WO2014002648A1 - リチウムイオン二次電池用セパレータ - Google Patents

リチウムイオン二次電池用セパレータ Download PDF

Info

Publication number
WO2014002648A1
WO2014002648A1 PCT/JP2013/064055 JP2013064055W WO2014002648A1 WO 2014002648 A1 WO2014002648 A1 WO 2014002648A1 JP 2013064055 W JP2013064055 W JP 2013064055W WO 2014002648 A1 WO2014002648 A1 WO 2014002648A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
nonwoven fabric
ion secondary
secondary battery
woven fabric
Prior art date
Application number
PCT/JP2013/064055
Other languages
English (en)
French (fr)
Inventor
小西 宏明
小丸 篤雄
祐二 鶴田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201380045629.1A priority Critical patent/CN104603981B/zh
Priority to US14/411,274 priority patent/US9601737B2/en
Priority to EP13808739.0A priority patent/EP2869362B1/en
Priority to KR1020147036578A priority patent/KR20150032267A/ko
Publication of WO2014002648A1 publication Critical patent/WO2014002648A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a lithium ion secondary battery that is excellent in electrolytic solution retention, rate characteristics, and safety, can reduce the internal resistance of an electrochemical element, and can have a long life.
  • a battery separator such as lithium primary batteries, secondary batteries
  • Patent Document 1 "weight average molecular weight of 7 ⁇ 10 5 or more 1 wt% or more of ultra high molecular weight polyethylene containing And a polyethylene composition having a weight average molecular weight / number average molecular weight of 10 to 300, a thickness of 0.1 to 25 ⁇ m, a porosity of 40 to 95%, an average through hole diameter of 0.001 to 0.1 ⁇ m,
  • a lithium battery separator characterized by comprising a microporous membrane having a 10 mm width breaking strength of 0.5 kg or more is disclosed.
  • this type of separator has a very small pore size of submicron or less, when the viscosity of the electrolyte is high, the electrolyte is difficult to permeate the separator, resulting in poor battery assembly efficiency.
  • the pores are linearly formed in the thickness direction of the separator, the electrolyte holding capacity is slightly low, and the electrode expands and contracts with repeated charge and discharge, so the separator is pressed. There was a problem that the electrolyte held in the separator was pushed out and the capacity gradually decreased.
  • the object of the present invention is to provide a lithium ion secondary battery separator that eliminates the problems of the nonwoven fabric separator that the prior art has had, is thin but does not short-circuit, and has excellent electrolyte retention, rate characteristics, and safety. There is to do.
  • the present invention provides a nonwoven fabric having a basis weight of 2 to 20 g / m 2 composed of fibers made of a thermoplastic material and having an average fiber diameter of 5 to 40 ⁇ m, and an average of 1/5 to 3 times the weight of the nonwoven fabric.
  • the present invention also relates to a lithium ion secondary battery separator comprising a composite that is heat-compressed under a thickness of 10 to 40 ⁇ m and has a thickness of 10 to 40 ⁇ m.
  • the separator for a lithium ion secondary battery of the present invention is thin, and despite having a high porosity, it has a fine fiber and is safe without short-circuiting, and has excellent electrolyte retention and rate characteristics.
  • the separator for a lithium ion secondary battery of the present invention comprises a nonwoven fabric having a basis weight of 2 to 20 g / m 2 made of a thermoplastic material and having an average fiber diameter of 5 to 40 ⁇ m, and a weight of 1 / A composite composed of 5 to 3 times the amount of ultrafine fibers having an average fiber diameter of 1 ⁇ m or less, and when the nonwoven fabric is subjected to heat compression treatment, the glossiness of JIS standard (JIS Z 8741) at 60 degrees It is composed of a composite having a thickness of 10 to 40 ⁇ m by heat-pressing under the condition of 3 to 30 and a thickness of 10 to 40 ⁇ m.
  • JIS Z 8741 JIS Z 8741
  • the non-woven fabric before being subjected to the heat compression treatment is composed of fibers having an average fiber diameter of 5 to 40 ⁇ m made of a thermoplastic material. If the fiber diameter is larger than 40 ⁇ m, the nonwoven fabric becomes thick, which is not suitable. Further, a thick nonwoven fabric having a large volume has a problem that a large film portion is generated during the heat compression treatment, and the battery characteristics are deteriorated. On the other hand, when the fiber diameter is thinner than 5 ⁇ m, the strength of the nonwoven fabric is lowered.
  • the nonwoven fabric used in the present invention has a basis weight of preferably 2 to 20 g / m 2 , more preferably 4 to 10 g / m 2 . If the basis weight is less than 2 g / m 2 , the non-woven fabric becomes thin, so if used as a separator, there is a problem that the battery is short-circuited, and if it exceeds 20 g / m 2 , the non-woven fabric becomes thick and unsuitable as a separator.
  • the fibers constituting the nonwoven fabric are not particularly limited as long as they are made of a thermoplastic material having an average fiber diameter of 5 to 40 ⁇ m, but polyolefins such as polyethylene, polypropylene and polystyrene, polyethylene terephthalate, polytrimethylene terephthalate, Various thermoplastic materials such as polyesters such as polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyamide, polyimide, polyacrylonitrile, and polyvinyl alcohol can be used. These may be copolymers. These may be used alone or in combination of two or more.
  • the melting point of the thermoplastic material is desirably equal to or less than the melting point of the material constituting the ultrafine fiber. If the melting point of the material constituting the ultrafine fiber is low, the ultrafine fiber is first melted during the heat compression treatment, which is not preferable. However, a thermoplastic material having a high melting point can be used if it is combined with a thermoplastic material having a low melting point and a thermoplastic material having a low melting point is the main component.
  • polyolefins such as polyethylene (PE) and polypropylene (PP) can be preferably used, and in particular, composite fibers such as polyolefin core-sheath type composite fibers (core: PP, sheath: PE) are preferably used.
  • core-sheath type composite fiber the fibers can be easily fused to each other, and the fibers are fused by performing a heat compression treatment such as hot pressing or heat laminating, and the strength of the nonwoven fabric can be improved. It is also preferable to combine various fibers made of other thermoplastic materials as described above with the polyolefin core-sheath composite fiber.
  • the composite fiber is not limited to the core-sheath type, and side-by-side type, split type composite fiber, and the like are also preferably used. Moreover, what mixed the fiber which consists of each component which comprises the said composite fiber may be used. For example, when a mixture of fibers made of PP and fibers made of PE is used as a non-woven fabric, an effect close to that of a core (PP) -sheath (PE) type composite fiber can be obtained.
  • Non-woven fabric may contain various other fibers in addition to the fibers made of the thermoplastic material.
  • the type of fiber is not particularly limited, and for example, cellulose, various fluororesins, and the like can be used.
  • the weight ratio of the fiber made of the thermoplastic material to the other various fibers is preferably 60:40 to 100: 0. When the weight ratio of the thermoplastic material is less than 60%, it is difficult to reduce the thickness during the heat compression treatment, which is not preferable.
  • the nonwoven fabric is composed of a core-sheath type composite fiber having a thermoplastic material as a sheath component or other fiber made of the core-sheath type composite fiber and a thermoplastic material.
  • the porosity of the nonwoven fabric can be appropriately adjusted according to the type of fiber used, the heat compression treatment conditions, etc., but is preferably 30 to 80%, more preferably 50 to 80%, and still more preferably 60 to 80. %.
  • This non-woven fabric is heat-compressed without being combined with ultrafine fibers having an average fiber diameter of 1 ⁇ m or less, and the non-woven fabric has a glossiness of 15 to 30 and a thickness of 10 to 40 ⁇ m according to JIS standard (JIS Z 8741) at 60 degrees. Therefore, it is possible to obtain a lithium ion secondary battery separator that is thin and that is less likely to be short-circuited between electrodes and has improved safety.
  • JIS Z 8741 JIS Z 8741
  • the above nonwoven fabric is combined with ultrafine fibers having an average fiber diameter of 1 ⁇ m or less (hereinafter simply referred to as ultrafine fibers) to form a separator that does not cause a short circuit by closing relatively large holes. It was possible. Furthermore, in the present invention, even when the glossiness is 15 or less and the short ratio is 100%, the short ratio can be reduced to 0% by combining with ultrafine fibers.
  • the ultrafine fibers used in the present invention can be obtained by various methods such as a melt blown method, an electrospinning method, and a melt electrospinning method.
  • the material of the ultrafine fiber used in the present invention is not limited as long as it can be made into an ultrafine fiber such as various polyolefins, polyesters, polyvinyl alcohol, various fluororesins, polyimide, polyphenylene sulfide, and the like. These may be copolymers. Of these, those mainly composed of polypropylene are preferably used.
