WO2014036814A1 - 双氟代磺酰亚胺锂的制备方法 - Google Patents

双氟代磺酰亚胺锂的制备方法 Download PDF

Info

Publication number
WO2014036814A1
WO2014036814A1 PCT/CN2013/071868 CN2013071868W WO2014036814A1 WO 2014036814 A1 WO2014036814 A1 WO 2014036814A1 CN 2013071868 W CN2013071868 W CN 2013071868W WO 2014036814 A1 WO2014036814 A1 WO 2014036814A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
fluoride
dichlorosulfonimide
crown
Prior art date
Application number
PCT/CN2013/071868
Other languages
English (en)
French (fr)
Inventor
沈鸣
沈锦良
张先林
杨志勇
张丽亚
吴国栋
Original Assignee
江苏华盛精化工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华盛精化工股份有限公司 filed Critical 江苏华盛精化工股份有限公司
Priority to JP2015530266A priority Critical patent/JP5974181B2/ja
Priority to KR1020157005898A priority patent/KR101668293B1/ko
Priority to PL13835371T priority patent/PL2894146T3/pl
Priority to EP13835371.9A priority patent/EP2894146B1/en
Publication of WO2014036814A1 publication Critical patent/WO2014036814A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a preparation method of lithium bisfluorosulfonimide. Background technique
  • the lithium bisfluorosulfonimide referred to in the present invention is a compound having the following structure:
  • Difluorosulfonimide lithium can be used in various fields. It can be used as a lithium ion battery electrolyte additive to improve the cycle performance of lithium ion batteries. It can also be used as a primary battery electrolyte; it can be used as a polymerization catalyst; it can also be used in industrial fields. Use an internal antistatic agent.
  • lithium bisfluoro sulfonimide is used in the electrolyte of rechargeable lithium battery, which can effectively reduce the high and low temperature resistance of the SEI layer formed on the surface of the electrode plate at low temperature, and reduce the lithium battery during the placement process.
  • the capacity loss thereby providing a high-capacity battery, improves the electrochemical performance of the battery.
  • the present invention is directed to the above disadvantages, directly using lithium dichlorosulfonimide as a raw material, and directly carrying out fluorochloro exchange with an alkali metal fluoride under a catalyst and a suitable solvent to obtain a solid lithium difluorosulfonimide.
  • the content of fluorine, chlorine and potassium in the product is below 10 ppm, which fully meets the requirements of the application of lithium battery electrolyte materials, and the process route is simple, and it is easy to realize industrial preparation. Summary of the invention
  • the inventors of the present invention have found a new process suitable for preparing lithium bisfluorosulfonimide by intensive research on the problems existing in the prior art: taking lithium chlorosulfonimide as a raw material, The alkali metal fluoride is directly subjected to chlorofluoro exchange under a suitable catalyst and solvent to obtain a lithium bisfluorosulfonimide product.
  • the process route of the preparation method of the invention is simple and easy to control, and the impurities such as fluorine, chlorine and alkali metal ions entrained in the product are all lower than 100 ppm or even less than 10 ppm, which meets the requirements of electronic grade applications.
  • the present invention provides a process for the preparation of lithium bisfluorosulfonimide, the process comprising: in a saturated cesium carbonate and/or a saturated fluorocarbonate solvent, with an alkali metal fluoride Under the catalytic conditions of a suitable crown ether phase transfer catalyst, lithium bischlorosulfonimide is reacted with an alkali metal fluoride as a fluorinating agent to obtain lithium bisfluorosulfonimide.
  • the structural formula of the lithium dichlorosulfonimide is:
  • the structural formula of the lithium bisfluorosulfonimide is:
  • the alkali metal fluoride is selected from the group consisting of lithium fluoride, potassium fluoride, sodium fluoride, or a mixture thereof, and the alkali metal fluoride is added in an amount of lithium chlorosulfonimide. Number
  • the saturated decyl carbonate solvent is selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate.
  • One or more mixtures are added in an amount of from 1 to 10 times the mass fraction of lithium dichlorosulfonimide.
  • the saturated fluorocarbonate ester solvent is selected from one of trifluoroethyl ethyl carbonate, bis trifluoroethyl carbonate, and trifluoroethyl methyl carbonate.
  • a plurality of mixtures are added in an amount of from 1 to 10 times the mass parts of lithium dichlorosulfonimide.
  • the crown ether phase transfer catalyst compatible with the alkali metal fluoride is 12-crown-4 (lithium fluoride), 15-crown-5 (sodium fluoride) or 18-crown. -6 (potassium fluoride).
  • the crown ether phase transfer catalyst is added in an amount of from 0.1% to 10% by mass of the lithium dichlorosulfonimide.
  • the reaction of the present invention is carried out at a temperature of from 40 to 130 ° C for a reaction time of from 8 to 24 hours.
  • the present invention provides a method for preparing lithium bisfluorosulfonimide, the method comprising: in a saturated solvent of decyl carbonate and/or saturated fluorocarbonate, in an alkali metal Lithium dichlorosulfonimide is reacted with an alkali metal fluoride as a fluorinating agent under catalytic conditions of a fluoride-compatible crown ether phase transfer catalyst to obtain lithium bisfluorosulfonimide.
  • reaction formula is as follows:
  • the alkali metal fluoride RF is selected from lithium fluoride, potassium fluoride, sodium fluoride or a mixture thereof, and the alkali metal fluoride is added in an amount of lithium dichlorosulfonimide. 2.01 ⁇ 10 times.
  • the saturated decyl carbonate solvent is selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate.
  • One or more mixtures are added in an amount of from 1 to 10 times the mass fraction of lithium dichlorosulfonimide.
