WO2014034439A1 - 透明導電膜形成用塗布液の製造方法 - Google Patents

透明導電膜形成用塗布液の製造方法 Download PDF

Info

Publication number
WO2014034439A1
WO2014034439A1 PCT/JP2013/071989 JP2013071989W WO2014034439A1 WO 2014034439 A1 WO2014034439 A1 WO 2014034439A1 JP 2013071989 W JP2013071989 W JP 2013071989W WO 2014034439 A1 WO2014034439 A1 WO 2014034439A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
boiling point
coating liquid
forming
Prior art date
Application number
PCT/JP2013/071989
Other languages
English (en)
French (fr)
Inventor
行延 雅也
大塚 良広
勇樹 村山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50183254&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014034439(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US14/392,006 priority Critical patent/US10283230B2/en
Priority to CN201380004507.8A priority patent/CN104025208B/zh
Priority to TW102131015A priority patent/TWI460141B/zh
Publication of WO2014034439A1 publication Critical patent/WO2014034439A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/27Oxides by oxidation of a coating previously applied
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a coating liquid for forming a transparent conductive film. More specifically, a coating for forming a transparent conductive film capable of forming a transparent conductive film having both transparency and high conductivity on a heat-resistant substrate such as glass or ceramic by using a coating method, particularly a spin coating method or a dip coating method.
  • the present invention relates to a method for producing a coating liquid for forming a transparent conductive film, which can stabilize the quality of the liquid and can be easily produced at low cost.
  • Transparent electrode for display element such as liquid crystal display, electroluminescence, plasma display, transparent electrode for touch panel, solar cell, etc., forming material for transparent conductive film used for functional coating such as heat ray reflection, electromagnetic wave shielding, antistatic, antifogging etc.
  • ITO tin-doped indium oxide
  • ITO film As a method for producing a transparent conductive film (ITO film), physical methods such as vacuum deposition, sputtering, and chemical vapor deposition are widely used. These methods can form a uniform transparent conductive film (ITO film) excellent in transparency and conductivity on a substrate.
  • the film forming apparatus used for this is very expensive because it is based on a vacuum vessel, and the component gas pressure in the manufacturing apparatus must be precisely controlled every time the substrate is formed. There is a problem with sex.
  • a method of applying on a substrate using a coating solution for forming a transparent conductive film in which an indium compound and a tin compound are dissolved in a solvent (hereinafter sometimes referred to as “coating method”). .) Is being considered.
  • a transparent conductive film ITO film
  • ITO film is formed by a simple manufacturing process of applying a coating liquid for forming a transparent conductive film onto a substrate, drying, and baking.
  • the coating method for applying the coating solution onto the substrate include spin coating, dipping, spray coating, screen printing, and wire bar coating.
  • the dip method and the spray coat method are applicable.
  • Patent Document 1 discloses a mixed solution of indium nitrate containing halogen ions or carboxyl groups and tin alkyl nitrate.
  • Patent Document 2 discloses a mixture of an organic indium compound and an organotin compound containing an alkoxyl group
  • Patent Document 3 discloses a mixture of indium nitrate and an organic tin compound
  • Patent Document 4 discloses a mixture of indium nitrate, tin nitrate, and the like.
  • Patent Document 5 includes a mixture of organic indium nitrate such as indium dicarboxylate and organic tin nitrate such as alkyltin nitrate, and Patent Document 6 includes an organic indium complex coordinated with acetylacetone and a tin complex.
  • Mixed solution the same organic compound mixed solution as above in Patent Document 7, and the same organic in Patent Document 8
  • compound mixtures are disclosed respectively, as can be seen in these patent documents, most of the conventional coating liquids are indium and tin nitrates, organic or inorganic compounds composed of halides, or organic metals such as metal alkoxides. Compounds and the like are used.
  • coating solutions using nitrates or halides have the problem of corrosive gas such as nitrogen oxides and chlorine during firing, resulting in equipment corrosion and environmental pollution.
  • a raw material since a raw material is easy to hydrolyze, there exists a problem in stability of a coating liquid.
  • many of the coating liquids using the organometallic compounds described in the above-mentioned patent documents have a problem that the wettability with respect to the substrate is poor and a non-uniform film is easily formed.
  • Patent Document 9 proposed by the applicant of the present invention, acetylacetone indium (formal name: tris (acetylacetonato) indium: In (C 5 H 7 O 2 ) 3 ) is used as a coating solution that improves these problems.
  • acetylacetone tin official name: di -n- butyl bis (2,4-pentanedionato) tin: [Sn (C 4 H 9 ) 2 (C 5 H 7 O 2) 2]
  • hydroxypropyl cellulose alkyl phenols
  • a coating liquid for forming a transparent conductive film containing alkenylphenol and dibasic acid ester and / or benzyl acetate is disclosed.
  • This coating solution improves the wettability of the coating solution to the substrate by containing hydroxypropyl cellulose in a mixed solution of acetylacetone indium and acetylacetone tin, and at the same time, the viscosity of the coating solution is controlled by the content of hydroxypropylcellulose as a viscosity agent. It is possible to use various coating methods such as spin coating, spray coating, dip coating, screen printing, and wire bar coating.
  • Patent Document 10 by the same applicant, the coating liquid for forming a transparent conductive film containing acetylacetone indium, acetylacetone tin, hydroxypropyl cellulose, alkylphenol and dibasic acid ester described in Patent Document 9 is applied, dried and baked.
  • a transparent conductive film (ITO film) obtained by using a low humidity air atmosphere during firing for example, a dew point temperature of ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower
  • the transparent conductive film becomes dense. It is disclosed that transparency, conductivity, and film strength can be improved. Therefore, when ordinary air is used for the firing atmosphere, the dew point temperature is high, for example, about 10 to 23 ° C.
  • the transparent conductive film (ITO film) using the proposed coating liquid for forming a transparent conductive film
  • a relatively dense high-temperature is used when low humidity air in winter is used as an atmosphere during firing.
  • a transparent conductive film of quality can be obtained, a clear tendency that only a low-quality transparent conductive film with poor density can be obtained when using a high humidity atmosphere in summer is recognized.
  • the transparent conductive film obtained due to variations in the quality of the transparent conductive film-forming coating liquid resulting from differences in the manufacturing conditions of the transparent conductive film-forming coating liquid It has been found that the denseness of the film varies greatly, and a method for producing a coating liquid for forming a transparent conductive film having more stable quality is desired.
  • the film structure of the transparent conductive film obtained due to the above-mentioned variation in denseness is that the conductive oxide fine particles (usually particle size: several nm to several tens of nm) such as ITO are densely filled with pores (voids) From a small and small dense film to a dense film (porous film) having a large and large number of pores (voids) filled with conductive oxide fine particles.
  • the dense film has higher transparency (smaller haze), lower resistance and better resistance over time, higher film strength, and higher performance than the dense film (porous film). realizable.
  • the transparency is generally evaluated by the degree of scattering (haze or haze value) of visible light (light having a wavelength of 380 to 780 nm) in the transparent conductive film, and it can be said that the smaller the haze, the higher the transparency.
  • the visible light in the short wavelength region (blue) is remarkably different from the light in the medium wavelength (green) to long wavelength region (red).
  • the degree of blue scattering hereinafter referred to as “blue haze” increases as the transparent conductive film becomes denser because it is easily scattered (because Rayleigh scattering is likely to occur).
  • the short wavelength region (blue) refers to a wavelength region in the vicinity of a wavelength of 450 nm where a color vision reaction (a reaction in which the human eye feels color well) among the short wavelength regions of visible light.
  • This blue haze is noticeably perceived when the transparent conductive film is irradiated with strong visible light (for example, sunlight), so that the blue haze is large even if the visible light haze is relatively small. (Conversely, blue haze is a relatively small value and there is no case where the haze of visible light is large.) Especially, it is difficult to obtain a dense transparent conductive film with high humidity in the atmosphere (high dew point temperature). Even in summer, a high-quality coating solution for forming a transparent conductive film that can reduce blue haze as well as visible haze is desired.
  • strong visible light for example, sunlight
  • the transparent conductive film is separated from the problem of the denseness of the obtained transparent conductive film.
  • the viscosity of the coating liquid for forming increases with time, and in the worst case, it may gel (purinate) in a period of several days to several months, and the solution of the problem is also desired.
  • the coating liquid for forming a transparent conductive film can be produced more simply and in a short time.
  • Patent Document 9 and Patent Document 10 propose a production method in which a solution obtained by dissolving components such as acetylacetone indium and hydroxypropyl cellulose in an organic solvent is heated and stirred at 60 to 200 ° C. for 0.5 to 12 hours.
  • the manufacturing conditions are wide, and in the examples, only the manufacturing conditions of heating at 160 ° C. for 1 hr (Patent Document 9) and heating at 130 ° C. for 1.5 hr (Patent Document 10) are shown. Since the manufacturing conditions are limited, a more optimized manufacturing method is desired from the viewpoint of stabilizing the quality of the coating liquid for forming a transparent conductive film and reducing the cost. .
  • An object of the present invention is to provide a transparent conductive film forming coating liquid that can form a transparent conductive film having both transparency and high conductivity by a coating method such as a spin coating method or a dip coating method. It is providing the manufacturing method of the coating liquid for transparent conductive film formation which can be produced simply at cost.
  • indium acetylacetone as an organic indium compound
  • organometallic compound for a dopant an organometallic compound for a dopant
  • a cellulose derivative such as hydroxypropylcellulose
  • a high-boiling organic solvent a high-boiling organic solvent
  • the coating liquid for transparent conductive film formation containing the alkylphenol and dibasic acid ester as above (degree C.), the above-mentioned acetylacetone indium, the organometallic compound for the dopant, the cellulose derivative, the alkylphenol, and In the heating and dissolving step of heating and dissolving and reacting with stirring in a high boiling point organic solvent (boiling point: 180 ° C.
  • the coating liquid for transparent conductive film formation that can form a transparent conductive film that has both transparency and high conductivity by a coating method such as spin coating method or dip coating method, stabilizes the quality and lowers the cost.
  • a coating method such as spin coating method or dip coating method
  • the first invention of the present invention for achieving the above object is to stir an organic indium compound, an organometallic compound for dopant, and an organic viscosity agent in a high boiling point organic solvent (boiling point: 180 ° C. or higher).
  • a heating and dissolving step for obtaining a high-concentration solution by heating and dissolving and reacting, the high-concentration solution obtained in the heating and dissolving step is a medium boiling organic solvent (boiling point: 100 ° C. or higher and lower than 180 ° C.), a low boiling organic solvent (boiling point) : 50 ° C.
  • a method for producing a transparent conductive film-forming coating solution comprising a dilution step of diluting at any one or more of the organic indium compound and dopant for the high concentration solution
  • the total content of the organometallic compound is 20 to 60% by weight
  • the content of the organic viscosity agent is 1/20 to 1/3 of the total content (weight) of the organoindium compound and the organometallic compound for dopant
  • the indium compound is indium acetylacetone
  • the organic viscous agent is a cellulose derivative
  • the high boiling organic solvent (boiling point: 180 ° C. or higher) is a high boiling organic solvent (boiling point: 180 ° C.
  • organic solvents having a boiling point (boiling point: 100 ° C. or higher and lower than 180 ° C.) or low boiling point organic solvent (boiling point: 50 ° C.
  • the heating temperature (T: ° C.) is within the range of 130 ⁇ T ⁇ 180 ° C.
  • the heating time (L: hr) is ⁇ 0.7T + 104 ⁇ L ⁇ 1.1T + 168 ( 130 ⁇ T ⁇ 140 ° C.), ⁇ 0.3T + 48 ⁇ L ⁇ 0.6T + 98 (140 ⁇ T ⁇ 150 ° C.), ⁇ 0.15T + 25.5 ⁇ L ⁇ 0.4T + 68 ( 150 ⁇ T ⁇ 160 ° C.), ⁇ 0.1T + 17.5 ⁇ L ⁇ 0.2T + 36 (160 ⁇ T ⁇ 170 ° C.), ⁇ 0.025T + 4.75 ⁇ L ⁇ 0.1T + 19 (170 ⁇ T ⁇ 180 ° C.) ).
  • an organic indium compound, an organometallic compound for a dopant, and an organic viscosity agent are heated and dissolved and reacted while stirring in a high boiling point organic solvent (boiling point: 180 ° C. or higher) to obtain a high concentration solution.
  • the coating liquid for transparent conductive film formation which consists of each process of the dilution process diluted with one or more, Comprising:
  • the total content of the organic indium compound of the high concentration solution and the organometallic compound for dopants is 20 ⁇ 60% by weight
  • organic viscous agent content is 1/20 ⁇ 1/3 of total content (weight) of organic indium compound and organometallic compound for dopant
  • organic indium compound is acetylacetate
  • organic viscosity agent is cellulose derivative
  • high boiling point organic solvent (boiling point: 180 ° C or higher) is high boiling point organic solvent (boiling point: 180 ° C or higher) containing at least alkylphenol and dibasic acid ester, medium boiling point organic solvent Any one or more of a solvent (boiling point: 100 ° C.
  • T: ° C. a heating temperature within a range of 130 ⁇ T ⁇ 180 ° C.
  • L a heating time satisfying the following formula (1)
  • a transparent conductive film forming coating solution A coating solution for forming a transparent conductive film, characterized in that the viscosity change when left at room temperature for 3 months is adjusted to be within 0.5 to 1.5 times the initial viscosity (within ⁇ 50%) It is a manufacturing method.
  • the fourth invention of the present invention is characterized in that the total content of the organic indium compound and the organometallic compound for dopant in the coating liquid for forming a transparent conductive film in the first to third inventions is 5 to 15% by weight. It is a manufacturing method of the coating liquid for transparent conductive film formation to be.
  • a fifth invention of the present invention is a method for producing a coating liquid for forming a transparent conductive film, wherein the dopant organometallic compound in the first to fourth inventions is acetylacetone tin.
  • the sixth invention of the present invention is a method for producing a coating solution for forming a transparent conductive film, wherein the cellulose derivative in the first to fifth inventions is hydroxypropyl cellulose.
  • the seventh invention of the present invention is a method for producing a coating liquid for forming a transparent conductive film, characterized in that the alkylphenol in the first to sixth inventions is paratertiary butylphenol (boiling point 237 ° C.).
  • the dibasic acid ester according to the first to seventh aspects includes dimethyl malonate (boiling point: 181 to 183 ° C.), dimethyl succinate (boiling point: 196 ° C.), dimethyl glutarate (boiling point). : 210 to 215 ° C.) and dimethyl adipate (boiling point: 215 to 225 ° C.).
  • the ketone organic solvent in the first to eighth aspects is at least one of cyclohexanone (boiling point: 155.7 ° C.) and methyl ethyl ketone (boiling point: 79.6 ° C.). This is a method for producing a coating liquid for forming a transparent conductive film.
  • the tenth aspect of the present invention is a coating liquid for forming a transparent conductive film obtained by using the method for producing a coating liquid for forming a transparent conductive film according to the first to ninth aspects.
  • a coating liquid for forming a transparent conductive film of the present invention on a heat-resistant substrate such as glass or ceramic, using a coating method, particularly a spin coating method or a dip coating method, has both transparency and high conductivity.
  • the coating liquid for forming a transparent conductive film capable of forming a transparent conductive film can be easily produced at low cost by stabilizing the quality.
  • the transparent conductive film formed on the substrate by a coating method such as a spin coating method or a dip coating method using the coating solution for forming a transparent conductive film obtained by the method for producing a coating solution for forming a transparent conductive film of the present invention, Since it has both transparency and high conductivity and is low in cost, it can be expected to be used for transparent electrodes such as display element transparent electrodes, touch panels, solar cells, and field emission lamps in various displays.
  • Heat dissolution / reaction conditions (heating temperature (T: ° C.) and heating time (L: hr)) in the heating and dissolving step in the method for producing a transparent conductive film forming coating liquid according to the present invention and a transparent conductive film forming coating liquid It is a figure which shows the relationship of the quality of.
  • an organic indium compound, an organometallic compound for dopant, and an organic viscosity agent are heated and dissolved and reacted while stirring in a high boiling point organic solvent (boiling point: 180 ° C. or higher) to obtain a high concentration solution.
  • the high-concentration dissolved solution obtained in the heating and dissolving step is one or more of a medium boiling organic solvent (boiling point: 100 ° C. or higher and lower than 180 ° C.) or a low boiling point organic solvent (boiling point: 50 ° C. or higher and lower than 100 ° C.).
  • a coating solution for forming a transparent conductive film is manufactured by a diluting process, and by setting the heating temperature and heating time in the heating and dissolving process within a specific range, a low-quality coating liquid for forming a transparent conductive film can be obtained.
  • a cost-effective and simple manufacturing method is possible.
  • acetylacetone indium (formal name: tris (acetylacetonato) indium) [In (C 5 H 7 O 2 ) 3 ] (hereinafter sometimes referred to as AcAcIn) is used.
  • Indium acetylacetone is preferable because it has high solubility in an organic solvent and is thermally decomposed and burned (oxidized) into an oxide in the atmosphere at a temperature of about 200 to 250 ° C.
  • an organometallic compound for dopant an organic tin compound, an organic titanium compound, an organic germanium compound, an organic zinc compound, an organic tungsten compound, an organic zirconium compound, an organic tantalum compound, an organic niobium compound, an organic hafnium compound, an organic vanadium compound Any one or more of these are preferable, and an organotin compound is more preferable.
  • organotin compound of the organometallic compound for dopant examples include, for example, acetylacetone tin (formal name: di-n-butylbis (2,4-pentane) dionato) tin) [Sn (C 4 H 9 ) 2 (C 5 H 7 O 2) 2] ( sometimes hereinafter referred to as AcAcSn), tin octylate, tin 2-ethylhexanoate, tin (II) acetate [Sn (CH 3 COO) 2 ], tin acetate (IV) [Sn (CH 3 COO) 4], di -n- butyl tin diacetate [Sn (C 4 H 9) 2 (CH 3 COO) 2], formic tin, but tin -tert- butoxide [Sn (C 4 H 9 O ) 4] as t
  • organotitanium compound of the organometallic compound for dopant for example, acetylacetone titanium (formal name: titanium di-n-butoxide bis (2,4-pentanedionate) [Ti (C 4 H 9 O) 2 as a titanium acetylacetone complex] 2 (C 5 H 7 O 2 ) 2 ]), titanyl (IV) acetylacetonate [(C 5 H 7 O 2 ) 4 TiO], titanium diisopropoxide bis (2,4-pentanedionate) [C 16 H 36 O 4 Ti] or the like, titanium tetraethoxide [Ti (C 2 H 5 O) 4 ] as titanium alkoxide, titanium (IV) -tert-butoxide [Ti (C 4 H 9 O) 4 ], titanium tetra -n- butoxide [Ti (C 4 H 9 O ) 4], titanium tetraisopropoxide [Ti (C 3 H 7 O )
  • a transparent conductive film dissolves in a solvent, and harmful gases such as chlorine gas and nitrogen oxide gas are generated in the process of forming a transparent conductive film by applying, drying, and firing a coating solution for forming a transparent conductive film.
  • harmful gases such as chlorine gas and nitrogen oxide gas
  • Any organic titanium compound that can be decomposed into an oxide can be used.
  • acetylacetone titanium, titanium tetra-n-butoxide, and titanium tetraisoproposide are preferable because they are inexpensive and easily available.
  • germanium tetraethoxide [Ge (C 2 H 5 O) 4 ] as germanium alkoxide, germanium tetra-n-butoxide [Ge (C 4 H 9 O) 4 ], Germanium tetraisopropoxide [Ge (C 3 H 7 O) 4 ] and the like
  • Chlorine gas and nitrogen oxide gas in the process of forming a transparent conductive film by applying, drying, and baking the coating solution Any organic germanium compound that decomposes into an oxide without generating harmful gases such as soot may be used.
  • germanium tetraethoxide, germanium tetra-n-butoxide, and germanium tetraisopropoxide are preferable because they are relatively inexpensive and easily available.
  • the organic zinc compound of the dopant organometallic compound for example, zinc acetylacetonate as a zinc acetylacetone complex (official name: Zinc 2,4-pentanedionate) [Zn (C 5 H 7 O 2) 2], zinc - 2,2,6,6-tetramethyl-3,5-heptanedionate [Zn (C 11 H 19 O 2 ) 2 ] and the like can be mentioned.
  • it dissolves in a solvent to form a transparent conductive film.
  • Any organic zinc compound that decomposes into an oxide without generating harmful gases such as chlorine gas and nitrogen oxide gas in the process of forming the transparent conductive film by coating, drying, and baking of the coating liquid for coating may be used.
  • zinc acetylacetone is preferable because it is inexpensive and easily available.
  • tungsten (V) ethoxide as tungsten alkoxide [W (C 2 H 5 O) 5 ] tungsten (VI) ethoxide [W (C 2 H 5 O) 6
  • harmful gases such as chlorine gas and nitrogen oxide gas are dissolved in the solvent, and in the process of forming the transparent conductive film by applying, drying and baking the coating liquid for forming the transparent conductive film.
  • Any organic tungsten compound that does not occur and decomposes into an oxide may be used.
  • the organic zirconium compound as the dopant organometallic compound for example, zirconium di -n- butoxide bis as zirconium acetylacetone complex (2,4-pentanedionate) [Zr (C 4 H 9 O) 2 (C 5 H 7 O 2 ) 2 ], acetylacetone zirconium (formal name: zirconium-2,4-pentanedionate) [Zr (C 5 H 7 O 2 ) 4 ], zirconium ethoxide as a zirconium alkoxide [Zr (C 2 H 5 O ) 4], zirconium -n- propoxide [Zr (C 3 H 7 O ) 4], zirconium isopropoxide [Zr (C 3 H 7 O ) 4], zirconium -n- butoxide [Zr (C 4 H 9 O) 4], zirconium -tert- butoxide [Zr (C 4 H 9 O ) 4], Ru
  • the organic tantalum compound as the dopant organometallic compound for example, tantalum as tantalum acetylacetone complex (V) tetraethoxide - pentanedionate [Ta (C 5 H 7 O 2) (OC 2 H 5) 4], tantalum tantalum methoxide as alkoxide [Ta (CH 3 O) 5 ], tantalum ethoxide [Ta (C 2 H 5 O ) 5], tantalum isopropoxide [Ta (C 3 H 7 O ) 5], tantalum -n -Butoxide [Ta (C 4 H 9 O) 5 ], tetraethoxyacetylacetonato tantalum [Ta (C 2 H 5 O) 4 (C 5 H 7 O 2 )] and the like can be mentioned.
  • organic niobium compound of the organometallic compound for dopant for example, niobium ethoxide [Nb (C 2 H 5 O) 5 ] as niobium alkoxide, niobium-n-butoxide [Nb (C 4 H 9 O) 5 ], etc. Basically, it dissolves in a solvent, and harmful gases such as chlorine gas and nitrogen oxide gas are generated in the process of forming a transparent conductive film by applying, drying, and firing a coating solution for forming a transparent conductive film. Any organic niobium compound that can be decomposed into an oxide can be used.
  • hafnium di-n-butoxide bis (2,4-pentandionate) [Hf (C 4 H 9 O) 2 (C 5 H 7 as a hafnium acetylacetone complex) O 2 ) 2
  • acetylacetone hafnium (formal name: hafnium-2,4-pentanedionate) [Hf (C 5 H 7 O 2 ) 4
  • hafnium -n- butoxide [Hf (C 4 H 9 O ) 4]
  • hafnium (VI) isopropoxide mono isopropylate [Hf (C 3 H 7 O) 4 (C 3 H 7 OH)] and the like.
  • hafnium compounds that dissolve and decompose into oxides without the generation of harmful gases such as chlorine gas and nitrogen oxide gas in the process of forming transparent conductive films by applying, drying, and firing the coating liquid for forming transparent conductive films It ’s fine.
  • hafnium-n-butoxide is preferable because it is relatively inexpensive and easily available.
  • an organic vanadium compound of the organometallic compound for the dopant for example, vanadium (IV) oxide bis-2,4-pentanedionate [VO (C 5 H 7 O 2 ) 2 ] as a vanadium acetylacetone complex, acetylacetone vanadium (formal Name: Vanadium (III) -2,4-pentanedionate) [V (C 5 H 7 O 2 ) 3 ] and the like can be mentioned.
  • the coating liquid dissolves in a solvent and forms a transparent conductive film. Any organic vanadium compound that decomposes into an oxide without generating harmful gas such as chlorine gas or nitrogen oxide gas in the step of forming a transparent conductive film by coating, drying, and baking may be used.
  • the role of the above-mentioned various organometallic compounds for dopants is that, in a transparent conductive film made of a conductive oxide mainly composed of indium oxide, the indium oxide is doped as metal oxide in the indium oxide. It has the function of increasing the carrier concentration in the conductive oxide to improve its conductivity (for example, when an organic tin compound for dopant is used, a transparent conductive film made of ITO is obtained).
  • the organic indium compound (acetylacetone indium) and the organometallic compound for dopant are main compound raw materials for forming a transparent conductive film on a substrate, and the total content in the coating liquid for forming a transparent conductive film is 5 to 15 weights. %, Preferably 8 to 12% by weight. If the content is less than 5% by weight, the film thickness of the transparent conductive film obtained becomes thin and sufficient conductivity cannot be obtained, and if it exceeds 15% by weight, acetylacetone indium tends to precipitate from the coating liquid for forming a transparent conductive film. (Especially when stored at low temperatures) and not practical.
  • the wettability with respect to the substrate is improved and the viscosity of the coating solution can be adjusted, and it does not remain in the transparent conductive film after being decomposed and burned at or below the firing temperature (firing temperature).
  • Material is desirable.
  • a cellulose derivative is effective as such a material, and examples thereof include methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose (HPC). Among them, hydroxypropyl cellulose (HPC) is preferable.
  • the blending amount of the organic viscosity agent such as HPC in the coating solution for forming the transparent conductive film is preferably 1/20 to 1/3 of the total content (weight) of the organic indium compound and the organometallic compound for the dopant. If it is inside, sufficient wettability with respect to a substrate such as glass can be obtained, and at the same time, the viscosity can be greatly adjusted, which is preferable.
  • cellulose derivatives such as HPC have a combustion start temperature of about 300 ° C. Therefore, if the substrate after coating and drying is baked in air at a temperature of 400 ° C. or higher, for example, the cellulose derivative such as HPC Decomposes and burns, so that it does not inhibit the growth of the conductive oxide particles such as ITO, and a film having good conductivity can be formed. If the blending amount of cellulose derivatives such as HPC is more than 1/3, gelled cellulose derivatives are likely to remain in the coating solution, and the conductivity is impaired because a porous transparent conductive film is formed. It is not preferable.
  • HPC high viscosity grade
  • Examples of the high boiling point organic solvent (boiling point: 180 ° C. or higher) used in the heating and dissolving step for obtaining a high concentration solution include organophenol compounds for dopants such as acetylacetone indium and acetylacetone tin, and alkylphenols that dissolve well cellulose derivatives (particularly HPC) A mixed solvent of dibasic acid esters is preferred.
  • Examples of the alkylphenol include cresols, paratertiary butylphenol (boiling point: 237 ° C.), octylphenol, nonylphenol, and the like, but paratertiary butylphenol is preferable.
  • dibasic acid ester examples include succinic acid ester, glutaric acid ester, and adipic acid ester.
  • dimethyl malonate (boiling point: 181 to 183 ° C.)
  • dimethyl succinate (boiling point: 196 ° C.)
  • glutar Dimethyl acid (boiling point: 210 to 215 ° C.)
  • dimethyl adipate (boiling point: 215 to 225 ° C.) are preferred.
  • a ketone organic solvent is preferable as the medium boiling organic solvent (boiling point: 100 ° C. or higher and lower than 180 ° C.) and the low boiling point organic solvent (boiling point: 50 ° C. or higher and lower than 100 ° C.) for diluting the high concentration solution.
  • acetone (boiling point: 56.1 ° C.), methyl ethyl ketone (MEK) (boiling point: 79.6 ° C.), methyl propyl ketone (boiling point: 102.3 ° C.), methyl isobutyl ketone (MIBK) (boiling point: 115.9) ° C), acetylacetone (boiling point: 140.4 ° C), cyclohexanone (boiling point: 155.7 ° C), and the like.
  • cyclohexanone is preferable for medium boiling organic solvents
  • methyl ethyl ketone is preferable for low boiling organic solvents.
  • PGM propylene glycol monomethyl ether
  • Organic solvents other than the above-mentioned various organic solvents can also be used for the solubility and compatibility of acetylacetone indium, organometallic compounds for dopants, and cellulose derivatives in the heating dissolution process and dilution process.
  • a small amount may be added to the high-concentration dissolving solution or the coating solution for forming a transparent conductive film.
  • alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA), Ketone solvents such as isophorone, ethyl acetate, butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, methyl oxyacetate, ethyl oxyacetate, oxy Butyl acetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-oxypropionate, ethyl 3-oxypropionate, ethy
  • Benzene derivatives formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), ⁇ -butyrolactone, ethylene glycol, diethylene glycol , Propylene glycol, dipropylene glycol , 1,3-butylene glycol, pentamethylene glycol, 1,3-octylene glycol, tetrahydrofuran (THF), chloroform, mineral spirits, terpineol, etc., and some mixture thereof.
  • FA formamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • NMP N-methyl-2-pyrrolidone
  • ⁇ -butyrolactone ethylene glycol, diethylene glycol , Propylene glycol, dipropylene glycol , 1,3-butylene glycol, pentamethylene glycol, 1,3-octylene glycol, t
  • the organic indium compound (acetylacetone indium) of the present invention, the organometallic compound for dopant, and the organic viscosity agent are dissolved in a high concentration by stirring and dissolving in a high boiling point organic solvent containing alkylphenol and dibasic acid ester.
  • acetylacetone indium, cellulose derivative and the above high-boiling organic solvent react gradually, the liquid color changes from light yellow to dark brown, and the viscosity of the liquid also It rises little by little.
  • the degree of this reaction is too small (that is, the heating temperature (T: ° C.) is low and the heating time (L: hr) is short), the resulting transparent conductive film is difficult to be densified and has relatively coarse voids (voids). ) And the haze of the film tends to increase (particularly, the blue haze tends to increase).
  • the degree of reaction is too large (that is, the heating temperature (T: ° C.) is high and the heating time (L: hr) is long)
  • the resulting coating liquid for forming a transparent conductive film has a high viscosity. In addition, the viscosity increases with time, the stability deteriorates, and there is a tendency to finally gel (purinate).
  • esters of dibasic acid esters (dimethyl glutarate, etc.) to the indium (In) site of the organic indium compound (acetylacetone indium), which is the main component in the coating solution for forming a transparent conductive film, by heating in the heating and dissolving step Coordination of a carbonyl group (—C ( ⁇ O) —O—), or a hydroxyl group (—OH) of an alkylphenol (such as para-tertiary butylphenol) or a cellulose derivative (such as hydroxypropylcellulose) with respect to the acetylacetone ligand moiety.
  • each component of the coating liquid for forming a transparent conductive film was subjected to nuclear magnetic resonance spectroscopy (NMR) hydrogen nucleus observation ( 1 H-NMR) and carbon nucleus observation ( 13 C-NMR). A chemical shift was observed in the obtained spectrum in the case of the liquid and the component alone, and the above structural change at the micro level could be confirmed, but the detailed structural change has not yet been elucidated.
  • NMR nuclear magnetic resonance spectroscopy
  • 1 H-NMR hydrogen nucleus observation
  • 13 C-NMR carbon nucleus observation
  • the heating temperature (T: ° C.) is in the range of 130 ⁇ T ⁇ 180
  • the heating time (L: hr) is ⁇ 0.7T + 104 ⁇ L ⁇ 1.1T + 168 (130 ⁇ T ⁇ 168).
  • This range is in the relationship between the heating dissolution / reaction conditions (heating temperature (T: ° C.) and heating time (L: hr)) of the heating dissolution step shown in FIG.
  • T heating temperature
  • L heating time
  • a range sandwiched between two broken lines indicated by upper and lower broken lines is shown. That is, “gelation (pudding)” of the coating liquid for forming the transparent conductive film is likely to occur on the long time side of the heating time with the upper broken line in FIG. 1 as a boundary, and the lower broken line in FIG.
  • the “blue haze” of the transparent conductive film is likely to occur on the short-time side of the heating time at the boundary (region where the heating time is shorter than the region represented by the above formula (1)).
  • the heating temperature range is 130 ° C. to 180 ° C., and the heating time on the upper and lower two broken lines (broken lines) in FIG. 1 is not included.
  • the heating temperature (T: ° C.) is less than 130 ° C.
  • an appropriate heating time (L: hr) for obtaining a coating solution for forming a high-quality transparent conductive film becomes very long (for example, 24 at 120 ° C.).
  • the heating temperature (T: ° C.) is preferably 150 to 170 ° C., more preferably 155 to 165 ° C.
  • the specific range can be set by the conversion heating time represented by the following formula (2) based on the center line (FIG. 2) of the solid line connecting the middle of the two upper and lower broken lines shown by the broken line shown in FIG. .
  • the treatment of the heating temperature of 140 ° C. and the heating time of 5 hours is performed at the heating temperature of 160 ° C.
  • the 160 ° C. heating time is calculated as 2.38 hours.
  • This 160 ° C. equivalent heating time 2.38 hours corresponds to the specific range shown in FIG. 1, and it can be expected that a high-quality coating liquid for forming a transparent conductive film can be obtained.
  • the transparent conductive film-forming coating solution produced through the heating and dissolving step has the property of maintaining the viscosity at the time of production even when left at room temperature, and “viscosity when left at room temperature for 3 months” ”As a measure of the increase in viscosity over time after production, the viscosity change is within 0.5 to 1.5 times the initial viscosity (viscosity at the time of production) (viscosity change is within ⁇ 50%),
  • the coating liquid for forming a transparent conductive film obtained in the present invention is excellent in stability and storage after production, and on a heat-resistant substrate such as glass using a general-purpose coating method such as a spin coating method or a dip coating method.
  • a transparent conductive film can be easily formed by coating, drying, and baking. If the viscosity during storage exceeds 1.5 times the initial viscosity, the fluidity is remarkably lowered and it becomes difficult to form a smooth transparent conductive film using a general-purpose coating method, resulting in a decrease in film properties. This is not preferable because it tends to cause gelation (pudding) of the coating liquid for forming a transparent conductive film. Conversely, when the viscosity is less than 0.5 times, that is, the viscosity is reduced and the fluidity is increased, it is difficult to increase the thickness of the film in a smooth state by this coating method, and the viscosity change is large. As with the case, the film characteristics are deteriorated.
  • the drying is performed by holding the substrate coated with the coating solution at a temperature of 80 to 180 ° C. for about 5 to 20 minutes, and the baking is preferably performed at 300 ° C. or higher in the atmosphere on the dried substrate with the dried coating film. Is carried out by heating to about 400 to 500 ° C. and holding for 15 to 60 minutes. If necessary, after baking in the air, firing in a neutral atmosphere or a reducing atmosphere to weakly reduce the transparent conductive film and oxygen in the conductive oxide mainly composed of indium oxide. A treatment for improving the conductivity of the transparent conductive film by forming vacancies (oxygen vacancies) and increasing the carrier concentration can also be performed.
  • the neutral atmosphere examples include one or more of inert gases such as nitrogen gas, argon, and helium.
  • the reducing atmosphere includes hydrogen gas or an atmosphere in which at least one of hydrogen or an organic solvent vapor (for example, an organic gas such as methanol) is contained in the neutral atmosphere.
  • the present invention is not limited to this as long as it can remove oxygen atoms from the conductive oxide fine particles containing indium as a main component and form oxygen vacancies to increase the conductive carrier concentration.
  • the atmosphere is too strong, the reduction of indium oxide proceeds too much, the conductive carrier concentration becomes too high, absorption occurs in the visible light region, the film becomes black, and the visible light transmittance may decrease. It is not preferable.
  • an atmosphere containing nitrogen gas or inert gas containing 0.1 to 7% (volume%) of hydrogen gas is preferable because there is no risk of explosion even if it leaks into the atmosphere.
  • an atmosphere containing 1 to 3% (volume%) of hydrogen gas in nitrogen gas or inert gas when the heating temperature in the reduction process is high (for example, about 500 to 600 ° C.), the film is blackened. This is also a preferable atmosphere in that it is difficult to occur.
  • a high-quality coating liquid for forming a transparent conductive film can be easily produced at low cost. Since the transparent conductive film has both transparency and high conductivity and is low in cost, it can be expected to be used for transparent electrodes such as display element transparent electrodes, touch panels, solar cells, and field emission lamps in various displays.
  • transparent electrodes such as display element transparent electrodes, touch panels, solar cells, and field emission lamps in various displays.
  • the viscosity of this coating solution was 3.1 mPa ⁇ s (25 ° C.) when measured using a corn plate viscometer (model: LVDV-II + Pro) manufactured by Brookfield. Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, the viscosity did not change significantly.
  • “no significant change” in the viscosity of the coating solution means that the viscosity change when left at room temperature for 3 months is within 0.5 to 1.5 times the initial viscosity (within ⁇ 50%). Judgment is based on something.
  • ITO film A transparent conductive film (ITO film) was prepared.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1. Further, the appearance of the transparent conductive film when visible light (artificial sunlight) (light source: XC-100 manufactured by Celic Co., Ltd.) is irradiated onto the glass substrate on which the transparent conductive film is formed in FIG. The state of scattering) is shown. As can be seen from FIG. 3, no visible light scattering is observed (particularly, no blue haze is observed), and the transparent conductive film has low haze and excellent transparency.
  • the surface resistance of the transparent conductive film was measured using a surface resistance meter “Loresta EP (MCP-T360)” manufactured by Mitsubishi Chemical Corporation.
  • the haze value and visible light transmittance were measured based on JIS K7136 (haze value) and JIS K7361-1 (transmittance), using a haze meter “NDH5000” manufactured by Nippon Denshoku Co., Ltd.
  • the blue haze value was calculated from a diffused light transmission profile of a substrate measured with a spectrophotometer “U-4000” manufactured by Hitachi, Ltd. and a substrate on which a transparent conductive film was formed.
  • the film thickness was measured using an optical profiler (“NewView 6200” manufactured by Zygo).
  • the visible light transmittance and the haze value are values only for the transparent conductive film, and were obtained by the following equations 3 and 4, respectively.
  • the blue haze value is also a value of only the transparent conductive film, and was obtained by the following formula 5.
  • the diffuse light transmittance indicates the ratio of light rays that are scattered without traveling straight in the light rays that pass through the substrate.
  • Example 2 Preparation of transparent conductive film This was carried out in the same manner as in Example 1 except that the mixture was heated and dissolved and reacted at 160 ° C. for 2.5 hours with stirring to obtain a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • a coating liquid for forming a transparent conductive film according to Example 2 was prepared.
  • the coating solution had a viscosity of 3.2 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 3 was carried out in the same manner as in Example 1 except that the mixture was heated and dissolved and reacted at 160 ° C. for 3 hours with stirring to obtain a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the viscosity of the coating solution was 3.5 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • Example 1 a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • the appearance (fluidity) of the coating liquid when the glass container containing the coating liquid for forming a transparent conductive film of Example 3 (liquid) left at room temperature for 3 months in FIG. 4 is tilted 45 degrees at room temperature. Show the state. It can be seen that the coating liquid surface remains horizontal even when tilted, and the coating liquid has low viscosity and good fluidity.
  • Example 4 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 150 ° C. for 4 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.1 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 5 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin was 40% by weight) was obtained by heating and dissolving and reacting at 150 ° C. for 5 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.8 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 6 was carried out in the same manner as in Example 1 except that the mixture was heated and dissolved and reacted at 150 ° C. for 6 hours with stirring to obtain a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the coating solution had a viscosity of 4.3 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 7 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving at 170 ° C. for 1 hour with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.5 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 8 Preparation of transparent conductive film It was carried out in the same manner as in Example 1 except that a high concentration solution (total content of acetylacetone indium and acetylacetone tin was 40% by weight) was obtained by heating and dissolving and reacting at 170 ° C. for 1.5 hours with stirring. A coating liquid for forming a transparent conductive film according to Example 8 was prepared. The coating solution had a viscosity of 3.7 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • FIG. 5 shows the external appearance (visible light of visible light) at the time of irradiating the glass substrate in which the said transparent conductive film was formed in FIG. 5 with strong visible light (artificial sunlight) (light source: XC-100 by Celic Co., Ltd.). The state of scattering) is shown.
  • FIG. 6 shows a diffuse light transmittance profile in the visible light region (wavelength 380 to 780 nm) of the glass substrate on which the transparent conductive film is formed. 5 and 6 show that no visible light scattering is observed (particularly, no blue haze is observed), and the transparent conductive film has low haze and excellent transparency. Further, FIG.
  • Example 7 shows the appearance (fluidity) of the coating liquid when the glass container containing the coating liquid for forming a transparent conductive film (liquid) of Example 8 which has been allowed to stand at room temperature for 3 months is inclined at 45 degrees at room temperature. Show. It can be seen that the coating liquid surface remains horizontal even when tilted, and the coating liquid has low viscosity and good fluidity.
  • Example 9 was carried out in the same manner as Example 1 except that the mixture was heated and dissolved and reacted at 140 ° C. for 8 hours with stirring to obtain a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the coating solution had a viscosity of 4.6 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 10 was carried out in the same manner as in Example 1 except that the mixture was heated and dissolved and reacted at 140 ° C. for 12 hours with stirring to obtain a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the viscosity of this coating solution was 4.7 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • Example 11 Preparation of transparent conductive film It was carried out in the same manner as in Example 1 except that it was heated and dissolved and reacted at 180 ° C. for 0.5 hours with stirring to obtain a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • a coating liquid for forming a transparent conductive film according to Example 11 was prepared.
  • the viscosity of the coating solution was 3.3 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 12 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving at 130 ° C. for 16 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The coating solution had a viscosity of 4.6 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a high-concentration solution total content of acetylacetone indium and acetylacetone tin of 40% by weight
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Example 13 was carried out in the same manner as in Example 1 except that the mixture was heated and dissolved and reacted at 130 ° C. for 22 hours with stirring to obtain a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight).
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the viscosity of this coating solution was 4.8 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • no blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • acetylacetone (boiling point 140.4 ° C.) as a diluent solvent is added to 60 g of this high-concentration solution, and the mixture is stirred well until uniform, and 4.2 wt% of acetylacetone indium and acetylacetone tin are added in total, and hydroxypropylcellulose is added.
  • the coating solution had a viscosity of 3700 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • Example 1 [Preparation of transparent conductive film] The same procedure as in Example 1 was conducted except that a high-concentration dissolved solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving at 160 ° C. for 1.5 hours with stirring to obtain a comparative solution. A coating liquid for forming a transparent conductive film according to Example 1 was prepared. The viscosity of the coating solution was 2.9 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • the appearance of the transparent conductive film (visible light) when the glass substrate on which the transparent conductive film is formed in FIG. 3 is irradiated with strong visible light (artificial sunlight) (light source: XC-100 manufactured by Celic Co., Ltd.).
  • strong visible light artificial sunlight
  • light source: XC-100 manufactured by Celic Co., Ltd. light source: XC-100 manufactured by Celic Co., Ltd.
  • Scattering condition Scattering of visible light (especially in the short wavelength region (blue) which is easily scattered: blue haze) is observed, and it can be seen that the transparent conductive film has high haze (large blue haze) and poor transparency.
  • Comparative Example 2 [Preparation of transparent conductive film] Comparative Example 2 was carried out in the same manner as in Example 1 except that a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 160 ° C. for 4 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating solution was 5.0 mPa ⁇ s (25 ° C.) immediately after preparation of the coating solution, which was a slightly higher value, but the same procedure as in Example 1 was performed except that this coating solution was used. A film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • FIG. 4 shows the appearance of the coating solution when the glass container containing the transparent conductive film forming coating solution (gelation (pudding)) of Comparative Example 2 left at room temperature for 3 months is inclined at 45 degrees at room temperature ( Fluidity). It can be seen that the surface of the coating solution remains inclined, and its fluidity is lost due to gelation (pudding) of the coating solution.
  • Comparative Example 3 [Preparation of transparent conductive film] Comparative Example 3 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 150 ° C. for 3 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.0 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • Comparative Example 1 a large blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Comparative Example 4 [Preparation of transparent conductive film] Comparative Example 4 was carried out in the same manner as in Example 1 except that a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 150 ° C. for 8 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating solution was 5.3 mPa ⁇ s (25 ° C.) immediately after preparation of the coating solution, which was a slightly higher value, but the same procedure as in Example 1 was performed except that this coating solution was used. A film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • the coating liquid for forming a transparent conductive film was allowed to stand at room temperature for 3 months, it was finally gelled (pudding) (viscosity:> 10000 mPa ⁇ s (25 ° C.)) and could not be used.
  • Example 5 [Preparation of transparent conductive film] The same procedure as in Example 1 was conducted except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 170 ° C. for 0.5 hours with stirring.
  • Example 5 A coating solution for forming a transparent conductive film was prepared. The coating solution had a viscosity of 2.8 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • FIG. 5 shows the appearance of the transparent conductive film (scattering of visible light) when the glass substrate on which the transparent conductive film is formed is irradiated with strong visible light (artificial sunlight) (light source: XC-100 manufactured by Celic Corporation). Condition).
  • FIG. 6 shows a diffuse light transmittance profile in the visible light region (wavelength 380 to 780 nm) of the glass substrate on which the transparent conductive film is formed. From FIG. 5 and FIG. 6, visible light scattering (especially in the short wavelength region (blue) that is easily scattered: blue haze) is observed, and the transparent conductive film has high haze (large blue haze) and poor transparency. You can see that
  • Comparative Example 6 [Preparation of transparent conductive film] Comparative Example 6 was carried out in the same manner as in Example 1 except that a high-concentration dissolved solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving at 170 ° C. for 2 hours with stirring.
  • the coating liquid for transparent conductive film formation concerning this was produced.
  • the viscosity of this coating liquid is 4.2 mPa ⁇ s (25 ° C.) and a normal value (within the normal range) immediately after the preparation of the coating liquid, and is performed in the same manner as in Example 1 except that this coating liquid is used.
  • a transparent conductive film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • FIG. 7 shows the appearance of the coating liquid when the glass container containing the transparent conductive film-forming coating liquid (gelation (pudding)) of Comparative Example 6 left at room temperature for 3 months is inclined at 45 degrees at room temperature. Sex). It can be seen that the surface of the coating solution remains inclined, and its fluidity is lost due to gelation (pudding) of the coating solution.
  • Comparative Example 7 [Preparation of transparent conductive film] Comparative Example 7 was carried out in the same manner as in Example 1 except that a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving for 6 hours at 140 ° C. with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.1 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, the viscosity did not change significantly.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • Comparative Example 1 a large blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Comparative Example 8 [Preparation of transparent conductive film] Comparative Example 8 was carried out in the same manner as in Example 1 except that a high concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving for 14 hours at 140 ° C. with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating liquid is 4.8 mPa ⁇ s (25 ° C.) and a normal value (within the normal range) immediately after the preparation of the coating liquid, and is performed in the same manner as in Example 1 except that this coating liquid was used. A transparent conductive film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • the coating liquid for forming a transparent conductive film was allowed to stand at room temperature for 3 months, it was finally gelled (pudding) (viscosity:> 10000 mPa ⁇ s (25 ° C.)) and could not be used.
  • Example 9 [Preparation of transparent conductive film] The same as in Example 1 except that the mixture was heated and dissolved and reacted at 180 ° C. for 0.25 hours (15 minutes) with stirring to obtain a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight). Then, a coating liquid for forming a transparent conductive film according to Comparative Example 9 was produced.
  • the coating solution had a viscosity of 2.8 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • Comparative Example 1 a large blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Comparative Example 10 [Preparation of transparent conductive film] Comparative Example 10 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 180 ° C. for 1 hour with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating solution is 4.1 mPa ⁇ s (25 ° C.) immediately after preparation of the coating solution, which is a normal value (within the normal range), and is the same as in Example 1 except that this coating solution is used. A conductive film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • a high-concentration solution total content of acetylacetone indium and acetylacetone tin of 40% by weight
  • the coating liquid for forming a transparent conductive film was allowed to stand at room temperature for 3 months, it was finally gelled (pudding) (viscosity:> 10000 mPa ⁇ s (25 ° C.)) and could not be used.
  • Comparative Example 11 [Preparation of transparent conductive film] Comparative Example 11 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving at 130 ° C. for 13 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of the coating solution was 3.3 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • a transparent conductive film (ITO film) was produced in the same manner as in Example 1 except that the coating liquid for forming the transparent conductive film was used.
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • Comparative Example 1 a large blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Comparative Example 12 [Preparation of transparent conductive film] Comparative Example 12 was carried out in the same manner as in Example 1 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by heating and dissolving and reacting at 130 ° C. for 25 hours with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating solution was 5.0 mPa ⁇ s (25 ° C.) immediately after preparation of the coating solution, which was a slightly higher value, but the same procedure as in Example 1 was performed except that this coating solution was used. A film (ITO film) was produced. The surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • the coating liquid for forming a transparent conductive film was allowed to stand at room temperature for 3 months, it was finally gelled (pudding) (viscosity:> 10000 mPa ⁇ s (25 ° C.)) and could not be used.
  • Example 13 [Preparation of transparent conductive film] The same operation as in Example 1 was carried out except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 40% by weight) was obtained by stirring and stirring at 190 ° C. for 0.15 hours with stirring. Then, a coating liquid for forming a transparent conductive film according to Comparative Example 13 was prepared.
  • a high-concentration solution total content of acetylacetone indium and acetylacetone tin of 40% by weight
  • the preparation of the coating liquid for forming the transparent conductive film was carried out a plurality of times in the same procedure as described above, the coating liquid was not gelled (pudding) or the transparent conductive film had no haze deterioration (especially blue haze deterioration). It was not possible to stably obtain a coating solution for forming a transparent conductive film having a high quality. This is because the appropriate heating time range is extremely narrow at a heating temperature of 190 ° C., so the temperature distribution in the high-concentration dissolved solution, the variation in heating temperature control, the variation in the temperature rise history up to the heating temperature of 190 ° C., etc. This is thought to be because it becomes difficult to optimize the heat dissolution and reaction conditions. As described above, since it was difficult to stably obtain a coating solution for forming a transparent conductive film having a good quality, a transparent conductive film similar to that of Example 1 was not produced.
  • the coating liquid for forming a transparent conductive film was allowed to stand at room temperature for 3 months, it was finally gelled (pudding) (viscosity:> 10000 mPa ⁇ s (25 ° C.)) and could not be used.
  • Comparative Example 15 [Preparation of transparent conductive film] Comparative Example 15 was carried out in the same manner as in Example 15 except that a high-concentration solution (total content of acetylacetone indium and acetylacetone tin of 7% by weight) was obtained by heating and dissolving at 160 ° C. for 1 hour with stirring. The coating liquid for transparent conductive film formation concerning this was produced. The viscosity of this coating solution was 3500 mPa ⁇ s (25 ° C.). Even when the transparent conductive film forming coating solution was allowed to stand at room temperature for 3 months, there was no significant change in its viscosity.
  • Example 15 it carried out similarly to Example 15 except having used the said coating liquid for transparent conductive film formation, and produced the transparent conductive film (ITO film
  • the surface resistance, haze value and visible light transmittance, blue haze value and film thickness of the produced transparent conductive film were measured, and the results are shown in Table 1.
  • a large blue haze was observed when the glass substrate on which the transparent conductive film was formed was irradiated with strong visible light (artificial sunlight).
  • Examples 1 to 3 and Comparative Examples 1 and 2 When comparing each example with a comparative example (Examples 1 to 3 and Comparative Examples 1 and 2), all are for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 160 ° C. Although it is a coating solution, the transparent conductive film forming coating solutions of Examples 1 to 3 which were heated and dissolved and reacted within the predetermined heating time range at this heating and melting temperature have small changes in viscosity over time and good stability. It can be seen that the obtained transparent conductive film has low resistance and low haze (particularly, no blue haze is observed).
  • Comparative Example 1 when using the coating liquid for forming a transparent conductive film of Comparative Example 1 and Comparative Example 2 heated and dissolved / reacted outside the predetermined heating time range (short or long heating time) at this heating and melting temperature, In Comparative Example 1, only a transparent conductive film having a large haze (particularly, a large blue haze) and inferior in transparency can be obtained. In Comparative Example 2, the change in the viscosity of the coating liquid for forming a transparent conductive film is large and stable. It is confirmed that the property is poor and finally gelled (purified).
  • Example 1 the transparent conductive film formation of Example 1 is shown from the evaluation result of the degree of scattering of visible light that irradiates the strong visible light (pseudo sunlight) on the glass substrate on which the transparent conductive film is formed as shown in FIG.
  • the transparent conductive film formed using the coating liquid (heating temperature (T): 160 ° C., heating time (L): 2 hr) has no visible light scattering and is excellent in transparency
  • Comparative Example 1 The transparent conductive film formed using the coating liquid for forming a transparent conductive film (heating temperature (T): 160 ° C., heating time (L): 1.5 hr) scatters in the short wavelength region (blue) of visible light. It is clearly confirmed that it is large (that is, blue haze is large) and inferior in transparency.
  • the coating liquid for forming a film (heating temperature (T): 160 ° C., heating time (L): 3 hours) has low viscosity and good fluidity, whereas the coating film for forming a transparent conductive film of Comparative Example 2 It is confirmed that the liquid (heating temperature (T): 160 ° C., heating time (L): 4 hr) is gelled (pudding) and loses fluidity.
  • Examples 4 to 6 and Comparative Examples 3 and 4 are for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 150 ° C. Although it is a coating solution, the transparent conductive film-forming coating solutions of Examples 4 to 6 which are heated and dissolved and reacted within this heating and melting temperature within a predetermined heating time range have little change over time in viscosity and good stability. It can be seen that the obtained transparent conductive film has low resistance and low haze (particularly, no blue haze is observed).
  • Comparative Example 3 when using the coating liquid for forming a transparent conductive film of Comparative Example 3 and Comparative Example 4 which were heated and dissolved / reacted outside the predetermined heating time range (short or long heating time) at this heating and melting temperature, In Comparative Example 3, only a transparent conductive film having a large haze (particularly a large blue haze) and inferior in transparency can be obtained. In Comparative Example 4, the change in the viscosity of the coating liquid for forming a transparent conductive film is large and stable. It is confirmed that the property is poor and finally gelled (purified).
  • Example 7 and 8 and Comparative Examples 5 and 6 are for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 170 ° C. Although it is a coating solution, the transparent conductive film-forming coating solutions of Examples 7 and 8 which were heated and dissolved and reacted within this heating and melting temperature within a predetermined heating time range have small changes in viscosity over time and good stability. It can also be seen that the obtained transparent conductive film has low resistance and low haze (particularly, no blue haze is observed).
  • Comparative Example 5 when using the coating liquid for forming a transparent conductive film of Comparative Example 5 and Comparative Example 6, which were heated and dissolved and reacted outside the predetermined heating time range (short or long heating time) at this heating and melting temperature, In Comparative Example 5, only a transparent conductive film having a large haze (particularly, a large blue haze) and inferior in transparency can be obtained. In Comparative Example 6, the change in the viscosity of the coating liquid for forming a transparent conductive film is large and stable. It is confirmed that the property is poor and finally gelled (purified).
  • the transparent conductive film formed using the coating liquid (heating temperature (T): 170 ° C., heating time (L): 1.5 hr) is superior in transparency without scattering of visible light.
  • the transparent conductive film formed using the coating liquid for forming a transparent conductive film of Example 5 (heating temperature (T): 170 ° C., heating time (L): 0.5 hr) has a short wavelength region (blue) of visible light. It is clearly confirmed that the scattering is large (that is, the blue haze is large) and the transparency is poor.
  • the transparent conductive film formed using (T): 170 ° C. and heating time (L): 1.5 hr) does not scatter visible light and is excellent in transparency
  • the transparent conductive film of Comparative Example 5 The transparent conductive film formed using the forming coating liquid (heating temperature (T): 170 ° C., heating time (L): 0.5 hr) has a large scattering in the short wavelength region (blue) of visible light (that is, It is clearly confirmed that the transparency is inferior (blue haze is large).
  • Example 9 and 10 and Comparative Examples 7 and 8 are for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 140 ° C. Although it is a coating solution, the transparent conductive film-forming coating solutions of Examples 9 and 10 which were heated and dissolved and reacted within the predetermined heating time range at this heating and melting temperature have little change over time in viscosity and good stability. It can also be seen that the obtained transparent conductive film has low resistance and low haze (particularly, no blue haze is observed).
  • the coating solution for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 180 ° C.
  • the coating solution for forming a transparent conductive film of Example 11 which was heated and dissolved and reacted within the predetermined heating time range at this heating and melting temperature, had a small change in viscosity with time, had good stability, and obtained transparent conductive film. It can be seen that the film has low resistance and low haze (especially no blue haze is observed).
  • Example 12 and 13 and Comparative Examples 11 and 12 all are for forming a transparent conductive film obtained via a high-concentration dissolved solution heated and dissolved at 130 ° C. Although it is a coating liquid, the transparent conductive film-forming coating liquids of Examples 12 and 13 that were heated and dissolved / reacted at this heating and melting temperature within a predetermined heating time range have small changes in viscosity over time and good stability. It can also be seen that the obtained transparent conductive film has low resistance and low haze (particularly, no blue haze is observed).
  • Comparative Example 11 when using the coating solution for forming a transparent conductive film of Comparative Example 11 and Comparative Example 12, which were heated and dissolved / reacted outside the predetermined heating time range (short or long heating time) at this heating and melting temperature, In Comparative Example 11, only a transparent conductive film having a large haze (particularly a large blue haze) and inferior in transparency can be obtained. In Comparative Example 12, the change in viscosity of the coating liquid for forming a transparent conductive film is large and stable. It is confirmed that the property is poor and finally gelled (purified).
  • Example 14 Comparison of each example with a comparative example (Example 14 and Comparative Example 14), forming a transparent conductive film obtained through a high-concentration dissolved solution heated and dissolved at a plurality of different heating and melting temperatures.
  • 1 is a coating liquid, but when the relationship between the heating and melting temperature and time is determined using the “heating conversion time” shown in Formula (1), Example 14 in the specific range shown in FIG. It can be seen that the forming coating solution has a small change in viscosity with time and good stability, and the transparent conductive film obtained has low resistance and low haze (particularly, no blue haze is observed). On the other hand, in Comparative Example 14 outside the specific range, it is confirmed that the change with time of the viscosity of the coating liquid for forming a transparent conductive film is large, the stability is poor, and finally gelation (pudding) is performed.
  • Example 15 and Comparative Example 15 are compared (Example 15 and Comparative Example 15 [coating liquid for forming a transparent conductive film obtained by the method described in Example 7 of Patent Document 9]).
  • Example 15 which was heated and dissolved and reacted within a predetermined heating time range at this heating and dissolution temperature was a transparent conductive film. It can be seen that the forming coating solution has a small change in viscosity with time and good stability, and the transparent conductive film obtained has low resistance and low haze (particularly, no blue haze is observed).
  • each example is a coating solution for forming a transparent conductive film obtained via a high-concentration solution obtained by heating and dissolving and reacting.
  • Patent Document 9 1 hour heating (Patent Document 9), 1.5 hours heating at 130 ° C.
  • Patent Document 10 and appropriate heating dissolution / reaction conditions specified in the present invention (predetermined heating at a heating melting temperature of 130 to 180 ° C.) Time range) (heating time is shorter than the predetermined heating time), and as can be seen from the comparison between Example 15 and Comparative Example 15 described above, the humidity in the atmosphere is particularly high (the dew point temperature is High) In summer when it is difficult to obtain a dense transparent conductive film, the transparency of the transparent conductive film deteriorates, so the transparency is high (particularly, the blue haze is small), the resistance is low, and the resistance is stable over time. It cannot be expected to obtain an excellent, high strength and high performance transparent conductive film.
  • a coating liquid for forming a transparent conductive film having a stable quality can be obtained at low cost in a simple and short production process.
  • a transparent conductive film having both transparency and high conductivity can be formed on a substrate by a coating method such as a spin coating method or a dip coating method using a film forming coating solution.
  • this transparent conductive film can be expected to be used for transparent electrodes such as display element transparent electrodes, touch panels, solar cells, and field emission lamps in various displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】 スピンコート法、ディップコート法などの塗布法を用いて透明性と導電性に優れた透明導電膜を形成できる透明導電膜形成用塗布液を、その品質を安定させ、かつ低コストで簡便に作製できる透明導電膜形成用塗布液の製造方法を提供する。【解決手段】有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程の各工程からなる透明導電膜形成用塗布液の製造方法であって、加熱溶解工程の加熱溶解・反応条件が、加熱温度130≦T≦180℃の範囲内で、その加熱時間が、図1に示す範囲内であることを特徴とする。

Description

透明導電膜形成用塗布液の製造方法
 本発明は、透明導電膜形成用塗布液の製造方法に関する。さらに詳しくは、ガラスやセラミックなどの耐熱基板上に、塗布法、特にスピンコート法、ディップコート法を用いて、透明性と高い導電性を兼ね備えた透明導電膜を形成できる透明導電膜形成用塗布液を、その品質を安定させ、かつ低コストで簡便に作製できる透明導電膜形成用塗布液の製造方法に関する。
 液晶ディスプレイ、エレクトロルミネッセンス、プラズマディスプレイ等の表示素子用透明電極、タッチパネル、太陽電池等の透明電極、熱線反射、電磁波シールド、帯電防止、防曇等の機能性コーティングに用いられる透明導電膜の形成材料として、錫ドープ酸化インジウム(以下、「ITO」と表記する場合がある)が知られている。
 透明導電膜(ITO膜)の製造方法としては、真空蒸着法、スパッタリング法、化学蒸着法等の物理的手法が広く用いられている。これらの方法は、透明性と導電性に優れた均一な透明導電膜(ITO膜)を基板上に形成することができる。しかしながら、これに使用する膜形成装置は真空容器をベースとするため非常に高価であり、また基板成膜毎に製造装置内の成分ガス圧を精密に制御しなければならないため、製造コストと量産性に問題がある。
 上記の問題を解決する製造方法として、インジウム化合物と錫化合物を溶剤に溶解させた透明導電膜形成用塗布液を用いて基板上に塗布する方法(以下、「塗布法」と表記する場合がある。)が検討されている。この方法では、透明導電膜形成用塗布液の基板上への塗布、乾燥、焼成という簡単な製造工程で透明導電膜(ITO膜)が形成される。
 この塗布液の基板上への塗布法としてはスピンコート法、ディップ法、スプレーコート法、スクリーン印刷法、ワイヤーバーコート法等が挙げられる。尚、曲面を有する基板や管の外面や内面に塗布する場合には、ディップ法、スプレーコート法が適用できる。
 上記した塗布法では、インジウム化合物及び錫化合物を含む塗布液として従来種々の塗布液が開発されており、例えば特許文献1には、ハロゲンイオンまたはカルボキシル基を含む硝酸インジウムとアルキル硝酸錫の混合液、特許文献2には、アルコキシル基などを含む有機インジウム化合物と有機錫化合物の混合物、特許文献3には、硝酸インジウムと有機錫化合物の混合物、特許文献4には、硝酸インジウム、硝酸錫等の無機化合物混合物、特許文献5には、ジカルボン酸硝酸インジウムなどの有機硝酸インジウムとアルキル硝酸錫などの有機硝酸錫の混合物、特許文献6には、アセチルアセトンを配位した有機インジウム錯体と錫錯体からなる混合溶液、特許文献7には上記と同様の有機化合物混合溶液、特許文献8にも同様な有機化合物混合物がそれぞれ開示されているが、これらの特許文献に見られるように、従来の塗布液の多くはインジウムや錫の硝酸塩、ハロゲン化物からなる有機または無機化合物、あるいは金属アルコキシドなどの有機金属化合物等が用いられている。
 しかし、硝酸塩やハロゲン化物を用いた塗布液は、焼成時において窒素酸化物や塩素などの腐食性ガスが発生するため、設備腐食や環境汚染を生ずるといった問題がある。また金属アルコキシドを用いた塗布液では、原料が加水分解し易いため、塗布液の安定性に問題がある。さらに上記の特許文献に記載された有機金属化合物を用いた塗布液の多くは、基板に対する濡れ性が悪く、不均一膜が形成されやすいといった問題も抱えている。
 本発明の出願人の提案による特許文献9には、これらの問題点を改良した塗布液としてアセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム:In(C)、アセチルアセトン錫(正式名称:ジ−n−ブチル ビス(2,4−ペンタンジオナト)錫:[Sn(C(C])、ヒドロキシプロピルセルロース、アルキルフェノール及び/又はアルケニルフェノールと二塩基酸エステル及び/又は酢酸ベンジルを含有する透明導電膜形成用塗布液が開示されている。
 この塗布液は、アセチルアセトンインジウム、アセチルアセトン錫の混合溶液にヒドロキシプロピルセルロースを含有させることによって塗布液の基板に対する濡れ性を改善すると同時に、粘性剤であるヒドロキシプロピルセルロースの含有量によって塗布液の粘度を調整し、スピンコート、スプレーコート、ディップコート、スクリーン印刷、ワイヤーバーコート等の各種塗布法の採用を可能にしている。
 更に、同じく同出願人による特許文献10では、特許文献9に記載のアセチルアセトンインジウム、アセチルアセトン錫、ヒドロキシプロピルセルロース、アルキルフェノールと二塩基酸エステルを含有する透明導電膜形成用塗布液を塗布・乾燥・焼成して得られる透明導電膜(ITO膜)において、焼成時に低湿度の空気雰囲気(例えば、露点温度が−10℃以下、より好ましくは−20℃以下)を用いると、透明導電膜が緻密化して、透明性、導電性、膜強度を向上できることが開示されている。
 したがって、上記焼成時の雰囲気に通常の大気を用いた場合では、その露点温度は、例えば、夏場は10~23℃程度(気温25℃程度で相対湿度40~90%と仮定)と高く、冬場は−23~−10℃程度(気温5℃程度で相対湿度10~30%と仮定)と低くなるため、露点温度が高い夏場には緻密な透明導電膜(ITO膜)が得られ難くなることになる。
 実際に、提案された透明導電膜形成用塗布液を用いた透明導電膜(ITO膜)の形成において、焼成時の雰囲気として冬場の低湿度の大気を用いた場合には、比較的緻密な高品質の透明導電膜が得られるが、夏場の高湿度の大気を用いた場合には、緻密性の良くない低品質の透明導電膜しか得られないという明確な傾向が認められている。特に、焼成時の雰囲気として夏場の高湿度の大気を用いる場合に、透明導電膜形成用塗布液の製造条件等の違いから生じる透明導電膜形成用塗布液の品質のばらつきにより、得られる透明導電膜の緻密性も大幅にばらつくことが判っており、より安定した品質を有する透明導電膜形成用塗布液の製造方法が望まれている。
 なお、上記緻密性のばらつきにより、得られる透明導電膜の膜構造は、ITO等の導電性酸化物微粒子(通常、粒径:数nm~数十nm)が緻密に充填した空孔(空隙)が小さく、かつ少ない緻密膜から、導電性酸化物微粒子が粗密に充填した空孔(空隙)が大きく、かつ多い粗密膜(ポーラス膜)まで変化する。そして、上記緻密膜では、粗密膜(ポーラス膜)に比べて、透明性が高く(ヘイズが小さく)、低抵抗でかつ抵抗経時安定性に優れ、膜強度も高く、高性能の透明導電膜が実現できる。
 ここで、上記透明性は、一般に、透明導電膜における可視光線(波長380~780nmの光線)の散乱度合(ヘイズ、またはヘイズ値)で評価され、ヘイズが小さい程透明性が高いと言える。
 更に、上記のような導電性酸化物微粒子が充填した膜構造においては、可視光線の短波長領域(青色)の光線が、中波長(緑色)~長波長領域(赤色)の光線に比べて著しく散乱され易いため(レイリー散乱が生じやすいため)、透明導電膜が粗密になる程、青色の散乱度合(以後、「ブルーヘイズ」と呼ぶ)が大きくなることが知られている。なお、上記短波長領域(青色)とは、可視光線の短波長領域の中でも、色覚反応(人間の目が色を良く感じる反応)の強い波長450nm近傍の波長領域を指している。
 このブルーヘイズは、透明導電膜に強力な可視光線(例えば太陽光線)が照射された際により際立って知覚され顕在化するため、可視光線のヘイズが比較的小さい値であってもブルーヘイズは大きいという場合があり(逆の、ブルーヘイズは比較的小さい値で可視光線のヘイズが大きい、という場合はない)、特に、大気中の湿度が高く(露点温度が高く)緻密な透明導電膜の得難い夏場においても、可視光線のヘイズはもとよりブルーヘイズを低減できる高品質の透明導電膜形成用塗布液が望まれている。
 また、上記透明導電膜形成用塗布液の製造条件等の違いから生じる透明導電膜形成用塗布液の品質のばらつきに関しては、上記得られる透明導電膜の緻密性の問題とは別に、透明導電膜形成用塗布液の粘度が経時増加して、最悪の場合は数日~数ヶ月の期間でゲル化(プリン化)する場合があり、その問題の解決も望まれている。
 更に、透明導電膜形成用塗布液の低コスト化という観点からは、上記透明導電膜形成用塗布液をより簡便で短時間に作製できることが要望されている。
 しかしながら、特許文献9や特許文献10では、アセチルアセトンインジウムやヒドロキシプロピルセルロース等の成分を有機溶剤に溶解させた溶液を60~200℃で0.5~12hr加熱攪拌する製造方法が提案されているが、その製造条件は広範囲であり、その実施例においては160℃で1hrの加熱(特許文献9)や、130℃で1.5hrの加熱(特許文献10)という製造条件が示されているのみで、その製造条件は限定的であるために、透明導電膜形成用塗布液の品質の安定化、及び低コスト化という観点からも、より適正化された製造方法が望まれている状況であった。
特開昭57−138708号公報 特開昭61−26679号公報 特開平4−255768号公報 特開昭57−36714号公報 特開昭57−212268号公報 特公昭63−25448号公報 特公平2−20706号公報 特公昭63−19046号公報 特開平6−203658号公報 WO2010/064719 A1の明細書
 本発明の目的は、透明性と高い導電性を兼ね備えた透明導電膜をスピンコート法やディップコート法等の塗布法により形成できる透明導電膜形成用塗布液を、その品質を安定させ、かつ低コストで簡便に作製できる透明導電膜形成用塗布液の製造方法を提供することにある。
 上記の目的を達成するために、発明者らは、有機インジウム化合物としてのアセチルアセトンインジウム、ドーパント用有機金属化合物、有機粘性剤としてのセルロース誘導体(ヒドロキシプロピルセルロース等)、高沸点有機溶剤(沸点:180℃以上)としてのアルキルフェノール、及び二塩基酸エステルを含有する透明導電膜形成用塗布液の製造方法について鋭意研究を重ねた結果、上記アセチルアセトンインジウム、ドーパント用有機金属化合物、セルロース誘導体を、アルキルフェノール、及び二塩基酸エステルを少なくとも含有する高沸点有機溶剤(沸点:180℃以上)中で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程において、その加熱溶解・反応条件としての加熱温度及び加熱時間を特定範囲内に設定することにより、スピンコート法やディップコート法等の塗布法で透明性と高い導電性を兼ね備えた透明導電膜を形成できる透明導電膜形成用塗布液を、その品質を安定させ、かつ低コストで簡便に製造することができることを見出し、本発明を完成したものである。
 すなわち、上記の目的を達成するための本発明の第1の発明は、有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、前記加熱溶解工程で得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程の各工程からなる透明導電膜形成用塗布液の製造方法であって、その高濃度溶解液の有機インジウム化合物とドーパント用有機金属化合物との合計含有量が20~60重量%、有機粘性剤の含有量が有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3、有機インジウム化合物がアセチルアセトンインジウム、有機粘性剤がセルロース誘導体で、高沸点有機溶剤(沸点:180℃以上)がアルキルフェノール、及び二塩基酸エステルを少なくとも含有する高沸点有機溶剤(沸点:180℃以上)で、中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上の有機溶剤がケトン系有機溶剤で、そして加熱溶解工程の加熱溶解・反応条件が、加熱温度(T:℃)が130≦T≦180℃の範囲内で、かつ、加熱時間(L:hr)が、−0.7T+104<L<−1.1T+168(130≦T<140℃)、−0.3T+48<L<−0.6T+98(140≦T<150℃)、−0.15T+25.5<L<−0.4T+68(150≦T<160℃)、−0.1T+17.5<L<−0.2T+36(160≦T<170℃)、−0.025T+4.75<L<−0.1T+19(170≦T≦180℃)の範囲内であることを特徴とするものである。
 本発明の第2の発明は、有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、前記加熱溶解工程で得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程の各工程からなる透明導電膜形成用塗布液の製造方法であって、その高濃度溶解液の有機インジウム化合物とドーパント用有機金属化合物との合計含有量が20~60重量%、有機粘性剤の含有量が有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3、有機インジウム化合物がアセチルアセトンインジウムで、有機粘性剤がセルロース誘導体で、高沸点有機溶剤(沸点:180℃以上)がアルキルフェノール、及び二塩基酸エステルを少なくとも含有する高沸点有機溶剤(沸点:180℃以上)で、中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上の有機溶剤がケトン系有機溶剤であって、加熱溶解工程の加熱溶解・反応条件の加熱温度(T:℃)が130≦T≦180℃の範囲内で、加熱時間(L:hr)が下記式(1)を満足し、かつ、透明導電膜形成用塗布液を室温に3ヶ月放置した場合の粘度変化が初期粘度の0.5~1.5倍以内(±50%以内)となるように調節されていることを特徴とする透明導電膜形成用塗布液の製造方法である。
Figure JPOXMLDOC01-appb-M000002
 本発明の第3の発明は、第1及び第2の発明における有機インジウム化合物とドーパント用有機金属化合物の含有割合が、有機インジウム化合物/ドーパント用有機金属化合物モル比=99/1~87/13であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第4の発明は、第1~第3の発明における透明導電膜形成用塗布液の有機インジウム化合物とドーパント用有機金属化合物の合計含有量が、5~15重量%であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第5の発明は、第1~第4の発明におけるドーパント用有機金属化合物が、アセチルアセトン錫であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第6の発明は、第1~第5の発明におけるセルロース誘導体が、ヒドロキシプロピルセルロースであることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第7の発明は、第1~第6の発明におけるアルキルフェノールが、パラターシャリーブチルフェノール(沸点237℃)であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第8の発明は、第1~第7の発明における二塩基酸エステルが、マロン酸ジメチル(沸点:181~183℃)、コハク酸ジメチル(沸点:196℃)、グルタル酸ジメチル(沸点:210~215℃)、アジピン酸ジメチル(沸点:215~225℃)のいずれか一つ以上であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第9の発明は、第1~第8の発明におけるケトン系有機溶剤が、シクロヘキサノン(沸点:155.7℃)、メチルエチルケトン(沸点:79.6℃)のいずれか一つ以上であることを特徴とする透明導電膜形成用塗布液の製造方法である。
 本発明の第10の発明は、第1~第9の発明における透明導電膜形成用塗布液の製造方法を用いて得られる透明導電膜形成用塗布液である。
 本発明の透明導電膜形成用塗布液の製造方法によれば、ガラスやセラミックなどの耐熱基板上に、塗布法、特にスピンコート法、ディップコート法を用いて、透明性と高い導電性を兼ね備えた透明導電膜を形成できる透明導電膜形成用塗布液を、その品質を安定させ、かつ低コストで簡便に作製できる。
 さらに本発明の透明導電膜形成用塗布液の製造方法で得られる透明導電膜形成用塗布液を用い、スピンコート法やディップコート法等の塗布法により基板上に形成された透明導電膜は、透明性と高い導電性を兼ね備え、かつ低コストのため、各種ディスプレイにおける表示素子透明電極、タッチパネル、太陽電池、フィールドエミッションランプ等の透明電極への利用が期待できる。
本発明に係る透明導電膜形成用塗布液の製造方法における加熱溶解工程の加熱溶解・反応条件(加熱温度(T:℃)、及び加熱時間(L:hr))と透明導電膜形成用塗布液の良否の関係を示す図である。 本発明に係る透明導電膜形成用塗布液の製造方法における加熱溶解工程の加熱溶解・反応条件(加熱温度(T:℃)、及び加熱時間(L:hr))において、良好な透明導電膜形成用塗布液が得られる範囲の加熱温度(T:℃)と基準となる加熱時間[基準加熱時間](L:hr)の関係を示す図である。 実施例1と比較例1に係る透明導電膜形成用塗布液を用いて透明導電膜が形成されたガラス基板に強力な可視光線(擬似太陽光)を照射した際の透明導電膜の外観(可視光線の散乱具合)を示す図である。 室温に3ヶ月放置された実施例3と比較例2に係る透明導電膜形成用塗布液の室温での外観(流動性)を示す図である。 実施例8と比較例5に係る透明導電膜形成用塗布液を用いて透明導電膜が形成されたガラス基板に強力な可視光線(擬似太陽光)を照射した際の透明導電膜の外観(可視光線の散乱具合)を示す図である。 実施例8と比較例5に係る透明導電膜形成用塗布液を用いて透明導電膜が形成されたガラス基板の可視光線領域(波長380~780nm)における拡散光線透過率プロファイルを示す図である。 室温に3ヶ月放置された実施例8と比較例6に係る透明導電膜形成用塗布液の室温での外観(流動性)を示す図である。
 以下、本発明の実施の形態について詳細に説明する。
 本発明では、有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、その加熱溶解工程で得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程によって透明導電膜形成用塗布液を製造しており、加熱溶解工程での加熱温度と加熱時間を特定範囲内に設定することで、高品質の透明導電膜形成用塗布液の低コストかつ簡便な製造方法を可能としている。
 まず、有機インジウム化合物としては、アセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム)[In(C](以下AcAcInと記す場合がある)を用いる。アセチルアセトンインジウムは、有機溶剤への溶解性が高く、200~250℃程度の温度での大気中で、熱分解・燃焼(酸化)して酸化物となるため好ましい。
 次に、ドーパント用有機金属化合物としては、有機錫化合物、有機チタン化合物、有機ゲルマニウム化合物、有機亜鉛化合物、有機タングステン化合物、有機ジルコニウム化合物、有機タンタル化合物、有機ニオブ化合物、有機ハフニウム化合物、有機バナジウム化合物のいずれか1種以上が好ましく、中でも有機錫化合物がより好ましい。
 ドーパント用有機金属化合物の有機錫化合物(化合物中の錫の価数は2価、4価にこだわらない)としては、例えば、アセチルアセトン錫(正式名称:ジ−n−ブチル ビス(2,4−ペンタンジオナト)錫)[Sn(C(C](以下AcAcSnと記す場合がある)、オクチル酸錫、2−エチルヘキサン酸錫、酢酸錫(II)[Sn(CHCOO)]、酢酸錫(IV)[Sn(CHCOO)]、ジ−n−ブチル錫ジアセテート[Sn(C(CHCOO)]、蟻酸錫、錫アルコキシドとしての錫−tert−ブトキシド[Sn(CO)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機錫化合物であれば良い。これらの中でも、アセチルアセトン錫は、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機チタン化合物としては、例えば、チタンアセチルアセトン錯体としてのアセチルアセトンチタン(正式名称:チタンジ−n−ブトキシド ビス(2,4−ペンタンジオネート)[Ti(CO)(C])、チタニル(IV)アセチルアセトネート[(C)4TiO]、チタンジイソプロポキシド ビス(2,4−ペンタンジオネート)[C1636Ti]等や、チタンアルコキシドとしてのチタンテトラエトキシド[Ti(CO)]、チタン(IV)−tert−ブトキシド[Ti(CO)]、チタンテトラ−n−ブトキシド[Ti(CO)]、チタンテトライソプロポキシド[Ti(CO)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機チタン化合物であれば良い。これらの中でも、アセチルアセトンチタン、チタンテトラ−n−ブトキシド、チタンテトライソプロポシドは、安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機ゲルマニウム化合物としては、例えば、ゲルマニウムアルコキシドとしてのゲルマニウムテトラエトキシド[Ge(CO)]、ゲルマニウムテトラ−n−ブトキシド[Ge(CO)]、ゲルマニウムテトライソプロポキシド[Ge(CO)]等や、β−カルボキシエチルゲルマニウムオキシド[(GeCHCHCOOH)]、テトラエチルゲルマニウム[Ge(C]、テトラブチルゲルマニウム[Ge(C]、トリブチルゲルマニウム[Ge(C]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ゲルマニウム化合物であれば良い。
 これらの中でも、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド、ゲルマニウムテトライソプロポキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機亜鉛化合物としては、例えば、亜鉛アセチルアセトン錯体としてのアセチルアセトン亜鉛(正式名称:亜鉛−2,4−ペンタンジオネート)[Zn(C]、亜鉛−2,2,6,6−テトラメチル−3,5−ヘプタンジオネート[Zn(C1119]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機亜鉛化合物であれば良い。これらの中でも、アセチルアセトン亜鉛は、安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機タングステン化合物としては、例えば、タングステンアルコキシドとしてのタングステン(V)エトキシド[W(CO)]、タングステン(VI)エトキシド[W(CO)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機タングステン化合物であれば良い。
 ドーパント用有機金属化合物の有機ジルコニウム化合物としては、例えば、ジルコニウムアセチルアセトン錯体としてのジルコニウム ジ−n−ブトキシド ビス(2,4−ペンタンジオネート)[Zr(CO)(C]、アセチルアセトンジルコニウム(正式名称:ジルコニウム−2,4−ペンタンジオネート)[Zr(C]、ジルコニウムアルコキシドとしてのジルコニウムエトキシド[Zr(CO)]、ジルコニウム−n−プロポキシド[Zr(CO)]、ジルコニウムイソプロポキシド[Zr(CO)]、ジルコニウム−n−ブトキシド[Zr(CO)]、ジルコニウム−tert−ブトキシド[Zr(CO)]、ジルコニウム−2−メチル−2−ブトキシド[Zr(C11O)]、ジルコニウム−2−メトキシメチル−2−プロポキシド[Zr(C11]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ジルコニウム化合物であれば良い。
 これらの中でも、ジルコニウム−n−プロポキシド、ジルコニウム−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機タンタル化合物としては、例えば、タンタルアセチルアセトン錯体としてのタンタル(V)テトラエトキシド−ペンタンジオネート[Ta(C)(OC]、タンタルアルコキシドとしてのタンタルメトキシド[Ta(CHO)]、タンタルエトキシド[Ta(CO)]、タンタルイソプロポキシド[Ta(CO)]、タンタル−n−ブトキシド[Ta(CO)]、テトラエトキシアセチルアセトナトタンタル[Ta(CO)(C)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機タンタル化合物であれば良い。
 ドーパント用有機金属化合物の有機ニオブ化合物としては、例えば、ニオブアルコキシドとしてのニオブエトキシド[Nb(CO)]、ニオブ−n−ブトキシド[Nb(CO)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ニオブ化合物であれば良い。
 ドーパント用有機金属化合物の有機ハフニウム化合物としては、例えば、ハフニウムアセチルアセトン錯体としてのハフニウム ジ−n−ブトキシド ビス(2,4−ペンタンジオネート)[Hf(CO)(C]、アセチルアセトンハフニウム(正式名称:ハフニウム−2,4−ペンタンジオネート)[Hf(C]、ハフニウムアルコキシドとしてのハフニウムエトキシド[Hf(CO)]、ハフニウム−n−ブトキシド[Hf(CO)]、ハフニウム−tert−ブトキシド[Hf(CO)]、ハフニウム(VI)イソプロポキシドモノイソプロピレート[Hf(CO)(COH)]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ハフニウム化合物であれば良い。
 これらの中でも、ハフニウム−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機バナジウム化合物としては、例えば、バナジウムアセチルアセトン錯体としてのバナジウム(IV)オキサイドビス−2,4−ペンタンジオネート[VO(C]、アセチルアセトンバナジウム(正式名称:バナジウム(III)−2,4−ペンタンジオネート)[V(C]等が挙げられるが、基本的には、溶剤に溶解し、透明導電膜形成用塗布液の塗布・乾燥・焼成による透明導電膜の形成工程において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機バナジウム化合物であれば良い。
 ここで、上記各種ドーパント用有機金属化合物の役割は、最終的に得られる酸化インジウムを主成分とする導電性酸化物からなる透明導電膜において、酸化インジウム中に金属酸化物としてドープされることにより導電性酸化物中のキャリア濃度を増大させてその導電性を向上させる働きにある(例えば、ドーパント用有機錫化合物を用いた場合は、ITOからなる透明導電膜が得られる。)。
 有機インジウム化合物(アセチルアセトンインジウム)とドーパント用有機金属化合物は、基板上に透明導電膜を形成させるための主たる化合物原料であり、その透明導電膜形成用塗布液中の合計含有量は5~15重量%の範囲であることが好ましく、更に好ましくは8~12重量%とするのが良い。
 含有量が5重量%未満であると得られる透明導電膜の膜厚が薄くなり十分な導電性が得られず、15重量%より多いと透明導電膜形成用塗布液からアセチルアセトンインジウムが析出しやすくなり(特に、低温での保管時)、実用的でない。
 また、有機インジウム化合物(アセチルアセトンインジウム)とドーパント用有機金属化合物の含有割合は、有機インジウム化合物/ドーパント用有機金属化合物モル比=99/1~87/13が好ましい。
 このモル比範囲を外れてドーパント用有機金属化合物が少なくても、あるいは、多すぎても、透明導電膜のキャリア密度が減少して透明導電膜の導電性が急激に悪化する場合があるため、好ましくない。
 有機粘性剤としては、基板に対する濡れ性が改善されると同時に塗布液の粘度調整を行うことができ、かつ焼成時の温度(焼成温度)以下で分解・燃焼して透明導電膜中に残存しない材料が望ましい。
 このような材料としてセルロース誘導体が有効であり、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース(HPC)等が挙げられるが、中でもヒドロキシプロピルセルロース(HPC)が好ましい。
 HPC等の有機粘性剤の透明導電膜形成用塗布液への配合量は、有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3が良く、この範囲内であれば、ガラス等の基板に対して十分な濡れ性が得られると同時に、大幅な粘度調整を行うことができるため好ましい。
 ここで、HPC等のセルロース誘導体の多くは、その燃焼開始温度は300℃程度であり、従って塗布、乾燥後の基板を、例えば400℃以上の温度で空気中で焼成すればHPC等のセルロース誘導体は分解・燃焼するので、生成するITO等の導電性酸化物粒子の粒成長を阻害せず、良好な導電性を持った膜を形成することができる。
 なお、HPC等のセルロース誘導体の配合量が上記1/3より多くなると、塗布液中にゲル状のセルロース誘導体が残留し易くなり、多孔質の透明導電膜を形成するため導電性が損なわれるため好ましくない。
 例えば、セルロース誘導体としてHPCを用いる場合、その分子量(MW:Molecular Weight)に応じて低粘度グレード(MW=40000程度)から高粘度グレード(MW=900000程度)まで数種類のグレードがあるため、透明導電膜形成用塗布液の用途や塗布方法に応じ、上記配合量範囲内(有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3)で、適宜選定することができる。
 高濃度溶解液を得る加熱溶解工程において用いる高沸点有機溶剤(沸点:180℃以上)としては、アセチルアセトンインジウム、アセチルアセトン錫等のドーパント用有機金属化合物、セルロース誘導体(特にHPC)を良く溶解するアルキルフェノールと二塩基酸エステルの混合溶剤が好ましい。
 アルキルフェノールとしては、クレゾール類、パラターシャリーブチルフェノール(沸点:237℃)、オクチルフェノール、ノニルフェノール等が挙げられるが、パラターシャリーブチルフェノールが好ましい。
 また、二塩基酸エステルとしては、コハク酸エステル、グルタル酸エステル、アジピン酸エステル等が挙げられ、例えば、マロン酸ジメチル(沸点:181~183℃)、コハク酸ジメチル(沸点:196℃)、グルタル酸ジメチル(沸点:210~215℃)、アジピン酸ジメチル(沸点:215~225℃)が好ましい。
 希釈工程において、高濃度溶解液を希釈する中沸点有機溶剤(沸点:100℃以上180℃未満)、及び低沸点有機溶剤(沸点:50℃以上100℃未満)としては、ケトン系有機溶剤が好ましく、例えば、アセトン(沸点:56.1℃)、メチルエチルケトン(MEK)(沸点:79.6℃)、メチルプロピルケトン(沸点:102.3℃)、メチルイソブチルケトン(MIBK)(沸点:115.9℃)、アセチルアセトン(沸点:140.4℃)、シクロヘキサノン(沸点:155.7℃)等が挙げられるが、中沸点有機溶剤ではシクロヘキサノン、低沸点有機溶剤ではメチルエチルケトンが好ましい。
 中沸点有機溶剤として、上記シクロヘキサノンに加えて、プロピレングリコールモノメチルエーテル(PGM)(沸点:120℃)を少量配合すると、透明導電膜形成用塗布液の塗布性を向上できるため好ましい。
 上記各種有機溶剤(高沸点有機溶剤、中沸点有機溶剤、低沸点有機溶剤)以外の有機溶剤も、加熱溶解工程や希釈工程でアセチルアセトンインジウム、ドーパント用有機金属化合物、セルロース誘導体の溶解性や相溶性等を著しく損なわなければ、透明導電膜形成用塗布液の粘度、塗布性、乾燥速度等を調整する目的で、高濃度溶解液や透明導電膜形成用塗布液に少量配合してもよい。
 そのような有機溶剤としては、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、イソホロン等のケトン系溶媒、酢酸エチル、酢酸ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3−オキシプロピオン酸メチル、3−オキシプロピオン酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、2−オキシプロピオン酸メチル、2−オキシプロピオン酸エチル、2−オキシプロピオン酸プロピル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−オキシ−2−メチルプロピオン酸メチル、2−オキシ−2−メチルプロピオン酸エチル、2−メトキシ−2−メチルプロピオン酸メチル、2−エトキシ−2−メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2−オキソブタン酸メチル、2−オキソブタン酸エチル等のエステル系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、エチレングリコールモノブチルエーテル(BCS)、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、トルエン、キシレン、メシチレン、ドデシルベンゼン等のベンゼン誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1、3−ブチレングリコール、ペンタメチレングリコール、1、3−オクチレングリコール、テトラヒドロフラン(THF)、クロロホルム、ミネラルスピリッツ、ターピネオール等、及びこれらのいくつかの混合液が挙げられる。
 本発明の、有機インジウム化合物(アセチルアセトンインジウム)、ドーパント用有機金属化合物、有機粘性剤、をアルキルフェノールと二塩基酸エステルを含有する高沸点有機溶剤中で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程では、加熱の進行に伴い、アセチルアセトンインジウム、セルロース誘導体と上記高沸点有機溶剤とが徐々に反応し、液の色は薄い黄色から濃褐色へと変化し、液の粘度も少しずつ上昇していく。
 この反応の度合いが小さすぎると(つまり、加熱温度(T:℃)が低く、加熱時間(L:hr)が短い)、得られる透明導電膜は、緻密化しにくく、比較的粗大なボイド(空隙)が生じて、膜のヘイズが大きくなる傾向(特にブルーヘイズが大きくなる傾向)がある。一方で、反応の度合いが大きすぎると(つまり、加熱温度(T:℃)が高く、加熱時間(L:hr)が長い)、得られる透明導電膜形成用塗布液は、その粘度が高くなり、かつ粘度の経時増加が生じて安定性が悪化し、最終的にゲル化(プリン化)する傾向がある。
 ここで、加熱溶解工程の反応条件の違いにより、上記ブルーヘイズやゲル化(プリン化)が発生するメカニズムは必ずしも明らかではないが、例えば、次の様な要因が考えられる。
 加熱溶解工程の加熱により、透明導電膜形成用塗布液中の主成分である有機インジウム化合物(アセチルアセトンインジウム)に対し、そのインジウム(In)部位への二塩基酸エステル(グルタル酸ジメチル等)のエステルカルボニル基(−C(=O)−O−)の配位、あるいは、そのアセチルアセトン配位子部位に対するアルキルフェノール(パラターシャリーブチルフェノール等)やセルロース誘導体(ヒドロキシプロピルセルロース等)の水酸基(−OH)の相互作用等が生じ、これらによる透明導電膜形成用塗布液成分のミクロレベルの構造変化の違いが、上記ブルーヘイズやゲル化(プリン化)を引き起こすというものである。実際に、透明導電膜形成用塗布液の各構成成分について、核磁気共鳴分光分析(NMR)の水素核観測(H−NMR)と炭素核観測(13C−NMR)を行ったところ、塗布液中と成分単独の場合で、得られるスペクトルに化学シフトが観察され、上記ミクロレベルの構造変化は確認できたが、詳細な構造変化を解明するには至っていない。
 したがって、上記反応の度合いを適切にし、高品質の透明導電膜形成用塗布液を得るには、その加熱溶解工程での高濃度溶解液の加熱温度と加熱時間を特定範囲内に設定する必要がある。
 具体的には、加熱温度(T:℃)が130≦T≦180の範囲内で、かつ、加熱時間(L:hr)が、−0.7T+104<L<−1.1T+168(130≦T<140)、−0.3T+48<L<−0.6T+98(140≦T<150)、−0.15T+25.5<L<−0.4T+68(150≦T<160)、−0.1T+17.5<L<−0.2T+36(160≦T<170)、−0.025T+4.75<L<−0.1T+19(170≦T≦180)の範囲内である。
 この範囲は、図1に示した加熱溶解工程の加熱溶解・反応条件(加熱温度(T:℃)、及び加熱時間(L:hr))と透明導電膜形成用塗布液の良否の関係における、上下2本の破線で示す折れ線で挟まれた範囲を示している。
 すなわち、図1の上側の破線を境にした加熱時間の長時間側では透明導電膜形成用塗布液の「ゲル化(プリン化)」が発生し易く、また、図1の下側の破線を境にした加熱時間の短時間側(上記(1)式で示される領域よりも加熱時間が短い領域)では透明導電膜の「ブルーヘイズ」が発生し易い。「ブルーヘイズ」防止の観点からすると、加熱溶解工程の実施に際しては、上記(1)式を満足する温度及び時間条件で処理することが望ましい。
 なお、加熱温度範囲は130℃から180℃の範囲で、図1における上下2本の折れ線(破線)の線上の加熱時間は含まれない。
 加熱温度(T:℃)が130℃未満では、高品質の透明導電膜形成用塗布液を得るための適正な加熱時間(L:hr)が非常に長くなって(例えば120℃であれば24時間程度以上)製造効率が著しく低下し、逆に、180℃を超えると、適切な加熱時間の範囲が狭くなりすぎて、高濃度溶解液の液内温度分布や加熱温度制御のバラツキを考慮すると、その適切な範囲内にコントロールすることが困難になる。
 そこで、加熱時間等の製造効率や加熱温度制御等の製造難易度を考慮すると、上記加熱温度(T:℃)は、150~170℃、特に、155~165℃が好ましい。
 尚、加熱溶解工程で複数の異なる加熱温度を組み合わせて用いる場合(例えば、加熱温度160℃と加熱温度140℃の組み合わせ)においても、高品質の透明導電膜形成用塗布液を得るには、加熱温度と加熱時間を特定範囲内に設定する必要がある。
 この場合、図1に示した破線で示す上下2本の折れ線の中間を結んだ実線の中心線(図2)に基づいて、下記式(2)に示される換算加熱時間により特定範囲を設定できる。
 ここで、上記中心線は、良好な透明導電膜形成用塗布液が得られる範囲における加熱温度(T:℃)と基準となる加熱時間[基準加熱時間](L:hr)の関係を示すものである。
 具体的には、加熱温度(T:℃)と加熱時間(L:hr)を用い、L=−0.9T+136(130≦T<140)、L=−0.45T+73(140≦T<150)、L=−0.275T+46.75(150≦T<160)、L=−0.15T+26.75(160≦T<170)、L=−0.0625T+11.88(170≦T≦180)で示される。
Figure JPOXMLDOC01-appb-M000003
 例えば、加熱溶解工程で、加熱温度160℃で加熱時間1時間、加熱温度140℃で加熱時間5時間を組み合わせた場合を考えると、加熱温度140℃で加熱時間5時間の処理は加熱温度160℃の加熱時間1.38時間に相当し、それを加熱処理160℃での実際の加熱時間(1時間)に加算すると、160℃換算加熱時間は2.38時間と算出される。
 この160℃換算加熱時間2.38時間は、図1に示される特定範囲に該当するため、良質な透明導電膜形成用塗布液を得られることが期待できる。
 さらに、上記加熱溶解工程を経て作製された透明導電膜形成用塗布液は、室温状態で放置されても、ほぼ作製当時の粘度を保つ性質を備え、「室温に3か月放置した時の粘度」を作製後の粘度経時増加の尺度として見た場合、その粘度変化は、初期粘度(作製当時の粘度)の0.5~1.5倍以内(粘度変化は±50%以内)であり、本発明で得られる透明導電膜形成用塗布液は、作製後の安定性・保管性に優れ、スピンコート法やディップコート法等の汎用の塗布方法を用いて、ガラス等の耐熱基板上に、塗布・乾燥・焼成することで、透明導電膜を容易に形成することができる。
 なお、保管時の粘度が初期粘度の1.5倍を超えると、著しく流動性が低下して汎用の塗布方法を用いて平滑な透明導電膜を形成することが難しくなり、膜特性の低下を招き、また、最終的に透明導電膜形成用塗布液のゲル化(プリン化)を引き起こす傾向があり好ましくない。逆に0.5倍未満、即ち粘度が小さくなり、流動性が増した状態となると、この状態では、塗布方法により平滑な状態で膜の厚みを大きくすることが難しくなり、粘度変化が大きい場合と同様に膜特性の低下を招いてしまう。
 上記乾燥は、塗布液が塗布された基板を、80~180℃の温度で5~20分間程度保持して行われ、焼成は、乾燥した乾燥塗布膜付基板を大気中で300℃以上、好ましくは400~500℃程度に加熱し、15~60分間保持することで行われる。
 必要に応じ、上記大気中での焼成に引き続き、中性雰囲気または還元性雰囲気下での焼成を行って、透明導電膜を弱還元して酸化インジウムを主成分とする導電性酸化物中に酸素空孔(酸素欠損)を形成し、キャリア濃度を増加させて、透明導電膜の導電性を向上させる処理を行うこともできる。
 上記中性雰囲気には、窒素ガス、アルゴン、ヘリウム等の不活性ガスのいずれか1種以上が挙げられる。
 一方、上記還元性雰囲気は、水素ガスまたはその中性雰囲気に水素または有機溶剤蒸気(例えば、メタノール等の有機ガス)の少なくとも1種以上が含まれる雰囲気などが挙げられるが、緻密に充填した酸化インジウムを主成分とする導電性酸化物微粒子から酸素原子を奪い酸素空孔を形成して導電キャリア濃度を高めることができれば良く、これらに限定されない。但し、還元性が強すぎる雰囲気だと酸化インジウムの還元が進みすぎて導電キャリア濃度を高くなり過ぎて可視光線領域に吸収が生じて膜が黒化し、可視光線透過率が低下する場合があるため、好ましくない。
 上記還元処理工程において、窒素ガスや不活性ガスに水素ガス0.1~7%(体積%)を含有させた雰囲気は、大気に漏洩しても爆発の恐れがなく、好ましい。
 特に、窒素ガスや不活性ガスに水素ガス1~3%(体積%)を含有させた雰囲気は、還元処理工程の加熱温度が高い場合(例えば500~600℃程度)に、上記膜の黒化が起こり難いという点でも好ましい雰囲気である。
 本発明の透明導電膜形成用塗布液の製造方法によれば、高品質の透明導電膜形成用塗布液を、低コストかつ簡便に作製できるため、その透明導電膜形成用塗布液を用いて形成された透明導電膜は、透明性と高い導電性を兼ね備え、かつ低コストのため、各種ディスプレイにおける表示素子透明電極、タッチパネル、太陽電池、フィールドエミッションランプ等の透明電極への利用が期待できる。
 以下、実施例を用いて本発明を詳細するが、本発明はこれら実施例に限定されるものではない。
[透明導電膜形成用塗布液の作製]
 アセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム)[In(C](分子量=412.15)36.4g、アセチルアセトン錫(正式名称:ジ−n−ブチル ビス(2,4−ペンタンジオナト)錫[Sn(C(C](分子量=431.14)3.6g、p−tert−ブチルフェノール42g、二塩基酸エステル(デュポンジャパン製;コハク酸ジメチル(沸点:196℃)、グルタル酸ジメチル(沸点:210~215℃)、アジピン酸ジメチル(沸点:215~225℃)の混合物)14g、ヒドロキシプロピルセルロース(HPC;MW=約150000(中粘度グレード))4gを混合し、攪拌しながら160℃で2時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た。
 この高濃度溶解液25gに、希釈溶剤としてのシクロヘキサノン(沸点155.7℃)25g、プロピレングリコールモノメチルエーテル(PGM)(沸点120℃)10g、メチルエチルケトン(MEK)(沸点79.6℃)40gを加え、均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で10重量%、ヒドロキシプロピルセルロースを1重量%含有する実施例1に係る透明導電膜形成用塗布液(アセチルアセトンインジウム:アセチルアセトン錫=91.4:8.6[モル比])を作製した。
 この塗布液の粘度を、ブルックフィールド社製のコーンプレート型粘度計(型式:LVDV−II+Pro)を用いて測定したところ、3.1mPa・s(25℃)であった。なお、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 以下、実施例において塗布液の粘度に「著しい変化がない」とは、室温に3ヶ月放置した場合の粘度変化が、初期粘度の0.5~1.5倍以内(±50%以内)であることを基準に判断している。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を、無アルカリガラス基板(10cm×10cm×0.7mm厚さ;ヘイズ値=0.26%、可視光線透過率=91.2%、ブルーヘイズ値=0.26%、波長450nmの光線透過率=91.0%)上の全面にスピンコーティング(1000rpm×60sec)した後、熱風乾燥機を用いて100℃で5分間乾燥し、更にホットプレートを用いて露点温度が15~20℃の空気雰囲気(1リッター/分供給)において、500℃まで50分かけて昇温(昇温速度:10℃/分)し、500℃で15分間焼成し、そのまま雰囲気を1%水素−99%窒素(1リッター/分供給)に切替えて500℃で更に15分間焼成してドーパント用の酸化錫(SnO)を含んだ酸化インジウム(In)を主成分とする透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 さらに、図3に上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)(光源:セリック株式会社製XC−100)を照射した際の透明導電膜の外観(可視光線の散乱具合)の様子を示す。図3から明らかなように可視光線の散乱は見られず(特に、ブルーヘイズが見られず)、透明導電膜が低ヘイズで透明性に優れていることが判る。
 透明導電膜の表面抵抗は、三菱化学株式会社製の表面抵抗計「ロレスタEP(MCP−T360)」を用い測定した。
 ヘイズ値と可視光透過率は、日本電色株式会社製のヘイズメーター「NDH5000」を用い、JIS K7136(ヘイズ値)、JISK7361−1(透過率)に基づいて測定した。
 ブルーヘイズ値は、日立製作所株式会社製の分光光度計「U−4000」を用いて測定した基板、及び透明導電膜が形成された基板の拡散光線透過プロファイルから算出した。
 膜厚は、オプティカルプロファイラー(Zygo社製「NewView6200」)を用いて測定した。
 なお、可視光透過率及びヘイズ値は、透明導電膜だけの値であり、それぞれ下記数3及び数4により求めた。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 さらに、ブルーヘイズ値も、透明導電膜だけの値であり、下記数5により求めた。ここで、拡散光線透過率とは、基板を透過する光線において、直進せずに散乱される光線の割合を示している。
Figure JPOXMLDOC01-appb-M000006
[透明導電膜の作製]
 攪拌しながら160℃で2.5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例2に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.2mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら160℃で3時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例3に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.5mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は、実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
 さらに、図4に上記室温に3ヶ月放置した実施例3の透明導電膜形成用塗布液(液状)が入ったガラス容器を室温で45度傾斜させた際の塗布液の外観(流動性)の様子を示す。
 塗布液表面は傾斜させても水平を保っており、塗布液が低粘度で良好な流動性を有していることが判る。
[透明導電膜の作製]
 攪拌しながら150℃で4時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例4に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.1mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら150℃で5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例5に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.8mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら150℃で6時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例6に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.3mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら170℃で1時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例7に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.5mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら170℃で1.5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例8に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.7mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、図5に上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)(光源:セリック株式会社製XC−100)を照射した際の透明導電膜の外観(可視光線の散乱具合)の様子を示す。
 加えて、図6に上記透明導電膜が形成されたガラス基板の可視光線領域(波長380~780nm)における拡散光線透過率プロファイルを示す。
 図5、および図6から、可視光線の散乱は見られず(特に、ブルーヘイズが見られず)、透明導電膜が低ヘイズで透明性に優れていることが判る。
 さらに、上記室温に3ヶ月放置した実施例8の透明導電膜形成用塗布液(液状)が入ったガラス容器を室温で45度傾斜させた際の塗布液の外観(流動性)を図7に示す。塗布液表面は傾斜させても水平を保っており、塗布液が低粘度で良好な流動性を有していることが判る。
[透明導電膜の作製]
 攪拌しながら140℃で8時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例9に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.6mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら140℃で12時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例10に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.7mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
[透明導電膜の作製]
 攪拌しながら180℃で0.5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例11に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.3mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら130℃で16時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例12に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.6mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら130℃で22時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例13に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.8mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜の作製]
 攪拌しながら150℃で2.5時間、引き続き攪拌しながら140℃で5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、実施例14に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、4.1mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
[透明導電膜形成用塗布液の作製]
 二塩基酸エステル(デュポンジャパン製;コハク酸ジメチル(沸点:196℃)、グルタル酸ジメチル(沸点:210~215℃)、アジピン酸ジメチル(沸点:215~225℃)の混合物)87g、p−tert−ブチルフェノール5gを混合し、室温で10分間攪拌し溶解した後、ヒドロキシプロピルセルロース(HPC;MW=約900000(高粘度グレード))1gを混合し、攪拌しながら60℃で1時間の間加熱溶解させた。さらに、アセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム)[In(C](分子量=412.15)6.7g、アセチルアセトン錫(正式名称:ジ−n−ブチル ビス(2,4−ペンタンジオナト)錫[Sn(C(C](分子量=431.14)0.3gを混合し、攪拌しながら160℃で2時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量7重量%)を得た。
 この高濃度溶解液60gに、希釈溶剤としてのアセチルアセトン(沸点140.4℃)40gを加え、均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で4.2重量%、ヒドロキシプロピルセルロースを0.6重量%含有する実施例15に係る透明導電膜形成用塗布液(アセチルアセトンインジウム:アセチルアセトン錫=95.9:4.1[モル比])を作製した。なお、この塗布液の粘度は、3700mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を、80℃に予熱したソーダライムガラス基板(10cm×10cm×3mm厚さ;ヘイズ値=0.26%、可視光線透過率=91.7%、ブルーヘイズ値0.26%、波長450nmの光線透過率=90.9%)上の全面にスピンコーティング(300rpm×120sec)し、塗布・乾燥した後、更にホットプレートを用いて露点温度が15~20℃の空気雰囲気(1リッター/分供給)において、500℃まで50分かけて昇温(昇温速度:10℃/分)し、500℃で15分間焼成し、そのまま雰囲気を1%水素−99%窒素(1リッター/分供給)に切替えて500℃で更に15分間焼成してドーパント用の酸化錫(SnO)を含んだ酸化インジウム(In)を主成分とする透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、実施例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際にブルーヘイズは観察されなかった。
(比較例1)
[透明導電膜の作製]
 攪拌しながら160℃で1.5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例1に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、2.9mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 さらに、図3に上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)(光源:セリック株式会社製XC−100)を照射した際の透明導電膜の外観状態(可視光線の散乱具合)を示す。
 可視光線の散乱(特に散乱されやすい短波長領域(青色)の散乱:ブルーヘイズ)が見られ、透明導電膜は高ヘイズ(ブルーヘイズが大きい)で透明性に劣っていることが判る。
(比較例2)
[透明導電膜の作製]
 攪拌しながら160℃で4時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例2に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は5.0mPa・s(25℃)と幾分高めの値であったが、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
 図4に上記室温に3ヶ月放置した比較例2の透明導電膜形成用塗布液(ゲル化(プリン化))が入ったガラス容器を室温で45度傾斜させた際の塗布液の外観状態(流動性)を示す。
 塗布液表面は傾斜したままであり、塗布液のゲル化(プリン化)によりその流動性が失われていることが判る。
(比較例3)
[透明導電膜の作製]
 攪拌しながら150℃で3時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例3に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.0mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、比較例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際に大きなブルーヘイズが観察された。
(比較例4)
[透明導電膜の作製]
 攪拌しながら150℃で8時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例4に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は5.3mPa・s(25℃)と幾分高めの値であったが、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
(比較例5)
[透明導電膜の作製]
 攪拌しながら170℃で0.5時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例5係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、2.8mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 図5に上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)(光源:セリック株式会社製XC−100)を照射した際の透明導電膜の外観状態(可視光線の散乱具合)を示す。
 加えて、図6に上記透明導電膜が形成されたガラス基板の可視光線領域(波長380~780nm)における拡散光線透過率プロファイルを示す。
図5、および図6から、可視光線の散乱(特に散乱されやすい短波長領域(青色)の散乱:ブルーヘイズ)が見られ、透明導電膜は高ヘイズ(ブルーヘイズが大きい)で透明性に劣っていることが判る。
(比較例6)
[透明導電膜の作製]
 攪拌しながら170℃で2時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例6に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は、4.2mPa・s(25℃)と通常の値(正常範囲内)であり、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
 図7に上記室温に3ヶ月放置した比較例6の透明導電膜形成用塗布液(ゲル化(プリン化))が入ったガラス容器を室温で45度傾斜させた際の塗布液の外観(流動性)を示す。
 塗布液表面は傾斜したままであり、塗布液のゲル化(プリン化)によりその流動性が失われていることが判る。
(比較例7)
[透明導電膜の作製]
 攪拌しながら140℃で6時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例7に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.1mPa・s(25℃)であった。なお、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、比較例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際に大きなブルーヘイズが観察された。
(比較例8)
[透明導電膜の作製]
 攪拌しながら140℃で14時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例8に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は、4.8mPa・s(25℃)と通常の値(正常範囲内)であり、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
(比較例9)
[透明導電膜の作製]
 攪拌しながら180℃で0.25時間(15分)の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例9に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、2.8mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、比較例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際に大きなブルーヘイズが観察された。
(比較例10)
[透明導電膜の作製]
 攪拌しながら180℃で1時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例10に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は4.1mPa・s(25℃)と通常の値(正常範囲内)であり、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
(比較例11)
[透明導電膜の作製]
 攪拌しながら130℃で13時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例11に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3.3mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、比較例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際に大きなブルーヘイズが観察された。
(比較例12)
[透明導電膜の作製]
 攪拌しながら130℃で25時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例12に係る透明導電膜形成用塗布液を作製した。この塗布液の粘度は、塗布液作製直後は5.0mPa・s(25℃)と幾分高めの値であったが、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
(比較例13)
[透明導電膜の作製]
 攪拌しながら190℃で0.15時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様の操作を行い、比較例13に係る透明導電膜形成用塗布液を作製した。
 なお、透明導電膜形成用塗布液の作製を上記と同様の手順で複数回実施したが、塗布液のゲル化(プリン化)や透明導電膜のヘイズ悪化(特にブルーヘイズの悪化)のない良好な品質の透明導電膜形成用塗布液を安定して得ることはできなかった。
 これは、加熱温度190℃では、適切な加熱時間の範囲が極めて狭いため、高濃度溶解液の液内温度分布、加熱温度制御のバラツキ、加熱温度190℃までの昇温履歴のバラツキ等により、加熱溶解・反応条件の最適化が困難になるためと考えられる。
 以上の様に、安定して良好な品質の透明導電膜形成用塗布液を得ることは困難だったため、実施例1と同様の透明導電膜の作製は行わなかった。
(比較例14)
[透明導電膜の作製]
 攪拌しながら160℃で2時間、引き続き攪拌しながら140℃で10時間の間、加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量40重量%)を得た以外は実施例1と同様に行い、比較例14に係る透明導電膜形成用塗布液を作製した。
 この塗布液の粘度は、塗布液作製直後は5.4mPa・s(25℃)と通常の値(正常範囲内)であり、この塗布液を用いた以外は実施例1と同様に行い、透明導電膜(ITO膜)を作製した。
 作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 なお、透明導電膜形成用塗布液を室温に3ヶ月放置したところ、最終的にはゲル化(プリン化)(粘度:>10000mPa・s(25℃))して使用できなくなった。
(比較例15)
[透明導電膜の作製]
 攪拌しながら160℃で1時間の間加熱溶解・反応させ、高濃度溶解液(アセチルアセトンインジウムとアセチルアセトン錫の合計含有量7重量%)を得た以外は実施例15と同様に行い、比較例15に係る透明導電膜形成用塗布液を作製した。なお、この塗布液の粘度は、3500mPa・s(25℃)であった。尚、透明導電膜形成用塗布液を室温に3ヶ月放置しても、その粘度に著しい変化はなかった。
 次に上記透明導電膜形成用塗布液を用いた以外は実施例15と同様に行い、透明導電膜(ITO膜)を作製した。作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、ブルーヘイズ値、膜厚の諸特性を測定し、その結果を表1に示す。
 また、比較例1と同様に、上記透明導電膜が形成されたガラス基板に強力な可視光線(人工太陽光)を照射した際に大きなブルーヘイズが観察された。
Figure JPOXMLDOC01-appb-T000007
 各実施例と比較例を比べる(実施例1~3と比較例1、2)と、いずれも160℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例1~3の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例1、比較例2の透明導電膜形成用塗布液を用いた場合には、比較例1では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例2では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 ここで、図3に示された、透明導電膜が形成されたガラス基板に強力な可視光線(擬似太陽光)を照射する可視光線の散乱度合いの評価結果から、実施例1の透明導電膜形成用塗布液(加熱温度(T):160℃、加熱時間(L):2hr)を用いて形成された透明導電膜は可視光線の散乱がなく透明性に優れているのに対し、比較例1の透明導電膜形成用塗布液(加熱温度(T):160℃、加熱時間(L):1.5hr)を用いて形成された透明導電膜は可視光線の短波長領域(青色)の散乱が大きく(つまり、ブルーヘイズが大きく)透明性に劣っていることが明確に確認される。
 また、図4に示された、室温に3ヶ月放置した透明導電膜形成用塗布液が入ったガラス容器を室温で45度傾斜させる塗布液の流動性の評価結果から、実施例3の透明導電膜形成用塗布液(加熱温度(T):160℃、加熱時間(L):3hr)が低粘度で良好な流動性を有しているのに対し、比較例2の透明導電膜形成用塗布液(加熱温度(T):160℃、加熱時間(L):4hr)はゲル化(プリン化)して流動性を失っていることが確認される。
 各実施例と比較例を比べる(実施例4~6と比較例3、4)と、いずれも150℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例4~6の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例3、比較例4の透明導電膜形成用塗布液を用いた場合には、比較例3では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例4では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 各実施例と比較例を比べる(実施例7、8と比較例5、6)と、いずれも170℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例7、実施例8の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例5、比較例6の透明導電膜形成用塗布液を用いた場合には、比較例5では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例6では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 ここで、図5に示された、透明導電膜が形成されたガラス基板に強力な可視光線(擬似太陽光)を照射する可視光線の散乱度合いの評価結果から、実施例8の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):1.5hr)を用いて形成された透明導電膜は可視光線の散乱がなく透明性に優れているのに対し、比較例5の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):0.5hr)を用いて形成された透明導電膜は可視光線の短波長領域(青色)の散乱が大きく(つまり、ブルーヘイズが大きく)透明性に劣っていることが明確に確認される。
 さらに、図6に示す透明導電膜が形成されたガラス基板の可視光線領域(波長380~780nm)における拡散光線透過率プロファイルの測定結果から、実施例8の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):1.5hr)を用いて形成された透明導電膜は可視光線の散乱がなく透明性に優れているのに対し、比較例5の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):0.5hr)を用いて形成された透明導電膜は可視光線の短波長領域(青色)の散乱が大きく(つまり、ブルーヘイズが大きい)透明性に劣っていることが明確に確認される。
 また、図7に示された、室温に3ヶ月放置した透明導電膜形成用塗布液が入ったガラス容器を室温で45度傾斜させる塗布液の流動性の評価結果から、実施例8の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):1.5hr)が低粘度で良好な流動性を有しているのに対し、比較例6の透明導電膜形成用塗布液(加熱温度(T):170℃、加熱時間(L):2hr)はゲル化(プリン化)して流動性を失っていることが確認される。
 各実施例と比較例を比べる(実施例9、10と比較例7、8)と、いずれも140℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例9、実施例10の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例7、比較例8の透明導電膜形成用塗布液を用いた場合には、比較例7では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例8では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 各実施例と比較例を比べる(実施例11と比較例9、10)と、いずれも180℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例11の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例9、比較例10の透明導電膜形成用塗布液を用いた場合には、比較例9では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例10では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 各実施例と比較例を比べる(実施例12、13と比較例11、12)と、いずれも130℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例12、実施例13の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い、または長い)で加熱溶解・反応した比較例11、比較例12の透明導電膜形成用塗布液を用いた場合には、比較例11では、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られず、また、比較例12では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 各実施例と比較例を比べる(実施例14と比較例14)と、いずれも複数の異なる加熱溶解温度で、加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、式(1)に示す「加熱換算時間」を用いて、加熱溶解温度と時間の関係を求めると、図1に示す特定範囲内にある実施例14は、透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、特定範囲外にある比較例14では、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く、最終的にゲル化(プリン化)していることが確認される。
 各実施例と比較例を比べる(実施例15と比較例15[特許文献9の実施例7に記載の方法で得られる透明導電膜形成用塗布液])と、いずれも160℃で加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、この加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例15は、透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、この加熱溶解温度で所定の加熱時間範囲外(加熱時間が短い)で加熱溶解・反応した比較例15の透明導電膜形成用塗布液を用いた場合には、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜しか得られないことが確認される。なお、特許文献9の実施例7の記載によれば、その透明導電膜形成用塗布液で得られる透明導電膜は透明性が良好(ヘイズ値=0.0%)であるのに対し、上記比較例15の透明導電膜形成用塗布液で得られる透明導電膜は透明性に劣っており(ヘイズ値=2.63%)、同等の透明導電膜形成用塗布液を用いているにもかかわらず異なる結果を示している。この理由は、本発明の実施例と比較例では、大気中の湿度が高い(露点温度が高い)夏場を模した空気雰囲気(露点温度:15~20℃)中で焼成を行っており、透明導電膜の緻密化が阻害されて透明性が悪化している(ヘイズ値が大きくなっている)からだと考えられる。
 各実施例と比較例を比べる(実施例1~13と比較例13)と、いずれも加熱溶解・反応させた高濃度溶解液を経由して得られた透明導電膜形成用塗布液であるが、130~180℃の加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した実施例1~13の透明導電膜形成用塗布液は粘度の経時変化が小さく安定性が良好で、また得られる透明導電膜は、低抵抗で低ヘイズ(特にブルーヘイズが観察されない)であることが判る。
 一方、190℃の加熱溶解温度で所定の加熱時間範囲内で加熱溶解・反応した比較例13の透明導電膜形成用塗布液を用いた場合には、一定の加熱溶解・反応の条件の下でも、その僅かなバラツキ(加熱温度190℃までの昇温履歴のバラツキ、温度制御のバラツキによる加熱温度自体のバラツキ、高濃度溶解液内温度分布のバラツキ等)により、ヘイズの大きい(特にブルーヘイズが大きい)透明性に劣る透明導電膜が得られたり、透明導電膜形成用塗布液の粘度の経時変化が大きくて安定性が悪く最終的にゲル化(プリン化)したりと、安定して良好な品質の透明導電膜形成用塗布液を得ることが困難であり、実用的でないことが確認される。
 ここで、前述の特許文献9や特許文献10に記載のアセチルアセトンインジウムやヒドロキシプロピルセルロース等の成分を有機溶剤に溶解させた透明導電膜形成用塗布液の製造方法においては、その実施において、160℃で1hrの加熱(特許文献9)、130℃で1.5hrの加熱(特許文献10)と、本発明で特定した適正な加熱溶解・反応条件(130~180℃の加熱溶解温度で所定の加熱時間範囲)から逸脱しており(所定の加熱時間よりも加熱時間が短い)、前述の実施例15と比較例15の比較からも判るように、特に、大気中の湿度が高く(露点温度が高く)緻密な透明導電膜の得難い夏場においては、透明導電膜の緻密性が悪化するため、透明性が高く(特にブルーヘイズが小さく)、低抵抗でかつ抵抗経時安定性に優れた、膜強度の高い、高性能の透明導電膜を得ることは期待できない。
 本発明による透明導電膜形成用塗布液の製造方法によれば、簡便かつ短時間の製造工程で、品質の安定した透明導電膜形成用塗布液が低コストで得られるため、本発明の透明導電膜形成用塗布液を用いたスピンコート法やディップコート法等の塗布法により、基板上に透明性と高い導電性を兼ね備えた透明導電膜を形成できる。更に、この透明導電膜は、各種ディスプレイにおける表示素子透明電極、タッチパネル、太陽電池、フィールドエミッションランプ等の透明電極への利用が期待できる。

Claims (10)

  1.  有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、前記加熱溶解工程で得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程の各工程からなる透明導電膜形成用塗布液の製造方法であって、
     前記高濃度溶解液の有機インジウム化合物とドーパント用有機金属化合物との合計含有量が、20~60重量%、
     前記有機粘性剤の含有量が、有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3、
     前記有機インジウム化合物が、アセチルアセトンインジウムで、
     前記有機粘性剤が、セルロース誘導体で、
     前記高沸点有機溶剤(沸点:180℃以上)が、アルキルフェノール、及び二塩基酸エステルを少なくとも含有する高沸点有機溶剤(沸点:180℃以上)で、
     前記中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上の有機溶剤がケトン系有機溶剤で、
     前記加熱溶解工程の加熱溶解・反応条件が、
     加熱温度(T:℃)が130≦T≦180℃の範囲内で、かつ、加熱時間(L:hr)が、−0.7T+104<L<−1.1T+168(130≦T<140℃)、−0.3T+48<L<−0.6T+98(140≦T<150℃)、−0.15T+25.5<L<−0.4T+68(150≦T<160℃)、−0.1T+17.5<L<−0.2T+36(160≦T<170℃)、−0.025T+4.75<L<−0.1T+19(170≦T≦180℃)の範囲内、
     であることを特徴とする透明導電膜形成用塗布液の製造方法。
  2.  有機インジウム化合物、ドーパント用有機金属化合物、有機粘性剤、を高沸点有機溶剤中(沸点:180℃以上)で攪拌しながら加熱溶解・反応させて高濃度溶解液を得る加熱溶解工程、前記加熱溶解工程で得られた高濃度溶解液を中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上で希釈する希釈工程の各工程からなる透明導電膜形成用塗布液の製造方法であって、
     前記高濃度溶解液の有機インジウム化合物とドーパント用有機金属化合物との合計含有量が、20~60重量%、
     前記有機粘性剤の含有量が、有機インジウム化合物とドーパント用有機金属化合物との合計含有量(重量)の1/20~1/3、
     前記有機インジウム化合物が、アセチルアセトンインジウムで、
     前記有機粘性剤が、セルロース誘導体で、
     前記高沸点有機溶剤(沸点:180℃以上)が、アルキルフェノール、及び二塩基酸エステルを少なくとも含有する高沸点有機溶剤(沸点:180℃以上)で、
     前記中沸点有機溶剤(沸点:100℃以上180℃未満)、低沸点有機溶剤(沸点:50℃以上100℃未満)のいずれか一つ以上の有機溶剤がケトン系有機溶剤であって、
     前記加熱溶解工程の加熱溶解・反応条件の加熱温度(T:℃)が、130≦T≦180℃の範囲内で、加熱時間(L:hr)が下記(1)式を満たし、かつ、透明導電膜形成用塗布液を室温に3ヶ月放置した場合の粘度変化が初期粘度の0.5~1.5倍以内(±50%以内)となるように調節されている、
    ことを特徴とする透明導電膜形成用塗布液の製造方法。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記有機インジウム化合物とドーパント用有機金属化合物の含有割合が、有機インジウム化合物/ドーパント用有機金属化合物モル比=99/1~87/13であることを特徴とする請求項1または2に記載の透明導電膜形成用塗布液の製造方法。
  4.  前記透明導電膜形成用塗布液の有機インジウム化合物とドーパント用有機金属化合物の合計含有量が、5~15重量%であることを特徴とする請求項1~3のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  5.  前記ドーパント用有機金属化合物が、アセチルアセトン錫であることを特徴とする請求項1~4のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  6.  前記セルロース誘導体が、ヒドロキシプロピルセルロースであることを特徴とする請求項1~5のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  7.  前記アルキルフェノールが、パラターシャリーブチルフェノール(沸点:237℃)であることを特徴とする請求項1~6のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  8.  前記二塩基酸エステルが、マロン酸ジメチル(沸点:181~183℃)、コハク酸ジメチル(沸点:196℃)、グルタル酸ジメチル(沸点:210~215℃)、アジピン酸ジメチル(沸点:215~225℃)のいずれか一つ以上であることを特徴とする請求項1~7のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  9.  前記ケトン系有機溶剤が、シクロヘキサノン(沸点:155.7℃)、メチルエチルケトン(沸点:79.6℃)のいずれか一つ以上であることを特徴とする請求項1~8のいずれか1項に記載の透明導電膜形成用塗布液の製造方法。
  10.  請求項1~9のいずれか1項に記載の透明導電膜形成用塗布液の製造方法を用いて得られたことを特徴とする透明導電膜形成用塗布液。
PCT/JP2013/071989 2012-08-29 2013-08-09 透明導電膜形成用塗布液の製造方法 WO2014034439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/392,006 US10283230B2 (en) 2012-08-29 2013-08-09 Production method for coating liquid for formation of transparent conductive film
CN201380004507.8A CN104025208B (zh) 2012-08-29 2013-08-09 透明导电膜形成用涂布液的制造方法
TW102131015A TWI460141B (zh) 2012-08-29 2013-08-29 And a method for producing a coating liquid for forming a transparent conductive film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-189072 2012-08-29
JP2012189072 2012-08-29
JP2013091817 2013-04-24
JP2013-091817 2013-04-24
JP2013131795A JP5418933B1 (ja) 2012-08-29 2013-06-24 透明導電膜形成用塗布液の製造方法
JP2013-131795 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014034439A1 true WO2014034439A1 (ja) 2014-03-06

Family

ID=50183254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071989 WO2014034439A1 (ja) 2012-08-29 2013-08-09 透明導電膜形成用塗布液の製造方法

Country Status (5)

Country Link
US (1) US10283230B2 (ja)
JP (1) JP5418933B1 (ja)
CN (1) CN104025208B (ja)
TW (1) TWI460141B (ja)
WO (1) WO2014034439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992686A (zh) * 2014-05-30 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 耐高温吸氧涂料及其应用以及钛锭的生产方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763174B (zh) * 2010-02-17 2014-08-27 住友金属矿山株式会社 透明导电膜及其制造方法、元件、透明导电基板及其器件
KR101910157B1 (ko) * 2018-08-06 2018-10-19 영창케미칼 주식회사 유무기 하이브리드 포토레지스트 공정액 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203658A (ja) * 1992-12-28 1994-07-22 Sumitomo Metal Mining Co Ltd 透明導電膜形成用塗布液
JP2006049019A (ja) * 2004-08-02 2006-02-16 Sumitomo Metal Mining Co Ltd 透明導電膜とその製造方法、及び透明導電膜形成用ペースト
WO2010064719A1 (ja) * 2008-12-01 2010-06-10 住友金属鉱山株式会社 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736714A (ja) 1980-08-13 1982-02-27 Hitachi Ltd Tomeidenkyokunoseizohoho
JPS57138708A (en) 1981-02-20 1982-08-27 Hitachi Ltd Composition for forming transparent conductive film and method of forming transparent conductive film
JPS57212268A (en) 1981-06-24 1982-12-27 Hitachi Ltd Pasty composition for forming transparent electrically conductive film and forming method of said film
JPS5893107A (ja) 1981-11-25 1983-06-02 アルプス電気株式会社 透明導電性被膜形成用ペ−スト
JPS58102406A (ja) 1981-12-12 1983-06-18 アルプス電気株式会社 透明導電性被膜形成用ペ−スト
JPS6126679A (ja) 1984-07-16 1986-02-05 Alps Electric Co Ltd 透明導電性被膜形成液
JP2623301B2 (ja) 1988-07-09 1997-06-25 日本鋪道株式会社 舗装体の冷却方法及び冷却装置
JPH04255768A (ja) 1991-02-07 1992-09-10 Japan Synthetic Rubber Co Ltd 透明な導電性膜形成用塗布液
TWI388876B (zh) * 2003-12-26 2013-03-11 Fujifilm Corp 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置
JP2010010175A (ja) * 2008-06-24 2010-01-14 Konica Minolta Holdings Inc 薄膜トランジスタおよび薄膜トランジスタの製造方法
JP5403293B2 (ja) * 2009-11-05 2014-01-29 住友金属鉱山株式会社 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
CN102763174B (zh) * 2010-02-17 2014-08-27 住友金属矿山株式会社 透明导电膜及其制造方法、元件、透明导电基板及其器件
US8753987B2 (en) * 2010-06-08 2014-06-17 Sumitomo Metal Mining Co., Ltd. Method of manufacturing metal oxide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203658A (ja) * 1992-12-28 1994-07-22 Sumitomo Metal Mining Co Ltd 透明導電膜形成用塗布液
JP2006049019A (ja) * 2004-08-02 2006-02-16 Sumitomo Metal Mining Co Ltd 透明導電膜とその製造方法、及び透明導電膜形成用ペースト
WO2010064719A1 (ja) * 2008-12-01 2010-06-10 住友金属鉱山株式会社 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103992686A (zh) * 2014-05-30 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 耐高温吸氧涂料及其应用以及钛锭的生产方法

Also Published As

Publication number Publication date
JP2014225422A (ja) 2014-12-04
TW201416334A (zh) 2014-05-01
CN104025208A (zh) 2014-09-03
CN104025208B (zh) 2016-07-06
US10283230B2 (en) 2019-05-07
TWI460141B (zh) 2014-11-11
US20150232674A1 (en) 2015-08-20
JP5418933B1 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5240532B2 (ja) 金属酸化物膜の製造方法
CN102598160B (zh) 透明导电膜及其制造方法、和元件、透明导电基板及器件
JP5700259B2 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
JP2012081663A (ja) 透明導電基材及びタッチパネル
JP5418502B2 (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
CN1476021A (zh) 透明导电膜形成用组合物、透明导电膜形成用溶液以及透明导电膜的形成方法
JP5418933B1 (ja) 透明導電膜形成用塗布液の製造方法
JP5729611B2 (ja) 金属モリブデン塗布膜の製造方法
JP2011108637A (ja) 低屈折率透明導電膜の製造方法及び低屈折率透明導電膜、低屈折率透明導電基板並びにそれを用いたデバイス
JP2009135098A (ja) 透光性導電膜形成用塗布液及び透光性導電膜
JP2011018542A (ja) 透明導電性基材及びその製造方法
JP2009164116A (ja) 低屈折率透明導電膜形成用塗布液及び低屈折率透明導電膜
JP2009164116A5 (ja)
JP2013020942A (ja) 有機el用透明導電性基材の製造方法、およびそれを用いた有機el用透明導電性基材、並びに有機el素子
JP5413708B2 (ja) 透明導電膜、透明導電基板及びそれを用いたデバイス並びに透明導電膜の製造方法
JP2009048986A (ja) 透明導電膜形成用塗布液及び透明導電膜の製造方法並びに透明導電膜
JP2010010005A (ja) 空孔を有する透明導電膜とその製造方法
JP5080756B2 (ja) 透明導電膜形成用インキとその製造方法
JP2012209123A (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
JP4655529B2 (ja) 透明導電膜とその製造方法、及び透明導電膜形成用塗布液
JP2006049019A (ja) 透明導電膜とその製造方法、及び透明導電膜形成用ペースト
JP2011150918A (ja) 透明導電性基板の製造方法
JP2004022388A (ja) 透明導電膜形成液及びそれを用いた透明導電膜付基体の製造法
JP2009231279A (ja) 透明導電性膜形成用前駆体液および透明導電性基板の製造方法
JP2012015103A (ja) 透明導電膜形成用塗布液及び透明導電膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14392006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832029

Country of ref document: EP

Kind code of ref document: A1