  • the ultrafine fibers may be long fibers or short fibers as long as they can be fused and fixed to the nonwoven fabric by heat compression treatment.
  • the ultrafine fibers may have a core-sheath structure.
  • the ultrafine fiber may be included and heat compression treatment may be performed to form a single nonwoven fabric.
  • non-woven fabrics and ultrafine fibers that have been heat-treated or not once are laminated and integrated by heat compression in the form of ultrafine fibers / nonwoven fabrics, nonwoven fabrics / extrafine fibers / nonwoven fabrics, or ultrafine fibers / nonwoven fabrics / extrafine fibers. May be used.
  • the thickness of the nonwoven fabric increases, so either polar fiber / nonwoven fabric or polar fiber / nonwoven fabric / ultrafine fiber is more desirable.
  • the proportion of ultrafine fibers used in the nonwoven fabric varies depending on the thickness, basis weight, porosity, etc. of the nonwoven fabric before being compounded, but cannot be determined unconditionally. It is used so that the thickness after treatment falls within a range of 10 to 40 ⁇ m, and is 1/5 to 3 times, preferably 1/2 to 2 times the weight of the nonwoven fabric. If the amount of ultrafine fibers is too small, the short-circuit rate will not be improved, and if too much ultrafine fibers are used, the basis weight and thickness of the composite nonwoven fabric may be affected.
  • the average fiber diameter of 5 basis weight consisting of fibers of ⁇ 40 [mu] m is 2 ⁇ 20g / m 2 nonwoven fabric made of thermoplastic material, by performing heat compression, JIS standards in 60 degrees (JIS Z 8741) has a glossiness of 3 to 30 and a thickness of 10 to 40 ⁇ m, and the heat compression treatment conditions for the nonwoven fabric are the same as the heat compression treatment to be applied to the composite of nonwoven fabric and ultrafine fiber described later. Is done.
  • the type of the composite product there is no particular limitation on the type of the composite product as long as it is a method of applying heat to the composite product to soften the fibers and partially melting, and applying pressure to reduce the thickness.
  • the method include hot pressing and thermal lamination.
  • FIG. 1 shows the relationship between the glossiness of the JIS standard at 60 degrees, the short-circuit rate, and the initial discharge capacity of a nonwoven fabric that does not contain ultrafine fibers.
  • the initial discharge capacity is maintained high when the glossiness of JIS standard at 60 degrees is 15 to 23, but the initial discharge capacity decreases as the glossiness becomes higher than 23. I understand. The reason for this is that by performing a stronger heat treatment, the number of fibers that melt is increased, and the film-like portion becomes larger as a whole nonwoven fabric. The number of film-like portions and the gloss level are in a proportional relationship. And since this film part does not permeate
  • the short-circuit rate is 0% when the glossiness of JIS standard at 60 degrees is 27 or more, but as the glossiness becomes lower than 27, the short-circuit rate also increases and the glossiness increases. When it is lower than 15, the short-circuit rate increases significantly.
  • a composite ultrafine fiber made of polyolefin having an average fiber diameter of 1 ⁇ m or less is subjected to heat compression treatment, so that it is thin and the electrodes are short-circuited. It is difficult to obtain a lithium ion secondary battery separator with improved safety.
  • FIG. 2 shows the relationship between the glossiness of the JIS standard at 60 degrees with a nonwoven fabric alone that does not contain ultrafine fibers, the initial charge / discharge capacity, and the short-circuit rate when ultrafine fibers and nonwoven fabrics are combined.
  • the reason for the glossiness of the nonwoven fabric alone not containing the ultrafine fibers is that, as described above, when the ultrafine fibers are contained, the ultrafine fibers scatter the light, thereby measuring the glossiness of the original nonwoven fabric fibers. Because it will be impossible.
  • the initial discharge capacity is determined by the glossiness of the nonwoven fabric before composite.
  • the short-circuit rate of a nonwoven fabric having a glossiness of 15 that was 50% short-circuit rate can be reduced to 0%.
  • the short-circuit rate of the nonwoven fabric having a glossiness of 10 or less, which was 100% short-circuit rate can be 0%, and can be used as a separator.
  • the optimum gloss range when combining ultrafine fibers and non-woven fabrics is determined by the initial charge / discharge capacity without being influenced by the short-circuit rate.
  • a non-woven fabric having a glossiness of 30 it is most preferable to have a glossiness of 20 or less in an area where the initial charge / discharge capacity does not decrease and a glossiness of 3 or more from the viewpoint of strength.
  • the heat compression treatment applied to the composite of the nonwoven fabric and the ultrafine fiber is performed in a range where the glossiness of JIS standard (JIS Z 8741) at 60 degrees is 3 to 30 when the nonwoven fabric alone is subjected to heat compression treatment.
  • the glossiness is 30 or less.
  • it is 25 or less, and further 20 or less is desirable.
  • the lower limit the fact that the glossiness is small even after heat compression indicates that the fibers are not fused by heat compression and there is a problem in strength. For this reason, a glossiness of 3 or higher is desirable.
  • the glossiness of the nonwoven fabric alone which does not include the ultrafine fibers, is used, but this is because when the glossiness is measured, if the ultrafine fibers are included, the ultrafine fibers scatter light. This is because the glossiness (influence on initial charge / discharge characteristics) of the original nonwoven fabric fiber cannot be measured.
  • Glossiness can be adjusted as appropriate according to the temperature and pressure during the heat compression treatment.
  • the pressure can be adjusted to increase the heat compression treatment temperature, and the pressure can be adjusted to increase the pressure to lower the heat compression treatment temperature. For example, when the melting point of the thermoplastic material used is low, the heat compression treatment temperature is lowered to obtain a predetermined glossiness.
  • the heat compression treatment temperature is appropriately determined depending on the type of thermoplastic material constituting the nonwoven fabric, but is usually in the range of 100 to 300 ° C., and preferably 100 to 160 ° C. when the thermoplastic material is polyolefin. .
  • a temperature range in which only the components to be heat-fused melt and other components do not melt is preferable.
  • the pressure is 0.5 to 3 MPa, preferably 1 to 1.5 MPa. At this time, it is also necessary to prevent the thickness of the nonwoven fabric after the heat compression treatment from being out of the range of 10 to 40 ⁇ m. At this time, it is necessary to consider the melting point difference between the nonwoven fabric and the ultrafine fiber so that the ultrafine fiber does not melt.
  • the thickness of the composite nonwoven fabric after the heat compression treatment used as the separator of the present invention varies depending on the fiber diameter and thickness of the composite nonwoven fabric before the heat compression treatment, and the heat compression treatment conditions, but needs to be 40 ⁇ m or less. . Those thicker than 40 ⁇ m cannot be used because they are not suitable as separators. In addition, Preferably it is 30 micrometers or less, More preferably, it is 25 micrometers or less. On the other hand, if the thickness of the laminate after the heat compression treatment is too thin, there will be problems in strength and handling properties, so it is necessary that the thickness is 10 ⁇ m or more, and preferably 15 ⁇ m or more.
  • the porosity of the composite nonwoven fabric after heat compression treatment can be appropriately adjusted depending on the type of fiber used, heat compression treatment conditions, etc., but is preferably 30 to 80%, more preferably 50 to 80%, More preferably, it is 60 to 80%.
  • a separator having a higher porosity has better battery characteristics.
  • the strength of the laminate is improved and the pore diameter between the fibers is small because the fibers are partially fused.
  • the separator for a lithium ion secondary battery of the present invention composed of such a composite nonwoven fabric is thin and has a high porosity, because the pore diameter between the fibers becomes smaller by combining the nonwoven fabric and the ultrafine fibers. It becomes difficult to short-circuit, and safety can be improved.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, a separator, a solvent, and a non-aqueous electrolyte. Any separator that can be normally used in a lithium ion secondary battery can be used except that the separator of the present invention is used as the separator.
  • the positive electrode and the negative electrode are generally composed of an active material, a binder polymer that binds the active material, and a current collector, and a conductive additive can be added for the purpose of improving the electrical conductivity of the electrode.
  • examples of the positive electrode active material include various lithium-containing transition metal oxides.
  • the present invention is not particularly limited thereto, and any positive electrode active material used for a so-called 4V class lithium ion secondary battery can be used. May be used, and examples mainly include lithium-containing transition metal oxides.
  • examples of lithium-containing transition metal oxides include LiCoO 2 , LiNiO 2 , LiNiCoO 2 , and LiMn 2 O 4. .
  • the negative electrode active material a material mainly composed of a carbon material that can be doped / undoped with lithium ions can be used.
  • the carbon material include polyacrylonitrile, phenol resin, phenol novolac resin, a sintered organic polymer such as cellulose, artificial graphite, and natural graphite.
  • the positive electrode preferably contains a conductive additive, and artificial graphite, carbon black (acetylene black), nickel powder, and the like are suitably used.
  • the conductive auxiliary agent is unnecessary in the negative electrode, but may be contained.
  • Binder polymers include polyvinylidene fluoride (PVdF), PVdF copolymer resins such as copolymers of vinylidene fluoride and hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV), and tetrafluoroethylene, polytetrafluoroethylene.
  • PVdF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • PFMV perfluoromethyl vinyl ether
  • tetrafluoroethylene polytetrafluoroethylene.
  • Fluoropolymers such as fluoroethylene and fluororubber, hydrocarbon polymers such as styrene-butadiene copolymer and styrene-acrylonitrile copolymer, carboxymethylcellulose, polyimide resin, etc. can be used, but are not limited to these is not. These may be used alone or in combination of two or more.
  • a material having excellent oxidation resistance is used for the positive electrode
  • a material having excellent reduction resistance is used for the negative electrode.
  • examples of the positive electrode current collector include aluminum and stainless steel
  • examples of the negative electrode current collector include copper, nickel, and stainless steel.
  • about a shape, a foil shape and a mesh shape can be used.
  • the mixing ratio of the active material, the binder polymer and the conductive assistant is preferably in the range of 3 to 30 parts by weight of the binder polymer with respect to 100 parts by weight of the active material.
  • the conductive assistant is included, it is in the range of 10 parts by weight or less. You can do it.
  • the non-aqueous electrolyte used in the lithium ion secondary battery an electrolytic solution in which a lithium salt is dissolved in a solvent is used.
  • the solvent to be used is not particularly limited as long as it is a polar organic solvent having 10 or less carbon atoms generally used in lithium ion secondary batteries.
  • propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate Mention may be made of methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, sulfolane, acetonitrile and the like or mixtures thereof.
  • lithium salt dissolved in the solvent examples include lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium trifluorosulfonate, lithium perfluoromethylsulfonylimide, lithium Examples include fluoroethylsulfonylimide. These may be mixed.
  • concentration of the dissolved lithium salt is preferably in the range of 0.2 to 2 M / L.
  • a method is generally used in which a joined body in which a positive electrode and a negative electrode are joined via a separator of the present invention is put in an exterior, and a nonaqueous electrolyte is injected and then sealed.
  • a vacuum injection method is preferably used for the injection of the non-aqueous electrolyte, but is not particularly limited thereto.
  • the joined body may be impregnated with a non-aqueous electrolyte before being put in the exterior.
  • the electrode and the separator are bonded and integrated.
  • Adhesion between the separator and the electrode is mainly performed by a thermocompression bonding method, and this may be performed in a dry state not containing a non-aqueous electrolyte or in a wet state containing a non-aqueous electrolyte.
  • the adhesiveness between the separator and the electrode is good, it is possible to manufacture a battery without going through the thermocompression bonding step.
  • the shape of the lithium ion secondary battery thus obtained is not particularly limited, and may be any shape such as a cylindrical shape, a flat shape such as a square shape, and a button shape.
  • Examples of the exterior include a pack made of a steel can, an aluminum can, and an aluminum laminate film, but are not particularly limited thereto.
  • Average fiber diameter The surface of the obtained fiber assembly was photographed (a magnification of 7000 times) with a scanning electron microscope (SU-1500, manufactured by Hitachi, Ltd.). Ten photographs were randomly selected, the diameters of all the fibers in the photographs were measured, and the average value of the diameters of all the fibers contained in the ten photographs was determined as the average diameter of the fibers.
  • Gloss meter The glossiness at 60 degrees of the nonwoven fabric was measured with a glossmeter (PG-IIM manufactured by Nippon Denshoku Industries Co., Ltd.). About the TD direction MD direction of a nonwoven fabric, it measured 5 each at random, and made the average value of a total of 10 measurements the glossiness of a nonwoven fabric.
  • LiCoO 2 lithium cobaltate
  • acetylene black 1.5 g of acetylene black
  • 3 g of PVdF 3 g of PVdF
  • NMP N-methyl-pyrrolidone
  • NMP N-methyl-pyrrolidone
  • the electrolyte was a mixed solvent prepared by adjusting ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 3: 7, lithium hexafluorophosphate (LiPF 6 ), and an electrolyte concentration of 1.2 M / L. And dissolved.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • Example 1 Preparation of laminate separator A1
  • core-sheath fiber core: polypropylene, sheath: polyethylene
  • cellulose fiber having an average fiber diameter of 5 ⁇ m
  • a nonwoven fabric a having an amount of 4 g / m 2 was obtained.
  • a polypropylene ultrafine fiber having an average fiber diameter of 1 ⁇ m, which is equal to the weight of the nonwoven fabric a, is laminated and subjected to heat compression treatment (thermal lamination method) at 135 ° C.
  • Separator A1 had a thickness of 22 ⁇ m and a basis weight of 8 g / m 2 .
  • the glossiness of the JIS standard (JIS Z 8741) at 60 degrees when the nonwoven fabric a alone was subjected to heat compression treatment at 135 ° C. and 1 MPa was 4.
  • the short-circuit rate of the lithium ion secondary battery provided with the separator A1 was 0%, and the initial discharge capacity was as extremely high as 140 mAh / g.
  • Example 2 (Preparation of laminate separator A2) On the nonwoven fabric a, 1 ⁇ 2 times the weight of the nonwoven fabric a is laminated with an extra fine fiber made of polypropylene having an average fiber diameter of 1 ⁇ m, and subjected to heat compression treatment (thermal laminating method) at 135 ° C. and 1 MPa. Body separator A2 was produced. Separator A2 had a thickness of 22 ⁇ m and a basis weight of 6 g / m 2 . The short-circuit rate of the lithium ion secondary battery provided with the separator A2 was 0%, and the initial discharge capacity was as extremely high as 140 mAh / g.
  • Example 3 Preparation of laminate separator B1
  • core-sheath fiber core: polypropylene, sheath: polyethylene
  • core polypropylene, sheath: polyethylene
  • cellulose fiber having an average fiber diameter of 5 ⁇ m
  • a nonwoven fabric b having an amount of 6 g / m 2 was obtained.
  • 1/3 times the weight of the non-woven fabric b is laminated with an ultrafine fiber made of polypropylene having an average fiber diameter of 1 ⁇ m and subjected to heat compression treatment (thermal laminating method) at 135 ° C. and 1.5 MPa.
  • a laminate separator B1 was produced. Separator B1 had a thickness of 24 ⁇ m and a basis weight of 8 g / m 2 .
  • the glossiness of the JIS standard (JIS Z 8741) at 60 degrees when the nonwoven fabric b alone was subjected to a heat compression treatment at 135 ° C. and 1.5 MPa was 11.
  • the short-circuit rate of the lithium ion secondary battery provided with the separator B1 was 0%, and the initial discharge capacity was as extremely high as 140 mAh / g.
  • Example 4 (Preparation of laminate separator C1) A core-sheath fiber (core: polypropylene, sheath: polyethylene) having an average fiber diameter of 15 ⁇ m and cellulose fiber having an average fiber diameter of 5 ⁇ m are made by a wet papermaking method at a weight ratio of 85:15, and the film thickness is 34 ⁇ m. A nonwoven fabric c having an amount of 8 g / m 2 was obtained. On the non-woven fabric c, 1/3 times the weight of the non-woven fabric c is laminated with polypropylene ultrafine fibers having an average fiber diameter of 1 ⁇ m, and subjected to heat compression treatment (thermal lamination method) at 135 ° C. and 1.5 MPa.
  • core polypropylene, sheath: polyethylene
  • a laminate separator C1 was produced. Separator C1 had a thickness of 25 ⁇ m and a basis weight of 11 g / m 2 .
  • the glossiness of the JIS standard (JIS Z 8741) at 60 degrees when the nonwoven fabric c alone was subjected to heat compression treatment at 135 ° C. and 1.5 MPa was 15.
  • the short-circuit rate of the lithium ion secondary battery provided with the separator C1 was 0%, and the initial discharge capacity was extremely high at 140 mAh / g.
  • FIG. 1 shows the relationship between the glossiness of the JIS standard (JIS Z 8741) at 60 degrees, which is a non-woven fabric alone, containing no ultrafine fibers, the battery short-circuit rate, and the initial discharge capacity of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン二次電池用途としては不向きであった不織布セパレータの欠点を解消し、薄いが短絡せず、電解液保持性、レート特性に優れたリチウムイオン二次電池用セパレータとして、熱可塑性材料からなる平均繊維径5~40μmの繊維で構成される坪量が2~20g/mの不織布と、不織布に対して重量で1/5~3倍量の平均繊維径1μm以下の極細繊維とからなる複合体であって、不織布のみに加熱圧縮処理を施したときに、その60度におけるJIS規格(JIS Z 8741)の光沢度が3~30の範囲内、かつ厚みが10~40μmとなる条件にて加熱圧縮処理を施し、厚みを10~40μmとした複合体からなるリチウムイオン二次電池用セパレータを提供する。

Description

リチウムイオン二次電池用セパレータ
 本発明は、電解液保持性、レート特性、安全性に優れ、電気化学素子の内部抵抗を低くし、長寿命にし得るリチウムイオン二次電池用セパレータに関するものである。
 各種電池に用いられるセパレータに要求される最も重要な特性として電解液保持性が挙げられる。この電解液保持性が低い場合には、電気化学素子の内部抵抗が高くなってしまい、その結果、電気化学素子の容量不足、電圧低下、短寿命化などの問題が生じる。
 例えば、リチウム一次・二次電池などの電池セパレータとして、特開平3-105851号公報(特許文献1)には、「重量平均分子量が7×10以上の超高分子量ポリエチレンを1重量%以上含有し、重量平均分子量/数平均分子量が10~300のポリエチレン組成物からなり、厚さが0.1~25μm、空孔率が40~95%、平均貫通孔径が0.001~0.1μm、10mm幅の破断強度が0.5kg以上である微多孔膜からなることを特徴とするリチウム電池用セパレータ」が開示されている。
 しかし、このタイプのセパレータは、細孔径がサブミクロン以下と極めて小さいため、電解液の粘性が高い場合には、電解液がセパレータに浸透しにくく、電池組立効率が悪い問題があった。また、細孔がセパレータの厚み方向に直線的に形成されているため、電解液の保持能力がやや低く、充放電の繰り返しに伴って電極の膨張・収縮が進行するため、セパレータが圧迫されてセパレータに保持されている電解液が押し出され、容量が徐々に低下する問題があった。
 このため、最近では吸液性等に優れる不織布をセパレータとして用いることが提案されている。不織布の場合は、厚み方向に繊維一本一本が比較的無秩序に積層しているため、細孔が直線的には形成されず、電解液保持性に優れる利点がある。
 しかし、従来の不織布では薄くしすぎると、正負極が短絡する可能性があり、逆に厚くすると、正負極の短絡を防止できるが、エネルギー密度が低下するという欠点があり、リチウムイオン二次電池用途としては、不向きであった。
特開平3-105851号公報
 本発明の目的は、従来技術が有していた不織布セパレータの問題点を解消し、薄いが短絡せず、電解液保持性、レート特性、安全性に優れたリチウムイオン二次電池用セパレータを提供することにある。
 本発明者らは、上記課題について鋭意検討を重ねた結果、本発明を完成するに至った。
 すなわち本発明は、熱可塑性材料からなる平均繊維径5~40μmの繊維で構成される坪量が2~20g/mの不織布と、不織布に対して重量で1/5~3倍量の平均繊維径1μm以下の極細繊維とからなる複合体であって、不織布のみに加熱圧縮処理を施したときに、その60度におけるJIS規格(JIS Z 8741)の光沢度が3~30の範囲内、かつ厚みが10~40μmとなる条件にて加熱圧縮処理を施し、厚みを10~40μmとした複合体からなるリチウムイオン二次電池用セパレータに関する。
 本発明のリチウムイオン二次電池用セパレータは薄く、高い空隙率にも関わらず、微細な繊維を有するため短絡することが無く安全であり、また電解液保持性、レート特性にも優れている。
極細繊維を含まない、不織布単独での60度におけるJIS規格(JIS Z 8741)の光沢度と、電池のショート率および電池の初期放電容量との関係を示す図である。 極細繊維を含まない、不織布単独での60度におけるJIS規格(JIS Z 8741)の光沢度と、極細繊維と不織布を複合させた、複合不織布のショート率および電池の初期充放電容量との関係を示す図である。
 以下、本発明について詳細に説明する。
 本発明のリチウムイオン二次電池用セパレータは、熱可塑性材料からなる平均繊維径5~40μmの繊維で構成される坪量が2~20g/mの不織布と、不織布に対して重量で1/5~3倍量の平均繊維径1μm以下の極細繊維とからなる複合体であって、不織布のみに加熱圧縮処理を施したときに、その60度におけるJIS規格(JIS Z 8741)の光沢度が3~30の範囲内、かつ厚みが10~40μmとなる条件にて加熱圧縮処理を施し、厚みを10~40μmとした複合体からなる。
 加熱圧縮処理を施す前の不織布は、熱可塑性材料からなる平均繊維径が5~40μmの繊維で構成される。繊維径が40μmよりも大きくなってしまうと、不織布が厚くなってしまうため不適である。また、太くて体積の大きい不織布は、加熱圧縮処理時に大きなフィルム部分を生じさせてしまい、電池特性を悪化させてしまう問題がある。一方、繊維径が5μmよりも細くなると、不織布の強度が低下してしまう。
 本発明で用いる不織布は、坪量が好ましくは2~20g/m、より好ましくは4~10g/mの範囲内のものが用いられる。坪量が2g/mに満たないと不織布が薄くなるためセパレータとして用いると電池がショートしてしまう問題があり、20g/mを超えると不織布が厚くなるためセパレータとして不適となる。
 不織布を構成する繊維は、平均繊維径が5~40μmの熱可塑性材料からなるものであれば特に制限されるものではないが、ポリエチレン、ポリプロピレン、ポリスチレン等のポリオレフィン、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル、ポリアミド、ポリイミド、ポリアクリロニトリル、およびポリビニルアルコールなどの各種熱可塑性材料を用いることができる。これらは共重合体であってもよい。これらは1種類で使用しても良く、また2種以上を組み合わせて使用しても良い。熱可塑性材料の融点は、極細繊維を構成する材料の融点と同等以下であることが望ましい。極細繊維を構成する材料の融点が低ければ、加熱圧縮処理時に、極細繊維の方が先に融解してしまうため、好ましくない。ただし、融点の高い熱可塑性材料も、融点の低い熱可塑性材料と組み合わせ、融点の低い熱可塑性材料が主成分となっていれば、使用する事は可能である。
 本発明においては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンを好ましく用いることができ、特に複合繊維、例えばポリオレフィンの芯鞘型複合繊維(芯:PP、鞘:PE)が好ましく用いられる。芯鞘型複合繊維では繊維同士の融着が容易であり、熱プレスや熱ラミネート等の加熱圧縮処理を行うことにより繊維同士が融着し、不織布の強度を向上させることができる。また、このポリオレフィンの芯鞘型複合繊維に、前記した他の熱可塑性材料からなる各種繊維を組み合わせることも好ましく採用される。
 複合繊維は、芯鞘型に制限されず、サイドバイサイド型、分割型複合繊維等も好ましく用いられる。また、前記複合繊維を構成する成分各々からなる繊維同士を混合したものであってもよい。例えば、PPからなる繊維とPEからなる繊維同士を混合したものを不織として用いた場合、芯(PP)鞘(PE)型複合繊維に近い効果が得られる。
 不織布は、前記の熱可塑性材料からなる繊維以外に、他の各種繊維を含んでいても良い。繊維の種類は特に制限されるものではないが、例えば、セルロース、各種フッ素系樹脂等を用いることができる。他の各種繊維を含む場合、熱可塑性材料からなる繊維と他の各種繊維との重量比は60:40~100:0であることが好ましい。熱可塑性材料の重量比が60%未満の場合、加熱圧縮処理時に薄型化しにくくなり好ましくない。