  • the saturated fluorocarbonate ester solvent is selected from the group consisting of trifluoroethylethyl carbonate, bistrifluoroethyl carbonate, and trifluoroethyl methyl carbonate.
  • One or more kinds of mixtures are added in an amount of from 1 to 10 times the mass parts of lithium dichlorosulfonimide.
  • the saturated decyl carbonate solvent may be mixed with a saturated fluorocarbonate solvent as a solvent used in the reaction of the present invention.
  • the crown ether phase transfer catalyst compatible with the alkali metal fluoride is preferably 12-crown-4 (lithium fluoride), 15-crown-5 (sodium fluoride) or 18-crown-6 (potassium fluoride). That is, the crown ether phase transfer catalyst compatible with the alkali metal fluoride is preferably a 12-crown-4 phase transfer catalyst compatible with lithium fluoride, and a 15-crown-5 phase shift compatible with sodium fluoride. Catalyst or 18-crown-6 phase transfer catalyst compatible with potassium fluoride.
  • the 12-crown-4 lithium fluoride
  • the crown ether phase transfer catalyst compatible with the alkali metal fluoride is 12- Crown-4
  • the 15-crown-5 sodium fluoride
  • the crown ether phase transfer catalyst compatible with the alkali metal fluoride is a 15-crown. -5
  • the 18-crown-6 potential fluoride means that when the alkali metal fluoride used is lithium fluoride, the crown ether phase transfer catalyst compatible with the alkali metal fluoride is 18:6.
  • the crown ether phase transfer catalyst is added in an amount of from 0.1% to 10% by mass based on the lithium dichlorosulfonimide.
  • the reaction is carried out at a temperature of from 40 to 130 ° C for a reaction time of from 8 to 24 hours.
  • the object of the present invention is specifically achieved by the following means:
  • the lithium chlorosulfonimide is used as a raw material, and the alkali metal fluoride is a fluorinating reagent, and is compatible with an alkali metal fluoride in a solvent of saturated decyl carbonate and/or saturated fluorocarbonate.
  • the crown ether phase transfer catalyst is a catalyst and reacts at a certain temperature to obtain a lithium bisfluorosulfonimide product.
  • the alkali metal fluoride is selected from the group consisting of a mixture of one or more of lithium fluoride, sodium fluoride, and potassium fluoride in an amount of 2.01 to 10 times the mole of lithium dichlorosulfonimide.
  • the saturated decyl carbonate solvent is selected from the group consisting of a mixture of one or more of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate.
  • the amount added is 1 to 10 times the mass fraction of lithium dichlorosulfonimide.
  • the saturated decyl carbonate solvent may also be a solvent based on saturated decyl carbonate, which is a specific aprotic mixed solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, A mixture of two or more kinds of bistrifluoroethyl carbonate, trifluoroethyl methyl carbonate, acetonitrile or tetrahydrofuran is added in an amount of from 1 to 10 times by mass based on parts by mass of lithium dichlorosulfonimide.
  • the saturated decyl carbonate-based solvent is a solvent based on saturated fluorocarbonate, selected from the group consisting of trifluoroethylethyl carbonate, bistrifluoroethyl carbonate, and trifluoroethyl methyl carbonate.
  • saturated fluorocarbonate selected from the group consisting of trifluoroethylethyl carbonate, bistrifluoroethyl carbonate, and trifluoroethyl methyl carbonate.
  • the esters One or more mixtures are added in an amount of from 1 to 10 times the mass parts of lithium dichlorosulfonimide.
  • the crown ether phase transfer catalyst compatible with the alkali metal fluoride is 12-crown-4-ether (lithium fluoride),
  • the crown ether phase transfer catalyst is added in an amount of 0.1% to 10% by mass of the raw material dichlorosulfonimide lithium.
  • the reaction temperature is 40 to 130 ° C, and the reaction time is 8 to 24 hours.
  • the present invention has the following advantages:
  • the process route is simple and easy to control
  • Figure 1 is a map of the bisfluorosulfonimide of the present invention which was subjected to Fourier infrared detection. detailed description
  • the chlorine content of the Metrohm 848 potentiometric titrator was 2 ppm, and the Shimadzu AA-6300 atomic absorption spectrometer was used to detect sodium ion potassium ion 0.2 ppm. After Fourier infrared detection, at 1401 cm" 1 , 1386cm” 1 , 1 190cm" 1 , 1225cm” 1 , 859cm” 1 , 845cm" 1 , 783cm - 1 , 747cm -1 , passed the standard for bisfluorosulfonimide The spectral control was determined to be a characteristic group of the difluorosulfonimide.
  • Example 5 To a 1000 ml three-necked flask was charged 220.0 g (lmol) of lithium dichlorosulfonimide, 200.0 g of bistrifluoroethyl carbonate and 200.0 g of acetonitrile, 290.0 g (5 mol) of potassium fluoride and 22 g of 18- under nitrogen protection. Crown-6-ether. The mixture was reacted at 90 ° C for 24 hours with stirring, and then cooled to room temperature, filtered, and the filtrate was evaporated to give 152 g of white crystals. The sodium content was measured by a Metrohm 848 potentiometric titrator of 3.
  • the sodium content was measured by a Metrohm 848 potentiometric titrator to be 3. lppm, and the Shimadzu AA-6300 atomic absorption spectrometer was used to detect sodium ion potassium ions of 0.3 ppm. After Fourier infrared detection, in MO lcm, 1386cm" 1 , 1 190cm" 1 , 1225cm" 1 , 859cm” 1 , 845cm" 1 , ⁇ ⁇ 1 , through the standard spectrum of bisfluorosulfonimide Control, identified as a characteristic group of the bisfluorosulfonimide. Comparative Example:
  • U.S. Patent No. 7,253,317 synthesizes a difluorosulfonylimide alkali metal salt in an alkali metal fluoride and a dichlorosulfonimide in nitroformamidine. Specific examples are:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

