WO2014041921A1 - 半導体集積回路装置 - Google Patents
半導体集積回路装置 Download PDFInfo
- Publication number
- WO2014041921A1 WO2014041921A1 PCT/JP2013/071079 JP2013071079W WO2014041921A1 WO 2014041921 A1 WO2014041921 A1 WO 2014041921A1 JP 2013071079 W JP2013071079 W JP 2013071079W WO 2014041921 A1 WO2014041921 A1 WO 2014041921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- conductivity type
- potential
- integrated circuit
- semiconductor integrated
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 137
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 239000002344 surface layer Substances 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims description 24
- 230000015556 catabolic process Effects 0.000 claims description 19
- 230000005669 field effect Effects 0.000 claims description 17
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 46
- 230000006378 damage Effects 0.000 abstract description 3
- 238000005192 partition Methods 0.000 abstract 5
- 238000002955 isolation Methods 0.000 description 60
- 230000015572 biosynthetic process Effects 0.000 description 40
- 239000012535 impurity Substances 0.000 description 39
- 238000005468 ion implantation Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 5
- 229910021426 porous silicon Inorganic materials 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/761—PN junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823871—Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823878—Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
- H01L27/1207—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
Definitions
- the present invention relates to a semiconductor integrated circuit device.
- HVIC High Voltage Integrated Circuit
- FIG. 9 is a circuit diagram showing a configuration of a main part (one phase) of the high voltage driver IC.
- FIG. 10 is a characteristic diagram showing fluctuations in the intermediate potential Vs when the power module 100 is in operation.
- FIG. 10 shows a change in the intermediate potential Vs at the connection point 105 when the first MOSFET 101 and the second MOSFET 102 are complementarily turned on / off.
- the drive circuit 111 is a circuit that drives the power module 100.
- the power module 100 is a one-phase inverter circuit in which a high-side first MOSFET (insulated gate field effect transistor) 101 (upper arm output element) and a low-side second MOSFET 102 (lower arm output element) are connected in series.
- the motor 112 that is a load is driven.
- Reference numerals 103 and 104 are FWDs (reflux diodes).
- the drain of the first MOSFET 101 is connected to the main power supply Vds.
- the source of the first MOSFET 101 is connected to the drain of the second MOSFET 102.
- the source of the second MOSFET 102 is connected to the ground.
- a connection point 105 between the source of the first MOSFET 101 and the drain of the second MOSFET 102 is an output point of the main circuit including the power module 100.
- the drive circuit 111 has a control unit, a high side drive circuit, a low side drive circuit, and a level shifter which are not shown.
- the high side drive circuit operates by the high side power supply potential VB applied to the VB terminal with the intermediate potential Vs applied to the Vs terminal as a reference, and drives the first MOSFET 101.
- the low side drive circuit operates by the low side power supply potential Vcc applied to the Vcc terminal with the ground potential GND as a reference, and drives the second MOSFET 102.
- the low-side level on / off signal output from the control unit is input from the low-side output terminal LO to the gate of the second MOSFET 102 via the low-side drive circuit.
- the low-side level on / off signal is converted into a high-side level on / off signal by a level shifter.
- the high-side level on / off signal is input from the high-side output terminal HO to the gate of the first MOSFET 101 via the high-side drive circuit.
- the HIN terminal and the LIN terminal are a high-side control signal input terminal and a low-side control signal input that are used as a reference when a high-side level on / off signal and a low-side level on / off signal are generated in the drive circuit 111, respectively. Terminal.
- Each input / output terminal of the drive circuit 111 is normally connected to a computer such as a microcomputer, and the drive circuit 111 is controlled by executing a program prepared in advance in the computer, thereby controlling the entire high voltage driver IC.
- the main power source Vds is normally a high voltage of AC (alternating current) 100V to 400V.
- the source potential of the first MOSFET 101 is high. Since the gate potential needs to be higher than the source potential in order to drive the first MOSFET 101, the drive circuit 111 includes a photocoupler (PC: Photo Coupler) that can be used with a high voltage power supply or a high voltage IC (HVIC). ) Is used.
- PC Photo Coupler
- FIG. 11 is a plan view showing a planar structure of a conventional high-side drive circuit.
- FIG. 12 is a cross-sectional view showing a cross-sectional structure taken along section line AA-AA ′ of FIG.
- a p-side semiconductor substrate (semiconductor chip) 131 has a high-side drive circuit formation region 130 in which a high-side drive circuit is formed, and a high-voltage end region (which secures the breakdown voltage of the high-side drive circuit) HVJT: High Voltage Junction Termination 140 is formed.
- An n isolation region 132 is selectively formed on the surface layer of the p semiconductor substrate 131.
- a lateral p-channel MOSFET (MV-PMOS) 133 and a lateral n-channel MOSFET (MV-NMOS) 134 constituting a high-side drive circuit are formed on the surface layer of the n isolation region 132.
- the MV-NMOS 134 is formed in the p isolation region 135 provided in the surface layer of the n isolation region 132.
- a p region 141 is formed in the HVJT 140 outside the n isolation region 132 on the surface layer of the p semiconductor substrate 131.
- a ground potential GND is applied to a p region (hereinafter referred to as a pGND region) 141.
- High side power supply potential VB is applied to n isolation region 132 through n ++ region 151 and the like.
- An intermediate potential Vs is applied to the p isolation region 135.
- a surge voltage 121a is generated, and the intermediate potential Vs is transient. Ascending (Fig. 10).
- a negative surge 122a is generated at the connection point 105 between the first MOSFET 101 and the second MOSFET 102 for about several hundreds nsec (FIG. 10).
- the intermediate potential Vs becomes lower than the ground potential GND.
- the parasitic diode composed of the pGND region 141 (ground potential GND) and the n isolation region 132 is turned on, and the high-side driver circuit forming region 130 is turned on from the pGND region 141.
- a hole (hole) 142 flows to the bottom. Therefore, there is a problem that the high side drive circuit malfunctions.
- a p + -type impurity region is formed between the NMOS and the PMOS in contact with the p-type well in the upper surface of the n-type impurity region.
- An electrode is formed on the p + -type impurity region, and the electrode is connected to the high-voltage side floating offset voltage VS.
- the impurity concentration of the p + -type impurity region is higher than the impurity concentration of the p-type well, also, p + -type impurity region is formed shallower than the p-type well.
- n + type impurity region is formed in the upper surface of the n type impurity region between the p + type impurity region and the PMOS.
- An electrode is formed on the n + -type impurity region, and the electrode is connected to the high-voltage side floating supply absolute voltage VB (see, for example, Patent Document 1 below).
- a MOS transistor insulated and isolated by a first insulation isolation trench is formed, a second insulation isolation trench is formed in n layers (n ⁇ 2), and each of n field regions includes a MOS transistor.
- Each transistor is arranged, and n MOS transistors are sequentially connected in series between a ground (GND) potential and a predetermined power supply potential, and a power supply potential side terminal of the nth MOS transistor.
- GND ground
- a power supply potential side terminal of the nth MOS transistor There has been proposed a semiconductor device in which an output is extracted from between output resistors, in which the potential of a field region surrounded by the innermost second insulating isolation trench is fixed to a power supply potential (for example, , See Patent Document 3 below).
- the following devices have been proposed as devices having a high potential portion and a low potential portion separated by a dielectric region on the same semiconductor substrate.
- a high-voltage junction termination structure is provided at the periphery of the high-potential gate drive circuit.
- a trench is provided between the high breakdown voltage junction termination structure and the n + source layer and the n + drain layer of the level shift circuit provided in a part of the high potential gate driving circuit.
- an oxide film or the like is filled in the trench to form a dielectric region (see, for example, Patent Document 4 below).
- the hole 142 flows from the HVJT 140 to the high-side drive circuit formation region 130 when the negative surge 122a is generated at the connection point 105 between the first MOSFET 101 and the second MOSFET 102.
- the n ++ region 151 arranged in the HVJT 140 to which the high side power supply potential VB is applied and the high side drive circuit in the high side drive circuit formation region 130 ( The distance x between the MV-PMOS 133 and the MV-NMOS 134 must be 100 ⁇ m or more. For this reason, there exists a problem that chip size becomes large.
- An object of the present invention is to provide a semiconductor integrated circuit device capable of avoiding malfunctions and destruction in order to solve the above-mentioned problems caused by the prior art.
- Another object of the present invention is to provide a semiconductor integrated circuit device capable of reducing the chip size in order to solve the above-described problems caused by the prior art.
- a semiconductor integrated circuit device has the following characteristics.
- a second conductivity type region is provided in the surface layer of the first conductivity type semiconductor substrate.
- a circuit portion is formed in the second conductivity type region, and a first potential which is a high voltage potential of a power source of the circuit portion is applied.
- a first conductivity type well region to which a second potential which is a low voltage potential of the power supply is applied is provided inside the second conductivity type region.
- the first conductivity type well region constitutes the circuit unit.
- a first conductivity type low potential region to which a third potential lower than the second potential is applied is provided outside the second conductivity type region of the surface layer of the first conductivity type semiconductor substrate.
- a cavity is selectively provided between the circuit portion and the first conductivity type low potential region and between the first conductivity type semiconductor substrate and the second conductivity type region.
- a first conductivity type region that penetrates through the second conductivity type region and reaches the cavity is provided.
- the semiconductor integrated circuit device is characterized in that, in the above-described invention, the second potential is applied to the first conductivity type region.
- the cavity extends from the first conductivity type region toward the first conductivity type low potential region.
- the cavity is provided from the first conductivity type region to the first conductivity type low potential region.
- the circuit section is connected in series to the first element connected to the high voltage potential side of the main power source, the first element, and The first element of an output circuit (power module) composed of a second element connected to the low voltage potential side of the main power supply is driven.
- the second potential is a potential at a connection point between the first element and the second element, and the third potential is a low voltage potential of the main power supply.
- the punch-through breakdown voltage between the first conductivity type region and the first conductivity type semiconductor substrate in the above-described invention is the second element when the first element is on. It is characterized by being set higher than the potential at the connection point of the first element and the second element of the output circuit that rises transiently when the element is in the OFF state.
- a semiconductor integrated circuit device has the following characteristics.
- a first second conductivity type region is provided in a surface layer of the first conductivity type semiconductor substrate.
- a circuit portion is formed in the first second conductivity type region, and a first potential which is a high voltage potential of a power source of the circuit portion is applied.
- a first conductivity type well region to which a second potential which is a low voltage potential of the power supply is applied is provided inside the first second conductivity type region.
- the first conductivity type well region constitutes the circuit unit.
- a second second conductivity type region is provided outside the first second conductivity type region of the surface layer of the first conductivity type semiconductor substrate.
- a first conductivity type low potential region to which a third potential lower than the second potential is applied is provided outside the second second conductivity type region of the surface layer of the first conductivity type semiconductor substrate.
- a cavity is selectively provided between the circuit portion and the first conductivity type low potential region and between the first conductivity type semiconductor substrate and the second second conductivity type region.
- a first conductivity type region penetrating the second second conductivity type region and reaching the cavity is provided between the first second conductivity type region and the second second conductivity type region.
- An insulated gate field effect transistor constituting a level shifter is disposed in the second second conductivity type region.
- the second conductivity type region connected to the first potential is connected to a portion of the second second conductivity type region sandwiched between the drain of the insulated gate field effect transistor and the first conductivity type region.
- the density area is not arranged.
- the semiconductor integrated circuit device is characterized in that, in the above-described invention, the second potential is applied to the first conductivity type region.
- the semiconductor integrated circuit device is characterized in that, in the above-described invention, the cavity is disposed between the circuit portion and a drain of the insulated gate field effect transistor.
- the drain of the insulated gate field effect transistor is disposed on the circuit portion side of the second second conductivity type region, and the insulated gate type The source of the field effect transistor is arranged on the first conductivity type low potential region side of the second second conductivity type region.
- the circuit section is connected in series to the first element connected to the high voltage potential side of the main power source, the first element, and A second element connected to a low voltage potential side of a main power source, and driving the first element of an output circuit configured by the second power supply, the second potential being a connection point between the first element and the second element
- the third potential is a low voltage potential of the main power supply.
- the punch-through breakdown voltage between the first conductivity type region and the first conductivity type semiconductor substrate in the above-described invention is the second element when the first element is on. It is characterized by being set higher than the potential at the connection point of the first element and the second element of the output circuit that rises transiently when the element is in the OFF state.
- the semiconductor integrated circuit device further includes a resistance layer provided on the surface of the first second conductivity type region via an insulating film in the above-described invention, and the insulated gate field effect
- the drain of the transistor is electrically connected to the resistance layer through a wiring layer disposed on the first conductivity type semiconductor substrate.
- the first conductivity type region is not deeper than the depth reaching the cavity, so that the potential of the connection point between the first element and the second element is transiently increased. Can be prevented from punching through to the first conductive type semiconductor substrate. Further, according to the above-described invention, since the hole injection can be reduced (substantially invalidated) by providing the first conductivity type region for hole pickup at a depth reaching the cavity, the first conductivity type low potential region. And the circuit portion can be reduced.
- the semiconductor integrated circuit device of the present invention it is possible to avoid the occurrence of malfunction or destruction. Moreover, according to the semiconductor integrated circuit device of the present invention, there is an effect that the chip size can be reduced.
- FIG. 1 is a plan view showing a planar structure of the semiconductor integrated circuit device according to the first embodiment.
- FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along section line A-A ′ of FIG.
- FIG. 3 is a cross-sectional view illustrating the semiconductor integrated circuit device according to the first embodiment in the course of manufacturing.
- FIG. 4 is a cross-sectional view showing a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- FIG. 5 is a cross-sectional view showing a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- FIG. 6 is a cross-sectional view showing a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- FIG. 7 is a cross-sectional view showing a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- FIG. 8 is a cross-sectional view showing a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- FIG. 9 is a circuit diagram showing a configuration of a main part (one phase) of the high voltage driver IC.
- FIG. 10 is a characteristic diagram showing fluctuations in the intermediate potential during operation of the power module.
- FIG. 11 is a plan view showing a planar structure of a conventional high-side drive circuit.
- FIG. 12 is a cross-sectional view showing a cross-sectional structure taken along section line AA-AA ′ of FIG. FIG.
- FIG. 13 is a plan view illustrating another example of the planar structure of the semiconductor integrated circuit device according to the first embodiment.
- FIG. 14 is a cross-sectional view showing a cross-sectional structure taken along the cutting line Z-Z ′ of FIG.
- FIG. 15 is a plan view illustrating a planar structure of the semiconductor integrated circuit device according to the second embodiment.
- FIG. 16 is a cross-sectional view showing a cross-sectional structure taken along section line B-B ′ of FIG.
- FIG. 1 is a plan view showing a planar structure of the semiconductor integrated circuit device according to the first embodiment.
- FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along section line AA ′ of FIG.
- the circuit configuration of the drive circuit including the semiconductor integrated circuit device according to the first embodiment is the same as the circuit configuration (one phase) of the drive circuit 111 shown in FIG.
- the semiconductor integrated circuit device is, for example, a high-side drive circuit of a drive circuit 111 that drives an upper arm output element (first MOSFET 101: first element) of the power module (output circuit) 100 shown in FIG. is there.
- the high side drive circuit is a high voltage IC (HVIC) that can be used with a high voltage power supply.
- the high-side drive circuit of the drive circuit 111 preferably has a breakdown voltage of about 600V to 1400V, for example, about the same as that of the power module 100 (first and second MOSFETs 101 and 102: first and second elements) for driving the motor 112.
- a p-side semiconductor substrate (semiconductor chip) 1 has a high-side drive circuit formation region in which a high-side drive circuit (circuit unit) is formed. 10 and a high withstand voltage termination region (HVJT) 40 for ensuring the withstand voltage of the high side drive circuit.
- the high side drive circuit formation region 10 is disposed on the surface layer of the p semiconductor substrate 1.
- the HVJT 40 is disposed so as to surround the high side drive circuit formation region 10.
- the cavity 11 is arranged with a predetermined width from the high-side drive circuit formation region 10 side to the HVJT 40 side.
- the cavity 11 is arrange
- An electrode pad (Pad) 50 to which a bonding wire is bonded is arranged on one side where the cavity 11 is not formed.
- the electrode pad 50 is provided in the vicinity of the boundary with the HVJT 40 in the high side drive circuit formation region 10. Specifically, the electrode pad 50 is provided on an n isolation region 2 described later.
- the electrode pad 50 includes a pad to which the high side power supply potential VB is applied, a pad to which the intermediate potential Vs is applied, an output pad for applying a signal to the control terminal of the upper arm output element, and the like.
- the n isolation region 2 under the electrode pad 50 is a region where no high-side drive circuit is provided in order to prevent an impact when bonding wires from affecting the high-side drive circuit.
- the width of the electrode pad 50 is large, the distance between the high side driving circuit and the n ++ high concentration region 12a provided in the HVJT 40 and connected to the high side power supply potential VB becomes 100 ⁇ m or more by arranging the electrode pad 50. .
- the cavity 11 is arranged in a substantially U-shaped planar shape over three sides of the substantially rectangular high-side drive circuit formation region 10.
- the case where the high side drive circuit is not formed in the n isolation region 2 under the electrode pad 50 has been described. However, the case where the high side drive circuit is formed in the n isolation region 2 under the electrode pad 50.
- the cavity 11 may be disposed so as to surround the high-side drive circuit formation region 10 over four sides of the high-side drive circuit formation region 10. Further, even in the case of the first embodiment, the cavity 11 may be arranged so as to surround the high-side drive circuit formation region 10 over four sides.
- the distance between the high side driving circuit and the n ++ high concentration region 12a provided in the HVJT 40 is 100 ⁇ m or more on all other sides, the cavity 11 is formed in the substantially rectangular high side driving circuit forming region 10. It may be arranged only on one side. The detailed arrangement of the cavity 11 will be described later.
- FIG. 2 shows a cross-sectional structure taken along a straight cutting line A-A ′ crossing the electrode pad 50 and the cavity 11.
- an n isolation region (second conductivity type isolation region) 2 is selectively formed on the surface layer of the p semiconductor substrate 1.
- the end of n isolation region 2 covers the region below cavity 11 (on the side of p semiconductor substrate 1).
- a lateral p-channel MOSFET (MV-PMOS) 20 and a lateral n-channel MOSFET (MV-NMOS) 30 constituting a high-side drive circuit (a circuit portion indicated by an arrow in FIG. 2) are formed.
- the MV-PMOS 20 and the MV-NMOS 30 may be MOSFETs having a breakdown voltage class of about 15V to 30V, for example.
- the MV-PMOS 20 includes a p + source region 21, a p + drain region 22, a gate electrode 23, a source electrode (not shown), and a drain electrode (not shown).
- the p + source region 21 and the p + drain region 22 are provided apart from each other inside the n isolation region 2.
- a high side power supply potential VB is applied to the n isolation region 2 from a VB electrode (not shown) electrically connected via an n ++ high concentration region 2 a provided inside the n isolation region 2.
- the gate electrode 23 is provided on the surface of a portion of the n isolation region 2 sandwiched between the p + source region 21 and the p + drain region 22 via a gate insulating film (not shown).
- the source electrode and the drain electrode of the MV-PMOS 20 are electrically connected to the p + source region 21 and the p + drain region 22, respectively.
- the source electrode of the MV-PMOS 20 is short-circuited to the VB electrode.
- the MV-NMOS 30 is formed in a p isolation region (first conductivity type isolation region) 3 provided in the surface layer of the n isolation region 2, and includes an n + source region 31, an n + drain region 32, a gate electrode 33, and a source electrode. (Not shown) and a drain electrode (not shown).
- the n + source region 31 and the n + drain region 32 are provided apart from each other inside the p isolation region 3.
- the p isolation region 3 is connected to an intermediate potential Vs (connection of upper and lower arm output elements) from a Vs electrode (not shown) electrically connected via a p ++ high concentration region 3a provided inside the p isolation region 3. The potential at point 105) is applied.
- the gate electrode 33 is provided on the surface of the portion of the p isolation region 3 sandwiched between the n + source region 31 and the n + drain region 32 via a gate insulating film (not shown).
- the source electrode and the drain electrode of the MV-NMOS 30 are electrically connected to the n + source region 31 and the n + drain region 32, respectively.
- the source electrode of the MV-NMOS 30 is short-circuited to the Vs electrode.
- n epitaxial region (second conductivity type isolation region) 12 is provided in the HVJT 40 outside the n isolation region 2 on the surface layer of the p semiconductor substrate 1.
- the n epitaxial region 12 is in contact with the n isolation region 2 and surrounds the high side drive circuit formation region 10.
- High-side power supply potential VB is applied to n epitaxial region 12 from a VB electrode (not shown) electrically connected through n ++ high concentration region 12a inside n epitaxial region 12.
- a p region (first conductivity type low potential region) 41 that reaches the p semiconductor substrate 1 through the n epitaxial region 12 is provided outside the n epitaxial region 12 in the surface layer of the p semiconductor substrate 1.
- a ground potential GND is applied to a p region (hereinafter, referred to as a pGND region) 41 from a GND electrode (not shown) electrically connected via a p ++ high concentration region 41 a inside the pGND region 41.
- the pGND region 41 has a function of fixing the p semiconductor substrate 1 to the ground potential GND.
- the cavity 11 described above is provided between the p semiconductor substrate 1 and the n epitaxial region 12 between the high side drive circuit formation region 10 and the pGND region 41.
- the cavity 11 may extend under the breakdown voltage region 43 from a p diffusion region 13 (to be described later) toward the pGND region 41 side.
- the breakdown voltage region 43 is a region between the pGND region 41 and the n ++ high concentration region 12a to which the high side power supply potential VB in the n epitaxial region 12 is applied.
- the cavity 11 may be in contact with the pGND region 41.
- a level shifter made of a MOSFET can be arranged in the HVJT 40.
- FIG. 13 is a plan view illustrating another example of the planar structure of the semiconductor integrated circuit device according to the first embodiment.
- FIG. 14 is a cross-sectional view showing a cross-sectional structure taken along the cutting line ZZ ′ of FIG.
- the cavity 11 is arranged between the high side drive circuit formed in the high side drive circuit formation region 10 of the p semiconductor substrate 1 and the n + drain region 91 of the MOSFET (HV-NMOS) constituting the level shifter. Is preferred.
- the cavity 11 is arranged over the four sides of the substantially rectangular high-side drive circuit formation region 10.
- reference numerals 92 and 93 denote an n + source region and a gate electrode of a MOSFET constituting the level shifter, respectively.
- the high side drive circuit formation region 10 is provided with a p diffusion region 13 that penetrates the n epitaxial region (n ⁇ type region) 12 from the surface and reaches the cavity 11.
- the p diffusion region 13 is arranged on the cavity 11 (on the n epitaxial region 12 side of the cavity 11) in a substantially U-shaped planar shape like the cavity 11.
- the p diffusion region 13 is provided away from the high side drive circuit and the pGND region 41.
- An intermediate potential Vs is applied to the p diffusion region 13 from a Vs electrode that is electrically connected via a p ++ high concentration region 13 a provided inside the p diffusion region 13.
- the intermediate potential Vs becomes transient due to the surge voltage 121a generated in the first state 121 in which the upper arm output element is in the on state and the lower arm output element is in the off state. Therefore, it is possible to prevent the p diffusion region 13 from punching through to the p semiconductor substrate 1 when it rises.
- the first interval x 1 between the high side drive circuit and the n ++ high concentration region 12a does not need to be 100 ⁇ m or more as in the conventional case, and may be about the width w of the p diffusion region 13.
- the electrode pad 50 is disposed on the surface of the high-side drive circuit formation region 10 in a place where the cavity 11 and the p diffusion region 13 are not formed, the high-side drive circuit and the n ++ high-concentration region 12a
- the second interval x 2 is 100 ⁇ m or more.
- the second interval x 2 between the high side drive circuit and the n ++ high concentration region 12a is 100 ⁇ m or more, and therefore, when the negative surge 122a is generated, pGND
- the holes flowing from the region 41 to the high side drive circuit formation region 10 do not reach the high side drive circuit. Therefore, the cavity 11 and the p diffusion region 13 may or may not be provided between the high-side drive circuit and the pGND region 41 at a place where the cavity 11 and the p diffusion region 13 are not formed.
- both the cavity 11 and the p diffusion region 13 are formed on the p semiconductor substrate 1. Are arranged so as to surround the high-side drive circuit formation region 10 over the four sides.
- the thickness of the cavity 11 is set so as to ensure a desired punchthrough breakdown voltage or more.
- the withstand voltage Vbr of the dielectric isolation semiconductor device when the RESURF (Reduced SURface electric Field) effect is not impaired is expressed by the following equation (1) based on the Poisson equation.
- the critical voltage Ecr, the thickness d of the n epitaxial region 12, the thickness Tox of the dielectric layer, the relative dielectric constant ⁇ Si of silicon (Si), and the relative dielectric constant ⁇ ox of the dielectric are assumed.
- Vbr Ecr ⁇ (d / 2 + Tox ⁇ ⁇ Si / ⁇ ox) (1)
- the thickness of the n epitaxial region 12 or the dielectric layer may be increased.
- the thickness of the cavity 11 is preferably about 4 ⁇ m to 6 ⁇ m.
- the gate electrodes 23 and 33, the source electrode, the drain electrode, the VB electrode, the Vs electrode, and the GND electrode are electrically insulated from each other by an interlayer insulating film. Further, the surface of the p semiconductor substrate 1 on which the surface element structure is formed is protected by a passivation film (not shown).
- the interlayer insulating film may be, for example, a silicon oxide film (SiO 2 film) made of LOCOS (Local Oxidation of Silicon) which is a field oxide film, TEOS (Tetra EthoxySilane), BPSG (Boro Phospho Silicate Glass), or the like.
- the passivation film may be a silicon nitride film (Si 3 N 4 film) or a polyimide film.
- FIG. 3 to 8 are cross-sectional views illustrating a state in the process of manufacturing the semiconductor integrated circuit device according to the first embodiment.
- a p semiconductor substrate 1 having a specific resistance of, for example, about 100 ⁇ ⁇ cm to 400 ⁇ ⁇ cm is prepared.
- a thermal oxide film is formed on the surface of the p semiconductor substrate 1 by thermal oxidation, and the thermal oxide film is patterned by photolithography to form a mask oxide film 51 for trench etching.
- etching is performed using the mask oxide film 51 as a mask to form a plurality of trenches 52 in the formation region of the cavity 11 of the p semiconductor substrate 1.
- annealing is performed at a temperature of about 1000 ° C. to 1200 ° C. in an inert gas atmosphere such as hydrogen (H 2 ) gas.
- H 2 hydrogen
- the method for forming the cavity 11 in the surface layer of the p semiconductor substrate 1 is not limited to this, and various modifications can be made.
- porous silicon porous silicon
- an n epitaxial region 12 described later is grown on the p semiconductor substrate 1 to cover the porous silicon.
- a high temperature annealing process is performed in an inert gas atmosphere so that the porous silicon is absorbed by the surrounding p semiconductor substrate 1 and the n epitaxial region 12, and the portion where the porous silicon is formed may be used as the cavity 11.
- an n epitaxial region 12 is grown on the p semiconductor substrate 1 (the surface on the side where the cavity 11 is formed) to a thickness of about 5 ⁇ m to 50 ⁇ m, for example, 10 ⁇ m.
- the impurity concentration of the n epitaxial region 12 may be, for example, about 1 ⁇ 10 14 / cm 3 to 1 ⁇ 10 16 / cm 3 .
- a resist mask 53 is formed on the surface of the n epitaxial region 12 to expose the high side drive circuit forming region 10.
- a first ion implantation 61 of an n-type impurity such as phosphorus (P) is performed using the resist mask 53 as a mask.
- the dotted line near the surface of the n epitaxial region 12 represents the n-type impurity implanted with the first ion 61 (the same applies to FIG. 7).
- the dose amount of the n-type impurity in the first ion implantation 61 may be, for example, about 5 ⁇ 10 12 / cm 2 to 5 ⁇ 10 13 / cm 2 .
- the resist mask 53 is removed.
- a resist mask 54 is formed on the surface of the n epitaxial region 12 to expose the formation regions of the p diffusion region 13 and the pGND region 41.
- a second ion implantation 62 of a p-type impurity such as boron (B) is performed using the resist mask 54 as a mask.
- the dose amount of the p-type impurity in the second ion implantation 62 may be, for example, about 1 ⁇ 10 12 / cm 2 to 1 ⁇ 10 14 / cm 2 .
- a dotted line in the vicinity of the surface of the n epitaxial region 12 (a dotted line finer than the dotted line indicating the n-type impurity) represents the p-type impurity implanted by the second ion implantation 62. Then, the resist mask 54 is removed. The first and second ion implantations 61 and 62 may be performed in the reverse order.
- an annealing process at a temperature of about 1100 ° C. to 1200 ° C. is performed for about 10 hours to diffuse the n-type impurities and the p-type impurities implanted into the first and second ion implantations 61 and 62 into the n epitaxial region 12.
- n isolation region 2, p diffusion region 13, and pGND region 41 are formed in n epitaxial region 12 with a predetermined depth, respectively.
- This annealing process is performed so that the p-type impurity implanted in the formation region of the p diffusion region 13 is diffused to the cavity 11.
- the n-type impurity of the first ion implantation 61 is diffused to form the n-isolation region 2, so that the depth of the n-isolation region 2 is deeper than the n-epitaxial region 12. Further, the end of the n isolation region 2 is diffused so as to cover the end of the cavity 11 (on the p semiconductor substrate 1 side). That is, the cavity 11 is arranged between the p diffusion region 13 and the p semiconductor substrate 1 in the depth direction of the p semiconductor substrate 1.
- a resist mask (not shown) is formed on the surfaces of the n isolation region 2 and the n epitaxial region 12, and the formation region of the p isolation region 3 is exposed.
- third ion implantation of a p-type impurity such as boron is performed using the resist mask as a mask.
- the dose amount of the p-type impurity in the third ion implantation may be, for example, about 1 ⁇ 10 13 / cm 2 to 1 ⁇ 10 14 / cm 2 .
- the resist mask for third ion implantation is removed.
- a resist mask (not shown) is formed on the surfaces of the n isolation region 2 and the n epitaxial region 12, and the formation regions of the p + source region 21 and the p + drain region 22 are exposed.
- fourth ion implantation of a p-type impurity such as boron is performed using the resist mask as a mask.
- the dose amount of the p-type impurity in the fourth ion implantation may be, for example, about 5 ⁇ 10 12 / cm 2 to 1 ⁇ 10 14 / cm 2 .
- the resist mask for the fourth ion implantation is removed.
- a resist mask (not shown) is formed on the surfaces of the n isolation region 2 and the n epitaxial region 12, and the formation regions of the n + source region 31 and the n + drain region 32 are exposed.
- fifth ion implantation of an n-type impurity such as phosphorus is performed using the resist mask as a mask.
- the dose amount of the n-type impurity in the fifth ion implantation may be, for example, about 5 ⁇ 10 12 / cm 2 to 1 ⁇ 10 14 / cm 2 .
- the resist mask for the fifth ion implantation is removed.
- a resist mask (not shown) is formed on the surfaces of the n isolation region 2 and the n epitaxial region 12, and the formation regions of the p ++ high concentration regions 41a, 3a, and 13a are exposed.
- sixth ion implantation of a p-type impurity such as boron is performed using the resist mask as a mask.
- the dose amount of the p-type impurity in the sixth ion implantation may be, for example, about 5 ⁇ 10 14 / cm 2 to 5 ⁇ 10 15 / cm 2 .
- the resist mask for the sixth ion implantation is removed.
- ap + + high concentration region for ohmic contact with each electrode is formed.
- a resist mask (not shown) is formed on the surfaces of the n isolation region 2 and the n epitaxial region 12, and the formation regions of the n ++ high concentration regions 2a and 12a are exposed.
- seventh ion implantation of an n-type impurity such as arsenic is performed using the resist mask as a mask.
- the dose amount of the n-type impurity in the seventh ion implantation may be, for example, about 5 ⁇ 10 14 / cm 2 to 5 ⁇ 10 15 / cm 2 .
- n ++ high concentration region 2a together with 12a, to n + source region 31 and n + drain region 32 of the MV-NMOS 30, to form an illustration is omitted n ++ high concentration region, respectively.
- the resist mask for the seventh ion implantation is removed.
- an n ++ high concentration region for ohmic contact with each electrode is formed.
- the third to seventh ion implantations may be performed in a different order.
- activation annealing at a temperature of about 900 ° C. to 1100 ° C. is performed for about 4 hours to diffuse the n-type impurity and the p-type impurity implanted with the third to seventh ions into the n isolation region 2 and the n epitaxial region 12.
- the p isolation region 3 the p + source region 21 and the p + drain region 22, the n + source region 31 and the n + drain region 32, and the n ++ high concentration regions 2a and 12a connected to the respective electrodes.
- p ++ high concentration regions 3a, 13a and 41a are formed.
- the gate electrodes 23 and 33, the source electrode, the drain electrode, the VB electrode, the Vs electrode, and the GND electrode are formed, and an interlayer insulating film, a passivation film, and the like are formed, whereby the high-side drive circuit shown in FIGS. Complete.
- a cavity is formed between the pGND region provided in the HVJT and the high side drive circuit provided in the high side drive circuit formation region, and the cavity is formed on the cavity.
- the hole diffusion p diffusion region is punched through to the p semiconductor substrate due to a transient increase in the intermediate potential. Can be prevented.
- n ++ to which a high side power supply potential is connected is provided in order to reduce (substantially disable) hole injection by providing a p diffusion region for hole pickup at a depth reaching the cavity.
- the high-concentration region and the high-side drive circuit need only be spaced about 15 ⁇ m in width of the p diffusion region for hole pickup, and need not be separated by 100 ⁇ m or more. Therefore, the chip size can be reduced and the cost can be reduced.
- the conventional high-side drive circuit manufacturing process is performed inside the p-semiconductor substrate.
- the above high-side drive circuit can be produced simply by adding a step of providing a cavity.
- FIG. 15 is a plan view illustrating a planar structure of the semiconductor integrated circuit device according to the second embodiment.
- 16 is a cross-sectional view showing a cross-sectional structure taken along the cutting line BB ′ of FIG.
- the semiconductor integrated circuit device according to the second embodiment is different from the semiconductor integrated circuit device according to the first embodiment in that in the self-shielding high-side drive circuit in which the level shifter is integrated with the HVJT 40, an n epitaxial region (n ⁇
- the mold region 12 is not provided with an n ++ high concentration region (corresponding to reference numeral 12a in FIG. 14) for applying (pickup) the high-side power supply potential VB to the HVJT 40.
- the chip size can be reduced by the amount that the n ++ high concentration region is not provided in the n epitaxial region 12. Specifically, the chip size is reduced by a total of 20 ⁇ m, that is, the width of the n ++ high concentration region is about 10 ⁇ m and the interval between the n ++ high concentration region and the p diffusion region 13 is 10 ⁇ m. be able to.
- the n ++ high concentration region and the p diffusion region 13 are arranged so as to surround the periphery of the high side drive circuit formation region 10, and the length of one round is about 2 mm, so that for example, 2 mm ⁇ 20 ⁇ m
- the chip area can be reduced.
- the high side power supply potential VB having a higher potential than the p diffusion region 13 having the intermediate potential Vs is interposed between the pGND region 41 and the p diffusion region 13. Since the n ++ high concentration region is arranged, a negative surge occurs, and when the parasitic diode composed of the pGND region 41 and the n epitaxial region 12 is turned on, the pGND region 41 moves to the high side drive circuit formation region 10. In addition to being drawn out from the p diffusion region 13, the flowing holes flow from the n ++ high concentration region inside the n epitaxial region 12 to the n isolation region 2 through the internal wiring.
- n ++ high concentration region when an n ++ high concentration region is provided in the n epitaxial region 12, it is used as a diffusion resistance composed of the n epitaxial region 12 in a portion sandwiched between the n + drain region 91 and the n ++ high concentration region of the level shifter.
- a polysilicon layer may be used as the level shift resistor 94 instead of the diffused resistor composed of the diffused layer.
- a polysilicon layer may be formed on the chip (for example, on the LOCOS film) in the high-side drive circuit formation region 10 and this polysilicon layer may be used as the level shift resistor 94. Since the polysilicon layer is formed on the chip, the chip size does not increase.
- the resistance value of the level shift resistor 94 varies depending on the degree of depletion of the n epitaxial region 12 due to the on / off of the upper and lower arm output elements. Absent. Further, a diffused resistor composed of the n isolation region 2 in the high side drive circuit forming region 10 may be used as the level shift resistor 94. Since n isolation region 2 has a higher impurity concentration than n epitaxial region 12, the resistance value of level shift resistor 94 does not vary due to depletion of n isolation region 2. Therefore, stable signal transmission can be realized by providing the level shift resistor 94 in the high-side drive circuit formation region 10.
- the n + drain region 91 of the level shifter is connected to the level shift resistor 94 via an internal wiring disposed on the front surface side of the p semiconductor substrate 1, and the high side drive circuit forming region 10 is connected via the level shift resistor 94.
- the cavity 11 may extend from the p diffusion region 13 to the pGND region 41 as in the first embodiment.
- an insulator layer such as a SiO 2 film may be selectively buried between the p semiconductor substrate 1 and the n epitaxial region 12 (partial SOI).
- the thickness of the insulator layer is preferably larger than the thickness of the cavity 11.
- the thickness of the SiO 2 film is preferably 15 ⁇ m or more in order to ensure a breakdown voltage of 1500 V or more.
- the semiconductor integrated circuit device may be applied to a wire bonding method.
- the n + drain region 91 and the n + source region 92 of the HV-NMOS 90 may be omitted.
- the n epitaxial region 12 sandwiched between the pGND region 41 and the p diffusion region 13 is in a floating state, but the potential of the n epitaxial region 12 depends on the pn junction between the pGND region 41 and the n epitaxial region 12.
- each of the upper arm output element and the lower arm output element constituting the high withstand voltage driver IC may be an IGBT (insulated gate bipolar transistor).
- IGBT insulated gate bipolar transistor
- the low potential side potential of the main power source of the high voltage driver IC may be a potential lower than the high potential side potential of the main power source.
- an insulating layer such as a SiO 2 film is provided to provide a partial structure.
- An SOI (Silicon On Insulator) substrate may be configured.
- the thickness of the insulator layer in the partial SOI substrate is, for example, 15 ⁇ m or higher.
- the first conductivity type is p-type and the second conductivity type is n-type.
- the first conductivity type is n-type and the second conductivity type is p-type. It holds.
- the semiconductor integrated circuit device according to the present invention is used not only for motor control inverters, but also for power supplies such as PDPs and liquid crystal panels having a large capacitive load, and inverters for home appliances such as air conditioners and lighting. Useful for power semiconductor devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Element Separation (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
p半導体基板(1)上に形成されたn分離領域(2)には、ハイサイド駆動回路を構成するMV-PMOS(20)およびMV-NMOS(30)が形成される。MV-NMOS(30)は、n分離領域(2)内部の中間電位(Vs)のp分離領域(3)に形成される。p半導体基板(1)の表面層の、n分離領域(2)の外側にはnエピタキシャル領域(12)が設けられ、その外側にはグランド電位(GND)のpGND領域(41)が設けられる。ハイサイド駆動回路とpGND領域(41)との間には、p半導体基板(1)とnエピタキシャル領域(12)との間に空洞(11)が設けられ、nエピタキシャル領域(12)を貫通して空洞(11)に達するp拡散領域(13)が設けられる。p分離領域(3)には中間電位(Vs)が印加される。これにより、誤動作や破壊が生じることを回避し、かつチップサイズを縮小することができる。
Description
この発明は、半導体集積回路装置に関する。
パワーデバイスは、モータ制御用インバータのほか、容量性負荷の大きいPDP(プラズマディスプレイパネル)や液晶パネルなどの電源用途、エアコンや照明などの家電用インバータ用途など、多くの分野で広く利用されている。近年、LSI技術の進歩により、1200Vまでの高電圧を確保した高耐圧IC(HVIC:High Voltage Integrated Circuit)が実用化されている。
HVICとしては、上下アームのドライバ機能を一つのシリコンチップに搭載したICや、さらに制御回路やパワー半導体デバイスも一つのシリコンチップに搭載したICなどが系列化され、インバータ全体としても高効率化や部品数削減に貢献している。高耐圧ICの回路構成について、負荷としてモータを備えたモータ制御用インバータを例に説明する。図9は、高耐圧ドライバICの要部(1相)の構成を示す回路図である。図10は、パワーモジュール100動作時の中間電位Vsの変動を示す特性図である。図10には、第1MOSFET101と第2MOSFET102とが相補にオン・オフ(on・off)したときの接続点105の中間電位Vs変動を示す。
図9に示すように、駆動回路111は、パワーモジュール100を駆動する回路である。パワーモジュール100は、ハイサイド側の第1MOSFET(絶縁ゲート型電界効果トランジスタ)101(上アーム出力素子)と、ローサイド側の第2MOSFET102(下アーム出力素子)とを直列に接続した1相のインバータ回路であり、負荷であるモータ112を駆動する。符号103および符号104はFWD(還流ダイオード)である。
第1MOSFET101のドレインは主電源Vdsに接続される。第1MOSFET101のソースは第2MOSFET102のドレインに接続される。第2MOSFET102のソースはグランドに接続される。第1MOSFET101のソースと第2MOSFET102のドレインとの接続点105はパワーモジュール100からなる主回路の出力点である。
中間電位Vsは、第1MOSFET101と第2MOSFET102とが相補にオン・オフ(on・off)されることによって主電源Vdsの高電位側電位(例えば400V)と低電位側電位(例えばグランド電位GND=0V)との間で上昇(以下、第1状態121とする)および下降(以下、第2状態122とする)を繰り返し変動する(図10)。
駆動回路111は、図示を省略する制御ユニット、ハイサイド駆動回路、ローサイド駆動回路およびレベルシフタを有する。ハイサイド駆動回路は、Vs端子に印加される中間電位Vsを基準とするVB端子に印加されるハイサイド電源電位VBにより動作し、第1MOSFET101を駆動する。ローサイド駆動回路は、グランド電位GNDを基準とするVcc端子に印加されるローサイド電源電位Vccにより動作し、第2MOSFET102を駆動する。
具体的には、制御ユニットから出力されるローサイドレベルのオン/オフ信号は、ローサイド駆動回路を介してローサイド出力端子LOから第2MOSFET102のゲートに入力される。また、ローサイドレベルのオン/オフ信号は、レベルシフタによりハイサイドレベルのオン/オフ信号に変換される。そのハイサイドレベルのオン/オフ信号は、ハイサイド駆動回路を介してハイサイド出力端子HOから第1MOSFET101のゲートに入力される。
HIN端子およびLIN端子は、それぞれ、駆動回路111内でハイサイドレベルのオン/オフ信号およびローサイドレベルのオン/オフ信号が生成されるときの基準となるハイサイド制御信号入力端子およびローサイド制御信号入力端子である。駆動回路111の各入出力端子は通常マイクロコンピュータなどのコンピュータに接続され、コンピュータに予め用意されたプログラムが実行されることよって駆動回路111が制御され、高耐圧ドライバIC全体の制御がなされる。
このようなモータ制御用インバータにおいて、主電源Vdsは、通常AC(交流)100V~400Vと高電圧である。特に、第1MOSFET101がオン状態で、第2MOSFET102がオフ状態となる第1状態121では、第1MOSFET101のソース電位が高電位となる。第1MOSFET101を駆動するにはゲート電位をソース電位よりもさらに高くする必要があるため、駆動回路111には高電圧電源での使用が可能なフォトカプラ(PC:Photo Coupler)や高耐圧IC(HVIC)が用いられる。
従来のハイサイド駆動回路の構造について説明する。図11は、従来のハイサイド駆動回路の平面構造を示す平面図である。図12は、図11の切断線AA-AA’における断面構造を示す断面図である。図11,12に示すように、p半導体基板(半導体チップ)131に、ハイサイド駆動回路が形成されたハイサイド駆動回路形成領域130と、ハイサイド駆動回路の耐圧を確保する高耐圧終端領域(HVJT:High Voltage Junction Termination)140とが形成されている。
p半導体基板131の表面層には、n分離領域132が選択的に形成されている。n分離領域132の表面層には、ハイサイド駆動回路を構成する横型のpチャネルMOSFET(MV-PMOS)133および横型のnチャネルMOSFET(MV-NMOS)134が形成されている。MV-NMOS134は、n分離領域132の表面層に設けられたp分離領域135に形成される。また、p半導体基板131の表面層の、n分離領域132の外側には、HVJT140内にp領域141が形成されている。
p領域(以下、pGND領域とする)141にはグランド電位GNDが印加される。n分離領域132には、n++領域151などを介してハイサイド電源電位VBが印加される。p分離領域135には中間電位Vsが印加される。インバータを構成する第1MOSFET101と第2MOSFET102とが相補にオン・オフされることによって第1MOSFET101がオン状態で、第2MOSFET102がオフ状態となる第1状態121ではサージ電圧121aが生じ、中間電位Vsが過渡的に上昇する(図10)。
一方、第1MOSFET101がオフ状態となり、第2MOSFET102がオン状態となった第2状態122では、第1MOSFET101と第2MOSFET102との接続点105に負サージ122aが数百nsec程度発生する(図10)。この負サージ122a発生時、中間電位Vsがグランド電位GNDよりも低くなる。これに伴い、ハイサイド電源電位VBもグランド電位GNDより低くなると、pGND領域141(グランド電位GND)とn分離領域132とからなる寄生ダイオードがターンオンし、pGND領域141からハイサイド駆動回路形成領域130へとホール(正孔)142が流れる。そのため、ハイサイド駆動回路が誤作動するという問題がある。
この問題を解決した高耐圧ICとして、次の装置が提案されている。NMOSとPMOSとの間において、n型不純物領域の上面内には、p型ウェルに接するようにp+型不純物領域が形成されている。p+型不純物領域上には電極が形成されており、電極は高圧側浮遊オフセット電圧VSに接続されている。p+型不純物領域の不純物濃度はp型ウェルの不純物濃度よりも高く、また、p+型不純物領域はp型ウェルよりも浅く形成されている。p+型不純物領域とPMOSとの間において、n型不純物領域の上面内には、n+型不純物領域が形成されている。n+型不純物領域上には電極が形成されており、電極は高圧側浮遊供給絶対電圧VBに接続されている(例えば、下記特許文献1参照。)。
また、別の装置として、共通接地ノード(COM)と仮想接地ノード(VS)の間に高耐圧ダイオードD3を高電圧制御回路(HVIC)内部に共通の基板領域を利用して設けた装置が提案されている(例えば、下記特許文献2参照。)。
また、別の装置として、第1絶縁分離トレンチにより絶縁分離されたMOSトランジスタが形成され、第2絶縁分離トレンチが、n重(n≧2)に形成され、n個の各フィールド領域に、MOSトランジスタが、それぞれ一個ずつ配置され、n個のMOSトランジスタが、グランド(GND)電位と所定の電源電位との間で、順次直列接続されてなり、第n段MOSトランジスタの電源電位側の端子と出力抵抗の間から、出力が取り出される半導体装置であって、最内周の第2絶縁分離トレンチにより囲まれたフィールド領域の電位が、電源電位に固定されてなる装置が提案されている(例えば、下記特許文献3参照。)。
同一半導体基板上に誘電体領域によって分離された高電位部と低電位部を備えた装置として、次の装置が提案されている。同一半導体基板上に設けられた低電位ゲート駆動回路と電気的に分離するために、高電位ゲート駆動回路の周縁部に高耐圧接合終端構造部が設けられている。そして、この高耐圧接合終端構造部と、高電位ゲート駆動回路の一部に設けられたレベルシフト回路部のn+ソース層とn+ドレイン層の間と、にトレンチが設けられている。また、トレンチ内に酸化膜などが充填され、誘電体領域となっている(例えば、下記特許文献4参照。)。
半導体基板に誘電体領域を設けた装置として、内部に平板状の空洞を有する半導体基板と、空洞上の半導体基板の表面に形成された受動素子とを含む装置が提案されている(例えば、下記特許文献5参照。)。
しかしながら、上述した図11,12に示すハイサイド駆動回路では、第1MOSFET101と第2MOSFET102との接続点105に負サージ122aが発生したときにHVJT140からハイサイド駆動回路形成領域130へとホール142が流れ込むことを回避しハイサイド駆動回路の誤作動を防止するために、HVJT140に配置されハイサイド電源電位VBが印加されるn++領域151とハイサイド駆動回路形成領域130内のハイサイド駆動回路(MV-PMOS133やMV-NMOS134など)との間隔xを100μm以上にする必要がある。このため、チップサイズが大きくなるという問題がある。
また、上述した特許文献1のように負サージ発生時にハイサイド駆動回路へ流れ込むホールを引き抜く(ホールピックアップ)ためのp型不純物領域を回路周辺に設けただけでは、中間電位Vsの大きさによってはホールピックアップ用のp型不純物領域がp半導体基板とパンチスルーする虞がある。また、上述した特許文献2のようにグランド電位GNDが印加される領域と中間電位Vsが印加される領域との間に高耐圧ダイオードを配置した場合、高耐圧ダイオードの分だけチップサイズが大きくなってしまう。
また、上述した特許文献3のようにトレンチ構造を設けた場合、トレンチの底部でのホールピックアップ効果が低減される。このため、ハイサイド駆動回路によって駆動されるパワーデバイス(例えばインバータの上アーム出力素子)の負荷電流や、パワーデバイスによって駆動される負荷(例えばモータ)に付随する浮遊インダクタンス(L成分)が大きい場合に、ハイサイド駆動回路が誤動作したりラッチアップ破壊に至るという問題がある。
この発明は、上述した従来技術による問題点を解消するため、誤動作や破壊が生じることを回避することができる半導体集積回路装置を提供することを目的とする。また、この発明は、上述した従来技術による問題点を解消するため、チップサイズを縮小することができる半導体集積回路装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体集積回路装置は、次の特徴を有する。第1導電型半導体基板の表面層に、第2導電型領域が設けられている。前記第2導電型領域には、回路部が形成され、前記回路部の電源の高電圧電位である第1電位が印加される。前記第2導電型領域の内部に、前記電源の低電圧電位である第2電位が印加される第1導電型ウェル領域が設けられている。前記第1導電型ウェル領域は、前記回路部を構成する。前記第1導電型半導体基板の表面層の、前記第2導電型領域の外側に、前記第2電位よりも低い第3電位が印加される第1導電型低電位領域が設けられている。前記回路部と前記第1導電型低電位領域との間で、かつ前記第1導電型半導体基板と前記第2導電型領域との間に、空洞が選択的に設けられている。前記第2導電型領域を貫通して前記空洞に達する第1導電型領域が設けられている。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記第1導電型領域には、前記第2電位が印加されることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記空洞は、前記第1導電型領域から前記第1導電型低電位領域側に向かって延びていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記空洞は、前記第1導電型領域から前記第1導電型低電位領域にわたって設けられていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記回路部は、主電源の高電圧電位側に接続された第1素子と、前記第1素子に直列に接続され、かつ前記主電源の低電圧電位側に接続された第2素子と、から構成される出力回路(パワーモジュール)の前記第1素子を駆動する。そして、前記第2電位は、前記第1素子と前記第2素子との接続点の電位であり、前記第3電位は、前記主電源の低電圧電位であることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記第1導電型領域と前記第1導電型半導体基板とのパンチスルー耐圧は、前記第1素子がオン状態で、前記第2素子がオフ状態であるときに過渡的に上昇する前記出力回路の前記第1素子と前記第2素子との前記接続点の電位よりも高く設定されていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記回路部を囲み前記第2導電型領域に配置された耐圧領域と、前記耐圧領域の内側にドレイン、前記耐圧領域の外側にソースを有するレベルシフタを構成する絶縁ゲート型電界効果トランジスタと、をさらに備え、前記空洞は、前記回路部と、前記絶縁ゲート型電界効果トランジスタのドレインとの間に配置されていることを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体集積回路装置は、次の特徴を有する。第1導電型半導体基板の表面層に、第1の第2導電型領域が設けられている。前記第1の第2導電型領域には、回路部が形成され、前記回路部の電源の高電圧電位である第1電位が印加される。前記第1の第2導電型領域の内部に、前記電源の低電圧電位である第2電位が印加される第1導電型ウェル領域が設けられている。前記第1導電型ウェル領域は、前記回路部を構成する。前記第1導電型半導体基板の表面層の、前記第1の第2導電型領域の外側に、第2の第2導電型領域が設けられている。前記第1導電型半導体基板の表面層の、前記第2の第2導電型領域の外側に、前記第2電位よりも低い第3電位が印加される第1導電型低電位領域が設けられている。前記回路部と前記第1導電型低電位領域との間で、かつ前記第1導電型半導体基板と前記第2の第2導電型領域との間に、空洞が選択的に設けられている。前記第1の第2導電型領域と前記第2の第2導電型領域との間に、前記第2の第2導電型領域を貫通して前記空洞に達する第1導電型領域が設けられている。前記第2の第2導電型領域に、レベルシフタを構成する絶縁ゲート型電界効果トランジスタが配置されている。そして、前記第2の第2導電型領域の、前記絶縁ゲート型電界効果トランジスタのドレインと前記第1導電型領域とに挟まれた部分に、前記第1電位に接続された第2導電型高濃度領域が配置されてない。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記第1導電型領域には、前記第2電位が印加されることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記空洞は、前記回路部と、前記絶縁ゲート型電界効果トランジスタのドレインとの間に配置されていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記絶縁ゲート型電界効果トランジスタのドレインは、前記第2の第2導電型領域の前記回路部側に配置され、前記絶縁ゲート型電界効果トランジスタのソースは、前記第2の第2導電型領域の前記第1導電型低電位領域側に配置されていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記回路部は、主電源の高電圧電位側に接続された第1素子と、前記第1素子に直列に接続され、かつ前記主電源の低電圧電位側に接続された第2素子と、から構成される出力回路の前記第1素子を駆動し、前記第2電位は、前記第1素子と前記第2素子との接続点の電位であり、前記第3電位は、前記主電源の低電圧電位であることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記第1導電型領域と前記第1導電型半導体基板とのパンチスルー耐圧は、前記第1素子がオン状態で、前記第2素子がオフ状態であるときに過渡的に上昇する前記出力回路の前記第1素子と前記第2素子との前記接続点の電位よりも高く設定されていることを特徴とする。
また、この発明にかかる半導体集積回路装置は、上述した発明において、前記第1の第2導電型領域の表面上に絶縁膜を介して設けられた抵抗層をさらに備え、前記絶縁ゲート型電界効果トランジスタのドレインは、前記第1導電型半導体基板上に配置された配線層を介して前記抵抗層に電気的に接続されていることを特徴とする。
上述した発明によれば、第1導電型低電位領域と第1導電型分離領域との間に空洞を形成し、この空洞上に空洞に達する深さで第1導電型領域を設けることにより、第1,2素子の接続点に負サージが生じたときに第1導電型低電位領域から第1導電型分離領域へ流れるホールを引き抜くことができ、ホール注入を低減(ほぼ無効化)させることができる。
また、上述した発明によれば、第1導電型領域を空洞に達する深さよりも深くしないことで、第1素子と第2素子との接続点の電位の過渡的な上昇により第1導電型領域が第1導電型半導体基板にパンチスルーすることを防止することができる。また、上述した発明によれば、空洞に達する深さでホールピックアップ用の第1導電型領域を設けることによりホール注入を低減(ほぼ無効化)させることができるため、第1導電型低電位領域と回路部との間隔を小さくすることができる。
本発明にかかる半導体集積回路装置によれば、誤動作や破壊が生じることを回避することができるという効果を奏する。また、本発明にかかる半導体集積回路装置によれば、チップサイズを縮小することができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体集積回路装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体集積回路装置について、上下アームのドライバ機能を一つのシリコンチップに搭載した駆動回路の上アーム出力素子を駆動するハイサイド駆動回路を例に説明する。図1は、実施の形態1にかかる半導体集積回路装置の平面構造を示す平面図である。図2は、図1の切断線A-A’における断面構造を示す断面図である。実施の形態1にかかる半導体集積回路装置を備えた駆動回路の回路構成は、例えば、図9に示す駆動回路111の回路構成(1相)と同様であるため説明を省略する。
実施の形態1にかかる半導体集積回路装置について、上下アームのドライバ機能を一つのシリコンチップに搭載した駆動回路の上アーム出力素子を駆動するハイサイド駆動回路を例に説明する。図1は、実施の形態1にかかる半導体集積回路装置の平面構造を示す平面図である。図2は、図1の切断線A-A’における断面構造を示す断面図である。実施の形態1にかかる半導体集積回路装置を備えた駆動回路の回路構成は、例えば、図9に示す駆動回路111の回路構成(1相)と同様であるため説明を省略する。
実施の形態1にかかる半導体集積回路装置は、例えば、図9に示すパワーモジュール(出力回路)100の上アーム出力素子(第1MOSFET101:第1素子)を駆動する駆動回路111のハイサイド駆動回路である。ハイサイド駆動回路は、高電圧電源での使用が可能な高耐圧IC(HVIC)となっている。駆動回路111のハイサイド駆動回路は、モータ112を駆動するパワーモジュール100(第1,2MOSFET101,102:第1,2素子)と同程度の、例えば600V~1400V程度の耐圧を有するのが好ましい。
また、図1に示すように、実施の形態1にかかる半導体集積回路装置において、p半導体基板(半導体チップ)1には、ハイサイド駆動回路(回路部)が形成されたハイサイド駆動回路形成領域10と、ハイサイド駆動回路の耐圧を確保する高耐圧終端領域(HVJT)40とが形成されている。ハイサイド駆動回路形成領域10は、p半導体基板1の表面層に配置されている。HVJT40は、ハイサイド駆動回路形成領域10を囲むように配置されている。
p半導体基板1の内部には、ハイサイド駆動回路形成領域10とHVJT40との境界に、誘電体領域である空洞(Cavity)11が設けられている。すなわち、p半導体基板1は、選択的にSON(Silicon On Nothing)構造となっている。空洞11は、ハイサイド駆動回路形成領域10側からHVJT40側にわたる所定幅で配置される。また、空洞11は、例えば、略矩形状のハイサイド駆動回路形成領域10の3辺にわたって略コの字状の平面形状で配置されている。その理由は、次のとおりである。
空洞11が形成されていない1辺には、ボンディングワイヤーがボンディングされる電極パッド(Pad)50が配置される。電極パッド50は、ハイサイド駆動回路形成領域10のHVJT40との境界付近に設けられている。具体的には、電極パッド50は、後述するn分離領域2上に設けられている。電極パッド50には、ハイサイド電源電位VBが印加されるパッド、中間電位Vsが印加されるパッド、上アーム出力素子の制御端子に信号を印加するための出力パッドなどが配置される。電極パッド50の下のn分離領域2には、ワイヤーをボンディングする際の衝撃がハイサイド駆動回路に影響を及ぼすことを避けるためにハイサイド駆動回路を設けない領域となっている。電極パッド50の幅が大きいため、電極パッド50を配置することによりハイサイド駆動回路とHVJT40に設けられハイサイド電源電位VBに接続されるn++高濃度領域12aとの間隔が100μm以上となる。このため、空洞11は、略矩形状のハイサイド駆動回路形成領域10の3辺にわたって略コの字状の平面形状で配置される。
この実施の形態1では、電極パッド50の下のn分離領域2にハイサイド駆動回路を形成しない場合について説明したが、電極パッド50の下のn分離領域2にハイサイド駆動回路を形成する場合は、空洞11は、ハイサイド駆動回路形成領域10の4辺にわたってハイサイド駆動回路形成領域10を囲むように配置されてもよい。また、空洞11は、この実施の形態1の場合であっても4辺にわたってハイサイド駆動回路形成領域10を囲むように配置されてもよい。また、他の辺すべてにおいてハイサイド駆動回路とHVJT40に設けられるn++高濃度領域12aとの間隔が100μm以上である場合は、空洞11を、略矩形状のハイサイド駆動回路形成領域10の1辺にのみに配置してもよい。空洞11の詳細な配置については後述する。
図2には、電極パッド50と空洞11とを横切る直線状の切断線A-A’における断面構造を示す。図2に示すように、p半導体基板1の表面層には、n分離領域(第2導電型分離領域)2が選択的に形成されている。n分離領域2の端部は、空洞11の下側(p半導体基板1側)の領域を覆う。n分離領域2には、ハイサイド駆動回路(図2に矢印で示す回路部)を構成する横型のpチャネルMOSFET(MV-PMOS)20および横型のnチャネルMOSFET(MV-NMOS)30が形成されている。MV-PMOS20およびMV-NMOS30は、例えば15V~30V耐圧クラス程度のMOSFETであってもよい。
MV-PMOS20は、p+ソース領域21、p+ドレイン領域22、ゲート電極23、ソース電極(不図示)およびドレイン電極(不図示)を備える。p+ソース領域21およびp+ドレイン領域22は、n分離領域2の内部に互いに離れて設けられる。n分離領域2には、n分離領域2の内部に設けられたn++高濃度領域2aを介して電気的に接続されたVB電極(不図示)からハイサイド電源電位VBが印加される。
ゲート電極23は、n分離領域2の、p+ソース領域21とp+ドレイン領域22とに挟まれた部分の表面にゲート絶縁膜(不図示)を介して設けられている。MV-PMOS20のソース電極およびドレイン電極は、それぞれp+ソース領域21およびp+ドレイン領域22に電気的に接続されている。MV-PMOS20のソース電極は、VB電極に短絡されている。
MV-NMOS30は、n分離領域2の表面層に設けられたp分離領域(第1導電型分離領域)3に形成され、n+ソース領域31、n+ドレイン領域32、ゲート電極33、ソース電極(不図示)およびドレイン電極(不図示)を備える。n+ソース領域31およびn+ドレイン領域32は、p分離領域3の内部に互いに離れて設けられている。p分離領域3には、p分離領域3の内部に設けられたp++高濃度領域3aを介して電気的に接続されたVs電極(不図示)から中間電位Vs(上下アーム出力素子の接続点105の電位)が印加される。
ゲート電極33は、p分離領域3の、n+ソース領域31とn+ドレイン領域32とに挟まれた部分の表面にゲート絶縁膜(不図示)を介して設けられている。MV-NMOS30のソース電極およびドレイン電極は、それぞれn+ソース領域31およびn+ドレイン領域32に電気的に接続されている。MV-NMOS30のソース電極は、Vs電極に短絡されている。
また、p半導体基板1の表面層の、n分離領域2の外側には、HVJT40においてnエピタキシャル領域(第2導電型分離領域)12が設けられている。nエピタキシャル領域12は、n分離領域2に接し、ハイサイド駆動回路形成領域10を囲む。nエピタキシャル領域12には、nエピタキシャル領域12内部のn++高濃度領域12aを介して電気的に接続されたVB電極(不図示)からハイサイド電源電位VBが印加される。
p半導体基板1の表面層の、nエピタキシャル領域12の外側には、nエピタキシャル領域12を貫通してp半導体基板1に達するp領域(第1導電型低電位領域)41が設けられている。p領域(以下、pGND領域とする)41には、pGND領域41内部のp++高濃度領域41aを介して電気的に接続されたGND電極(不図示)からグランド電位GNDが印加される。pGND領域41は、p半導体基板1をグランド電位GNDに固定する機能を有する。
上述した空洞11は、ハイサイド駆動回路形成領域10とpGND領域41との間において、p半導体基板1とnエピタキシャル領域12との間に設けられている。空洞11は、後述するp拡散領域13からpGND領域41側へ向かって、耐圧領域43下にまで延びていてもよい。耐圧領域43とは、pGND領域41と、nエピタキシャル領域12内のハイサイド電源電位VBが印加されるn++高濃度領域12aとの間の領域である。空洞11は、pGND領域41に接していてもよい。また、上記特許文献4に記載のようにMOSFETからなるレベルシフタをHVJT40に配置することもできる。
図13は、実施の形態1にかかる半導体集積回路装置の平面構造の別の一例を示す平面図である。図14は、図13の切断線Z-Z’における断面構造を示す断面図である。空洞11は、p半導体基板1のハイサイド駆動回路形成領域10に形成されたハイサイド駆動回路と、レベルシフタを構成するMOSFET(HV-NMOS)のn+ドレイン領域91との間に配置されるのが好ましい。なお、図13では図示省略するが、空洞11が略矩形状のハイサイド駆動回路形成領域10の4辺にわたって配置されている。図14において、符号92,93は、それぞれレベルシフタを構成するMOSFETのn+ソース領域およびゲート電極である。
また、ハイサイド駆動回路形成領域10には、その表面からnエピタキシャル領域(n-型領域)12を貫通して空洞11に達するp拡散領域13が設けられている。具体的には、p拡散領域13は、空洞11上(空洞11のnエピタキシャル領域12側)に、空洞11と同様に略コの字状の平面形状で配置されている。また、p拡散領域13は、ハイサイド駆動回路およびpGND領域41から離れて設けられている。p拡散領域13には、p拡散領域13の内部に設けられたp++高濃度領域13aを介して電気的に接続されたVs電極から中間電位Vsが印加される。
p拡散領域13を設けることにより、上アーム出力素子がオフ状態で、下アーム出力素子がオン状態となる第2状態122に上下アーム出力素子の接続点105に負サージ122aが発生したときに(図10)pGND領域41からハイサイド駆動回路形成領域10へ流れるホールをp拡散領域13から引き抜く(ホールピックアップ)ことができる。また、空洞11に達する深さでp拡散領域13を設けることによりpGND領域41からハイサイド駆動回路形成領域10へのホール注入を低減(ほぼ無効化)することができる。また、p拡散領域13を空洞11の深さよりも深くしないため、上アーム出力素子がオン状態で、下アーム出力素子がオフ状態となる第1状態121に生じるサージ電圧121aによって中間電位Vsが過渡的に上昇したときにp拡散領域13がp半導体基板1にパンチスルーすることを防止することができる。
空洞11に達する深さでp拡散領域13を設けることによりpGND領域41からハイサイド駆動回路形成領域10へのホール注入をほぼ無効化することができるため、空洞11およびp拡散領域13を形成した箇所においてハイサイド駆動回路とn++高濃度領域12aとの第1間隔x1は、従来のように100μm以上とする必要はなく、p拡散領域13の幅w程度あればよい。一方、空洞11およびp拡散領域13が形成されていない箇所においては、ハイサイド駆動回路形成領域10表面に電極パッド50が配置されているため、ハイサイド駆動回路とn++高濃度領域12aとの第2間隔x2は100μm以上となっている。
空洞11およびp拡散領域13が形成されていない箇所においては、ハイサイド駆動回路とn++高濃度領域12aとの第2間隔x2は100μm以上となっているため、負サージ122a発生時にpGND領域41からハイサイド駆動回路形成領域10へ流れるホールはハイサイド駆動回路に到達しない。したがって、空洞11およびp拡散領域13が形成されていない箇所においてハイサイド駆動回路とpGND領域41との間には、空洞11およびp拡散領域13を設けてもよいし、設けなくてもよい。空洞11およびp拡散領域13が形成されていない箇所においてハイサイド駆動回路とpGND領域41との間に空洞11およびp拡散領域13を設ける場合、空洞11およびp拡散領域13はともにp半導体基板1の4辺にわたってハイサイド駆動回路形成領域10を囲むように配置される。
空洞11の厚さは、所望のパンチスルー耐圧以上を確保することができるように設定される。一般的にリサーフ(RESURF:REduced SURface electric Field)効果を損なわないときの誘電体分離半導体装置の耐圧Vbrは、ポアソン式に基づいて下記(1)式であらわされる。ここで、臨界電圧Ecr、nエピタキシャル領域12の厚さd、誘電体層の厚さTox、シリコン(Si)の比誘電率εSi、誘電体の比誘電率εoxとする。
Vbr=Ecr×(d/2+Tox×εSi/εox)・・・(1)
1200V耐圧のハイサイド駆動回路を作製する場合、nエピタキシャル領域12の比抵抗ばらつき、空洞11の厚さのばらつき、さらに外付け部品のパワーモジュール100(上下アーム出力素子)の実耐圧などを加味して最低でも1500V程度の耐圧が要求される。誘電体層が空洞(Cavity)11である場合、誘電体の比誘電率εoxは1となる。例えばd=10μm、Tox=4μmとした場合、Ecr=3×105(V/cm)、εox=1、εSi=11.7であるため、上記(1)式よりVbr=1550Vとすることができる。
上記(1)式に基づいて誘電体分離半導体装置の高耐圧化を図るためには、nエピタキシャル領域12または誘電体層(空洞11)の厚さを厚くすればよい。しかし、空洞11の厚さを厚くした場合、空洞11上に配置されたnエピタキシャル領域12の重さによって空洞11が潰れてしまう。したがって、空洞11の厚さは4μm~6μm程度が好ましい。
ゲート電極23,33、ソース電極、ドレイン電極、VB電極、Vs電極およびGND電極は、層間絶縁膜によって互いに電気的に絶縁されている。また、p半導体基板1の表面素子構造が形成された側の表面は、パッシベーション膜(不図示)によって保護されている。層間絶縁膜は、例えば、フィールド酸化膜であるLOCOS(Local Oxidation of Silicon)や、TEOS(TetraEthOxySilane)、BPSG(Boro Phospho Silicate Glass)などによるシリコン酸化膜(SiO2膜)であってもよい。パッシベーション膜は、シリコン窒化膜(Si3N4膜)またはポリイミド膜であってもよい。
次に、実施の形態1にかかる半導体集積回路装置の製造方法について、600V~1200V程度の高耐圧なハイサイド駆動回路を作製(製造)する場合を例に説明する。図3~8は、実施の形態1にかかる半導体集積回路装置の製造途中の状態を示す断面図である。まず、図3に示すように、比抵抗が例えば100Ω・cm~400Ω・cm程度のp半導体基板1を用意する。次に、熱酸化によりp半導体基板1の表面に熱酸化膜を形成し、フォトリソグラフィにより熱酸化膜をパターニングしてトレンチエッチング用のマスク酸化膜51を形成する。
次に、マスク酸化膜51をマスクとして例えばドライエッチングを行い、p半導体基板1の空洞11の形成領域に複数のトレンチ52を形成する。次に、例えばウェットエッチングによりマスク酸化膜51を除去した後、例えば水素(H2)ガスなどの不活性ガス雰囲気において1000℃~1200℃程度の温度のアニール処理を行う。これにより、図4に示すように、トレンチ52の開口部が塞がれ、かつ複数のトレンチ52が一体化され、空洞11が2μm~6μm程度、例えば4μmの厚さで形成される(シリコン原子の表面マイグレーション)。
p半導体基板1の表面層に空洞11を形成する方法は、これに限らず種々変更可能である。例えば、電界エッチングなどにより、p半導体基板1の表面にポーラスシリコン(多孔質シリコン)を選択的に形成する。そして、p半導体基板1上に、後述するnエピタキシャル領域12を成長させてポーラスシリコンを覆う。その後、不活性ガス雰囲気において高温度のアニール処理を行うことにより、ポーラスシリコンを周囲のp半導体基板1やnエピタキシャル領域12に吸収させて、ポーラスシリコンを形成した部分を空洞11としてもよい。
次に、図5に示すように、p半導体基板1上(空洞11が形成されている側の表面)に、nエピタキシャル領域12を5μm~50μm程度、例えば10μmの厚さで成長させる。nエピタキシャル領域12の不純物濃度は、例えば1×1014/cm3~1×1016/cm3程度であってもよい。
次に、図6に示すように、nエピタキシャル領域12の表面にレジストマスク53を形成し、ハイサイド駆動回路形成領域10を露出させる。次に、レジストマスク53をマスクとして例えばリン(P)などのn型不純物の第1イオン注入61を行う。図6において、nエピタキシャル領域12表面近傍の点線は、第1イオン注入61されたn型不純物をあらわしている(図7においても同様)。第1イオン注入61におけるn型不純物のドーズ量は、例えば5×1012/cm2~5×1013/cm2程度であってもよい。そして、レジストマスク53を除去する。
次に、図7に示すように、nエピタキシャル領域12の表面にレジストマスク54を形成し、p拡散領域13およびpGND領域41の形成領域を露出させる。次に、レジストマスク54をマスクとして例えばボロン(B)などのp型不純物の第2イオン注入62を行う。第2イオン注入62におけるp型不純物のドーズ量は、例えば1×1012/cm2~1×1014/cm2程度であってもよい。図7において、nエピタキシャル領域12表面近傍の点線(n型不純物を示す点線よりも細かい点線)は、第2イオン注入62されたp型不純物をあらわしている。そして、レジストマスク54を除去する。第1,2イオン注入61,62は、順序を入れ替えて行ってもよい。
次に、例えば1100℃~1200℃程度の温度のアニール処理を10時間程度行い、nエピタキシャル領域12に第1,2イオン注入61,62されたn型不純物およびp型不純物を拡散させる。これにより、図8に示すように、nエピタキシャル領域12の内部に、それぞれ所定の深さでn分離領域2、p拡散領域13およびpGND領域41が形成される。このアニール処理は、p拡散領域13の形成領域に注入されたp型不純物が空洞11にまで拡散されるように行う。
このアニール処理において、第1イオン注入61のn型不純物が拡散されることでn分離領域2が形成されるため、n分離領域2の深さはnエピタキシャル領域12よりも深くなる。また、n分離領域2の端部は、空洞11の端部(p半導体基板1側)を覆うように拡散される。すなわち、p半導体基板1の深さ方向において、p拡散領域13とp半導体基板1との間に空洞11が配置される。
次に、n分離領域2およびnエピタキシャル領域12の表面にレジストマスク(不図示)を形成し、p分離領域3の形成領域を露出させる。次に、レジストマスクをマスクとして例えばボロンなどのp型不純物の第3イオン注入を行う。第3イオン注入におけるp型不純物のドーズ量は、例えば1×1013/cm2~1×1014/cm2程度であってもよい。そして、第3イオン注入用のレジストマスクを除去する。
次に、n分離領域2およびnエピタキシャル領域12の表面にレジストマスク(不図示)を形成し、p+ソース領域21、p+ドレイン領域22の形成領域を露出させる。次に、レジストマスクをマスクとして例えばボロンなどのp型不純物の第4イオン注入を行う。第4イオン注入におけるp型不純物のドーズ量は、例えば5×1012/cm2~1×1014/cm2程度であってもよい。そして、第4イオン注入用のレジストマスクを除去する。
次に、n分離領域2およびnエピタキシャル領域12の表面にレジストマスク(不図示)を形成し、n+ソース領域31、n+ドレイン領域32の形成領域を露出させる。次に、レジストマスクをマスクとして例えばリンなどのn型不純物の第5イオン注入を行う。第5イオン注入におけるn型不純物のドーズ量は、例えば5×1012/cm2~1×1014/cm2程度であってもよい。そして、第5イオン注入用のレジストマスクを除去する。
次に、n分離領域2およびnエピタキシャル領域12の表面にレジストマスク(不図示)を形成し、p++高濃度領域41a,3a,13aの形成領域を露出させる。次に、レジストマスクをマスクとして例えばボロンなどのp型不純物の第6イオン注入を行う。第6イオン注入におけるp型不純物のドーズ量は、例えば5×1014/cm2~5×1015/cm2程度であってもよい。このとき、p++高濃度領域41a,3a,13aとともに、MV-PMOS20のp+ソース領域21およびp+ドレイン領域22表面にも、それぞれ図示省略するp++高濃度領域を形成する。そして、第6イオン注入用のレジストマスクを除去する。この第6イオン注入では、各電極とのオーミックコンタクト用のp++高濃度領域を形成している。
次に、n分離領域2およびnエピタキシャル領域12の表面にレジストマスク(不図示)を形成し、n++高濃度領域2a,12aの形成領域を露出させる。次に、レジストマスクをマスクとして例えば砒素などのn型不純物の第7イオン注入を行う。第7イオン注入におけるn型不純物のドーズ量は、例えば5×1014/cm2~5×1015/cm2程度であってもよい。このとき、n++高濃度領域2a,12aとともに、MV-NMOS30のn+ソース領域31およびn+ドレイン領域32にも、それぞれ図示省略するn++高濃度領域を形成する。そして、第7イオン注入用のレジストマスクを除去する。この第7イオン注入では、各電極とのオーミックコンタクト用のn++高濃度領域を形成している。第3~7イオン注入は、順序を入れ替えて行ってもよい。
次に、例えば900℃~1100℃程度の温度の活性化アニール処理を4時間程度行い、n分離領域2およびnエピタキシャル領域12に第3~7イオン注入されたn型不純物およびp型不純物を拡散させる。これにより、p分離領域3と、p+ソース領域21およびp+ドレイン領域22と、n+ソース領域31およびn+ドレイン領域32と、各電極に接続されるn++高濃度領域2a,12aおよびp++高濃度領域3a,13a,41aとが形成される。その後、ゲート電極23,33、ソース電極、ドレイン電極、VB電極、Vs電極およびGND電極を形成し、層間絶縁膜やパッシベーション膜などを形成することにより、図1,2に示すハイサイド駆動回路が完成する。
以上、説明したように、実施の形態1によれば、HVJTに設けたpGND領域とハイサイド駆動回路形成領域に設けたハイサイド駆動回路との間に空洞を形成し、この空洞上に空洞に達する深さでp拡散領域を設けることにより、上下アーム出力素子の接続点に負サージが生じたときにpGND領域からp分離領域へ流れ込むホールを引き抜くことができ、ホール注入を低減(ほぼ無効化)させることができる。このため、上アーム出力素子の負荷電流や負荷に付随する浮遊インダクタンス(L成分)が大きいインバータ装置を駆動させる場合であっても、ハイサイド駆動回路が誤作動したり破壊に至ることを防止することができる。
また、実施の形態1によれば、p拡散領域を空洞に達する深さよりも深くしないことで、中間電位の過渡的な上昇によりホールピックアップ用のp拡散領域がp半導体基板にパンチスルーすることを防止することができる。また、実施の形態1によれば、空洞に達する深さでホールピックアップ用のp拡散領域を設けることによりホール注入を低減(ほぼ無効化)させるため、ハイサイド電源電位が接続されるn++高濃度領域とハイサイド駆動回路との間隔は、ホールピックアップ用のp拡散領域の幅15μm程度の間隔があればよく、100μm以上離す必要がなくなる。したがって、チップサイズを縮小することができ、コストを低減することができる。
また、実施の形態1によれば、ピックアップ用のp拡散領域をpGND領域と同時にイオン注入およびアニール処理によって形成することができるため、従来のハイサイド駆動回路の製造工程に、p半導体基板内部に空洞を設ける工程を追加するだけで上記のハイサイド駆動回路を作製することができる。また、実施の形態1によれば、半導体基板内のp拡散領域が形成された領域のみに空洞を設ければよいため、ハイサイド駆動回路の製造中に半導体基板が反ることを抑制することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体集積回路装置について説明する。図15は、実施の形態2にかかる半導体集積回路装置の平面構造を示す平面図である。図16は、図15の切断線B-B’における断面構造を示す断面図である。実施の形態2にかかる半導体集積回路装置が実施の形態1にかかる半導体集積回路装置と異なる点は、HVJT40にレベルシフタを一体化したセルフシールディング方式のハイサイド駆動回路において、nエピタキシャル領域(n-型領域)12に、HVJT40にハイサイド電源電位VBを印加(ピックアップ)するためのn++高濃度領域(図14の符号12aに相当)が設けられていない点である。
次に、実施の形態2にかかる半導体集積回路装置について説明する。図15は、実施の形態2にかかる半導体集積回路装置の平面構造を示す平面図である。図16は、図15の切断線B-B’における断面構造を示す断面図である。実施の形態2にかかる半導体集積回路装置が実施の形態1にかかる半導体集積回路装置と異なる点は、HVJT40にレベルシフタを一体化したセルフシールディング方式のハイサイド駆動回路において、nエピタキシャル領域(n-型領域)12に、HVJT40にハイサイド電源電位VBを印加(ピックアップ)するためのn++高濃度領域(図14の符号12aに相当)が設けられていない点である。
実施の形態2においては、nエピタキシャル領域12にn++高濃度領域を設けていない分だけチップサイズを縮小化することができる。具体的には、n++高濃度領域の幅である10μm程度と、n++高濃度領域とp拡散領域13との間の間隔である10μmとの計20μm分のチップサイズを縮小化させることができる。n++高濃度領域およびp拡散領域13は、ハイサイド駆動回路形成領域10の周囲を囲むように配置されており、その1周分の長さは約2mmであるため、例えば2mm×20μm分のチップ面積を縮小化することができる。
また、nエピタキシャル領域12にn++高濃度領域を設けた場合、pGND領域41とp拡散領域13との間に、中間電位Vsのp拡散領域13よりも電位の高いハイサイド電源電位VBのn++高濃度領域が配置されているため、負サージが発生し、pGND領域41とnエピタキシャル領域12とからなる寄生ダイオードがターンオンしたときに、pGND領域41からハイサイド駆動回路形成領域10へ流れるホールは、p拡散領域13から引き抜かれる以外に、nエピタキシャル領域12内部のn++高濃度領域から内部配線を介してn分離領域2へと流れてしまうという現象が生じる。
一方、実施の形態2においては、nエピタキシャル領域12にn++高濃度領域を設けていないため、pGND領域41から流れるホールはすべてp拡散領域13で引き抜かれ、HVJT40を通る経路でハイサイド駆動回路形成領域10にホールが流れ込むことはない。負サージが発生し、ハイサイド電源電位VBがグランド電位GNDより低くなると、pGND領域41とnエピタキシャル領域12とからなる寄生ダイオードの他に、pGND領域41およびp半導体基板1とn分離領域2とからなる寄生ダイオードもターンオンするが、p半導体基板1が高抵抗であることから、p半導体基板1からn分離領域2へのホール注入はわずかである。
また、nエピタキシャル領域12にn++高濃度領域を設けた場合、レベルシフタのn+ドレイン領域91とn++高濃度領域とに挟まれた部分におけるnエピタキシャル領域12からなる拡散抵抗として用いていたが、実施の形態2においては、この拡散層からなる拡散抵抗に代えて、ポリシリコン層をレベルシフト抵抗94として用いればよい。この場合、例えばハイサイド駆動回路形成領域10におけるチップ上(例えばLOCOS膜上)にポリシリコン層を形成し、このポリシリコン層をレベルシフト抵抗94として用いればよい。ポリシリコン層はチップ上に形成されるため、チップサイズが大きくなることはない。また、拡散層からなる拡散抵抗をレベルシフト抵抗94として用いていないため、上下アーム出力素子のオン・オフによるnエピタキシャル領域12の空乏化の度合いによってレベルシフト抵抗94の抵抗値が変化することはない。また、ハイサイド駆動回路形成領域10のn分離領域2からなる拡散抵抗をレベルシフト抵抗94として用いてもよい。n分離領域2はnエピタキシャル領域12よりも高不純物濃度であるため、n分離領域2の空乏化によってレベルシフト抵抗94の抵抗値がばらつくことはない。したがって、ハイサイド駆動回路形成領域10にレベルシフト抵抗94を設けることにより、安定した信号伝達を実現することができる。
レベルシフタのn+ドレイン領域91は、p半導体基板1のおもて面側に配置された内部配線を介してレベルシフト抵抗94に接続され、レベルシフト抵抗94を介してハイサイド駆動回路形成領域10のn分離領域2の内部に設けられたn++高濃度領域2aに接続されている。すなわち、n分離領域2の内部に設けられたn++高濃度領域2aは、HVJT40にハイサイド電源電位VBを印加するためのピックアップコンタクトとして機能する。空洞11は、実施の形態1と同様に、p拡散領域13からpGND領域41まで延びていてもよい。空洞11に代えて、p半導体基板1とnエピタキシャル領域12との間に選択的にSiO2膜などの絶縁体層を埋め込んでもよい(部分SOI)。この場合、絶縁体層の厚さは空洞11の厚さよりも厚くするのがよい。例えば、空洞11に代えてSiO2膜を埋め込む場合、耐圧1500V以上を確保するためには、SiO2膜の厚さは15μm以上であるのがよい。
また、実施の形態2にかかる半導体集積回路装置をワイヤーボンディング方式に適用してもよい。この場合、HV-NMOS90のn+ドレイン領域91およびn+ソース領域92を設けない構成とすればよい。これにより、pGND領域41とp拡散領域13とに挟まれたnエピタキシャル領域12はフローティング状態になるが、nエピタキシャル領域12の電位は、pGND領域41とnエピタキシャル領域12との間のpn接合による電位障壁0.6Vだけ中間電位Vsよりも高い(=Vs+0.6V)。このため、pGND領域41とnエピタキシャル領域12との間において、1200V以上の耐圧を確保することができる。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。
以上において本発明では、上述した各実施の形態に限らず、高電圧電源で使用されるさまざまな構成の回路に適用可能である。例えば、本発明は、ワイヤーボンディング方式やセルフシールディング方式のハイサイド駆動回路に適用可能である。また、高耐圧ドライバICを構成する上アーム出力素子および下アーム出力素子をそれぞれIGBT(絶縁ゲート型バイポーラトランジスタ)としてもよい。上下アーム出力素子をIGBTとする場合、上アーム出力素子となる第1IGBTのエミッタと下アーム出力素子となる第2IGBTのコレクタとの接続点がパワーモジュールからなる主回路の出力点となる。
また、高耐圧ドライバICの主電源の低電位側電位は、主電源の高電位側電位より低い電位であればよい。また、上述した各実施の形態では、半導体基板内部に空洞(Cavity)を設けた場合を例に説明しているが、この空洞に代えて、SiO2膜などの絶縁体層を設けることにより部分SOI(Silicon On Insulator)基板を構成してもよい。部分SOI基板とする場合、耐圧1500V以上を実現するために、部分SOI基板内の絶縁体層の厚さを例えば15μm以上にするのが好ましい。また、各実施の形態では第1導電型をp型とし、第2導電型をn型としたが、本発明は第1導電型をn型とし、第2導電型をp型としても同様に成り立つ。
以上のように、本発明にかかる半導体集積回路装置は、モータ制御用インバータのほか、容量性負荷の大きいPDPや液晶パネルなどの電源用途、エアコンや照明などの家電用インバータ用途などに使用されるパワー半導体装置に有用である。
1 p半導体基板
2 n分離領域
2a,12a n++高濃度領域
3 p分離領域
3a,13a,41a p++高濃度領域
10 ハイサイド駆動回路形成領域
11 空洞
12 nエピタキシャル領域
13 p拡散領域
20 MV-PMOS
21 MV-PMOSのp+ソース領域
22 MV-PMOSのp+ドレイン領域
23 MV-PMOSのゲート電極
30 MV-NMOS
31 MV-NMOSのn+ソース領域
32 MV-NMOSのn+ドレイン領域
33 MV-NMOSのゲート電極
40 HVJT
41 pGND領域
43 耐圧領域
50 電極パッド
100 パワーモジュール(インバータ)
101 上アーム出力素子(第1MOSFET,第1IGBT)
102 下アーム出力素子(第2MOSFET,第2IGBT)
103,104 FWD
105 上アーム出力素子ソースと下アーム出力素子ドレインとの接続点
111 駆動回路
112 負荷(モータ)
121 上アーム出力素子がオン状態で、下アーム出力素子がオフ状態となる第1状態
122 上アーム出力素子がオフ状態で、下アーム出力素子がオン状態となる第2状態
GND グランド電位
VB ハイサイド電源電位
Vcc ローサイド電源電位
Vds 主電源
Vs 主電源Vdsの高電位側電位と低電位側電位との間の中間電位
2 n分離領域
2a,12a n++高濃度領域
3 p分離領域
3a,13a,41a p++高濃度領域
10 ハイサイド駆動回路形成領域
11 空洞
12 nエピタキシャル領域
13 p拡散領域
20 MV-PMOS
21 MV-PMOSのp+ソース領域
22 MV-PMOSのp+ドレイン領域
23 MV-PMOSのゲート電極
30 MV-NMOS
31 MV-NMOSのn+ソース領域
32 MV-NMOSのn+ドレイン領域
33 MV-NMOSのゲート電極
40 HVJT
41 pGND領域
43 耐圧領域
50 電極パッド
100 パワーモジュール(インバータ)
101 上アーム出力素子(第1MOSFET,第1IGBT)
102 下アーム出力素子(第2MOSFET,第2IGBT)
103,104 FWD
105 上アーム出力素子ソースと下アーム出力素子ドレインとの接続点
111 駆動回路
112 負荷(モータ)
121 上アーム出力素子がオン状態で、下アーム出力素子がオフ状態となる第1状態
122 上アーム出力素子がオフ状態で、下アーム出力素子がオン状態となる第2状態
GND グランド電位
VB ハイサイド電源電位
Vcc ローサイド電源電位
Vds 主電源
Vs 主電源Vdsの高電位側電位と低電位側電位との間の中間電位
Claims (14)
- 第1導電型半導体基板の表面層に設けられ、回路部が形成され前記回路部の電源の高電圧電位である第1電位が印加される第2導電型領域と、
前記第2導電型領域の内部に設けられ前記回路部を構成し、前記電源の低電圧電位である第2電位が印加される第1導電型ウェル領域と、
前記第1導電型半導体基板の表面層の、前記第2導電型領域の外側に設けられ、前記第2電位よりも低い第3電位が印加される第1導電型低電位領域と、
前記回路部と前記第1導電型低電位領域との間で、かつ前記第1導電型半導体基板と前記第2導電型領域との間に選択的に設けられた空洞と、
前記第2導電型領域を貫通して前記空洞に達する第1導電型領域と、
を備えることを特徴とする半導体集積回路装置。 - 前記第1導電型領域には、前記第2電位が印加されることを特徴とする請求項1に記載の半導体集積回路装置。
- 前記空洞は、前記第1導電型領域から前記第1導電型低電位領域側に向かって延びていることを特徴とする請求項1に記載の半導体集積回路装置。
- 前記空洞は、前記第1導電型領域から前記第1導電型低電位領域にわたって設けられていることを特徴とする請求項1に記載の半導体集積回路装置。
- 前記回路部は、主電源の高電圧電位側に接続された第1素子と、前記第1素子に直列に接続され、かつ前記主電源の低電圧電位側に接続された第2素子と、から構成される出力回路の前記第1素子を駆動し、
前記第2電位は、前記第1素子と前記第2素子との接続点の電位であり、
前記第3電位は、前記主電源の低電圧電位であることを特徴とする請求項1に記載の半導体集積回路装置。 - 前記第1導電型領域と前記第1導電型半導体基板とのパンチスルー耐圧は、前記第1素子がオン状態で、前記第2素子がオフ状態であるときに過渡的に上昇する前記出力回路の前記第1素子と前記第2素子との前記接続点の電位よりも高く設定されていることを特徴とする請求項5に記載の半導体集積回路装置。
- 前記回路部を囲み前記第2導電型領域に配置された耐圧領域と、
前記耐圧領域の内側にドレイン、前記耐圧領域の外側にソースを有するレベルシフタを構成する絶縁ゲート型電界効果トランジスタと、
をさらに備え、
前記空洞は、前記回路部と、前記絶縁ゲート型電界効果トランジスタのドレインとの間に配置されていることを特徴とする請求項1~6のいずれか一つに記載の半導体集積回路装置。 - 第1導電型半導体基板の表面層に設けられ、回路部が形成され前記回路部の電源の高電圧電位である第1電位が印加される第1の第2導電型領域と、
前記第1の第2導電型領域の内部に設けられ前記回路部を構成し、前記電源の低電圧電位である第2電位が印加される第1導電型ウェル領域と、
前記第1導電型半導体基板の表面層の、前記第1の第2導電型領域の外側に設けられた第2の第2導電型領域と、
前記第1導電型半導体基板の表面層の、前記第2の第2導電型領域の外側に設けられ、前記第2電位よりも低い第3電位が印加される第1導電型低電位領域と、
前記回路部と前記第1導電型低電位領域との間で、かつ前記第1導電型半導体基板と前記第2の第2導電型領域との間に選択的に設けられた空洞と、
前記第1の第2導電型領域と前記第2の第2導電型領域との間に設けられ、前記第2の第2導電型領域を貫通して前記空洞に達する第1導電型領域と、
前記第2の第2導電型領域に配置された、レベルシフタを構成する絶縁ゲート型電界効果トランジスタと、
を備え、
前記第2の第2導電型領域の、前記絶縁ゲート型電界効果トランジスタのドレインと前記第1導電型領域とに挟まれた部分に、前記第1電位に接続された第2導電型高濃度領域が配置されていないことを特徴とする半導体集積回路装置。 - 前記第1導電型領域には、前記第2電位が印加されることを特徴とする請求項8に記載の半導体集積回路装置。
- 前記空洞は、前記回路部と、前記絶縁ゲート型電界効果トランジスタのドレインとの間に配置されていることを特徴とする請求項8に記載の半導体集積回路装置。
- 前記絶縁ゲート型電界効果トランジスタのドレインは、前記第2の第2導電型領域の前記回路部側に配置され、
前記絶縁ゲート型電界効果トランジスタのソースは、前記第2の第2導電型領域の前記第1導電型低電位領域側に配置されていることを特徴とする請求項8に記載の半導体集積回路装置。 - 前記回路部は、主電源の高電圧電位側に接続された第1素子と、前記第1素子に直列に接続され、かつ前記主電源の低電圧電位側に接続された第2素子と、から構成される出力回路の前記第1素子を駆動し、
前記第2電位は、前記第1素子と前記第2素子との接続点の電位であり、
前記第3電位は、前記主電源の低電圧電位であることを特徴とする請求項8に記載の半導体集積回路装置。 - 前記第1導電型領域と前記第1導電型半導体基板とのパンチスルー耐圧は、前記第1素子がオン状態で、前記第2素子がオフ状態であるときに過渡的に上昇する前記出力回路の前記第1素子と前記第2素子との前記接続点の電位よりも高く設定されていることを特徴とする請求項12に記載の半導体集積回路装置。
- 前記第1の第2導電型領域の表面上に絶縁膜を介して設けられた抵抗層をさらに備え、
前記絶縁ゲート型電界効果トランジスタのドレインは、前記第1導電型半導体基板上に配置された配線層を介して前記抵抗層に電気的に接続されていることを特徴とする請求項8~13のいずれか一つに記載の半導体集積回路装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014535425A JP5754558B2 (ja) | 2012-09-13 | 2013-08-02 | 半導体集積回路装置 |
CN201380019201.XA CN104221147B (zh) | 2012-09-13 | 2013-08-02 | 半导体集成电路装置 |
US14/499,707 US9385125B2 (en) | 2012-09-13 | 2014-09-29 | Semiconductor integrated circuit device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-202126 | 2012-09-13 | ||
JP2012202126 | 2012-09-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/499,707 Continuation US9385125B2 (en) | 2012-09-13 | 2014-09-29 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014041921A1 true WO2014041921A1 (ja) | 2014-03-20 |
Family
ID=50278047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071079 WO2014041921A1 (ja) | 2012-09-13 | 2013-08-02 | 半導体集積回路装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9385125B2 (ja) |
JP (1) | JP5754558B2 (ja) |
CN (1) | CN104221147B (ja) |
WO (1) | WO2014041921A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002508A1 (ja) * | 2014-07-02 | 2016-01-07 | 富士電機株式会社 | 半導体集積回路装置 |
CN105321944A (zh) * | 2014-06-16 | 2016-02-10 | 富士电机株式会社 | 半导体集成电路装置 |
WO2017086069A1 (ja) * | 2015-11-19 | 2017-05-26 | 富士電機株式会社 | 半導体装置 |
JP2019096651A (ja) * | 2017-11-17 | 2019-06-20 | 富士電機株式会社 | 半導体集積回路装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016119799B4 (de) * | 2016-10-18 | 2020-08-06 | Infineon Technologies Ag | Integrierte schaltung, die einen vergrabenen hohlraum enthält, und herstellungsverfahren |
TWI629785B (zh) * | 2016-12-29 | 2018-07-11 | 新唐科技股份有限公司 | 高電壓積體電路的高電壓終端結構 |
US10535730B2 (en) * | 2017-09-28 | 2020-01-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | High voltage metal-oxide-semiconductor (HVMOS) device integrated with a high voltage junction termination (HVJT) device |
DE102018110579B4 (de) * | 2017-09-28 | 2022-12-01 | Taiwan Semiconductor Manufacturing Co. Ltd. | Hochspannungs-metall-oxid-halbleitervorrichtung (hvmos-vorrichtung) integriert mit einer hochspannungs-übergangsabschlussvorrichtung (hvjt- vorrichtung) |
US10679987B2 (en) * | 2017-10-31 | 2020-06-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Bootstrap metal-oxide-semiconductor (MOS) device integrated with a high voltage MOS (HVMOS) device and a high voltage junction termination (HVJT) device |
DE102018124897B4 (de) | 2017-10-31 | 2023-10-12 | Taiwan Semiconductor Manufacturing Co. Ltd. | Bootstrap-metall-oxid-halbleiter-bauelement, das mit einem hochspannungs-mos-bauelement und einem hochspannungs-übergangskontaktierungs-bauelement integriert ist und herstellungsverfahren |
DE102018119098B4 (de) | 2018-08-06 | 2020-02-20 | Infineon Technologies Dresden GmbH & Co. KG | Elektronische schaltung mit einem transistorbauelement und einem pegelumsetzer |
CN110190055A (zh) * | 2019-04-09 | 2019-08-30 | 上海华虹宏力半导体制造有限公司 | 一种栅驱动工艺的高压自屏蔽结构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191263A (ja) * | 2003-12-25 | 2005-07-14 | Fuji Electric Device Technology Co Ltd | 半導体装置 |
JP2007036062A (ja) * | 2005-07-28 | 2007-02-08 | Fuji Electric Device Technology Co Ltd | 半導体装置 |
JP2007273993A (ja) * | 1999-08-31 | 2007-10-18 | Toshiba Corp | 半導体基板の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4074051B2 (ja) | 1999-08-31 | 2008-04-09 | 株式会社東芝 | 半導体基板およびその製造方法 |
JP2005311006A (ja) * | 2004-04-21 | 2005-11-04 | Toyota Motor Corp | 半導体装置およびその製造方法 |
JP5003043B2 (ja) | 2005-10-26 | 2012-08-15 | 株式会社デンソー | 半導体装置 |
US20080237659A1 (en) * | 2007-03-27 | 2008-10-02 | United Microelectronics Corp. | Semiconductor device and method of fabricating the same |
JP2009206284A (ja) | 2008-02-27 | 2009-09-10 | Fuji Electric Device Technology Co Ltd | 半導体装置 |
JP5503897B2 (ja) | 2009-05-08 | 2014-05-28 | 三菱電機株式会社 | 半導体装置 |
JP2009231851A (ja) | 2009-07-09 | 2009-10-08 | Mitsubishi Electric Corp | 半導体装置 |
JP5757145B2 (ja) | 2011-04-19 | 2015-07-29 | 富士電機株式会社 | 半導体装置 |
-
2013
- 2013-08-02 JP JP2014535425A patent/JP5754558B2/ja active Active
- 2013-08-02 CN CN201380019201.XA patent/CN104221147B/zh not_active Expired - Fee Related
- 2013-08-02 WO PCT/JP2013/071079 patent/WO2014041921A1/ja active Application Filing
-
2014
- 2014-09-29 US US14/499,707 patent/US9385125B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273993A (ja) * | 1999-08-31 | 2007-10-18 | Toshiba Corp | 半導体基板の製造方法 |
JP2005191263A (ja) * | 2003-12-25 | 2005-07-14 | Fuji Electric Device Technology Co Ltd | 半導体装置 |
JP2007036062A (ja) * | 2005-07-28 | 2007-02-08 | Fuji Electric Device Technology Co Ltd | 半導体装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105321944A (zh) * | 2014-06-16 | 2016-02-10 | 富士电机株式会社 | 半导体集成电路装置 |
CN105321944B (zh) * | 2014-06-16 | 2019-07-05 | 富士电机株式会社 | 半导体集成电路装置 |
WO2016002508A1 (ja) * | 2014-07-02 | 2016-01-07 | 富士電機株式会社 | 半導体集積回路装置 |
CN105874597A (zh) * | 2014-07-02 | 2016-08-17 | 富士电机株式会社 | 半导体集成电路装置 |
JPWO2016002508A1 (ja) * | 2014-07-02 | 2017-04-27 | 富士電機株式会社 | 半導体集積回路装置 |
US10135445B2 (en) | 2014-07-02 | 2018-11-20 | Fuji Electric Co., Ltd. | Semiconductor integrated circuit device |
WO2017086069A1 (ja) * | 2015-11-19 | 2017-05-26 | 富士電機株式会社 | 半導体装置 |
JPWO2017086069A1 (ja) * | 2015-11-19 | 2018-02-22 | 富士電機株式会社 | 半導体装置 |
US10367056B2 (en) | 2015-11-19 | 2019-07-30 | Fuji Electric Co., Ltd. | Semiconductor device |
JP2019096651A (ja) * | 2017-11-17 | 2019-06-20 | 富士電機株式会社 | 半導体集積回路装置 |
JP6996247B2 (ja) | 2017-11-17 | 2022-01-17 | 富士電機株式会社 | 半導体集積回路装置 |
Also Published As
Publication number | Publication date |
---|---|
US9385125B2 (en) | 2016-07-05 |
CN104221147B (zh) | 2017-02-22 |
US20150014783A1 (en) | 2015-01-15 |
CN104221147A (zh) | 2014-12-17 |
JP5754558B2 (ja) | 2015-07-29 |
JPWO2014041921A1 (ja) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754558B2 (ja) | 半導体集積回路装置 | |
JP5994939B2 (ja) | 半導体装置 | |
JP5757145B2 (ja) | 半導体装置 | |
JP5720792B2 (ja) | 高耐圧半導体装置 | |
US9412732B2 (en) | Semiconductor device | |
JP6006918B2 (ja) | 半導体装置、半導体装置の製造方法、及び電子装置 | |
JP2011018892A (ja) | 高耐圧半導体装置 | |
WO2014058028A1 (ja) | 半導体装置 | |
JP5733416B2 (ja) | 高耐圧半導体装置 | |
JP2001352070A (ja) | 半導体装置およびその製造方法 | |
JP2014138091A (ja) | 半導体装置およびその製造方法 | |
JP5040135B2 (ja) | 誘電体分離型半導体装置及びその製造方法 | |
JP4835773B2 (ja) | 半導体装置 | |
JPH09266310A (ja) | 半導体装置 | |
JP2004006555A (ja) | 半導体装置 | |
JP2008288476A (ja) | 高耐圧ic | |
WO2016042971A1 (ja) | 半導体装置 | |
JP2010010264A (ja) | 半導体装置 | |
TWI440178B (zh) | 半導體功率元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13836353 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014535425 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13836353 Country of ref document: EP Kind code of ref document: A1 |