 本発明においては、不織布が、熱可塑性材料を鞘成分とする芯鞘型複合繊維または該芯鞘型複合繊維と熱可塑性材料からなる他の繊維から構成されているものが特に好ましい。
 不織布の空孔率は、用いる繊維の種類、加熱圧縮処理条件等によって適宜調整することができるが、30~80%とすることが好ましく、より好ましくは50~80%、更に好ましくは60~80%である。
 この不織布を平均繊維径1μm以下の極細繊維と複合することなく加熱圧縮処理を施し、60度におけるJIS規格(JIS Z 8741)の光沢度を15~30、厚みを10~40μmの不織布とすることによっても、薄型でかつ電極間がショートしにくく安全性が高まったリチウムイオン二次電池用セパレータを得ることができる。しかしながら、図1に示したように、光沢度15のものはショート率が約5割となり、不織布に比較的大きな穴が開いている可能性が高く改善が求められる。
 本発明では、上記の不織布に、平均繊維径1μm以下の極細繊維(以下、単に極細繊維という。)を組み合わせて複合化する事により、比較的大きな穴を塞ぐことでショートが起こらないセパレータに改善することができたものである。さらに本発明においては、光沢度が15以下でショート率が100%のものであっても、極細繊維と組み合わせることでショート率を0%とすることを可能としたものである。
 本発明で用いる極細繊維は、例えば、メルトブローン法、エレクトロスピニング法、溶融エレクトロスピニング法等の各種方法によって得ることができる。
 本発明で用いる極細繊維の材質は、各種のポリオレフィン、ポリエステル、ポリビニルアルコール、各種フッ素樹脂、ポリイミド、ポリフェニレンスルフィド等、極細繊維化できるものであればその種類を問わない。これらは共重合体であってもよい。これらの内、ポリプロピレンを主成分とするものが好ましく用いられる。また、極細繊維は、加熱圧縮処理により不織布と融着固定する事ができる限りにおいて、長繊維でも短繊維でも構わない。また極細繊維が芯鞘構造を有していても構わない。
 不織布と極細繊維を複合化するにあたっては、元の不織布を製造する時点で、極細繊維を含ませておき、加熱圧縮処理を行うことで1枚の不織布としても良い。或いは、一度熱処理をしてある、またはしていない不織布と極細繊維を、極細繊維/不織布、不織布/極細繊維/不織布、極細繊維/不織布/極細繊維のいずれの形状で、加熱圧縮処理により積層一体化しても良い。積層一体化する場合、不織布/極細繊維/不織布の場合、不織布の厚みが増してしまうため、極性繊維/不織布、または極性繊維/不織布/極細繊維のどちらかがより望ましい。
 複合化に際し、不織布に対する極細繊維の使用割合は、複合化される前の不織布の厚さ、坪量、空孔率等によって変化するため一概に決定することはできないが、不織布と組み合わせて加熱圧縮処理した後の厚みが10~40μmに収まる範囲になるよう使用され、また不織布の重量に対して1/5~3倍の範囲であり、好ましくは1/2~2倍の範囲である。極細繊維の量が少なすぎるとショート率は改善されず、また極細繊維を用いすぎると、複合不織布の坪量や厚みに影響が出るおそれがある。
 本発明において、熱可塑性材料からなる平均繊維径5~40μmの繊維で構成される坪量が2~20g/mの不織布に、加熱圧縮処理を施すことで、60度におけるJIS規格(JIS Z 8741)の光沢度が3~30の範囲内、かつ厚みが10~40μmに成りうる不織布における加熱圧縮処理条件とは、後記する不織布と極細繊維の複合品に施す加熱圧縮処理と同じ条件が適用される。
 複合品の加熱圧縮処理方法については、複合品に熱を加えて繊維を軟化させ、一部融解させながら、圧力を加えて薄型化する方法であればその種類については特に制限はなく、例えば、熱プレス、熱ラミネート等の方法を挙げることができる。
 図1は、極細繊維を含まない不織布単独での、60度におけるJIS規格の光沢度と、ショート率および初期放電容量との関係を示したものである。図1に示すように、60度におけるJIS規格の光沢度が15~23までは初期放電容量を高く維持しているが、光沢度が23より高くなるに従って初期放電容量は低下していくのが分かる。この理由として、より強い熱処理を行っていくことで、溶融する繊維が増え、不織布全体としてフィルム状部分が大きくなる。フィルム状部分の多さと光沢度は比例関係にある。そして、このフィルム部分はイオンを透過しないため初期放電容量が低下する。
 一方、ショート率の観点からみると、60度におけるJIS規格の光沢度が27以上ではショート率は0%であるが、光沢度が27より低くなるにつれショート率も増加していき、光沢度が15よりも低くなるとショート率は大幅に増加する。
 本発明では、ショート率が5割以上となるような不織布に対しても、平均繊維径1μm以下のポリオレフィン製極細繊維を複合化して加熱圧縮処理を施すことによって、薄型でかつ電極間がショートしにくく安全性が高まったリチウムイオン二次電池用セパレータを得ることができる。
 図2では極細繊維を含まない不織布単独での60度におけるJIS規格の光沢度と、極細繊維と不織布を組み合わせた場合の、初期充放電容量、ショート率の関係を示している。極細繊維を含まない不織布単独の光沢度とした理由は、先述した通り、極細繊維が含まれている場合、極細繊維が光を散乱させてしまうことで、元の不織布繊維の光沢度を測定することができなくなってしまうからである。極細繊維を含む複合不織布において、初期放電容量は、複合前の不織布の光沢度によって決定される。極細繊維と組み合わせることで、ショート率が50%であった光沢度15の不織布のショート率を0%とすることができる。また、ショート率100%だった光沢度10以下の不織布のショート率も0%とすることができ、セパレータとして使用することが可能となる。
 従って、極細繊維と不織布を組み合わせた場合の最適な光沢度の範囲は、ショート率によっては左右されず、初期充放電容量によって規定される。光沢度30の不織布でも使用することは可能であるが、最も好ましいのは初期充放電容量が低下しない光沢度20以下の領域であり、かつ強度面から光沢度3以上であることが望ましい。
 本発明において、不織布と極細繊維の複合品に施す加熱圧縮処理は、不織布単独で加熱圧縮処理した場合、60度におけるJIS規格(JIS Z 8741)の光沢度が3~30となる範囲で行われるが、光沢度を30以下とすることが重要である。好ましくは25以下であり、更には20以下が望ましい。下限について、加熱圧縮後も光沢度が小さいということは、繊維が加熱圧縮により融着せず、強度に問題があることを示している。このため、光沢度3以上が望ましい。ここで、極細繊維を含んでいない、不織布単独での光沢度としたが、これは光沢度を測定する際に、極細繊維が含まれている場合、極細繊維が光を散乱させてしまうことで、元の不織布繊維の光沢度(初期充放電特性への影響)を測定することができなくなってしまうからである。
 光沢度は加熱圧縮処理時の温度と圧力によって適宜調整することができる。通常、加熱圧縮処理温度を上げるときは圧力を下げ、加熱圧縮処理温度を下げるときは圧力を上げること等により調整を行うことができる。例えば、用いる熱可塑性材料の融点が低いときは、加熱圧縮処理温度を低くして所定の光沢度を得るものである。
 本発明において、加熱圧縮処理温度としては、不織布を構成する熱可塑性材料の種類によって適宜決定するが、通常100~300℃の範囲であり、熱可塑性材料がポリオレフィンのときは100~160℃が好ましい。複合繊維を用いるときは、熱融着すべき成分のみが融解し、他の成分が融解しない温度範囲が好ましい。また、圧力は0.5~3MPa、好ましくは1~1.5MPaであり、その際、加熱圧縮処理後の不織布の厚さが10~40μmの範囲から外れないようにすることも必要である。このとき、不織布と極細繊維の融点差を考慮し、極細繊維が溶けることがないようにする必要がある。
 本発明のセパレータとして用いられる加熱圧縮処理後の複合不織布の厚みは、加熱圧縮処理前の複合不織布の繊維径や厚み、また加熱圧縮処理条件によって変化するが、40μm以下とすることが必要である。40μmよりも厚いものについては、セパレータとして不適であるため使用することができない。なお、好ましくは30μm以下、更に好ましくは25μm以下である。一方、加熱圧縮処理後の積層体の厚みが薄すぎると強度やハンドリング性にも問題が出てくるため、10μm以上であることが必要であり、好ましくは15μm以上である。
 加熱圧縮処理後の複合不織布の空孔率は、用いる繊維の種類、加熱圧縮処理条件等によって適宜調整することができるが、30~80%とすることが好ましく、より好ましくは50~80%、更に好ましくは60~80%である。空孔率が高いセパレータの方が電池特性は良好である。
 以上のようにして得られた本発明の複合不織布は、繊維が一部融着することにより、積層体の強度が向上していると共に、繊維間の孔径が小さい。かかる複合不織布からなる本発明のリチウムイオン二次電池用セパレータは、不織布と極細繊維を複合化することにより繊維間の孔径がより小さくなるため、薄く、高い空隙率にも関わらず、電極間がショートしにくくなり、安全性を高めることができる。
 次に、本発明のセパレータを備えたリチウムイオン二次電池について説明する。
 リチウムイオン二次電池は、負極、正極、セパレータ、溶媒および非水系電解質を備えているものである。セパレータとして本発明のセパレータを用いる以外は、リチウムイオン二次電池で通常用いることができるものをいずれも使用することができる。
 正極及び負極は、一般に活物質と、活物質を結着するバインダーポリマー及び集電体からなり、電極の電導度の向上を目的として導電助剤を添加することも可能である。
 ここで、正極活物質としては、種々のリチウム含有遷移金属酸化物を挙げることができが、特にこれに限定されるものではなく、いわゆる4V級リチウムイオン二次電池に用いる活物質であればいずれを用いてもよいが、リチウム含有遷移金属酸化物から主としてなるものを挙げることができ、リチウム含有遷移金属酸化物の例として、LiCoO、LiNiO、LiNiCoO、LiMnなどが挙げられる。
 負極活物質としてはリチウムイオンをドープ・脱ドープ可能な炭素材料から主としてなるものを用いることができる。ここで、炭素材料としては、ポリアクリロニトリル、フェノール樹脂、フェノールノボラック樹脂、セルロースなどの有機高分子を焼結したもの、人造黒鉛や天然黒鉛を挙げることができる。
 また、正極には、導電助剤を含んでいることが好ましく、人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などが好適に用いられる。一方、負極中には導電助剤は不要であるが含んでいてもよい。
 バインダーポリマーとしては、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデンとヘキサフロロプロピレン(HFP)やパーフロロメチルビニルエーテル(PFMV)及びテトラフロロエチレンとの共重合体などのPVdF系共重合体樹脂、ポリテトラフロロエチレン、フッ素ゴムなどのフッ素樹脂やスチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体などの炭化水素系ポリマーや、カルボキシメチルセルロース、ポリイミド樹脂などを用いることができるが、これらに限定されるものではない。またこれらは単独で用いても、2種以上を混合してもどちらでもよい。
 集電体については、正極には耐酸化性に優れた材料が用いられ、負極には耐還元性に優れた材料が用いられる。具体的には、正極集電体としてはアルミニウム、ステンレススチールなどを挙げることができ、負極集電体としては、銅、ニッケル、ステンレススチールを挙げることができる。また、形状については箔状、メッシュ状のものを用いることができる。特に、正極集電体としてはアルミニウム箔、負極集電体としては銅箔を用いることが好ましい。
 活物質、バインダーポリマー、導電助剤の配合比は、活物質100質量部に対してバインダーポリマー3~30質量部の範囲が好ましく、導電助剤を含ませる場合には、10質量部以下の範囲にすればよい。
 リチウムイオン二次電池に用いる非水系電解質としては、リチウム塩を溶媒に溶解した電解液が用いられる。使用する溶媒はリチウムイオン二次電池に一般的に用いられている炭素数10以下の極性有機溶媒であれば特に限定されるものではなく、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、スルフォラン、アセトニトリル等またはこれらの混合物を挙げることができる。
 前記溶媒に溶解するリチウム塩としては、過塩素酸リチウム、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、六フッ化砒酸リチウム、トリフロロスルホン酸リチウム、リチウムパーフロロメチルスルホニルイミド、リチウムパーフロロエチルスルホニルイミド等が挙げられる。またこれらを混合しても構わない。溶解するリチウム塩の濃度は0.2~2M/Lの範囲が好適に用いられる。
 本発明のセパレータを備えたリチウムイオン電池の製造方法としては、特に限定はなく、公知のリチウムイオン二次電池の製造方法をいずれも採用してもよい。
 具体的には、本発明のセパレータを介して正極及び負極を接合させた接合体を外装内に入れ、非水系電解質を注入した後、封じることにより製造する方法が一般的である。ここで、非水系電解質の注入には、真空注入法が好適に用いられるが、特にこれに限定されるものではない。また外装内に入れる前に、この接合体に非水系電解液を含浸させてもよい。
 外装がアルミラミネートフィルムからなるパックであるような、いわゆるフィルム外装電池では、電極とセパレータとが接着されて一体化していることが好ましい。
 セパレータと電極との接着は、主に熱圧着法で行なわれ、これは非水系電解質を含まないドライ状態で行なってもよいし、非水系電解質を含んだウェット状態で行なってもよい。また、セパレータと電極との接着性が良好な場合には、熱圧着工程を経ずに電池を製造することも可能である。
 このようにして得られるリチウムイオン二次電池の形状には特に限定はなく、円筒形、角型のような扁平型及びボタン型などのあらゆる形状であってよい。
 外装としては、スチール缶、アルミ缶、アルミラミネートフィルムからなるパックが挙げられるが、特にこれらに限定されるものではない。
 以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例に何等限定を受けるものではない。また実施例中における各値は下記の方法で求めた。
(1)繊維の平均径:
 得られた繊維の集合体の表面を走査型電子顕微鏡(株式会社日立製作所製SU-1500)により撮影(倍率7000倍)した。得た写真を無作為に10枚選び、写真内のすべての繊維の径を測定し、写真10枚の中に含まれるすべての繊維径の平均値を求めて、繊維の平均径とした。
(2)光沢度計:
 不織布の60度における光沢度は、光沢度計(日本電色工業株式会社製PG-IIM)により測定した。不織布のTD方向MD方向について、それぞれ5箇所ずつ無作為に測定を行い、合計10個の測定の平均値を不織布の光沢度とした。
<正極の作製>
 コバルト酸リチウム(LiCoO)粉末25.5g、アセチレンブラック1.5g、PVdF3g、N-メチル-ピロリドン(NMP)27gを均一になるように混合し、正極剤ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布、乾燥させた。これを直径15mmに打ち抜いた後、プレスを行い正極を得た。
<負極の作製>
 人造黒鉛15g、アセチレンブラック0.16g、PVdF0.8g、N-メチル-ピロリドン(NMP)11.2gを、厚さ20μmの銅箔上に塗布、乾燥させた。これを直径15mmに打ち抜いた後、プレスを行い負極を得た。
<非水系電解液の調整>
 電解液はエチレンカーボネート(EC)とジメチルカーボネート(DMC)とを3:7の体積比で調整した混合溶媒に、六フッ化リン酸リチウム(LiPF)を、電解質濃度が1.2M/Lになるように加え、溶解させた。
[実施例1]
(積層体セパレータA1の作製)
 平均繊維径15μmの芯鞘型繊維(芯:ポリプロピレン、鞘:ポリエチレン)と、平均繊維径5μmのセルロース繊維とを、90:10の重量比で、湿式抄紙法により抄紙し、膜厚20μm、坪量4g/mの不織布aを得た。不織布aの上に、不織布aの重量に対して等倍量の平均繊維径1μmのポリプロピレン製の極細繊維を積層し、135℃、1MPaで加熱圧縮処理(熱ラミネート法)を施し、積層体セパレータA1を作製した。セパレータA1の厚みは22μm、坪量は8g/mであった。なお、不織布a単独を135℃、1MPaで加熱圧縮処理を施したときの、60度におけるJIS規格(JIS Z 8741)の光沢度は4であった。
 セパレータA1を備えたリチウムイオン二次電池のショート率は0%であり、初期放電容量も140mAh/gと極めて高かった。
[実施例2]
(積層体セパレータA2の作製)
 不織布aの上に、不織布aの重量に対して1/2倍量の平均繊維径1μmのポリプロピレン製の極細繊維を積層し、135℃、1MPaで加熱圧縮処理(熱ラミネート法)を施し、積層体セパレータA2を作製した。セパレータA2の厚みは22μm、坪量は6g/mであった。
 セパレータA2を備えたリチウムイオン二次電池のショート率は0%であり、初期放電容量も140mAh/gと極めて高かった。
[実施例3]
(積層体セパレータB1の作製)
 平均繊維径15μmの芯鞘型繊維(芯:ポリプロピレン、鞘:ポリエチレン)と、平均繊維径5μmのセルロース繊維とを、85:15の重量比で、湿式抄紙法により抄紙し、膜厚30μm、坪量6g/mの不織布bを得た。不織布bの上に、不織布bの重量に対して1/3倍量の平均繊維径1μmのポリプロピレン製の極細繊維を積層し、135℃、1.5MPaで加熱圧縮処理(熱ラミネート法)を施し、積層体セパレータB1を作製した。セパレータB1の厚みは24μm、坪量は8g/mであった。なお、不織布b単独を135℃、1.5MPaで加熱圧縮処理を施したときの、60度におけるJIS規格(JIS Z 8741)の光沢度は11であった。
 セパレータB1を備えたリチウムイオン二次電池のショート率は0%であり、初期放電容量も140mAh/gと極めて高かった。
[実施例4]
(積層体セパレータC1の作製)
 平均繊維径15μmの芯鞘型繊維(芯:ポリプロピレン、鞘:ポリエチレン)と、平均繊維径5μmのセルロース繊維とを、85:15の重量比で、湿式抄紙法により抄紙し、膜厚34μm、坪量8g/mの不織布cを得た。不織布cの上に、不織布cの重量に対して1/3倍量の平均繊維径1μmのポリプロピレン製の極細繊維を積層し、135℃、1.5MPaで加熱圧縮処理(熱ラミネート法)を施し、積層体セパレータC1を作製した。セパレータC1の厚みは25μm、坪量は11g/mであった。なお、不織布c単独を135℃、1.5MPaで加熱圧縮処理を施したときの、60度におけるJIS規格(JIS Z 8741)の光沢度は15であった。
 セパレータC1を備えたリチウムイオン二次電池のショート率は0%であり、初期放電容量も140mAh/gと極めて高かった。
[比較例1]
(単層セパレータa1の作製)
 不織布aに135℃、1MPaで加熱圧縮処理(熱ラミネート法)を施し、厚み18μm、坪量4g/m、60度におけるJIS規格(JIS Z 8741)の光沢度4の、単層セパレータa1を作製した。
 セパレータa1を備えたリチウムイオン二次電池のショート率は100%であり、セパレータとして不適であった。
[比較例2]
(単層セパレータb1の作製)
 不織布bに135℃、1.5MPaで加熱圧縮処理(熱ラミネート法)を施し、厚み22μm、坪量6g/m、60度におけるJIS規格(JIS
Z 8741)の光沢度11の、単層セパレータb1を作製した。
 セパレータb1を備えたリチウムイオン二次電池のショート率は100%であり、セパレータとして不適であった。
[比較例3]
(単層セパレータc1の作製)
 不織布cに135℃、1.5MPaで加熱圧縮処理(熱ラミネート法)を施し、厚み23μm、坪量8g/m、60度におけるJIS規格(JIS
Z 8741)の光沢度15の、単層セパレータc1を作製した。
 セパレータc1を備えたリチウムイオン二次電池のショート率は50%であった。
[比較例4]
(積層体セパレータA3の作製)
 不織布aの上に、不織布aの重量に対して1/6倍量の平均繊維径1μmのポリプロピレン製の極細繊維を積層し、135℃、1MPaで加熱圧縮処理(熱ラミネート法)を施し、積層体セパレータA3を作製した。セパレータA3の厚みは22μm、坪量は5g/mであった。
 セパレータA3を備えたリチウムイオン二次電池のショート率は100%であり、セパレータとして不適であった。
<電池の作製、電池試験>
 60度におけるJIS規格(JIS Z 8741)の光沢度が異なる、加熱圧縮処理後の不織布をセパレータとして用い、2032型コイン型電池を作製した(それぞれN=5)。電池評価はカットオフ電圧4.15Vで定電流(0.1C)/定電圧充電を行った。極細繊維を含まない、不織布単独での60度におけるJIS規格(JIS Z 8741)の光沢度と、電池のショート率および電池の初期放電容量との関係を図1に示す。極細繊維を含まない、不織布単独での60度におけるJIS規格(JIS Z 8741)の光沢度と、極細繊維と不織布を複合させた、複合不織布のショート率および電池の初期充放電容量との関係を図2に示す。

Claims (5)

  1.  熱可塑性材料からなる平均繊維径5~40μmの繊維で構成される坪量が2~20g/mの不織布と、不織布に対して重量で1/5~3倍量の平均繊維径1μm以下の極細繊維とからなる複合体であって、不織布のみに加熱圧縮処理を施したときに、その60度におけるJIS規格(JIS Z 8741)の光沢度が3~30の範囲内、かつ厚みが10~40μmとなる条件にて加熱圧縮処理を施し、厚みを10~40μmとした複合体からなるリチウムイオン二次電池用セパレータ。
  2.  熱可塑性材料が、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド、ポリアクリロニトリル、およびポリビニルアルコールからなる群から選ばれる少なくとも1種の熱可塑性材料であることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレータ。
  3.  不織布が、熱可塑性材料を鞘成分とする芯鞘型複合繊維または該芯鞘型複合繊維と熱可塑性材料からなる他の繊維から構成されていることを特徴とする請求項1または2に記載のリチウムイオン二次電池用セパレータ。
  4.  芯鞘型複合繊維の芯成分がポリプロピレンであり、鞘成分がポリエチレンであることを特徴とする請求項3に記載のリチウムイオン二次電池用セパレータ。
  5.  加熱圧縮処理が、100~300℃で0.5~3MPaの条件下に行われることを特徴とする請求項1~4のいずれかに記載のリチウムイオン二次電池用セパレータ。
PCT/JP2013/064055 2012-06-29 2013-05-21 リチウムイオン二次電池用セパレータ WO2014002648A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380045629.1A CN104603981B (zh) 2012-06-29 2013-05-21 锂离子二次电池用隔膜
US14/411,274 US9601737B2 (en) 2012-06-29 2013-05-21 Lithium-ion secondary battery separator
EP13808739.0A EP2869362B1 (en) 2012-06-29 2013-05-21 Lithium-ion secondary battery separator
KR1020147036578A KR20150032267A (ko) 2012-06-29 2013-05-21 리튬 이온 2차 전지용 세퍼레이터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-147186 2012-06-29
JP2012147186A JP6088759B2 (ja) 2012-06-29 2012-06-29 リチウムイオン二次電池用セパレータの製造方法

Publications (1)

Publication Number Publication Date
WO2014002648A1 true WO2014002648A1 (ja) 2014-01-03

Family

ID=49782819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064055 WO2014002648A1 (ja) 2012-06-29 2013-05-21 リチウムイオン二次電池用セパレータ

Country Status (7)

Country Link
US (1) US9601737B2 (ja)
EP (1) EP2869362B1 (ja)
JP (1) JP6088759B2 (ja)
KR (1) KR20150032267A (ja)
CN (1) CN104603981B (ja)
TW (1) TW201413077A (ja)
WO (1) WO2014002648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831744A1 (en) 2014-05-23 2021-06-09 Advanced Technology Assets B.V. Capsule and device for preparing beverages and method for manufacturing a capsule

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681452B1 (ko) 2015-09-24 2016-11-30 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
US10008706B2 (en) 2015-10-29 2018-06-26 Sumitomo Chemical Company, Limited Laminated separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP6725251B2 (ja) * 2015-10-29 2020-07-15 住友化学株式会社 非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
KR101851450B1 (ko) 2015-10-29 2018-04-23 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 적층 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지
US10581051B2 (en) * 2016-12-23 2020-03-03 Sumitomo Chemical Company, Limited Separator winding core, separator roll, and method of cleaning separator winding core
JP7330885B2 (ja) * 2017-03-17 2023-08-22 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
CN110192302B (zh) 2017-05-15 2022-09-13 株式会社Lg新能源 全固体电池用固体电解质膜的制造方法和通过所述方法制造的固体电解质膜
JP6290500B1 (ja) * 2017-07-18 2018-03-07 宇部エクシモ株式会社 不織布及び電池用セパレータ
US20190123381A1 (en) * 2017-10-24 2019-04-25 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery porous layer
US11545721B2 (en) * 2017-12-22 2023-01-03 Panasonic Intellectual Property Management Co., Ltd. Secondary batteries
JP7377401B2 (ja) * 2019-04-25 2023-11-10 株式会社日本製鋼所 不織布、不織布の製造方法、固体電解質膜、固体電解質膜の製造方法、全固体電池および全固体電池の製造方法
JP7447550B2 (ja) 2020-03-02 2024-03-12 トヨタ紡織株式会社 セパレータおよびセパレータの製造方法
KR20230169789A (ko) * 2022-06-09 2023-12-18 에스케이이노베이션 주식회사 분리막, 이의 제조방법 및 상기 분리막을 포함하는 전기화학소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105851A (ja) 1989-09-19 1991-05-02 Tonen Corp リチウム電池用セパレータの製造方法
JP2003123728A (ja) * 2001-10-17 2003-04-25 Oji Paper Co Ltd 非水系二次電池用セパレータ
JP2004087335A (ja) * 2002-08-27 2004-03-18 Noritake Co Ltd 電池セパレータ用シートの製造方法
JP2006092829A (ja) * 2004-09-22 2006-04-06 Teijin Ltd リチウムイオン二次電池用セパレータおよびその製造方法とリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730439B2 (en) * 2000-08-01 2004-05-04 Tonen Tapyrus Co., Ltd. Heat-resistant separator
US7402539B2 (en) * 2000-08-10 2008-07-22 Japan Vilene Co., Ltd. Battery separator
US7063917B2 (en) * 2001-02-21 2006-06-20 Ahlstrom Mount Holly Springs, Llc Laminated battery separator material
JP4794824B2 (ja) * 2004-04-05 2011-10-19 パナソニック株式会社 リチウムイオン二次電池およびその製造法
CN1588672A (zh) * 2004-08-27 2005-03-02 河南环宇集团有限公司 碱性二次电池隔膜及其制造方法
EP1689008B1 (en) * 2005-01-26 2011-05-11 Japan Vilene Company, Ltd. Battery separator and battery comprising the same
EP2328220B1 (en) * 2008-08-25 2017-01-11 LG Chem, Ltd. Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105851A (ja) 1989-09-19 1991-05-02 Tonen Corp リチウム電池用セパレータの製造方法
JP2003123728A (ja) * 2001-10-17 2003-04-25 Oji Paper Co Ltd 非水系二次電池用セパレータ
JP2004087335A (ja) * 2002-08-27 2004-03-18 Noritake Co Ltd 電池セパレータ用シートの製造方法
JP2006092829A (ja) * 2004-09-22 2006-04-06 Teijin Ltd リチウムイオン二次電池用セパレータおよびその製造方法とリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869362A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831744A1 (en) 2014-05-23 2021-06-09 Advanced Technology Assets B.V. Capsule and device for preparing beverages and method for manufacturing a capsule

Also Published As

Publication number Publication date
JP6088759B2 (ja) 2017-03-01
US20150255768A1 (en) 2015-09-10
JP2014011042A (ja) 2014-01-20
CN104603981A (zh) 2015-05-06
US9601737B2 (en) 2017-03-21
EP2869362B1 (en) 2016-10-05
KR20150032267A (ko) 2015-03-25
EP2869362A1 (en) 2015-05-06
EP2869362A4 (en) 2016-01-20
TW201413077A (zh) 2014-04-01
CN104603981B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6088759B2 (ja) リチウムイオン二次電池用セパレータの製造方法
JP5384631B2 (ja) 多孔性コーティング層を備えたセパレータ、その製造方法及びこれを備えた電気化学素子
JP5795475B2 (ja) 電気化学素子及びその製造方法
JP5719306B2 (ja) リチウム二次電池
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
JP5415609B2 (ja) 多孔性コーティング層を含むセパレータ、その製造方法、及びそれを備える電気化学素子
US9269938B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5910164B2 (ja) 非水電解質二次電池
CN109792035B (zh) 电极及利用其的二次电池和电极的制备方法
JP5678201B2 (ja) セパレータの製造方法、その方法により形成したセパレータ、及びそれを備えた電気化学素子
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5371979B2 (ja) リチウムイオン二次電池
JP2014239041A (ja) 異種のセパレーターを備えた電気化学素子
KR20060053913A (ko) 비수전해질 전지용 세퍼레이터 및 비수전해질 전지
JP4988973B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2015069957A (ja) リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池およびその製造方法
US10581048B2 (en) Non-aqueous electrolyte battery having first separator layer with total pore volume larger than second separator layer
KR101705306B1 (ko) 전기화학소자용 분리막 및 그의 제조방법
FR2956776A1 (fr) Accumulateur lithium-ion presentant une forte puissance et un faible cout
JP7402766B2 (ja) 非水系二次電池
JP2014011041A (ja) リチウムイオン二次電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808739

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013808739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013808739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14411274

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036578

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE