WO2016031977A1 - 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス - Google Patents

蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス Download PDF

Info

Publication number
WO2016031977A1
WO2016031977A1 PCT/JP2015/074484 JP2015074484W WO2016031977A1 WO 2016031977 A1 WO2016031977 A1 WO 2016031977A1 JP 2015074484 W JP2015074484 W JP 2015074484W WO 2016031977 A1 WO2016031977 A1 WO 2016031977A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
storage device
electrode material
porous carbon
phase porous
Prior art date
Application number
PCT/JP2015/074484
Other languages
English (en)
French (fr)
Inventor
石川 真二
一也 桑原
崇広 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201580046701.1A priority Critical patent/CN106663547B/zh
Priority to US15/505,818 priority patent/US20170263386A1/en
Priority to JP2016545646A priority patent/JPWO2016031977A1/ja
Publication of WO2016031977A1 publication Critical patent/WO2016031977A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode material used for lithium ion storage devices such as lithium ion secondary batteries and lithium ion capacitors.
  • lithium ion electricity storage devices such as lithium ion secondary batteries and lithium ion capacitors are known.
  • the deployment of lithium-ion electricity storage devices for applications that consume high power instantaneously, such as electric vehicles and hybrid vehicles, is also accelerating. Therefore, development of a negative electrode material capable of exhibiting high output is demanded.
  • graphite As a negative electrode material for lithium ion secondary batteries and lithium ion capacitors, graphite is generally used.
  • the reaction between graphite and lithium ions is a Faraday reaction involving the formation of an intercalation compound and a change in interlaminar distance, and it is difficult to greatly improve the reaction resistance. Therefore, as long as graphite is used, there is a limit to improving the output characteristics of the negative electrode.
  • Patent Documents 1 and 2 propose using a material in which the surface of activated carbon having a large BET specific surface area is coated with a heat-treated product of pitch as the negative electrode material. It is difficult to charge and discharge lithium ions with activated carbon alone, but the initial efficiency is improved by forming a coating layer of a heat treatment product of pitch on the surface of activated carbon particles, which is advantageous over graphite in high rate discharge.
  • Patent Document 3 proposes to use, as a negative electrode material, a carbon composite of carbon particles serving as a core and fibrous carbon having a graphene structure formed on and / or inside the carbon particles.
  • the total mesopore volume of the carbon composite is 0.005 to 1.0 cm 3 / g, and mesopores having a pore diameter of 100 to 400 angstroms account for 25% or more of the total mesopore volume.
  • the negative electrode materials of Patent Documents 1 to 3 are all carbon composites containing a carbon material having a large irreversible capacity, and the initial efficiency is still lower than that of graphite, which is not practical.
  • Patent Documents 1 and 2 it is estimated that mesopores effective for charging and discharging lithium ions are lost because the surface of activated carbon is covered with a heat-treated product of pitch.
  • the negative electrode material of Patent Document 3 has a problem that transition metal impurities tend to remain, and when metal impurities remain, a side reaction with the electrolyte occurs.
  • one aspect of the present invention includes a single-phase porous carbon material that can electrochemically occlude and release lithium ions, and the single-phase porous carbon material has a BET specific surface area of 100 m 2 / g or more.
  • the integrated volume (mesopore volume) of pores (mesopores) having a pore diameter of 2 nm to 50 nm is 25% or more of the total pore volume.
  • a negative electrode material for an electricity storage device is proposed.
  • Another aspect of the present invention is: (i) a step of activating a carbon precursor in which a graphite structure grows at a temperature of 1500 ° C. or less into a porous structure; and (ii) the activated carbon precursor. And a method of producing a single-phase porous carbon material by heating the graphite structure at a temperature at which the graphite structure grows to produce a single-phase porous carbon material.
  • Still another aspect of the present invention is a non-aqueous solution including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a salt of an anion and lithium ion. And a negative electrode active material containing the negative electrode material for an electricity storage device.
  • the present invention provides a practical negative electrode material having a pore structure suitable for movement of lithium ions. By using this negative electrode material, a high output lithium ion electricity storage device can be obtained.
  • the negative electrode material for an electricity storage device includes a single-phase porous carbon material that can electrochemically occlude and release lithium ions.
  • the BET specific surface area of the single-phase porous carbon material is 100 m 2 / g or more.
  • the integrated volume (mesopore volume) of pores (mesopores) having a pore diameter of 2 nm to 50 nm is 25% or more of the total pore volume. Since the pore structure is suitable for lithium ion migration, the reaction resistance is small, and charging / discharging at high output is possible.
  • the X-ray diffraction image of the single-phase porous carbon material having the pore structure has a peak (P 002 ) attributed to the (002) plane of graphite.
  • the plane spacing (d 002 ) of the (002) plane obtained from the position of the peak P 002 is 0.340 nm to 0.370 nm
  • the crystallite size of graphite obtained from the half width of the peak P 002 is 1 nm. It is preferably ⁇ 20 nm. That is, the single-phase porous carbon material has a graphite structure, and the crystallite size of graphite is moderately small.
  • (3) total pore volume of the single-phase porous carbon material is preferably 0.3cm 3 /g ⁇ 1.2cm 3 / g.
  • the pore size distribution of the single-phase porous carbon material preferably has at least one pore distribution peak in the region of 2 nm to 5 nm in the pore distribution analysis in the QSDFT analysis assuming a carbon slit structure.
  • a method for producing a negative electrode material for an electricity storage device includes (i) a step of activating a carbon precursor in which a graphite structure grows at a temperature of 1500 ° C. or less into a porous structure; (Ii) heating the activated carbon precursor (hereinafter referred to as carbon intermediate) at a temperature at which the graphite structure grows to grow the graphite structure to produce a single-phase porous carbon material; It has.
  • the activation treatment includes an atmosphere containing water vapor and / or carbon dioxide (hereinafter, H / C gas) at a temperature of less than 1100 ° C. (eg, 900 ° C. or less).
  • H / C gas treatment a step of heating the carbon precursor (hereinafter referred to as H / C gas treatment) can be included.
  • graphitizable carbon is produced by carbonizing the precursor at a temperature of less than 1000 ° C.
  • the activation treatment can include a step of heating the metal carbide at a first temperature in an atmosphere containing chlorine (hereinafter, low temperature chlorination).
  • the carbon intermediate is heated to a second temperature higher than the first temperature (that is, the temperature at which the graphite structure grows). It is preferable to perform the heating step.
  • the pore structure changes as the graphite structure grows, and the mesopore volume suitable for lithium ion migration increases.
  • the activation treatment can include a step of heating the metal carbide at a temperature at which the graphite structure grows in an atmosphere containing chlorine (hereinafter, high-temperature chlorination). .
  • high-temperature chlorination a step of heating the metal carbide at a temperature at which the graphite structure grows in an atmosphere containing chlorine
  • the metal carbide is preferably a carbide containing at least one metal belonging to any of groups 4A, 5A, 6A, 7A, 8 and 3B of the periodic table of the short period type.
  • the metal contained in the metal carbide is preferably at least one of titanium, aluminum, and tungsten.
  • the BET specific surface area of the carbon intermediate is preferably 1000 m 2 / g or more. This is because the total pore volume of the carbon intermediate tends to increase.
  • the single-phase porous carbon material has a BET specific surface area of 100 m 2 / g or more, and has a pore diameter of 2 nm to 50 nm in the pore size distribution of the single-phase porous carbon material.
  • a negative electrode material in which the cumulative volume of pores is 25% or more of the total pore volume can be efficiently produced.
  • the X-ray diffraction image of the single-phase porous carbon material has a peak near 26 ° attributed to the (002) plane of graphite, and the (002) plane surface obtained from the peak position.
  • a negative electrode material having an average interval of 0.340 nm to 0.370 nm and a crystallite size of graphite determined from the half width of the peak of 1 nm to 20 nm can be efficiently produced. Furthermore, (16) the total pore volume, it is possible to manufacture a negative electrode material is 0.3cm 3 /g ⁇ 1.2cm 3 / g efficiently. Further, (17) A negative electrode material having at least one pore distribution peak in the region of 2 nm to 5 nm can be efficiently produced in the pore distribution analysis in the QSDFT analysis assuming a carbon slit structure. (18) The above manufacturing method further heats the single-phase porous carbon material in an atmosphere containing water vapor and / or hydrogen at a temperature range of 500 ° C. to 800 ° C. after the step of growing the graphite structure. You may comprise a process.
  • a lithium ion electricity storage device includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, an anion and lithium ion.
  • a non-aqueous electrolyte containing a salt When the negative electrode active material contains the negative electrode material, a high-output lithium ion electricity storage device can be obtained.
  • the negative electrode material for an electricity storage device includes a single-phase porous carbon material that can electrochemically occlude and release lithium ions.
  • the “single-phase” porous carbon material means that it is not a composite of a plurality of types of carbon materials having different physical properties. Therefore, the single-phase porous carbon material means, in one aspect, a porous carbon material that does not have a multilayer structure such as a core-shell structure and is not a composite of particles and fibrous carbon.
  • the BET specific surface area of the single-phase porous carbon material is 100 m 2 / g or more.
  • the BET specific surface area is less than 100 m 2 / g, it becomes difficult to achieve a pore structure suitable for lithium ion migration.
  • a preferable lower limit of the BET specific surface area is, for example, 200 m 2 / g, 300 m 2 / g, or 400 m 2 / g. Even if the BET specific surface area is too large, it may be difficult to achieve a pore structure suitable for the movement of lithium ions.
  • a preferable upper limit is, for example, 1200 m 2 / g, 1000 m 2 / g, 800 m 2 / g, 600 m 2 / g, or 500 m 2 / g. These upper and lower limits can be arbitrarily combined.
  • a preferred range can be, for example, 400 m 2 / g to 1200 m 2 / g, 200 m 2 / g to 1200 m 2 / g, or even 300 m 2 / g to 800 m 2 / g. That is, the specific surface area of the single-phase porous carbon material is much larger than that of artificial graphite or natural graphite, and can be said to be close to that of activated carbon.
  • the integrated volume (mesopore volume) of pores (mesopores) having a pore diameter of 2 nm to 50 nm is 25% or more of the total pore volume.
  • a preferable lower limit of the proportion of mesopore volume is, for example, 30%, 35%, 40%, or 50%, and a preferable upper limit is, for example, 90%, 80%, 75%, or 70%. These upper and lower limits can be arbitrarily combined.
  • a preferred range may be, for example, 30% to 80%, or may be 35% to 75%. Thereby, the reaction with lithium ions is more likely to occur.
  • Total pore volume of the single-phase porous carbon material is preferably 0.3cm 3 /g ⁇ 1.2cm 3 / g, 0.4cm 3 /g ⁇ 1.1cm 3 /g,0.5cm 3 / G to 1 cm 3 / g, or 0.6 cm 3 / g to 1 cm 3 / g is preferable.
  • the pore system distribution of the single-phase porous carbon material is based on the obtained adsorption isotherm, and in the pore distribution analysis in the QSDFT analysis assuming a carbon slit structure, at least one pore distribution peak in the region of 2 nm to 5 nm. It is preferable that it has.
  • the BET specific surface area is a specific surface area obtained by the BET method.
  • the BET method is a method in which an adsorption isotherm is measured by adsorbing and desorbing nitrogen gas to and from a single-phase porous carbon material, and the measurement data is analyzed based on a predetermined BET equation.
  • the pore size distribution of the single-phase porous carbon material is calculated by the BJH method (Barrett-Joyner-Halenda method) from the adsorption isotherm using nitrogen gas.
  • the ratio of the total pore volume and the mesopore volume can be calculated from the pore size distribution.
  • QSDFT analysis is an analysis method based on a quenching fixed density functional theory attached as a pore analysis function to a measurement apparatus (for example, Autosorb, Nova2000) manufactured by Cantachrome, and accurately determines the pore diameter of porous carbon. Suitable for analysis.
  • the average value (d 002 ) of the ( 002 ) plane spacing obtained from the position of the peak P 002 of the single-phase porous carbon material is 0.340 nm to 0.370 nm, and 0.340 nm to 0.350 nm is preferable.
  • the plane spacing of the (002) plane of graphite with a sufficiently developed graphite structure is about 0.335 nm.
  • the crystallite size of graphite of the single-phase porous carbon material is moderately small, and the crystallite size of graphite obtained from the half-value width of the peak P 002 is 1 nm to 20 nm, preferably 2 nm to 7 nm, or 3 nm to 6 nm.
  • the method for producing a negative electrode material for an electricity storage device includes (i) a step of activating a carbon precursor in which a graphite structure grows at a temperature of 1500 ° C. or less into a porous structure, and (ii) The activated carbon precursor (carbon intermediate) is heated while the graphite structure grows (for example, 1000 ° C. to 1500 ° C. or 1200 ° C. to 1500 ° C.) to grow the graphite structure, thereby producing a single-phase porous material. Producing a carbon material. According to the above method, it is possible to obtain the single-phase porous carbon material that can electrochemically occlude and release lithium ions at low cost.
  • the carbon precursor is desirably a material at which the graphite structure is appropriately grown at 1500 ° C. or lower. Therefore, the X-ray diffraction image of the carbon precursor by CuK ⁇ rays may not have a peak (P 002 ) attributed to the (002) plane of graphite. Even when the carbon precursor has a peak (P 002 ), the average value (d 002 ) of the ( 002 ) plane spacing is preferably 0.360 nm or more, and more preferably 0.370 nm or more. More preferred.
  • the crystallite size of the carbon precursor is preferably less than 1 nm.
  • the carbon intermediate obtained by the activation treatment preferably has a BET specific surface area of 1000 m 2 / g or more.
  • the pore structure changes with the growth of the graphite structure, and the volume of mesopores suitable for lithium ion migration increases.
  • the heating temperature is preferably 1500 ° C. or less.
  • a step of heating the single-phase porous carbon material in an atmosphere containing water vapor and / or hydrogen in a temperature range of 500 ° C. to 800 ° C. may be further provided.
  • the single-phase porous carbon material may be heated in a mixed gas atmosphere of hydrogen and an inert gas.
  • a higher purity single-phase porous carbon material is obtained.
  • graphitizable carbon various precursor carbonized materials, coke, pyrolytic vapor-grown carbon, mesocarbon microbeads, and the like can be used.
  • a condensed polycyclic hydrocarbon compound for example, a condensed polycyclic hydrocarbon compound, a condensed heterocyclic compound, a ring bond compound, an aromatic oil, pitch, or the like can be used.
  • the pitch is inexpensive and preferable.
  • the pitch include petroleum pitch and coal pitch.
  • the condensed polycyclic hydrocarbon compound include two or more condensed polycyclic hydrocarbons such as naphthalene, fluorene, phenanthrene, and anthracene.
  • condensed heterocyclic compound examples include condensed heterocyclic compounds having 3 or more members such as indole, quinoline, isoquinoline, and carbazole.
  • the precursor is baked at, for example, 1000 ° C. or less in a reduced pressure atmosphere or in an inert gas (N 2 , He, Ar, Ne, Xe, etc.) atmosphere. Good.
  • the activation treatment (i) using H / C gas can include a step of heating the carbon precursor (H / C gas treatment) in an H / C gas atmosphere at a temperature of 1100 ° C. or lower.
  • H / C gas treatment since no chemical is used, impurities are not mixed and the work process is simple. Thereby, a carbon intermediate having a large specific surface area and a large total pore volume can be obtained at low cost.
  • the heating temperature exceeds 1100 ° C., the reaction between the H / C gas and carbon is accelerated, the surface etching of the carbon precursor proceeds easily, the particle diameter decreases more than the specific surface area increases, and the activation yield. May decrease.
  • the carbon precursor is preferably activated at 800 ° C. to 900 ° C.
  • the carbon precursor is preferably activated at 1000 ° C. to 1100 ° C.
  • the carbon intermediate is heated in a substantially oxygen-free atmosphere at a temperature at which the graphite structure grows (for example, 1100 ° C. to 1500 ° C.).
  • a temperature at which the graphite structure grows for example, 1100 ° C. to 1500 ° C.
  • the oxygen-free atmosphere is a reduced pressure atmosphere or an inert gas atmosphere, and the molar fraction of oxygen may be less than 0.1%.
  • the heating temperature is preferably 1200 ° C. or higher, more preferably 1300 ° C. or higher.
  • metal carbide is used as the carbon precursor, and the activation treatment is performed in an atmosphere containing chlorine. Since the metal carbide itself is a material that hardly contains impurities, the single-phase porous carbon material to be produced has high purity, and the content of impurities can be extremely reduced.
  • the metal carbide is preferably a carbide containing at least one metal belonging to any one of groups 4A, 5A, 6A, 7A, 8 and 3B of the short-period type periodic table. These can produce a single-phase porous carbon material having a desired pore structure in a high yield.
  • a metal carbide containing one kind of metal may be used alone, a composite carbide containing a plurality of kinds of metals may be used, or a plurality of kinds of metal carbides may be mixed and used.
  • the metal contained in a metal carbide is at least any one of titanium, aluminum, and tungsten. This is because these metals are inexpensive and easily obtain a desired pore structure.
  • metal carbide examples include Al 4 C 3 , TiC, WC, ThC 2 , Cr 3 C 2 , Fe 3 C, UC 2 , and MoC.
  • TiC is inexpensive and Al 4 C 3 tends to obtain a desired pore structure.
  • the activation treatment (i) using chlorine is a step of heating a metal carbide at a relatively low temperature (for example, 1100 ° C. or less or less than 1000 ° C.) in an atmosphere containing chlorine (hereinafter, low temperature chlorination). Can be included. Thereby, metal chloride is released from the carbon precursor, and a carbon intermediate having a porous structure suitable for conversion to mesopores is obtained. Therefore, a carbon intermediate having a BET specific surface area of 1000 m 2 / g or more and a large total pore volume can be obtained easily and at low cost.
  • the low-temperature chlorination is preferably performed at 900 ° C. or more from the viewpoint of suppressing metal residue.
  • the activation treatment can be performed in an atmosphere containing only chlorine gas. However, the activation treatment may be performed in a mixed gas atmosphere of chlorine gas and inert gas.
  • the carbon intermediate is heated at a temperature at which the graphite structure grows in a substantially oxygen-free atmosphere as in the first embodiment.
  • the preferable range of the heating temperature varies depending on the type of the carbon precursor. For example, when TiC is used as the carbon precursor, it is preferable to grow a graphite structure at 1150 ° C. to 1500 ° C. On the other hand, when Al 4 C 3 is used, the graphite structure is preferably grown at 1000 ° C. to 1500 ° C. From the viewpoint of increasing the proportion of mesopores, the heating temperature is preferably 1200 ° C or higher, more preferably 1300 ° C or higher, and particularly preferably 1400 ° C or higher.
  • the activation treatment can include a step of heating metal carbide at a temperature at which a graphite structure grows (hereinafter, high temperature chlorination) in an atmosphere containing chlorine.
  • the activation treatment (step (i) above) and the step of growing the graphite structure (step (ii) above) proceed in parallel (or simultaneously). That is, a single-phase porous carbon material can be obtained from a carbon precursor by a one-step reaction instead of the two-step reaction of the step (i) and the step (ii).
  • the high temperature chlorination can be performed in the same manner as the low temperature chlorination except that the heating temperature is different.
  • TiC is used as the carbon precursor
  • Al 4 C 3 it is preferably heated at 1000 ° C. to 1500 ° C.
  • the heating temperature is preferably 1200 ° C. or higher, more preferably 1300 ° C. or higher, and particularly preferably 1400 ° C. or higher.
  • a lithium ion electricity storage device includes a positive electrode including a positive electrode active material, a negative electrode including the negative electrode material as a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte including a salt of an anion and lithium ion. It comprises.
  • the positive electrode active material includes a material (for example, a transition metal compound) that can electrochemically occlude and release lithium ions, a high-power lithium ion secondary battery can be obtained.
  • the positive electrode active material includes a material that can adsorb and desorb anions in the nonaqueous electrolyte (for example, a porous carbon material such as activated carbon), a high-power lithium ion capacitor can be obtained.
  • the negative electrode can include a negative electrode mixture containing a negative electrode active material and a negative electrode current collector that holds the negative electrode mixture.
  • the negative electrode active material includes a single-phase porous carbon material.
  • the negative electrode current collector for example, a copper foil, a copper alloy foil, or the like is preferable.
  • the negative electrode mixture may contain a binder, a conductive auxiliary agent, and the like in addition to the negative electrode active material.
  • a dispersion medium for example, water or the like is used in addition to an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • the type of the binder is not particularly limited, and for example, a fluororesin such as polyvinylidene fluoride (PVdF); a rubbery polymer such as styrene butadiene rubber; a cellulose derivative such as carboxymethyl cellulose, and the like can be used.
  • the amount of the binder is not particularly limited, and is, for example, 0.5 to 10 parts by mass per 100 parts by mass of the negative electrode active material.
  • the type of the conductive aid is not particularly limited, and examples thereof include carbon black such as acetylene black and ketjen black.
  • the amount of the conductive aid is not particularly limited, and is, for example, 0.1 to 10 parts by mass per 100 parts by mass of the negative electrode active material.
  • the positive electrode can include a positive electrode mixture containing a positive electrode active material and a positive electrode current collector that holds the positive electrode mixture.
  • a positive electrode current collector for example, an aluminum foil, an aluminum alloy foil, or the like is preferable.
  • the positive electrode is obtained by applying a slurry obtained by mixing a positive electrode mixture and a liquid dispersion medium to a positive electrode current collector, and then performing the same steps as the negative electrode.
  • the positive electrode mixture may contain a binder, a conductive additive, and the like. The above materials can be used for the binder, the conductive additive, the dispersion medium, and the like.
  • Examples of the raw material of activated carbon include wood; coconut shell; pulp waste liquid; coal or coal-based pitch obtained by thermal decomposition thereof; heavy oil or petroleum-based pitch obtained by thermal decomposition thereof; phenol resin and the like.
  • lithium metal is housed in a capacitor container together with a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the assembled capacitor is kept warm in a constant temperature room at around 60 ° C., so that lithium ions are eluted from the lithium metal, and the negative electrode active Occluded by the substance.
  • the amount of lithium doped to the negative electrode active material, negative electrode capacity (reversible capacity of the negative electrode) is preferably from 10 to 75 percent of C n is an amount which is filled with lithium.
  • Separator By interposing a separator between the positive electrode and the negative electrode, a short circuit between the positive electrode and the negative electrode is suppressed.
  • a separator a microporous film, a nonwoven fabric or the like is used.
  • the material of the separator include polyolefin such as polyethylene and polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; glass fiber and the like.
  • the thickness of the separator is about 10 to 100 ⁇ m.
  • Nonaqueous electrolyte The nonaqueous electrolyte is not particularly limited as long as it has lithium ion conductivity.
  • a typical nonaqueous electrolyte includes a salt of an anion and lithium ion (lithium salt) and a nonaqueous solvent in which the lithium salt is dissolved.
  • the concentration of the lithium salt in the nonaqueous electrolyte may be, for example, 0.3 to 3 mol / L.
  • the anion constituting the lithium salt includes an anion of a fluorine-containing acid [anion of fluorine-containing phosphate such as hexafluorophosphate ion (PF 6 ⁇ ); fluorine-containing boric acid such as tetrafluoroborate ion (BF 4 ⁇ ) And the like], anions of chlorine-containing acids [perchlorate ions (ClO 4 ⁇ ), etc.], bissulfonylimide anions (eg, bissulfonylimide anions containing fluorine atoms), and the like.
  • the non-aqueous electrolyte may contain one or more of these anions.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC), and ethyl methyl carbonate; ⁇ -butyrolactone, ⁇ -valerolactone Etc. can be used.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • FIG. 1 schematically shows a configuration of an example of a lithium ion capacitor.
  • an electrode plate group and a non-aqueous electrolyte which are main components of the capacitor 10, are accommodated.
  • the electrode plate group is configured by laminating a plurality of positive electrodes 11 and negative electrodes 12 with a separator 13 interposed therebetween.
  • the positive electrode 11 includes a positive electrode current collector 11a that is a metal porous body, and a particulate positive electrode active material 11b filled in the positive electrode current collector 11a.
  • the negative electrode 12 is composed of a negative electrode current collector 12a that is a metal porous body, and a particulate negative electrode active material 12b filled in the negative electrode current collector 12a.
  • lithium ion secondary battery The same thing as a lithium ion capacitor can be used for the negative electrode, nonaqueous electrolyte, and separator of a lithium ion secondary battery.
  • the positive electrode active material a material that exhibits a Faraday reaction accompanied by insertion and extraction of lithium ions is used.
  • a lithium-containing transition metal compound is preferable. Specifically, lithium phosphate having an olivine structure, lithium manganate having a spinel structure, lithium cobaltate having a layered structure (O3 structure), lithium nickelate, and the like are preferable.
  • a positive electrode for a lithium ion secondary battery is obtained by applying a slurry obtained by mixing a positive electrode mixture and a liquid dispersion medium to a positive electrode current collector, and then performing the same steps as described above.
  • the positive electrode mixture may contain a binder, a conductive additive, and the like. The same materials as those described above can be used for the binder, the conductive additive, the dispersion medium, and the like.
  • Example 1 Manufacture of single phase porous carbon material
  • the single phase porous carbon material which is a negative electrode material was produced in the following procedure.
  • Metal carbide (TiC or Al 4 C 3 ) having an average particle size of 10 ⁇ m was placed on a carbon mounting shelf of an electric furnace having a quartz glass furnace core tube. Then, a mixed gas of chlorine and nitrogen (Cl 2 concentration: 10 mol%) was passed through the furnace tube at normal pressure, and the metal carbide and chlorine were reacted at 1000 ° C. to 1400 ° C. for 4 hours.
  • TiC When TiC is used, activation at 1000 ° C. and 1100 ° C. corresponds to low temperature chlorination, and activation at 1200 ° C. to 1400 ° C. corresponds to high temperature chlorination.
  • Al 4 C 3 activation at 1000 ° C. or higher corresponds to high temperature chlorination.
  • the reaction system was provided with a ⁇ 20 ° C. cooling trap, and the metal chloride was liquefied and recovered by the cooling trap. Chlorine gas that did not react in the reactor core tube was refluxed to the reactor core tube by a three-way valve installed on the outlet side of the cooling trap. Thereafter, chlorine gas in the furnace core tube was removed by nitrogen gas, and the temperature of the carbon mounting shelf was lowered to 500 ° C. Next, a mixed gas of hydrogen and argon was passed at normal pressure, and the single-phase porous carbon material was heated at 500 ° C. for 1 hour. Thereafter, the single-phase porous carbon material left on the mounting shelf was taken out into the atmosphere.
  • a lithium ion capacitor was produced according to the following procedure.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was applied to one surface of an aluminum foil (thickness: 20 ⁇ m) as a current collector, dried and rolled to form a coating film of a positive electrode mixture having a thickness of 100 ⁇ m, which was used as a positive electrode .
  • negative electrode 86 parts by mass of single-phase porous carbon material (average particle size of about 10 ⁇ m) derived from TiC and Al 4 C 3, 7 parts by mass of acetylene black as a conductive additive, 7 parts by mass of PVDF as a binder, and A negative electrode mixture slurry was prepared by mixing and stirring NMP as an appropriate amount of a dispersion medium in a mixer.
  • the negative electrode mixture slurry was applied to one surface of a copper foil (thickness: 15 ⁇ m) as a current collector, dried and rolled to form a 70 ⁇ m thick coating film, which was used as the negative electrode.
  • Lithium ion capacitor assembly The positive electrode and the negative electrode are each cut into a size of 1.5 cm ⁇ 1.5 cm, an aluminum lead is welded to the positive electrode current collector, and a nickel lead is welded to the negative electrode current collector. did.
  • a cellulose separator (thickness: 30 ⁇ m) was interposed between the positive electrode and the negative electrode so that the positive electrode mixture and the negative electrode mixture were opposed to each other to form a single cell electrode plate group.
  • lithium foil (thickness: 20 ⁇ m) was interposed between the negative electrode mixture and the separator. Thereafter, the electrode plate group was accommodated in a cell case made of an aluminum laminate sheet.
  • a nonaqueous electrolyte was injected into the cell case, and impregnated into the positive electrode, the negative electrode, and the separator.
  • a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1.0 mol / L in a mixed solvent containing EC and DEC at a volume ratio of 1: 1 was used.
  • the cell case was sealed while reducing the pressure with a vacuum sealer, and pressure was applied from both sides to ensure the adhesion between the positive and negative electrodes and the separator.
  • samples of a single phase porous carbon material derived from TiC obtained by chlorination at 1000 ° C., 1100 ° C., 1200 ° C., 1300 ° C. and 1400 ° C. are referred to as Sample A1, Sample B1, Sample C1, Sample D1 and Sample. Called E1.
  • samples of a single-phase porous carbon material derived from Al 4 C 3 obtained by chlorination at 1000 ° C., 1200 ° C., and 1400 ° C. are referred to as Sample A2, Sample C2, and Sample E2.
  • sample which baked sample A1 in the inert gas (Ar) atmosphere at 1200 degreeC showed the X-ray-diffraction image substantially the same as sample C1. This indicates that even when low-temperature chlorination is performed at 1000 ° C., a crystal structure similar to that of high-temperature chlorination can be obtained by performing a process of growing graphite at a higher temperature.
  • FIG. 3 shows the relationship between the crystallite size (Lc) of graphite contained in the single-phase porous carbon material derived from TiC and the interplanar spacing (d 002 ) of the (002) plane.
  • the plot in FIG. 3 corresponds to sample A1 to sample E1 in order from the smallest crystallite size. From FIG. 3, it can be understood that the larger the crystallite size, the smaller the interplanar spacing. Further, it can be understood that the surface separation is remarkably reduced when the chlorination temperature is 1200 ° C. or higher.
  • FIG. 4 shows the relationship between the chlorination temperature and the BET specific surface area of the single-phase porous carbon material. As the chlorination temperature increases, the BET specific surface area tends to decrease. However, the BET specific surface area is sufficiently large even at 1400 ° C., and about 300 m 2 / g or more is maintained.
  • FIG. 5 and 6 show the relationship between the mesopore volume and the total pore volume formed in the single-phase porous carbon material, and the chlorination temperature.
  • FIG. 5 shows that the mesopore volume increases with increasing chlorination temperature up to at least 1400 ° C.
  • 7 and 8 show the pore size distributions analyzed by the QSDFT method.
  • the measurement samples are sample D1 and sample C2.
  • FIG. 7 shows the analysis result of sample D1
  • FIG. 8 shows the analysis result of sample C2.
  • the TiC raw material there is a pore peak in the vicinity of 3 nm to 4 nm, and the same is true for the Al 4 C 3 raw material. Such a structure is not found in commercially available activated carbon.
  • (F) Output characteristics
  • the lithium ion capacitor was charged to a voltage of 4.0 V with a current of 1.0 mA, and discharged to a voltage of 3.0 V at a predetermined current value (1.0 mA, 100 mA or 500 mA).
  • a predetermined current value 1.0 mA, 100 mA or 500 mA.
  • the discharge capacities (C 100 and C 500 ) obtained at 100 mA and 500 mA were normalized. The closer the value is to 100, the higher the capacity.
  • T1 Temperature of activation treatment (° C)
  • T2 Graphite growth temperature (° C)
  • Va Total pore volume (cm 3 / g)
  • Vm Mesopore volume (cm 3 / g)
  • R 100 ⁇ Vm / Va (%)
  • S BET specific surface area (m 2 / g)
  • Lc crystallite size (nm)
  • d 002 (002) plane spacing (nm)
  • Soft-C graphitizable carbon
  • Hard-C non-graphitizable carbon
  • Example 2 A lithium ion capacitor was produced in the same manner as in Example 1 except that a single-phase porous carbon material derived from graphitizable carbon (sample X) was used instead of the single-phase porous carbon material derived from metal carbide. evaluated. The results are shown in Table 1.
  • a single-phase porous carbon material derived from graphitizable carbon was produced by the following procedure. First, petroleum-based pitch was heated and carbonized at 1000 ° C. for 5 hours in a reduced-pressure atmosphere to obtain graphitizable carbon (carbonized pitch) as a carbon precursor. Next, the graphitizable carbon was activated at 800 ° C. in an atmosphere containing water vapor (H / C gas) to obtain a carbon intermediate. Next, the carbon intermediate was heated at 1350 ° C. in a nitrogen atmosphere to grow a graphite structure to obtain a single-phase porous carbon material.
  • a single-phase porous carbon material having a specific surface area of 100 m 2 / g or more and an integrated volume (mesopore volume) of pores having a pore diameter of 2 nm to 50 nm is 25% or more of the total pore volume It can be understood that a high-output power storage device can be obtained by using.
  • TiC titanium carbide
  • the negative electrode material for a lithium ion electricity storage device of the present invention has a pore structure suitable for the movement of lithium ions, it can exhibit high output. Therefore, the present invention can be applied to various power storage devices that require high capacity.

Abstract

 蓄電デバイス用負極材料は、電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を含み、単相多孔質炭素材料のBET比表面積が、100m/g以上であり、単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔の積算容積が、全細孔容積の25%以上である。

Description

蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
 本発明は、リチウムイオン二次電池、リチウムイオンキャパシタなどのリチウムイオン蓄電デバイスに用いられる負極材料に関する。
 環境問題がクローズアップされる中、太陽光や風力などのクリーンエネルギーを電力に変換し、電気エネルギーとして蓄電するシステムの開発が盛んに行われている。このような蓄電デバイスとして、リチウムイオン二次電池、リチウムイオンキャパシタなどのリチウムイオン蓄電デバイスが知られている。最近では、電気自動車やハイブリッド自動車のように、瞬時に高い電力を消費する用途へのリチウムイオン蓄電デバイスの展開も加速している。そこで、高出力を発揮できる負極材料の開発が求められている。
 リチウムイオン二次電池およびリチウムイオンキャパシタの負極材料としては、黒鉛を用いることが一般的である。黒鉛とリチウムイオンとの反応は、層間化合物の生成と層間距離の変化を伴うファラデー反応であり、反応抵抗を大きく改善することが困難である。よって、黒鉛を用いる限り、負極の出力特性の向上には限界がある。
 そこで、特許文献1、2は、BET比表面積の大きな活性炭の表面をピッチの熱処理物で被覆した材料を負極材料として用いることを提案している。活性炭単独ではリチウムイオンの充放電が困難であるが、ピッチの熱処理物の被覆層を活性炭粒子の表面に形成することで、初期効率が改善され、高率放電において黒鉛よりも有利であるという。
特許文献3は、コアとなる炭素粒子と、炭素粒子の表面および/または内部に形成されたグラフェン構造を有する繊維状炭素との炭素複合体を負極材料として用いることを提案している。炭素複合体の全メソ孔容積は0.005~1.0cm/gであり、細孔径100~400オングストロームのメソ細孔が全メソ孔容積の25%以上を占めているという。
特開2001-229926号公報 特開2003-346803号公報 特開2008-66053号公報
 特許文献1~3の負極材料は、いずれも不可逆容量の大きな炭素材料を含む炭素複合体であり、依然として初期効率が黒鉛に比べて低く、実用的ではない。特に特許文献1、2では、ピッチの熱処理物により活性炭の表面を被覆しているため、リチウムイオンの充放電に有効なメソ孔が失われるものと推測される。また、高価な活性炭を用いたり、遷移金属触媒を用いて繊維状炭素を成長させたりする複雑な製造方法では、負極材料の低価格化が困難である。特許文献3の負極材料は、遷移金属の不純物が残留しやすく、金属不純物が残留した場合には電解質との副反応が生じるという問題もある。
 以上に鑑み、本発明の一局面は、電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を含み、前記単相多孔質炭素材料のBET比表面積が、100m/g以上であり、前記単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔(メソ孔)の積算容積(メソ孔容積)が、全細孔容積の25%以上である、蓄電デバイス用負極材料を提案する。
 本発明の他の一局面は、(i)1500℃以下の温度でグラファイト構造が成長するカーボン前駆体を、多孔質構造に賦活処理する工程と、(ii)前記賦活処理されたカーボン前駆体を、グラファイト構造が成長する温度で加熱して、グラファイト構造を成長させて、単相多孔質炭素材料を生成させる工程と、を具備する、蓄電デバイス用負極材料の製造方法に関する。
 本発明の更に他の一局面は、正極活物質を含む正極と、負極活物質を含む負極と、前記正極および前記負極の間に介在するセパレータと、アニオンとリチウムイオンとの塩を含む非水電解質と、を具備し、前記負極活物質が上記蓄電デバイス用負極材料を含む、リチウムイオン蓄電デバイスに関する。
 本発明は、リチウムイオンの移動に適した細孔構造を有する実用的な負極材料を提供するものであり、この負極材料を用いることにより、高出力なリチウムイオン蓄電デバイスを得ることができる。
本発明の一実施形態に係るリチウムイオン蓄電デバイス(リチウムイオンキャパシタ)の構成を概念的に示す断面図である。 塩素処理温度が単相多孔質炭素材料(TiC由来)のX線回折像に与える影響を示す図である。 単相多孔質炭素材料(TiC由来)に含まれるグラファイトの結晶子サイズと、(002)面の面間隔との関係を示す図である。 塩素処理温度と単相多孔質炭素材料のBET比表面積との関係を示す図である。 塩素処理温度と単相多孔質炭素材料に形成されるメソ孔容積との関係を示す図である。 塩素処理温度と単相多孔質炭素材料の全細孔容積との関係を示す図である。 QSDFT法で解析した細孔径の分布を示す図である。 QSDFT法で解析した細孔径の分布を示す図である。
[本発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 (1)本発明の一実施形態に係る蓄電デバイス用負極材料は、電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を含む。単相多孔質炭素材料のBET比表面積は、100m/g以上である。単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔(メソ孔)の積算容積(メソ孔容積)は、全細孔容積の25%以上である。上記細孔構造は、リチウムイオンの移動に適するため、反応抵抗が小さく、高出力での充放電が可能である。
 (2)上記細孔構造を有する単相多孔質炭素材料のX線回折像は、グラファイトの(002)面に帰属されるピーク(P002)を有する。ここで、ピークP002の位置から求められる(002)面の面間隔(d002)は0.340nm~0.370nmであり、ピークP002の半価幅から求められるグラファイトの結晶子サイズは1nm~20nmであることが好ましい。すなわち、単相多孔質炭素材料はグラファイト構造を有し、かつグラファイトの結晶子サイズは適度に小さい。(3)単相多孔質炭素材料の全細孔容積は、0.3cm/g~1.2cm/gであることが好ましい。
 (4)単相多孔質炭素材料の細孔径分布は、カーボンスリット構造を仮定したQSDFT解析における細孔分布解析において2nm~5nmの領域に少なくとも一つの細孔分布ピークを持つことが好ましい。
 (5)本発明の一実施形態に係る蓄電デバイス用負極材料の製造方法は、(i)1500℃以下の温度でグラファイト構造が成長するカーボン前駆体を、多孔質構造に賦活処理する工程と、(ii)賦活処理されたカーボン前駆体(以下、カーボン中間体)を、グラファイト構造が成長する温度で加熱して、グラファイト構造を成長させて、単相多孔質炭素材料を生成させる工程と、を具備する。
 (6)カーボン前駆体が、易黒鉛化炭素である場合、賦活処理は、1100℃未満(例えば900℃以下)の温度で水蒸気および/または二酸化炭素(以下、H/Cガス)を含有する雰囲気中で、カーボン前駆体を加熱する工程(以下、H/Cガス処理)を含むことができる。この場合、(7)易黒鉛化炭素は、1000℃未満の温度で前駆体を炭素化することで生成するものであることが好ましい。
 (8)カーボン前駆体が、金属炭化物である場合、賦活処理は、塩素を含有する雰囲気中で金属炭化物を第一温度で加熱する工程(以下、低温塩素処理)を含むことができる。
 この場合、(9)賦活処理の後、グラファイト構造を成長させる工程としては、実質的に無酸素雰囲気中で、カーボン中間体を第一温度より高い第二温度(すなわちグラファイト構造が成長する温度)で加熱する工程を行うことが好ましい。これにより、グラファイト構造の成長とともに細孔構造が変化し、リチウムイオンの移動に適したメソ孔容積が増加する。
 (10)カーボン前駆体が、金属炭化物である場合、賦活処理は、塩素を含有する雰囲気中で金属炭化物をグラファイト構造が成長する温度で加熱する工程(以下、高温塩素処理)を含むことができる。この場合、賦活処理中に、グラファイト構造の成長が並行して進行する。
 (11)金属炭化物は、短周期型の周期律表の4A、5A、6A、7A、8および3B族のいずれかに属する金属の少なくとも1種を含む炭化物であることが好ましい。(12)金属炭化物に含まれる金属は、チタン、アルミニウムおよびタングステンの少なくともいずれか1つであることが好ましい。
 (13)カーボン中間体のBET比表面積は、1000m/g以上であることが好ましい。カーボン中間体の全細孔容積が大きくなりやすいからである。
 上記製造方法によれば、(14)単相多孔質炭素材料のBET比表面積が、100m/g以上であり、単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔の積算容積が、全細孔容積の25%以上である負極材料を効率的に製造することができる。また、(15)単相多孔質炭素材料のX線回折像が、グラファイトの(002)面に帰属される26°付近にピークを有し、そのピークの位置から求められる(002)面の面間隔の平均値が、0.340nm~0.370nmであり、ピークの半価幅から求められるグラファイトの結晶子サイズが、1nm~20nmである負極材料を効率的に製造することができる。更に、(16)全細孔容積が、0.3cm/g~1.2cm/gである負極材料を効率的に製造することができる。
 また、(17)カーボンスリット構造を仮定したQSDFT解析における細孔分布解析において2nm~5nmの領域に少なくとも一つの細孔分布ピークを持つ負極材料を効率的に製造することができる。
 (18)上記製造方法は、更に、グラファイト構造を成長させる工程の後に、500℃~800℃の温度範囲で、水蒸気および/または水素を含有する雰囲気中で、単相多孔質炭素材料を加熱する工程を具備してもよい。
 (19)本発明の一実施形態に係るリチウムイオン蓄電デバイスは、正極活物質を含む正極と、負極活物質を含む負極と、正極および負極の間に介在するセパレータと、アニオンとリチウムイオンとの塩を含む非水電解質とを具備する。負極活物質が、上記負極材料を含むことにより、高出力なリチウムイオン蓄電デバイスが得られる。
[発明の実施形態の詳細]
 以下、本発明の実施形態について、適宜図面を参照しつつ具体的に説明する。なお、本発明は以下の例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[単相多孔質炭素材料]
 本発明の一実施形態に係る蓄電デバイス用負極材料は、電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を含む。ここで、「単相」の多孔質炭素材料とは、物性が相違する複数種の炭素材料の複合体ではないことを意味する。よって、単相多孔質炭素材料とは、一局面においては、コアシェル構造のような複層構造を有さず、粒子と繊維状炭素との複合体でもない多孔質炭素材料を意味する。
(比表面積)
 単相多孔質炭素材料のBET比表面積は、100m/g以上である。BET比表面積が100m/g未満になると、リチウムイオンの移動に適した細孔構造を達成することが困難になる。BET比表面積の好ましい下限値は、例えば200m/g、300m/gまたは400m/gである。なお、BET比表面積が大きすぎても、リチウムイオンの移動に適した細孔構造を達成することが困難になる場合がある。よって、好ましい上限値は、例えば1200m/g、1000m/g、800m/g、600m/gまたは500m/gである。これらの上限値および下限値は任意に組み合わせ得る。好ましい範囲は、例えば、400m/g~1200m/gであり得るし、200m/g~1200m/gであり得るし、300m/g~800m/gでもあり得る。すなわち、単相多孔質炭素材料の比表面積は、人造黒鉛や天然黒鉛に比べると遥かに大きく、活性炭に近いといえる。
(細孔構造)
 単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔(メソ孔)の積算容積(メソ孔容積)は、全細孔容積の25%以上である。メソ孔容積が全細孔容積の25%未満では、メソ孔容積の割合が少ないため、リチウムイオンの移動が抑制され、十分に高出力な充放電が困難になる。メソ孔容積の割合の好ましい下限値は、例えば30%、35%、40%または50%であり、好ましい上限値は、例えば90%、80%、75%または70%である。これらの上限値および下限値は任意に組み合わせ得る。好ましい範囲は、例えば、30%~80%であり得るし、35%~75%でもあり得る。これにより、リチウムイオンとの反応が更に生じやすくなる。
 単相多孔質炭素材料の全細孔容積は、0.3cm/g~1.2cm/gであることが好ましく、0.4cm/g~1.1cm/g、0.5cm/g~1cm/g、もしくは0.6cm/g~1cm/gであることが好ましい。これにより、単相多孔質炭素材料に電解質の溶媒が浸透しやすくなり、高出力化が更に容易となる。
 単相多孔質炭素材料の細孔系分布は、得られた吸着等温線に基づく、カーボンスリット構造を仮定したQSDFT解析における細孔分布解析において、2nm~5nmの領域に少なくとも一つの細孔分布ピークを持つものであることが好ましい。このような単層多孔質炭素材料を負極材料とすることで、電解質中のイオン移動経路が確保される構造をとることが可能となり、高出力化が容易となる。
 BET比表面積は、BET法により得られる比表面積である。BET法とは、ここでは窒素ガスを単相多孔質炭素材料に吸脱着させることにより吸着等温線を測定し、測定データを所定のBET式に基づいて解析する方法である。単相多孔質炭素材料の細孔径分布は、窒素ガスを用いた吸着等温線からBJH法(Barrett-Joyner-Halenda法)により算出される。全細孔容積およびメソ孔容積の割合は、細孔径分布から算出することができる。なお、BET比表面積および細孔径分布を測定する市販の測定装置の例として、BellJapan社製のBELLSORP-miniIIが挙げられる。
 また、QSDFT解析は、カンタクローム社製の測定装置(例えば、Autosorb、Nova2000)に細孔解析機能として付属している急冷固定密度汎関数理論による解析手法で、多孔質炭素の細孔径を正確に解析するのに適している。
(結晶構造)
 単相多孔質炭素材料のCuKα線によるX線回折像は、グラファイトの(002)面に帰属される26°付近のピーク(P002)を有する。すなわち、単相多孔質炭素材料は、活性炭とは異なり、部分的にグラファイト構造を有する。これにより、リチウムイオンとの反応が生じやすくなり、可逆容量も大きくなりやすい。ただし、単相多孔質炭素材料のグラファイト構造は、天然黒鉛や人造黒鉛ほどに発達していない。
 具体的には、単相多孔質炭素材料のピークP002の位置から求められる(002)面の面間隔の平均値(d002)は、0.340nm~0.370nmであり、0.340nm~0.350nmが好ましい。なお、十分にグラファイト構造が発達した黒鉛の(002)面の面間隔は0.335nm程度である。
 単相多孔質炭素材料のグラファイトの結晶子サイズは適度に小さく、ピークP002の半価幅から求められるグラファイトの結晶子サイズは1nm~20nmであり、2nm~7nm、もしくは3nm~6nmが好ましい。
 面間隔(d002)および結晶子サイズは、X線回折像の2θ=26°付近に現れるピークを解析することにより得られる。X線回折像はノイズを含むため、バックグラウンドを除去し、ピークを規格化してから解析する。面間隔(d002)は、ピーク(P002)の2/3の高さにおけるピーク幅の中点の位置(2θx)から、式:d002=λ/2sin(θx)を用いて求める。結晶子サイズ(Lc)は、ピーク(P002)の1/2の高さにおけるピーク幅(半価幅β)から、式:Lc=λ/βcos(θx)≒9.1/βを用いて求める。
[負極材料の製造方法]
 本発明の一実施形態に係る蓄電デバイス用負極材料の製造方法は、(i)1500℃以下の温度でグラファイト構造が成長するカーボン前駆体を、多孔質構造に賦活処理する工程と、(ii)賦活処理されたカーボン前駆体(カーボン中間体)を、グラファイト構造が成長する(例えば1000℃~1500℃、もしくは1200℃~1500℃)で加熱して、グラファイト構造を成長させて、単相多孔質炭素材料を生成させる工程と、を具備する。上記方法によれば、上記の電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を、低コストで得ることが可能である。
 カーボン前駆体は、1500℃以下で、適度にグラファイト構造が成長する材料であることが望ましい。よって、カーボン前駆体のCuKα線によるX線回折像は、グラファイトの(002)面に帰属されるピーク(P002)を有さなくてもよい。また、カーボン前駆体がピーク(P002)を有する場合でも、(002)面の面間隔の平均値(d002)は、0.360nm以上であることが好ましく、0.370nm以上であることがより好ましい。カーボン前駆体の結晶子サイズは1nm未満であることが好ましい。
 賦活処理により得られたカーボン中間体のBET比表面積は、1000m/g以上であることが好ましい。カーボン中間体のBET比表面積を、このように大きくすることで、全細孔容積が大きく、かつメソ孔の割合の大きい単相多孔質炭素材料を得やすくなる。
 グラファイト構造を成長させる工程(ii)では、グラファイト構造の成長とともに細孔構造が変化し、リチウムイオンの移動に適したメソ孔の容積が増加する。このとき、加熱温度が高すぎると、比表面積が小さくなる傾向がある。また、グラファイト構造が成長し過ぎると、細孔構造が変化し、全細孔容積が少なくなる場合がある。よって、加熱温度は1500℃以下が好ましい。
 グラファイト構造を成長させた後、更に、500℃~800℃の温度範囲で、水蒸気および/または水素を含有する雰囲気中で、単相多孔質炭素材料を加熱する工程を具備してもよい。例えば、水素と不活性ガスとの混合ガス雰囲気中で単相多孔質炭素材料を加熱してもよい。これにより、より高純度な単相多孔質炭素材料が得られる。例えば、塩素処理を経て製造された単相多孔質炭素材料に、僅かに塩素が残留するような場合にも、そのような塩素は除去される。
 以下、上記製造方法の具体的な実施形態を例示する。
<第1実施形態>
 本実施形態では、カーボン前駆体として易黒鉛化炭素を用い、賦活処理は水蒸気および/または二酸化炭素(以下、H/Cガス)を含有する雰囲気中で行う。
 易黒鉛化炭素としては、様々な前駆体の炭素化物や、コークス、熱分解気相成長炭素、メソカーボンマイクロビーズなどを用いることができる。炭素化物の前駆体としては、例えば、縮合多環炭化水素化合物、縮合複素環化合物、環結合化合物、芳香族系油、ピッチなどを用いることができる。中でも、ピッチが安価で好ましい。ピッチとしては、たとえば、石油系ピッチ、石炭系ピッチなどが挙げられる。縮合多環炭化水素化合物としては、例えば、ナフタレン、フルオレン、フェネントレン、アントラセンなどの2環以上の縮合多環炭化水素が挙げられる。縮合複素環化合物としては、例えば、インドール、キノリン、イソキノリン、カルバゾールなどの3員環以上の縮合複素環化合物が挙げられる。前駆体を炭素化する際には、減圧雰囲気中、または、不活性ガス(N、He、Ar、Ne、Xeなど、以下同様)雰囲気中で、前駆体を例えば1000℃以下で焼成すればよい。
 H/Cガスを用いる賦活処理(i)は、1100℃以下の温度でH/Cガス雰囲気中で、カーボン前駆体を加熱する工程(H/Cガス処理)を含むことができる。H/Cガス処理では、化学薬品を用いないため、不純物が混入せず、作業工程も簡易である。これにより、低コストで、比表面積が大きく、かつ全細孔容積の大きなカーボン中間体を得ることができる。加熱温度が1100℃を超えると、H/Cガスとカーボンとの反応が早くなり、カーボン前駆体の表面エッチングが進みやすく、比表面積の拡大よりも粒子径の減少が進んでしまい、賦活収率が低下する場合がある。
 なお、二酸化炭素より水蒸気を高濃度で含む雰囲気中では、800℃~900℃でカーボン前駆体を賦活処理することが好ましい。水蒸気より二酸化炭素を高濃度で含む雰囲気中では、1000℃~1100℃でカーボン前駆体を賦活処理することが好ましい。これにより、BET比表面積が1000m/g以上のカーボン中間体が容易に得られる。
 グラファイト構造を成長させる工程(ii)では、実質的な無酸素雰囲気中で、カーボン中間体を、グラファイト構造が成長する温度(例えば1100℃~1500℃)で加熱する。これにより、グラファイト構造の成長とともに細孔構造が変化し、リチウムイオンの移動に適したメソ孔容積が増加する。ここで、無酸素雰囲気とは、減圧雰囲気または不活性ガス雰囲気であり、酸素のモル分率は0.1%未満であればよい。カーボン中間体の状態にもよるが、加熱温度は1200℃以上が好ましく、1300℃以上が更に好ましい。
<第2実施形態>
 本実施形態では、カーボン前駆体として金属炭化物を用い、賦活処理は塩素を含有する雰囲気中で行う。金属炭化物は、それ自体が不純物を含みにくい材料であることから、生成する単相多孔質炭素材料は、高純度であり、不純物の含有量を極めて小さくすることができる。
 金属炭化物は、短周期型の周期律表の4A、5A、6A、7A、8および3B族のいずれかに属する金属の少なくとも1種を含む炭化物であることが好ましい。これらは、所望の細孔構造を有する単相多孔質炭素材料を高収率で生成し得る。1種の金属を含む金属炭化物を単独で用いてもよく、複数種の金属を含む複合炭化物を用いてもよく、複数種の金属炭化物を混合して用いてもよい。中でも、金属炭化物に含まれる金属は、チタン、アルミニウムおよびタングステンの少なくともいずれか1つであることが好ましい。これらの金属は安価であり、かつ所望の細孔構造を得やすいからである。
 金属炭化物の具体例としては、Al、TiC、WC、ThC、Cr、FeC、UC、MoCなどが挙げられる。中でも、TiCは安価であり、Alは所望の細孔構造を得やすい。
 塩素を用いる賦活処理(i)は、塩素を含有する雰囲気中で金属炭化物を比較的低温の第一温度(例えば1100℃以下もしくは1000℃未満)の温度で加熱する工程(以下、低温塩素処理)を含むことができる。これにより、カーボン前駆体から金属塩化物が放出され、メソ孔への変換に適した多孔質構造を有するカーボン中間体が得られる。よって、BET比表面積が1000m/g以上で、全細孔容積の大きなカーボン中間体を、容易かつ低コストで得ることができる。低温塩素処理は、金属の残留を抑制する観点から、900℃以上で行うことが好ましい。
 賦活処理は、塩素ガスのみを含む雰囲気中で行うことができる。ただし、塩素ガスと不活性ガスとの混合ガス雰囲気中で賦活処理を行ってもよい。
 グラファイト構造を成長させる工程(ii)では、第1実施形態と同じく、実質的な無酸素雰囲気中で、カーボン中間体をグラファイト構造が成長する温度で加熱する。加熱温度の好ましい範囲は、カーボン前駆体の種類により異なる。カーボン前駆体として、例えばTiCを用いる場合には、1150℃~1500℃でグラファイト構造を成長させることが好ましい。一方、Alを用いる場合には、1000℃~1500℃でグラファイト構造を成長させることが好ましい。メソ孔の割合を増加させる観点からは、加熱温度は、1200℃以上が好ましく、1300℃以上が更に好ましく、1400℃以上が特に好ましい。ただし、加熱温度が高くなるほど、比表面積は小さくなる。また、カーボン前駆体としてTiCを用いる場合には、1300℃を超えると、全細孔容積が少なくなる傾向がある。なお、Alを用いる場合には、1300℃を超えても、そのような傾向は見られない。
<第3実施形態>
 本実施形態では、カーボン前駆体として金属炭化物を用い、賦活処理とグラファイト構造を成長させる工程とを、塩素を含有する雰囲気中で並行して行う。具体的には、賦活処理は、塩素を含有する雰囲気中で金属炭化物を、グラファイト構造が成長する温度で加熱する工程(以下、高温塩素処理)を含むことができる。高温塩素処理によれば、賦活処理(上記工程(i))と、グラファイト構造を成長させる工程(上記工程(ii))とが並行して(もしくは同時に)進行する。すなわち、上記工程(i)と上記工程(ii)との2段階の反応ではなく、カーボン前駆体から1段階の反応で単相多孔質炭素材料を得ることができる。
 高温塩素処理は、加熱温度が異なる点以外、低温塩素処理と同様に行うことができる。ここでも、カーボン前駆体としてTiCを用いる場合には、1150℃~1500℃で加熱することが好ましい。一方、Alを用いる場合には、1000℃~1500℃で加熱することが好ましい。また、メソ孔の割合を増加させる観点から、加熱温度は1200℃以上が好ましく、1300℃以上が更に好ましく、1400℃以上が特に好ましい。
[リチウムイオン蓄電デバイス]
 リチウムイオン蓄電デバイスは、正極活物質を含む正極と、上記負極材料を負極活物質として含む負極と、正極および負極の間に介在するセパレータと、アニオンとリチウムイオンとの塩を含む非水電解質とを具備する。正極活物質が、電気化学的にリチウムイオンを吸蔵および放出可能な材料(例えば遷移金属化合物)を含む場合には、高出力なリチウムイオン二次電池が得られる。また、正極活物質が、非水電解質中のアニオンを吸着および脱着可能な材料(例えば活性炭などの多孔質炭素材料)を含む場合には、高出力なリチウムイオンキャパシタが得られる。
 以下、リチウムイオンキャパシタの一例について説明する。
(負極)
 負極は、負極活物質を含む負極合剤と、負極合剤を保持する負極集電体を含むことができる。ここでは、負極活物質が、単相多孔質炭素材料を含む。負極集電体としては、例えば、銅箔、銅合金箔などが好ましい。負極は、負極集電体に、負極合剤と液状分散媒とを混合して得られるスラリーを塗布し、その後、スラリーに含まれる分散媒を除去し、必要に応じて、負極合剤を保持した負極集電体を圧延することにより得られる。負極合剤は、負極活物質の他に、バインダ、導電助剤などを含んでもよい。分散媒としては、例えば、N-メチル-2-ピロリドン(NMP)などの有機溶媒の他、水などが用いられる。
 バインダの種類は特に制限されず、例えば、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂;スチレンブタジエンゴムなどのゴム状重合体;カルボキシメチルセルロースなどのセルロース誘導体などを用いることができる。バインダの量は、特に限定されず、負極活物質100質量部あたり、例えば、0.5~10質量部である。
 導電助剤の種類は、特に制限されず、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラックが挙げられる。導電助剤の量は、特に限定されず、負極活物質100質量部あたり、例えば0.1~10質量部である。
(正極)
 正極は、正極活物質を含む正極合剤と、正極合剤を保持する正極集電体を含むことができる。正極活物質としては、例えば、比表面積の大きい活性炭が用いられる。正極集電体としては、例えば、アルミニウム箔、アルミニウム合金箔などが好ましい。正極は、正極集電体に、正極合剤と液状分散媒とを混合して得られるスラリーを塗布し、その後、負極と同様の工程を経ることにより得られる。正極合剤は、バインダ、導電助剤などを含んでもよい。バインダ、導電助剤、分散媒などには、上記材料を用いることができる。
 活性炭の原料としては、例えば、木材;ヤシ殻;パルプ廃液;石炭またはその熱分解により得られる石炭系ピッチ;重質油またはその熱分解により得られる石油系ピッチ;フェノール樹脂などが挙げられる。
 リチウムイオンキャパシタにおいては、負極電位を低下させるために、負極活物質に予めリチウムをドープしておくことが好ましい。例えば、リチウム金属を、正極、負極および非水電解質とともにキャパシタ容器内に収容し、組み立て後のキャパシタを60℃前後の恒温室中で保温することにより、リチウム金属からリチウムイオンが溶出し、負極活物質に吸蔵される。負極活物質にドープするリチウム量は、負極容量(負極の可逆容量):Cnの10~75%がリチウムで満たされる量であることが好ましい。
(セパレータ)
 正極と負極との間にセパレータを介在させることにより、正極と負極との短絡が抑制される。セパレータには、微多孔膜、不織布などが用いられる。セパレータの材質には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリエチレンレテフタレートなどのポリエステル;ポリアミド;ポリイミド;セルロース;ガラス繊維などを用いることができる。セパレータの厚さは10~100μm程度である。
(非水電解質)
 非水電解質は、リチウムイオン伝導性を有する限り特に制限されない。一般的な非水電解質は、アニオンとリチウムイオンとの塩(リチウム塩)と、リチウム塩を溶解させる非水溶媒とを含む。非水電解質におけるリチウム塩の濃度は、例えば0.3~3mol/Lであればよい。
 リチウム塩を構成するアニオンとしては、フッ素含有酸のアニオン[ヘキサフルオロリン酸イオン(PF -)などのフッ素含有リン酸のアニオン;テトラフルオロホウ酸イオン(BF -)などのフッ素含有ホウ酸のアニオンなど]、塩素含有酸のアニオン[過塩素酸イオン(ClO -)など]、ビススルホニルイミドアニオン(フッ素原子を含むビススルホニルイミドアニオンなど)などが例示できる。非水電解質は、これらのアニオンのうち一種を含んでもよく、二種以上を含んでもよい。
 非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネートなどの鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類などを用いることができる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 図1に、リチウムイオンキャパシタの一例の構成を概略的に示す。セルケース15内には、キャパシタ10の主構成要素である極板群と非水電解質が収容されている。極板群は、複数の正極11と負極12とをセパレータ13を介して積層することにより構成されている。ここでは、正極11は、金属多孔体である正極集電体11aと、正極集電体11aに充填された粒子状の正極活物質11bとで構成されている。また、負極12は、金属多孔体である負極集電体12aと、負極集電体12aに充填された粒子状の負極活物質12bとで構成されている。
 次に、リチウムイオン二次電池の一例について説明する。
 リチウムイオン二次電池の負極、非水電解質およびセパレータには、リチウムイオンキャパシタと同様のものを用いることができる。一方、正極活物質には、リチウムイオンの吸蔵および放出を伴うファラデー反応を発現する材料が用いられる。このような材料としては、例えばリチウム含有遷移金属化合物が好ましい。具体的には、オリビン構造を有するリン酸リチウム、スピネル構造を有するマンガン酸リチウム、層状構造(O3型構造)を有するコバルト酸リチウムやニッケル酸リチウムなどが好ましい。
 リチウムイオン二次電池用正極は、正極集電体に、正極合剤と液状分散媒とを混合して得られるスラリーを塗布し、その後、上記と同様の工程を経ることにより得られる。正極合剤は、バインダ、導電助剤などを含んでもよい。バインダ、導電助剤、分散媒などにも、上記と同様の材料を用いることができる。
 以下、本発明を実施例および比較例に基づいて、更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
(1)単相多孔質炭素材料の製造
 負極材料である単相多孔質炭素材料は、下記の手順で作製した。
 平均粒径10μmの金属炭化物(TiCまたはAl)を、石英ガラス製の炉心管を有する電気炉のカーボン製載置棚に設置した。そして、炉心管内に、常圧で、塩素と窒素との混合ガス(Cl濃度:10モル%)を流通させ、金属炭化物と塩素とを1000℃~1400℃で4時間反応させた。TiCを用いる場合、1000℃および1100℃での賦活は低温塩素処理に相当し、1200℃~1400℃での賦活は高温塩素処理に相当する。一方、Alを用いる場合、1000℃以上での賦活は全て高温塩素処理に相当する。
 反応系には-20℃の冷却トラップを設け、冷却トラップによって金属塩化物を液化し、回収した。炉心管内で反応しなかった塩素ガスは、冷却トラップの出口側に設置した三方弁によって炉心管へ還流させた。その後、炉心管内の塩素ガスを窒素ガスによって除去し、カーボン製載置棚を500℃まで降温させた。次に、常圧で水素とアルゴンとの混合ガスを流通させ、500℃で単相多孔質炭素材料を1時間加熱した。その後、載置棚に残された単相多孔質炭素材料を大気中に取り出した。
 下記の手順で、リチウムイオンキャパシタを作製した。
(2)正極の作製
 市販のヤシ殻活性炭(比表面積1700m/g)86質量部、導電助剤であるケッチェンブラック7質量部、バインダであるポリフッ化ビニリデン(PVdF)7質量部、および適量の分散媒としてN-メチル-2-ピロリドン(NMP)を混合機にて混合し、攪拌することにより、正極合剤スラリーを調製した。正極合剤スラリーを、集電体であるアルミニウム箔(厚さ:20μm)の一方の表面に塗布し、乾燥後、圧延し、厚さ100μmの正極合剤の塗膜を形成し、正極とした。
(3)負極の作製
 TiCおよびAl由来の単相多孔質炭素材料(平均粒径約10μm)86質量部、導電助剤であるアセチレンブラック7質量部、バインダであるPVDF7質量部、および適量の分散媒としてNMPを混合機にて混合し、攪拌することにより、負極合剤スラリーを調製した。負極合剤スラリーを、集電体である銅箔(厚さ:15μm)の一方の表面に塗布し、乾燥後、圧延し、厚さ70μmの塗膜を形成し、負極とした。
(4)リチウムイオンキャパシタの組み立て
 正極と負極とを、それぞれ、1.5cm×1.5cmのサイズに切り出し、正極集電体にアルミニウム製リードを、負極集電体にニッケル製リードを、それぞれ溶接した。
 正極と負極との間に、セルロース製セパレータ(厚み:30μm)を介在させて正極合剤と負極合剤とを対向させ、単セルの極板群を形成した。ただし、負極合剤とセパレータとの間にリチウム箔(厚さ:20μm)を介在させた。その後、極板群をアルミニウムラミネートシートで作製されたセルケース内に収容した。
 次に、非水電解質をセルケース内に注入し、正極、負極およびセパレータに含浸させた。非水電解質としては、ECとDECとを体積比1:1で含む混合溶媒に、リチウム塩としてLiPFを1.0mol/Lの濃度で溶解させた溶液を用いた。最後に真空シーラーにて減圧しながらセルケースを封止するとともに両面から圧力を加え、正負極とセパレータとの密着性を確保した。
[評価]
 単相多孔質炭素材料について、下記(a)~(e)の評価を行った。また、リチウムイオンキャパシタについて、下記(f)の評価を行った。
(a)X線回折測定(XRD)
 単相多孔質炭素材料のCukα線によるX線回折像を測定した。X線回折像においては、2θ=26°付近にグラファイトの(002)面に帰属されるピーク(P002)が観測された。図2に、TiC由来の単相多孔質炭素材料の測定結果を示す。塩素処理温度が1200℃以上の場合には、(002)面のピーク(P002)が特にシャープに現れている。
 以下、1000℃、1100℃、1200℃、1300℃および1400℃での塩素処理で得られたTiC由来の単相多孔質炭素材料の試料を、試料A1、試料B1、試料C1、試料D1および試料E1と称する。同様に、1000℃、1200℃および1400℃での塩素処理で得られたAl由来の単相多孔質炭素材料の試料を、試料A2、試料C2および試料E2と称する。
 なお、試料A1を不活性ガス(Ar)雰囲気中で、1200℃で焼成した試料は、試料C1とほぼ同様のX線回折像を示した。このことは、1000℃で低温塩素処理を行う場合でも、より高温でグラファイトを成長させる工程を行えば、高温塩素処理と同様の結晶構造が得られることを示している。
(b)グラファイトの(002)面の面間隔(d002
 X線回折像からバックグラウンドを除去した後、ピーク(P002)の2/3の高さにおけるピーク幅の中点の位置(2θx)から、(002)面の面間隔(d002)を式:d002=λ/2sin(θx)を用いて求めた。
(c)グラファイトの結晶子サイズ
ピーク(P002)の半価幅βから、結晶子サイズ(Lc)を式:Lc=λ/βcos(θx)を用いて求めた。
 図3に、TiC由来の単相多孔質炭素材料に含まれるグラファイトの結晶子サイズ(Lc)と(002)面の面間隔(d002)との関係を示す。図3のプロットは、結晶子サイズの小さい方から順に、試料A1~試料E1に対応している。図3より、結晶子サイズが大きくなるほど、面間隔が小さくなることが理解できる。また、塩素処理温度が1200℃以上の場合に、面間隔が顕著に小さくなることが理解できる。
(d)BET比表面積
 BellJapan社製のBELLSORP-miniIIを用いて、-196℃におけるNの吸着等温線を測定し、単相多孔質炭素材料のBET比表面積を求めた。QSDFT解析用にカンタクローム社製Nova2000により同様にNの吸着等温線を測定した。
 図4に、塩素処理温度と単相多孔質炭素材料のBET比表面積との関係を示す。塩素処理温度が高くなると、BET比表面積が小さくなる傾向が見られる。ただし、1400℃でもBET比表面積は十分に大きく、約300m/g以上が維持されている。
(e)細孔径分布
 上記の吸着等温線にBJH法を適用して、単相多孔質炭素材料の細孔径分布を求め、細孔径分布から全細孔容積および2nm~50nmのメソ孔容積を求め、更にメソ孔容積の割合を求めた。
 図5および図6に、単相多孔質炭素材料に形成されるメソ孔容積および全細孔容積と、塩素処理温度との関係を示す。図5は、少なくとも1400℃までは、塩素処理温度が高くなるほどメソ孔容積が増加することを示している。
 図7、8にQSDFT法で解析した細孔径の分布を示す。測定サンプルは試料D1、試料C2であり、図7に試料D1の解析結果を、図8に試料C2の解析結果を示す。TiC原料の場合、3nm~4nm付近に細孔のピークがあり、Al原料でも同様である。このような構造は、市販活性炭では見られない。
(f)出力特性
 リチウムイオンキャパシタを、1.0mAの電流で、電圧4.0Vまで充電し、所定の電流値(1.0mA、100mAまたは500mA)で、電圧3.0Vまで放電した。1.0mAのときに得られた放電容量(C)を100として、100mAおよび500mAのときに得られた放電容量(C100およびC500)を規格化した。数値が100に近いほど容量が高いことを示す。
Figure JPOXMLDOC01-appb-T000001
試料A1、B1、YおよびZを用いた場合は比較例である。

T1:賦活処理の温度(℃)
T2:グラファイト成長温度(℃)
Va:全細孔容積(cm/g)
Vm:メソ孔容積(cm/g)
R:100×Vm/Va(%)
S:BET比表面積(m/g)
Lc:結晶子サイズ(nm)
002:(002)面の面間隔(nm)
Soft-C:易黒鉛化炭素
Hard-C:難黒鉛化炭素
《実施例2》
 金属炭化物由来の単相多孔質炭素材料の代わりに、易黒鉛化炭素由来の単相多孔質炭素材料(試料X)を用いたこと以外、実施例1と同様に、リチウムイオンキャパシタを作製し、評価した。結果を表1に示す。
 易黒鉛化炭素由来の単相多孔質炭素材料は、下記の手順で製造した。
 先ず、減圧雰囲気中で、石油系ピッチを1000℃で5時間加熱して炭化させ、カーボン前駆体である易黒鉛化炭素(炭化ピッチ)を得た。次に、易黒鉛化炭素を、水蒸気(H/Cガス)を含む雰囲気中で、800℃で賦活処理し、カーボン中間体を得た。次に、カーボン中間体を、窒素雰囲気中で、1350℃で加熱し、グラファイト構造を成長させて、単相多孔質炭素材料を得た。
《比較例1》
 単相多孔質炭素材料の代わりに、市販の人造黒鉛(面間隔(d002)=0.335nm、試料Y)を用いたこと以外、実施例1と同様に、リチウムイオンキャパシタを作製し、評価した。結果を表1に示す。
《比較例2》
 単相多孔質炭素材料の代わりに、市販の難黒鉛化炭素(ハードカーボン)(面間隔(d002)=0.39nm、試料Z)を用いたこと以外、実施例1と同様に、リチウムイオンキャパシタを作製し、評価した。結果を表1に示す。
 表1より、比表面積が100m/g以上であり、2nm~50nmの細孔径を有する細孔の積算容積(メソ孔容積)が全細孔容積の25%以上である単相多孔質炭素材料を用いることにより、高出力の蓄電デバイスが得られることが理解できる。なお、カーボン前駆体としてTiCを用いる場合には、1200℃以上、更には1300℃以上でグラファイトを成長させることが望ましいことが理解できる。
 本発明のリチウムイオン蓄電デバイス用負極材料は、リチウムイオンの移動に適した細孔構造を有することから、高出力を発揮できる。よって、高い容量が求められる様々な蓄電デバイスに適用することができる。
 10…キャパシタ、11…正極、11a…正極集電体、11b…正極活物質、12…負極、12a…負極集電体、12b…負極活物質、13…セパレータ、15…セルケース

Claims (19)

  1.  電気化学的にリチウムイオンを吸蔵および放出可能な単相多孔質炭素材料を含み、
     前記単相多孔質炭素材料のBET比表面積が、100m/g以上であり、
     前記単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔の積算容積が、全細孔容積の25%以上である、蓄電デバイス用負極材料。
  2.  前記単相多孔質炭素材料のX線回折像が、グラファイトの(002)面に帰属されるピークを有し、
     前記ピークの位置から求められる(002)面の面間隔が、0.340nm~0.370nmであり、
     前記ピークの半価幅から求められるグラファイトの結晶子サイズが、1nm~20nmである、請求項1に記載の蓄電デバイス用負極材料。
  3.  前記全細孔容積が、0.3cm/g~1.2cm/gである、請求項1または2に記載の蓄電デバイス用負極材料。
  4.  前記単相多孔質炭素材料の細孔径分布が、カーボンスリット構造を仮定したQSDFT解析における細孔分布解析において2nm~5nmの領域に少なくとも一つの細孔分布ピークを持つ、請求項1~3のいずれか1項に記載の蓄電デバイス用負極材料。
  5.  (i)1500℃以下の温度でグラファイト構造が成長するカーボン前駆体を、多孔質構造に賦活処理する工程と、
     (ii)前記賦活処理されたカーボン前駆体を、グラファイト構造が成長する温度で加熱して、グラファイト構造を成長させて、単相多孔質炭素材料を生成させる工程と、を具備する、蓄電デバイス用負極材料の製造方法。
  6.  前記カーボン前駆体が、易黒鉛化炭素であり、
     前記賦活処理が、1100℃未満の温度で水蒸気および/または二酸化炭素を含有する雰囲気中で前記カーボン前駆体を加熱することを含む、請求項5に記載の蓄電デバイス用負極材料の製造方法。
  7.  前記易黒鉛化炭素が、1000℃未満の温度で前駆体を炭素化することで生成する、請求項6に記載の蓄電デバイス用負極材料の製造方法。
  8.  前記カーボン前駆体が、金属炭化物であり、
     前記賦活処理が、塩素を含有する雰囲気中で前記金属炭化物を第一温度で加熱することを含む、請求項5に記載の蓄電デバイス用負極材料の製造方法。
  9.  前記グラファイト構造を成長させる工程が、実質的に無酸素雰囲気中で、前記賦活処理されたカーボン前駆体を前記第一温度より高い第二温度加熱することを含む、請求項8に記載の蓄電デバイス用負極材料の製造方法。
  10.  前記カーボン前駆体が、金属炭化物であり、
     前記賦活処理が、塩素を含有する雰囲気中で前記金属炭化物をグラファイト構造が成長する温度で加熱することを含み、
     前記賦活処理と、前記グラファイト構造を成長させる工程と、を並行して行う、請求項5に記載の蓄電デバイス用負極材料の製造方法。
  11.  前記金属炭化物が、短周期型の周期律表の4A、5A、6A、7A、8および3B族のいずれかに属する金属の少なくとも1種を含む炭化物である、請求項8~10のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  12.  前記金属が、チタン、アルミニウムおよびタングステンの少なくともいずれか1つである、請求項11に記載の蓄電デバイス用負極材料の製造方法。
  13.  前記賦活処理されたカーボン前駆体のBET比表面積が、1000m/g以上である、請求項5~12のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  14.  前記単相多孔質炭素材料のBET比表面積が、100m/g以上であり、
     前記単相多孔質炭素材料の細孔径分布において、2nm~50nmの細孔径を有する細孔の積算容積が、全細孔容積の25%以上である、請求項5~13のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  15.  前記単相多孔質炭素材料のX線回折像が、グラファイトの(002)面に帰属されるピークを有し、
     前記ピークの位置から求められる(002)面の面間隔の平均値が、0.340nm~0.370nmであり、
     前記ピークの半価幅から求められるグラファイトの結晶子サイズが、1nm~20nmである、請求項5~14のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  16.  前記全細孔容積が、0.3cm/g~1.2cm/gである、請求項5~15のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  17.  前記単相多孔質炭素材料の細孔径分布が、カーボンスリット構造を仮定したQSDFT解析における細孔分布解析において2nm~5nmの領域に少なくとも一つの細孔分布ピークを持つ、請求項14~16の少なくとも1項に記載の蓄電デバイス用負極材料の製造方法。
  18.  前記グラファイト構造を成長させる工程の後に、更に、500℃~800℃の温度範囲で、水蒸気および/または水素を含有する雰囲気中で、前記単相多孔質炭素材料を加熱する工程、を具備する、請求項4~17のいずれか1項に記載の蓄電デバイス用負極材料の製造方法。
  19.  正極活物質を含む正極と、負極活物質を含む負極と、前記正極および前記負極の間に介在するセパレータと、アニオンとリチウムイオンとの塩を含む非水電解質と、を具備し、
     前記負極活物質は、請求項1に記載の蓄電デバイス用負極材料を含む、リチウムイオン蓄電デバイス。
PCT/JP2015/074484 2014-08-29 2015-08-28 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス WO2016031977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580046701.1A CN106663547B (zh) 2014-08-29 2015-08-28 蓄电装置用负极材料及其制造方法和锂离子蓄电装置
US15/505,818 US20170263386A1 (en) 2014-08-29 2015-08-28 Negative electrode material for power storage device, manufacturing method thereof, and lithium ion power storage device
JP2016545646A JPWO2016031977A1 (ja) 2014-08-29 2015-08-28 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-175144 2014-08-29
JP2014175144 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031977A1 true WO2016031977A1 (ja) 2016-03-03

Family

ID=55399859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074484 WO2016031977A1 (ja) 2014-08-29 2015-08-28 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス

Country Status (4)

Country Link
US (1) US20170263386A1 (ja)
JP (1) JPWO2016031977A1 (ja)
CN (1) CN106663547B (ja)
WO (1) WO2016031977A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056435A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子
JP2018056432A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子
CN108369870A (zh) * 2016-06-06 2018-08-03 住友电气工业株式会社 用于双电层电容器电极的多孔碳材料、其制造方法以及双电层电容器电极
US10297828B2 (en) * 2016-06-15 2019-05-21 Ricoh Company, Ltd. Non-aqueous electrolyte storage element including positive electrode having solid electrolyte interface material on surface of carbon material
EP3836261A1 (en) 2015-08-28 2021-06-16 Group14 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683969B1 (ja) * 2018-06-19 2020-04-22 株式会社アドール 活性炭
WO2023039439A1 (en) * 2021-09-07 2023-03-16 Sila Nanotechnologies Inc. Battery anode comprising carbon and optionally silicon characterized by the carbon domain size estimated by x ray diffraction
TWI790095B (zh) * 2022-01-14 2023-01-11 亞福儲能股份有限公司 鋁電池的負極結構

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513529A (ja) * 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. スーパーキャパシタおよび当該スーパーキャパシタを製造する方法
JP2010265134A (ja) * 2009-05-13 2010-11-25 Kansai Coke & Chem Co Ltd 多孔質炭素材料の製造方法
WO2014050579A1 (ja) * 2012-09-28 2014-04-03 住友電気工業株式会社 キャパシタ用電極活物質およびこれを用いたキャパシタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234356B2 (ja) * 2002-05-27 2009-03-04 旭化成株式会社 負極材料の製造方法
US20070196659A1 (en) * 2004-08-31 2007-08-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon gel composite material
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法
US9112210B2 (en) * 2012-05-17 2015-08-18 Nanotek Instruments, Inc. Rechargeable lithium cell having a phthalocyanine-based high-capacity cathode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513529A (ja) * 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. スーパーキャパシタおよび当該スーパーキャパシタを製造する方法
JP2010265134A (ja) * 2009-05-13 2010-11-25 Kansai Coke & Chem Co Ltd 多孔質炭素材料の製造方法
WO2014050579A1 (ja) * 2012-09-28 2014-04-03 住友電気工業株式会社 キャパシタ用電極活物質およびこれを用いたキャパシタ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836261A1 (en) 2015-08-28 2021-06-16 Group14 Technologies, Inc. Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof
CN108369870A (zh) * 2016-06-06 2018-08-03 住友电气工业株式会社 用于双电层电容器电极的多孔碳材料、其制造方法以及双电层电容器电极
US10629387B2 (en) 2016-06-06 2020-04-21 Sumitomo Electric Industries, Ltd. Porous carbon material for electric double-layer capacitor electrode, method of producing the same, and electric double-layer capacitor electrode
US10297828B2 (en) * 2016-06-15 2019-05-21 Ricoh Company, Ltd. Non-aqueous electrolyte storage element including positive electrode having solid electrolyte interface material on surface of carbon material
JP2018056435A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子
JP2018056432A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子

Also Published As

Publication number Publication date
CN106663547A (zh) 2017-05-10
CN106663547B (zh) 2019-06-21
US20170263386A1 (en) 2017-09-14
JPWO2016031977A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2016031977A1 (ja) 蓄電デバイス用負極材料とその製造方法、およびリチウムイオン蓄電デバイス
Yang et al. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors
Frackowiak et al. Electrochemical storage of lithium in multiwalled carbon nanotubes
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
JP5654820B2 (ja) 正極材料及びその製造方法並びに蓄電素子
EP2905793B1 (en) Nonaqueous lithium ion capacitor
JP4105897B2 (ja) 負極材料、その製造方法及び蓄電素子
JP6279713B2 (ja) 電極用炭素質成形体、及びその製造方法
Ming et al. Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications
JP6223466B2 (ja) リチウムイオンキャパシタ
EP3109876A1 (en) Storage device and charging/discharging device
TW201701524A (zh) 非水電解質二次電池用負極活性物質、非水電解質二次電池用負極、及非水電解質二次電池、以及非水電解質二次電池用負極材料之製造方法
US10707026B2 (en) Hydrogel derived carbon for energy storage devices
JP6297746B2 (ja) 電池電極用炭素質成形体、及びその製造方法
JP3953502B1 (ja) 蓄電システム
JP2015225876A (ja) 非水系リチウム型蓄電素子用正極活物質及びそれを用いた非水系リチウム型蓄電素子
JP2013219152A (ja) 正極材料及びその製造方法並びに蓄電素子
JP2004134658A (ja) 充放電可能な電気化学素子
JP2016042502A (ja) 非水系リチウム型蓄電素子用の負極
KR20120132091A (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이온 커패시터
JP2016042504A (ja) 非水系リチウム型蓄電素子
JP3807854B2 (ja) 電気二重層キャパシター
JP2014017286A (ja) 非水系リチウム型蓄電素子
Liang et al. High‐performance LiMn0. 8Fe0. 2PO4/C cathode prepared by using the toluene‐soluble component of pitch as a carbon source
EP3109877A1 (en) Capacitor and method for charging and discharging same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834827

Country of ref document: EP

Kind code of ref document: A1