WO2014030644A1 - シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター - Google Patents

シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター Download PDF

Info

Publication number
WO2014030644A1
WO2014030644A1 PCT/JP2013/072195 JP2013072195W WO2014030644A1 WO 2014030644 A1 WO2014030644 A1 WO 2014030644A1 JP 2013072195 W JP2013072195 W JP 2013072195W WO 2014030644 A1 WO2014030644 A1 WO 2014030644A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
promoter
transformant
pombe
vector
Prior art date
Application number
PCT/JP2013/072195
Other languages
English (en)
French (fr)
Inventor
真弓 小林
英毅 東田
修一郎 木村
進 禅院
太志 原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380044077.2A priority Critical patent/CN104583387B/zh
Priority to EP13830894.5A priority patent/EP2886642B1/en
Priority to JP2014531636A priority patent/JP6206408B2/ja
Publication of WO2014030644A1 publication Critical patent/WO2014030644A1/ja
Priority to US14/627,459 priority patent/US9765347B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Definitions

  • the present invention relates to a transformant of a Schizosaccharomyces pombe mutant having non-sexual aggregation and capable of producing ⁇ -glucosidase, and a vector useful for transformation of yeast of the genus Schizosaccharomyces.
  • Cellulose biomass such as wood, rice straw, rice husk and weeds must be decomposed to produce sugar as a fermentation raw material and eventually biomass fuel such as bioethanol.
  • Cellulose degradation includes acid saccharification methods such as concentrated sulfuric acid saccharification and dilute sulfuric acid saccharification methods, and enzymatic saccharification methods using enzymes.
  • For enzyme saccharification of cellulose a group of enzymes collectively referred to as cellulases is used.
  • an endoglucanase (EG) having an activity of randomly cleaving a cellulose chain decomposes an amorphous region of cellulose and exposes a glucose terminal.
  • the exposed glucose terminus is degraded by cellobiohydrase (CBH), and cellobiose is released.
  • the released cellobiose is decomposed by ⁇ -glucosidase (BGL) to release glucose
  • cellulose can be produced in various cellulases and hemicellulases for degrading and saccharifying crystalline cellulose, and these enzymes can be secreted in large quantities outside the cell, the enzymatic saccharification of cellulose involves the genus Aspergillus and Trichoderma. Such filamentous fungi are widely used.
  • Non-Patent Document 1 encodes ⁇ -glucosidase I (BGLI) of Aspergillus acculeatus, one of the filamentous fungi. It is disclosed that budding yeast Saccharomyces cerevisiae is transformed with the gene to be expressed, and these enzymes are expressed in the obtained transformant.
  • BGLI ⁇ -glucosidase I
  • Non-Patent Document 1 does not mention glucose inhibition of ⁇ -glucosidase produced by budding yeast at all.
  • a step of separating the culture supernatant from the bacterial cells is required.
  • the separation step include centrifugation, continuous centrifugation, membrane separation, and the like, but all are complicated steps and require a lot of labor and time. Furthermore, as the production scale of ⁇ -glucosidase increases, the complexity of the separation process is easily expected.
  • yeast having non-sexual aggregating property can easily separate the agglomerated yeast cells and the culture solution from the culture solution after the completion of the culture, and therefore ⁇ -glucosidase. Is preferably used as a host.
  • FLO mutant As a yeast having nonsexual aggregation, FLO mutant is known in the budding yeast Saccharomyces cerevisiae. In addition, mutants having nonsexual aggregation properties have also been reported in the fission yeast Schizosaccharomyces pombe (hereinafter also referred to as S. pombe) (see, for example, Patent Document 2).
  • S. Pombe and other yeasts belonging to the genus Schizosaccharomyces are completely different from the budding yeast Saccharomyces cerevisiae in an evolutionary systematic manner. It is already known that various structures such as chromosome structure, genome replication mechanism, RNA splicing mechanism, transcription mechanism, post-translational modification and the like are greatly different from other yeasts, and some of them are similar to animal cells. For this reason, it is widely used as a model for eukaryotes (see Non-Patent Document 2). S.
  • Pombe is positioned as a unicellular eukaryote closer to higher animal cells due to its various characteristics, and is considered to be a very useful yeast as a host for expression of foreign genes, particularly higher animal-derived genes. In particular, it is known to be suitable for the expression of genes derived from animal cells including humans (see Patent Documents 3 to 9).
  • a promoter that promotes the transcription of the foreign structural gene encoding the protein is usually required.
  • the promoter include S. cerevisiae.
  • S. Examples of promoters used in protein expression using pombe as a host include S. cerevisiae.
  • alcohol dehydrogenase (adh1) gene promoter As promoters in the genes inherent to Pombe, alcohol dehydrogenase (adh1) gene promoter, nmt1 gene promoter involved in thiamine metabolism, fructose-1, 6-bisphosphatase (fbp1) gene promoter involved in glucose metabolism Invertase (inv1) gene promoter involved in catabolite repression (see Patent Document 7 or 10), heat shock protein gene promoter (see Patent Document 11), and the like.
  • viral promoters such as hCMV, SV40, and CaMV (constitutive expression) are also known (see Patent Documents 4, 6, and 12).
  • the pH of the culture solution may shift to acidic.
  • the pH of the culture solution at the end of the culture is often 2 to 5 acidic.
  • the optimum pH during culture may be lower than 5 in consideration of the productivity of the target protein. For this reason, for example, in the case of having a cohesive property in a culture solution having a relatively high pH above pH 5, but not aggregating under acidic conditions of pH 2 to 5, the pH is adjusted to medium after the end of the culture in order to aggregate the yeast. Neutralization to adjust to the vicinity of the sex must be performed.
  • Patent Document 1 The yeast described in Patent Document 1 is S. cerevisiae having non-sexual aggregation. It is a pombe mutant and is considered suitable as a host for the expression system. However, the S.P. Pombe mutant has been confirmed to agglutinate non-sexually in YPD medium (usually pH 5.6 to 6.0), but whether or not it has sufficient aggregation properties under acidic conditions, It is unknown.
  • S. cerevisiae can produce and recover ⁇ -glucosidase without requiring a complicated separation step.
  • a transformant of Pombe mutant and a method for producing ⁇ -glucosidase using the transformant are provided.
  • the present invention also relates to an expression vector capable of efficiently expressing a protein derived from a foreign gene by genetic engineering using a yeast belonging to the genus Schizosaccharomyces as a host for a novel promoter, a cloning vector for producing the expression vector, A method for producing an expression vector, a transformant containing the expression vector, a method for producing the transformant, and a method for producing a protein using the transformant are also provided.
  • the transformant of Pombe mutant is a transformant of Schizosaccharomyces pombe mutant having increased Gsf activity and decreased or inactivated enzyme activity of pyruvate transferase Pvg1. And having a structural gene sequence encoding ⁇ -glucosidase derived from a filamentous fungus and a promoter sequence and a terminator sequence for expressing the structural gene in a chromosome or as an extrachromosomal gene. .
  • the ⁇ -glucosidase is preferably BGL1.
  • S. of the present invention is preferably BGL1.
  • the filamentous fungus is preferably a microorganism belonging to the genus Aspergillus.
  • S. of the present invention the ⁇ -glucosidase consists of the amino acid sequence represented by SEQ ID NO: 1, or from an amino acid sequence in which one or more amino acid deletions, substitutions or additions are included in the amino acid sequence. It is preferable that the ⁇ -glucosidase has an activity of catalyzing the hydrolysis reaction of ⁇ -D-glucopyranoside bond.
  • the method for producing ⁇ -glucosidase of the present invention is characterized in that the transformant is cultured, and ⁇ -glucosidase is obtained from the obtained bacterial cells or culture supernatant.
  • the present invention relating to the transformant having the structural gene sequence encoding the ⁇ -glucosidase is referred to as the present invention according to the first aspect.
  • the cloning vector of the present invention is a cloning site for introducing a promoter possessed by the hsp9 gene of the yeast of the genus Schizosaccharomyces or a promoter possessed by the ihc1 gene, a foreign structural gene located downstream of the promoter and controlled by the promoter, And it has the terminator which can function within the yeast of the genus Schizosaccharomyces.
  • the promoter possessed by the hsp9 gene (hereinafter also referred to as hsp9 promoter) is preferably a region comprising 1 to 400 bp upstream of the 5 ′ end of the ORF of the hsp9 gene, and the nucleotide sequence represented by SEQ ID NO: 6 or the base More preferably, the nucleotide sequence has one, one or more bases substituted, deleted or added, and has promoter activity.
  • the promoter possessed by the ihc1 gene (hereinafter also referred to as ihc1 promoter) is preferably a region comprising 1 to 501 bp upstream of the 5 ′ end of the ORF (open reading frame) of the ihc1 gene, and the base represented by SEQ ID NO: 9 It is more preferable that the sequence or a base sequence in which one or more bases in the base sequence are substituted, deleted or added, and has promoter activity.
  • the method for producing an expression vector of the present invention is characterized in that a foreign structural gene is introduced into a cloning site in the cloning vector, and the expression vector of the present invention has a foreign structural gene introduced into the cloning site in the cloning vector.
  • the method for producing a transformant of the present invention is characterized in that the expression vector is introduced into a yeast of the genus Schizosaccharomyces, and the transformant of the present invention is a transformant containing the expression vector.
  • the method for producing a protein of the present invention is characterized in that the transformant is cultured, and the protein encoded by the exogenous structural gene is obtained from the obtained bacterial cells or culture supernatant.
  • the present invention relating to a cloning vector, an expression vector, and a transformant having the hsp9 promoter or the ihc1 promoter, and a method for producing the expression vector, a method for producing the transformant, and a method for producing a protein are described.
  • the present invention according to the second aspect.
  • ⁇ -glucosidase According to the Pombe mutant transformant, ⁇ -glucosidase can be produced and recovered without requiring a complicated separation step.
  • FIG. 1 is a block diagram of the expression vector pSL6AaBGL1.
  • FIG. 2 is a block diagram of the expression vector pSL6P3AaBGL1.
  • FIG. 3 is a block diagram of the expression vector pSL14P3AaBGL1.
  • FIG. 4 is a structural diagram of the expression vector pUC19-ura4.
  • FIG. 5 is a graph showing cell growth of normal strains and aggregated strains in Test Example 8.
  • 6A is a graph showing the glucose concentration in the culture solution of the normal strain and the aggregated strain in Test Example 8.
  • FIG. 6B is a graph showing the ethanol concentration in the culture solution of the normal strain and the aggregated strain in Test Example 8.
  • FIG. 5 is a graph showing cell growth of normal strains and aggregated strains in Test Example 8.
  • 6A is a graph showing the glucose concentration in the culture solution of the normal strain and the aggregated strain in Test Example 8.
  • FIG. 6B is a graph showing the ethanol concentration in the culture solution of the normal
  • FIG. 7 is a graph showing the pNPG degradation activity of AaBGL1 of the normal strain and the aggregated strain in Test Example 9.
  • FIG. 8 is a graph showing cell growth of normal strains and aggregated strains in Test Example 10.
  • FIG. 9A is a graph showing the glucose concentration in the culture solution of the normal strain and the aggregated strain in Test Example 10.
  • FIG. 9B is a graph showing the ethanol concentration in the culture solution of the normal strain and the aggregated strain in Test Example 10.
  • FIG. 10 is a photograph showing the sedimentation state of normal strains and aggregated strains in Test Example 11.
  • FIG. 11 is a photograph showing the results of microscopic observation of normal strains and aggregated strains in Test Example 11.
  • FIG. 12 is a graph showing cell growth at 30 ° C. and 34 ° C.
  • FIG. 13A is a graph showing the glucose concentration in the culture solution at 30 ° C. and 34 ° C. in Test Example 12.
  • FIG. 13B is a graph showing the ethanol concentration in the culture solution at 30 ° C. and 34 ° C. in Test Example 12.
  • FIG. 14 is a graph showing the pNPG decomposition activity of AaBGL1 at 30 ° C. and 34 ° C. in Test Example 12.
  • FIG. 15 is a photograph showing the results of SDS-PAGE in Test Example 13.
  • FIG. 16 is a structural diagram of the expression vector pSL14-EGFP.
  • FIG. 17 is a structural diagram of the expression vector pSL6-EGFP.
  • FIG. 16 is a structural diagram of the expression vector pSL14-EGFP.
  • FIG. 17 is a structural diagram of the expression vector pSL6-EGFP.
  • FIG. 18 is a graph showing the measurement results of the fluorescence intensity of each culture solution (relative value when the fluorescence intensity of the culture solution of SL6E strain is 1) in Test Example 14.
  • FIG. 19 is a block diagram of the multicloning vector pSL6.
  • FIG. 20 is a block diagram of the multicloning vector pSL12.
  • FIG. 21 is a block diagram of the multicloning vector pSL17.
  • FIG. 22 is a block diagram of the expression vector pSL12-EGFP.
  • FIG. 23 is a diagram showing the measurement results of changes over time in [fluorescence intensity / OD 600 ] of each culture solution in Test Example 15.
  • FIG. 24 is a block diagram of the multicloning vector pSL9.
  • FIG. 25 is a block diagram of the multicloning vector pSL14.
  • FIG. 26 is a block diagram of the multicloning vector pSL14lacZ.
  • the “foreign structural gene” is a gene encoding a protein possessed by an expression vector, and may be a structural gene originally possessed by a host into which the expression vector is introduced. It may be a gene.
  • the “protein derived from a foreign structural gene” is a protein derived from a foreign structural gene produced by a transformant, and is hereinafter also referred to as “foreign protein”.
  • the foreign structural gene is a structural gene of an organism different from the host, it is also called a heterologous protein.
  • S. Pombe mutant In the present invention, S.M. S. pombe mutant host Pombe mutants are S. cerevisiae. As a result of modification of at least a part of the pombe gene, the mutant has increased Gsf activity and reduced or inactivated enzyme activity of pyruvate transferase Pvg1. S. In Pombe, when Gsf activity increases and Pvg1 enzyme activity decreases or inactivates, a trait that aggregates non-sexually even under acidic conditions is obtained.
  • the property of aggregating non-sexually under acidic conditions is also referred to as acid-resistant non-sexual aggregating property. That is, the S.I.
  • the pombe mutant is a mutant that has acquired acid-resistant non-sexual aggregation.
  • non-sexual cohesiveness means “S. The property which has a cohesiveness different from the property (sexual cohesiveness) which Pombe originally has sexual aggregation is said. However, this does not mean that the inherent sexual aggregation is lost.
  • Constutive aggregation refers to the same property as nonsexual aggregation, but particularly refers to the property of aggregating simultaneously (non-sexually) during growth.
  • Gsf activity means S. cerevisiae. It means non-sexual cohesiveness exhibited at the pH at which pombe is normally cultured (eg, pH 5-6).
  • a gene associated with Gsf activity is referred to as an agglutinin gene.
  • the gsf2 gene is S. cerevisiae. In Pombe, it is an agglutinin gene.
  • S. The strain name of the pombe gsf2 gene is SPCC1742.01.
  • Pvg1 is pyruvate transferase.
  • the systematic name of the pvg1 gene encoding Pombe Pvg1 is SPAC8F11.10c.
  • S. Pombe has sexual aggregation induced by pheromone. For example, sexual aggregation tends to occur when nutritional deficiencies occur during the growth process. However, in artificial large-scale culture such as tank culture, sexual aggregation is less likely to occur than when culture is usually performed in a culture solution having a sufficient amount of nutrients. On the other hand, the S.P. Since the pombe mutant has non-sexual aggregability, it aggregates with growth (constitutive aggregation) even if it is cultured in a culture medium having a sufficient amount of nutrients.
  • the Gsf activity of the pombe mutant can be increased, for example, by increasing the expression level of the gsf2 gene.
  • S. The enzyme activity of Pvg1 in Pombe is reduced or inactivated by deleting the pvg1 gene encoding Pvg1 or introducing a mutation that reduces or inactivates the enzyme activity of Pvg1 into the gene. For this reason, the S.P.
  • the pombe mutant has a non-acid-resistant non-aggregation property such as that of a wild strain by genetic engineering.
  • the expression level of the gsf2 gene can be increased by incorporating a foreign gsf2 gene by a genetic engineering method. It is important to introduce a new gsf2 gene into the host, and the introduced gsf2 gene may be the same as the host's endogenous gsf2 gene or may be a gsf2 gene derived from a different organism.
  • a method for introducing the gsf2 gene into a host by a genetic engineering method a known method can be used.
  • S. Examples of methods for introducing an exogenous structural gene into pombe as a host include, for example, JP-A-5-15380, WO95 / 09914 pamphlet, JP-A-10-234375, JP-A-2000-262284.
  • the methods described in Japanese Patent Laid-Open No. 2005-198612, International Publication No. 2010/087344, etc. can be used.
  • the gsf2 gene It is preferably introduced into the pombe chromosome. By introducing the gsf2 gene into the chromosome, a transformant having excellent passage stability can be obtained. It is also possible to introduce a plurality of gsf2 genes into a chromosome. By introducing a plurality of gsf2 genes, the expression efficiency of the gsf2 gene can be increased. S. In the pombe mutant, the number of gsf2 genes integrated in the chromosome is preferably 1-20, and more preferably 1-8.
  • a known method can be used as a method for introducing the gsf2 gene into the chromosome.
  • a plurality of gsf2 genes can be introduced into the chromosome by the method described in JP-A-2000-262284.
  • one gsf2 gene can be introduced into the chromosome by this method.
  • one or a plurality of gsf2 genes can be introduced into a plurality of locations on the chromosome. The gsf2 gene was transformed into S. cerevisiae.
  • a method for introduction into the pombe chromosome a method using a vector having an expression cassette having a gsf2 gene and a recombination site (hereinafter referred to as a gsf2 vector) and introducing by a homologous recombination method is preferable.
  • the gsf2 vector has an expression cassette having a gsf2 gene and a recombination site.
  • the expression cassette is a combination of DNAs necessary for expressing Gsf2, and includes the gsf2 gene and S. cerevisiae.
  • a promoter that functions in Pombe Includes a terminator that functions within the pombe. Further, any one or more of 5′-untranslated region and 3′-untranslated region may be included.
  • an auxotrophic complementary marker may be included.
  • a preferred expression cassette is an expression cassette comprising a gsf2 gene, a promoter, a terminator, a 5′-untranslated region, a 3′-untranslated region, and an auxotrophic complementary marker.
  • a plurality of gsf2 genes may be present in the expression cassette. The number of gsf2 genes in the expression cassette is preferably 1-8, more preferably 1-5.
  • the promoter and terminator that function in the pombe may be any one that can function in the mutant obtained by transformation and maintain the expression of Gsf2 even under acidic conditions.
  • Examples of promoters that function in pombe include S. cerevisiae. Pombe's inherent promoter (preferably having high transcription initiation activity) or S.
  • a promoter eg, a virus-derived promoter
  • Two or more promoters may be present in the vector.
  • promoters inherent to Pombe include alcohol dehydrogenase gene promoter, nmt1 gene promoter involved in thiamine metabolism, fructose-1, 6-bisphosphatase gene promoter involved in glucose metabolism, and invertase gene involved in catabolite repression. Examples include promoters (see International Publication No. 99/23223 pamphlet), heat shock protein gene promoters (see International Publication No. 2007/26617 pamphlet), and the like. S. Examples of promoters that are not inherently possessed by pombe include promoters derived from animal cell viruses described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375.
  • the nmt1 gene promoter with good expression efficiency and its modified promoters eg, nmt1 + , nmt41
  • hCMV promoter e.g., SV40 promoter
  • SV40 promoter e.g., SV40 promoter
  • a terminator that Pombe does not have can be used.
  • Two or more terminators may be present in the vector. Examples of the terminator include human terminators described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375, and human lipocortin I terminator is preferable. .
  • the recombination site of the vector is S. cerevisiae. This is a site having a base sequence that allows homologous recombination to be performed on a target site for homologous recombination in the pombe chromosome.
  • the target site is S. pneumoniae. This is a target site for integrating the expression cassette in the pombe chromosome.
  • the target site can be freely set by setting the recombination site of the vector to a base sequence that allows homologous recombination to be performed on the target site.
  • the homology between the base sequence of the recombination site and the base sequence of the target site needs to be 70% or more.
  • the homology between the base sequence of the recombination site and the base sequence of the target site is preferably 90% or more, and more preferably 95% or more from the viewpoint that homologous recombination is likely to occur.
  • the expression cassette is incorporated into the target site by homologous recombination.
  • the length (number of bases) of the recombination site is preferably 20 to 2000 bp. If the length of the recombination site is 20 bp or more, homologous recombination is likely to occur.
  • the length of the recombination site is 2000 bp or less, it is easy to prevent the vector from becoming too long and causing homologous recombination to hardly occur.
  • the length of the recombination site is more preferably 100 bp or more, and further preferably 200 bp or more. Further, the length of the recombination site is more preferably 800 bp or less, and further preferably 400 bp or less.
  • the vector may have other DNA regions in addition to the expression cassette and the recombination site.
  • a replication initiation region called “ori” necessary for replication in E. coli, an antibiotic resistance gene (neomycin resistance gene, etc.) and the like can be mentioned. These are genes usually required when constructing a vector using Escherichia coli.
  • the replication initiation region is preferably removed when the vector is integrated into the host chromosome as described later.
  • the vector is a vector having a circular DNA structure or a linear DNA structure. When introducing into a pombe cell, it is preferable to introduce it in a linear DNA structure. That is, in the case of a vector having a circular DNA structure such as a commonly used plasmid DNA, S.
  • the position for opening the vector having a circular DNA structure is within the recombination site.
  • the recombination sites partially exist at both ends of the opened vector, and the entire vector is integrated into the target site of the chromosome by homologous recombination.
  • the vector may be constructed by a method other than the method of cutting a vector having a circular DNA structure, as long as it can have a linear DNA structure in which a part of the recombination site exists at each end.
  • the vector for example, plasmids derived from E. coli such as pBR322, pBR325, pUC118, pUC119, pUC18, and pUC19 can be preferably used.
  • the plasmid vector used for homologous recombination preferably has a replication initiation region called “ori” that is necessary for replication in E. coli.
  • ori replication initiation region
  • the method for constructing the vector from which the replication initiation region has been removed is not particularly limited, but the method described in JP-A-2000-262284 is preferably used.
  • a method is preferred in which a precursor vector in which a replication initiation region is inserted at the cleavage site in the recombination site is constructed so that the replication initiation region is excised at the same time as the linear DNA structure as described above. Thereby, a vector from which the replication initiation region has been easily removed can be obtained. Further, by applying the expression vector and the construction method thereof described in JP-A-5-15380, JP-A-7-163373, WO96 / 23890, JP-A-10-234375, etc.
  • a method may be used in which a precursor vector having an expression cassette and a recombination site is constructed, and a vector used for homologous recombination is obtained by removing the replication initiation region from the precursor vector by a normal genetic engineering technique.
  • the target site to incorporate the vector is S. It may be present only at one location in the pombe chromosome, or may be present at two or more locations. When two or more target sites exist, S.P. Two or more vectors can be integrated into the pombe chromosome. When a plurality of gsf2 genes in the expression cassette are used, a plurality of gsf2 genes can be incorporated into one target site. Furthermore, an expression cassette can be incorporated into two or more target sites using two or more vectors having recombination sites corresponding to the respective target sites.
  • the target site described in JP-A No. 2000-262284 can be used.
  • Two or more types of vectors having different integration sites can be used to integrate the vectors at different target sites.
  • this method is complicated when the vector is integrated into two or more locations of the chromosome.
  • Base sequences that are substantially identical to each other means that the homology of the base sequences is 90% or more.
  • the homology between the target sites is preferably 95% or more.
  • the length of the base sequences that are substantially identical to each other is a length that includes the recombination site of the vector, and is preferably 1000 bp or more.
  • the gsf2 gene is distributed and integrated into multiple target sites.
  • the gsf2 gene is less likely to be dropped from the chromosome at a time, and the maintenance stability in the passage of the transformant is improved.
  • a transposon gene Tf2 is preferable as a target site present in a plurality of locations in a chromosome.
  • Tf2 is the S.T.
  • a transformant having two or more gsf2 genes can be obtained by incorporating a vector having two or more gsf2 genes.
  • the transformant which has a 2 or more gsf2 gene can be obtained by integrating a vector in two or more places of Tf2.
  • a transformant having more gsf2 genes can be obtained by incorporating a vector having two or more gsf2 genes. If the vector is incorporated at all 13 positions of Tf2, the burden on the survival and growth of the transformant may be too great.
  • the vector is preferably incorporated at 8 or less of 13 Tf2, and more preferably the vector is incorporated at 5 or less.
  • the S. cerevisiae of the present invention is determined by a genetic engineering method. Used as a host in the production of Pombe mutants. It is preferable to use a pombe having a marker for selecting a transformant. For example, it is preferable to use a host in which a specific nutritional component is essential for growth because a certain gene is missing. By incorporating this missing gene (auxotrophic complementary marker) into the vector, the transformant loses the auxotrophy of the host. Due to the difference in auxotrophy between the host and the transformant, the transformant can be obtained by distinguishing both. For example, an orotidine phosphate decarboxylase gene (ura4 gene) has been deleted or inactivated and has become uracil-requiring.
  • ura4 gene an orotidine phosphate decarboxylase gene
  • a transformant incorporating the vector can be obtained by selecting those that have lost uracil requirement.
  • the gene that becomes auxotrophic due to deletion in the host is not limited to the ura4 gene as long as it is used for selection of transformants, and may be an isopropylmalate dehydrogenase gene (leu1 gene) or the like.
  • the obtained transformant is selected.
  • the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected. Next, after separately culturing them in liquid, the expression level of the gsf2 gene per cell is examined, and a mutant with a higher expression level is selected.
  • the number of vectors integrated in the chromosome and the number of expression cassettes can be examined by performing genome analysis by pulse field gel electrophoresis on the selected mutants. The number of vectors integrated into the chromosome can be adjusted to some extent by adjusting the integration conditions and the like, but it is considered that the integration efficiency and the number of integrations also change depending on the size (number of bases) and structure of the vector.
  • S. cerevisiae which is the host, is obtained by deleting the pvg1 gene by a genetic engineering method or introducing a mutation that reduces or deactivates the enzyme activity of Pvg1 into the pvg1 gene.
  • the enzyme activity of Pombe Pvg1 can be reduced or inactivated. Since the enzyme activity of Pvg1 can be surely inactivated, it is preferable to delete the pvg1 gene itself from the chromosome.
  • Deletion or inactivation of the pvg1 gene can be performed by a known method.
  • the pvg1 gene can be deleted by using the Latour method (described in Nucleic Acids Res, 2006, 34, e11, International Publication No. 2007/063919, etc.).
  • the pvg1 gene can be inactivated by causing deletion, insertion, substitution, or addition to a part of the base sequence of the pvg1 gene. Mutation due to deletion, insertion, substitution, or addition of the gene may cause only one of them or two or more.
  • a known method can be used as a method for introducing the mutation into a part of the pvg1 gene. For example, mutation isolation method using a mutation agent (Yeast Molecular Genetics Experimental Method, 1996, Society Press Center), random mutation method using PCR (PC Methods Appl.), 1992 , Volume 2, p.28-33.).
  • Pombe mutants are, for example, the normal S. It can also be obtained from Pombe by artificial mutation means. That is, S. cerevisiae having no non-sexual cohesiveness.
  • the pombe was mutated and treated with S. cerevisiae. From the pombe, a bacterium having an increased Gsf activity as compared with the wild strain and having a decreased or inactivated Pvg1 enzyme activity is selected from the selected bacterium, and an increased Gsf activity or a decreased Pvg1 enzyme activity is selected from the selected bacterium. Can be produced by selecting those having a dominant mutation.
  • the mutagenesis treatment for pombe may use a mutagen such as EMS (ethyl methanesulfonate) or may irradiate light with a short wavelength such as ultraviolet rays.
  • EMS ethyl methanesulfonate
  • the selection of bacteria having acid resistance and non-aggregation properties from pombe may be performed in the presence of a cation such as calcium ion.
  • the Gsf activity of the pombe mutant can be evaluated using the sedimentation rate as an index. For this reason, mutation-treated S.
  • pombe is cultured on a solid medium and the formed colonies are put into an appropriate solvent, if they settle significantly faster than the wild-type colonies (the sedimentation rate is faster), the colonies are formed.
  • Bacteria can be evaluated as having increased Gsf activity as compared to the wild type. Wild colonies and mutated bacterial colonies may be poured into the solvent almost simultaneously, and the speed of sedimentation may be compared, and the results obtained by measuring the sedimentation speed of wild strains under specific conditions in advance And the sedimentation rate of the mutated fungal colony may be compared.
  • the solvent used for the colony sedimentation test is not particularly limited as long as it is a solution in which yeast can survive, but is selected from the group consisting of calcium ions, lithium ions, manganese ions, copper ions, and zinc ions.
  • a buffer containing cations of more than one species is preferable. For example, when the concentration of dry cells is 3.6 g / L, bacteria having a sedimentation rate of 1.0 m / h or more in a calcium ion-containing lactic acid buffer (80 mM lactic acid, 100 mM calcium chloride, pH 6.0) , Can be selected as a mutant having increased Gsf activity.
  • an acid-resistant non-aggregated strain can be obtained by the following operation. First, S.M. After mutagenesis with EMS on pombe, they are isolated and cultured. Thereafter, the supernatant collected by removing the supernatant was suspended in a lactic acid-sodium hydroxide buffer solution (80 mM lactic acid, 100 mM calcium chloride, pH 2.0) so that the concentration of the dried cells was 3.6 g / L. The turbidity is measured and the sedimentation rate is measured, and a strain having a sedimentation rate exceeding 2.0 m / h is selected as an acid-resistant non-sexual agglutinating strain.
  • S.M After mutagenesis with EMS on pombe, they are isolated and cultured. Thereafter, the supernatant collected by removing the supernatant was suspended in a lactic acid-sodium hydroxide buffer solution (80 mM lactic acid, 100 mM calcium chloride, pH 2.0) so that the concentration of the dried cells was
  • Mutants with increased Gsf activity can also be selected using the expression level of the gsf2 gene as an index.
  • the expression level of the gsf2 gene can be measured by a measurement method usually used for gene expression analysis such as RT-PCR or Northern blotting using a labeled probe.
  • the enzyme activity of Pvg1 in pombe can be evaluated using the abundance of cell surface pyruvic acid as an index. That is, S. From Pombe, bacteria lacking cell surface pyruvate can be selected as a mutant in which the enzyme activity of Pvg1 is reduced or inactivated.
  • a deletion mutant of cell surface pyruvate can be prepared by referring to the method of Andrewcheva et al. (The Journal of biologic chemistry 2004 Aug 20; 279 (34): 35644-55). First, mutations are induced on the pombe using EMS and then cultured in an appropriate liquid medium for 48 hours. Thereafter, the adsorbed cells are removed from the culture using Q-sepharose having a positive charge, and the cells remaining in the supernatant are recovered. After repeating the selection with Q-Sepharose several times, the obtained culture supernatant is applied to a plate and isolated and cultured to obtain a deletion mutant of cell surface pyruvic acid.
  • a mutant in which the enzyme activity of Pvg1 is reduced or inactivated can also be selected by measuring the enzyme activity of Pvg1 of each mutated bacterium.
  • the enzyme activity of Pombe Pvg1 can be measured by a measurement method usually used for measuring the enzyme activity of other transferases, such as a measurement method using a labeled substrate.
  • Pombe mutants may be produced by a combination of genetic engineering methods and mutation treatment.
  • a Pvg1 enzyme activity may be reduced or inactivated by a genetic engineering method for a mutant in which the expression level of the gsf2 gene is increased by the mutation treatment, and the enzyme activity of Pvg1 is reduced or decreased by the mutation treatment.
  • the expression level of the gsf2 gene may be increased by a genetic engineering method.
  • Mutants in which the expression level of the gsf2 gene is increased may be selected by performing a mutation treatment on a mutant in which the enzyme activity of Pvg1 has been reduced or inactivated by a genetic engineering method.
  • the Pombe mutant may have a mutation in other genes as long as it can maintain acid resistance and non-aggregation, and a foreign structural gene may be introduced into or outside the chromosome. .
  • the acid-resistant non-sexual aggregability of the pombe mutant is not affected by the type of acid in the culture medium. That is, whether the acid causing the pH of the culture solution to 2-5 is an organic acid such as lactic acid, citric acid, acetic acid, succinic acid, fumaric acid, malic acid, or a mineral acid such as hydrochloric acid and sulfuric acid,
  • the S.M. Pombe mutants aggregate non-sexually.
  • the strength of non-sexual agglutination provided by the pombe mutant can be determined, for example, by the sedimentation rate.
  • the yeast sedimentation rate can be determined by suspending the yeast cells dispensed in a transparent container such as a test tube after the suspension treatment and starting sedimentation, and then starting the sedimentation from the liquid surface to the solid-liquid interface (the sedimented yeast cells). Is obtained by dividing the distance to the interface with the supernatant by the elapsed time from the start of sedimentation.
  • the pombe mutant has a property of aggregating non-sexually in a calcium ion-containing lactic acid buffer (80 mM lactic acid, 100 mM calcium chloride, pH 2.0). S. in the present invention.
  • the sedimentation rate of the pombe mutant in the calcium ion-containing lactic acid buffer is preferably 2.0 m / h or more, preferably 4.0 m / h or more, when the concentration of the dried cells is 3.6 g / L. More preferably, it is 6.0 m / h or more.
  • the S.P. The pombe mutant has the property of aggregating non-sexually in a calcium ion-containing lactic acid buffer (80 mM lactic acid, 100 mM calcium chloride, pH 4.0).
  • the sedimentation rate of the pombe mutant in the calcium ion-containing lactic acid buffer is preferably 2.0 m / h or more, preferably 4.0 m / h or more, when the concentration of the dried cells is 3.6 g / L. More preferably, it is more preferably 8.0 m / h or more. When the sedimentation rate at pH 4.0 is 8.0 m / h or more, sufficient cohesion is exhibited even at a pH lower than pH 4.
  • the acid-resistant non-sexual aggregability of the pombe mutant may depend on one or more cations selected from the group consisting of calcium ions, lithium ions, manganese ions, copper ions, and zinc ions.
  • a chelating agent such as EDTA is added to the culture solution, thereby the S. Can inhibit aggregation of Pombe mutants.
  • the acid-resistant non-sexual aggregation property provided in the pombe mutant may be a property that is inhibited by galactose.
  • the galactose is added to the culture solution so that the final concentration becomes 5 mM or more. Can inhibit aggregation of Pombe mutants.
  • S. in the present invention Pombe mutants exhibit strong asexual aggregation under acidic (eg, pH 2-5) conditions. For this reason, the S.P.
  • the pombe mutant is particularly suitable as a host for an expression system for synthesizing acidic proteins.
  • it is also suitable as a host for the expression system when the optimum pH during culture is lower than 5.
  • S. in the present invention In order to produce a large amount of ⁇ -glucosidase using a pombe mutant as a host, S. of the present invention described later is used.
  • a pombe mutant transformant When a pombe mutant transformant is prepared, and the transformant is cultured in tank culture or the like, even if the culture solution has a pH of 2 to 5 at the end of the culture, the solid solution such as centrifugation or filtration is used. Bacterial cells can be aggregated without performing separation treatment, neutralization reaction, and the like, whereby the bacterial cells and the culture solution can be easily separated.
  • the pombe mutant may be capable of aggregating non-sexually not only under acidic conditions but also under weakly acidic to alkaline (eg, pH 5 to 10) conditions.
  • [S. Pombe mutant transformant] S. of the present invention The transformant of the pombe mutant is S. Using a pombe mutant as a host, it has a structural gene sequence encoding ⁇ -glucosidase derived from a filamentous fungus and an expression cassette containing a promoter sequence and a terminator sequence for expressing the structural gene in the chromosome, or as an extrachromosomal gene Have. Having the above expression cassette in the chromosome means that the expression cassette is incorporated at one or more positions in the chromosome of Schizosaccharomyces yeast, and having as an extrachromosomal gene means that the plasmid containing the expression cassette is a cell. It is to have in.
  • the expression cassette is [S. Pombe mutant] is similar to that described in the above, is a combination of DNA necessary for expressing ⁇ -glucosidase, and includes a ⁇ -glucosidase structural gene and a promoter and terminator that function in yeast of the genus Schizosaccharomyces .
  • ⁇ -glucosidase secreted to the outside of the yeast of the genus Schizosaccharomyces increases, and ⁇ -glucosidase can be easily recovered and purified. Therefore, at the 5 ′ end of the ⁇ -glucosidase structural gene, It preferably has a base sequence (secretory signal structural gene) encoding a secretory signal sequence that functions in the genus yeast.
  • the 5 ′ end side of the ⁇ -glucosidase structural gene is a position upstream of the 5 ′ end side of the ⁇ -glucosidase structural gene and adjacent to the 5 ′ end of the ⁇ -glucosidase structural gene.
  • the base sequence encoding several amino acids on the N-terminal side that does not affect the activity of ⁇ -glucosidase may be removed, and a gene encoding a signal sequence may be introduced at that position.
  • Promoter and terminator are hosts such as S. Any substance capable of functioning in the Pombe mutant and expressing ⁇ -glucosidase derived from filamentous fungi may be used. S. As a promoter functioning in the Pombe mutant, [S. The same as described in the “Pombet mutant”.
  • ⁇ -glucosidase ⁇ -glucosidase
  • EC 3.2.1.21 is a generic term for enzymes that specifically catalyze the hydrolysis reaction of ⁇ -D-glucopyranoside bonds. It is also called cellobiase because it decomposes cellobiose into glucose, and it is widely distributed in bacteria, filamentous fungi, plants and animals.
  • cellobiase because it decomposes cellobiose into glucose, and it is widely distributed in bacteria, filamentous fungi, plants and animals.
  • the presence of bgl1 to bgl7 has been reported in Aspergillus oryzae, which is one type of filamentous fungus. (Soy protein Research, Japan 12, 78-83, 2009, Japanese Patent Laid-Open No. 2008-086310).
  • bgl1 encoding BGL1 is preferable from the viewpoint of high activity
  • the structural gene of ⁇ -glucosidase possessed by the transformant of Pombe mutant is derived from a filamentous fungus.
  • a filamentous fungus is a eukaryotic microorganism composed of tubular cells called mycelium among fungi. Examples of the filamentous fungi include Aspergillus, Trichoderma, Fusarium, Penicillium, and Acremonium.
  • the structural gene of ⁇ -glucosidase in the present invention may be derived from any filamentous fungus as long as it is a filamentous fungus that produces ⁇ -glucosidase. However, from the viewpoint of high enzyme activity, it is derived from Aspergillus spp.
  • ⁇ -glucosidase is preferred.
  • Aspergillus fungi include Aspergillus nidulans, Aspergillus oryzae, Aspergillus ulgi, Aspergillus ulgi, Aspergillus ulgi be able to.
  • a gene encoding ⁇ -glucosidase derived from Aspergillus acculeatus is preferable because it has a high ability to decompose crystalline cellulose and is excellent in monosaccharide production.
  • BGL1 derived from Aspergillus acculeatus hereinafter referred to as “Aspergillus acuretus” More preferred is a gene encoding AaBGL1).
  • the amino acid sequence of AaBGL1 is represented by SEQ ID NO: 1.
  • the gene sequence encoding ⁇ -glucosidase is preferably a gene sequence encoding ⁇ -glucosidase consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • the amino acid sequence represented by SEQ ID NO: 1 consists of an amino acid sequence having 1 to several tens, preferably 1 to several, more preferably 1 to 9 amino acid deletions, substitutions or additions, It may be a gene sequence encoding ⁇ -glucosidase having an activity of catalyzing a hydrolysis reaction of ⁇ -D-glucopyranoside bond.
  • ⁇ -glucosidase consisting of the amino acid sequence represented by SEQ ID NO: 1 has an activity of catalyzing the hydrolysis reaction of ⁇ -D-glucopyranoside bond even if deletion, substitution or addition of 1 to several tens of amino acids is introduced. Is.
  • the gene encoding ⁇ -glucosidase derived from the above-mentioned filamentous fungi may be used as it is.
  • the gene sequence is used in Schizosaccharomyces yeast. It is preferable to change to a codon that is frequently used in the highly expressed gene.
  • examples of the vector for expressing ⁇ -glucosidase include the same as the above-described gsf2 vector for expressing Gsf2.
  • the bgl vector is S. cerevisiae. It is preferable to have a secretory signal gene that functions within the pombe mutant. The position of the secretion signal gene is on the 5 ′ end side of the ⁇ -glucosidase structural gene.
  • S. A secretory signal gene that functions in a pombe mutant is a gene that encodes an amino acid sequence having a function of secreting an expressed foreign protein outside a host cell.
  • a foreign protein having a secretory signal added to the N-terminus is expressed from a foreign structural gene to which a secretory signal gene is bound.
  • the foreign protein is cleaved by the endoplasmic reticulum or Golgi apparatus in the host, and then the foreign protein from which the secretory signal has been removed is secreted outside the cell.
  • the secretion signal gene (and secretion signal) is It is necessary to function in Pombe mutants. S.
  • a secretory signal gene that functions in a pombe mutant for example, those described in WO 1996/23890 can be used.
  • a ⁇ -glucosidase having the secretory signal added to the N-terminal is expressed by introducing the secretory signal structural gene into the 5′-terminal side of the ⁇ -glucosidase structural gene.
  • ⁇ -glucosidase can be secreted outside the cells.
  • the P3 signal described in WO 1996/23890 is particularly preferable.
  • S. Transform pombe mutants S. Transform pombe mutants.
  • the S.M. The structural gene of ⁇ -glucosidase can be introduced into the pombe mutant in the same manner as the introduction of the gsf2 gene. The same applies to the method for selecting transformants.
  • a known yeast culture medium can be used for the culture medium of the transformant of the pombe mutant, which contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the yeast of the genus Schizosaccharomyces. Any material capable of efficiently cultivating yeast can be used.
  • the culture solution a natural medium or a synthetic medium may be used.
  • Examples of the carbon source include sugars such as glucose, fructose, and sucrose.
  • Examples of the nitrogen source include inorganic acids such as ammonia, ammonium chloride, and ammonium acetate, ammonium salts of inorganic acids, peptone, and casamino acids.
  • examples of inorganic salts include magnesium phosphate, magnesium sulfate, and sodium chloride.
  • a well-known yeast culture method can be used for culture
  • the culture temperature is preferably 23 to 37 ° C.
  • the culture time can be determined as appropriate.
  • the culture may be batch culture (batch culture), fed-batch culture (fed batch culture), or continuous culture.
  • ⁇ -glucosidase When a transformant having a ⁇ -glucosidase structural gene combined with a secretory signal gene is used as a transformant of the pombe mutant, ⁇ -glucosidase is secreted into the culture medium.
  • the transformant when the transformant is cultured in tank culture or the like to produce ⁇ -glucosidase in large quantities, the transformant is not acid-resistant even if the pH of the culture solution becomes 2 to 5 at the end of the culture. Since it has sexual aggregability, the bacterial cells can be aggregated without performing solid-liquid separation treatment such as centrifugation and filtration, or a neutralization reaction, whereby the bacterial cells and the culture solution can be easily separated.
  • a known protein separation method can be used as a means for separating ⁇ -glucosidase. For example, after culturing, the precipitated cells are separated from the culture solution, and the cells are destroyed to obtain a cell lysate containing ⁇ -glucosidase. From the cell lysate, salting out, column purification, chromatography, immunoprecipitation ⁇ -glucosidase can be obtained using a known protein separation method such as
  • the cloning vector according to the second aspect of the present invention is a cloning vector for preparing an expression vector to be introduced into a yeast of the genus Schizosaccharomyces in order to express a foreign protein, and a promoter for controlling the expression of the foreign protein. It is characterized by being the hsp9 promoter or ihc1 promoter of Schizosaccharomyces yeasts.
  • the cloning vector according to the second aspect of the present invention is also referred to as the cloning vector of the present invention.
  • the hsp9 gene of Schizosaccharomyces yeast is a gene encoding Hsp9 protein, which is a kind of heat shock protein (hsp) possessed by Schizosaccharomyces yeast.
  • S. The strain name of the hsp9 gene registered in the gene sequence database of pombe (S. pombe GeneDB; http://www.genedb.org/geneb/pombe/) is SPAP8A3.04c.
  • Heat shock proteins are synthesized when cells or individuals undergo a temperature change (heat shock) 5-10 ° C higher than normal temperature, and function as chaperones to cause heat denaturation and aggregation of proteins. It is a general term for proteins to inhibit.
  • the hsp9 promoter is very highly expressed in Schizosaccharomyces yeasts. For this reason, by using the promoter, an expression vector capable of producing a large amount of a foreign protein from a transformant of Schizosaccharomyces yeast can be produced.
  • the hsp9 promoter may be any promoter of the hsp9 gene possessed by yeast of the genus Schizosaccharomyces, and may be derived from any yeast of the genus Schizosaccharomyces, but is more widely used.
  • the pombe hsp9 promoter is used.
  • the hsp9 promoter of pombe is a region contained 1 to 400 bp upstream of the 5 ′ end (A of start codon ATG) of the ORF of the hsp9 gene (see SEQ ID NO: 6).
  • S. has an hsp9 promoter
  • yeast belonging to the genus Schizosaccharomyces other than Pombe include Schizosaccharomyces japonicus and Schizosaccharomyces octosporas.
  • the hsp9 promoter used for the cloning vector may be derived from the same species as that of the yeast of the genus Schizosaccharomyces into which the expression vector prepared from the cloning vector is introduced, or may be derived from a different species.
  • the hsp9 promoter has one or more bases in the base sequence, preferably 1 to several, in addition to the same base sequence as that originally possessed by wild-type Schizosaccharomyces yeasts (wild-type hsp9 promoter). Consisting of a base sequence in which ten, more preferably 1 to a dozen, more preferably 1 to 9, even more preferably 1 to several bases have been deleted, substituted or added, and a wild-type hsp9 Similar to the promoter, it may be a region having promoter activity.
  • the hsp9 promoter used in the cloning vector according to the present invention has a homology with the same base sequence as that of the wild-type hsp9 promoter of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95%. It may be a region having the above base sequence and having promoter activity in the same manner as the wild type hsp9 promoter.
  • the pombe hsp9 promoter is a region contained 1 to 400 bp upstream of the 5 'end (A of the start codon ATG) of the ORF of the hsp9 gene.
  • the base sequence of this region is represented by SEQ ID NO: 6. That is, the cloning vector according to the present invention preferably has a region consisting of the base sequence represented by SEQ ID NO: 6. Further, one or more bases in the base sequence represented by SEQ ID NO: 6, preferably 1 to several tens, more preferably 1 to tens, more preferably 1 to 9, even more preferably 1 to several.
  • the base sequence in which one base is deleted, substituted or added, or the homology with the base sequence represented by SEQ ID NO: 6 is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably
  • a region having a nucleotide sequence of 95% or more and having promoter activity similar to the wild-type hsp9 promoter can also be suitably used as the hsp9 promoter used in the cloning vector according to the present invention.
  • the ihc1 gene is a gene encoding Ihc1, which is a protein having a molecular weight of 15,400.
  • the ihc1 gene is widely conserved in fungi including Schizosaccharomyces yeasts.
  • the expression of Ihc1 protein is suppressed when the cell density is low, such as at the start of growth, and the expression is induced when the cell density is high.
  • the expression of this Ihc1 protein is controlled by the promoter of the ihc1 gene. Therefore, the expression induction of the ihc1 promoter is suppressed when the cell density is low, such as at the start of growth, and can be highly induced when the cell density is high.
  • the ihc1 promoter may be a promoter of the ihc1 gene possessed by yeast belonging to the genus Schizosaccharomyces, and may be derived from any yeast belonging to the genus Schizosaccharomyces.
  • the pombe ihc1 promoter is used. S. pombe's ihc1 gene is known. The gene name of the ihc1 gene registered in the gene sequence database of pombe (S.
  • pombe GeneDB http://www.geneb.org/geneb/pombe/
  • SPAC22G7.11c SPAC22G7.11c
  • ihc1 promoter is the ihc1 gene. This is a region contained 1 to 501 bp upstream of the 5 ′ end of the ORF (start codon ATG A) (see SEQ ID NO: 9).
  • the ihc1 promoter used in the cloning vector according to the present invention may be a promoter of the ihc1 gene possessed by the yeast belonging to the genus Schizosaccharomyces, and may be derived from any yeast belonging to the genus Schizosaccharomyces.
  • Schizosaccharomyces yeasts include S. cerevisiae. Pombe, Schizosaccharomyces japonicus, Schizosaccharomyces octosporus, and the like.
  • the ihc1 promoter used for the cloning vector may be derived from the same species as the yeast belonging to the genus Schizosaccharomyces into which an expression vector prepared from the cloning vector is introduced, or may be derived from a different species. In the present invention, it is more widely used. Pombe's ihc1 promoter is preferably used.
  • the ihc1 promoter used in the cloning vector according to the present invention is not limited to the same nucleotide sequence as that originally possessed by wild-type Schizosaccharomyces yeasts (wild-type ihc1 promoter).
  • the ihc1 promoter used in the cloning vector according to the present invention has a homology of 80% or more, preferably 85% or more, more preferably 90% or more, more preferably 95%, with the same base sequence as the wild-type ihc1 promoter. It may be a region comprising the above base sequence and having promoter activity in the same manner as the wild type ihc1 promoter.
  • the pombe ihc1 promoter is a region contained 1 to 501 bp upstream of the 5 'end of the ORF of the ihc1 gene (A of the start codon ATG) (SEQ ID NO: 9).
  • the base sequence of this region is represented by SEQ ID NO: 9. That is, the cloning vector according to the present invention preferably comprises a region consisting of the base sequence represented by SEQ ID NO: 9. Further, one or more bases in the base sequence represented by SEQ ID NO: 9, preferably 1 to several tens, more preferably 1 to tens, more preferably 1 to 9, even more preferably 1 to several.
  • the base sequence in which one base is deleted, substituted, or added, or the homology with the base sequence represented by SEQ ID NO: 9 is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably
  • a region having a nucleotide sequence of 95% or more and having promoter activity similar to the wild-type ihc1 promoter can also be suitably used as the ihc1 promoter used in the cloning vector according to the present invention.
  • the cloning vector of the present invention includes a cloning site for introducing a foreign structural gene located downstream from and controlled by the promoter, and Schizosaccharomyces It has a terminator that can function in the genus yeast.
  • the cloning site provided in the cloning vector is a place where a restriction enzyme recognition site existing only in the cloning site is present in the cloning vector.
  • the cloning site provided in the cloning vector of the present invention may have a restriction enzyme recognition site that is recognized by one type of restriction enzyme, or multiple cloning that has a restriction enzyme recognition site that can be recognized by two or more types of restriction enzymes. It may be a site.
  • the multicloning site a multicloning site provided in a known cloning vector can be used as it is, and a known multicloning site appropriately modified can be used.
  • the cloning vector of the present invention may have a stop codon in the downstream end region in the cloning site or downstream of the cloning site.
  • a terminator inherent in the yeast belonging to the genus Schizosaccharomyces or a terminator not inherent in the yeast belonging to the genus Schizosaccharomyces can be used. Two or more terminators may be present in the vector.
  • the terminator inherent to Schizosaccharomyces yeasts include the inv1 gene terminator of Schizosaccharomyces yeasts.
  • the terminator of the human origin described in patent document 2, 4, or 10 etc. is mentioned, for example, The terminator of human lipocortin I is preferable.
  • the cloning vector of the present invention preferably contains a 5′-untranslated region downstream of the promoter and upstream of the cloning site, and also contains a 3′-untranslated region downstream of the cloning site. It is preferable that the cloning vector of the present invention preferably has a marker for distinguishing it from an expression vector having a foreign structural gene introduced at the cloning site. Examples of the marker include drug resistance genes that can function in E. coli, such as ampicillin resistance genes.
  • the cloning vector of the present invention preferably has a marker for selecting a transformant.
  • the marker include auxotrophic complementary markers such as ura4 gene, isopropylmalate dehydrogenase gene (leu1 gene), and the like.
  • the cloning vector of the present invention may further have a DNA region necessary for producing a transformant in addition to a region constituting an expression cassette when a foreign structural gene is introduced into the cloning site.
  • a DNA region necessary for producing a transformant in addition to a region constituting an expression cassette when a foreign structural gene is introduced into the cloning site.
  • the genetic engineering method described in relation to the present invention according to the first aspect can also be applied as it is to the method of introducing the expression cassette into the chromosome. it can.
  • the cloning vector of the present invention When an expression cassette of an expression vector prepared from the cloning vector of the present invention produces a transformant that is retained as an extrachromosomal gene in a host cell, the cloning vector of the present invention is used in the yeast of Schizosaccharomyces. It is preferable to include a sequence to be replicated in step 1, that is, an autonomously replicating sequence (ARS). In addition, when integrating an expression cassette in a chromosome, it is preferable to delete ARS from an expression vector and introduce
  • ARS autonomously replicating sequence
  • the cloning vector according to the present invention is prepared by replacing a promoter region provided in a known cloning vector used to prepare an expression vector for expressing a foreign protein in a host with an hsp9 promoter or an ihc1 promoter.
  • a promoter site of the multi-cloning vector described in JP-A-7-163373, JP-A-10-234375, JP-A-11-192094, JP-A-2000-136199, etc. is used as the hsp9 promoter or ihc1 promoter. It can be produced by substituting.
  • a specific operation method for constructing the cloning vector according to the present invention a known method can be used.
  • the expression vector of the present invention according to the second embodiment can be produced by introducing a foreign structural gene into the cloning site in the cloning vector of the present invention.
  • a known method can be used to introduce a foreign structural gene into the cloning site in the same manner as the cloning vector.
  • the foreign structural gene introduced into the expression vector of the present invention is not particularly limited as long as it is a structural gene encoding a protein, and is the same species as the gene originally possessed by the yeast belonging to the genus Schizosaccharomyces. Or a structural gene derived from a different organism.
  • a large amount of the endogenous protein is produced from a transformant of Schizosaccharomyces yeast obtained from an expression vector containing a structural gene encoding the endogenous protein of the yeast belonging to the genus Schizosaccharomyces (for example, the gsf2 gene). be able to.
  • a large amount of heterologous protein can be produced from a transformant of Schizosaccharomyces yeast obtained by an expression vector containing a structural gene derived from a heterologous organism.
  • the protein encoded by the foreign structural gene introduced into the expression vector of the present invention is preferably a heterologous protein, more preferably a protein produced by an animal or plant that is a multicellular organism, and produced by a mammal (including a human). Proteins are more preferred. When such a protein is produced using a prokaryotic microbial host such as Escherichia coli, a protein with high activity is often not obtained, and when animal cells such as CHO cells are used as the host, Production efficiency is low. When the expression vector according to the present invention is used and a heterologous protein expression system using Schizosaccharomyces yeast as a host is used, these problems are solved.
  • the foreign structural gene introduced into the expression vector of the present invention may be a wild-type structural gene or a gene obtained by modifying a wild-type structural gene as long as it encodes a protein. It may be an artificially synthesized gene.
  • the structural gene other than the wild type include a gene encoding a chimeric protein in which a plurality of wild type proteins are fused, and a protein in which other peptides are bound to the N-terminal or C-terminal of the wild-type protein. Genes and the like.
  • the other peptides include signals such as secretion signals, signals for transfer to specific organelles, tags such as His tags, FLAG tags, and the like. The various signals need to be signals that function in Schizosaccharomyces yeasts.
  • a secretion signal is a peptide having a function of secreting an expressed protein outside the host cell by being present at the N-terminus.
  • a secretion signal that functions in Schizosaccharomyces yeasts the P3 signal described in WO 1996/23890 is particularly preferable.
  • the transformant according to the second aspect of the present invention includes the expression vector according to the second aspect of the present invention.
  • the transformant according to the present invention of the second aspect is produced by introducing the expression vector into a yeast of the genus Schizosaccharomyces.
  • the host of the transformant according to the present invention of the second aspect is a yeast belonging to the genus Schizosaccharomyces.
  • the yeast of the genus Schizosaccharomyces may be a wild type or a mutant type in which a specific gene is deleted or inactivated depending on the use.
  • a known method can be used as a method for deleting or inactivating a specific gene. Specifically, a gene can be deleted by using the Latour method (described in Nucleic Acids Res, 2006, Vol. 34, No. e11, International Publication No. 2007/063919, etc.).
  • the gene can be inactivated by introducing a mutation into a part of the gene.
  • yeasts belonging to the genus Schizosaccharomyces from which a specific gene has been deleted or inactivated are described in, for example, WO 2002/101038 and WO 2007/015470.
  • a yeast having a marker for selecting a transformant as a yeast belonging to the genus Schizosaccharomyces.
  • a host in which a specific nutritional component is essential for growth because a certain gene is missing When a transformant is produced by transforming with a vector containing the target gene sequence, the transformant can be auxotrophic of the host by incorporating this missing gene (auxotrophic complementary marker) into the vector. Sex disappears. Due to the difference in auxotrophy between the host and the transformant, the transformant can be obtained by distinguishing both.
  • the auxotrophic complementary marker include ura4 gene (auxotrophic complementary marker), isopropylmalate dehydrogenase gene (leu1 gene) and the like.
  • yeast of the genus Schizosaccharomyces used as a host those of the species mentioned above can be used.
  • various useful mutants can be used.
  • Pombe is preferred.
  • Pombe strains include ATCC 38399 (leu1-32h ⁇ ) and ATCC 38436 (ura4-294h ⁇ ), which can be obtained from the American Type Culture Collection (American Type Culture Collection).
  • ATCC 38399 leu1-32h ⁇
  • ATCC 38436 ura4-294h ⁇
  • the S. cerevisiae in the first aspect of the present invention is used.
  • Pombe mutants can also be used as hosts.
  • Any of the known methods for transforming Schizosaccharomyces yeasts can be used as a transformation method for transforming a host, Schizosaccharomyces yeast, using an expression vector.
  • transformation methods include lithium acetate method [K. [Okazaki et al., NucleicucAcids Res., 18, 6485-648964 (1990)], electroporation method, spheroplast method, glass bead method.
  • a conventionally known method and the method described in JP-A-2005-198612 can be exemplified.
  • a commercially available yeast transformation kit may also be used.
  • the obtained transformant is usually selected.
  • the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected.
  • the number of vectors integrated into the chromosome and the number of expression cassettes can be examined by performing genome analysis by pulse field gel electrophoresis on the selected transformants.
  • the transformant according to the present invention of the second aspect can be cultured in the same manner as natural Schizosaccharomyces yeasts.
  • Examples of the culture method include the same method as the culture method of the transformant of the first aspect. Specifically, nutrient medium such as YPD medium (MDRose et al., “Methods In Yeast Genetics”, Cold Spring Harbor Labolatory Press (1990)) or minimal medium such as MB medium (K. Okazaki et al., Nucleic Acids Res , vol.18, p.6485-6489 (1990)).
  • YPD medium MDRose et al., “Methods In Yeast Genetics”, Cold Spring Harbor Labolatory Press (1990)
  • minimal medium such as MB medium (K. Okazaki et al., Nucleic Acids Res , vol.18, p.6485-6489 (1990)).
  • a well-known yeast culture method can be used for culture
  • the culture temperature is preferably 23 to 37 ° C.
  • the culture time can be determined as appropriate.
  • the culture may be batch culture, fed-batch culture or continuous culture.
  • the method for producing a protein according to the second aspect of the present invention comprises culturing the transformant according to the present invention of the second aspect, and encoding the foreign structural gene from the obtained bacterial cells or culture supernatant. It is characterized by obtaining a protein to be processed.
  • Culture conditions can be appropriately set in consideration of the type of foreign protein to be produced. For example, it is carried out at 16 to 42 ° C., preferably 25 to 37 ° C., for 8 to 168 hours, preferably 48 to 96 hours. Either shaking culture or stationary culture is possible, but stirring or aeration may be added as necessary.
  • the hsp9 promoter can be obtained by culturing the transformant under conditions in which an induction stimulus such as heat stress is applied. Is activated by the stress and transcription of a foreign structural gene controlled by the stress is promoted, and the foreign protein is expressed.
  • an induction stimulus such as heat stress
  • the amount of growth of Schizosaccharomyces yeast is usually smaller than that in the culture under normal conditions. For this reason, the culture is performed under normal conditions at the start of the culture, and induction stimulation such as heat stress is given when the bacterial cell concentration in the culture solution increases to some extent.
  • heat stress is one of induction stimuli, and other means can be used by confirming various effects of the induction stimulus.
  • a means for induction stimulation it can be preferably achieved by adding heat, cadmium, an osmotic pressure increasing agent, hydrogen peroxide, ethanol or the like.
  • the upper limit of the temperature at which heat stress is applied is the maximum temperature at which the yeast of the genus Schizosaccharomyces can survive. Therefore, the culture temperature at the time of heat stress is preferably 2 to 20 ° C., more preferably 3 to 12 ° C., most preferably 4 to 6 ° C. higher than the culture temperature before applying heat stress, And it is 15 to 55 ° C, preferably 25 to 45 ° C, more preferably 30 to 40 ° C.
  • the time for applying heat stress is not particularly limited, but the effect can be confirmed in several minutes or more, and is 1 to 29 hours, preferably 1 to 15 hours. When cadmium is added, it is added as cadmium ion.
  • the final concentration of cadmium is from 0.1 to 1.5 mM, more preferably from 0.5 to 1.0 mM.
  • the culture time is suitably up to 5 hours, more preferably up to 3 hours.
  • an osmotic pressure increasing agent such as a high concentration electrolyte or sorbitol is added to increase the osmotic pressure.
  • the final concentration of potassium is from 0.1 to 2.0M, more preferably from 0.5 to 1.5M.
  • the addition time is not particularly limited, but is preferably 1 to 12 hours, more preferably about 1 to 10 hours.
  • the final concentration is from 0.1 to 1.5 mM, more preferably from 0.5 to 1.0 mM.
  • the culture time is not particularly limited, but is preferably 1 to 15 hours, more preferably about 1 to 12 hours.
  • the final concentration is from 5 to 20 V / V%, more preferably from 5 to 15 V / V%.
  • the culture time is not particularly limited, but is preferably 1 to 20 hours, more preferably about 1 to 15 hours.
  • the above conditions may be used alone or in combination. The combination effect can be easily confirmed by comparing the expression levels.
  • the transformant according to the present invention of the second aspect is a transformant into which an expression vector having an ihc1 promoter has been introduced
  • the foreign protein is expressed when culturing is carried out at a low cell density as at the start of the culture. It is never or very little expressed. That is, since the transformant can grow in a state where the bacterial cell density is low, there is no (or small) load of foreign protein expression, so the growth efficiency is high compared to the case where there is a load, and the amount of cells is reduced. It can be increased efficiently. On the other hand, as the cell density increases, the expression is induced, so that a large amount of foreign protein can be produced.
  • a cell extract containing the desired foreign protein can be prepared from the cells by ultrasonic disruption or mechanical disruption, and the foreign protein can be isolated and purified from the cell extract.
  • the foreign protein when the foreign protein is secreted outside the cell, the foreign protein can be isolated and purified from the culture supernatant. Isolation / purification methods for obtaining these produced proteins include known methods such as salting-out or solvent precipitation, such as methods utilizing the difference in solubility, dialysis, ultrafiltration, gel electrophoresis, etc.
  • a method that utilizes the difference in molecular weight a method that utilizes a difference in charge such as ion exchange chromatography, a method that utilizes specific affinity such as affinity chromatography, and a difference in hydrophobicity such as reversed-phase high-performance liquid chromatography And a method using a difference in isoelectric point, such as isoelectric focusing method.
  • the structure of the purified protein can be clarified by amino acid analysis, amino-terminal analysis, primary structure analysis, or the like.
  • the vector pSL6 fragment and the above AaBGL1 gene fragment were excised from the agarose gel, ligated, and then introduced into E. coli DH5 ⁇ (Takara Bio Inc.) for transformation.
  • a vector was prepared from the obtained transformant, and the target expression vector pSL6AaBGL1 (see FIG. 1, SEQ ID NO: 3) was obtained. From the construction of the restriction enzyme map, the target vector was confirmed.
  • the AaBGL1 gene fragment was amplified by the PCR method using pSL6AaBGL1 as a template and an In-fusion primer.
  • pSL6P3lacZ was digested with restriction enzymes AflII and XbaI. This fragment and the AaBGL1 gene fragment obtained by PCR were circularized by the In-fusion method, and then introduced into E. coli DH5 ⁇ for transformation.
  • a vector was prepared from the obtained transformant, and the target expression vector pSL6P3AaBGL1 (see FIG. 2, SEQ ID NO: 4) was obtained. From the construction of restriction enzyme maps and the confirmation of partial nucleotide sequences, it was confirmed to be the target vector.
  • a 1-400 bp region (SEQ ID NO: 6) upstream of the 5 ′ end of ORF (start codon ATG A)
  • a forward primer having a SacI restriction enzyme site at the 5 ′ end and a reverse primer having a PciI restriction enzyme site at the 5 ′ end
  • a fragment having a SacI at the 5 ′ end of the region and a PciI restriction enzyme site at the 3 ′ end is obtained by a fragment having a SacI at the 5 ′ end of the region and a PciI restriction enzyme site at the 3 ′ end.
  • the promoter portion of pSL9 was double-digested with restriction enzymes AarI and SacI, ligation, followed by transformation into E. coli DH5, and the plasmid was extracted to confirm the base sequence. As a result, it was confirmed that the obtained plasmid had a promoter region containing the base sequence represented by SEQ ID NO: 6, although one adenine was added to the 3 ′ end. This plasmid was designated as pSL14.
  • a gene fragment (see SEQ ID NO: 8) containing the following ihc1 promoter and gsf2 gene was added to 100 ⁇ L of the suspension, and 290 ⁇ L of a 50% (w / v) aqueous solution of polyethylene glycol (PEG 4000) was added and stirred well. Incubation was performed at 30 ° C. for 60 minutes, 42 ° C. for 5 minutes, and room temperature for 10 minutes. PEG4000 was removed by centrifugation, washed, suspended in 150 ⁇ L of sterilized water, and applied to a leucine-containing minimal agar medium.
  • PEG 4000 polyethylene glycol
  • the gene fragment containing the ihc1 promoter and gsf2 gene was prepared as follows. First, the gene fragment is amplified by PCR using a template containing a gsf2 promoter sequence and Ura4 sequence at the 5′-end side of the ihc1 promoter (see SEQ ID NO: 9) and a gsf2-ORF sequence at the 3′-end side as a template. did.
  • the absorbance of the culture solution at OD 660 nm was measured using a spectrophotometer (Spectrophotometer U-1500). When the concentration of the culture broth was high, it was diluted with RO (Reverse Osmosis) water and measured. When measuring the OD660 of the aggregated strain, the suspension was suspended in 100 to 500 mM EDTA, and the measurement was performed after releasing the aggregation property. The results of bacterial cell growth are shown in FIG. In the normal strain and the aggregated strain, the time-dependent change in the OD660 value during the culture showed almost the same behavior, and the final OD660 value was 23.4 in the normal strain and 20.3 in the aggregated strain.
  • RO Reverse Osmosis
  • Residual glucose concentration in the culture solution and its metabolite ethanol concentration were measured with a biosensor BF5.
  • the collected culture solution was put into an Eppendorf tube and centrifuged using a high-speed microcentrifuge to obtain a culture supernatant. 300 ⁇ L of this culture supernatant was placed in a BF5 sample cup and placed in a BF5 autosampler ready for measurement.
  • BF5 was operated and analyzed under the following biosensor operating conditions.
  • FIG. 6 (a) The result of the residual glucose concentration in the culture solution is shown in FIG. 6 (a), and the result of the ethanol concentration that is a metabolite of the glucose is shown in FIG. 6 (b).
  • FIG. 6 (b) The result of the ethanol concentration that is a metabolite of the glucose is shown in FIG. 6 (b).
  • changes in glucose concentration and ethanol concentration with time in culture showed almost the same behavior.
  • FIG. 7 shows pNPG degradation activity (hereinafter also referred to as pNPG activity) per 1 mL of culture supernatant in normal strains and aggregate strains.
  • the pNPG-degrading activity value was 1.38 times as high as that of the normal strain after 15.5 hours of culture immediately after glucose depletion, and after 48 hours of culture, the aggregated strain was observed.
  • the activity value was 1.27 times that of the normal strain.
  • Test Example 10 Fed batch culture of transformants Normal strains or aggregated strains were inoculated in 5 mL YES medium, and preculture 1 was performed in a test tube at 32 ° C for 24 hours. Furthermore, 4 mL of the culture solution obtained in preculture 1 was added to 200 mL YES medium, and preculture 2 was performed at 30 ° C. for 24 hours in a 1 L Sakaguchi flask. Subsequently, using a 5 L jar fermenter, 200 mL of the culture solution obtained in the preculture 2 was added to 1800 mL of the initial medium composed of the components shown in Table 1, and the culture was started at 30 ° C.
  • concentration of each component of Table 1 shows the density
  • the absorbance of the culture solution at OD 660 nm was measured using a spectrophotometer (Spectrophotometer U-1500). When the concentration of the culture broth was high, it was diluted with RO water and measured. When measuring the OD660 nm of the aggregated strain, the suspension was suspended in 100 to 500 mM EDTA, and the measurement was performed after releasing the aggregation property. The results of cell growth are shown in FIG. In normal strains and aggregated strains, changes with time in the OD660 value during the culture showed almost the same behavior.
  • the final OD660 value was 376 for the normal strain and 395 for the aggregated strain, and reached a high cell concentration in the semi-synthetic medium in which Yeast Extract was added to the synthetic medium as a natural product.
  • the residual glucose concentration in the culture solution and the concentration of ethanol as a metabolite thereof were measured by the same method as in Test Example 8.
  • FIG. 9 (a) The result of the residual glucose concentration in the culture solution is shown in FIG. 9 (a), and the result of the ethanol concentration which is a metabolite of the glucose is shown in FIG. 9 (b).
  • changes in glucose concentration and ethanol concentration with time in culture showed almost the same behavior.
  • the glucose concentration after the start of fed-batch changed at a low value of 1 g / L or less.
  • the ethanol concentration in the culture decreased after the start of fed-batch in the batch culture stage, and finally remained at a low value of 1 g / L or less. From the start of fed-batch until the end of fed-batch culture, the glucose effect, which is the ethanol production phase, did not occur.
  • the sedimentation rate of the agglutinated strain was 30 mm / h at 2 hours after the start of sedimentation, and 6.7 mm / h at 10 hours later (12 hours after the commencement of sedimentation).
  • the sedimentation rate of the normal strain was 1.5 mm / h at 12 hours after the start of sedimentation.
  • FIG. 11 shows the microscopic observation results (trypan blue staining results) of the samples at the end of the fed batch culture.
  • the microscopic observation result of the sample at the end of the fed-batch culture confirmed that many cells were aggregated and aggregated in the aggregated strain, and the aggregability of the cells disappeared by the fed-batch culture. There was nothing. In normal strains, the cells were not observed to aggregate and dispersed.
  • the initial medium composition a medium obtained by removing Yeast extract, choline chloride, folic acid, pyridoxine, thiamine, thymidine, riboflavin sodium phosphate and p-aminobenzoic acid from the composition shown in Table 1 was used.
  • concentration of each component of Table 1 shows the density
  • a feed medium in which Yeast extract, choline chloride, folic acid, pyridoxine, thiamine, thymidine, riboflavin sodium phosphate and p-aminobenzoic acid were removed from the composition shown in Table 2 was used.
  • the pH was kept at 4.5 by controlling the addition of 12.5% aqueous ammonia.
  • the OD660 nm value of the culture solution was measured in the same manner as in Test Example 8. The result of cell growth is shown in FIG. At 30 ° C. and 34 ° C., the time-dependent change in the OD660 value during the culture showed almost the same behavior. The final OD660 value reached a high cell concentration of 295 at 30 ° C. and 271 at 34 ° C., respectively.
  • the residual glucose concentration in the culture solution and the ethanol concentration that is a metabolite thereof were measured by the same method as in Test Example 8.
  • the result of the residual glucose concentration in the culture solution is shown in FIG. 13A
  • the result of the ethanol concentration that is a metabolite of the glucose is shown in FIG. 13B.
  • changes over time in glucose concentration and ethanol concentration during the culture showed almost the same behavior.
  • the glucose concentration after 24 hours of culture changed at a low value of 1 g / L or less.
  • the ethanol concentration during the culture decreased after the start of fed-batch with ethanol generated in batch culture, and finally remained at a low value of 2 g / L or less.
  • FIG. 14 shows the results of pNPG degradation activity per mL of culture supernatant at 30 ° C. and 34 ° C.
  • the pNPG-degrading activity value was 2.26 times the activity value at 30 ° C. at 34 ° C. after 96 hours of culture at the end of the culture.
  • a vector was prepared from the obtained transformant, and the target expression vector pSL14-EGFP (FIG. 16) was obtained. From the construction of restriction enzyme maps and the confirmation of partial nucleotide sequences, it was confirmed to be the target vector. Similarly, a vector pSL6-EGFP (FIG. 17) in which the ORF fragment of the EGFP gene was incorporated into pSL6 was prepared and used as a control.
  • ⁇ EGFP expression> The obtained ASP3395 strain was inoculated into 5 mL of YES medium in a test tube and cultured at 32 ° C. for 70 hours. The fluorescence intensity of the culture solution after completion of the culture when excited at 488 nm was measured. As a control, the SL14E strain and the SL6E strain were also cultured under the same conditions, and the fluorescence intensity of the culture solution after the culture was measured. The measurement results are shown in FIG.
  • the fluorescence intensity of the culture solution of the SL6E strain was 1, the fluorescence intensity (relative value) of the SL14E strain was only 0.50, whereas the fluorescence intensity (relative value) of the ASP3395 strain was 17.17. It was very expensive.
  • the fluorescence intensity of the culture solution is an indicator of the expression level of the fluorescent protein EGFP, and the hsp9 promoter has very high expression efficiency in the yeast of the genus Schizosaccharomyces, and the foreign protein is obtained from the transformant obtained by the expression vector of the present invention. It is clear that larger quantities can be produced than with other promoters.
  • a monodentate integration type recombinant vector pSL17 was prepared by the steps shown below. That is, first, the hCMV promoter region of a known fission yeast-integrated multicloning vector pSL6 (FIG. 19, 5960 bp, SEQ ID NO: 11) By substituting the promoter of the pombe ihc1 gene (ihc1 promoter), a multicloning vector pSL12 (FIG. 20, 5847 bp) was prepared. Specifically, first, S.I.
  • pombe ihc1 gene a region of 1 to 501 bp upstream of the 5 ′ end of ORF (A of the start codon ATG) (SEQ ID NO: 9)
  • a forward primer ihc1-promoter-F: see Table 3
  • a genomic DNA derived from a wild pombe strain (ARC032 strain, ATCC 38366, 972h - equivalent) as a template and having a BlnI restriction enzyme recognition sequence at the 5 'end
  • Amplified by PCR using a reverse primer ihc1-promoter-R: see Table 3) having a KpnI restriction enzyme recognition sequence at the end, BlnI at the 5 'end of the region, and a KpnI restriction enzyme at the 3' end A fragment (ihc promoter fragment) having a recognition sequence was obtained.
  • the fragment obtained by double digesting pSL6 with restriction enzymes BlnI and KpnI and the fragment obtained by double digesting the ihc promoter fragment with restriction enzymes BlnI and KpnI are incorporated by ligation to obtain an integration vector pSL12 (SEQ ID NO: 14) for fission yeast. It was.
  • pSL17 (FIG. 21, 5831 bp) was prepared. Specifically, first, S.I.
  • pombe ihc1 gene a 1-200 bp region (SEQ ID NO: 15) downstream of the 3 ′ end of the ORF (the third letter of the stop codon) Amplified by PCR using genomic DNA from a pombe wild strain (ARC032 strain, ATCC 38366, 972h - equivalent) as a template and using In-fusion primers (ihc1-terminator-F and ihc1-terminator-R: see Table 3). , A fragment containing an ihc terminator region (ihc terminator fragment) was obtained.
  • Amplification was performed by PCR using pSL12 as a template and In-fusion primers (pSL12-F and pSL12-R: see Table 3) to obtain a fragment in which the LPI terminator region was deleted from the full length of pSL12, and the ihc terminator was added to the fragment.
  • the fragment was incorporated using an In-fusion cloning kit (product name: In-Fusion HD Cloning Kit w / Cloning Enhancer, manufactured by Takara Bio Inc.) to prepare a multicloning vector pSL17 (SEQ ID NO: 20).
  • the ORF fragment of the EGFP gene was amplified by PCR using p-EGFP-N1 (manufactured by CLONTECH) containing the GFP gene as a template and using In-fusion primers.
  • the pSL12 was double-digested with restriction enzymes AflII and XbaI. This fragment and the ORF fragment of the EGFP gene obtained by PCR were circularized by the In-fusion method, and then introduced into E. coli DH5 ⁇ for transformation.
  • a vector was prepared from the obtained transformant, and the target expression vector pSL12-EGFP (FIG. 22) was obtained.
  • the obtained 277G strain was inoculated into 5 mL of YES medium in a test tube and cultured at 32 ° C. for 72 hours. From the beginning of the culture to the end of the culture, the fluorescence intensity and the absorbance at 600 nm when the culture solution was excited at 488 nm were measured over time. As a control, the SL6E strain was also cultured under the same conditions, and the fluorescence intensity and absorbance at 600 nm of the culture solution were measured over time.
  • FIG. 23 shows the change over time of [fluorescence intensity / OD 600 ] (a value obtained by dividing the fluorescence intensity by the absorbance at 600 nm) of the culture solution of each strain.
  • the [fluorescence intensity / OD 600 ] of the 277G strain (“ihc1p” in the figure) is lower than the SL6E strain using the hCMV promoter (“hCMVp” in the figure) after 24 hours from the start of the culture. After 48 hours from the start of the culture, the expression level of EGFP per yeast was higher than that of the SL6E strain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 煩雑な分離工程を要さずβ-グルコシダーゼを生産・回収できるS.ポンベ変異体の形質転換体、およびシゾサッカロミセス属酵母の形質転換に有用なベクターの提供。 本発明のS.ポンベ変異体の形質転換体は、Gsf活性が増大しており、かつピルビン酸転移酵素Pvg1の酵素活性が低下または失活しているシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)変異体の形質転換体であって、糸状菌由来のβ-グルコシダーゼをコードする構造遺伝子配列並びに該構造遺伝子を発現させるためのプロモーター配列およびターミネーター配列を、染色体中に有するか、または、染色体外遺伝子として有することを特徴とする。さらに、本発明は、hsp9遺伝子が有するプロモーターまたはihc1遺伝子が有するプロモーターを有することを特徴とする、シゾサッカロミセス属酵母の形質転換に有用なクローニングベクター、発現ベクター、形質転換体等に関する。

Description

シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
 本発明は、非性的凝集性を有し、β-グルコシダーゼを生産できるシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)変異体の形質転換体、およびシゾサッカロミセス属酵母の形質転換に有用なベクターに関する。
 木材、稲ワラ、もみ殻、雑草等のセルロース系バイオマスから、発酵原料としての糖、ひいてはバイオエタノールなどのバイオマス燃料を生産するためには、植物細胞壁の主要な構成成分であるセルロースを分解する必要がある。セルロースの分解には、濃硫酸糖化法、希硫酸糖化法等の酸糖化法、酵素を利用した酵素糖化法等の方法があり、近年のバイオテクノロジーの隆盛を背景に、酵素糖化法の研究開発が盛んに行われている。
 セルロースの酵素糖化には、セルラーゼと総称される一群の酵素が利用される。まず、セルロース鎖をランダムに切断する活性を有するエンドグルカナーゼ(EG)が、セルロースの非結晶領域を分解し、グルコース末端を露出させる。露出したグルコース末端は、セロビオハイドラーゼ(CBH)により分解され、セロビオースが遊離する。そして、遊離したセロビオースをβ-グルコシダーゼ(BGL)が分解することで、グルコースが遊離する。
 結晶セルロースを分解して糖化するための種々のセルラーゼおよびヘミセルラーゼを生産できること、並びに、それらの酵素を細胞外に大量に分泌することができることから、セルロースの酵素糖化には、アスペルギルス属、トリコデルマ属等の糸状菌が広く利用されている。
 また、これら糸状菌のセルラーゼを異種株で発現させることも試みられており、非特許文献1には、糸状菌のひとつであるアスペルギルス・アクリータス(Aspergillus aculeatus)のβ-グルコシダーゼI(BGLI)をコードする遺伝子によって出芽酵母サッカロミセス・セレビジエ(Saccharomyces cerevisiae)を形質転換し、得られた形質転換体にこれらの酵素を発現させたことが開示されている。
 しかし、酵素糖化法の場合、酵素によるセルロースの加水分解反応が進行し、グルコースが反応系内に蓄積すると、蓄積したグルコースがβ-グルコシダーゼを阻害し、セロビオースが蓄積し、さらに、蓄積したセロビオースがエンドグルカナーゼとセロビオハイドラーゼを阻害する結果、セルロースの完全分解が出来なくなるという問題がある。そのため、β-グルコシダーゼの高機能化が望まれていた。
 一方、アスペルギルス属およびトリコデルマ属よりも、シゾサッカロミセス属酵母の方が、その遺伝子解析が進んでおり、種々の有用な変異体および遺伝子導入用ベクターが確立しており、蛋白質の工業的大量生産に適しているといった利点がある。しかし、シゾサッカロミセス属酵母は、固有のβ-グルコシダーゼ遺伝子を有しておらず、セロビオースを資化することができない。本発明者らは、β-グルコシダーゼをコードする遺伝子によってシゾサッカロミセス属酵母を形質転換し、得られた形質転換体にこれらの酵素を発現させた(特許文献1)。
 なお、非特許文献1には、出芽酵母に生産させたβ-グルコシダーゼのグルコース阻害については全く触れられていない。
 一方、該形質転換体によって分泌されたβ-グルコシダーゼを回収するためには、培地上清と菌体とを分離する工程を要する。分離工程としては、遠心分離、連続遠心分離、膜分離等の工程が挙げられるが、いずれも煩雑な工程であり、多大な労力と時間を要する。
 さらに、β-グルコシダーゼの生産規模の拡大に従い、該分離工程の煩雑性の増大が容易に予想される。
 これに対して、非性的凝集性(非性的に凝集する性質)を有する酵母は、培養終了後の培養液から凝集した酵母菌体と培養液とを容易に分離できるため、β-グルコシダーゼの生産においては、非性的凝集性を有する酵母を宿主とすることが好ましい。
 非性的凝集性を有する酵母としては、出芽酵母サッカロミセス・セレビシエにおいてFLO変異体が知られている。また、分裂酵母シゾサッカロミセス・ポンベ(以下、S.ポンベともいう)でも、非性的凝集性を有する変異体も報告されている(たとえば、特許文献2参照)。
 さらに一方で、S.ポンベをはじめとするシゾサッカロミセス属酵母は、出芽酵母サッカロミセス・セレビシエとは進化系統的に全く異なる酵母である。すでに、染色体構造、ゲノム複製機構、RNAスプライシング機構、転写機構、翻訳後修飾等の諸機構が他の酵母と大きく異なり、その一部は動物細胞と類似していることが知られている。このため真核生物のモデルとして広く用いられている(非特許文献2参照)。
 S.ポンベはその様々な特徴から、より高等動物細胞に近い単細胞真核生物であると位置づけられ、外来遺伝子、特に高等動物由来遺伝子の発現用宿主として非常に有用な酵母であると考えられる。特にヒトを含む動物細胞由来の遺伝子の発現に適していることが知られている(特許文献3~9参照)。
 S.ポンベを宿主として外来構造遺伝子由来の蛋白質を発現させるためには、通常、その蛋白質をコードする外来構造遺伝子の転写を促進するプロモーターが必要である。該プロモーターとしては、S.ポンベが本来有している遺伝子中のプロモーターや、他の生物やウィルスが有するプロモーターがある。
 S.ポンベを宿主とした蛋白質発現において利用されているプロモーターとしては、S.ポンベが本来有している遺伝子中のプロモーターとして、アルコールデヒドロゲナーゼ(adh1)遺伝子プロモーター、チアミンの代謝に関与するnmt1遺伝子プロモーター、グルコースの代謝に関与するフルクトース-1、6-ビスホスファターゼ(fbp1)遺伝子プロモーター、カタボライト抑制に関与するインベルターゼ(inv1)遺伝子のプロモーター(特許文献7または10参照)、熱ショック蛋白質遺伝子プロモーター(特許文献11参照)などが挙げられる。またhCMV、SV40、CaMV(構成的発現)などのウィルスのプロモーターも知られている(特許文献4、6、または12参照)。
国際公開第2012/060389号 特開2000-106867号公報 特許第2776085号公報 特開平07-163373号公報 国際公開第96/23890号 特開平10-234375号公報 特開平11-192094号公報 特開2000-136199号公報 特開2000-262284号公報 国際公開第99/23223号 国際公開第2007/26617号 特開平5-15380号公報
G.Tanaka,et al. Biosci.Biotechnol.Biochem.,62(8),1615-1618,1998. Giga-Hama and Kumagai, eds., Foreign gene expression in fission yeast Schizosaccharomyces pombe, Springer-Verlag, (1997).
 酵母の培養中に、培養液のpHが酸性にシフトしてしまうことがある。特に、分泌性の酸性蛋白質を大量に合成させた場合には、培養終了時の培養液のpHが2~5の酸性となる場合が多い。また、酵母の培養では、目的蛋白質の生産性を考慮した場合、培養時の最適なpHは5より低くなることがある。
 このため、たとえばpH5より上の比較的pHの高い培養液中では凝集性を有するが、pH2~5の酸性条件下では凝集しない場合には、酵母を凝集させるために、培養終了後にpHを中性付近に調整する中和処理を行わなくてはならない。
 特許文献1に記載の酵母は、非性的凝集性を有するS.ポンベ変異体であり、前記発現系の宿主として好適と考えられる。しかし、該S.ポンベ変異体は、YPD培地(通常、pH5.6~6.0)中で非性的に凝集することが確認されているものの、酸性条件下でも充分な凝集性を有しているか否か、不明である。
 そこで本発明では、煩雑な分離工程を要さずβ-グルコシダーゼを生産・回収できるS.ポンベ変異体の形質転換体、および該形質転換体を用いたβ-グルコシダーゼの製造方法を提供する。
 また、本発明は、新規なプロモーターにかかわる、シゾサッカロミセス属酵母を宿主として遺伝子工学的に外来遺伝子由来の蛋白質を効率よく発現させられる発現ベクター、該発現ベクターを作製するためのクローニングベクター、該発現ベクターの製造方法、該発現ベクターを含む形質転換体、該形質転換体の製造方法、および該形質転換体を用いた蛋白質の製造方法をも提供する。
 本発明のS.ポンベ変異体の形質転換体は、Gsf活性が増大しており、かつピルビン酸転移酵素Pvg1の酵素活性が低下または失活しているシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)変異体の形質転換体であって、糸状菌由来のβ-グルコシダーゼをコードする構造遺伝子配列並びに該構造遺伝子を発現させるためのプロモーター配列およびターミネーター配列を、染色体中に有するか、または、染色体外遺伝子として有することを特徴とする。
 また、本発明のS.ポンベ変異体の形質転換体において、前記β-グルコシダーゼがBGL1であることが好ましい。
 また、本発明のS.ポンベ変異体の形質転換体において、前記糸状菌が、アスペルギルス(Aspergillus)属の微生物であることが好ましい。
 また、本発明のS.ポンベ変異体の形質転換体において、前記β-グルコシダーゼが、配列番号1で示されるアミノ酸配列からなるか、または該アミノ酸配列に1個以上のアミノ酸の欠失、置換もしくは付加が入ったアミノ酸配列からなり、β-D-グルコピラノシド結合の加水分解反応を触媒する活性を有するβ-グルコシダーゼであることが好ましい。
 さらに、本発明β-グルコシダーゼの製造方法は、上記形質転換体を培養し、得られた菌体または培養液上清から、β-グルコシダーゼを取得することを特徴とする。
 以下、上記β-グルコシダーゼをコードする構造遺伝子配列を有する形質転換体に係る本発明を、第一の態様に係る本発明という。
 本発明のクローニングベクターは、シゾサッカロミセス属酵母のhsp9遺伝子が有するプロモーターまたはihc1遺伝子が有するプロモーター、該プロモーターの下流に位置しかつ該プロモーターによって支配される外来構造遺伝子を導入するためのクローニングサイト、および、シゾサッカロミセス属酵母内で機能し得るターミネーターを有することを特徴とする。
 hsp9遺伝子が有するプロモーター(以下、hsp9プロモーターともいう)は、hsp9遺伝子のORFの5’末端の上流1~400bpを含む領域であることが好ましく、配列番号6で表される塩基配列、または該塩基配列中の1以上の塩基を置換、欠失、もしくは付加された塩基配列からなり、かつプロモーター活性を有するものであることがより好ましい。
 ihc1遺伝子が有するプロモーター(以下、ihc1プロモーターともいう)は、ihc1遺伝子のORF(オープンリーディングフレーム)の5’末端の上流1~501bpを含む領域であることが好ましく、配列番号9で表される塩基配列、または該塩基配列中の1以上の塩基を置換、欠失、もしくは付加された塩基配列からなり、かつプロモーター活性を有するものであることがより好ましい。
 本発明の発現ベクターの製造方法は前記クローニングベクター中のクローニングサイトに外来構造遺伝子を導入することを特徴とし、本発明の発現ベクターは前記クローニングベクター中のクローニングサイトに外来構造遺伝子が導入されている発現ベクターである。
 本発明の形質転換体の製造方法は上記発現ベクターをシゾサッカロミセス属酵母に導入することを特徴とし、本発明の形質転換体は上記発現ベクターを含む形質転換体である。
 本発明の蛋白質の製造方法は、上記形質転換体を培養し、得られた菌体または培養液上清から、前記外来構造遺伝子がコードする蛋白質を取得することを特徴とする。
 以下、上記hsp9プロモーターまたはihc1プロモーターを有する、クローニングベクター、発現ベクターおよび形質転換体に係る本発明、ならびに、上記発現ベクターの製造方法、形質転換体の製造方法および蛋白質の製造方法に係る本発明を、第二の態様に係る本発明という。
 本発明のS.ポンベ変異体の形質転換体によれば、煩雑な分離工程を要さずβ-グルコシダーゼを生産・回収できる。
図1は、発現ベクターpSL6AaBGL1の構成図である。 図2は、発現ベクターpSL6P3AaBGL1の構成図である。 図3は、発現ベクターpSL14P3AaBGL1の構成図である。 図4は、発現ベクターpUC19-ura4の構成図である。 図5は、試験例8における通常株および凝集株の菌体増殖を表すグラフである。 図6(a)は、試験例8における通常株および凝集株の培養液中のグルコース濃度を表すグラフである。図6(b)は、試験例8における通常株および凝集株の培養液中のエタノール濃度を表すグラフである。 図7は、試験例9における通常株および凝集株のAaBGL1のpNPG分解活性を表すグラフである。 図8は、試験例10における通常株および凝集株の菌体増殖を表すグラフである。 図9(a)は、試験例10における通常株および凝集株の培養液中のグルコース濃度を表すグラフである。図9(b)は、試験例10における通常株および凝集株の培養液中のエタノール濃度を表すグラフである。 図10は、試験例11における通常株および凝集株の沈降状態を表す写真である。 図11は、試験例11における通常株および凝集株の検鏡観察結果を表す写真である。 図12は、試験例12における30℃および34℃での菌体増殖を表すグラフである。 図13Aは、試験例12における30℃および34℃での培養液中のグルコース濃度を表すグラフである。 図13Bは、試験例12における30℃および34℃での培養液中のエタノール濃度を表すグラフである。 図14は、試験例12における30℃および34℃でのAaBGL1のpNPG分解活性を表すグラフである。 図15は、試験例13におけるSDS-PAGEの結果を表す写真である。 図16は、発現ベクターpSL14-EGFPの構成図である。 図17は、発現ベクターpSL6-EGFPの構成図である。 図18は、試験例14における、各培養液の蛍光強度(SL6E株の培養液の蛍光強度を1とした場合の相対値)の測定結果を示した図である。 図19は、マルチクローニングベクターpSL6の構成図である。 図20は、マルチクローニングベクターpSL12の構成図である。 図21は、マルチクローニングベクターpSL17の構成図である。 図22は、発現ベクターpSL12-EGFPの構成図である。 図23は、試験例15における、各培養液の[蛍光強度/OD600]の経時的変化の測定結果を示した図である。 図24は、マルチクローニングベクターpSL9の構成図である。 図25は、マルチクローニングベクターpSL14の構成図である。 図26は、マルチクローニングベクターpSL14lacZの構成図である。
 本明細書において「外来構造遺伝子」とは、発現ベクターが有する、蛋白質をコードする遺伝子であり、発現ベクターを導入する宿主が本来有する構造遺伝子であってもよく、宿主とは異種の生物の構造遺伝子であってもよい。
 本明細書において「外来構造遺伝子由来の蛋白質」とは形質転換体が産生する外来構造遺伝子由来の蛋白質であり、以下、「外来蛋白質」ともいう。なお、外来構造遺伝子が宿主とは異種の生物の構造遺伝子の場合には異種蛋白質ともいう。
 まず、第一の態様に係る本発明を説明する。
[S.ポンベ変異体]
 本発明において、S.ポンベ変異体の形質転換体の宿主となるS.ポンベ変異体は、S.ポンベの遺伝子の少なくとも一部が改変された結果、Gsf活性が増大しており、かつピルビン酸転移酵素Pvg1の酵素活性が低下または失活している変異体である。S.ポンベにおいて、Gsf活性が増大し、かつPvg1の酵素活性が低下または失活すると、酸性条件下においても非性的に凝集する形質が獲得される。以下、酸性条件下において非性的に凝集する性質を、耐酸性非性的凝集性ともいう。
 すなわち、本発明におけるS.ポンベ変異体は、耐酸性非性的凝集性を獲得した変異体である。
 本発明において、「非性的凝集性」とは、S.ポンベが本来有する性的に凝集する性質(性的凝集性)とは異なる凝集性を有する性質をいう。しかし、本来有する性的凝集性が失われていることを意味するものではない。また、「構成的凝集性」とは非性的凝集性と同一の性質をいうが、特に増殖過程において増殖と同時に(非性的に)凝集する性質を指していう。
 本発明において、「Gsf活性」とは、S.ポンベが通常培養されるpH(たとえば、pH5~6)において示される非性的凝集性を意味する。また、Gsf活性に関連する遺伝子を凝集素遺伝子という。
 gsf2遺伝子は、S.ポンベにおいては凝集素遺伝子である。S.ポンベのgsf2遺伝子の系統名はSPCC1742.01である。
 Pvg1は、ピルビン酸転移酵素である。S.ポンベのPvg1をコードするpvg1遺伝子の系統名はSPAC8F11.10cである。
 なお、S.ポンベの染色体の全塩基配列は、サンガー研究所のデータベース「GeneDB」に「Schizosaccharomyces pombe Gene DB(http://www.genedb.org/genedb/pombe/)」として、収録され、公開されている。本明細書記載のS.ポンベの遺伝子の配列データは上記データベースから遺伝子名または系統名で検索して、入手できる。
 S.ポンベは本来フェロモンで誘導される性的凝集性を有する。たとえば、増殖過程において栄養不足をきたすと性的凝集を生じやすい。しかし、タンク培養等による人工的大量培養においては通常充分な量の栄養を有する培養液中で培養が行われることより性的凝集を起こすことは少ない。一方、本発明におけるS.ポンベ変異体は非性的凝集性を有すため、充分な量の栄養を有する培養液中で培養が行われても、増殖とともに凝集(構成的凝集)を起こす。
 S.ポンベ変異体のGsf活性は、たとえば、gsf2遺伝子の発現量を増大させることにより、増大させられる。また、S.ポンベのPvg1の酵素活性は、Pvg1をコードするpvg1遺伝子を欠失する、または該遺伝子にPvg1の酵素活性が低下もしくは失活する変異を導入することにより、低下または失活させられる。
 このため、本発明におけるS.ポンベ変異体は、遺伝子工学的方法により、野生株等の耐酸性非性的凝集性を有さないS.ポンベを宿主とし、遺伝子工学的方法により、外来のgsf2遺伝子を組み込み、かつPvg1をコードする遺伝子を欠失する、または該遺伝子にPvg1の酵素活性が低下もしくは失活する変異を導入することで製造できる。
 gsf2遺伝子の発現量は、遺伝子工学的方法で外来のgsf2遺伝子を組み込むことにより、増大させられる。宿主にgsf2遺伝子を新たに導入することが重要であり、導入されるgsf2遺伝子は、宿主の内在性のgsf2遺伝子と同種であってもよく、異種生物由来のgsf2遺伝子であってもよい。
 遺伝子工学的方法で宿主にgsf2遺伝子を導入する方法としては公知の方法を使用できる。S.ポンベを宿主としてこれに外来の構造遺伝子を導入する方法としては、たとえば、特開平5-15380号公報、国際公開第95/09914号パンフレット、特開平10-234375号公報、特開2000-262284号公報、特開2005-198612号公報、国際公開第2010/087344号公報等に記載の方法を使用できる。
 gsf2遺伝子は、S.ポンベの染色体に導入されることが好ましい。染色体にgsf2遺伝子を導入することにより、継代の維持安定性に優れた形質転換体が得られる。また、gsf2遺伝子を染色体に複数導入することもできる。gsf2遺伝子を複数導入することにより、gsf2遺伝子の発現効率を高めることができる。S.ポンベ変異体において、染色体に組み込まれたgsf2遺伝子の数は1~20が好ましく、1~8がより好ましい。
 染色体にgsf2遺伝子を導入する方法としては公知の方法を使用できる。たとえば、前記特開2000-262284号公報に記載の方法で染色体にgsf2遺伝子を複数導入できる。また、この方法で染色体にgsf2遺伝子を1個導入することもできる。また、後述のように、染色体の複数の箇所に1個または複数のgsf2遺伝子を導入することもできる。
 gsf2遺伝子をS.ポンベの染色体に導入する方法としては、gsf2遺伝子を有する発現カセットと組換え部位とを有するベクター(以下、gsf2ベクターという)を用い、相同組換え法により導入する方法が好ましい。
 gsf2ベクターは、gsf2遺伝子を有する発現カセットと組換え部位を有する。
 発現カセットとは、Gsf2を発現するために必要なDNAの組み合わせであり、gsf2遺伝子とS.ポンベ内で機能するプロモーターとS.ポンベ内で機能するターミネーターを含む。さらに、5’-非翻訳領域、3’-非翻訳領域のいずれか1つ以上が含まれていてもよい。さらに、栄養要求性相補マーカーが含まれていてもよい。好ましい発現カセットは、gsf2遺伝子、プロモーター、ターミネーター、5’-非翻訳領域、3’-非翻訳領域、栄養要求性相補マーカーを含む発現カセットである。発現カセットには複数のgsf2遺伝子が存在していてもよい。発現カセット中のgsf2遺伝子の数は1~8が好ましく、1~5がより好ましい。
 S.ポンベ内で機能するプロモーターとターミネーターは、酸性条件下においても形質転換により得られる変異体内で機能してGsf2の発現を維持できるものであればよい。S.ポンベ内で機能するプロモーターとしては、S.ポンベが本来有するプロモーター(転写開始活性が高いものが好ましい)またはS.ポンベが本来有しないプロモーター(ウイルス由来のプロモーター等)を使用できる。プロモーターはベクター内に2種以上存在していてもよい。
 S.ポンベが本来有するプロモーターとしては、たとえば、アルコールデヒドロゲナーゼ遺伝子プロモーター、チアミンの代謝に関与するnmt1遺伝子プロモーター、グルコースの代謝に関与するフルクトース-1、6-ビスホスファターゼ遺伝子プロモーター、カタボライト抑制に関与するインベルターゼ遺伝子のプロモーター(国際公開第99/23223号パンフレット参照)、熱ショック蛋白質遺伝子プロモーター(国際公開第2007/26617号パンフレット参照)等が挙げられる。S.ポンベが本来有しないプロモーターとしては、たとえば、特開平5-15380号公報、特開平7-163373号公報、特開平10-234375号公報に記載されている動物細胞ウイルス由来のプロモーター等が挙げられる。該プロモーターのうち、発現効率が良好なnmt1遺伝子プロモーターおよびその改変プロモーター(たとえば、nmt1、nmt41)、hCMVプロモーター、SV40プロモーターが好ましい。
 なお、後述の第二の態様に係る本発明におけるhsp9プロモーターまたはihc1プロモーターを使用することも好ましい。
 S.ポンベ内で機能するターミネーターとしては、S.ポンベが本来有するターミネーターまたはS.ポンベが本来有しないターミネーターを使用できる。ターミネーターはベクター内に2種以上存在していてもよい。
 ターミネーターとしては、たとえば、特開平5-15380号公報、特開平7-163373号公報、特開平10-234375号公報に記載されているヒト由来のターミネーターが挙げられ、ヒトリポコルチンIのターミネーターが好ましい。
 ベクターの組換え部位は、S.ポンベの染色体における相同組換えの標的部位に対して相同組換えを行わせることのできる塩基配列を有する部位である。また、標的部位は、S.ポンベの染色体内で発現カセットを組み込む標的となる部位である。標的部位は、ベクターの組換え部位を該標的部位に対して相同組換えを行わせる塩基配列とすることにより自由に設定できる。
 前記組換え部位の塩基配列と標的部位の塩基配列との相同性は70%以上とすることが必要である。また、組換え部位の塩基配列と標的部位の塩基配列との相同性は、相同組換えが起きやすくなる点から、90%以上とすることが好ましく、95%以上であることがより好ましい。このような組換え部位を有するベクターを用いることにより、発現カセットが相同組換えにより標的部位に組み込まれる。
 組換え部位の長さ(塩基数)は、20~2000bpであることが好ましい。組換え部位の長さが20bp以上であれば、相同組換えが起きやすくなる。また、組換え部位の長さが2000bp以下であれば、ベクターが長くなりすぎて相同組換えが起き難くなることを防ぎやすい。組換え部位の長さは100bp以上であることがより好ましく、200bp以上であることがさらに好ましい。また、組換え部位の長さは800bp以下であることがより好ましく、400bp以下であることがさらに好ましい。
 ベクターは、前記発現カセットと組換え部位以外に他のDNA領域を有していてもよい。たとえば、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域、抗生物質耐性遺伝子(ネオマイシン耐性遺伝子等)等が挙げられる。これらは大腸菌を使用してベクターを構築する場合に通常必要とされる遺伝子である。ただし、上記複製開始領域は後述のようにベクターを宿主の染色体に組み込む際には除去されることが好ましい。
 ベクターは、環状DNA構造または線状DNA構造を有するベクターであり、S.ポンベの細胞に導入する際には線状DNA構造で導入することが好ましい。すなわち、通常用いられるプラスミドDNA等の環状DNA構造を有するベクターである場合には、制限酵素でベクターを線状に切り開いた後にS.ポンベの細胞に導入することが好ましい。
 この場合、環状DNA構造を有するベクターを切り開く位置は、組換え部位内とする。これにより、切り開かれたベクターの両端にそれぞれ組換え部位が部分的に存在することとなり、相同組換えによりベクター全体が染色体の標的部位に組み込まれる。
 ベクターは、両端それぞれに組換え部位の一部が存在するような線状DNA構造とすることができれば、環状DNA構造を有するベクターを切り開く方法以外の方法で構築してもよい。
 ベクターとしては、たとえば、pBR322、pBR325、pUC118、pUC119、pUC18、pUC19等の大腸菌由来のプラスミドを好適に用いることができる。
 この場合、相同組換えに用いる際のプラスミドベクターは、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域が除去されていることが好ましい。これにより、上述したベクターを染色体に組み込む際に、その組み込み効率を向上させることができる。
 複製開始領域が除去されたベクターの構築方法は特に限定されないが、特開2000-262284号公報に記載されている方法を用いることが好ましい。すなわち、組換え部位内の切断箇所に複製開始領域が挿入された前駆体ベクターを構築しておき、前述のように線状DNA構造とすると同時に複製開始領域が切り出されるようにする方法が好ましい。これにより、簡便に複製開始領域が除去されたベクターを得ることができる。
 また、特開平5-15380号公報、特開平7-163373号公報、国際公開第96/23890号パンフレット、特開平10-234375号公報等に記載された発現ベクターおよびその構築方法を適用して、発現カセットおよび組換え部位を有する前駆体ベクターを構築し、さらに通常の遺伝子工学的手法で該前駆体ベクターから複製開始領域を除去して相同組換えに用いるベクターを得る方法であってもよい。
 ベクターを組み込む標的部位は、S.ポンベの染色体中の1箇所のみに存在していてもよく、2箇所以上に存在していてもよい。標的部位が2箇所以上存在している場合、S.ポンベの染色体に組み込まれるベクターを2箇所以上にできる。また、発現カセット中のgsf2遺伝子を複数とした場合には、標的部位の1箇所に複数のgsf2遺伝子を組み込むことができる。さらに、2種以上の標的部位に、それぞれの標的部位に対応する組換え部位を有する2種以上のベクターを用いて、発現カセットを組み込むこともできる。
 1箇所の標的部位に発現カセットを組み込む場合、たとえば特開2000-262284号公報に記載の標的部位を使用できる。異なる組込み部位を有する2種以上のベクターを用いて、異なる標的部位にそれぞれベクターを組み込むことができる。しかし、染色体の2箇所以上にベクターを組み込む場合、この方法は煩雑である。
 染色体中に複数箇所存在する互いに実質的に同一の塩基配列部分を標的部位として、この複数箇所の標的部位にそれぞれベクターを組み込むことができれば、1種類のベクターを使用して染色体の2箇所以上にベクターを組み込むことができる。互いに実質的に同一の塩基配列とは、塩基配列の相同性が90%以上であることを意味する。標的部位同士の相同性は95%以上であることが好ましい。また、互いに実質的に同一である塩基配列の長さは、前記ベクターの組換え部位を包含する長さであり、1000bp以上であることが好ましい。1箇所の標的部位に複数のgsf2遺伝子が組み込まれている場合に比較して、gsf2遺伝子の組み込み数が同一であっても、複数存在する標的部位にgsf2遺伝子が分散して組み込まれている場合には、形質転換体が増殖する際にgsf2遺伝子が染色体から1度に脱落することが少なくなり、形質転換体の継代における維持安定性が向上する。
 染色体中に複数箇所存在する標的部位としては、トランスポゾン遺伝子Tf2が好ましい。Tf2は、S.ポンベの3本(一倍体)の染色体それぞれに合計13箇所存在するトランスポゾン遺伝子であり、長さ(塩基数)は約4900bpであり、それらの遺伝子間における塩基配列相同性は99.7%であることが知られている(下記文献参照)。
 Nathan J. Bowen et al, “Retrotransposons and Their Recognition of pol II Promoters: A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe”,Genome Res. 2003 13: 1984-1997
 染色体に13箇所存在するTf2の1箇所のみにベクターを組み込むことができる。この場合、2個以上のgsf2遺伝子を有するベクターを組み込むことにより、2個以上のgsf2遺伝子を有する形質転換体を得ることができる。また、Tf2の2箇所以上にベクターを組み込むことにより、2個以上のgsf2遺伝子を有する形質転換体を得ることができる。この場合、2個以上のgsf2遺伝子を有するベクターを組み込むことにより、さらに多くのgsf2遺伝子を有する形質転換体を得ることができる。Tf2の13箇所すべてにベクターが組み込まれると、形質転換体の生存や増殖に対する負荷が大きくなりすぎるおそれがある。13箇所のTf2の8箇所以下にベクターが組み込まれることが好ましく、5箇所以下にベクターが組み込まれることがより好ましい。
 遺伝子工学的方法により本発明におけるS.ポンベ変異体を製造する場合に宿主として使用するS.ポンベには、形質転換体を選択するためのマーカーを有するものを用いることが好ましい。たとえば、ある遺伝子が欠落していることにより特定の栄養成分が生育に必須である宿主を使用することが好ましい。ベクターにこの欠落している遺伝子(栄養要求性相補マーカー)を組み込んでおくことにより、形質転換体は宿主の栄養要求性が消失する。
 この宿主と形質転換体の栄養要求性の相違により、両者を区別して形質転換体を得ることができる。
 たとえば、オロチジンリン酸デカルボキシラーゼ遺伝子(ura4遺伝子)が欠失または失活してウラシル要求性となっているS.ポンベを宿主とし、ura4遺伝子(栄養要求性相補マーカー)を有するベクターにより形質転換した後、ウラシル要求性が消失したものを選択することにより、ベクターが組み込まれた形質転換体を得ることができる。宿主において欠落により栄養要求性となる遺伝子は、形質転換体の選択に用いられるものであればura4遺伝子には限定されず、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)等であってもよい。
 通常、相同組換えを行った後、得られた形質転換体を選択する。選択する方法としては、たとえば、以下に示す方法が挙げられる。前記栄養要求性マーカーにより形質転換体を選択できる培地によりスクリーニングし、得られたコロニーから複数を選択する。次に、それらを別々に液体培養した後、それぞれの菌体当たりのgsf2遺伝子の発現量を調べ、該発現量がより多い変異体を選択する。また、それら選択した変異体に対してパルスフィールドゲル電気泳動法によるゲノム解析を行うことにより、染色体に組み込まれたベクターの数および発現カセットの数を調べることができる。
 染色体に組み込まれるベクターの数は組み込み条件等を調整することによりある程度は調整できるが、ベクターの大きさ(塩基数)および構造により、組み込み効率および組み込み数も変化すると考えられる。
 遺伝子工学的方法でpvg1遺伝子を欠損させる、またはpvg1遺伝子にPvg1の酵素活性が低下もしくは失活する変異を導入することにより、宿主であるS.ポンベのPvg1の酵素活性を低下もしくは失活できる。確実にPvg1の酵素活性を失活できるため、pvg1遺伝子自身を染色体から欠損させることが好ましい。
 pvg1遺伝子の欠失または失活は、公知の方法で行うことができる。たとえば、Latour法(Nucreic Acids Res誌、2006年、34巻、e11頁、国際公開第2007/063919号パンフレット等に記載)を用いることによりpvg1遺伝子を欠失させることができる。
 また、pvg1遺伝子の塩基配列の一部に欠失、挿入、置換、付加を起こすことにより、該pvg1遺伝子を失活させることもできる。該遺伝子の欠失、挿入、置換、付加による変異は、それらのいずれか1つのみを起こしてもよく、2つ以上を起こしてもよい。
 pvg1遺伝子の一部に前記変異を導入する方法は、公知の方法を用いることができる。たとえば、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)、PCRを利用したランダム変異法(ピーシーアール・メソッズ・アプリケーション(PCR Methods Appl.)、1992年、第2巻、p.28-33.)等が挙げられる。
 本発明におけるS.ポンベ変異体は、たとえば非性的凝集性を有しない通常のS.ポンベから人工的突然変異手段によっても取得できる。すなわち、非性的凝集性を有しないS.ポンベを突然変異処理し、処理されたS.ポンベから、野生株よりもGsf活性が増大しており、かつPvg1の酵素活性が低下または失活している菌を選択し、さらに選択された菌からGsf活性増大やPvg1の酵素活性の低下等が優性変異であるものを選択することにより作製できる。
 S.ポンベに対する突然変異処理は、EMS(メタンスルホン酸エチル)等の突然変異誘発物質を用いてもよく、紫外線等の短波長の光を照射してもよい。また、突然変異処理後のS.ポンベからの耐酸性非性的凝集性を有する菌の選抜は、カルシウムイオン等の陽イオンの存在下で行ってもよい。
 S.ポンベ変異体のGsf活性は、沈降速度を指標として評価することができる。このため、突然変異処理されたS.ポンベを固体培地上で培養し、形成されたコロニーを適当な溶媒中に投入した場合に、野生株のコロニーよりも有意に早く沈降した(沈降速度が速い)場合には、該コロニーを形成する菌は、野生株よりもGsf活性が増大していると評価できる。野生株のコロニーと突然変異処理された菌のコロニーをほぼ同時に溶媒へ投入し、沈降の速さを比較してもよく、特定の条件における野生株の沈降速度を予め測定し、得られた結果から決定された閾値と、突然変異処理された菌のコロニーの沈降速度とを比較してもよい。コロニーの沈降試験に用いる溶媒は、酵母が生存可能な溶液であれば特に限定されるものではないが、カルシウムイオン、リチウムイオン、マンガンイオン、銅イオン、および亜鉛イオンからなる群より選択される1種以上の陽イオンを含むバッファーであることが好ましい。たとえば、乾燥菌体の濃度が3.6g/Lの場合に、カルシウムイオン含有乳酸緩衝液(80mM 乳酸、100mM 塩化カルシウム、pH6.0)中における沈降速度が1.0m/h以上である菌を、Gsf活性が増大した変異体として選抜できる。
 たとえば、以下の操作により耐酸性非性的凝集株を得る事が出来る。まず、S.ポンベに対してEMSを用いて突然変異を誘発した後、それらを単離し培養する。その後、上清を除去して回収された菌体を、乳酸-水酸化ナトリウム緩衝液(80mM 乳酸、100mM 塩化カルシウム、pH2.0)に乾燥菌体の濃度が3.6g/Lとなるよう懸濁させ、沈降速度を測り、沈降速度が2.0m/hを超える菌株を、耐酸性非性的凝集株として選択する。
 Gsf活性が増大した変異体は、gsf2遺伝子の発現量を指標として選抜することもできる。gsf2遺伝子の発現量は、RT-PCR、標識済みプローブを用いたノザンブロッティング等の遺伝子発現解析に通常用いられる測定方法により測定され得る。
 Pvg1の酵素活性が低下または失活すると、細胞表層のピルビン酸の存在量が有意に低下する傾向がある。このため、S.ポンベのPvg1の酵素活性は、細胞表層ピルビン酸の存在量を指標として評価できる。すなわち、突然変異処理されたS.ポンベから、細胞表層ピルビン酸が欠失している菌を、Pvg1の酵素活性が低下または失活している変異体として選抜できる。
 細胞表層ピルビン酸の欠失変異体は、Andreishchevaらの方法(TheJournal of biological chemistry 2004 Aug20;279(34):35644-55)を参考にして作製できる。まず、ポンベに対してEMSを用いて突然変異を誘発した後、それらを適切な液体培地で48時間培養する。その後、培養物から陽電荷を帯びたQ-セファロースを用いて吸着する菌体を取り除き、上清に残った菌体を回収する。該Q-セファロースによる選別を何度か繰返した後、得られた培養液上清をプレートに塗布し、単離培養する事で、細胞表層ピルビン酸の欠失変異体が得られる。
 Pvg1の酵素活性が低下または失活している変異体は、突然変異処理された各菌のPvg1の酵素活性を測定することによっても選抜できる。S.ポンベのPvg1の酵素活性は、標識した基質を用いた測定方法等、他の転移酵素の酵素活性の測定に通常用いられる測定方法により測定できる。
 本発明におけるS.ポンベ変異体は、遺伝子工学的方法と突然変異処理とを組み合わせて製造してもよい。たとえば、突然変異処理によりgsf2遺伝子の発現量が増大した変異体に対して、遺伝子工学的方法によりPvg1の酵素活性を低下または失活させてもよく、突然変異処理によりPvg1の酵素活性が低下または失活した変異体に対して、遺伝子工学的方法によりgsf2遺伝子の発現量を増大させてもよい。遺伝子工学的方法によりPvg1の酵素活性を低下または失活させた変異体に対して突然変異処理を行い、gsf2遺伝子の発現量が増大した変異体を選抜してもよい。
 本発明におけるS.ポンベ変異体は、耐酸性非性的凝集性を維持し得る限り、その他の遺伝子に変異を有していてもよく、さらに、染色体中または染色体外に外来の構造遺伝子が導入されていてもよい。
 本発明におけるS.ポンベ変異体が備える耐酸性非性的凝集性は、培養液中の酸の種類には影響されない。すなわち、培養液のpHを2~5にたらしめている酸が乳酸、クエン酸、酢酸、コハク酸、フマル酸、リンゴ酸等の有機酸であろうと、塩酸および硫酸等の鉱酸であろうと、該S.ポンベ変異体は非性的に凝集する。
 本発明におけるS.ポンベ変異体が備える非性的凝集性の強さは、たとえば、沈降速度を指標にできる。酵母の沈降速度は、たとえば、試験管等の透明な容器に分注した酵母菌体を懸濁処理後に静置して沈降を開始させた後、液表面から固液界面(沈降した酵母菌体と上清との界面)までの距離を沈降開始からの経過時間で除することにより、求められる。
 本発明におけるS.ポンベ変異体は、カルシウムイオン含有乳酸緩衝液(80mM 乳酸、100mM 塩化カルシウム、pH2.0)中で非性的に凝集する性質を有する。本発明におけるS.ポンベ変異体の該カルシウムイオン含有乳酸緩衝液中における沈降速度は、乾燥菌体の濃度が3.6g/Lの場合に、2.0m/h以上であることが好ましく、4.0m/h以上であることがより好ましく、6.0m/h以上であることがさらに好ましい。
 また、本発明におけるS.ポンベ変異体は、カルシウムイオン含有乳酸緩衝液(80mM 乳酸、100mM 塩化カルシウム、pH4.0)中で非性的に凝集する性質を有する。本発明におけるS.ポンベ変異体の該カルシウムイオン含有乳酸緩衝液中における沈降速度は、乾燥菌体の濃度が3.6g/Lの場合に、2.0m/h以上であることが好ましく、4.0m/h以上であることがより好ましく、8.0m/h以上であることがさらに好ましい。
 pH4.0における沈降速度が8.0m/h以上であることにより、pH4よりもさらに低いpHにおいても、充分な凝集性が示される。
 本発明におけるS.ポンベ変異体が備える耐酸性非性的凝集性は、カルシウムイオン、リチウムイオン、マンガンイオン、銅イオン、および亜鉛イオンからなる群より選択される1種以上の陽イオンに依存していてもよい。耐酸性非性的凝集性がカルシウムイオン等に依存する場合には、EDTA等のキレート剤を培養液に添加することにより、該S.ポンベ変異体の凝集を阻害できる。
 本発明におけるS.ポンベ変異体が備える耐酸性非性的凝集性は、ガラクトースにより阻害される性質であってもよい。耐酸性非性的凝集性がガラクトースにより阻害される場合には、培養液中に最終濃度が5mM以上となるようにガラクトースを添加することにより、該S.ポンベ変異体の凝集を阻害できる。
 本発明におけるS.ポンベ変異体は、酸性(たとえば、pH2~5)条件下で強力な非性的凝集性を示す。このため、該S.ポンベ変異体は、特に、酸性蛋白質を合成するための発現系の宿主として好適である。また、目的蛋白質の生産性を考慮した結果、培養時の最適なpHが5より低くなる場合にも、発現系の宿主として好適である。
 本発明におけるS.ポンベ変異体を宿主としてβ-グルコシダーゼを大量製造するために、後述する本発明のS.ポンベ変異体の形質転換体を作製し、該形質転換体をタンク培養等で培養した場合に、培養終了時に培養液のpHが2~5となった場合でも、遠心分離、濾過等の固液分離処理や中和反応等を行うことなく、菌体を凝集させることができ、それにより菌体と培養液を容易に分離できる。なお、本発明におけるS.ポンベ変異体は、酸性条件下のみならず、弱酸性~アルカリ性(たとえば、pH5~10)条件下でも非性的に凝集可能であってもよい。
[S.ポンベ変異体の形質転換体]
 本発明のS.ポンベ変異体の形質転換体は、上述したS.ポンベ変異体を宿主として、糸状菌由来のβ-グルコシダーゼをコードする構造遺伝子配列並びに該構造遺伝子を発現させるためのプロモーター配列およびターミネーター配列含む発現カセットを染色体中に有するか、または、染色体外遺伝子として有する。上記発現カセットを染色体中に有するとは、シゾサッカロミセス属酵母の染色体中の1カ所以上に発現カセットが組み込まれていることであり、染色体外遺伝子として有するとは、発現カセットを含むプラスミドを細胞内に有するということである。形質転換体の継代培養が容易であることから、上記発現カセットを染色体中に有することが好ましい。
 なお、発現カセットとは、[S.ポンベ変異体]において述べたものと同様であり、β-グルコシダーゼを発現するために必要なDNAの組み合わせであり、β-グルコシダーゼ構造遺伝子とシゾサッカロミセス属酵母内で機能するプロモーターとターミネーターとを含む。
 また、シゾサッカロミセス属酵母の細胞外に分泌されるβ-グルコシダーゼが増大し、β-グルコシダーゼの回収、精製が容易になることから、β-グルコシダーゼ構造遺伝子の5’末端側に、シゾサッカロミセス属酵母内で機能する分泌シグナル配列をコードする塩基配列(分泌シグナルの構造遺伝子)を有することが好ましい。β-グルコシダーゼ構造遺伝子の5’末端側とは、β-グルコシダーゼ構造遺伝子の5’末端側上流であって、β-グルコシダーゼ構造遺伝子の5’末端に隣接する位置である。また、β-グルコシダーゼの活性に影響しないN末側の数アミノ酸をコードする塩基配列が除かれ、その位置にシグナル配列をコードする遺伝子を導入されていてもよい。
 プロモーターとターミネーターは、宿主であるS.ポンベ変異体内で機能して糸状菌由来のβ-グルコシダーゼを発現できるものであればよい。S.ポンベ変異体内で機能するプロモーターとしては、[S.ポンベ変異体]において述べたものと同様のものが挙げられる。
(β-グルコシダーゼ)
 β-グルコシダーゼ(EC.3.2.1.21)とは、β-D-グルコピラノシド結合の加水分解反応を特異的に触媒する酵素の総称として用いられる。特にセロビオースをグルコースに分解することからセロビアーゼとも呼ばれ、広く細菌、糸状菌、植物および動物に分布する。それぞれの生物種内に、β-グルコシダーゼをコードする遺伝子が複数存在することが多く、たとえば、糸状菌の1種であるアスペルギルス・オリゼー(Aspergillus oryzae)では、bgl1~bgl7の存在が報告されている(Soy protein Research,Japan 12,78-83,2009、特開2008-086310号公報)。これらのうち、活性の高さ等から、BGL1をコードするbgl1が好ましい。
 本発明のS.ポンベ変異体の形質転換体が有するβ-グルコシダーゼの構造遺伝子は、糸状菌由来のものである。
 糸状菌とは、菌類のうち、菌糸と呼ばれる管状の細胞から構成される真核細胞微生物である。糸状菌としては、たとえば、アスペルギルス属(Aspergillus)、トリコデルマ属(Trichoderma)属、フサリウム属(Fusarium)、ペニシリウム属(Penicillium)およびアクレモニウム属(Acremonium)等が挙げられる。本発明におけるβ-グルコシダーゼの構造遺伝子は、β-グルコシダーゼを産生する糸状菌であればいずれの糸状菌由来のものであってもよいが、酵素活性の高さなどから、アスペルギルス属の糸状菌由来のβ-グルコシダーゼが好ましい。アスペルギルス属の糸状菌としては、たとえば、アスペルギルス・ニジュランス(Aspergillus nidulans)、アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・アクリータス(Aspergillus aculeatus)、アスペルギルス・ニガー(Aspergillusniger)、アスペルギルス・パルベルレンタス(Aspergillus pulverulentus)を挙げることができる。結晶セルロース分解力が高く、単糖生成力に優れていることから、アスペルギルス・アクリータス(Aspergillus aculeatus)由来のβ-グルコシダーゼをコードする遺伝子が好ましく、アスペルギルス・アクリータス(Aspergillus aculeatus)由来のBGL1(以下、AaBGL1ともいう)をコードする遺伝子がより好ましい。
 坂本禮一郎博士論文(Aspergillus aculeatus No.F-50のセルラーゼ系に関する研究、大阪府立大学、1984年)によれば、Aspergillus aculeatusから精製した野生型のAaBGL1の分子量は約133KDa、至適pHは4.0で、安定pH範囲は3~7(25℃、24時間)である。
 AaBGL1のアミノ酸配列は、配列番号1で表されるものである。本発明においてβ-グルコシダーゼをコードする遺伝子配列は、配列番号1で示されるアミノ酸配列からなるβ-グルコシダーゼをコードする遺伝子配列が好ましい。また、配列番号1で表されるアミノ酸配列に1~数十個、好ましくは1~数個、さらに好ましくは1~9個、のアミノ酸の欠失、置換または付加が入ったアミノ酸配列からなり、β-D-グルコピラノシド結合の加水分解反応を触媒する活性を有するβ-グルコシダーゼをコードする遺伝子配列であってもよい。
 配列番号1で表されるアミノ酸配列からなるβ-グルコシダーゼは、1~数十個のアミノ酸の欠失、置換または付加が入ってもβ-D-グルコピラノシド結合の加水分解反応を触媒する活性を有するものである。
 なお、上記の糸状菌由来のβ-グルコシダーゼをコードする遺伝子をそのまま用いてもよいが、シゾサッカロミセス属酵母内での発現量を増大させるために、上記遺伝子配列を、シゾサッカロミセス属酵母での高発現遺伝子において使用頻度の高いコドンに改変することが好ましい。
 本発明において、β-グルコシダーゼを発現させるためのベクター(以下、bglベクターともいう)としては、上述したGsf2を発現させるためのgsf2ベクターと同様のものが挙げられる。
 さらに、bglベクターは、S.ポンベ変異体内で機能する分泌シグナル遺伝子を有することが好ましい。分泌シグナル遺伝子の位置は、β-グルコシダーゼ構造遺伝子の5’末端側である。S.ポンベ変異体内で機能する分泌シグナル遺伝子は、発現した外来蛋白質を宿主細胞外に分泌させる機能を有するアミノ酸配列をコードする遺伝子である。分泌シグナル遺伝子が結合した外来構造遺伝子から、N末端に分泌シグナルが付加した外来蛋白質が発現する。この外来蛋白質は、宿主内の小胞体やゴルジ装置等で分泌シグナルが切断され、その後分泌シグナルが除去された外来蛋白質が細胞外に分泌される。分泌シグナル遺伝子(および分泌シグナル)はS.ポンベ変異体内で機能することが必要である。S.ポンベ変異体内で機能する分泌シグナル遺伝子としては、たとえば、国際公開第1996/23890号に記載のものを使用できる。
 本発明では、β-グルコシダーゼの構造遺伝子の5’末端側にこの分泌シグナルの構造遺伝子を導入することにより、N末端に上記分泌シグナルが付加されたβ-グルコシダーゼを発現させ、シゾサッカロミセス属酵母の菌体外にβ-グルコシダーゼを分泌させることができる。シゾサッカロミセス属酵母内で機能する分泌シグナルとしては、国際公開第1996/23890号に記載のP3シグナルが特に好ましい。
 上記bglベクターを用いて、宿主であるS.ポンベ変異体を形質転換する。該S.ポンベ変異体へのβ-グルコシダーゼの構造遺伝子の導入は、gsf2遺伝子の導入およびと同様にして行える。また、形質転換体の選択方法についても同様である。
 本発明のS.ポンベ変異体の形質転換体の培養液には、公知の酵母培養培地を用いることができ、シゾサッカロミセス属酵母が資化しうる炭素源、窒素源、無機塩類等を含有し、シゾサッカロミセス属酵母の培養を効率良く行えるものであればよい。培養液としては、天然培地を用いてもよく、合成培地を用いてもよい。
 炭素源としては、たとえば、グルコース、フルクトース、スクロース等の糖が挙げられる。
 窒素源としては、たとえば、アンモニア、塩化アンモニウム、酢酸アンモニウム等の無機酸または無機酸のアンモニウム塩、ペプトン、カザミノ酸が挙げられる。
 無機塩類としては、たとえば、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウムが挙げられる。
 培養には公知の酵母培養方法を用いることができ、たとえば振盪培養、攪拌培養等により行うことができる。
 また、培養温度は、23~37℃であることが好ましい。また、培養時間は適宜決定することができる。
 また、培養は、回分培養(バッチ培養)または流加培養(フェドバッチ培養)であってもよく、連続培養であってもよい。
 本発明のS.ポンベ変異体の形質転換体として、分泌シグナル遺伝子を結合させたβ-グルコシダーゼ構造遺伝子を有する形質転換体を用いる場合、β-グルコシダーゼが培養液中に分泌される。そして、β-グルコシダーゼを大量製造するべく、該形質転換体をタンク培養等で培養した場合に、培養終了時に培養液のpHが2~5となった場合でも、該形質転換体は耐酸性非性的凝集性を有するため、遠心分離、濾過等の固液分離処理や中和反応等を行うことなく、菌体を凝集させることができ、それにより菌体と培養液を容易に分離できる。
 また、本発明のS.ポンベ変異体の形質転換体として、分泌シグナル遺伝子を結合させていないβ-グルコシダーゼ構造遺伝子を有する形質転換体を用いる場合、β-グルコシダーゼの分離手段として、公知の蛋白質分離方法を用いることができる。
 たとえば、培養後、沈降した菌体を培養液から分離し、菌体を破壊してβ-グルコシダーゼを含む細胞破砕液を得て、その細胞破砕液から塩析、カラム精製、クロマトグラフィー、免疫沈降等の公知の蛋白質分離方法を用いてβ-グルコシダーゼを取得できる。
 次に、第二の態様に係る本発明を説明する。
[クローニングベクター]
 本発明の第二の態様に係るクローニングベクターは、外来蛋白質を発現させるためにシゾサッカロミセス属酵母に導入される発現ベクターを作製するためのクローニングベクターであり、外来蛋白質の発現を制御するプロモーターがシゾサッカロミセス属酵母のhsp9プロモーターまたはihc1プロモーターであることを特徴とする。なお、以下、本発明の第二の態様に係るクローニングベクターを本発明のクローニングベクターともいう。
<hsp9プロモーター>
 シゾサッカロミセス属酵母のhsp9遺伝子は、シゾサッカロミセス属酵母が有する熱ショック蛋白質(heatshock protein、hsp)の一種であるHsp9蛋白質をコードする遺伝子である。S.pombeの遺伝子配列データベース(S.pombe GeneDB;http://www.genedb.org/genedb/pombe/)に登録されているhsp9遺伝子の系統名はSPAP8A3.04cである。
 熱ショック蛋白質とは、細胞や個体が平常温度より5~10℃高い温度変化(熱ショック)を急激に受けたときにその合成が誘導され、シャペロンとして機能することによって蛋白質の熱変性や凝集を阻害する蛋白質の総称である。熱ショック蛋白質の生体内合成は、熱ショックの他、様々な化学物質、たとえば電子伝達系の阻害剤、遷移金属、SH試薬、エタノールなどによっても誘導される。
 したがって、hsp9プロモーターを有する発現ベクターを導入した形質転換体においては、Hsp9蛋白質の発現と同様に、熱ショックや様々な化学物質による刺激によって外来蛋白質の発現を制御できる。
 hsp9プロモーターは、シゾサッカロミセス属酵母内で非常に発現効率が高い。このため、該プロモーターを使用することで、シゾサッカロミセス属酵母の形質転換体から外来蛋白質を従来になく大量に生産可能な発現ベクターを作製することができる。
 hsp9プロモーターは、シゾサッカロミセス属酵母が有するhsp9遺伝子のプロモーターであればよく、いずれのシゾサッカロミセス属酵母由来であってもよいが、より汎用されているため、S.pombeのhsp9プロモーターを用いることが好ましい。S.pombeのhsp9プロモーターは、hsp9遺伝子のORFの5’末端(開始コドンATGのA)の上流1~400bpに含まれる領域である(配列番号6参照)。
 hsp9プロモーターを有する、S.ポンベ以外のシゾサッカロミセス属酵母としては、シゾサッカロミセス・ジャポニカス(Schizosaccharomyces japonicus)、シゾサッカロミセス・オクトスポラス(Schizosaccharomyces octosporus)等が挙げられる。また、クローニングベクターに用いられるhsp9プロモーターは、該クローニングベクターから作製された発現ベクターが導入されるシゾサッカロミセス属酵母と同じ生物種由来であってもよく、異なる生物種由来であってもよい。
 hsp9プロモーターは、野生型のシゾサッカロミセス属酵母が本来有しているプロモーター(野生型のhsp9プロモーター)と同一の塩基配列以外にも、当該塩基配列中の1以上の塩基、好ましくは1~数十個、より好ましくは1~十数個、さらに好ましくは1~9個、よりさらに好ましくは1~数個の塩基が欠失、置換、もしくは付加された塩基配列からなり、かつ野生型のhsp9プロモーターと同様にプロモーター活性を有する領域であってもよい。
 また、本発明に係るクローニングベクターに用いるhsp9プロモーターは、野生型のhsp9プロモーターと同一の塩基配列とのホモロジーが80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上である塩基配列からなり、かつ野生型のhsp9プロモーターと同様にプロモーター活性を有する領域であってもよい。
 S.ポンベのhsp9プロモーターは、hsp9遺伝子のORFの5’末端(開始コドンATGのA)の上流1~400bpに含まれる領域である。該領域の塩基配列を配列番号6に表す。すなわち、本発明に係るクローニングベクターとしては、配列番号6で表される塩基配列からなる領域を備えることが好ましい。また、配列番号6で表される塩基配列中の1以上の塩基、好ましくは1~数十個、より好ましくは1~十数個、さらに好ましくは1~9個、よりさらに好ましくは1~数個の塩基が欠失、置換、もしくは付加された塩基配列、または配列番号6で表される塩基配列とのホモロジーが80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上である塩基配列からなり、かつ野生型のhsp9プロモーターと同様にプロモーター活性を有する領域も、本発明に係るクローニングベクターに用いるhsp9プロモーターとして好適に用いることができる。
<ihc1プロモーター>
 ihc1遺伝子は、分子量15,400の蛋白質であるIhc1をコードする遺伝子である。ihc1遺伝子は、シゾサッカロミセス属酵母をはじめとする真菌類に広く保存されている。
 Ihc1蛋白質は、増殖開始時等の菌体密度が低い状態では発現が抑制されており、菌体密度が高い状態では発現が誘導される。このIhc1蛋白質の発現はihc1遺伝子のプロモーターにより制御されている。したがって、ihc1プロモーターは、増殖開始時等の菌体密度が低い状態では、発現誘導が抑制されており、菌体密度が高い状態では発現が高誘導できる。このため、該プロモーターを使用することで、シゾサッカロミセス属酵母の形質転換体において、外来蛋白質の発現を、菌体密度依存的に調整可能な発現ベクターを作製することができる。
 ihc1プロモーターは、シゾサッカロミセス属酵母が有するihc1遺伝子のプロモーターであればよく、いずれのシゾサッカロミセス属酵母由来であってもよいが、より汎用されているため、S.pombeのihc1プロモーターを用いることが好ましい。
 S.pombeのihc1遺伝子は公知であり、S.pombeの遺伝子配列データベース(S.pombe GeneDB;http://www.genedb.org/genedb/pombe/)に登録されているihc1遺伝子の系統名はSPAC22G7.11cであり、そのihc1プロモーターは、ihc1遺伝子のORFの5’末端(開始コドンATGのA)の上流1~501bpに含まれる領域である(配列番号9参照)。
 本発明に係るクローニングベクターに用いられるihc1プロモーターは、シゾサッカロミセス属酵母が有するihc1遺伝子のプロモーターであればよく、いずれのシゾサッカロミセス属酵母由来であってもよい。シゾサッカロミセス属酵母としては、S.ポンベ、シゾサッカロミセス・ジャポニカス(Schizosaccharomyces japonicus)、シゾサッカロミセス・オクトスポラス(Schizosaccharomyces octosporus)等が挙げられる。また、クローニングベクターに用いられるihc1プロモーターは、該クローニングベクターから作製された発現ベクターが導入されるシゾサッカロミセス属酵母と同じ生物種由来であってもよく、異なる生物種由来であってもよい。本発明においては、より汎用されているため、S.ポンベのihc1プロモーターを用いることが好ましい。
 本発明に係るクローニングベクターに用いるihc1プロモーターは、野生型のシゾサッカロミセス属酵母が本来有しているプロモーター(野生型のihc1プロモーター)と同一の塩基配列以外にも、当該塩基配列中の1以上の塩基、好ましくは1~数十個、より好ましくは1~十数個、さらに好ましくは1~9個、よりさらに好ましくは1~数個の塩基が欠失、置換、もしくは付加された塩基配列からなり、かつ野生型のihc1プロモーターと同様にプロモーター活性を有する領域であってもよい。
 また、本発明に係るクローニングベクターに用いるihc1プロモーターは、野生型のihc1プロモーターと同一の塩基配列とのホモロジーが80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上である塩基配列からなり、かつ野生型のihc1プロモーターと同様にプロモーター活性を有する領域であってもよい。
 S.ポンベのihc1プロモーターは、ihc1遺伝子のORFの5’末端(開始コドンATGのA)の上流1~501bpに含まれる領域である(配列番号9)。該領域の塩基配列を配列番号9に表す。すなわち、本発明に係るクローニングベクターとしては、配列番号9で表される塩基配列からなる領域を備えることが好ましい。また、配列番号9で表される塩基配列中の1以上の塩基、好ましくは1~数十個、より好ましくは1~十数個、さらに好ましくは1~9個、よりさらに好ましくは1~数個の塩基が欠失、置換、もしくは付加された塩基配列、または配列番号9で表される塩基配列とのホモロジーが80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上である塩基配列からなり、かつ野生型のihc1プロモーターと同様にプロモーター活性を有する領域も、本発明に係るクローニングベクターに用いるihc1プロモーターとして好適に用いることができる。
<クローニングベクター>
 本発明のクローニングベクターは、前記hsp9プロモーターおよびihc1プロモーターのいずれかに加えて、該プロモーターの下流に位置しかつ該プロモーターによって支配される外来構造遺伝子を導入するためのクローニングサイト、および、シゾサッカロミセス属酵母内で機能しうるターミネーターを有する。
 クローニングベクターが備えるクローニングサイトは、クローニングベクターにおいて該クローニングサイトにのみ存在する制限酵素認識部位が存在する場所である。本発明のクローニングベクターが備えるクローニングサイトは、1種類の制限酵素によって認識される制限酵素認識部位を有していてもよく、2種類以上の制限酵素によって認識可能な制限酵素認識部位を有するマルチクローニングサイトであってもよい。該マルチクローニングサイトとしては、公知のクローニングベクターが備えるマルチクローニングサイトをそのまま使用でき、また、公知のマルチクローニングサイトを適宜改変したものを使用できる。その他、本発明のクローニングベクターは、クローニングサイト内の下流端側領域または該クローニングサイトの下流に、終止コドンを備えていてもよい。
 シゾサッカロミセス属酵母内で機能するターミネーターとしては、シゾサッカロミセス属酵母が本来有するターミネーターやシゾサッカロミセス属酵母が本来有しないターミネーターを使用することができる。なお、ターミネーターはベクター内に2種以上存在していてもよい。シゾサッカロミセス属酵母が本来有するターミネーターとしては、たとえば、シゾサッカロミセス属酵母のinv1遺伝子のターミネーター等が挙げられる。また、シゾサッカロミセス属酵母が本来有しないターミネーターとしては、たとえば、特許文献2、4、または10に記載されているヒト由来のターミネーター等が挙げられ、ヒトリポコルチンIのターミネーターが好ましい。
 本発明のクローニングベクターには、前記プロモーターの下流でかつクローニングサイトの上流に、5’-非翻訳領域が含まれていることが好ましく、また、クローニングサイトの下流に3’-非翻訳領域が含まれていることが好ましい。また、本発明のクローニングベクターは、クローニングサイトに外来構造遺伝子が導入された発現ベクターと識別するためのマーカーを有することが好ましい。該マーカーとしては、たとえば、アンピシリン耐性遺伝子等、大腸菌内で機能し得る薬剤耐性遺伝子等が挙げられる。
 さらに、本発明のクローニングベクターは、形質転換体を選択するためのマーカーを有することが好ましい。該マーカーとしては、たとえば、ura4遺伝子などの栄養要求性相補マーカー、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)等が挙げられる。
 本発明のクローニングベクターは、さらに、そのクローニングサイトに外来構造遺伝子を導入した際に発現カセットを構成する領域以外に、形質転換体の製造に必要なDNA領域を有していてもよい。たとえば、発現カセットを染色体に導入する場合は組換え部位を有することが好ましい。前記第一の態様に係る本発明においてgsf2ベクターの発現カセットを染色体に導入する場合に用いられる組み換え部位を、そのまま外来構造遺伝子(gsf2遺伝子に限られない)を有する発現カセットを染色体に導入するために使用することができる。gsf2遺伝子以外の外来構造遺伝子を有する発現カセットの場合であっても、その発現カセットを染色体に導入する方法もまた第一の態様に係る本発明に関して記載した遺伝子工学的方法をそのまま適用することができる。
 本発明のクローニングベクターから作製された発現ベクターの発現カセットが、宿主細胞内で染色体外遺伝子として保持される形質転換体を作製する場合には、本発明のクローニングベクターは、シゾサッカロミセス属酵母内で複製されるための配列、即ち、自律複製配列(Autonomously Replicating Sequence: ARS)を含むことが好ましい。なお、発現カセットを染色体に組み込む場合には、発現ベクターからARSを削除して宿主に導入することが好ましい。
 本発明に係るクローニングベクターは、外来蛋白質を宿主に発現させるための発現ベクターを作製するために用いられる公知のクローニングベクターからそれが備えるプロモーター領域を、hsp9プロモーターまたはihc1プロモーターに置換することによって作製することができる。たとえば、前記特開平7-163373号公報、特開平10-234375号公報、特開平11-192094号公報、特開2000-136199号公報等に記載のマルチクローニングベクターのプロモーター部位をhsp9プロモーターまたはihc1プロモーターに置換することによって作製することができる。
 本発明に係るクローニングベクターを構築するための具体的操作方法としては、公知の方法を使用することができる。たとえば、文献[J. Sambrook et al.,"Molecular Cloning 2nded.", Cold Spring Harbor Laboratory Press(1989)]に記載されている操作方法を使用できる。その他、PCRによる酵素的な増幅法や化学合成法、で構築してもよい。
[発現ベクターおよびその製造方法]
 第二の態様に係る本発明の発現ベクターは、本発明のクローニングベクター中のクローニングサイトに、外来構造遺伝子を導入することにより製造することができる。クローニングサイトへの外来構造遺伝子の導入は、クローニングベクターの作製と同様に公知の方法を使用することができる。
 本発明の発現ベクターに導入されている外来構造遺伝子は、蛋白質をコードする構造遺伝子であれば特に限定されるものではなく、宿主とするシゾサッカロミセス属酵母が元々有している遺伝子と同種のものであってもよく、異種生物由来の構造遺伝子であってもよい。シゾサッカロミセス属酵母の内在性蛋白質をコードする構造遺伝子(例えば、前記gsf2遺伝子)を含む発現ベクターにより得られたシゾサッカロミセス属酵母の形質転換体から、より大量に該内在性蛋白質を生産することができる。また、異種生物由来の構造遺伝子を含む発現ベクターにより得られたシゾサッカロミセス属酵母の形質転換体から、大量の異種蛋白質を生産することができる。
 本発明の発現ベクターに導入されている外来構造遺伝子がコードする蛋白質は、異種蛋白質が好ましく、多細胞生物である動物や植物が産生する蛋白質がより好ましく、哺乳動物(ヒトを含む)の産生する蛋白質がさらに好ましい。このような蛋白質は大腸菌などの原核細胞微生物宿主を用いて製造した場合には、活性の高い蛋白質が得られない場合が多く、またCHO細胞などの動物細胞を宿主として用いた場合には、通常産生効率が低い。本発明に係る発現ベクターを用い、シゾサッカロミセス属酵母を宿主とした異種蛋白質発現系を用いる場合はこれらの問題が解決される。
 本発明の発現ベクターに導入されている外来構造遺伝子は、蛋白質をコードするものである限り、野生型の構造遺伝子であってもよく、野生型の構造遺伝子を改変した遺伝子であってもよく、人工的に合成された遺伝子であってもよい。野生型以外の構造遺伝子としては、たとえば、野生型の複数の蛋白質を融合させたキメラ蛋白質をコードする遺伝子、野生型の蛋白質のN末端またはC末端にその他のペプチド等が結合した蛋白質をコードする遺伝子等が挙げられる。該その他のペプチドとしては、分泌シグナル、特定の細胞内小器官への移行シグナル等のシグナル、Hisタグ、FLAGタグ等のタグ等が挙げられる。各種シグナルは、シゾサッカロミセス属酵母内で機能するシグナルであることが必要である。分泌シグナルは、N末端に存在することにより、発現した蛋白質を宿主細胞外に分泌させる機能を有するペプチドである。シゾサッカロミセス属酵母内で機能する分泌シグナルとしては、国際公開第1996/23890号に記載のP3シグナルが特に好ましい。
[形質転換体およびその製造方法]
 第二の態様の本発明に係る形質転換体は、上記第二の態様の本発明に係る発現ベクターを含むことを特徴とする。第二の態様の本発明に係る形質転換体は、シゾサッカロミセス属酵母に上記発現ベクターを導入することで製造される。
 第二の態様の本発明に係る形質転換体の宿主は、シゾサッカロミセス属酵母である。シゾサッカロミセス属酵母は野生型であってもよく、用途に応じて特定の遺伝子を欠失または失活させた変異型であってもよい。特定の遺伝子を欠失または失活させる方法としては、公知の方法を用いることができる。具体的には、Latour法(Nucreic Acids Res、2006年、第34巻第e11号、および国際公開第2007/063919号等に記載)を用いることにより遺伝子を欠失させることができる。また、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)や、PCRを利用したランダム変異法(PCR Methods Appl.、1992年、第2巻、p.28-33)等により遺伝子の一部に変異を導入することにより、該遺伝子を失活させることができる。特定遺伝子を欠失または失活させたシゾサッカロミセス属酵母宿主としては、たとえば、国際公開第2002/101038号、国際公開第2007/015470号等に記載されている。
 さらに宿主となるシゾサッカロミセス属酵母には、形質転換体を選択するためのマーカーを有するものを用いることが好ましい。たとえば、ある遺伝子が欠落していることにより特定の栄養成分が生育に必須である宿主を使用することが好ましい。目的遺伝子配列を含むベクターにより形質転換をして形質転換体を作製する場合、ベクターにこの欠落している遺伝子(栄養要求性相補マーカー)を組み込んでおくことにより、形質転換体は宿主の栄養要求性が消失する。この宿主と形質転換体の栄養要求性の相違により、両者を区別して形質転換体を得ることができる。栄養要求性相補マーカーとしては、たとえば、ura4遺伝子(栄養要求性相補マーカー)、イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子(leu1遺伝子)等が挙げられる。
 宿主として用いるシゾサッカロミセス属酵母としては、前記で挙げられた種のものを利用することができる。上記シゾサッカロミセス属酵母のうち、種々の有用な変異株が利用できることから、S.ポンベが好ましい。本発明で用いるS.ポンベの菌株としては、たとえばATCC38399(leu1-32h)またはATCC38436(ura4-294h)等が挙げられ、これらは、アメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection)から入手できる。
 また、β-グルコシダーゼ遺伝子以外の外来構造遺伝子を有する発現ベクターを導入する場合であっても、前記第一の態様の本発明におけるS.ポンベ変異体を宿主として使用することもできる。
 発現ベクターを用いて宿主であるシゾサッカロミセス属酵母を形質転換する、形質転換方法は、公知のシゾサッカロミセス属酵母の形質転換方法をいずれも用いることができる。そのような形質転換方法としては、たとえば、酢酸リチウム法[K. Okazaki et al., Nucleic Acids Res., 18, 6485-6489 (1990)]、エレクトロポレーション法、スフェロプラスト法、ガラスビーズ法など従来周知の方法や、特開2005-198612号公報記載の方法などを挙げることができる。また、市販の酵母形質転換用キットを用いてもよい。
 形質転換を行った後、通常は得られた形質転換体を選抜する。選抜方法としては、たとえば、以下に示す方法が挙げられる。前記栄養要求性マーカーにより形質転換体を選択できる培地によりスクリーニングし、得られたコロニーから複数を選択する。その他、それら選抜した形質転換体に対してパルスフィールドゲル電気泳動法によるゲノム解析を行うことにより、染色体に組み込まれたベクターの数や発現カセットの数を調べることができる。
(培養方法)
 第二の態様の本発明に係る形質転換体は、天然のシゾサッカロミセス属酵母と同様に培養することができる。該培養方法としては、前記第一の態様の形質転換体の培養方法と同様の方法が挙げられる。具体的には、YPD培地等の栄養培地(M.D.Rose et al., "Methods In Yeast Genetics",Cold Spring Harbor LabolatoryPress(1990))またはMB培地等の最少培地(K.Okazaki et al.,Nucleic Acids Res., vol.18, p.6485-6489 (1990))等を使用できる。
 培養には公知の酵母培養方法を用いることができ、たとえば振盪培養、攪拌培養等により行うことができる。
 また、培養温度は、23~37℃であることが好ましい。また、培養時間は適宜決定することができる。
 また、培養は、回分培養であってもよく、流加培養または連続培養であってもよい。
[外来蛋白質の生産方法]
 第二の態様の本発明に係る蛋白質の生産方法は、前記第二の態様の本発明に係る形質転換体を培養し、得られた菌体または培養液上清から、前記外来構造遺伝子がコードする蛋白質を取得することを特徴とする。
 培養条件は、生産させる目的の外来蛋白質の種類等を考慮して適宜設定することができる。たとえば、16~42℃、好ましくは25~37℃で、8~168時間、好ましくは48~96時間行う。振盪培養と静置培養のいずれも可能であるが、必要に応じて撹拌や通気を加えてもよい。
 第二の態様の本発明に係る形質転換体がhsp9プロモーターを有する発現ベクターを導入した形質転換体の場合、その形質転換体を熱ストレスなどの誘導刺激を与えた条件下で培養すると、hsp9プロモーターが該ストレスにより活性化してそれに支配された外来構造遺伝子の転写が促進され、該外来蛋白質が発現する。この誘導刺激条件下の培養では、通常の条件下での培養に比較してシゾサッカロミセス属酵母の増殖量は少なくなるのが通例である。このため、培養開始時には通常の条件で培養を行い、有る程度培養液中の菌体濃度が高くなった時点で、熱ストレスなどの誘導刺激を与える。これにより、前段の培養により細胞量が多くなっていることにより、培養システム全体として多量の異種蛋白質が産生される。ここで熱ストレスは、誘導刺激の一つであり、誘導刺激は種々効果を確認することによってその他の手段も利用可能である。誘導刺激の手段としては、好適には、熱、カドミウム、浸透圧上昇剤、過酸化水素、エタノール等の添加によって達成できる。
 熱による場合、熱ストレスを与える温度の上限はシゾサッカロミセス属酵母の生存可能な最高温度となる温度である。したがって、熱ストレス時の培養温度は、熱ストレスを与える前の培養温度に対して好ましくは2~20℃、より好ましくは3~12℃、最も好ましくは4~6℃、高い温度であって、かつ、15~55℃、好ましくは25~45℃、より好ましくは30~40℃である。熱ストレスを与える時間は、特に制限されるものではないが、数分以上で効果が確認でき、1~29時間、好適には1~15時間である。
 カドミウム添加による場合は、カドミウムイオンとして添加する。カドミウムの最終濃度は、0.1~1.5mMまで、より好ましくは0.5~1.0mMまでである。培養する時間は、好適には5時間まで、より好ましくは3時間までである。
 浸透圧上昇剤の場合は、高濃度の電解質やソルビトールなどの浸透圧上昇剤を添加して浸透圧を高める。高濃度の塩化カリウムの場合、カリウムの最終濃度は、0.1~2.0Mまで、より好ましくは0.5~1.5Mまでである。添加する時間は、特に制限されないが好適には1~12時間まで、より好ましくは1~10時間程度である。
 過酸化水素の場合は、その最終濃度は、0.1~1.5mMまで、より好ましくは0.5~1.0mMまでである。培養する時間は、特に制限されないが好適には1~15時間まで、より好ましくは1~12時間程度である。
 エタノールの場合は、その最終濃度は、5~20V/V%まで、より好ましくは5~15V/V%までである。培養する時間は、特に制限されないが、好適には1~20時間まで、より好ましくは1~15時間程度である。
 上記の条件は、単独でまたは複数組み合わせて処理を行なってもよい。組み合わせ効果は、発現量を比較することで容易に確認可能である。
 第二の態様の本発明に係る形質転換体がihc1プロモーターを有する発現ベクターを導入した形質転換体の場合、培養開始時点のように菌体密度が低い状態で培養を行うと、外来蛋白質は発現されることはない、もしくは非常に少量しか発現しない。つまり、該形質転換体は、菌体密度が低い状態では外来蛋白質の発現という負荷のない(もしくは小さい)状態で増殖できるため、負荷がある場合に比較して増殖の効率が高く、細胞量を効率的に増大することができる。一方で、菌体密度が高くなるに従い、発現が誘導されるようになる結果、大量の外来蛋白質を生産することができる。
 培養終了後、超音波破砕や機械的破砕により、菌体から目的の外来蛋白質を含む細胞抽出液を調製し、該細胞抽出液から外来蛋白質を単離・精製法できる。また、外来蛋白質が細胞外に分泌される場合は、培養液上清から外来蛋白質を単離・精製法できる。これらの生産された蛋白質を取得するための単離・精製法としては、公知の、塩析または溶媒沈澱法等の溶解度の差を利用する方法、透析、限外濾過またはゲル電気泳動法等の分子量の差を利用する方法、イオン交換クロマトグラフィー等の荷電の差を利用する方法、アフィニティークロマトグラフィー等の特異的親和性を利用する方法、逆相高速液体クロマトグラフィー等の疎水性の差を利用する方法、等電点電気泳動法等の等電点の差を利用する方法等が挙げられる。
 単離・精製した蛋白質の確認方法としては、公知のウエスタンブロッティング法または活性測定法等が挙げられる。精製された蛋白質は、アミノ酸分析、アミノ末端分析、一次構造解析などによりその構造を明らかにすることができる。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[試験例1]発現ベクターの作製1
 既知のAaBGL1のペプチド配列から、S.ポンベの高発現型コドンで置き換えた遺伝子配列を設計した(配列番号2参照。以下、AaBGL1遺伝子と称する)。開始コドン前にKpnI,BspHI認識配列を付加した。終止コドン後にXbaI,SacI認識配列を付加した。この配列を含んだプラスミド(ジーンアート社、レーゲンスブルク、ドイツ、にて合成)を制限酵素BspHI,XbaIで消化した。
 一方、これとは別にpSL6lacZを制限酵素AarI,XbaIで消化し、アルカリフォスファターゼ処理した。この処理後、アガロースゲル上で電気泳動し、ベクターpSL6断片と、上記のAaBGL1遺伝子断片をアガロースゲルから切出し、ライゲーションした後、大腸菌DH5α(タカラバイオ社製)に導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とする発現ベクターpSL6AaBGL1(図1、配列番号3参照)を取得した。制限酵素地図の作製から目的とするベクターであることを確認した。
 また、分泌シグナルであるP3シグナルをN末端に付加したAaBGL1の作製のため、pSL6AaBGL1を鋳型としてIn-fusionプライマーを用いてPCR法によりAaBGL1遺伝子断片を増幅した。一方、pSL6P3lacZを制限酵素AflII,XbaIで消化した。この断片とPCRによって得られた上記AaBGL1遺伝子断片とをIn-fusion法により環状化した後、大腸菌DH5αに導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とする発現ベクターpSL6P3AaBGL1(図2、配列番号4参照)を取得した。制限酵素地図の作製および部分塩基配列の確認から目的とするベクターであることを確認した。
[試験例2]発現ベクターの作製2
 また、hsp9プロモーターを用いたAaBGL1発現ベクター作製のため、pSL6P3AaBGL1を鋳型としてIn-fusionプライマーを用いてPCR法によりP3AaBGL1遺伝子断片を増幅した。一方、hsp9プロモーターを持つ下記pSL14lacZを制限酵素AarI,Xba1で消化した。この断片とPCRによって得られた上記P3AaBGL1遺伝子断片とをIn-fusion法により環状化した後、大腸菌DH5αに導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とする発現ベクターpSL14P3AaBGL1(図3、配列番号5参照)を取得した。制限酵素地図の作製および部分塩基配列の確認から目的とするベクターであることを確認した。
<マルチクローニングベクターの作製>
 マルチクローニングベクターpSL9(図24、7038bp)のプロモーター領域(図24中、「inv1 pro.」)を、S.pombeのhsp9プロモーター(配列番号6)と置換することにより、マルチクローニングベクターpSL14(図25、6282bp)を作製した。
 具体的には、まず、S.pombeのhsp9遺伝子中、ORFの5’末端(開始コドンATGのA)の上流1~400bpの領域(配列番号6)を、S.pombeの野生株(ARC032株、ATCC38366、972h-相当)由来のゲノムDNAを鋳型とし、5’末端にSacIの制限酵素部位を備えるフォワードプライマーと、5’末端にPciIの制限酵素部位を備えるリバースプライマーとを用いたPCRによって増幅し、該領域の5’末端にSacI、3’末端にPciIの制限酵素部位を備えるフラグメントを得た。
 pSL9のプロモーター部分を制限酵素AarIならびにSacIで二重消化し、ライゲーション、続く大腸菌DH5への形質転換後、プラスミドを抽出し、塩基配列の確認を行った。この結果、得られたプラスミドは、3’末端にアデニンが1つ追加されているものの、配列番号6で表される塩基配列を含むプロモーター領域を有することが確認された。該プラスミドをpSL14とした。
 次いで、pSL14のアンピシリン耐性遺伝子およびpBR322oriを含む領域を、カナマイシン耐性遺伝子およびpUCoriを含む領域へと置換し、クローニングサイトにlacZ'をコードする構造遺伝子を組み込むことにより、マルチクローニングベクターpSL14lacZ(図26、6675bp、配列番号7参照)を作製した。
[試験例3]形質転換体の作製(分裂酵母への形質転換)
 宿主としてS.ポンベのロイシン要求株(遺伝子型:h-、leu1-32、東京大学大学院理学系研究科付属遺伝子実験施設・飯野雄一教授より供与)(ATCC38399)をYES(0.5% 酵母エキス,3%グルコース, 0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1M酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLに上記で得られたベクターpSL14P3AaBGL1を制限酵素SwaIで消化したもの1μgを加え、さらに50%(w/v)ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、最少寒天培地に塗布した。3日後、形質転換体(AaBGL1発現株)が得られた。この形質転換体をASP3660株(以下、通常株ともいう)とした。
[試験例4]Δpvg1株(pvg1遺伝子欠損株)の作製
 S.ポンベのウラシル要求性株(ARC010、遺伝子型:h leu1-32 ura4-D18、東京大学大学院理学系研究科附属遺伝子実験施設・飯野雄一教授より供与)をLatour法(Nucleic Acids Res.誌、2006年、34巻、e11頁、国際公開第2007/063919号パンフレットに記載)に従って形質転換し、pvg1遺伝子を削除したΔpvg1株を作製した。得られた変異体を培養し、パルスフィールドゲル電気泳動法によるゲノム解析を行い、pvg1遺伝子が欠損したことを確認した。
 削除断片の作製には、S.ポンベの野生株であるARC032株(遺伝子型:h、東京大学大学院理学系研究科附属遺伝子実験施設・飯野雄一教授より供与)よりDNeasy(キアゲン社製)によって調製した全ゲノムDNAを鋳型とし、PCR法により行った。
 より具体的には、削除断片をUP領域、OL領域、およびDN領域に分け、各領域のDNA断片をそれぞれKOD-Dash(東洋紡社製)を用いたPCR法によって作製したのち、さらにそれらを鋳型として、同様のPCR法によって全長の削除断片を作製した。
[試験例5]Δpvg1gsf2株(pvg1遺伝子欠損+gsf2遺伝子発現増大株)の作製
 上記のΔpvg1株をYES(0.5% 酵母エキス,3% グルコース, 0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1M 酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLに下記ihc1プロモーターとgsf2遺伝子を含む遺伝子断片(配列番号8参照)1μgを加え、さらに50%(w/v) ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、ロイシン含有最少寒天培地に塗布した。3日後、形質転換体(pvg1遺伝子欠損+gsf2遺伝子発現増大株)が得られた。その後FOA処理を行い、再度ウラシル要求性を持たせた。この変異体をIGF799株とした。
 前記ihc1プロモーターとgsf2遺伝子を含む遺伝子断片は、以下の様に作製した。まず、ihc1プロモーター(配列番号9参照)の5’-末端側にgsf2プロモーター配列とUra4配列とを含み、3’-末端側にgsf2-ORFを含む配列を鋳型とし、上記遺伝子断片をPCRによって増幅した。
[試験例6]形質転換体の作製(非性的凝集性分裂酵母への形質転換)
 宿主として非性的凝集性を有するS.ポンベの上記IGF799株をYES(0.5%酵母エキス,3% グルコース, 0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1M 酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLに上記で得られたベクターpSL14P3AaBGL1を制限酵素SwaIで消化したもの1μgを加え、さらに50%(w/v) ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、ウラシル含有最少寒天培地に塗布した。3日後、形質転換体(AaBGL1発現株)が得られた。この形質転換体をASP4106株とした。
[試験例7]形質転換体の作製(ウラシル要求性補完)
 上記で作製したASP4106株をYES(0.5%酵母エキス,3%グルコース,0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1M 酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLにベクターpUC19-ura4(図4、配列番号10参照)を制限酵素BsiwIで消化したもの1μgを加え、さらに50% (w/v) ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、最少寒天培地に塗布した。図4中、AおよびBの配列は、ベクターの組換え部位を表す。3日後、形質転換体が得られた。このASP4106株のウラシル要求性が補完された形質転換体をASP4150株(以下、凝集株ともいう)とした。
[試験例8]形質転換体のバッチ培養
 上記で得られたAaBGL1発現株(通常株および凝集株)をYES培地で、試験管にて32℃24時間培養した。この培養液2mLを50mLのYPD培地(1%酵母エキス,2%ペプトン,2%グルコース)に植継ぎ、500mLの三角フラスコにて32℃で48時間本培養を行った。
 形質転換体の菌体増殖を評価するために、培養液のOD660nmにおける吸光度を分光光度計(Spectrophotometer U-1500)を用いて測定した。培養液原液の濃度が高い場合には, RO(ReverseOsmosis;逆浸透)水により希釈を行い測定した。凝集株のOD660測定の際は、100~500mMのEDTAで懸濁し、凝集性を解いた後に測定を行った。
 菌体増殖の結果を図5に示す。通常株および凝集株において、培養中のOD660値の経時変化は、概ね同様の挙動を示し最終OD660値は通常株で23.4、凝集株で20.3を示した。
 培養液中の残存グルコース濃度、および、その代謝産物であるエタノール濃度をバイオセンサBF5にて測定した。採取した培養液をエッペンドルフチューブに入れ,高速微量遠心機を用い、遠心分離を行い、培養上清を得た。この培養上清300μLをBF5サンプルカップに入れ、事前に測定準備の整ったBF5オートサンプラー内に入れた。
 以下に示すバイオセンサ運転条件でBF5を運転し分析を行った。
使用機器: バイオセンサBF5(王子計測機器)
流速: 1.0 mL/min
注入量: 5μL
恒温槽温度: 37℃
計測時間: 90 秒
濃度定量法: グルコースおよびエタノールの酵素分解により発生した過酸化水素を検出し、標準液のピーク高を基準に算出した。
 培養液中の残存グルコース濃度の結果を図6(a)に示し、該グルコースの代謝産物であるエタノール濃度の結果を図6(b)に示す。通常株および凝集株において、培養中のグルコース濃度およびエタノール濃度の経時変化は、概ね同様の挙動を示した。
 通常株および凝集株において、培養中のOD660値、グルコース濃度およびエタノール 濃度の経時変化もそれぞれの株で同様に推移した。このことから、同一の培養条件とすることで、通常株および凝集株は概ね同じ速度で糖の代謝および菌体の増殖が進んだと推測される。遺伝子操作によって凝集性を付与したことによる菌体増殖性への影響は小さいと考えられる。
[試験例9]活性測定によるAaBGL1の発現確認
 上記で得られたAaBGL1発現株の培養上清を用いて、酵素希釈サンプルを調製し、下記方法にしたがって活性測定を行った。
(活性測定法)
 20mM p-ニトロフェニル-β-D-グルコシド(以下、pNPGと略す) 10μLに、1M 酢酸ナトリウム緩衝液(pH4.5)10μLと水130μLを加え、酵素希釈サンプル50μlを添加して、37℃で10分間反応させた。2% 炭酸ナトリウム液100μLに反応液100μLを加えて反応停止させ、遊離したp-ニトロフェノール量を波長450nmで比色定量した。
 1分間当たり、1μmolに相当するp-ニトロフェノールを生成する酵素量を1Uとした。通常株および凝集株における培養上清1mL当たりのpNPG分解活性(以下、pNPG活性ともいう)を図7に示す。
 図7に示すように、pNPG 分解活性値は、グルコース枯渇直後である培養15.5時間後において、凝集株では通常株の1.38倍の活性値を示し、培養48時間後において、凝集株で通常株の1.27倍の活性値を示した。
[試験例10]形質転換体のフェッドバッチ培養
 5mL YES培地に、通常株または凝集株を植菌し、試験管にて32℃で24時間前培養1を行った。さらに、200mL YES培地に、前培養1で得られた培養液4mLを加え、1L坂口フラスコにて30℃で24時間前培養2を行った。
 次いで、5Lジャーファーメンターを用いて、表1に示す成分からなる初発培地1800mLに、前培養2で得られた培養液200mLを加え、30℃で培養を開始した。尚、表1の各成分の濃度は、前培養2植菌後の濃度を示す。培養開始から14.0時間後に、培養液中の残存グルコース濃度が1.0g/Lを下回ったことを確認し流加を開始した。その後、81時間流加を継続し、表2に示す組成の流加培地1450mLを流加し、30℃で95時間(培養開始時からの培養時間を示す)培養した。12.5%アンモニア水の添加制御により、pHを4.5に保った。
Figure JPOXMLDOC01-appb-T000001
 形質転換体の菌体増殖を評価するために、培養液のOD660nmにおける吸光度を分光光度計(Spectrophotometer U-1500)を用いて測定した。培養液原液の濃度が高い場合には, RO水により希釈を行い測定した。凝集株のOD660nm測定の際は、100~500mMのEDTAで懸濁し、凝集性を解いた後に測定を行った。
 菌体増殖の結果を図8に示す。通常株および凝集株において、培養中のOD660値の経時変化は、概ね同様の挙動を示した。最終OD660値は通常株で376、凝集株で395であり、天然由来物としてYeast Extractを合成培地に添加した半合成培地にて高菌体濃度に達した。
 培養液中の残存グルコース濃度、および、その代謝産物であるエタノール濃度を試験例8と同様の方法にて測定した。
 培養液中の残存グルコース濃度の結果を図9(a)に示し、該グルコースの代謝産物であるエタノール濃度の結果を図9(b)に示す。通常株および凝集株において、培養中のグルコース濃度およびエタノール濃度の経時変化は、概ね同様の挙動を示した。流加開始後のグルコース濃度は、1g/L 以下の低値で推移した。培養中のエタノール濃度は、バッチ培養の段階で発生したエタノールが流加開始後に減少し、最終的に1g/L以下の低値で推移した。流加開始後、フェドバッチ培養終了まで、エタノール生産フェーズとなるグルコースエフェクトが起こることはなかった。
 通常株および凝集株において、培養中のOD660値、グルコース濃度およびエタノール濃度の経時変化は、それぞれの株で同様に推移した。このことから、同一の培養条件とすることで、通常株および凝集株は概ね同じ速度で糖の代謝および菌体の増殖が進んだと推測される。遺伝子操作によって凝集性を付与したことによる菌体増殖性への影響は小さいと考えられる。
[試験例11]沈降速度の測定
 試験例10で得られたフェドバッチ培養終了時のサンプル各1Lを1Lメスシリンダーにて沈降速度を比較した。各メスシリンダーを充分に懸濁させた後、静置して沈降を開始させた。液表面から固液界面(沈降した酵母菌体と上清との界面)までの距離を沈降開始からの経過時間で除することにより、沈降速度を算出した。結果を図10に示す。
 図10に示すように、凝集株では通常株と比較して、沈降速度が速いことが確認された。凝集株の沈降速度は、沈降開始2時間後の時点で30mm/h、さらに10時間後(沈降開始12 時間後)の時点で6.7mm/hであった。一方、通常株の沈降速度は、沈降開始12 時間後の時点で1.5mm/hであった。
 また、図11にフェッドバッチ培養終了時のサンプルの検鏡観察結果(トリパンブルー染色結果)を示す。図11に示すように、フェドバッチ培養終了時サンプルの検鏡観察結果から、凝集株では数多くの菌体が集合して凝集している様子が確認され、フェドバッチ培養により菌体の凝集性が消失することは無かった。通常株では、菌体の凝集は見られず分散している様子が観察された。
[試験例12]培養温度最適化検討(フェドバッチ培養)
 5mL YES培地に、通常株(ASP3660株)を植菌し、L型試験管にて30℃で24時間前培養1を行った。さらに、120mL YES培地に、前培養1で得られた培養液2.4mLを加え、500mL坂口フラスコにて30℃で24時間前培養2を行った。
 次いで、3Lジャーファーメンターを用いて、初発培地1080mLに、前培養2で得られた培養液120mLを加え、培養を開始した。2基の培養槽で温度条件を30℃および34℃の2条件振って実施した。初発培地組成は、表1に示す組成からYeast extract、塩化コリン、葉酸、ピリドキシン、チアミン、チミジン、リン酸リボフラビンナトリウムおよびp-アミノ安息香酸を除いた培地を用いた。なお、表1の各成分の濃度は、前培養2植菌後の濃度を示す。培養開始から11.8時間後に流加を開始した。その後、84.2時間流加を継続し、表2に示す組成の流加培地685mLを流加し、30℃および34℃で96時間(培養開始時からの培養時間を示す)培養した。流加培地も同様に、表2に示す組成からYeast extract、塩化コリン、葉酸、ピリドキシン、チアミン、チミジン、リン酸リボフラビンナトリウムおよびp-アミノ安息香酸を除いた培地を用いた。12.5%アンモニア水の添加制御により、pHを4.5に保った。
 形質転換体の菌体増殖を評価するために、培養液のOD660nmの値を試験例8と同様の方法にて測定した。菌体増殖の結果を図12に示す。30℃および34℃において、培養中のOD660値の経時変化は、概ね同様の挙動を示した。最終OD660値は、30℃で295、34℃で271とそれぞれ高菌体濃度に達した。
 培養液中の残存グルコース濃度、およびその代謝産物であるエタノール濃度を、試験例8と同様の方法にて測定した。培養液中の残存グルコース濃度の結果を図13Aに示し、該グルコースの代謝産物であるエタノール濃度の結果を図13Bに示す。30℃および34℃において、培養中のグルコース濃度およびエタノール濃度の経時変化は、概ね同様の挙動を示した。培養24時間後以降のグルコース濃度は、1g/L以下の低値で推移した。培養中のエタノール濃度は、バッチ培養で発生したエタノールが流加開始後に減少し、最終的に2g/L以下の低値で推移した。
 培養液中のpNPG分解活性を試験例9と同様の方法にて測定した。30℃および34℃における培養上清1mL当たりのpNPG分解活性の結果を図14に示す。pNPG 分解活性値は、培養終了時である培養96時間後において、34℃では30℃での2.26倍の活性値を示した。
[試験例13]SDS-PAGE分析によるAaBGL1の発現確認
 試験例12で得られたフェドバッチ培養終了時の培養上清サンプル各5μLをSDS-PAGEサンプルバッファーに溶解させ、4-12%アクリルアミドゲルを用いてSDS-PAGEを行い、クマシーブリリアントブルーで染色した。得られた結果を図15に示す。SDS-PAGEの結果から、培養終了時である培養96時間後において、34℃では、30℃と比較して120kDa以上の分子量にみられるAaBGL1のバンドの強度が強く、AaBGL1の分泌発現量が増加していることを示した。AaBGL1に糖鎖が付加されたことにより、スメアなバンドとして確認された。
[試験例14]hsp9プロモーターによる蛋白質生産
<発現ベクターの作製>
 GFP遺伝子を含むpEGFP-N1(CLONTECH社製)を鋳型としてIn-fusionプライマーを用いてPCR法によりEGFP遺伝子のORF断片を増幅した。一方、pSL14を制限酵素AflIIおよびXbaIで二重消化した。得られた断片とPCRによって得られた上記EGFP遺伝子のORF断片とをIn-fusion法により環状化した後、大腸菌DH5αに導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とする発現ベクターpSL14-EGFP(図16)を取得した。制限酵素地図の作製および部分塩基配列の確認から目的とするベクターであることを確認した。
 同様にして、pSL6にEGFP遺伝子のORF断片を組み込んだベクターpSL6-EGFP(図17)を作製し、対照とした。
<形質転換体の作製>
 宿主としてシゾサッカロミセス・ポンベのロイシン要求株(遺伝子型:h、leu1-32、東京大学大学院理学系研究科付属遺伝子実験施設・飯野雄一教授より供与)(ATCC38399)をYES(0.5%酵母エキス、3%グルコース、0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1m 酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLに上記で得られた発現ベクターpSL14-EGFPを制限酵素NotIで消化したもの1μgを加え、さらに50%(w/v)ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、最少寒天培地に塗布した。
 3日後、得られた形質転換体をASP3395株とした。
 同様にして、pSL14-EGFPを導入して形質転換体SL14E株を、pSL6-EGFPを導入して形質転換体SL6E株を得た。
<EGFP発現>
 得られたASP3395株を試験管内の5mLのYES培地に植菌し、32℃で70時間培養した。培養終了後の培養液の、488nmで励起した場合の蛍光強度を測定した。
 対照として、SL14E株およびSL6E株も同様の条件で培養し、培養終了後の培養液の蛍光強度を測定した。
 測定結果を図18に示す。この結果、SL6E株の培養液の蛍光強度を1とした場合、SL14E株の蛍光強度(相対値)は0.50でしかなかったが、ASP3395株の蛍光強度(相対値)は17.17と非常に高かった。
 培養液の蛍光強度は蛍光蛋白質EGFPの発現量の指標であり、hsp9プロモーターはシゾサッカロミセス属酵母内で非常に発現効率が高く、本発明の発現ベクターによって得られた形質転換体から外来蛋白質を他のプロモーターを用いた場合よりもより大量に生産し得ることが明らかである。
[試験例15]ihc1プロモーターによる蛋白質生産
<マルチクローニングベクターの作製>
 単座組込型組換えベクターpSL17を、以下に示す工程で作製した。すなわち、まず、公知の分裂酵母用組込型のマルチクローニングベクターpSL6(図19、5960bp、配列番号11)のhCMVプロモーター領域を、S.ポンベのihc1遺伝子のプロモーター(ihc1プロモーター)と置換することにより、マルチクローニングベクターpSL12(図20、5847bp)を作製した。
 具体的には、まず、S.ポンベのihc1遺伝子中、ORFの5’末端(開始コドンATGのA)の上流1~501bpの領域(配列番号9)を、S.ポンベの野生株(ARC032株、ATCC38366、972h相当)由来のゲノムDNAを鋳型とし、5’末端にBlnIの制限酵素認識配列を備えるフォワードプライマー(ihc1-promoter-F:表3参照)と、5’末端にKpnIの制限酵素認識配列を備えるリバースプライマー(ihc1-promoter-R:表3参照)とを用いたPCRによって増幅し、該領域の5’末端にBlnI、3’末端にKpnIの制限酵素認識配列を備える断片(ihcプロモーター断片)を得た。
 pSL6を制限酵素BlnIおよびKpnIで二重消化した断片に、ihcプロモーター断片を制限酵素BlnIおよびKpnIで二重消化した断片をライゲーションにより組み込み、分裂酵母用組込型ベクターpSL12(配列番号14)を得た。
 次いで、pSL12のLPIターミネーター領域を、S.ポンベのihc1遺伝子のターミネーター(ihc1ターミネーター)と置換することにより、マルチクローニングベクターpSL17(図21、5831bp)を作製した。
 具体的には、まず、S.ポンベのihc1遺伝子中、ORFの3’末端(終止コドンの3文字目)の下流1~200bpの領域(配列番号15)を、S.ポンベの野生株(ARC032株、ATCC38366、972h相当)由来のゲノムDNAを鋳型とし、In-fusionプライマー(ihc1-terminator-Fとihc1-terminator-R:表3参照)を用いたPCRによって増幅し、ihcターミネーター領域を含む断片(ihcターミネーター断片)を得た。
 pSL12を鋳型とし、In-fusionプライマー(pSL12-FとpSL12-R:表3参照)を用いたPCRによって増幅し、pSL12の全長からLPIターミネーター領域を欠損させた断片を得、当該断片にihcターミネーター断片をIn-fusionクローニングキット(製品名:In-Fusion HD Cloning Kit w/Cloning Enhancer、タカラバイオ社製)を用いて組み込み、マルチクローニングベクターpSL17(配列番号20)を作製した。
Figure JPOXMLDOC01-appb-T000003
<発現ベクターの作製>
 GFP遺伝子を含むpEGFP-N1(CLONTECH社製)を鋳型としてIn-fusionプライマーを用いてPCR法によりEGFP遺伝子のORF断片を増幅した。一方、前記pSL12を制限酵素AflIIおよびXbaIで二重消化した。この断片とPCRによって得られた上記EGFP遺伝子のORF断片とをIn-fusion法により環状化した後、大腸菌DH5αに導入して形質転換した。得られた形質転換体よりベクターを調製し、目的とする発現ベクターpSL12-EGFP(図22)を取得した。制限酵素地図の作製および部分塩基配列の確認から目的とするベクターであることを確認した。
 同様にして、前記pSL6にEGFP遺伝子のORF断片をくみこんだベクターpSL6-EGFP(図17)を作製し、対照とした。
<形質転換体の作製>
 宿主としてシゾサッカロミセス・ポンベのロイシン要求株(遺伝子型:h、leu1-32、東京大学大学院理学系研究科付属遺伝子実験施設・飯野雄一教授より供与)(ATCC38399)をYES(0.5%酵母エキス、3%グルコース、0.1mg/mL SPサプリメント)培地で0.6×10細胞数/mLになるまで生育させた。集菌、洗浄後1.0×10細胞数/mLになるように0.1m 酢酸リチウム(pH5.0)に懸濁した。その後、懸濁液100μLに上記で得られた発現ベクターpSL12-EGFPを制限酵素NotIで消化したもの1μgを加え、さらに50%(w/v)ポリエチレングリコール(PEG4000)水溶液を290μL加えてよく撹拌した後、30℃で60分間、42℃で5分間、室温で10分間の順にインキュベートした。遠心によりPEG4000を除去し、洗浄後150μLの滅菌水に懸濁し、最少寒天培地に塗布した。
 3日後、得られた形質転換体を277G株とした。
 同様にして、pSL6-EGFPを導入して形質転換体SL6E株を得た。
<EGFP発現>
 得られた277G株を試験管内の5mLのYES培地に植菌し、32℃で72時間培養した。培養開始から培養終了後まで、培養液の488nmで励起した場合の蛍光強度および600nmの吸光度を経時的に測定した。
 対照として、SL6E株も同様の条件で培養し、培養液の蛍光強度および600nmの吸光度を経時的に測定した。
 図23に、各株の培養液の[蛍光強度/OD600](蛍光強度を600nmの吸光度で除した値)の経時的変化を示した。この結果、277G株(図中、「ihc1p」)の[蛍光強度/OD600]は、培養開始から24時間経過時点ではhCMVプロモーターを用いたSL6E株(図中、「hCMVp」)よりも低いが、培養開始から48時間経過後にはSL6E株よりも高く、一酵母あたりのEGFPの発現量が高かった。
 なお、2012年8月20日に出願された日本特許出願2012-181865号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  Gsf活性が増大しており、かつピルビン酸転移酵素Pvg1の酵素活性が低下または失活しているシゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)変異体の形質転換体であって、糸状菌由来のβ-グルコシダーゼをコードする構造遺伝子配列並びに該構造遺伝子を発現させるためのプロモーター配列およびターミネーター配列を、染色体中に有するか、または、染色体外遺伝子として有することを特徴とするシゾサッカロミセス・ポンベ変異体の形質転換体。
  2.  前記β-グルコシダーゼがBGL1である請求項1に記載のシゾサッカロミセス・ポンベ変異体の形質転換体。
  3.  前記糸状菌が、アスペルギルス(Aspergillus)属の微生物である請求項1または2に記載のシゾサッカロミセス・ポンベ変異体の形質転換体。
  4.  前記β-グルコシダーゼが、配列番号1で示されるアミノ酸配列からなるか、または該アミノ酸配列において1個以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、β-D-グルコピラノシド結合の加水分解反応を触媒する活性を有するβ-グルコシダーゼである請求項1~3のいずれか一項に記載のシゾサッカロミセス・ポンベ変異体の形質転換体。
  5.  請求項1~4のいずれか一項に記載の形質転換体を培養し、得られた菌体または培養液上清から、β-グルコシダーゼを取得することを特徴とするβ-グルコシダーゼの製造方法。
  6.  シゾサッカロミセス(Schizosaccharomyces)属酵母のhsp9遺伝子が有するプロモーターまたはihc1遺伝子が有するプロモーター、該プロモーターの下流に位置しかつ該プロモーターによって支配される外来構造遺伝子を導入するためのクローニングサイト、および、シゾサッカロミセス属酵母内で機能し得るターミネーターを有することを特徴とするクローニングベクター。
  7.  前記hsp9遺伝子が有するプロモーターが、hsp9遺伝子のORF(オープンリーディングフレーム)の5’末端の上流1~400bpを含む領域である請求項6に記載のクローニングベクター。
  8.  前記プロモーターが、配列番号6で表される塩基配列、または該塩基配列中の1以上の塩基を置換、欠失、もしくは付加された塩基配列からなり、かつプロモーター活性を有する請求項7に記載のクローニングベクター。
  9.  前記ihc1遺伝子が有するプロモーターが、ihc1遺伝子のORF(オープンリーディングフレーム)の5’末端の上流1~501bpを含む領域である請求項6に記載のクローニングベクター。
  10.  前記プロモーターが、配列番号9で表される塩基配列、または該塩基配列中の1以上の塩基を置換、欠失、もしくは付加された塩基配列からなり、かつプロモーター活性を有する請求項9に記載のクローニングベクター。
  11.  請求項6~10のいずれか一項に記載のクローニングベクター中のクローニングサイトに、外来構造遺伝子を導入することを特徴とする発現ベクターの製造方法。
  12.  請求項6~10のいずれか一項に記載のクローニングベクター中のクローニングサイトに、外来構造遺伝子が導入されていることを特徴とする発現ベクター。
  13.  請求項12に記載の発現ベクターを、シゾサッカロミセス属酵母に導入することを特徴とする、シゾサッカロミセス属酵母の形質転換体の製造方法。
  14.  請求項12に記載の発現ベクターを含むことを特徴とする、シゾサッカロミセス属酵母の形質転換体。
  15.  請求項14に記載の形質転換体を培養し、得られた菌体または培養液上清から、前記外来構造遺伝子がコードする蛋白質を取得することを特徴とする蛋白質の製造方法。
PCT/JP2013/072195 2012-08-20 2013-08-20 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター WO2014030644A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380044077.2A CN104583387B (zh) 2012-08-20 2013-08-20 粟酒裂殖酵母突变体的转化体、以及克隆载体
EP13830894.5A EP2886642B1 (en) 2012-08-20 2013-08-20 Transformant of schizosaccharomyces pombe mutant, and cloning vector
JP2014531636A JP6206408B2 (ja) 2012-08-20 2013-08-20 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
US14/627,459 US9765347B2 (en) 2012-08-20 2015-02-20 Transformant of Schizosaccharomyces pombe mutant and cloning vector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181865 2012-08-20
JP2012181865 2012-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/627,459 Continuation US9765347B2 (en) 2012-08-20 2015-02-20 Transformant of Schizosaccharomyces pombe mutant and cloning vector

Publications (1)

Publication Number Publication Date
WO2014030644A1 true WO2014030644A1 (ja) 2014-02-27

Family

ID=50149952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072195 WO2014030644A1 (ja) 2012-08-20 2013-08-20 シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター

Country Status (5)

Country Link
US (1) US9765347B2 (ja)
EP (1) EP2886642B1 (ja)
JP (1) JP6206408B2 (ja)
CN (1) CN104583387B (ja)
WO (1) WO2014030644A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002733A1 (ja) * 2015-07-02 2017-01-05 旭硝子株式会社 クローニングベクター
WO2020175568A1 (ja) * 2019-02-28 2020-09-03 Agc株式会社 飼料用組成物
WO2023090305A1 (ja) * 2021-11-16 2023-05-25 東レ株式会社 核酸構築物

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515380A (ja) 1990-09-14 1993-01-26 Asahi Glass Co Ltd ベクター
WO1995009914A1 (fr) 1993-10-05 1995-04-13 Asahi Glass Company Ltd. Vecteur de multiclonage, vecteur d'expression, et production d'une proteine exogene au moyen dudit vecteur d'expression
JPH07163373A (ja) 1993-10-05 1995-06-27 Asahi Glass Co Ltd マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
WO1996023890A1 (fr) 1995-02-03 1996-08-08 Asahi Glass Company Ltd. Gene de signal de secretion et vecteur d'expression comprenant ce signal
JPH10234375A (ja) 1997-02-28 1998-09-08 Asahi Glass Co Ltd マルチクローニングベクター
WO1999023223A1 (en) 1997-10-31 1999-05-14 Asahi Glass Company Ltd. Induction promoter gene and secretory signal gene usable in $i(schizosaccharomyces pombe), expression vectors having the same, and use thereof
JPH11192094A (ja) 1997-10-31 1999-07-21 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能な誘導プロモータ、誘導発現ベクター、およびそれらの利用
JP2000106867A (ja) 1998-10-01 2000-04-18 Asahi Glass Co Ltd 非性的凝集性を有する分裂酵母
JP2000136199A (ja) 1998-10-29 2000-05-16 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能なシグナルペプチド、分泌型発現ベクター、およびそれらを用いたタンパク質生産方法
JP2000262284A (ja) 1999-03-18 2000-09-26 Asahi Glass Co Ltd シゾサッカロミセス・ポンベの形質転換方法
WO2002101038A1 (fr) 2001-05-29 2002-12-19 Asahi Glass Company, Limited Procede de construction d'un hote et procede de production d'une proteine etrangere
JP2004089127A (ja) * 2002-09-03 2004-03-25 Fuji Photo Film Co Ltd タンパク質の製造方法
JP2005198612A (ja) 2004-01-19 2005-07-28 Asahi Glass Co Ltd 酵母の形質転換方法
WO2007015470A1 (ja) 2005-08-03 2007-02-08 Asahi Glass Company, Limited 酵母宿主、形質転換体および異種タンパク質の製造方法
WO2007026617A1 (ja) 2005-08-29 2007-03-08 Asahi Glass Company, Limited 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
WO2007063919A1 (ja) 2005-11-29 2007-06-07 Asahi Glass Company, Limited 染色体改変方法
JP2008086310A (ja) 2006-09-04 2008-04-17 Gekkeikan Sake Co Ltd セルロース分解酵素を表層提示する酵母及びその利用
WO2010087344A1 (ja) 2009-01-27 2010-08-05 旭硝子株式会社 シゾサッカロミセス・ポンベの形質転換方法および形質転換体、ならびに異種蛋白質の製造方法
WO2012060389A1 (ja) 2010-11-05 2012-05-10 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体およびその製造方法
WO2012114978A1 (ja) * 2011-02-21 2012-08-30 旭硝子株式会社 変異体および該変異体の培養方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1149291C (zh) * 1997-05-27 2004-05-12 (株)韩-合纤 利用来自酿酒酵母的表达载体制备重组蛋白质的方法
CN100516207C (zh) * 2003-05-02 2009-07-22 诺维信股份有限公司 β-葡糖苷酶的变体
WO2012128260A1 (ja) 2011-03-24 2012-09-27 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体、該形質転換体の製造方法、β-グルコシダーゼの製造方法、およびセルロースの分解方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515380A (ja) 1990-09-14 1993-01-26 Asahi Glass Co Ltd ベクター
JP2776085B2 (ja) 1990-09-14 1998-07-16 旭硝子株式会社 ベクター
WO1995009914A1 (fr) 1993-10-05 1995-04-13 Asahi Glass Company Ltd. Vecteur de multiclonage, vecteur d'expression, et production d'une proteine exogene au moyen dudit vecteur d'expression
JPH07163373A (ja) 1993-10-05 1995-06-27 Asahi Glass Co Ltd マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
WO1996023890A1 (fr) 1995-02-03 1996-08-08 Asahi Glass Company Ltd. Gene de signal de secretion et vecteur d'expression comprenant ce signal
JPH10234375A (ja) 1997-02-28 1998-09-08 Asahi Glass Co Ltd マルチクローニングベクター
WO1999023223A1 (en) 1997-10-31 1999-05-14 Asahi Glass Company Ltd. Induction promoter gene and secretory signal gene usable in $i(schizosaccharomyces pombe), expression vectors having the same, and use thereof
JPH11192094A (ja) 1997-10-31 1999-07-21 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能な誘導プロモータ、誘導発現ベクター、およびそれらの利用
JP2000106867A (ja) 1998-10-01 2000-04-18 Asahi Glass Co Ltd 非性的凝集性を有する分裂酵母
JP2000136199A (ja) 1998-10-29 2000-05-16 Asahi Glass Co Ltd シゾサッカロミセス・ポンベで使用可能なシグナルペプチド、分泌型発現ベクター、およびそれらを用いたタンパク質生産方法
JP2000262284A (ja) 1999-03-18 2000-09-26 Asahi Glass Co Ltd シゾサッカロミセス・ポンベの形質転換方法
WO2002101038A1 (fr) 2001-05-29 2002-12-19 Asahi Glass Company, Limited Procede de construction d'un hote et procede de production d'une proteine etrangere
JP2004089127A (ja) * 2002-09-03 2004-03-25 Fuji Photo Film Co Ltd タンパク質の製造方法
JP2005198612A (ja) 2004-01-19 2005-07-28 Asahi Glass Co Ltd 酵母の形質転換方法
WO2007015470A1 (ja) 2005-08-03 2007-02-08 Asahi Glass Company, Limited 酵母宿主、形質転換体および異種タンパク質の製造方法
WO2007026617A1 (ja) 2005-08-29 2007-03-08 Asahi Glass Company, Limited 発現ベクター、それを導入した形質転換体、および異種タンパク質の製造方法
WO2007063919A1 (ja) 2005-11-29 2007-06-07 Asahi Glass Company, Limited 染色体改変方法
JP2008086310A (ja) 2006-09-04 2008-04-17 Gekkeikan Sake Co Ltd セルロース分解酵素を表層提示する酵母及びその利用
WO2010087344A1 (ja) 2009-01-27 2010-08-05 旭硝子株式会社 シゾサッカロミセス・ポンベの形質転換方法および形質転換体、ならびに異種蛋白質の製造方法
WO2012060389A1 (ja) 2010-11-05 2012-05-10 旭硝子株式会社 シゾサッカロミセス属酵母の形質転換体およびその製造方法
WO2012114978A1 (ja) * 2011-02-21 2012-08-30 旭硝子株式会社 変異体および該変異体の培養方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Koubo Bunshi Idengaku Jikken-Hou", 1996, JAPAN SCIENTIFIC SOCIETIES PRESS
AHN, J. ET AL.: "Small heat-shock protein Hsp9 has dual functions in stress adaptation and stress-induced G2-M checkpoint regulation via Cdc25 inactivation in Schizosaccharomyces pombe.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 417, no. 1, January 2012 (2012-01-01), pages 613 - 618, XP028438715 *
ANDREISHCHEVA ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 34, 20 August 2004 (2004-08-20), pages 35644 - 55
DATABASE GENBANK [online] 9 November 2007 (2007-11-09), WOOD. V. ET AL.: "Schizosaccharomyces pombe chromosome I", XP055192792, retrieved from NCBI Database accession no. CU329670.1 *
G. TAKADA ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 62, no. 8, 1998, pages 1615 - 1618
GIGA-HAMA AND KUMAGAI: "Foreign gene expression in fission yeast Schizosaccharomyces pombe", 1997, SPRINGER-VERLAG
J. SAMBROOK ET AL.: "Molecular Cloning, 2nd ed.", 1989, COLD SPRING HARBOR LABORATORY PRESS
K. OKAZAKI ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 6485 - 6489
M. D. ROSE ET AL.: "Methods In Yeast Genetics", 1990, COLD SPRING HARBOR LABORATORY PRESS
MATSUZAWA, T. ET AL.: "Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe.", MOL. MICROBIOL., vol. 82, no. 6, December 2011 (2011-12-01), pages 1531 - 1544, XP055192784 *
NATHAN J. BOWEN: "Retrotransposons and Their Recognition of pol 11 Promoters: A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe", GENOME RES., vol. 13, 2003, pages 1984 - 1997
NUCLEIC ACIDS RES., vol. 34, 2006, pages E11
PCR METHODS APPL., vol. 2, 1992, pages 28 - 33
SOARES, E.V.: "Flocculation in Saccharomyces cerevisiae: a review.", J. APPL. MICROBIOL., vol. 110, no. 1, 2011, pages 1 - 18, XP055192785 *
SOY PROTEIN RESEARCH, vol. 12, 2009, pages 78 - 83
YUICHI LINO: "Graduate School of Science, The University of Tokyo", MOLECULAR GENETICS RESEARCH LABORATORY

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002733A1 (ja) * 2015-07-02 2017-01-05 旭硝子株式会社 クローニングベクター
JPWO2017002733A1 (ja) * 2015-07-02 2018-04-19 旭硝子株式会社 クローニングベクター
US10351864B2 (en) 2015-07-02 2019-07-16 AGC Inc. Cloning vector
WO2020175568A1 (ja) * 2019-02-28 2020-09-03 Agc株式会社 飼料用組成物
JPWO2020175568A1 (ja) * 2019-02-28 2020-09-03
JP7480771B2 (ja) 2019-02-28 2024-05-10 Agc株式会社 飼料用組成物
WO2023090305A1 (ja) * 2021-11-16 2023-05-25 東レ株式会社 核酸構築物

Also Published As

Publication number Publication date
US20150240250A1 (en) 2015-08-27
EP2886642A4 (en) 2016-07-27
JP6206408B2 (ja) 2017-10-04
JPWO2014030644A1 (ja) 2016-07-28
CN104583387A (zh) 2015-04-29
EP2886642A1 (en) 2015-06-24
CN104583387B (zh) 2017-05-03
EP2886642B1 (en) 2019-07-24
US9765347B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
JP5772594B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
CN111378585B (zh) 用于表达外源基因的毕赤酵母突变株
JP2000509988A (ja) キシロースをエタノールに発酵するための安定な組換え酵母
US20160289690A1 (en) Mortierella alpina recombinant gene expression system and construction method and use thereof
JP7181542B2 (ja) シュードザイマ・アンタクティカの新規菌株
WO2012128260A1 (ja) シゾサッカロミセス属酵母の形質転換体、該形質転換体の製造方法、β-グルコシダーゼの製造方法、およびセルロースの分解方法
JP6206408B2 (ja) シゾサッカロミセス・ポンベ変異体の形質転換体、およびクローニングベクター
KR20130000883A (ko) 클루이베로마이세스 마르시아누스 내에서의 향상된 단백질 생산
WO2016056566A1 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
JP2009034036A (ja) 形質転換用酵母、形質転換方法及び物質生産方法
WO2010005044A1 (ja) 組換え酵母及びエタノールの製造方法
US20140120592A1 (en) Recombinant caldicellulosiruptor bescii and methods of use
WO2012060389A1 (ja) シゾサッカロミセス属酵母の形質転換体およびその製造方法
JP5148879B2 (ja) 難発現性タンパク質の分泌のためのタンパク質融合因子(tfp)を明らかにする方法、タンパク質融合因子(tfp)ライブラリーを製造する方法、及び難発現性タンパク質の組み換え的生産方法
KR100545563B1 (ko) 재조합 단백질 생산 능력이 향상된 사카로마이세스세레비지애 변이주
CN112805366A (zh) 里氏木霉的突变株和蛋白质的制造方法
JP6499587B2 (ja) 形質転換体およびその製造方法、ならびに乳酸の製造方法
WO2024045153A1 (zh) 一种提高重组人白蛋白表达量的方法和细胞和蛋白
JP5954315B2 (ja) 変異体および該変異体の培養方法
JP6515502B2 (ja) 形質転換体の製造方法、形質転換体、および単座組込み用ベクターキット
JP6620373B2 (ja) 形質転換体およびその製造方法、ならびに炭素数4のジカルボン酸の製造方法
WO2023023448A1 (en) Genetically modified yeast and fermentation processes for the production of lactate
JP2015043695A (ja) シゾサッカロミセス・ポンベゲノム縮小化株

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013830894

Country of ref document: EP