WO2014045643A1 - リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 Download PDF

Info

Publication number
WO2014045643A1
WO2014045643A1 PCT/JP2013/064941 JP2013064941W WO2014045643A1 WO 2014045643 A1 WO2014045643 A1 WO 2014045643A1 JP 2013064941 W JP2013064941 W JP 2013064941W WO 2014045643 A1 WO2014045643 A1 WO 2014045643A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
lithium ion
Prior art date
Application number
PCT/JP2013/064941
Other languages
English (en)
French (fr)
Inventor
健太郎 岡本
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50340975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014045643(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147015661A priority Critical patent/KR101661827B1/ko
Priority to US14/364,830 priority patent/US20140339466A1/en
Priority to CN201380007845.7A priority patent/CN105051951B/zh
Publication of WO2014045643A1 publication Critical patent/WO2014045643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.
  • Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.
  • Patent Document 1 discloses that a mixture of a graphite substance and an organic substance is mixed with an oxidizing gas (oxygen, ozone, F 2) in an inert gas. , SO 3 , NO 2 , N 2 O 4 , air, water vapor, etc.) in a mixed gas atmosphere containing 50 ppm or more and 8000 ppm or less, and a composite carbonaceous material obtained by pulverization after use is used as a negative electrode.
  • an oxidizing gas oxygen, ozone, F 2
  • the lithium nickel composite oxide described in Patent Document 1 has characteristics of a lithium ion battery using the positive electrode active material by controlling the concentration of the oxidizing gas in the baking atmosphere in the baking step of the positive electrode active material precursor. Has been improved.
  • the amount of lithium charged is increased in order to promote oxidation during the firing of the positive electrode active material precursor.
  • the excess lithium tends to become a residual alkali because it is excessively added.
  • moisture content contained in a positive electrode active material draws out lithium of a positive electrode active material, and will increase the residual alkali of lithium hydroxide and lithium carbonate. Residual alkali on the surface of the positive electrode active material, moisture contained in the positive electrode, and hydroxyl groups that have been taken in and reacted react with the electrolyte when producing the battery, so the amount of electrolyte required for the battery is small. It becomes deficient and leads to deterioration of battery characteristics. As described above, moisture and residual alkali in the positive electrode active material have an adverse effect on battery characteristics and have been conventionally removed by various means. However, there is still room for improvement as a positive electrode active material for a high quality lithium ion battery.
  • an object of the present invention is to provide a positive electrode active material for a lithium ion battery having good battery characteristics.
  • the present inventor found between the maximum value of the generation rate at the peak derived from H 2 O and / or the peak derived from CO 2 gas in the predetermined temperature range obtained by TPD-MS measurement and the battery characteristics. Found that there is a close correlation. That is, when the maximum value of the generation rate in the peak derived from H 2 O and / or the peak derived from CO 2 gas in a predetermined temperature range obtained by TPD-MS measurement is controlled to a certain value or less, good battery characteristics are obtained. It was found that it can be obtained.
  • the present invention completed based on the above knowledge has a composition formula: Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1, and M is a metal.)
  • a positive electrode active material for a lithium ion battery represented by: A positive electrode active material for a lithium ion battery in which the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. is 5 wtppm / second or less when 5 to 30 mg of the positive electrode active material is measured by TPD-MS It is.
  • the composition formula Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1, and M is a metal.)
  • a positive electrode active material for a lithium ion battery represented by: A positive electrode active material for a lithium ion battery in which the maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. is 3 wtppm / second or less when 5 to 30 mg of the positive electrode active material is measured by TPD-MS It is.
  • the composition formula Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1, and M is a metal.)
  • a positive electrode active material for a lithium ion battery represented by: When 5 to 30 mg of the positive electrode active material is measured by TPD-MS, the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. is 5 wtppm / second or less and 150 to 400 ° C. In this region, the maximum value of the generation rate at the peak derived from CO 2 gas is 3 wtppm / second or less, and the positive electrode active material for a lithium ion battery.
  • the positive electrode active material for a lithium ion battery of the present invention when the positive electrode active material is measured at 5 to 30 mg by TPD-MS, the generation rate of a peak derived from H 2 O in the region of 200 to 400 ° C.
  • the maximum value is 3 wtppm / second or less.
  • the positive electrode active material for a lithium ion battery of the present invention is generated at a peak derived from CO 2 gas in the region of 150 to 400 ° C. when 5 to 30 mg of the positive electrode active material is measured by TPD-MS.
  • the maximum value of the speed is 2 wtppm / second or less.
  • the M is selected from Ti, V, Cr, Mn, Co, Fe, Mg, Cu, Zn, Al, Sn, and Zr. One or more.
  • the M is at least one selected from Mn and Co.
  • the present invention provides a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery of the present invention.
  • the present invention is a lithium ion battery using the positive electrode for a lithium ion battery of the present invention.
  • a positive electrode active material for a lithium ion battery having good battery characteristics can be provided.
  • lithium cobaltate LiCoO 2
  • lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ).
  • the positive electrode active material for a lithium ion battery of the present invention produced using such a material is Composition formula: Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, ⁇ 0.1 ⁇ ⁇ ⁇ 0.1, and M is a metal.) It is represented by The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2. When the ratio is less than 0.9, it is difficult to maintain a stable crystal structure. This is because the high capacity cannot be secured.
  • M is preferably at least one selected from Ti, V, Cr, Mn, Co, Fe, Mg, Cu, Zn, Al, Sn, and Zr. More preferably, it is at least one selected from Mn and Co. If M is such a metal, it can be easily replaced with a metal such as Mn, and has the advantage of having thermal stability as a metal.
  • the positive electrode active material for a lithium ion battery of the present invention has a maximum generation rate of 5 wtppm / hour at a peak derived from H 2 O in the region of 200 to 400 ° C. when 5 to 30 mg of the positive electrode active material is measured by TPD-MS. Less than a second. Further, the positive electrode active material for a lithium ion battery of the present invention has a maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. when 5 to 30 mg of the positive electrode active material is measured by TPD-MS. 3 wtppm / second or less.
  • the positive electrode active material for lithium ion batteries of the present invention has a maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. when 5 to 30 mg of the positive electrode active material is measured by TPD-MS.
  • the maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. is 3 wtppm / second or less.
  • TPD-MS Tempoture Programmed Desorption-Mass Spectrometry
  • MS mass spectrometer
  • a change in the concentration of gas generated from a heated sample is tracked as a function of temperature or time according to a predetermined temperature raising program.
  • the organic component can be qualitatively analyzed by GC / MS analysis of the collected trap material.
  • the moisture content is generally measured using a Karl Fischer moisture meter.
  • the residual alkali amount is often measured by extracting the positive electrode active material in water.
  • the Karl Fischer moisture meter measures the sample by raising the temperature, but it can only measure up to 300 ° C. due to the device characteristics. However, the actual moisture often cannot be removed in that temperature range. In particular, moisture taken into the inside of the positive electrode active material particles or reacting substances are difficult to remove and often remain.
  • the maximum value of the generation rate in the peak derived from H 2 O in the region of 200 to 400 ° C. is 5 wtppm / second or less, or 150 to 400 ° C.
  • the maximum value of the generation rate at the peak derived from CO 2 gas in the region is 3 wtppm / second or less, the battery characteristics of the lithium ion battery using the peak value are poor.
  • the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. is preferably 3 wtppm / second or less, and 1 wtppm / second or less It is more preferable that
  • the maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. is preferably 2 wtppm / sec or less, and preferably 1 wtppm / sec or less. It is more preferable that
  • the positive electrode for a lithium ion battery includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like.
  • the current collector has a structure provided on one side or both sides.
  • the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.
  • a metal salt solution is prepared.
  • the metal is at least one selected from Ni and Ti, V, Cr, Mn, Co, Fe, Mg, Cu, Zn, Al, Sn, and Zr.
  • the metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable.
  • each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
  • lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing. Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.
  • a lithium salt composite precursor for lithium ion battery positive electrode material
  • a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material.
  • the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is performed by heating and holding in an oxygen atmosphere for a predetermined time. Further, it is preferable to perform baking under a pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases. Thereafter, the powder is taken out from the firing container and pulverized using a commercially available pulverizer or the like to obtain a positive electrode active material powder.
  • Crushing at this time is performed so that fine powder is not generated as much as possible, specifically, fine powder having a particle size of 4 ⁇ m or less is 10% or less in volume fraction, or the specific surface area of the powder is 0.40 to It is preferable to adjust the crushing strength and the crushing time as appropriate so as to be 0.70 m 2 / g.
  • the surface area of the powder per volume is reduced, so that the area of the powder exposed to air can be suppressed. Accordingly, moisture absorption during storage of the precursor powder can be satisfactorily suppressed.
  • the Ni concentration in the powder is high, and moisture is adsorbed as soon as the new surface of the powder particles exits during crushing.
  • the powder is crushed while controlling the dew point of the pulverization atmosphere at -40 to -60 ° C.
  • the dew point of the pulverization atmosphere is 5 to 15 m 3 / min. Can be done by blowing in. It is also effective to manage the dew point of the booth for sample removal after crushing as well.
  • Example 1 First, nitrates adjusted so that each metal contained in the metal salt had a molar ratio shown in Table 1 were prepared. Next, after suspending lithium carbonate in pure water, this metal salt solution was added. By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press. Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material). Next, a firing container was prepared, and this firing container was filled with a lithium-containing carbonate. Next, the firing container was placed in an oxygen atmosphere furnace under atmospheric pressure, heated and held at a firing temperature of 850 to 980 ° C.
  • the obtained oxide was pulverized while controlling the dew point of the pulverization atmosphere at ⁇ 40 to ⁇ 60 ° C. to obtain a powder of a lithium ion secondary battery positive electrode material.
  • the dew point of the crushing atmosphere was performed by blowing dry air with a controlled dew point at a flow rate of 6 m 3 / min.
  • each metal contained in the metal salt has a composition as shown in Table 1, the metal salt is chloride, a lithium-containing carbonate is precipitated, washed with a saturated lithium carbonate solution, and filtered. Were the same as in Examples 1-12.
  • each metal contained in the metal salt has a composition as shown in Table 1, and the metal salt is sulfate, and after depositing a lithium-containing carbonate, it is washed with a saturated lithium carbonate solution and filtered. Were the same as in Examples 1-12.
  • Example 15 As Example 15, the same treatment as in Examples 1 to 12 was performed, except that each metal contained in the metal salt had the composition shown in Table 1, and the firing was performed under a pressure of 120 KPa instead of atmospheric pressure. It was.
  • each metal contained in the metal salt has a composition as shown in Table 1, and the dew point management at the time of crushing the final oxide is not adjusted as in Examples 1 to 6, that is, The same treatment as in Examples 1 to 6 was performed except that dry air was not blown.
  • TPD-MS measurement About 50 mg of each positive electrode powder was weighed and heated from a TPD-MS device (heating device: manufactured by TRC, MS device manufactured by Shimadzu Corporation) from room temperature to 1000 ° C. at a heating rate of 10 ° C./min. Sodium tungstate dihydrate, carbon dioxide, and air were used as standard substances. Thus, the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. and the maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. were obtained. .
  • Example 1 the composition specified in the present invention was obtained, and in the TPD-MS measurement, the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. was 5 wtppm / second or less. The maximum value of the generation rate at the peak derived from CO 2 gas in the region of 150 to 400 ° C. was 3 wtppm / second or less, and both the discharge capacity and the charge / discharge efficiency were good. In Comparative Examples 1 to 3, in the TPD-MS measurement, the maximum value of the generation rate at the peak derived from H 2 O in the region of 200 to 400 ° C. exceeds 5 wtppm / second, and the CO in the region of 150 to 400 ° C.
  • FIG. 1 shows H 2 O, CO 2 , and O 2 generation rate curves obtained by TPD-MS measurement according to Example 7.
  • a peak derived from H 2 O in a region of 200 to 400 ° C., a peak derived from CO 2 gas in a region of 150 to 400 ° C., and a maximum point in the peak are observed.
  • the maximum values of these H 2 O and CO 2 generation rate curves are controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

 良好な電池特性を有するリチウムイオン電池用正極活物質を提供する。リチウムイオン電池用正極活物質は、組成式:LixNi1-yy2+α(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)で表されるリチウムイオン電池用正極活物質であり、TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下である。

Description

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
 本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。
 リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。
 電池特性の改善には、従来、種々の方法が用いられており、例えば特許文献1には、黒鉛質物質と有機物との混合物を、不活性ガス中に酸化性ガス(酸素、オゾン、F2、SO3、NO2、N24、空気、水蒸気等)を50ppm以上8000ppm以下含む混合ガス雰囲気で焼成後粉砕して得た複合炭素質物を、負極として用いることを特徴とするリチウムイオン二次電池が開示されている。そして、これによれば、従来材料に見られる高い電流密度での充放電容量の低下を改善し、急速充放電でも高容量を維持する炭素材料を負極に用いたリチウム二次電池を提供することができる、と記載されている。特許文献1に記載のリチウムニッケル複合酸化物は、正極活物質前駆体の焼成工程での、焼成雰囲気における酸化性ガスの濃度を制御することで、当該正極活物質を用いたリチウムイオン電池の特性を改善させている。
特開平11-273676号公報
 一般に、正極活物質前駆体の焼成時の酸化を促進するためにリチウムの仕込み量を多くするが、過剰に入れている分、余ったリチウムが残留アルカリとなりやすい。また、正極活物質に含まれる水分が正極活物質のリチウムを引き抜き、水酸化リチウム及び炭酸リチウムの残留アルカリを多くしてしまう。正極活物質の表面の残留アルカリや、正極に含まれる水分や水が取り込まれ反応した水酸基などは、電池を作製する際に電解液と反応してしまうため、電池に必要な電解液の量が欠乏状態となり電池特性の劣化につながる。
 このように、正極活物質中の水分や、残留アルカリは、電池特性に悪影響があり、従来、種々の手段で除去している。しかしながら、なお高品質のリチウムイオン電池用正極活物質としては改善の余地がある。
 そこで、本発明は、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。
 本発明者は、鋭意検討した結果、TPD-MS測定で得られる、所定温度領域でのH2O由来のピーク及び/又はCO2ガス由来のピークにおける発生速度の極大値と電池特性との間に密接な相関関係があることを見出した。すなわち、TPD-MS測定で得られる、所定温度領域でのH2O由来のピーク及び/又はCO2ガス由来のピークにおける発生速度の極大値をある値以下に制御するとき、良好な電池特性が得られることを見出した。
 上記知見を基礎にして完成した本発明は一側面において、組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
で表されるリチウムイオン電池用正極活物質であり、
 TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であるリチウムイオン電池用正極活物質である。
 本発明は別の一側面において、組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
で表されるリチウムイオン電池用正極活物質であり、
 TPD-MSによって前記正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であるリチウムイオン電池用正極活物質である。
 本発明は更に別の一側面において、組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
で表されるリチウムイオン電池用正極活物質であり、
 TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であり、且つ、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であるリチウムイオン電池用正極活物質である。
 本発明のリチウムイオン電池用正極活物質は一実施形態において、TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が3wtppm/秒以下である。
 本発明のリチウムイオン電池用正極活物質は別の一実施形態において、TPD-MSによって前記正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が2wtppm/秒以下である。
 本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記Mが、Ti,V,Cr,Mn,Co,Fe,Mg,Cu,Zn,Al,Sn及びZrから選択される1種以上である。
 本発明のリチウムイオン電池用正極活物質は更に別の一実施形態において、前記Mが、Mn及びCoから選択される1種以上である。
 本発明は更に別の一側面において、本発明のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。
 本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を用いたリチウムイオン電池である。
 本発明によれば、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。
実施例7に係るTPD-MS測定で得られた、H2O、CO2、O2の発生速度曲線を示す。
(リチウムイオン電池用正極活物質の構成)
 本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
 組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
で表される。
 リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9~1.2であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.2超では電池の高容量が確保できなくなるためである。
 リチウムイオン電池用正極活物質は、上記Mが、Ti,V,Cr,Mn,Co,Fe,Mg,Cu,Zn,Al,Sn及びZrから選択される1種以上であるのが好ましく、更に、Mn及びCoから選択される1種以上であるのがより好ましい。上記Mがこのような金属であれば、Mnなどの金属と置換することが容易であり、また、金属として熱的安定性を有するという利点を有する。
 本発明のリチウムイオン電池用正極活物質は、TPD-MSによって正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下である。
 また、本発明のリチウムイオン電池用正極活物質は、TPD-MSによって正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下である。
 さらに、本発明のリチウムイオン電池用正極活物質は、TPD-MSによって正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であり、且つ、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下である。
 TPD-MS(加熱発生ガス分析:Temperature Programmed Desorption-Mass Spectrometry)は、温度コントローラ付き特殊加熱装置に質量分析計(MS)が直結されて構成されている。TPD-MSでは、決められた昇温プログラムに従い加熱された試料から発生する気体の濃度変化を温度または時間の関数として追跡する。オンラインでの分析であるため、一度の測定で水分などの無機成分や有機成分を同時検出することが可能である。また、捕集されたトラップ物をGC/MS分析することにより有機成分の定性が可能である。
 水分量に関しては、従来、カールフィシャー水分計を用いて測定する手法が一般的である。また、残留アルカリ量は、正極活物質を水の中に入れて抽出させて測定することが多い。しかしながら、どちらの測定法とも欠点がある。カールフィシャー水分計は試料を昇温させて測定するが、装置特性上300℃までしか測定ができない。しかしながら、実際の水分は、その温度領域では取り除けない場合が多い。特に正極活物質の粒子内部に取り込まれた水分や反応しているもの等が除去し難く、残存していることが多い。また、抽出法は、水による抽出により、粒子表面の残留アルカリであるリチウムだけではなく、層状内のリチウムも解け出ている可能性がある。そのため、電池特性の改善のためには、電池作製において正極活物質に含まれる正確な水分量及び残留アルカリ量の測定及び制御が重要となる。従来は、上記のように本来であれば測定すべき水分や残留アルカリが測定しきれておらず、そのため、そのようなものまで抑制した正極活物質を得ることができない。
 これに対し、TPD-MSによれば、300℃を超えて400℃までの重要な温度下での水分及びガス発生量を測定し、この測定値を活用して当該温度下で発生する水分及び残留アルカリ量(すなわち、CO2ガス発生量)を制御することができる。
 TPD-MSによって正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下である、または、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であると、それを用いたリチウムイオン電池の電池特性が不良となる。
 さらに、TPD-MSによって正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であり、且つ、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であると、それを用いたリチウムイオン電池の電池特性がより良好となる。
 TPD-MSによって正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が3wtppm/秒以下であるのが好ましく、1wtppm/秒以下であるのがより好ましい。
 TPD-MSによって正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が2wtppm/秒以下であるのが好ましく、1wtppm/秒以下であるのがより好ましい。
(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
 本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(リチウムイオン電池用正極活物質の製造方法)
 次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
 まず、金属塩溶液を作製する。当該金属は、Ni、及び、Ti,V,Cr,Mn,Co,Fe,Mg,Cu,Zn,Al,Sn及びZrから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
 次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
 次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
 次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下で所定時間加熱保持することにより行う。また、101~202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
 その後、焼成容器から粉末を取り出し、市販の解砕装置等を用いて解砕を行うことにより正極活物質の粉体を得る。このときの解砕は、微粉がなるべく生じないように、具体的には粒径4μm以下の微粉が体積分率で10%以下となるように、または、粉体の比表面積が0.40~0.70m2/gとなるように、適宜解砕強度及び解砕時間を調整して行うのが好ましい。
 このように解砕時の微粉の発生を制御することにより、体積当たりの粉末の表面積が減少するため、粉末の空気に露出する面積を抑制することができる。従って、前駆体の粉末の保管時等における吸湿を良好に抑制することができる。
 また、本発明では粉末中のNi濃度が高く、解砕時に粉末粒子の新生面が炉出すると、すぐに水分が吸着する。そこで、解砕時の粉末の露点管理が重要である。具体的には、粉末の解砕雰囲気の露点を-40~-60℃に管理しながら解砕するが、解砕雰囲気の露点は、露点を管理した乾燥空気を5~15m3/分の風量で吹き込むことにより行うことがきる。さらに、解砕後の試料取出しのブースの露点も同様に管理することも有効である。
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1~12)
 まず、金属塩に含まれる各金属が表1のモル比率となるように調整した硝酸塩を準備した。次に、炭酸リチウムを純水に懸濁させた後、この金属塩溶液を投入した。
 この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
 続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
 次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、大気圧下、酸素雰囲気炉に入れて、焼成温度850~980℃で24時間加熱保持した後冷却して酸化物を得た。
 次に、得られた酸化物を、解砕雰囲気の露点を-40~-60℃に管理しながら解砕し、リチウムイオン二次電池正極材の粉末を得た。解砕雰囲気の露点は、露点を管理した乾燥空気を6m3/分の風量で吹き込むことにより行った。
(実施例13)
 実施例13として、金属塩に含まれる各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~12と同様の処理を行った。
(実施例14)
 実施例14として、金属塩に含まれる各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~12と同様の処理を行った。
(実施例15)
 実施例15として、金属塩に含まれる各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1~12と同様の処理を行った。
(比較例1~3)
 比較例1~3として、金属塩に含まれる各金属を表1に示すような組成とし、最後の酸化物の解砕時の露点管理について実施例1~6のような調整を行わない、すなわち、乾燥空気を吹き込まない以外は、実施例1~6と同様の処理を行った。
 (評価)
 -正極材組成の評価-
 各正極材(組成式:LixNi1-yy2+α)中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、各金属の組成比(モル比)を算出した。また、酸素含有量はLECO法で測定しαを算出した。これらの数値は表1に記載の通りとなった。
-TPD-MS測定による評価-
 各正極材の粉末を約50mg量り採り、TPD-MS装置(加熱装置:TRC製、MS装置島津製作所製)、室温から1000℃まで、昇温速度10℃/分で加熱した。標準物質としてタングステン酸ナトリウム二水和物、二酸化炭素、空気を用いた。これにより、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値、及び、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値をそれぞれ求めた。
-電池特性の評価-
 各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また、充放電効率は、電池測定によって得られた初期放電容量及び初期充電容量から算出した。
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~15は、いずれも本発明に規定の組成が得られ、TPD-MS測定において、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であり、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であり、放電容量、充放電効率がいずれも良好であった。
 比較例1~3は、TPD-MS測定において、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒超であり、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒超であり、放電容量及び/又は充放電効率が不良であった。
 図1に、実施例7に係るTPD-MS測定で得られた、H2O、CO2、O2の発生速度曲線を示す。図1では、200~400℃の領域でのH2O由来のピーク、及び、150~400℃の領域でのCO2ガス由来のピーク及び当該ピークにおける極大箇所が観察されている。本発明では、これらのH2O及びCO2発生速度曲線の極大値が制御されている。

Claims (9)

  1.  組成式:LixNi1-yy2+α
    (前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
    で表されるリチウムイオン電池用正極活物質であり、
     TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であるリチウムイオン電池用正極活物質。
  2.  組成式:LixNi1-yy2+α
    (前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
    で表されるリチウムイオン電池用正極活物質であり、
     TPD-MSによって前記正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であるリチウムイオン電池用正極活物質。
  3.  組成式:LixNi1-yy2+α
    (前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1であり、Mは金属である。)
    で表されるリチウムイオン電池用正極活物質であり、
     TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が5wtppm/秒以下であり、且つ、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が3wtppm/秒以下であるリチウムイオン電池用正極活物質。
  4.  TPD-MSによって前記正極活物質を5~30mg測定したとき、200~400℃の領域でのH2O由来のピークにおける発生速度の極大値が3wtppm/秒以下である請求項1又は3に記載のリチウムイオン電池用正極活物質。
  5.  TPD-MSによって前記正極活物質を5~30mg測定したとき、150~400℃の領域でのCO2ガス由来のピークにおける発生速度の極大値が2wtppm/秒以下である請求項2又は3に記載のリチウムイオン電池用正極活物質。
  6.  前記Mが、Ti,V,Cr,Mn,Co,Fe,Mg,Cu,Zn,Al,Sn及びZrから選択される1種以上である請求項1~5のいずれかに記載のリチウムイオン電池用正極活物質。
  7.  前記Mが、Mn及びCoから選択される1種以上である請求項6に記載のリチウムイオン電池用正極活物質。
  8.  請求項1~7のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。
  9.  請求項8に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。
PCT/JP2013/064941 2012-09-19 2013-05-29 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 WO2014045643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147015661A KR101661827B1 (ko) 2012-09-19 2013-05-29 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 리튬 이온 전지
US14/364,830 US20140339466A1 (en) 2012-09-19 2013-05-29 Cathode Active Material For Lithium Ion Battery, Cathode For Lithium Ion Battery, And Lithium Ion Battery
CN201380007845.7A CN105051951B (zh) 2012-09-19 2013-05-29 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012206133A JP6159514B2 (ja) 2012-09-19 2012-09-19 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2012-206133 2012-09-19

Publications (1)

Publication Number Publication Date
WO2014045643A1 true WO2014045643A1 (ja) 2014-03-27

Family

ID=50340975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064941 WO2014045643A1 (ja) 2012-09-19 2013-05-29 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Country Status (6)

Country Link
US (1) US20140339466A1 (ja)
JP (1) JP6159514B2 (ja)
KR (1) KR101661827B1 (ja)
CN (1) CN105051951B (ja)
TW (1) TWI596828B (ja)
WO (1) WO2014045643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037458A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 粉体搬送システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450978B1 (ko) 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 및 그 제조 방법, 그리고 리튬 이온 전지
KR20120061943A (ko) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 그것을 사용한 리튬 이온 전지, 그리고 리튬 이온 전지용 정극 활물질 전구체
KR101456344B1 (ko) 2010-02-05 2014-11-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및, 리튬 이온 전지
EP2533333B1 (en) 2010-02-05 2018-09-12 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101430843B1 (ko) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
CN102782911B (zh) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp POSITIVE ACTIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERIES, POSITIVE ELECTRODE FOR LITHIUM ION BATTERIES AND LITHIUM ION BATTERY
CN102782913B (zh) 2010-03-04 2015-02-11 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
CN105514420A (zh) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
KR20120099411A (ko) 2011-01-21 2012-09-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질의 제조 방법 및 리튬 이온 전지용 정극 활물질
CN102812583B (zh) 2011-03-29 2015-02-11 Jx日矿日石金属株式会社 锂离子电池用正极活性物质的制造方法及锂离子电池用正极活性物质
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN104335396B (zh) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
JP2014194868A (ja) * 2013-03-28 2014-10-09 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR20200043514A (ko) 2016-01-19 2020-04-27 히타치 긴조쿠 가부시키가이샤 리튬이온 이차 전지용 정극 활물질, 그 제조 방법 및 리튬이온 이차 전지
JP2017041457A (ja) * 2016-11-30 2017-02-23 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101912695B1 (ko) * 2016-12-26 2018-10-29 엘지전자 주식회사 전동식 압축기
JP7014674B2 (ja) * 2018-05-21 2022-02-01 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348721A (ja) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2005251700A (ja) * 2004-03-08 2005-09-15 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2012098724A1 (ja) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP2012169224A (ja) * 2011-02-16 2012-09-06 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
WO2012157143A1 (ja) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質及びその製造方法
JP2013152911A (ja) * 2012-01-26 2013-08-08 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986116B1 (en) * 1997-05-27 2007-08-01 TDK Corporation Method for producing electrode for non-aqueous electrolyte battery
JP3677992B2 (ja) 1998-03-24 2005-08-03 三菱化学株式会社 リチウムイオン二次電池
JP3539223B2 (ja) * 1998-08-07 2004-07-07 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造方法と非水電解液二次電池用正極活物質およびそれを用いた非水電解液二次電池
JP2003048719A (ja) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物の製造方法、リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
CN1732581A (zh) * 2002-10-31 2006-02-08 三菱化学株式会社 锂二次电池的正极材料的添加剂、锂二次电池的正极材料以及采用它的正极和锂二次电池
CN102203989B (zh) * 2008-10-31 2014-05-14 三菱化学株式会社 非水二次电池用负极材料
JP2011108407A (ja) 2009-11-13 2011-06-02 Sumitomo Electric Ind Ltd 非水電解質電池用正極の製造方法と非水電解質電池用正極ならびに非水電解質電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348721A (ja) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2005251700A (ja) * 2004-03-08 2005-09-15 Japan Storage Battery Co Ltd 非水電解質二次電池
WO2012098724A1 (ja) * 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP2012169224A (ja) * 2011-02-16 2012-09-06 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
WO2012157143A1 (ja) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質及びその製造方法
JP2013152911A (ja) * 2012-01-26 2013-08-08 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037458A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 粉体搬送システム
JP7003879B2 (ja) 2018-09-03 2022-01-21 トヨタ自動車株式会社 粉体搬送システム

Also Published As

Publication number Publication date
JP2014060126A (ja) 2014-04-03
KR20140090673A (ko) 2014-07-17
US20140339466A1 (en) 2014-11-20
TWI596828B (zh) 2017-08-21
TW201414065A (zh) 2014-04-01
CN105051951B (zh) 2017-11-14
KR101661827B1 (ko) 2016-09-30
JP6159514B2 (ja) 2017-07-05
CN105051951A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP6159514B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
TWI591884B (zh) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium battery
JP6292738B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5819200B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5819199B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5963745B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6016329B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
JP6026403B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP7135433B2 (ja) リチウムニッケル複合酸化物の製造方法
JP2014194868A (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6026404B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5876739B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6030546B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP7014674B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2019102766A1 (ja) リチウムイオン二次電池用正極活物質およびその製造方法
JP2017041457A (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6069397B2 (ja) リチウムイオン電池用正極活物質の製造方法
TWI469934B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI460912B (zh) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380007845.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147015661

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839396

Country of ref document: EP

Kind code of ref document: A1