一种双氟代磺酰亚胺锂的制备方法,所述方法包括:在饱和碳酸烷基酯和/或饱和氟代碳酸烷基酯溶剂中,在与碱金属氟化物相适应的冠醚类相转移催化剂的催化条件下,使双氯代磺酰亚胺锂与作为氟化剂的碱金属氟化物反应,得到双氟代磺酰亚胺锂。所述双氟代磺酰亚胺锂的制备方法工艺路线简单,容易实现工业化制备。

Description

双氟代磺酰亚胺锂的制备方法 本申请要求于 2012年 9月 10日向中国知识产权局提交的名称为 "双氟代磺 酰亚胺锂的制备方法 "(中国申请号为 201210331995.0)的发明的优先权, 该发明 的内容以全文引用的方式结合于此。 技术领域
本发明涉及一种双氟代磺酰亚胺锂的制备方法。 背景技术
本发明所指的双氟代磺酰亚胺锂是具有如下结构的化合物:
Figure imgf000002_0001
双氟代磺酰亚胺锂可用于多种领域, 可作为锂离子电池电解液添加剂, 改 善锂离子电池循环性能, 也可以作为一次电池用电解质使用; 可作为聚合反应 催化剂; 也可用于工业领域内抗静电剂使用。
现在研究表明, 双氟代磺酰亚胺锂应用于可充电锂电池的电解液中, 能有 效降低形成在电极板表面上的 SEI层在低温下的高低温电阻, 降低锂电池在放 置过程中的容量损失, 从而提供高容量电池, 提高了电池的电化学性能。
双氟代磺酰亚胺锂的制备技术, 国内外已见报道主要为双氯代磺酰亚胺为 原料与氟磺酸反应, 得到双氟代磺酰亚胺, 再与锂盐反应得到双氟代磺酰亚胺 锂, 以及 Beran等提出以高氯酸锂为原料与双氟代磺酰亚胺钾进行置换反应, 得 到双氟代磺酰亚胺锂盐产品。 美国专利 US7253317以碱金属氟化物和双氯代磺 酰亚胺在硝基甲垸中合成双氟代磺酰亚胺碱金属盐, 产物中含有一氯一氟代磺 酰亚胺、 氟代磺酰胺等杂质, 难以分离, 收率低, 同时难以得到固态的盐。 以 上工艺路线中都存在着工艺路线长、 产物组成复杂以及产品中夹带杂质如酸酯 或钾等离子含量不容易进一步分离等缺点, 也进一步影响了产品的工业化实 施。 本发明针对以上缺点, 直接以双氯代磺酰亚胺锂为原料, 在催化剂和适宜 的溶剂下,直接与碱金属氟化物进行氟氯交换,得到固态的双氟代磺酰亚胺锂, 产品中氟、 氯以及钾等离子含量均在 lOppm以下, 完全达到应用锂电池电解液 材料要求, 同时工艺路线简单, 容易实现工业化制备。 发明内容
本发明的发明人针对现有技术中存在的问题, 经过深入研究后发现了一种 适合于制备双氟代磺酰亚胺锂的新工艺: 采取双氯代磺酰亚胺锂为原料, 与碱 金属氟化物在合适的催化剂和溶剂下直接进行氟氯交换, 得到双氟代磺酰亚胺 锂产品。 与目前国际上通用的工艺相比, 本发明制备方法的工艺路线简单易控 制,产品中夹带的氟、氯以及碱金属离子等杂质都低于 lOOppm,甚至低于 10ppm, 满足电子级应用要求。
一方面, 本发明提供一种双氟代磺酰亚胺锂的制备方法, 所述方法包括: 在饱和碳酸垸基酯和 /或饱和氟代碳酸垸基酯溶剂中,在与碱金属氟化物相适应 的冠醚类相转移催化剂的催化条件下, 使双氯代磺酰亚胺锂与作为氟化剂的碱 金属氟化物反应, 得到双氟代磺酰亚胺锂。
其中, 所述双氯代磺酰亚胺锂的结构式为:
Figure imgf000003_0001
所述双氟代磺酰亚胺锂的结构式为:
Figure imgf000003_0002
。 在本发明一个实施方式中, 所述碱金属氟化物选自氟化锂、 氟化钾、 氟化 钠或者它们的混合物, 该碱金属氟化物的加入量为双氯代磺酰亚胺锂摩尔数的
2.01〜10倍。 在本发明优选实施方式中, 所述饱和碳酸垸基酯溶剂选自碳酸二甲酯、 碳 酸二乙酯、 碳酸二丙酯、 碳酸甲乙酯、 碳酸甲丙酯、 碳酸乙丙酯、 中的一种或 多种的混合物, 其加入量为双氯代磺酰亚胺锂质量分数的 1〜10倍。
在本发明优选实施方式中, 所述饱和氟代碳酸垸基酯溶剂选自三氟乙基乙 基碳酸酯、双三氟乙基碳酸酯、三氟乙基甲基碳酸酯中的一种或多种的混合物, 其加入量为双氯代磺酰亚胺锂质量份数的 1〜10倍。
在本发明优选实施方式中, 所述与碱金属氟化物相适应的冠醚类相转移催 化剂为 12-冠 -4(氟化锂)、 15-冠 -5(氟化钠) 或 18-冠 -6 (氟化钾) 。
在本发明优选实施方式中, 所述冠醚类相转移催化剂的加入量为双氯代磺 酰亚胺锂质量分数的 0.1 %〜10%。
在一个实施方式中, 本发明所述反应在 40〜130°C的温度下进行, 反应时间 为 8〜24小时。
具体来说,本发明提供一种双氟代磺酰亚胺锂的制备方法,所述方法包括: 在饱和碳酸垸基酯和 /或饱和氟代碳酸垸基酯溶剂溶剂中,在与碱金属氟化物相 适应的冠醚类相转移催化剂的催化条件下, 使双氯代磺酰亚胺锂与作为氟化剂 的碱金属氟化物反应, 得到双氟代磺酰亚胺锂。
在本发明中, 所述反应式如下:
溶剂 ,
Li(NS02Cl)2+RF →^ Li(NS02F)2+RCl I 其中, R选自锂、 钾、 钠中的一种或多种。
在本发明中, 所述碱金属氟化物 RF选自氟化锂、 氟化钾、 氟化钠或者它们 的混合物, 该碱金属氟化物的加入量为双氯代磺酰亚胺锂摩尔数的 2.01〜10倍。
在本发明的一个实施方式中, 所述饱和碳酸垸基酯溶剂选自碳酸二甲酯、 碳酸二乙酯、 碳酸二丙酯、 碳酸甲乙酯、 碳酸甲丙酯、 碳酸乙丙酯中的一种或 多种的混合物, 其加入量为双氯代磺酰亚胺锂质量分数的 1〜10倍。
在本发明的另一实施方式中, 所述饱和氟代碳酸垸基酯溶剂选自三氟乙基 乙基碳酸酯、 双三氟乙基碳酸酯、 三氟乙基甲基碳酸酯中的一种或多种的混合 物, 其加入量为双氯代磺酰亚胺锂质量份数的 1〜10倍。
在本发明中, 所述饱和碳酸垸基酯溶剂可以和饱和氟代碳酸垸基酯溶剂混 合, 作为本发明反应中使用的溶剂。 在本发明中,所述与碱金属氟化物相适应的冠醚类相转移催化剂优选为 12- 冠 -4(氟化锂)、 15-冠 -5(氟化钠) 或 18-冠 -6 (氟化钾) 。 也就是, 所述与碱金属 氟化物相适应的冠醚类相转移催化剂优选与氟化锂相适应的 12-冠 -4相转移催 化剂、 与氟化钠相适应的 15-冠 -5相转移催化剂或者与氟化钾相适应的 18-冠 -6 相转移催化剂。
在本文中, 所述 12-冠 -4(氟化锂)是指当使用的碱金属氟化物为氟化锂时, 所述与碱金属氟化物相适应的冠醚类相转移催化剂为 12-冠 -4。类似的,所述 15- 冠 -5(氟化钠) 是指当使用的碱金属氟化物为氟化钠时, 所述与碱金属氟化物相 适应的冠醚类相转移催化剂为 15-冠 -5。 所述 18-冠 -6 (氟化钾)是指当使用的碱 金属氟化物为氟化锂时, 所述与碱金属氟化物相适应的冠醚类相转移催化剂为 18善 6。
在本发明中, 所述冠醚类相转移催化剂的加入量为双氯代磺酰亚胺锂质量 分数的 0.1 %〜 10%。
在本发明中, 所述反应在 40〜130°C的温度下进行, 反应时间为 8〜24小时。 在本发明中, 本发明的目的具体是通过以下方式实现的:
以双氯代磺酰亚胺锂为原料, 碱金属氟化物为氟化试剂, 在饱和碳酸垸基 酯和 /或饱和氟代碳酸垸基酯溶剂溶剂中, 以与碱金属氟化物相适应的冠醚类相 转移催化剂为催化剂, 在一定的温度下反应, 得到含双氟代磺酰亚胺锂产品。
所述碱金属氟化物选自氟化锂、氟化钠、氟化钾中的一种或多种的混合物, 其加入量为双氯代磺酰亚胺锂摩尔数的 2.01〜10倍。
所述饱和碳酸垸基酯溶剂选自碳酸二甲酯、 碳酸二乙酯、 碳酸二丙酯、 碳 酸甲乙酯、 碳酸甲丙酯、 碳酸乙丙酯中的一种或多种的混合物, 其加入量为双 氯代磺酰亚胺锂质量分数的 1〜10倍。
在本发明中, 所述饱和碳酸垸基酯溶剂还可以是基于饱和碳酸垸基酯的溶 剂, 其为特定非质子混合溶剂, 选自碳酸二甲酯、 碳酸二乙酯、 碳酸甲乙酯、 双三氟乙基碳酸酯、 三氟乙基甲基碳酸酯、 乙腈、 四氢呋喃二种以上混合物, 加入量为双氯代磺酰亚胺锂质量份数的 1〜10倍。
另外, 所述基于饱和碳酸垸基酯的溶剂是基于饱和氟代碳酸垸基酯的溶 剂, 选自三氟乙基乙基碳酸酯、 双三氟乙基碳酸酯、 三氟乙基甲基碳酸酯中的 一种或多种的混合物, 其加入量为双氯代磺酰亚胺锂质量份数的 1〜10倍。
所述与碱金属氟化物相适应的冠醚类相转移催化剂为 12-冠 -4-醚 (氟化锂)、
15-冠 -5-醚 (氟化钠) 和 /或 18-冠 -6-醚 (氟化钾)
在本发明中, 所述冠醚类相转移催化剂的加入量为原料双氯代磺酰亚胺 锂质量分数的 0.1 %〜 10%。
在本发明中, 所述反应的温度为 40〜130°C, 反应时间为 8〜24小时。
与现有的制备方法相比, 本发明具有以下优点:
1. 工艺路线简单易控制;
2. 易提纯, 产品中残留的氟和氯等含量低, 产品质量稳定;
3. 收率高, 产品纯度高 ( 99.9% ) , 能满足电子级要求。 附图说明
图 1是本发明双氟代磺酰亚胺经过傅立叶红外检测得到的图谱。 具体实施方式
以下本发明将结合具体实施例做进一步的详细说明, 使技术人员更加清楚 地了解本发明的优点。 应该理解, 其中的内容只是用作说明, 而绝非对本发明 的保护范围构成限制。 下列实施例中未注明具体条件的实验方法, 通常按照常 规条件, 或按照制造厂商所建议的条件进行。 除非另外说明, 所有的份数为重 量份计, 所有的百分比为重量百分比计。 实施例 1
在氮气保护下向 1000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 220.0g碳酸二甲酯, 52.26g(2mol)氟化锂和 0.22g 12-冠 -4-醚。 在搅拌下、 在 40 °C下反应 8小时后冷却至室温, 过滤, 滤液蒸除溶剂后得到白色晶体 149g, 收 率 79.7%。采用瑞士万通 848电位滴定仪检测氯含量为 7ppm。产品经过傅立叶红 外检测 , 在 1401cm-1 , 1386cm"1, 1 190cm"1, 1225cm"1, 859cm"1, 845cm"1, SScn^JA cm-1,通过对双氟代磺酰亚胺标准谱图对照, 确定为双氟代磺酰亚胺 的特征基团。 实施例 2
在氮气保护下向 3000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 2200.0g碳酸二乙酯, 420.0g(10mol)氟化钠和 22g 15-冠 -5-醚。 在搅拌下、 在 100 °C下反应 24小时后冷却至室温, 过滤, 滤液蒸除溶剂后得到白色晶体 155g, 收 率 82.9%。 采用瑞士万通 848电位滴定仪检测氯含量为 5ppm, 岛津 AA-6300原子 吸收仪检测钠离子 0.7ppm。 经过傅立叶红外检测, 在 1401cm , 1386cm"1, 1 192cm"1, 1226cm"1, 859cm"1, 845cm"1, 783cm-1 JA cm-1,通过对双氟代磺酰亚胺 标准谱图对照, 确定为双氟代磺酰亚胺的特征基团。 实施例 3
在氮气保护下向 1000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 200.0g碳酸二乙酯和 200g碳酸二丙酯, 290.0g(5mol)氟化钾和 22g 18-冠 -6-醚。 在搅拌下、 在 130°C下反应 14小时后冷却至室温, 过滤, 滤液蒸除溶剂后得到 白色晶体 153g, 收率 81.8%。 采用瑞士万通 848电位滴定仪检测氯含量为 2ppm, 岛津 AA-6300原子吸收仪检测钠离子钾离子 0.2ppm。 经过傅立叶红外检测, 在 1401 cm"1 , 1386cm"1, 1 190cm"1, 1225cm"1, 859cm"1, 845cm"1, 783cm- 1,747cm-1,通过 对双氟代磺酰亚胺标准谱图对照, 确定为双氟代磺酰亚胺的特征基团。 实施例 4
在氮气保护下向 1000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 400.0g双三氟乙基碳酸酯, 290.0g(5mol)氟化钾和 22g 18-冠 -6-醚。 在搅拌下、 在 1 10 °C下反应 24小时后冷却至室温, 过滤, 滤液蒸除溶剂后得到白色晶体 156g, 收率 83.4%。 采用瑞士万通 848电位滴定仪检测氯含量为 5. lppm, 岛津 AA-6300原子吸收仪检测钠离子钾离子 0.6ppm。 经过傅立叶红外检测, 在 1401 cm"1 , 1386cm"1, 1 190cm"1, 1225cm"1, 859cm"1, 845cm"1, 783cm- 1,747cm-1,通过 对双氟代磺酰亚胺标准谱图对照, 确定为双氟代磺酰亚胺的特征基团。 实施例 5 在氮气保护下向 1000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 200.0g双三氟乙基碳酸酯和 200.0g乙腈, 290.0g(5mol)氟化钾和 22g 18-冠 -6-醚。 在搅拌下、 在 90°C下反应 24小时后冷却至室温, 过滤, 滤液蒸除溶剂后得到白 色晶体 152g, 收率 81.2%。 采用瑞士万通 848电位滴定仪检测氯含量为 3. lppm, 岛津 AA-6300原子吸收仪检测钠离子钾离子 0.3ppm。 经过傅立叶红外检测, 在 1401 cm"1 , 1386cm"1, 1 190cm"1, 1225cm"1, 859cm"1, 845cm"1, 783cm- 1,747cm-1,通过 对双氟代磺酰亚胺标准谱图对照, 确定为双氟代磺酰亚胺的特征基团。 实施例 6
在氮气保护下向 1000ml三口烧瓶中加入 220.0g ( lmol )双氯代磺酰亚胺锂, 200.0g双三氟乙基碳酸酯和 200.0g碳酸二甲酯, 232.0g(4mol)氟化钾,26.1g(lmol) 氟化锂和 18g 18-冠 -6-醚以及 6gl2-冠 -4-醚。 在搅拌下、 在 90 °C下反应 24小时后 冷却至室温, 过滤, 滤液蒸除溶剂后得到白色晶体 151g, 收率 80.7%。 采用瑞 士万通 848电位滴定仪检测氯含量为 3. lppm,岛津 AA-6300原子吸收仪检测钠离 子钾离子 0.3ppm。 经过傅立叶红外检测, 在 MO lcm , 1386cm"1, 1 190cm"1, 1225cm"1, 859cm"1, 845cm"1, δβοη^^Α οιη·1,通过对双氟代磺酰亚胺标准谱图对 照, 确定为双氟代磺酰亚胺的特征基团。 对比实施例:
美国专利 US7253317以碱金属氟化物和双氯代磺酰亚胺在硝基甲垸中合成 双氟代磺酰亚胺碱金属盐, 具体实例为:
1.将 3.556g ( 137.1mmol )氟化锂加入到 5ml硝基甲垸中, 4.907g ( 22.9mmol) 双氯代磺酰亚胺溶于 5ml硝基甲垸中, 搅拌下滴加双氯代磺酰亚胺硝基甲垸溶 液, 滴加结束后反应过夜。 取上层清液做核磁共振分析:
Figure imgf000008_0001
35.3 53.3 FSO,
发现其没有得到双氟代磺酰亚胺锂。
2.将 4.421g (29.1mmol)氟化铯加入到 2ml硝基甲垸中, 2.243g ( 10.48mmol) 双氯代磺酰亚胺溶于 5ml硝基甲垸中, 搅拌下滴加双氯代磺酰亚胺硝基甲垸溶 液, 滴加结束后反应 72小时。 取上层清液做核磁共振分析:
Figure imgf000009_0001
通过核磁共振峰高显示约有 77.8%的双氯代磺酰亚胺开始转化成双氟代磺 酰亚胺, 但是没有得到固态的双氟代磺酰亚胺铯盐。 应该理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员可以对 本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书所限 定的范围。

