良く進行させることができる。
 以下、図面を参照しながら、多孔質炭素材料の製造方法の詳細について説明する。なお、図面の説明において、同一の要素には同一の符号を付し、重複する説明を省略する。
 図10は、多孔質炭素材料の製造方法の一例の各工程の流れを示すフロー図である。ここでは、第1金属炭化物として、SiCを、第2金属として亜鉛(Zn)を用いる場合を示す。図10に示されるように、本製造方法は、多孔質炭素材料を生成させる工程(i)(S11)と、第1金属塩化物を還元する工程(ii)(S12)と、第1金属炭化物を再生させる工程(iii)(S13)と、第2金属塩化物を還元する工程(iv)(S14)とを備えており、これらの工程が繰り返し行われる。これにより、SiCに由来する多孔質炭素材料を連続的に生産することができる。
 工程(i)は、第1金属炭化物と塩素ガスとを互いに接触させて加熱処理する工程である。この工程では、第1金属炭化物の結晶に含まれる第1金属だけが塩素ガスと反応し、第1金属だけが結晶から抜け出て、多孔質構造の炭素が形成される。この工程は、塩素ガスを含む雰囲気で行われる。塩素ガスを含む雰囲気は、実質的に100%の塩素ガス雰囲気でもよいが、塩素ガスと不活性ガス(N2、He、Ar、Ne、Xe等)との混合ガス雰囲気でもよい。塩素ガスと不活性ガスとの混合比(塩素ガス:不活性ガス)は、流量比で、1:50から1:1が好ましい。
 工程(i)では、多孔質炭素材料とともに、第1金属塩化物(SiCl4等)が得られる。第1金属塩化物は、冷却器等で塩化物の沸点以下まで冷却され、その後、回収される。
 工程(i)では、粉末状または多孔質体の金属炭化物を用いることが好ましい。これは、金属炭化物の表面から深い位置にある第1金属ほど、塩化物となって抜け出すのに長時間を要するからである。表面積の大きな粉末状または多孔質体の金属炭化物を用いることにより、第1金属は金属炭化物から効率良く抜けることができる。よって、多孔質炭素材料の製造時間を短縮することができる。金属炭化物の平均粒径は、0.1μm~100μmであることが好ましく、2μm~40μmであることがより好ましい。金属炭化物を予めこのような平均粒径に整粒しておくことで、よりシャープな分布を有するとともに、単位質量あたりの全細孔容積の大きい多孔質炭素材料を得ることが容易となる。また、粉末の充填密度を上げるため、数種の平均粒径を有する原料を用いることも有効である。
 工程(i)の後、第1金属塩化物の還元が行われる(工程(ii))。還元剤としては、第1金属よりも酸化されやすい第2金属が用いられる。これにより、第1金属塩化物から高純度の第1金属を取り出すことができる。第2金属は、第1族元素(第1A族元素、アルカリ金属)、第2族元素(第2A族元素、アルカリ土類金属)、Cuなどの第11族元素(第1B族元素)、Znなどの第12族元素(第2B族元素)等を用いることが好ましい。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。これらの中では、Znが塩化物の融点が比較的低く、蒸気圧が高い点で望ましい。すなわち、工程(ii)としては、いわゆる亜鉛還元法を採用することが好ましい。なお、Znの他に、Mg、Na、K、Sr、Ba、Ca等も第2金属として好適である。
 次に、工程(ii)で生成した第1金属の炭化反応(工程(iii))および第2金属塩化物の還元反応(工程(iv))が行われる。工程(iii)では、第1金属と炭素とを反応させることにより、金属炭化物が再生される。ここで、炭化に用いる炭素原料としては、カーボンブラック、天然黒鉛等、低コストで入手容易な材料を用いることができる。再生された金属炭化物は、工程(i)において再利用される。
 また、工程(iv)では、第2金属塩化物の電気分解により、第2金属および塩素ガスが取り出される。具体的には、第2金属塩化物を高温溶融状態で電気分解することにより、第2金属塩化物が第2金属と塩素ガスとに分離する。取り出された塩素ガスは、工程(i)で再利用される。また、取り出された第2金属は、工程(ii)で再利用される。
 次に、多孔質炭素材料を生成させる炭素製造装置の一例について説明する。図11に、炭素生成装置10の構成を概略的に示す。また、図12に、工程(ii)および工程(iv)で用いられる亜鉛還元装置20の構成を簡略化して示す。更に、図13に、工程(iii)で用いられる炭化物生成装置30の構成を概略的に示す。
 図11を参照すると、炭素生成装置10は、反応炉11と、冷却トラップ12と、貯留タンク13とを備えている。反応炉11には、複数段にわたって金属炭化物を載置する載置棚11aが収容されている。載置棚11aは、支持棒11bによって、上方から吊り下げて支持されている。反応炉11における載置棚11aよりも下の部分には、ガス導入口11cが設けられている。ガス導入口11cから、塩素ガスと不活性ガスとの混合ガス、もしくは実質的に100%の塩素ガスが、反応炉11内に導入される。反応炉11の外側には、載置棚11aを囲むようにヒーター11dが設けられている。ヒーター11dによって、金属炭化物の周囲の混合ガスもしくは塩素ガスが、1100℃以上、1500℃以下の所定温度となるように加熱される。
 反応炉11内で、金属炭化物から第1金属が抜け、載置棚11aで多孔質炭素材料が生成する。また、反応により生成した第1金属塩化物および混合ガス(もしくは塩素ガス)は、反応炉11の上部に設けられたガス排出口11eから、反応炉11の外部へ排出される。ガス排出口11eは、冷却トラップ12に接続されており、冷却トラップ12内を循環する冷媒12aによって、反応炉11からの排気が冷却される。そして、冷却された第1の金属塩化物は、貯留タンク13に貯留された後、亜鉛還元装置20へ送られる。一方、冷却トラップ12を通過した混合ガス(もしくは塩素ガス)は、三方弁14を介して、炭素生成装置10の外部へ排気され、もしくは再び反応炉11のガス導入口11cへ送られる。
 図12を参照すると、亜鉛還元装置20は、気化器21、22と、反応炉23と、溶融塩電解槽24とを備えている。炭素生成装置10の貯留タンク13に貯留された第1金属塩化物は、気化器21に送られて気化する。一方、気化器22では、第2金属が気化する。こうして気化した第1金属塩化物と第2金属は、反応炉23に送られる。そして、反応炉23において、第1金属塩化物および第2金属を高温で反応させることにより、第1金属が取り出されるとともに、第2金属塩化物が生成される。第2金属塩化物は、溶融塩電解槽24に送られ、電気分解により、第2金属と塩素ガスとに分離される。こうして取り出された塩素ガスは、炭素生成装置10に送られ、第2金属は気化器22に送られる。
 続いて、図13を参照すると、炭化物生成装置30は、上下方向に延びる反応炉31と、反応炉31の側壁に埋め込まれたヒーター32と、反応炉31内に配置された載置棚33とを備えている。載置棚33には、第1金属と炭素原料(カーボンブラックや天然黒鉛)との混合物34が、複数段にわたって載置される。なお、載置棚33は、支持棒33aによって上方から吊り下げて支持されている。
 反応炉31の下部には吸気口31aが設けられており、この吸気口31aから不活性ガス(N2、He、Ar、Ne、Xe等)が導入される。不活性ガスは、反応炉31内を上方へ移動したのち、反応炉31の上部に設けられた排気口31bから排出される。
 ヒーター32は、載置棚33の周囲を囲むように配置されており、載置棚33に載置された混合物34を加熱する。なお、本工程における混合物34の好適な温度は、1400℃~1800℃である。これにより、第1金属と炭素とが互いに結合して金属炭化物が再生される。
 以上の製造方法および製造装置では、多孔質炭素材料の生成に使用される炭素原料以外の各材料を、全て循環させて再利用している。したがって、環境負荷を低減し、生産コストを抑制できることは明白である。
《実施例1》
(i)SiCの合成
 活性炭(平均粒径20μm、比表面積80m2/g)と、珪素粒子(平均粒径100μm)との混合物をカーボン製の載置棚に設置し、900℃に設定した反応炉内の窒素ガス雰囲気中に載置棚を挿入した。その後、昇温速度10℃/分で1450℃まで反応炉内を昇温して、珪素を溶融させ、その状態で、活性炭と珪素を5時間にわたり反応させた。得られた生成物はベータ型SiCであった。得られたSiCは、その平均粒径が10μmとなるまで粉砕した。
(ii)多孔質炭素材料の生成
 平均粒径10μmのSiCを、石英ガラス製の炉心管を有する電気炉のカーボン製載置棚に設置した。そして、電気炉内に塩素ガスを1000ml/分の流量で、Arガスを5000ml/分の流量で流通させ、SiCと塩素ガスを1100℃で2時間にわたり反応させた。このとき、-20℃に設定された冷却トラップを炉心管の排気口に設け、冷却トラップによってSiCl4を液化し、回収した。また、炉心管内でSiCと反応しなかった塩素ガスを、冷却トラップの出口側に設置した三方弁によって炉心管へ還流させた。その後、炉心管内の塩素ガスをArガスによって除去し、カーボン製載置棚を400℃まで降温させた後、載置棚に残された多孔質炭素材料を大気中に取り出した。
(iii)多孔質炭素材料の物性評価
(a)XRD
 多孔質炭素材料のCukα線によるX線回折像を測定したところ、図1に示すような回折像が得られた。2θ=20度~30度にグラファイトの(002)面に帰属されるピークは全く観測されなかった(IG002/Ik=0)。一方、2θ=40度~50度には、ダイヤモンドの(111)面に帰属されるブロードなピーク:Pd111が観測された。Pd111の半価幅からScherrerの式を用いて求められる結晶子の大きさは、2.0nmであった。
(b)電子顕微鏡観察
 多孔質炭素材料の断面を研磨した後、高分解能TEMで観察したところ、図2に示したように、直径2nm程度のタマネギ構造を有する微結晶の存在が確認された。
(c)細孔径分布
 多孔質炭素材料の細孔径分布を、-196℃におけるN2の等温吸着量測定(BellJapan社製のBELLSORP-miniIIを使用) により求めたところ、図6に示すように、0.32nmにピークを有するシャープな分布が得られた。1nm以下の細孔径を有する細孔の積算容積は、全細孔容積の90%であった。
(d)不純物濃度
 多孔質炭素材料の組成を、誘導結合プラズマ法で分析したところ、不純物として遷移金属元素およびアルカリ金属元素は検出されなかった(分析の検出限界は10ppm)。また、800℃まで昇温しつつガスクロマトグラフ質量分析計により水素成分の脱離量を測定したところ、水素含有量は50ppmであった。
(e)BET比表面積
 多孔質炭素材料のBET比表面積を、N2の等温吸着量測定(BellJapan社製のBELLSORP-miniII)で測定したところ、1250m2/gであった。
(iv)キャパシタ用電極の作製
 平均セル径550μm、目付量150g/m2、厚み1000μmのアルミニウム多孔体を電極集電体として準備した。一方、上記の多孔質炭素材料(平均粒径約10μm)100質量部に、導電助剤としてケッチェンブラック2質量部、バインダーとしてポリフッ化ビニリデン粉末4質量部、分散媒としてN-メチル-2-ピロリドン(NMP)15質量部を添加し、混合機で攪拌することにより、電極スラリーを調製した。得られたスラリーを集電体に充填し、乾燥させ、ローラで圧延して、厚み480μmの電極を得た。
(v)電解液の調製
 非水溶媒であるプロピレンカーボネートに、TEMA-BF4を1.5mol/Lの濃度で溶解させて電解液として用いた。
(vi)セルの作製
 一対の電極間に、厚さ60μmのセルロース製セパレータを介在させて、極板群を構成した。その後、電極群と電解液とを、アルミニウムラミネート製の袋内に収容し、公称静電容量10FのEDLCを完成させた。
[キャパシタの評価]
 得られたEDLCについて、電圧範囲を0.0V~3.6Vとして多孔質炭素材料1gあたりの容量を求めたところ、50F/gであった。
 次に、充放電サイクルを5000回繰り返した後、初期容量に対する容量維持率を調べたところ、98%であった。
《実施例2》
 SiCの代わりにTiCを用いたこと以外、実施例1と同様に、多孔質炭素材料を生成させた。得られた多孔質炭素材料のX線回折像は、図3の波形Yに示すように、2θ=20度~30度にグラファイトの(002)面に帰属されるブロードなピークを有していた。一方、2θ=40度~50度にも、ブロードなピーク:Pkが観測された。ここで、IG002/Ikは2.7であり、PkのほとんどがPd111の成分であると推察された。Pkの半価幅からScherrerの式を用いて求められる結晶子の大きさは、1.9nmであった。
 多孔質炭素材料の細孔径分布を実施例1と同様に求めたところ、0.4nmにピークを有するシャープな分布が得られた。1nm以下の細孔径を有する細孔の積算容積は、全細孔容積の93%であった。また、多孔質炭素材料の組成を、誘導結合プラズマ発光分析法で分析したところ、不純物として遷移金属元素およびアルカリ金属元素は検出されなかった。また、水素含有量は10ppmであった。更に、多孔質炭素材料のBET比表面積を実施例1と同様に測定したところ、1500m2/gであった。
 実施例2のキャパシタを実施例1と同様に評価したところ、活性炭1gあたりの容量は51F/gであり、容量維持率は97%であった。
《比較例1》
 実施例1で用いたSiC由来の多孔質炭素材料の代わりに、BET比表面積2100m2/g、平均粒径10μmの活性炭を用いたこと以外、実施例1と同様にキャパシタを作製した。なお、活性炭の細孔径分布を測定したところ、1.9nmにピークが観測された。
 比較例1のキャパシタを実施例1と同様に評価したところ、活性炭1gあたりの容量は30F/gであり、容量維持率は93%であった。
《比較例2》
 実施例1で用いたSiC由来の多孔質炭素材料の代わりに、BET比表面積600m2/gのカーボンナノチューブ(CNT)を用いたこと以外、実施例1と同様にキャパシタを作製した。
 比較例2のキャパシタを実施例1と同様に評価したところ、CNT1gあたりの容量は2F/gであり、容量維持率は94%であった。
《比較例3》
 SiCの代わりにAl43を用いたこと以外、実施例1と同様に、多孔質炭素材料を生成させた。得られた多孔質炭素材料のX線回折像は、図3の波形Zに示すように、2θ=20度~30度にグラファイトの(002)面に帰属されるピークを有していた。一方、2θ=40度~50度には、ブロードなピーク:Pkが観測された。ここで、IG002/Ikは4.3であり、Pkは事実上Pd111の成分を含んでいないと推察された。
 多孔質炭素材料の細孔径分布を実施例1と同様に求めたところ、1.5nmにピークを有するシャープな分布が得られた。1nm以下の細孔径を有する細孔の積算容積は、全細孔容積の55%であった。また、多孔質炭素材料の組成を誘導結合プラズマ発光分析法で分析したところ、不純物として遷移金属元素およびアルカリ金属元素は検出されなかった。更に、多孔質炭素材料のBET比表面積を実施例1と同様に測定したところ、1120m2/gであった。
 比較例3のキャパシタを実施例1と同様に評価したところ、多孔質炭素材料1gあたりの容量は36F/gであり、容量維持率は92%であった。
 本発明のキャパシタ用電極活物質は、EDLC、LIC等、種々のキャパシタに用いることができる。また、本発明のキャパシタは、電気抵抗が小さく、サイクル特性に優れていることから、例えば、電気自動車やハイブリッド自動車の電源として有望である。
 10…炭素生成装置、11…反応炉、12…冷却トラップ、13…貯留タンク、14…三方弁、20…亜鉛還元装置、21,22…気化器、23…反応炉、24…溶融塩電解槽、30…炭化物生成装置、31…反応炉、32…ヒーター、33…載置棚、34…混合物、40…キャパシタ、41…第1電極(正極)、42…第2電極(負極)、43…セパレータ、45…セルケース

Claims (12)

  1.  多孔質炭素材料を含み、
     前記多孔質炭素材料のBET比表面積が、800m2/g以上であり、
     前記多孔質炭素材料のCukα線によるX線回折像が、2θ=40度~50度にピーク:Pkを有し、かつPkがダイヤモンド結晶の(111)面に帰属されるピーク:Pd111の成分を含んでおり、
     前記X線回折像が、グラファイトの(002)面に帰属されるピーク:PG002を有する場合には、PG002の強度:IG002のPkの強度:Ikに対する比(IG002/Ik)が3.0以下である、キャパシタ用電極活物質。
  2. 前記Pkの位置が、2θ=43度よりも高角度側にある請求項1に記載のキャパシタ用活物質。
  3. 前記Pkの強度が、2θ=10度の強度の3倍以上である、請求項1または請求項2に記載のキャパシタ用活物質。
  4.  Pkの半価幅から求められる結晶子の大きさが、1.0nm~10.0nmである、請求項1~請求項3のいずれか1項に記載のキャパシタ用電極活物質。
  5.  前記多孔質炭素材料の体積基準の細孔径分布において、1nm以下の細孔径を有する細孔の積算容積が、全細孔容積の80%以上である、請求項1~請求項4のいずれか1項に記載のキャパシタ用電極活物質。
  6.  前記多孔質炭素材料のアルカリ金属元素の含有量が、0ppm~400ppmである、請求項1~請求項5のいずれか1項に記載のキャパシタ用電極活物質。
  7.  前記多孔質炭素材料の水素含有量が0ppm~100ppmである、請求項1~請求項6のいずれか1項に記載のキャパシタ用電極活物質。
  8.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在するセパレータと、電解液と、を具備し、
     前記第1電極および前記第2電極の少なくとも一方が、請求項1~請求項7のいずれか1項に記載のキャパシタ用電極活物質を含む、キャパシタ。
  9.  前記電解液が、カチオンとして、リチウムイオン(Li+)、テトラエチルアンモニウムイオン(TEA+)、トリエチルモノメチルアンモニウムイオン(TEMA+)、1-エチル-3-メチルイミダゾリウムイオン(EMI+)およびN-メチル-N-プロピルピロリジニウムイオン(MPPY+)よりなる群から選択される少なくとも1種を含み、かつ
     アニオンとして、ヘキサフルオロリン酸イオン(PF6 -)、過塩素酸イオン(ClO4 -)、テトラフルオロホウ酸イオン(BF4 -)、リチウムビス(オキサレート)ボレートイオン(BC48 -)、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -)、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)よりなる群から選択される少なくとも1種を含む、請求項8に記載のキャパシタ。
  10.  正極と、負極と、前記正極と前記負極との間に介在するセパレータと、リチウムイオン伝導性の非水電解液と、を具備し、
     前記正極および前記負極の少なくとも一方が、請求項1~請求項7のいずれか1項に記載のキャパシタ用電極活物質を含む、リチウムイオンキャパシタ。
  11.  前記非水電解液が、非水溶媒と、前記非水溶媒に溶解するリチウム塩と、を含み、前記非水溶媒が、イオン性液体または有機溶媒である、請求項10に記載のリチウムイオンキャパシタ。
  12.  前記イオン性液体が、カチオンとして、1-エチル-3-メチルイミダゾリウムイオン(EMI+)およびN-メチル-N-プロピルピロリジニウムイオン(MPPY+)よりなる群から選択される少なくとも1種を含み、かつアニオンとして、ビス(フルオロスルホニル)イミドイオン(N(SO2F)2 -)、ビス(トリフルオロメタンスルホニル)イミドイオン(N(SO2CF32 -、ビス(ペンタフルオロエタンスルホニル)イミドイオン(N(SO2252 -)およびトリフルオロメタンスルホン酸イオン(CF3SO3 -)よりなる群から選択される少なくとも1種を含む、請求項11に記載のリチウムイオンキャパシタ。
PCT/JP2013/074627 2012-09-28 2013-09-12 キャパシタ用電極活物質およびこれを用いたキャパシタ WO2014050579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014538379A JP6269495B2 (ja) 2012-09-28 2013-09-12 キャパシタ用電極活物質およびこれを用いたキャパシタ
CN201380050609.3A CN104685591B (zh) 2012-09-28 2013-09-12 电容器用电极活性物质和使用所述电极活性物质的电容器
US14/432,161 US9514894B2 (en) 2012-09-28 2013-09-12 Electrode active material for capacitor, and capacitor using said electrode active material
KR1020157006377A KR20150063373A (ko) 2012-09-28 2013-09-12 커패시터용 전극 활물질 및 이것을 이용한 커패시터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012217726 2012-09-28
JP2012-217726 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050579A1 true WO2014050579A1 (ja) 2014-04-03

Family

ID=50387986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074627 WO2014050579A1 (ja) 2012-09-28 2013-09-12 キャパシタ用電極活物質およびこれを用いたキャパシタ

Country Status (5)

Country Link
US (1) US9514894B2 (ja)
JP (1) JP6269495B2 (ja)
KR (1) KR20150063373A (ja)
CN (1) CN104685591B (ja)
WO (1) WO2014050579A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031977A1 (ja) * 2014-08-29 2016-03-03 住友電気工業株式会社 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
JP2016050127A (ja) * 2014-08-29 2016-04-11 住友電気工業株式会社 多孔質炭素材料の製造方法
JP2016164107A (ja) * 2015-03-06 2016-09-08 国立大学法人金沢大学 多孔質炭素材料およびその製造方法
EP3162761A4 (en) * 2014-06-23 2017-12-27 Toray Industries, Inc. Porous carbon material
CN107614425A (zh) * 2015-05-27 2018-01-19 日本瑞翁株式会社 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
JP2020145314A (ja) * 2019-03-06 2020-09-10 株式会社ダイセル 電気化学キャパシタ用電極形成材料

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154003A (ja) * 2014-02-18 2015-08-24 住友電気工業株式会社 蓄電デバイスおよび充放電システム
CN106688068B (zh) * 2014-07-10 2019-01-01 松下知识产权经营株式会社 电容器
CN109476688B (zh) 2016-04-01 2022-03-11 诺姆斯技术公司 包含磷的改性离子液体
KR102638417B1 (ko) 2017-07-17 2024-02-19 놈스 테크놀로지스, 인크. 인 함유 전해질
WO2019097815A1 (ja) * 2017-11-16 2019-05-23 株式会社ダイセル キャパシタ用電極材料
KR102020126B1 (ko) * 2017-12-19 2019-09-10 주식회사 티씨케이 전극소재용 활성탄의 제조방법
CN108766775B (zh) * 2018-05-25 2019-05-28 常州大学 一种超低温高容量超级电容器的制备方法及其应用
US20210407741A1 (en) * 2018-12-10 2021-12-30 Panasonic Intellectual Property Management Co., Ltd. Electrochemical device electrode and electrochemical device
CN109801791B (zh) * 2019-01-03 2020-12-08 上海奥威科技开发有限公司 电极活性物质及其电极、双电层超级电容器
CN110739464B (zh) * 2019-10-28 2021-03-02 赵效铭 一种氧-金属电池的多孔碳纳米金刚石复合结构空气电极

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184511A (ja) * 1989-01-10 1990-07-19 Sumitomo Electric Ind Ltd 多孔質グラファイトの製造方法
JP2006513969A (ja) * 2003-04-23 2006-04-27 エフオーツェー・フランケンブルク・オイル・カンパニー・イスタブリッシュメント 多孔質カーボンの孔特性を変える方法およびその方法で製造された多孔質カーボン材料
JP2008105922A (ja) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd カーバイド誘導炭素、冷陰極用電子放出源及び電子放出素子
JP2009200302A (ja) * 2008-02-22 2009-09-03 Fuji Heavy Ind Ltd 蓄電デバイスの製造方法および蓄電デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002214042A1 (en) 2000-11-09 2002-05-21 Foc Frankenburg Oil Company Est. A supercapacitor and a method of manufacturing such a supercapacitor
JP4054746B2 (ja) * 2003-10-17 2008-03-05 新日本石油株式会社 電気二重層キャパシタ、その電極用活性炭とその製造方法
RU2006137605A (ru) * 2006-10-24 2008-04-27 Самсунг Сди Ко., Лтд. (Kr) Углерод, полученный из карбида, эмиттер для холодного катода, включающий этот углерод, и электронное эмиссионное устройство, включающее эмиттер
JP6011787B2 (ja) * 2012-08-09 2016-10-19 ソニー株式会社 電極材料及びその製造方法、並びに、リチウム−硫黄二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184511A (ja) * 1989-01-10 1990-07-19 Sumitomo Electric Ind Ltd 多孔質グラファイトの製造方法
JP2006513969A (ja) * 2003-04-23 2006-04-27 エフオーツェー・フランケンブルク・オイル・カンパニー・イスタブリッシュメント 多孔質カーボンの孔特性を変える方法およびその方法で製造された多孔質カーボン材料
JP2008105922A (ja) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd カーバイド誘導炭素、冷陰極用電子放出源及び電子放出素子
JP2009200302A (ja) * 2008-02-22 2009-09-03 Fuji Heavy Ind Ltd 蓄電デバイスの製造方法および蓄電デバイス

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162761A4 (en) * 2014-06-23 2017-12-27 Toray Industries, Inc. Porous carbon material
US10087076B2 (en) 2014-06-23 2018-10-02 Toray Industries, Inc. Porous carbon material
WO2016031977A1 (ja) * 2014-08-29 2016-03-03 住友電気工業株式会社 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
JP2016050127A (ja) * 2014-08-29 2016-04-11 住友電気工業株式会社 多孔質炭素材料の製造方法
CN106663547A (zh) * 2014-08-29 2017-05-10 住友电气工业株式会社 蓄电装置用负极材料及其制造方法和锂离子蓄电装置
JPWO2016031977A1 (ja) * 2014-08-29 2017-06-15 住友電気工業株式会社 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
CN106663547B (zh) * 2014-08-29 2019-06-21 住友电气工业株式会社 蓄电装置用负极材料及其制造方法和锂离子蓄电装置
JP2016164107A (ja) * 2015-03-06 2016-09-08 国立大学法人金沢大学 多孔質炭素材料およびその製造方法
CN107614425A (zh) * 2015-05-27 2018-01-19 日本瑞翁株式会社 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
CN107614425B (zh) * 2015-05-27 2021-07-30 日本瑞翁株式会社 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
JP2020145314A (ja) * 2019-03-06 2020-09-10 株式会社ダイセル 電気化学キャパシタ用電極形成材料
WO2020179653A1 (ja) * 2019-03-06 2020-09-10 株式会社ダイセル 電気化学キャパシタ用電極形成材料

Also Published As

Publication number Publication date
JP6269495B2 (ja) 2018-01-31
US20150287547A1 (en) 2015-10-08
CN104685591A (zh) 2015-06-03
CN104685591B (zh) 2017-07-04
KR20150063373A (ko) 2015-06-09
JPWO2014050579A1 (ja) 2016-08-22
US9514894B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP6269495B2 (ja) キャパシタ用電極活物質およびこれを用いたキャパシタ
Luo et al. Structural engineering in graphite‐based metal‐ion batteries
Yu et al. In Situ Formation of Copper‐Based Hosts Embedded within 3D N‐Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium–Sulfur Batteries
Wang et al. Metal–organic frameworks for energy storage: Batteries and supercapacitors
Hu et al. Na2V6O16· 2.14 H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance
EP2998973B1 (en) Capacitor and method for charging and discharging the same
Gebresilassie Eshetu et al. Energy storage materials synthesized from ionic liquids
Choi et al. Challenges facing lithium batteries and electrical double‐layer capacitors
Li et al. Three-dimensionally ordered porous TiNb 2 O 7 nanotubes: a superior anode material for next generation hybrid supercapacitors
Won et al. Synthesis of Nitrogen-Rich Nanotubes with Internal Compartments having Open Mesoporous Channels and Utilization to Hybrid Full-Cell Capacitors Enabling High Energy and Power Densities over Robust Cycle Life.
Lai et al. Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium battery
Ming et al. Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications
Wu et al. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal‐Ion Hybrid Capacitors
Khalid et al. 3D hierarchical MnO 2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries
Wang et al. Direct growth of mesoporous Sn-doped TiO 2 thin films on conducting substrates for lithium-ion battery anodes
KR101528121B1 (ko) 실리콘산화물-탄소 복합체, 이의 제조방법 및 이를 함유하는 에너지 저장소자
JP2006310514A (ja) 電気二重層キャパシタ用電極材料
WO2016031977A1 (ja) 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
JP2023093466A (ja) 固定化セレン体を調製する方法、及び、固定化カルコゲン体
Ruan et al. Three-dimensional sp 2 carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium–sulfur batteries
Fleischmann et al. Understanding interlayer deprotonation of hydrogen titanium oxide for high-power electrochemical energy storage
Butova et al. Iron (II) fluoride cathode material derived from MIL-88A
Wasnik et al. MXenes: Advances in the synthesis and application in supercapacitors and batteries
Li MnO2–graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium–sulfur batteries
Ganguly et al. Stabilization of microsized Sn anode with carbon coating and fluoroethylene carbonate additive for high-performance Li-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006377

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842055

Country of ref document: EP

Kind code of ref document: A1