Claims

权利要求
1. 一种双氟代磺酰亚胺锂的制备方法, 所述方法包括: 在饱和碳酸垸基酯 和 /或饱和氟代碳酸垸基酯溶剂中,在与碱金属氟化物相适应的冠醚类相转移催 化剂的催化条件下, 使双氯代磺酰亚胺锂与作为氟化剂的碱金属氟化物反应, 得到双氟代磺酰亚胺锂。
2. 如权利要求 1所述双氟代磺酰亚胺锂的制备方法, 其特征在于: 所述双 氯代磺酰亚胺锂的结构式为:
Figure imgf000010_0001
所述双氟代磺酰亚胺锂的结构式为
Figure imgf000010_0002
3. 如权利要求 1所述双氟代磺酰亚胺锂的制备方法, 其特征在于: 所述碱 金属氟化物选自氟化锂、 氟化钾、 氟化钠或者它们的混合物, 该碱金属氟化物 的加入量为双氯代磺酰亚胺锂摩尔数的 2.01〜10倍。
4. 如权利要求 1或 3所述双氟代磺酰亚胺锂的制备方法, 其特征在于: 所述 饱和碳酸垸基酯溶剂选自碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、 碳酸甲丙酯、 碳酸乙丙酯、 中的一种或多种的混合物, 其加入量为双氯代磺酰 亚胺锂质量分数的 1〜10倍。
5. 如权利要求 1或 3所述的双氟代磺酰亚胺锂的制备方法, 其特征在于: 所 述饱和氟代碳酸垸基酯溶剂选自三氟乙基乙基碳酸酯、 双三氟乙基碳酸酯、 三 氟乙基甲基碳酸酯中的一种或多种的混合物, 其加入量为双氯代磺酰亚胺锂质 量份数的 1〜10倍。
6. 如权利要求 1所述双氟代磺酰亚胺锂的制备方法, 其特征在于: 所述与 碱金属氟化物相适应的冠醚类相转移催化剂为 12-冠 -4(氟化锂)、 15-冠 -5(氟化 钠) 或 18-冠 -6 (氟化钾) 。
7. 如权利要求 1或 5所述的双氟代磺酰亚胺锂的制备方法, 其特征在于: 冠 醚类相转移催化剂的加入量为双氯代磺酰亚胺锂质量分数的 0.1%〜10%。
8. 如权利要求 1所述的双氟代磺酰亚胺锂的制备方法, 其特征在于: 反应 在 40〜130°C的温度下进行, 反应时间为 8〜24小时。
PCT/CN2013/071868 2012-09-10 2013-02-26 双氟代磺酰亚胺锂的制备方法 WO2014036814A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015530266A JP5974181B2 (ja) 2012-09-10 2013-02-26 リチウムビス(フルオロスルホニル)イミドの製造方法
KR1020157005898A KR101668293B1 (ko) 2012-09-10 2013-02-26 리튬비스(플루오로술포닐)이미드의 제조방법
PL13835371T PL2894146T3 (pl) 2012-09-10 2013-02-26 Sposób wytwarzania bis(fluorosulfonylo)imidu
EP13835371.9A EP2894146B1 (en) 2012-09-10 2013-02-26 Method for preparing bis(fluorosulfonyl)imide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210331995.0A CN103663393B (zh) 2012-09-10 2012-09-10 双氟代磺酰亚胺锂的制备方法
CN201210331995.0 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014036814A1 true WO2014036814A1 (zh) 2014-03-13

Family

ID=50236495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071868 WO2014036814A1 (zh) 2012-09-10 2013-02-26 双氟代磺酰亚胺锂的制备方法

Country Status (7)

Country Link
EP (1) EP2894146B1 (zh)
JP (1) JP5974181B2 (zh)
KR (1) KR101668293B1 (zh)
CN (1) CN103663393B (zh)
HU (1) HUE041978T2 (zh)
PL (1) PL2894146T3 (zh)
WO (1) WO2014036814A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320151A (zh) * 2020-02-18 2020-06-23 白银科奥夫化学科技有限公司 一种双氟磺酰亚胺锂盐的制备方法
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
CN115141159A (zh) * 2019-12-31 2022-10-04 中国科学院上海有机化学研究所 双氟磺酰亚胺作为催化剂的应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461365B2 (en) * 2015-06-23 2019-10-29 Nippon Shokubai Co., Ltd. Conductive material and manufacturing method and purification method for same, and non aqueous electrolyte solution and antistatic agent using said conductive material
KR101718292B1 (ko) * 2015-11-26 2017-03-21 임광민 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
CN105731398B (zh) * 2016-01-25 2018-01-23 苏州氟特电池材料股份有限公司 一种双氟磺酰亚胺的碱金属盐的制备方法
CN107226461B (zh) * 2016-03-25 2020-12-18 浙江省化工研究院有限公司 一种双氟磺酰亚胺盐的制备方法
CN105947998B (zh) * 2016-04-29 2018-05-15 金国范 一种利用氮化锂制备双氟磺酰亚胺锂盐的方法
JP6663986B2 (ja) * 2016-05-27 2020-03-13 株式会社日本触媒 ビス(フルオロスルホニル)イミドアルカリ金属塩の製造方法
CN106219503B (zh) * 2016-07-12 2018-11-30 武汉松石科技股份有限公司 一种双(氟磺酰)亚胺及其碱金属盐的制备方法
CN108147981B (zh) * 2016-12-06 2020-05-22 中国科学院宁波材料技术与工程研究所 一种逆相转移催化制备磺酰亚胺类化合物的方法
KR101926856B1 (ko) * 2017-03-22 2018-12-10 제이투에이치바이오텍 (주) 금속 양이온이 제거된 초고순도 플루오로설포닐이미드의 제조방법
KR101955096B1 (ko) * 2017-06-26 2019-03-06 임광민 매우 간단하고 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
CN107651654A (zh) * 2017-10-27 2018-02-02 江苏理文化工有限公司 一种以氟盐作为氟化剂的双氟磺酰亚胺锂的制备方法
CN109721037B (zh) 2019-03-11 2019-12-24 上海如鲲新材料有限公司 一种双氟磺酰亚胺盐的新工艺
JP7288777B2 (ja) * 2019-03-19 2023-06-08 国立大学法人 東京大学 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス
JP7288776B2 (ja) * 2019-03-19 2023-06-08 国立大学法人 東京大学 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス
JP7288775B2 (ja) * 2019-03-19 2023-06-08 国立大学法人 東京大学 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2527802A1 (en) * 2005-12-12 2007-06-12 Christophe Michot Synthesis of anhydrous imides lithium salts containing fluorosulfonyl or fluorophosphoryl substituent
US7253317B2 (en) 2000-12-29 2007-08-07 Hydro-Quebec Method for fluorinating a compound comprising a halosulphonyl or dihalophosphonyl group
CN102046523A (zh) * 2008-07-23 2011-05-04 第一工业制药株式会社 双(氟磺酰基)亚胺阴离子化合物的制备方法和离子对化合物
CN102405189A (zh) * 2009-11-27 2012-04-04 株式会社日本触媒 氟磺酰亚胺盐以及氟磺酰亚胺盐的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134027B2 (en) * 2008-03-31 2012-03-13 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same
EP3736250B1 (en) * 2010-05-28 2023-07-26 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide
CN102617414B (zh) * 2012-03-02 2014-12-17 苏州氟特电池材料有限公司 含氯磺酰/磷酰亚胺碱金属盐和含氟磺酰/磷酰亚胺碱金属盐的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253317B2 (en) 2000-12-29 2007-08-07 Hydro-Quebec Method for fluorinating a compound comprising a halosulphonyl or dihalophosphonyl group
CA2527802A1 (en) * 2005-12-12 2007-06-12 Christophe Michot Synthesis of anhydrous imides lithium salts containing fluorosulfonyl or fluorophosphoryl substituent
CN102046523A (zh) * 2008-07-23 2011-05-04 第一工业制药株式会社 双(氟磺酰基)亚胺阴离子化合物的制备方法和离子对化合物
CN102405189A (zh) * 2009-11-27 2012-04-04 株式会社日本触媒 氟磺酰亚胺盐以及氟磺酰亚胺盐的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
CN115141159A (zh) * 2019-12-31 2022-10-04 中国科学院上海有机化学研究所 双氟磺酰亚胺作为催化剂的应用
CN115141159B (zh) * 2019-12-31 2024-04-26 中国科学院上海有机化学研究所 双氟磺酰亚胺作为催化剂的应用
CN111320151A (zh) * 2020-02-18 2020-06-23 白银科奥夫化学科技有限公司 一种双氟磺酰亚胺锂盐的制备方法

Also Published As

Publication number Publication date
EP2894146A4 (en) 2016-04-27
PL2894146T3 (pl) 2019-02-28
JP2015535789A (ja) 2015-12-17
CN103663393A (zh) 2014-03-26
EP2894146B1 (en) 2018-08-22
KR101668293B1 (ko) 2016-10-21
KR20150039845A (ko) 2015-04-13
HUE041978T2 (hu) 2019-06-28
JP5974181B2 (ja) 2016-08-23
EP2894146A1 (en) 2015-07-15
CN103663393B (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2014036814A1 (zh) 双氟代磺酰亚胺锂的制备方法
CN107226821B (zh) 一种用双草酸硼酸锂制备二氟草酸硼酸锂的合成工艺
CN108640096B (zh) 一种二氟磷酸及二氟磷酸锂的制备方法
CN106946921A (zh) 乙二酸氟硼酯制备二氟草酸硼酸锂与双草酸硼酸锂的方法
JP6336969B2 (ja) Liイオン電池用の二環式芳香族アニオンの塩
JP3542762B2 (ja) リチウムフルオロアルキルホスフェート化合物およびこれらの化合物の電解質塩としての使用
WO2016093400A1 (en) Method for preparing lithium bis(fluorosulfonyl) imide salt and intermediate product obtained from the same
CN110903274B (zh) 一种4,5-双氟代碳酸乙烯酯及其制备方法
CN108423651A (zh) 一种制备二氟磷酸锂的方法
CN105399761A (zh) 一种二氟草酸硼酸锂的制备方法
WO2014106362A1 (zh) 双氟代磺酰亚胺锂的制备方法
KR20220110030A (ko) 용해성이 우수한 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
TW200925155A (en) Method for production of purified ammonium salt of fluorinated bis-sulfonylimide
Liu et al. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries
CN107722048A (zh) 环状磺酸硅基内酯及其制备方法
CN117185934A (zh) 一种双氟磺酰亚胺有机铵盐的制备方法
JP3375049B2 (ja) テトラフルオロホウ酸リチウムの製造方法
KR102275418B1 (ko) 리튬 비스플루오로술포닐이미드의 제조방법
CN110627742A (zh) 一种含有至少一种环状配体结构的化合物的制备方法和纯化方法
CN110845524B (zh) 一种用有机酰氧基硅烷制备特定锂盐的方法
CN114621116A (zh) 一种1,3,6-己烷三腈的制备方法
JP2001247522A (ja) 4級アルキルアンモニウムテトラフルオロボレート類の製造方法
US9704656B2 (en) Lithium silicates
CN110980669A (zh) 一种双氟磺酰亚胺碱金属盐的制备方法
CN113912037B (zh) 一种二氟磷酸锂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005898

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015530266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE