WO2014002611A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2014002611A1
WO2014002611A1 PCT/JP2013/062660 JP2013062660W WO2014002611A1 WO 2014002611 A1 WO2014002611 A1 WO 2014002611A1 JP 2013062660 W JP2013062660 W JP 2013062660W WO 2014002611 A1 WO2014002611 A1 WO 2014002611A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
positive electrode
electrode active
aqueous electrolyte
Prior art date
Application number
PCT/JP2013/062660
Other languages
English (en)
French (fr)
Inventor
裕喜 永井
匠 玉木
宏司 鬼塚
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/408,733 priority Critical patent/US9768446B2/en
Priority to EP13809611.0A priority patent/EP2869390A4/en
Priority to CN201380034813.6A priority patent/CN104428942B/zh
Priority to KR1020157002031A priority patent/KR101722863B1/ko
Publication of WO2014002611A1 publication Critical patent/WO2014002611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a lithium secondary battery. Specifically, the present invention relates to a lithium secondary battery applicable to a vehicle-mounted power source.
  • This application claims priority based on Japanese Patent Application No. 2012-147825 filed on June 29, 2012, the entire contents of which are incorporated herein by reference.
  • Lithium ion secondary batteries and other non-aqueous electrolyte secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals.
  • a lithium ion secondary battery is suitable for a vehicle-mounted high-output power source because it is lightweight and has a high energy density.
  • a coating film Solid Electrolyte Interface film; hereinafter also referred to as “SEI film”
  • SEI film Solid Electrolyte Interface film
  • Such an SEI film may be excessively formed by being stored in a state where the battery is charged or repeatedly charging and discharging, thereby causing a disadvantage that the resistance of the negative electrode is increased and the battery performance is lowered.
  • Japanese Patent Application Publication Nos. 2011-34893 and 2007-165125 describe non-aqueous electrolytes containing an oxalatoborate type compound (for example, lithium bis (oxalato) borate).
  • a secondary battery using a non-aqueous electrolyte containing an oxalatoborate type compound can be more excellent in durability than a secondary battery using a non-aqueous electrolyte containing no such compound.
  • the resistance of the negative electrode can be less increased with repeated storage and charging / discharging in a charged state.
  • Such an effect is derived from a supporting electrolyte or a non-aqueous solvent on the coating film because the oxalatoborate type compound decomposes during the initial charging of the secondary battery to form a coating film on the negative electrode active material. This is considered to be obtained by preventing excessive growth of the SEI film.
  • a secondary battery using a non-aqueous electrolyte containing an oxalatoborate type compound has a higher initial negative electrode resistance than a secondary battery using a non-aqueous electrolyte containing no such compound. Tended to be.
  • the present inventor attempted to modify the film after forming the film derived from the oxalatoborate type compound on the negative electrode. And, by appropriately modifying the coating film, the non-aqueous electrolyte secondary battery including the modified coating film has a low initial resistance of the negative electrode including the coating film, and effectively increases the resistance due to use. We have found that it can be suppressed.
  • a method for manufacturing a non-aqueous electrolyte secondary battery includes constructing a battery cell including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolytic solution including a nonaqueous solvent and an oxalatoborate type compound.
  • the battery cell is charged, and the coating derived from the oxalatoborate type compound (hereinafter, the coating derived from the oxalatoborate type compound may be referred to as an “OB film”). Forming on the negative electrode.
  • the OB film contains boron (B) and oxalate ions.
  • the manufacturing method further includes performing a modification process on the OB film.
  • the reforming process can be a process for increasing the ratio of the OB film containing the number of moles of boron for molar numbers m A oxalate ions in m B (m B / m A ratio).
  • the resistance of the negative electrode including the OB film can be reduced by performing the above-described modification treatment on the OB film. This makes it possible to manufacture a non-aqueous electrolyte secondary battery in which the initial resistance of the negative electrode is low and the increase in negative electrode resistance due to use is effectively suppressed. Low resistance of the negative electrode is preferable because it can contribute to improvement of input / output performance of the battery.
  • Another non-aqueous electrolyte secondary battery manufacturing method includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a non-aqueous solvent and a non-aqueous solution containing an oxalatoborate type compound. And constructing a battery cell comprising an electrolyte solution.
  • the manufacturing method also includes charging the battery cell to form a coating (OB film) derived from the oxalatoborate type compound on the negative electrode.
  • the manufacturing method further includes subjecting the battery cell to an aging treatment for maintaining the battery cell at a temperature of 60 ° C. or higher in a state of charge (SOC) of 65% or higher.
  • SOC state of charge
  • the OB film can be efficiently modified, and the resistance of the negative electrode having the OB film can be effectively reduced.
  • the aging treatment can be preferably performed, for example, by maintaining the battery cell at a temperature of 60 ° C. or higher in a state where the battery cell satisfies at least one of 82% or higher and a voltage of 3.9 V or higher.
  • the modification of the OB film, m B / m A ratio of the OB film 1.2 times or more pre-reforming (more preferably 1.5 times or more, for example 2 times or more ) Is preferably performed. Further, modification of the OB film, m B / m A ratio of 3 or more (e.g., m B / m A ratio of 3 to 15) is preferably performed such that.
  • the oxalatoborate type compound is 0.015 mol to 0.5 mol per kg of the non-aqueous electrolyte (that is, 0.015 mol / kg to A non-aqueous electrolyte containing a concentration Mc B of 0.5 mol / kg) is used.
  • the nonaqueous electrolytic solution having such a composition an OB film excellent in the effect of suppressing an increase in negative electrode resistance due to use of the battery can be formed on the negative electrode.
  • the non-aqueous electrolyte used in the construction of the battery cell further contains a difluorophosphate in addition to the oxalatoborate type compound.
  • a nonaqueous electrolytic solution having such a composition elution of the transition metal element from the positive electrode active material can be suppressed by the effect of the difluorophosphate.
  • the elution of the transition metal element can be promoted by performing a modification treatment of the OB film. Therefore, the use of a non-aqueous electrolyte containing a combination of an oxalatoborate type compound and a difluorophosphate is particularly significant.
  • concentration Mc P of the difluorophosphate for example it is appropriate to 0.05mol / kg ⁇ 1.0mol / kg.
  • concentration Mc P of the difluorophosphate for example, the concentration of the oxalatoborate-type compound Mc It can be 1.5 to 5 times B.
  • non-aqueous electrolyte secondary battery including a lithium transition metal oxide (Mn-containing lithium transition metal oxide) containing manganese (Mn) as a constituent metal element as the positive electrode active material.
  • Mn-containing lithium transition metal oxide lithium transition metal oxide
  • Mn manganese
  • An embodiment in which the nonaqueous electrolytic solution used for the construction of the battery cell includes a difluorophosphate in addition to the oxalatoborate type compound is a nonaqueous electrolyte secondary battery including a Mn-containing lithium transition metal oxide as a positive electrode active material Application to is particularly meaningful.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte.
  • the negative electrode includes a coating (OB film) derived from an oxalatoborate type compound.
  • the OB film contains boron and oxalate ions.
  • the OB membrane has a ratio of molar number m B of boron for molar numbers m A oxalate ion (m B / m A ratio) is 3 to 15.
  • the non-aqueous electrolyte secondary battery having such a configuration can be one in which the initial resistance of the negative electrode is low and the increase in the negative electrode resistance due to use is effectively suppressed.
  • the nonaqueous electrolyte secondary battery having the above-described configuration can be preferably realized, for example, by applying any of the nonaqueous electrolyte secondary battery manufacturing methods disclosed herein.
  • the positive electrode includes a coating containing difluorophosphate ions. This can prevent elution of the transition metal element from the positive electrode active material.
  • the positive electrode includes a lithium transition metal compound containing Mn as a constituent metal element as a positive electrode active material, it is particularly meaningful that the positive electrode includes a coating film containing difluorophosphate ions.
  • the content of difluorophosphate ions in the coating is preferably 0.002 ⁇ mol or more per 1 cm 2 of area of the positive electrode. This can prevent the elution of the transition metal element to a higher degree.
  • a film containing difluorophosphate ions may be referred to as a “DFP film”.
  • the DFP film may be a coating derived from difluorophosphate.
  • non-aqueous electrolyte secondary battery is a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing the oxalatoborate type compound and the difluorophosphate.
  • concentration Mc P of the difluorophosphate is 1.5 times to 5 times the concentration Mc B of the oxalatoborate-type compound.
  • a non-aqueous electrolyte secondary battery having a low initial resistance and a small increase in resistance due to use can be realized.
  • Such a non-aqueous electrolyte secondary battery is excellent in input / output performance at the beginning of use of the battery, and can better maintain the input / output performance over a long period of time. Therefore, the non-aqueous electrolyte secondary battery (for example, lithium ion secondary battery) disclosed herein is suitably used as a drive power source for vehicles such as plug-in hybrid vehicles (PHV) and electric vehicles (EV). obtain.
  • PGV plug-in hybrid vehicles
  • EV electric vehicles
  • the nonaqueous electrolyte secondary battery 100 may be manufactured by any method disclosed herein.
  • the vehicle 1 may be mounted with an assembled battery in a form in which a plurality of nonaqueous electrolyte secondary batteries 100 are connected.
  • a vehicle equipped with a non-aqueous electrolyte secondary battery a vehicle including the non-aqueous electrolyte secondary battery as a power source (for example, PHV, EV, etc. that can be charged by a household power source) can be given.
  • a power source for example, PHV, EV, etc. that can be charged by a household power source
  • FIG. 1 is a partial cross-sectional view schematically showing a nonaqueous electrolyte secondary battery according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main part of the nonaqueous electrolyte secondary battery according to one embodiment.
  • FIG. 3 is a side view schematically showing a vehicle equipped with a nonaqueous electrolyte secondary battery.
  • the “secondary battery” generally refers to a battery that can be repeatedly charged and discharged, and is a term including a so-called chemical battery such as a lithium secondary battery and a physical battery such as an electric double layer capacitor.
  • the “non-aqueous electrolyte secondary battery” refers to a battery including a non-aqueous electrolyte.
  • the nonaqueous electrolytic solution is typically an electrolytic solution containing a supporting salt (supporting electrolyte) in a nonaqueous solvent.
  • the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of charges accompanying the lithium ions between the positive and negative electrodes.
  • a battery generally called a lithium ion secondary battery is a typical example included in the lithium secondary battery in this specification.
  • the “active material” refers to a material capable of reversibly occluding and releasing (typically inserting and removing) a chemical species serving as a charge carrier in a secondary battery.
  • the chemical species serving as the charge carrier is mainly lithium ions in the lithium secondary battery.
  • SOC State of Charge
  • SOC state of Charge
  • a battery based on a voltage range in which the battery is normally used unless otherwise specified.
  • OCV open circuit voltage
  • the rated capacity in this specification is typically specified by the same conditions as the rated capacity measurement described in the examples described later.
  • 1C means a current value that discharges a fully charged battery (SOC 100%) to a discharge end voltage (SOC 0%) in one hour.
  • the “average particle diameter” refers to a median diameter (D50) obtained by a general laser diffraction type particle size distribution measuring device unless otherwise specified.
  • non-aqueous electrolyte secondary battery is a lithium ion secondary battery as an example
  • the application target of the present invention is not intended to be limited to the lithium ion secondary battery.
  • the lithium ion secondary battery 100 includes a long positive electrode sheet 10 and a long negative electrode sheet 20 wound through two long separator sheets 30 (winding electrodes).
  • Body 80 is housed in a battery case 50 having a shape (square shape) that can accommodate wound electrode body 80 together with non-aqueous electrolyte 90.
  • the battery case 50 includes a bottomed rectangular case main body 52 whose upper end is opened, and a lid 54 that closes the opening.
  • the positive terminal 72 electrically connected to the positive electrode sheet (positive electrode) 10 of the wound electrode body 80 and the negative electrode sheet (negative electrode) 20 of the wound electrode body 80 are electrically connected.
  • a negative electrode terminal 74 for connection is provided.
  • the positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 including a positive electrode active material 142 is held on both surfaces of a long sheet positive electrode current collector 12.
  • the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 including a negative electrode active material 242 is held on both surfaces of a long sheet-like negative electrode current collector 22.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 30.
  • the positive electrode active material layer non-formed portion 10 ⁇ / b> A of the positive electrode sheet 10 and the negative electrode active material layer non-formed portion 20 ⁇ / b> A of the negative electrode sheet 20 protrude from both sides in the width direction of the separator sheet 30.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are overlapped with a slight shift in the width direction.
  • the wound electrode body 80 can be produced by winding the sheets 10, 20, and 30 thus stacked in the longitudinal direction.
  • the wound core portion (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator sheet 30 are closely packed). Laminated portions) are formed. Further, at both ends of the wound electrode body 80 in the winding axis direction, the electrode active material layer non-forming portions 10A and 20A of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion, respectively.
  • One end of each of the positive electrode current collector plate 76 and the negative electrode current collector plate 78 is attached to the positive electrode side protruding portion and the negative electrode side protruding portion, respectively. The other ends of the current collector plates 76 and 78 are electrically connected to the positive terminal 72 and the negative terminal 74, respectively.
  • a separator configured as a heat-resistant separator including an organic porous layer 32 and an inorganic porous layer 34 held on the first surface 32A is preferably employed.
  • the two heat-resistant separators 30 are arranged in such a direction that the inorganic porous layer 34 faces the negative electrode active material layer 24.
  • the sheets 10, 20, and 30 are illustrated with a gap between them in order to make the drawing easy to see. However, in the actual electrode body 80, it is preferable that these sheets overlap substantially without a gap. .
  • a film (OB film) 244 derived from an oxalatoborate type compound is formed on the surface of the negative electrode active material 242 included in the negative electrode active material layer 24 shown in FIG. Moreover, it is preferable that a film (DFP film) 144 containing difluorophosphate ions is formed on the surface of the positive electrode active material 142 included in the positive electrode active material layer 14. The characteristics and formation method of the OB film 244 and the DFP film 144 will be described later.
  • nonaqueous electrolytic solution 90 a solution containing a nonaqueous solvent and an oxalatoborate type compound is used.
  • the positive electrode sheet 10 includes the DFP film 144
  • a nonaqueous electrolytic solution 90 that further contains difluorophosphate.
  • the lithium ion secondary battery 100 is constructed by using the non-aqueous electrolyte 90 having such a composition, and then a part or all of the oxalate borate type compound and difluorophosphate in the non-aqueous electrolyte 90 are decomposed. It may be.
  • the wound electrode body 80 and the nonaqueous electrolytic solution 90 are accommodated in the battery case 50 to construct a battery cell, and then the battery cell is charged to form an OB film on the negative electrode. And can be preferably manufactured by modifying the OB film.
  • the formation and modification of the OB film will be described in detail.
  • the battery cell is charged.
  • the charging can be performed as part of conditioning (initial charge / discharge) of the battery.
  • the conditioning may include a process of repeating the operation of charging and discharging the battery 1 to 3 times.
  • the charging is typically performed up to about SOC 100%.
  • the charge rate can be, for example, about 1/20 C to 5 C.
  • the discharge is typically performed up to about SOC 0%.
  • the discharge rate can be, for example, about 1/20 C to 5 C.
  • the oxalatoborate type compound contained in the non-aqueous electrolyte is electrically decomposed mainly at or near the surface of the negative electrode during the above conditioning (typically, mainly at the first charge).
  • a coating that is, an OB film derived from the oxalatoborate type compound is formed on the surface of the negative electrode active material.
  • the OB film includes other components (for example, non-aqueous solvents) constituting the electrolyte solution and decomposition products thereof. Etc. may be included. Further, lithium bis (oxalato) borate, which is a preferred example of the oxalatoborate type compound in the technology disclosed herein, undergoes reductive decomposition at about 1.73V.
  • the manufacturing method disclosed herein is characterized by including a process of intentionally modifying the OB film generated by the conditioning.
  • the resistance of the OB film can be reduced, and consequently the resistance of the negative electrode including the OB film can be reduced.
  • the degree of resistance of the negative electrode can be grasped through, for example, a Li precipitation test described later.
  • the reforming process of the OB film can be, for example, an aging process in which the battery cell is maintained in a temperature range exceeding normal temperature in a state where the battery cell is charged to some extent.
  • the reforming process may be performed by adjusting the battery cell to SOC 50% or more.
  • the OB film can be more efficiently modified by increasing the SOC of the battery cell. In other words, the reforming time required for obtaining a desired reforming effect can be shortened, thereby improving the productivity of the nonaqueous electrolyte secondary battery.
  • the SOC of the battery cell during the reforming treatment is preferably 60% or more (for example, 65% or more), more preferably 70% or more, still more preferably 80% or more (typically 82% or more, for example 90%). % Or more).
  • the battery cell is maintained in a temperature range exceeding normal temperature in a state of being charged to some extent, thereby promoting the dissolution of the metal foreign matter. It is possible to more accurately detect a malfunction (such as a short circuit) of the battery before shipment.
  • the aging process under the condition that the battery cell satisfies at least one (preferably both) of SOC 70% or higher or voltage 3.8V or higher. This is because the dissolution of the metallic foreign matter can be effectively promoted under such conditions.
  • the voltage between terminals in SOC60% is about 3.7V
  • the voltage between terminals in SOC100% is 4.1V.
  • the reforming treatment may be performed while the battery cell is kept under a temperature condition of 50 ° C. or higher.
  • the temperature at which the battery cell is held is higher.
  • the temperature for holding the battery cell is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
  • the temperature is usually appropriate to set the temperature to 90 ° C. or lower.
  • the temperature is preferably 85 ° C. or lower.
  • the time for performing the reforming process (that is, the time for holding the battery cell adjusted to the SOC at the above temperature) is not particularly limited, and can be appropriately set so as to obtain a desired reforming effect.
  • the time for the reforming process is 240 hours or less (that is, within 10 days), preferably 168 hours or less ( That is, within 7 days), more preferably 48 hours or less, still more preferably 36 hours or less (for example, 30 hours or less). It is preferable to set the SOC and holding temperature of the battery cell so that a desired reforming effect is realized within this time.
  • the preferable SOC of the battery cell during the above-described reforming process refers to the SOC at the start of the reforming process, and it may be allowed that the SOC slightly decreases during the reforming process time. From the viewpoint of processing efficiency, it is preferable that the SOC is maintained at 50% or more (more preferably 60% or more, further preferably 70% or more) until the end of the reforming process.
  • the OB film is typically derived from an oxalatoborate type compound (for example, lithium bis (oxalato) borate (LiBOB)) and contains boron (B) and oxalate ions.
  • Boron in the OB film is an effective component for stabilizing the OB film on the surface of the negative electrode active material and suppressing excessive growth of the SEI film on the OB film.
  • oxalate ions contained in the OB film can increase the resistance of the OB film. Therefore, by reducing the amount of oxalate ions in the OB film, the resistance of the OB film can be reduced while maintaining the effect of suppressing the growth of the SEI film.
  • modification treatment of the OB film may be a process of reducing the number of moles m A of oxalate .
  • it may be treated to increase the ratio of the molar number m B of boron for molar numbers m A oxalate ion (m B / m A ratio).
  • m B / m A ratio molar numbers m A oxalate ion
  • to remove oxalate ions from OB membrane can increase the m B / m A ratio by.
  • the aging treatment is a preferable example of a method for increasing the m B / m A ratio of the OB film.
  • modifying process of OB membrane in the art disclosed herein may be a process for increasing the m B / m A ratio by a method other than the above aging treatment, and the aging process and otherwise
  • the processing may be combined to increase the m B / m A ratio.
  • the modified extent of increasing the m B / m A ratio by the processing is not particularly limited, m B / m A ratio after modification may be greater than m B / m A ratio before modification. That is, the reforming process may be performed as m B / m A ratio after modification is larger than 1.0 times the modification prior to m B / m A ratio.
  • the reforming process may be performed for example as m B / m A ratio after reforming is 1.2 times more modifying previous m B / m A ratio, 1. It is more preferable to carry out so that it may become 5 times or more, and it is still more preferable to carry out so that it may become 2.0 times or more.
  • the m B / m A ratio of the OB film before the modification can be a value that largely reflects the chemical structure of the oxalatoborate type compound used.
  • m B / m A ratio before modification of the OB film approximately about 2.0 (typically 2.0 ⁇ 0.3 , Typically 2.0 ⁇ 0.2).
  • modification treatment of the OB film can be performed as m B / m A ratio is for example 2.5 or more.
  • m B / m A ratio is 3.0 or more, more preferably 3.5 or more, more preferably 4.0 or more (For example, 5.0 or more).
  • the upper limit of the m B / m A ratio is not particularly limited, but the m B / m A ratio is usually 25 or less (typically 20 in consideration of the influence on the productivity of battery cells and other battery performances) (typically 20 Hereinafter, it is appropriate to perform the modification process of the OB film to such an extent that it is, for example, 15 or less.
  • the non-aqueous electrolyte secondary battery includes a negative electrode including an OB film containing boron and oxalate ions, and the m B / m A ratio of the OB film is 2.5 or more (preferably Is 3.0 or more, more preferably 3.5 or more, and still more preferably 4.0 or more, for example 5.0 or more).
  • the m B / m A ratio of the OB film is 25 or less (typically 20 or less, for example, 15 or less).
  • the amount of oxalate ions contained in the modified OB film is preferably 0.10 ⁇ mol or less (ie, 0.10 ⁇ mol / cm 2 or less) per 1 cm 2 of the negative electrode area, more preferably 0.09 ⁇ mol / cm 2. cm 2 or less, more preferably 0.08 ⁇ mol / cm 2 or less (for example, 0.07 ⁇ mol / cm 2 or less).
  • a non-aqueous electrolyte secondary battery including a negative electrode provided with an OB film having such an oxalate ion concentration (content per area) is preferable.
  • the oxalate ion concentration in the modified OB film may be 0.06 ⁇ mol / cm 2 or less.
  • the “area of the negative electrode” refers to the area of the negative electrode in which the negative electrode active material is disposed. Therefore, in a negative electrode having a configuration including a sheet-like current collector and a negative electrode active material layer provided on the current collector, the area of the negative electrode active material layer can also be grasped.
  • the lower limit of the oxalate ion concentration in the modified OB film is not particularly limited, but is usually 0.001 ⁇ mol / cm 2 or more (for example, 0.01 ⁇ mol / cm 2 or more) from the viewpoint of processing efficiency and the like. It is.
  • An OB film substantially free of oxalate ions may be used.
  • substantially free of oxalate ions means that oxalate ions are below the detection limit in IC (ion chromatograph) analysis.
  • oxalic acid ion concentration in the reforming before OB film is not particularly limited, usually suitably about 0.05 ⁇ 3.0 ⁇ mol / cm 2, preferably about 0.07 ⁇ 2.0 ⁇ mol / cm 2.
  • the amount of boron contained in the modified OB film is 0.15 ⁇ mol or more per 1 cm 2 of the negative electrode area (that is, 0.15 ⁇ mol / cm 2 or more), and more preferably 0.20 ⁇ mol / cm 2 or more (for example, 0.25 ⁇ mol / cm 2 or more).
  • a non-aqueous electrolyte secondary battery including a negative electrode provided with such an OB film having a boron concentration is preferable.
  • the amount of boron contained in the OB film before modification is suitably 0.15 ⁇ mol / cm 2 or more, and 0.20 ⁇ mol / cm 2.
  • the above (for example, 0.25 ⁇ mol / cm 2 or more) is preferable.
  • the amount of boron contained in the OB film after modification is preferably at 2.0 ⁇ mol / cm 2 or less, and more preferably 1.0 [mu] mol / cm 2 or less.
  • the amount of boron contained in the reformed before OB film also is preferably 2.0 ⁇ mol / cm 2 or less, and more preferably 1.0 [mu] mol / cm 2 or less.
  • ICP radio frequency inductively coupled plasma
  • a relatively high SOC typically 80% or more, preferably 82% or more, for example 85% or more
  • a relatively high battery voltage typically Is preferably subjected to an aging treatment in which a battery cell adjusted to 3.8 V or higher, for example 3.9 V or higher, is maintained at a temperature of 60 ° C. or higher (for example, 60 ° C. to 80 ° C.).
  • the temperature condition in the aging treatment is 60 ° C. or more, a part of the transition metal element contained in the positive electrode active material may be eluted during the aging treatment.
  • Such elution of the transition metal element hardly occurs when the positive electrode active material contains a lithium transition metal oxide, and in particular, a lithium transition metal oxide having a layered structure containing at least Mn as a constituent metal element (for example, LiNiCoMn described later) This is likely to occur when oxides are included.
  • the transition metal element is eluted from the positive electrode active material, the composition of the positive electrode active material may change, and the durability performance of the battery may tend to be reduced.
  • the eluted transition metal element when the eluted transition metal element is deposited outside the positive electrode active material (for example, the negative electrode), it consumes the effective capacity of the negative electrode active material (capacity that can contribute to charge and discharge), and causes a decrease in the capacity maintenance rate of the battery. obtain.
  • a nonaqueous electrolytic solution containing a difluorophosphate in addition to an oxalatoborate type compound is used to prevent the above-described event that the transition metal element elutes from the positive electrode active material.
  • Difluorophosphate is decomposed by charging the battery cell (mainly at the first charge), and the decomposition product adheres (deposits, adsorbs, etc.) to the positive electrode active material.
  • a film (DFP film) containing ions can be formed. This DFP film can prevent the transition metal element (for example, Mn) from being eluted from the positive electrode active material.
  • the DFP film In order to better exhibit the effect of preventing the elution of the transition metal element, it is preferable to form the DFP film so that the amount of difluorophosphate ions is 0.0015 ⁇ mol or more per 1 cm 2 of the positive electrode area.
  • the “area of the positive electrode” refers to the area of the positive electrode in which the positive electrode active material is disposed. Therefore, in a positive electrode having a configuration including a sheet-like current collector and a positive electrode active material layer provided on the current collector, it can be grasped as an area of the positive electrode active material layer.
  • the amount of the difluorophosphate ion By setting the amount of the difluorophosphate ion to 0.002 ⁇ mol / cm 2 or more (for example, 0.0025 ⁇ mol / cm 2 or more), a higher transition metal element elution prevention effect can be realized.
  • the amount of the difluorophosphate ion may be 0.005 ⁇ mol / cm 2 or more.
  • the DFP film is usually formed so that the amount of the difluorophosphate ion is 0.05 ⁇ mol / cm 2 or less (preferably 0.01 ⁇ mol / cm 2 or less). Is appropriate.
  • the negative electrode sheet is formed on the negative electrode current collector and the outer side surface thereof (that is, the surface facing the outer periphery of the wound body) and the inner side surface.
  • the negative electrode active material layer formed on the outer surface on the outermost periphery of the wound electrode body is a non-positive portion of the positive electrode active material layer that does not face the positive electrode active material layer.
  • an event that the transition metal element (for example, Mn) elutes is particularly likely to occur. This is because, at the start of the reforming process, the non-facing portion of the negative electrode active material layer in the negative electrode active material layer tends to be in a state where lithium ions are not sufficiently filled.
  • the above phenomenon is particularly likely to occur at the end portion of the positive electrode sheet where the positive electrode active material layer is formed (typically, the end portion opposite to the positive electrode active material layer non-formation portion).
  • the non-aqueous secondary battery manufacturing method disclosed herein may include steps such as degassing and quality inspection at any timing as necessary.
  • degassing may be performed at least one timing after the conditioning and after the modification process of the OB film.
  • a non-aqueous electrolyte used for construction of a battery cell includes a non-aqueous solvent and an oxalatoborate type compound.
  • a non-aqueous electrolyte solution further containing a lithium compound (supporting electrolyte) that can be dissolved in the non-aqueous solvent to supply lithium ions is used.
  • Nonaqueous solvent the same conventional electrolyte solution for a lithium ion secondary battery can be used.
  • a nonaqueous electrolytic solution typically includes a nonaqueous solvent and a lithium compound (supporting electrolyte) that can be dissolved in the solvent to supply lithium ions.
  • aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used.
  • One kind or two or more kinds selected from non-aqueous solvents known to be usable for an electrolytic solution for a secondary battery can be used.
  • a non-aqueous solvent mainly composed of carbonates can be given.
  • the nonaqueous solvent contains one or more carbonates, and the total volume of these carbonates is 60% by volume or more (more preferably 75% by volume or more, and further preferably 90% by volume) of the total volume of the nonaqueous solvent.
  • the non-aqueous electrolyte solution occupying the volume may be preferably 100% by volume.
  • a typical example of the oxalatoborate type compound in the technology disclosed herein is an oxalato complex having a structural portion in which at least one oxalate ion (C 2 O 4 2 ⁇ ) is coordinated to boron (B).
  • a preferable oxalatoborate type compound a compound represented by the following formula (I) or (II) is exemplified.
  • R 1 and R 2 in formula (I) are each independently a halogen atom (eg, F, Cl, Br, preferably F) and a carbon atom number of 1 to 10 (preferably 1 to 3). Selected from perfluoroalkyl groups.
  • a + in formulas (I) and (II) may be either an inorganic cation or an organic cation.
  • inorganic cations include alkali metal cations such as Li, Na, and K; alkaline earth metal cations such as Be, Mg, and Ca; others, Ag, Zn, Cu, Co, Fe, Ni, Mn, Examples include cations of metals such as Ti, Pb, Cr, V, Ru, Y, lanthanoids, actinoids, protons, and the like.
  • organic cation examples include tetraalkylammonium ions such as tetrabutylammonium ion, tetraethylammonium ion, tetramethylammonium ion and triethylmethylammonium ion; trialkylammonium ions such as trimethylammonium ion and triethylammonium ion; and other, pyridinium Ion, imidazolium ion, tetraethylphosphonium ion, tetramethylphosphonium ion, tetraphenylphosphonium ion, triphenylsulfonium ion, triethylsulfonium ion; and the like.
  • preferred cations include Li ions, tetraalkylammonium ions and protons.
  • Such an oxalatoborate type compound can be prepared by a known method, or can be obtained by purchasing a commercially available product.
  • the compound represented by the above formula (II) can be preferably used as the oxalatoborate type compound.
  • a preferred oxalatoborate type compound is lithium bis (oxalato) borate (LiB (C 2 O 4 ) 2 , hereinafter sometimes referred to as “LiBOB”) represented by the formula (III).
  • the concentration Mc B of oxalatoborate-type compound in the non-aqueous electrolyte used in the construction of the battery cell is not particularly limited, a negative electrode and OB film capable of realizing a desired SEI film growth inhibiting effect It can set suitably so that it can form above.
  • Oki concentration Mc B is 0.005mol / kg ⁇ 0.50mol / kg about Sarah oxalatoborate-type compound (more preferably 0.01mol / kg ⁇ 0.
  • a non-aqueous electrolyte solution of about 20 mol / kg can be preferably used.
  • a nonaqueous electrolytic solution having an Mc B of 0.015 mol / kg to 0.10 mol / kg (more preferably 0.015 mol / kg to 0.05 mol / kg).
  • Mc B 0.015 mol / kg to 0.10 mol / kg
  • Mc B the time required for the modification of the OB film becomes long, and the productivity may tend to decrease.
  • the difluorophosphate used in the technology disclosed herein can be various salts having a difluorophosphate anion (PO 2 F 2 ⁇ ).
  • the cation (counter cation) in the difluorophosphate may be either an inorganic cation or an organic cation.
  • the inorganic cation include alkali metal cations such as Li, Na, and K; alkaline earth metal cations such as Be, Mg, and Ca; and the like.
  • Specific examples of the organic cation include ammonium cations such as tetraalkylammonium and trialkylammonium.
  • Such a difluorophosphate can be prepared by a known method, or can be obtained by purchasing a commercially available product. Usually, it is preferable to use a salt of a difluorophosphate anion and an inorganic cation (for example, an alkali metal cation) as the difluorophosphate.
  • a salt of a difluorophosphate anion and an inorganic cation for example, an alkali metal cation
  • lithium difluorophosphate LiPO 2 F 2
  • the concentration Mc P of difluorophosphate in the nonaqueous electrolytic solution used in the construction of the battery cell is not particularly limited, the positive electrode a DFP film that can achieve the desired transition metal elution preventing effect It can set suitably so that it may form.
  • Mc P is approximately 0.02mol / kg ⁇ 1.0mol / kg about (more preferably 0.02mol / kg ⁇ 0.50mol / kg, more preferably Is preferably 0.03 mol / kg to 0.20 mol / kg, for example, 0.05 mol / kg to 0.15 mol / kg).
  • the non-aqueous electrolyte used for the construction of the battery cell is 1.5 mol of the number of moles of difluorophosphate contained in 1 kg of the non-aqueous electrolyte, which is the number of moles of the oxalatoborate type compound. It is preferable that the ratio is 10 to 10 times. That is, the concentration Mc P of difluorophosphate may be used preferably a non-aqueous electrolyte is 1.5 to 10 times the concentration Mc B of oxalatoborate-type compound.
  • the effect of using the oxalatoborate type compound and the effect of using difluorophosphate (that is, the effect of preventing the elution of transition metal elements that may be generated by the modification of the OB film) can be balanced in a balanced manner.
  • Use concentration Mc P of difluorophosphate is 1.5 to 5 times a is a non-aqueous electrolytic solution concentration Mc B of oxalatoborate type compounds are more preferred.
  • LiPF 6 LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (SO 2 CF 3 ) 3 , LiClO 4 or the like, which are known to be capable of functioning as a supporting electrolyte for lithium ion secondary batteries (excluding lithium salts corresponding to oxalate borate type compounds or difluorophosphates).
  • LiPF 6 can be preferably used.
  • the concentration of the supporting electrolyte (supporting salt) is not particularly limited, and can be, for example, the same level as that of a conventional lithium ion secondary battery.
  • a nonaqueous electrolytic solution containing a supporting electrolyte at a concentration of 0.1 mol / L to 5 mol / L (preferably 0.8 mol / L to 1.5 mol / L, for example, 1.0 to 1.2 mol / L). can be preferably used.
  • the non-aqueous electrolyte can contain components other than the oxalatoborate type compound, difluorophosphate, supporting electrolyte, and non-aqueous solvent as necessary, as long as the effects of the present invention are not significantly impaired.
  • optional components include monofluorophosphates (typically lithium salts), phosphorus (P) -containing oxalate compounds, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and fluoroethylene carbonate (FEC).
  • An additive is mentioned.
  • the concentration of the additive as such an optional component is usually suitably 0.20 mol / kg or less, for example, 0.10 mol / kg or less ( Typically, it can be 0.01 to 0.10 mol / kg).
  • the non-aqueous electrolyte which does not contain substantially components other than an oxalato borate type compound, a difluorophosphate, a supporting electrolyte, and a non-aqueous solvent may be sufficient.
  • a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing an oxalatoborate type compound is, for example, a component of the battery (the surface of the positive electrode active material layer, the negative electrode active material). It can be grasped by collecting a measurement sample from the surface of the material layer and detecting boron (B) by ICP emission analysis, ion chromatography or the like. The measurement material is preferably subjected to an analysis after an appropriate pretreatment such as washing with an appropriate solvent (for example, EMC).
  • an appropriate solvent for example, EMC
  • the amount of the oxalatoborate type compound in other words, the amount of the oxalatoborate type compound supplied into the battery case
  • the amount of the oxalatoborate type compound in the non-aqueous electrolyte used for the construction of the battery cell is, for example, an ICP emission analysis.
  • the amount of boron contained in the positive electrode and the negative electrode is quantified by analyzing the nonaqueous electrolytic solution accumulated in the battery container by ICP emission analysis to determine the amount of boron contained in the electrolytic solution;
  • the negative electrode and the electrolytic solution are analyzed by ion chromatography, and the chemical species resulting from the oxalatoborate type compound and the decomposition product thereof are quantified.
  • the concentration of the oxalate borate type compound [mol / kg] in the non-aqueous electrolyte used for the construction of the battery cell can be calculated. it can.
  • the amount of boron contained in the OB film before or after the modification can be quantified by, for example, ICP emission analysis.
  • the amount of oxalate ions contained in the OB film before or after modification can be quantified by, for example, ion chromatography.
  • a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing difluorophosphate is obtained by, for example, collecting a measurement sample from a constituent member of the battery (such as the surface of the positive and negative electrode active material layers) It can be grasped by detecting phosphorus (P) by ICP emission analysis, ion chromatography, mass spectrometry (mass spectrometry; MS) or the like. According to such analysis, for example it is a battery using a nonaqueous electrolytic solution containing LiPF 6 as a supporting electrolyte (supporting salt), separately from the phosphorus derived from LiPF 6, difluorophosphate (e.g.
  • LiPO 2 F LiPO 2 F
  • the amount of difluorophosphate in the non-aqueous electrolyte used in the construction of the battery cell is corrected by, for example, ion chromatography.
  • the amount of PO 2 F 2 ions, PO 3 F ions, and PO 4 ions on the surface of the negative electrode active material layer is quantified; the non-aqueous electrolyte accumulated in the battery container is analyzed by ion chromatography, and difluorophosphate and The chemical species resulting from these decomposition products can be quantified; From the amount of the difluorophosphate and the amount of the electrolyte in the battery case, the difluorophosphate concentration [mol / kg] of the nonaqueous electrolyte used for the construction of the battery cell can be calculated. Further, the amount of difluorophosphate ions contained in the DFP membrane can be quantified by ion chromatography, for example.
  • the amount of Mn deposited on the negative electrode can be quantified by, for example, ICP emission analysis. Then, depending on the amount of Mn deposited on the negative electrode, it can be determined whether the amount of Mn eluted from the positive electrode active material is large or small. That is, elution of Mn from the positive electrode active material occurs mainly in a high SOC state, and since the negative electrode potential is low at this time (for example, negative electrode potential 0.1 V / vs Li), the eluted Mn is precipitated in the negative electrode. It is considered easy. Therefore, by quantifying the amount of Mn in the negative electrode, it is possible to grasp the degree (large or small) of the amount of Mn eluted from the positive electrode active material.
  • the negative electrode active material layer constituting the negative electrode sheet is applied, for example, to a negative electrode current collector with a paste or slurry-like composition in which a negative electrode active material and a binder used as necessary are dispersed in a suitable solvent, It can preferably be prepared by drying the composition. After drying, the whole may be pressed as necessary.
  • the mass of the negative electrode active material layer provided per unit area of the negative electrode current collector is, for example, about 6 to 30 mg / cm 2. It is appropriate to do.
  • the density of the negative electrode active material layer can be, for example, about 0.9 to 1.5 g / cm 3 .
  • the negative electrode current collector a member made of a metal having good conductivity is preferably used.
  • a metal having good conductivity For example, copper or an alloy containing copper as a main component can be used.
  • a copper sheet (copper foil) having a thickness of about 5 ⁇ m to 30 ⁇ m can be preferably used as the negative electrode current collector.
  • binder examples include carboxymethylcellulose (CMC; typically sodium salt is used), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), and the like. Can be mentioned. Such a binder can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • PVDF polyvinylidene fluoride
  • Such a binder can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the proportion of the negative electrode active material in the whole negative electrode active material layer is not particularly limited, but it is usually appropriate to set it to about 50% by mass or more, preferably about 90 to 99% by mass (eg about 95 to 99% by mass). It is.
  • the addition amount thereof may be appropriately selected according to the type and amount of the negative electrode active material, and can be, for example, about 1 to 5% by mass of the entire negative electrode active material layer.
  • ⁇ Negative electrode active material As the negative electrode active material, one type or two or more types of materials conventionally used for lithium ion secondary batteries can be used without any particular limitation.
  • a carbon material is mentioned as a suitable negative electrode active material.
  • Particulate carbon materials (carbon particles) having a graphite structure (layered structure) at least partially are preferable. Any carbon material such as a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these materials is suitable. Can be used. Among these, graphite particles such as natural graphite can be preferably used. Carbon particles in which amorphous (amorphous) carbon is added to the surface of graphite may be used.
  • the average particle size of the negative electrode active material is preferably in the range of, for example, 5 ⁇ m to 40 ⁇ m (more preferably 5 ⁇ m to 30 ⁇ m, for example 5 ⁇ m to 20 ⁇ m).
  • the BET specific surface area of the negative electrode active material is, for example, preferably in the range of 1.0 to 10.0 m 2 / g (more preferably 3.0 to 6.0 m 2 / g).
  • the positive electrode active material layer constituting the positive electrode sheet is made of, for example, a paste or a slurry-like composition in which a positive electrode active material and, if necessary, a conductive material, a binder (binder) and the like are dispersed in an appropriate solvent. It can preferably be prepared by applying to a current collector and drying the composition. After drying, the whole may be pressed as necessary.
  • the mass of the positive electrode active material layer provided per unit area of the positive electrode current collector (in the configuration having the positive electrode active material layer on both sides of the positive electrode current collector) is, for example, about 8 to 30 mg / cm 2. It is appropriate to do.
  • the density of the positive electrode active material layer can be, for example, about 1.8 to 2.9 g / cm 3 .
  • the positive electrode current collector a member made of a metal having good conductivity is preferably used.
  • a metal having good conductivity aluminum or an alloy containing aluminum as a main component can be used.
  • an aluminum sheet (aluminum foil) having a thickness of about 10 ⁇ m to 30 ⁇ m can be preferably used as the positive electrode current collector.
  • a conductive powder material such as carbon powder or carbon fiber is preferably used.
  • carbon powder various carbon blacks such as acetylene black, furnace black, ketjen black, and graphite powder are preferable.
  • a conductive material can be used alone or in combination of two or more.
  • binder the thing similar to the positive electrode mentioned above can be used individually or in combination of 2 or more types.
  • the proportion of the positive electrode active material in the entire positive electrode active material layer is suitably about 50% by mass or more (typically 50 to 95% by mass), and usually about 70 to 95% by mass. preferable.
  • the ratio of the conductive material in the entire positive electrode active material layer can be, for example, about 2 to 20% by mass, and is usually preferably about 2 to 15% by mass.
  • the ratio of the binder to the whole positive electrode active material layer can be, for example, about 1 to 10% by mass, and usually about 2 to 5% by mass is appropriate.
  • the positive electrode active material a material capable of reversibly occluding and releasing lithium is used, and one or more of various materials known to be usable as a positive electrode active material of a lithium ion secondary battery are used. It can be used without any particular limitation. For example, an oxide (lithium transition metal oxide) containing lithium and at least one transition metal element as a constituent metal element can be preferably used. For example, a lithium transition metal oxide having a layered or spinel crystal structure can be used. Other suitable examples of the material that can be used as the positive electrode active material include olivine type lithium phosphate and other polyanion materials.
  • the lithium olivine is, for example, an olivine-type lithium phosphate (LiFePO 4 , LiMnPO 4, etc.) represented by a general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe). obtain.
  • LiFePO 4 olivine-type lithium phosphate
  • LiMnPO 4 LiMnPO 4
  • M is at least one element of Co, Ni, Mn, and Fe
  • the positive electrode active material includes a lithium transition metal oxide having a layered crystal structure (typically a layered rock salt structure belonging to a hexagonal system).
  • the lithium transition metal oxide preferably contains at least one of Ni, Co, and Mn.
  • a positive electrode active material having a composition containing at least Ni can be preferably used.
  • a positive electrode active material containing Ni in an amount of 10 mol% or more (more preferably 20 mol% or more) is preferable, where the total amount of metal elements other than lithium contained in the positive electrode active material is 100 mol%.
  • a preferable example of the lithium transition metal oxide is a lithium transition metal oxide containing all of Ni, Co and Mn (hereinafter also referred to as “LiNiCoMn oxide”).
  • LiNiCoMn oxide a lithium transition metal oxide containing all of Ni, Co and Mn
  • the total amount of Ni, Co, and Mn is 1, and the amounts of Ni, Co, and Mn are both greater than 0 and less than or equal to 0.7 (more preferably greater than 0.1 and 0.6
  • a LiNiCoMn oxide that is typically more than 0.3 and 0.5 or less is preferable.
  • Particularly preferred are LiNiCoMn oxides in which the amounts of Ni, Co and Mn are approximately the same.
  • the positive electrode active material may contain one or more other elements as additional constituent elements (additive elements).
  • additional elements include W, Cr, Mo, Ti, Zr, Nb, V, Al, Mg, Ca, Na, Fe, Cu, Zn, Si, Ga, In, Sn, B, and F. Illustrated.
  • a positive electrode active material according to a preferred embodiment includes at least one metal element selected from W, Cr, and Mo as the additive element.
  • a positive electrode active material having a composition containing at least W as the additive element is preferable.
  • a battery using such a positive electrode active material can have a reduced reaction resistance and excellent input / output characteristics.
  • the content of the additive element (for example, W) in the positive electrode active material can be, for example, 0.001 to 5 mol%, where the total number of moles of Ni, Co, and Mn contained in the positive electrode active material is 100 mol%. In general, it is suitably 0.01 to 3 mol%, 0.05 to 1 mol% (more preferably 0.1 to 1 mol%, for example 0.2 to 1 mol%). preferable.
  • the positive electrode active material in the technology disclosed herein can be formed, for example, by mixing a hydroxide (precursor) prepared by a wet method with an appropriate lithium compound and firing at a predetermined temperature.
  • the positive electrode active material containing the additive element may be prepared as a hydroxide containing the additive element. According to this method, a positive electrode active material in which local aggregation is prevented in the distribution of additive elements in the positive electrode active material can be obtained.
  • the positive electrode active material preferably has a composition containing an excessive amount of Li with respect to the total amount m Mall of all metal elements other than Li contained in the positive electrode active material (that is, 1.00 ⁇ (m Li / M Mall )).
  • a lithium ion secondary battery with higher performance for example, good output performance
  • (m Li / m Mall ) is 1.05 or more, more preferably 1.10 or more (that is, 1.10 ⁇ (m Li / m Mall )).
  • the upper limit of m Li / m Mall is not particularly limited. Usually, it is preferable that mLi / m Mall is 1.4 or less (preferably 1.3 or less, for example, 1.2 or less).
  • the average particle diameter of the positive electrode active material is preferably in the range of, for example, 2 ⁇ m to 10 ⁇ m (more preferably 3 ⁇ m to 8 ⁇ m).
  • the BET specific surface area of the positive electrode active material disclosed herein is preferably about 0.3 m 2 / g or more, more preferably 0.5 m 2 / g or more, and further preferably 0.8 m 2 / g or more. is there.
  • the BET specific surface area can be, for example, about 3.0 m 2 / g or less (for example, 2.0 m 2 / g or less), and can be 1.7 m 2 / g or less. It may be 5 m 2 / g or less.
  • the positive electrode active material according to a preferred embodiment has a BET specific surface area of approximately 0.5 to 2.0 m 2 / g.
  • the positive electrode active material in the technology disclosed herein may be a particle having a porous structure or a hollow structure.
  • the porous structure refers to a structure (sponge-like structure) in which a substantial part and a void part are mixed over the entire particle.
  • a positive electrode active material having a porous structure a positive electrode active material obtained by a so-called spray baking method (sometimes referred to as a spray dry method) (typically a secondary in which primary particles are collected). It takes the form of particles.).
  • the hollow structure refers to a structure having a shell portion and a hollow portion (cavity portion) inside thereof.
  • Such hollow structure particles are apparently structurally distinct from porous structure particles in that the substantial part is biased toward the shell, and a clear space is formed in the hollow part. Are distinguished.
  • the space in which the hollow portion is gathered is typically between the primary particles constituting the secondary particles (between adjacent primary particles that are close to each other and sintered). The space is larger than the existing gap.
  • the shell part has a through hole that allows the outside of the particle to communicate with the hollow part.
  • the hollow structure having the through hole in the shell is referred to as a “perforated hollow structure”.
  • particles having such a perforated hollow structure can be preferably employed.
  • the thickness of the shell is usually 3.0 ⁇ m or less, preferably 2.5 ⁇ m or less (typically 2.2 ⁇ m or less, more preferably 2.0 ⁇ m or less, for example 1.5 ⁇ m or less). is there.
  • the lower limit of the thickness of the shell is not particularly limited, it is usually suitably 0.1 ⁇ m or more and preferably 0.2 ⁇ m or more from the viewpoint of mechanical strength and manufacturability.
  • the particle porosity of the perforated hollow active material particles is typically 5% or more, and preferably 10% or more (for example, 15% or more).
  • the “particle porosity” refers to the proportion of the volume occupied by the hollow portion in the apparent volume of the hollow hollow active material particles. This ratio can be grasped based on the cross-sectional SEM image of the active material particles.
  • the particle porosity may be 20% or more (typically 23% or more, preferably 30% or more). Further, porous hollow active material particles having a particle porosity of 75% or less (for example, 70% or less) are preferable.
  • the perforated hollow active material particles those having an average hardness of approximately 0.5 MPa or more (typically 1.0 MPa or more, for example, 2.0 to 10 MPa) can be preferably used.
  • the “average hardness” refers to a value obtained by dynamic microhardness measurement performed using a flat diamond indenter having a diameter of 50 ⁇ m and under a load speed of 0.5 mN / second to 3 mN / second.
  • a microhardness meter, model “MCT-W500” manufactured by Shimadzu Corporation can be used.
  • lithium transition metal oxide (typically, a lithium transition metal oxide having a layered structure) is preferable. From the viewpoint of ease of production and the like, a lithium transition metal oxide containing at least Ni is particularly preferable.
  • a suitable example of the lithium transition metal oxide is LiNiCoMn oxide.
  • the active material particles having such a hole-and-hollow structure include, for example, a raw material hydroxide generating step for precipitating a transition metal hydroxide (precursor hydroxide) from an aqueous solution of a transition metal, and the precursor hydroxide, It can be preferably manufactured by a method including a mixing step of preparing a green mixture by mixing a lithium compound and a baking step of baking the green mixture.
  • the raw material hydroxide generation step typically includes a nucleation stage in which the transition metal hydroxide is precipitated from the aqueous solution, and a particle growth stage in which the precipitated transition metal hydroxide is grown.
  • the particle growth step is preferably performed while controlling the ammonia concentration in the liquid (for example, controlling it to a predetermined value or less).
  • the nucleation step it is preferable to deposit a large number of nuclei from the mixed solution in a short time (for example, almost simultaneously).
  • the nucleation step is performed under conditions of pH 12.0 or more (typically pH 12.0 to 14.0, for example, pH 12.2 to 13.0).
  • the value of pH shall mean pH value on the basis of liquid temperature of 25 degreeC.
  • the ammonia concentration is not particularly limited, but is usually 25 g / L or less (3 to 25 g / L, preferably 10 to 25 g / L). It is.
  • the transition metal hydroxide nuclei precipitated in the nucleation stage are preferably grown under alkaline conditions in a lower pH range than the nucleation stage.
  • the particles may be grown at a pH of less than 12.0 (typically pH 10.0 to less than 12.0, preferably pH 10.0 to 11.8, for example, pH 11.0 to 11.8).
  • This particle growth step is preferably performed in a liquid containing ammonia.
  • the ammonia concentration in the liquid can be, for example, 25 g / L or less, and is usually appropriately 20 g / L or less, preferably 15 g / L or less, more preferably 10 g / L or less, for example 8 g / L. L or less.
  • the lower limit of the ammonia concentration in the liquid is not particularly limited, but it is usually appropriate to set it to about 1 g / L or more (preferably 3 g / L or more). It is preferable to control the ammonia concentration in the liquid in the particle growth stage to a concentration lower than the ammonia concentration in the nucleation stage (typically, 75% or less, for example, 50% or less).
  • the temperature of the reaction solution is preferably in the range of about 20 ° C. to 60 ° C. (for example, 30 ° C. to 50 ° C.) throughout the nucleation stage and the particle growth stage.
  • the atmosphere in the reaction solution and the reaction vessel is preferably maintained in a non-oxidizing atmosphere (for example, a non-oxidizing atmosphere having an oxygen concentration of approximately 20% or less, preferably 10% or less) through the nucleation stage and the particle growth stage. .
  • the transition metal hydroxide (precursor hydroxide) thus obtained is mixed with a lithium compound (lithium source) such as lithium carbonate or lithium hydroxide and baked to obtain an active porous structure. Material particles can be obtained.
  • the firing is typically performed in an oxidizing atmosphere (for example, in the air).
  • the firing temperature can be, for example, 700 ° C. to 1100 ° C.
  • Baking is preferably performed so that the maximum baking temperature is 800 ° C. or higher (preferably 800 ° C. to 1100 ° C., for example, 800 ° C. to 1050 ° C.).
  • a separator interposed between the positive electrode sheet and the negative electrode sheet the same separator as that generally used in the field can be used without particular limitation.
  • a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, polyamide, or a non-woven fabric made of such a resin can be used.
  • Preferable examples include a porous resin sheet having a single layer structure or a multilayer structure mainly composed of one or two or more polyolefin resins.
  • porous resin sheet having a multilayer structure for example, a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used.
  • the thickness of the porous resin sheet is preferably about 10 ⁇ m to 40 ⁇ m, for example.
  • the separator in the technique disclosed herein includes an organic porous layer composed of the porous sheet, the nonwoven fabric and the like as described above, and an inorganic porous material held on one side or both sides (typically, one side) of the organic porous layer. And a heat-resistant separator provided with a quality layer (heat-resistant layer).
  • the thickness of the heat-resistant layer can be, for example, about 2 ⁇ m to 10 ⁇ m.
  • This heat-resistant layer can be, for example, a layer containing an inorganic filler and a binder.
  • alumina, boehmite preferably employed (Boehmite alumina monohydrate represented by the composition formula Al 2 O 3 ⁇ H 2 O ), silica, titania, calcia, magnesia, zirconia, boron nitride, an inorganic filler such as aluminum nitride Can do.
  • an inorganic filler such as aluminum nitride Can do.
  • powders such as granules, fibers, and flakes are preferable.
  • the average particle size of the inorganic filler powder can be, for example, about 0.05 ⁇ m to 2 ⁇ m (typically 0.1 ⁇ m to 2 ⁇ m, preferably 0.4 ⁇ m to 0.7 ⁇ m).
  • a flaky (plate-like) inorganic filler having an average particle size of 0.5 ⁇ m to 5 ⁇ m may be used.
  • flaky inorganic filler for example, those having an average thickness of 0.02 ⁇ m to 0.7 ⁇ m can be preferably employed.
  • the non-aqueous electrolyte secondary battery disclosed herein has a counter capacity ratio calculated as a ratio of the initial charge capacity (C N ) of the negative electrode to the initial charge capacity (C P ) of the positive electrode. (C N / C P) that is preferably adjusted so that 1.0 to 2.1.
  • the facing capacity ratio (C N / C P ) is preferably 1.2 to 2.0, and more preferably 1.6 to 2.0. If C N / C P is too small, inconveniences such as easy deposition of metallic lithium may occur depending on the use conditions of the battery (for example, during rapid charging). On the other hand, if C N / C P is too large, the energy density of the battery may be easily lowered.
  • the product is removed from the reaction vessel, washed with water, and dried to obtain a composite hydroxide (precursor hydroxide) having a (Ni + Co + Mn): Zr: W molar ratio of 100: 0.2: 0.5. It was.
  • This precursor hydroxide was subjected to a heat treatment at 150 ° C. for 12 hours in an air atmosphere.
  • This positive electrode active material had an average particle diameter (median diameter D50) of 3 ⁇ m to 8 ⁇ m, a specific surface area of 0.5 to 1.9 m 2 / g, and an average hardness of 0.5 MPa to 10 MPa.
  • the clear shell part and the hollow part were provided. It was confirmed that through holes were formed in the shell, and the shell was densely sintered at portions other than the through holes.
  • the average thickness of the shell was about 1.5 ⁇ m, and the porosity determined from the cross-sectional area ratio was about 23.7%.
  • a slurry-like composition for forming the positive electrode active material layer was prepared.
  • This composition was applied to both sides of a long aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m. The coating amount was adjusted so that the coating amount on both sides was substantially equal, and the total coating amount on both sides was about 11.3 mg / cm 2 (after drying, based on solid content). The composition was dried and then pressed with a rolling press to adjust the density of the positive electrode active material layer to 1.8 to 2.4 g / cm 3 .
  • This positive electrode has a strip-shaped coating portion (referred to as a portion where an active material layer is formed; the same applies hereinafter) having a length of 3000 mm and a width of 98 mm along the longitudinal direction. A sheet was produced.
  • the negative electrode active material carbon particles having a structure in which amorphous carbon was coated on the surface of graphite particles were used. More specifically, natural graphite powder and pitch are mixed and the pitch is adhered to the surface of the graphite powder (the mass ratio of natural graphite powder: pitch is 96: 4), and in an inert gas atmosphere. After calcination at 1000 ° C. to 1300 ° C. for 10 hours, the mixture was sieved to obtain a negative electrode active material having an average particle size (D50) of 5 to 20 ⁇ m and a specific surface area of 3.0 to 6.0 m 2 / g.
  • D50 average particle size
  • This negative electrode active material, SBR, and CMC are mixed with ion-exchanged water so that the mass ratio of these materials is 98.6: 0.7: 0.7, to form a slurry for forming the negative electrode active material layer
  • a composition was prepared. This composition was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of 10 ⁇ m. The coating amount was adjusted so that the coating amount on both sides was substantially equal, and the total coating amount on both sides was about 7.3 mg / cm 2 (after drying, based on solid content). Dried, and pressed by rolling press machine to adjust the density of the negative electrode active material layer to about 0.9g / cm 3 ⁇ 1.3g / cm 3. This was cut to produce a negative electrode sheet having a long coating shape of 3200 mm in length and having a strip-shaped coating portion having a width of 102 mm along the longitudinal direction thereof.
  • the positive electrode sheet and the negative electrode sheet were superposed via the two heat-resistant separators.
  • the two heat-resistant separators were arranged such that their inorganic porous layers faced the negative electrode active material layer of the negative electrode sheet. This was wound for 29 turns in the longitudinal direction, and the wound body was pressed from the side direction and ablated to produce a flat wound electrode body.
  • This wound electrode body was housed in a box-shaped battery container together with a non-aqueous electrolyte, and the opening of the battery container was hermetically sealed.
  • the non-aqueous electrolyte solution the EC, EMC and DMC 3: 3: in a mixed solvent containing a volume ratio of 4, include LiPF 6 as a supporting salt at a concentration of about 1 mol / L, further in Table 1 A solution containing lithium bisoxalate borate (LiBOB) at the indicated concentration [mol / kg] was used. In this way, battery cells A1 to A9 were constructed. The initial capacity ratio (C N / C P ) of these battery cells is adjusted to 1.5 to 1.9.
  • Each battery cell constructed as described above was conditioned at 25 ° C. according to the following procedures 1 and 2.
  • the rated capacities (initial capacities) of the battery cells of Samples A1 to A9 were approximately 3.8 Ah. This rated capacity was measured by the following procedure. (Measurement of rated capacity) With respect to the battery cell after the above conditioning, the rated capacity was measured according to the following procedures 1 to 3 at a temperature of 25 ° C. and a voltage range of 3.0 V to 4.1 V. [Procedure 1] Discharge to 3.0 V at a constant current of 1 C, then discharge at a constant voltage for 2 hours, and rest for 10 seconds. [Procedure 2] Charge to 4.1 V with a constant current of 1 C, then charge with a constant voltage for 2.5 hours, and rest for 10 seconds.
  • the battery cell in which the deposition of Li is recognized on the surface of the negative electrode active material has a low Li ion acceptability of the negative electrode active material, that is, a high negative electrode resistance in the pulse charge / discharge at the low temperature and the high rate as described above. Can be evaluated.
  • negative electrode resistance ⁇ negative electrode resistance was low and Li precipitation resistance was high
  • negative electrode resistance x high negative electrode resistance, As Li precipitation resistance is low
  • oxalatoborate-type compound in the A1 ⁇ A3 concentration Mc B of using nonaqueous electrolyte solution is less than 0.01 mol / kg (LiBOB here), Li precipitation after storage durability test Li precipitation was observed in the test. This indicates that the negative electrode resistance has increased due to the thick growth of the SEI film on the negative electrode active material in the storage durability test.
  • A4 to A7 using a non-aqueous electrolyte with Mc B greater than 0.01 mol / kg the Li precipitation resistance after the storage durability test was good, but the initial Li precipitation resistance was low. This suggests that in A4 to A7, an OB film stronger than A1 to A3 was formed on the negative electrode by the above conditioning, and the initial negative electrode resistance was increased by this OB film.
  • LiPF 6 was contained at a concentration of about 1 mol / L in a mixed solvent containing EC, EMC, and DMC in a volume ratio of 3: 3: 4, and the concentrations shown in Table 2 [mol / kg].
  • the battery cells B1 to B14 were constructed in the same manner as the cells A1 to A9 except that the nonaqueous electrolyte solution containing LiBOB was used. These battery cells were subjected to the same conditioning as in Experimental Example 1.
  • Each battery cell after the conditioning was subjected to a treatment for modifying the OB film generated by the conditioning. Specifically, each battery cell was adjusted to SOC 90%, and each reforming condition shown in Table 2 was maintained. For example, in the battery cell B11, the SOC was adjusted to 90% (battery voltage 3.97V), and then maintained in an environment of 75 ° C. for 35 hours.
  • Determination of the anode active moles of boron contained in per unit area of the material layer m B is specifically under the following conditions. 1) The battery was discharged to 3 V, disassembled, and the negative electrode sheet was taken out. 2) The negative electrode sheet was immersed and washed in ethyl methyl carbonate (EMC). 3) A negative electrode sheet (102 mm ⁇ 50 mm) having a length corresponding to about half a turn (0.5 turns) of the wound body was subjected to analysis. 4) As an analyzer, an ICP emission analyzer (ICPS8100) manufactured by Shimadzu Corporation was used. 5) The resulting boron amount ([mu] g) was converted to moles, was calculated moles m B of boron is divided by the area of the negative electrode active material layer was analyzed.
  • EMC ethyl methyl carbonate
  • quantification of the number of moles m A oxalate ions contained per area of the negative electrode active material layer specifically, under the following conditions.
  • the battery was discharged to 3 V, disassembled, and the negative electrode sheet was taken out.
  • the negative electrode sheet was immersed in EMC and washed.
  • the negative electrode sheet was punched into a predetermined area (in this case, a diameter of 40 mm).
  • an ion chromatograph (ICS-3000) manufactured by Nippon Dionex Co., Ltd. was used.
  • the resulting converted oxalate amount ([mu] g) the moles was calculated the number of moles m A of oxalate ions is divided by the area of the negative electrode active material layer was analyzed.
  • LiPF 6 was contained at a concentration of about 1 mol / L in a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 3: 4, and LiBOB was further added at a concentration of 0.025 mol / kg.
  • a nonaqueous electrolytic solution containing was used.
  • battery cells C1 to C4 were constructed in the same manner as the cells A1 to A9. These battery cells were subjected to the same conditioning as in Experimental Example 1. Each battery cell after the above conditioning was adjusted to SOC 90% (battery voltage 3.97 V), and each reforming condition shown in Table 3 was maintained.
  • Mn precipitation amount in Table 3.
  • the amount of Mn deposited is considered to reflect the amount of Mn eluted from the positive electrode active material. Note that ND in the table indicates that the amount of deposited Mn was below the detection limit (0.001 wt% in this case).
  • LiPF 6 was contained at a concentration of about 1 mol / L in a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 3: 4, and the concentrations [mol / kg] shown in Table 4 were further included.
  • the non-aqueous electrolyte containing LiBOB and lithium difluorophosphate (LiPO 2 F 2 ) was used.
  • battery cells D1 to D7 were constructed in the same manner as the cells A1 to A9. These battery cells were subjected to the same conditioning as in Experimental Example 1. Each battery cell after the conditioning was adjusted to SOC 90%, and reforming treatment was performed under each reforming condition shown in Table 4, respectively. About the negative electrode of each battery cell after the said modification
  • a difluorophosphate ions contained per area of the positive electrode active material layer specifically, under the following conditions.
  • the battery was discharged to 3 V, and the disassembled and positive electrode sheets were taken out.
  • the positive electrode sheet was immersed in EMC and washed.
  • the positive electrode sheet was punched into a predetermined area (in this case, a diameter of 40 mm).
  • an analyzer an ion chromatograph (ICS-3000) manufactured by Nippon Dionex Co., Ltd. was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明により、非水電解液二次電池を製造する方法が提供される。その方法は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒およびオキサラトボレート型化合物を含む非水電解液とを備える電池セルを構築することを含む。その方法は、また、上記電池セルを充電して、上記オキサラトボレート型化合物に由来する被膜であってホウ素とシュウ酸イオンとを含む被膜を上記負極に形成することを含む。その方法は、さらに、上記被膜におけるシュウ酸イオンの含有モル数mAに対するホウ素の含有モル数mBの比を増大させる改質処理を施すことを含む。m/m比を増大させる方法の一好適例は、電池セルに対し、該電池セルがSOC82%以上および電圧3.9V以上の少なくとも一方を満たす状態で、該電池セルを60℃以上の温度に保持するエージング処理を施すことである。

Description

非水電解液二次電池
 本発明はリチウム二次電池に関する。詳しくは、車両搭載用電源に適用可能なリチウム二次電池に関する。
 本出願は、2012年6月29日に出願された日本国特許出願2012-147825号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウムイオン二次電池その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特にリチウムイオン二次電池は、軽量で高エネルギー密度が得られることから、車両搭載用高出力電源として好適である。
 ところで、リチウムイオン二次電池等の非水電解液二次電池では、非水電解液に含まれる成分(例えば支持電解質や非水溶媒)の一部が充電の際に分解され、その分解物を含む被膜(Solid Electrolyte Interphase膜;以下「SEI膜」ともいう。)が負極活物質の表面に生成し得る。上記SEI膜は、ROCOLi(Rは有機基)等の有機物層や、LiF,LiO等の無機物層を含み得る。このようなSEI膜は、電池が充電された状態で保存されることや、充放電を繰り返すことによって過剰に形成し、これにより負極の抵抗が高くなって電池性能が低下するという不都合を生じ得る。
 かかる問題への対応として、二次電池の構築に用いられる非水電解液に各種の添加剤を含有させることが提案されている。例えば日本国特許出願公開2011-34893号公報および同2007-165125号公報には、オキサラトボレート型の化合物(例えば、リチウムビス(オキサラト)ボレート)を含む非水電解液が記載されている。
日本国特許出願公開2011-34893号公報 日本国特許出願公開2007-165125号公報
 オキサラトボレート型化合物を含む非水電解液を用いてなる二次電池は、該化合物を含まない非水電解液を用いてなる二次電池に比べて、より耐久性能に優れたものとなり得る。例えば、充電された状態での保存や充放電の繰り返しに対して、負極の抵抗の上昇がより少ないものとなり得る。このような効果は、上記オキサラトボレート型の化合物が二次電池の初期充電時に分解して負極活物質上に被膜を形成することで、該被膜上において、支持電解質や非水溶媒に由来するSEI膜の過剰な成長が防止されることにより得られるものと考えられる。
 しかし、オキサラトボレート型の化合物の分解により形成された被膜は、それ自体が抵抗体である。このため、オキサラトボレート型化合物を含む非水電解液を用いてなる二次電池は、該化合物を含まない非水電解液を用いてなる二次電池に比べて、初期における負極の抵抗が高くなる傾向にあった。
 本発明の一つの目的は、初期の負極抵抗が低く、かつ使用による負極抵抗の上昇が抑制された非水電解液二次電池を提供することである。関連する他の目的は、このような非水電解液二次電池を製造する方法を提供することである。
 本発明者は、オキサラトボレート型化合物に由来する被膜を負極上に形成した後、その被膜を改質することを試みた。そして、上記被膜を適切に改質することにより、その改質された被膜を備える非水電解液二次電池は、該被膜を備える負極の初期抵抗が低く、使用による抵抗の上昇が効果的に抑制されたものとなり得ることを見出した。
 本発明によると、非水電解液二次電池を製造する方法が提供される。その製造方法は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒およびオキサラトボレート型化合物を含む非水電解液とを備える電池セルを構築することを含む。上記製造方法は、また、前記電池セルを充電して、前記オキサラトボレート型化合物に由来する被膜(以下、オキサラトボレート型化合物に由来する被膜を「OB膜」ということがある。)を前記負極上に形成することを含む。前記OB膜は、ホウ素(B)とシュウ酸イオンとを含む。上記製造方法は、さらに、前記OB膜の改質処理を行うことを含む。この改質処理は、前記OB膜におけるシュウ酸イオンの含有モル数mに対するホウ素の含有モル数mの比(m/m比)を増大させる処理であり得る。
 上記製造方法によると、電池セルの充電により負極上にOB膜を形成した後、このOB膜に上記改質処理を施すことにより、該OB膜を備える負極の抵抗を低減することができる。このことによって、負極の初期抵抗が低く、かつ使用による負極抵抗の上昇が効果的に抑制された非水電解液二次電池を製造することができる。負極の抵抗が低いことは、電池の入出力性能の向上等に寄与し得るので好ましい。
 本発明により提供される他の一つの非水電解液二次電池製造方法は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒およびオキサラトボレート型化合物を含む非水電解液とを備える電池セルを構築することを含む。上記製造方法は、また、前記電池セルを充電して、前記オキサラトボレート型化合物に由来する被膜(OB膜)を前記負極上に形成することを含む。上記製造方法は、さらに、前記電池セルに対し、該電池セルを65%以上の充電状態(SOC)で60℃以上の温度に保持するエージング処理を施すことを含む。このようなエージング処理によると、上記OB膜を効率よく改質して、該OB膜を有する負極の抵抗を効果的に低減することができる。上記エージング処理は、例えば、前記電池セルが82%以上および電圧3.9V以上の少なくとも一方を満たす状態で、該電池セルを60℃以上の温度に保持することにより好ましく実施することができる。
 特に限定するものではないが、上記OB膜の改質は、該OB膜のm/m比が改質前の1.2倍以上(より好ましくは1.5倍以上、例えば2倍以上)となるように行うことが好ましい。また、上記OB膜の改質は、m/m比が3以上(例えば、m/m比が3~15)となるように行うことが好ましい。
 好ましい一態様では、前記電池セルの構築に用いられる非水電解液として、前記オキサラトボレート型化合物を、当該非水電解液1kg当たり0.015mol~0.5mol(すなわち、0.015mol/kg~0.5mol/kg)の濃度Mcで含む非水電解液を使用する。かかる組成の非水電解液によると、電池の使用による負極抵抗の上昇を抑制する効果に優れたOB膜を負極上に形成することができる。
 好ましい他の一態様では、前記電池セルの構築に用いられる非水電解液が、オキサラトボレート型化合物に加えて、さらにジフルオロリン酸塩を含む。かかる組成の非水電解液によると、上記ジフルオロリン酸塩の効果によって、正極活物質からの遷移金属元素の溶出を抑制することができる。上記遷移金属元素の溶出は、上記OB膜の改質処理を行うことにより助長され得る。したがって、オキサラトボレート型化合物とジフルオロリン酸塩とを組み合わせて含む非水電解液の使用が特に有意義である。
 上記非水電解液がジフルオロリン酸塩を含む場合、該ジフルオロリン酸塩の濃度Mcは、例えば0.05mol/kg~1.0mol/kgとすることが適当である。前記電池セルの構築に用いられる非水電解液がオキサラトボレート型化合物およびジフルオロリン酸塩を含む態様において、前記ジフルオロリン酸塩の濃度Mcは、例えば、前記オキサラトボレート型化合物の濃度Mcの1.5倍~5倍とすることができる。
 ここに開示される技術は、マンガン(Mn)を構成金属元素として含むリチウム遷移金属酸化物(Mn含有リチウム遷移金属酸化物)を前記正極活物質として備える非水電解液二次電池に対して好ましく適用され得る。前記電池セルの構築に用いられる非水電解液がオキサラトボレート型化合物に加えてジフルオロリン酸塩を含む態様は、Mn含有リチウム遷移金属酸化物を正極活物質として備える非水電解液二次電池への適用が特に有意義である。
 本発明によると、また、正極活物質を含む正極と、負極活物質を含む負極と、非水電解液と、を備える非水電解液二次電池が提供される。前記負極は、オキサラトボレート型化合物に由来する被膜(OB膜)を備える。そのOB膜は、ホウ素とシュウ酸イオンとを含有する。前記OB膜は、シュウ酸イオンの含有モル数mに対するホウ素の含有モル数mの比(m/m比)が3~15である。かかる構成の非水電解液二次電池は、負極の初期抵抗が低く、かつ使用による負極抵抗の上昇が効果的に抑制されたものとなり得る。上記構成の非水電解液二次電池は、例えば、ここに開示されるいずれかの非水電解液二次電池製造方法を適用することにより好ましく実現され得る。
 好ましい一態様に係る非水電解液二次電池は、前記正極が、ジフルオロリン酸イオンを含有する被膜を備える。このことによって、正極活物質からの遷移金属元素の溶出を防ぐことができる。上記正極が、Mnを構成金属元素として含むリチウム遷移金属化合物を正極活物質として含む場合には、該正極がジフルオロリン酸イオンを含有する被膜を備えることが特に有意義である。上記被膜におけるジフルオロリン酸イオンの含有量は、前記正極の面積1cm当たり、0.002μmol以上であることが好ましい。このことによって、上記遷移金属元素の溶出をより高度に防止することができる。以下、ジフルオロリン酸イオンを含有する被膜を「DFP膜」ということがある。ここに開示される技術好ましい一態様において、上記DFP膜は、ジフルオロリン酸塩に由来する被膜であり得る。
 ここに開示される非水電解液二次電池の一好適例は、前記オキサラトボレート型化合物と前記ジフルオロリン酸塩とを含む非水電解液を用いてなる非水電解液二次電池である。かかる非水電解液は、前記ジフルオロリン酸塩の濃度Mcが前記オキサラトボレート型化合物の濃度Mcの1.5倍~5倍であることが好ましい。
 ここに開示される技術によると、初期抵抗が低く、かつ使用による抵抗の上昇が少ない非水電解液二次電池が実現され得る。このような非水電解液二次電池は、電池の使用開始当初における入出力性能に優れ、かつその入出力性能を長期間に亘ってよりよく維持するものとなり得る。したがって、ここに開示される非水電解液二次電池(例えばリチウムイオン二次電池)は、プラグインハイブリッド自動車(PHV)や電気自動車(EV)等のような車両の駆動電源として好適に利用され得る。
 この明細書によると、例えば図3に示すように、ここに開示されるいずれかの非水電解液二次電池100を搭載した車両1が提供される。非水電解液二次電池100は、ここに開示されるいずれかの方法により製造されたものであり得る。車両1は、複数の非水電解液二次電池100が接続された形態の組電池を搭載したものであってもよい。非水電解液二次電池を搭載した車両の好適例として、該非水電解液二次電池を動力源として備える車両(例えば、家庭用電源により充電できるPHV、EV等)が挙げられる。
図1は、一実施形態に係る非水電解液二次電池を模式的に示す部分断面図である。 図2は、一実施形態に係る非水電解液二次電池の要部を示す模式的断面図である。 図3は、非水電解液二次電池を搭載した車両を模式的に示す側面図である。
 以下、図面を参照しながら、本発明の好適な実施形態を説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極活物質および負極活物質の製造方法、支持電解質の構成および製法、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウム二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
 本明細書において「非水電解液二次電池」とは、非水電解液を備えた電池をいう。上記非水電解液は、典型的には、非水溶媒中に支持塩(支持電解質)を含む電解液である。
 本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電する二次電池をいう。一般にリチウムイオン二次電池と称される電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 本明細書において「活物質」とは、二次電池において電荷担体となる化学種を可逆的に吸蔵および放出(典型的には挿入および脱離)可能な物質をいう。上記電荷担体となる化学種は、リチウム二次電池においては主としてリチウムイオンである。
 本明細書において「SOC」(State of Charge)とは、特記しない場合、電池が通常使用される電圧範囲を基準とする、該電池の充電状態をいうものとする。例えば、端子間電圧(開回路電圧(OCV))が4.1V(上限電圧)~3.0V(下限電圧)の条件で測定される定格容量を基準とする充電状態をいうものとする。本明細書における定格容量は、典型的には、後述する実施例に記載の定格容量測定と同様の条件により特定される。
 本明細書において「1C」とは、満充電状態(SOC100%)の電池を1時間で放電終止電圧(SOC0%)まで放電させる電流値を意味する。
 また、本明細書において「平均粒子径」とは、特記しない場合、一般的なレーザ回折式粒度分布測定装置により得られるメジアン径(D50)を指すものとする。
 ここに開示される技術は、各種の非水電解液二次電池およびその製造に好ましく適用され得る。以下、主として上記非水電解液二次電池がリチウムイオン二次電池である場合を例として本発明をより詳しく説明するが、本発明の適用対象をリチウムイオン二次電池に限定する意図ではない。
≪非水電解液二次電池の構成≫
 本発明の一実施形態に係るリチウムイオン二次電池の概略構成を図1に示す。このリチウムイオン二次電池100は、長尺状の正極シート10と長尺状の負極シート20が二枚の長尺状のセパレータシート30を介して捲回された形態の電極体(捲回電極体)80が、非水電解液90とともに、捲回電極体80を収容し得る形状(角型)の電池ケース50に収容された構成を有する。
 電池ケース50は、上端が開放された有底角型のケース本体52と、その開口部を塞ぐ蓋体54とを備える。電池ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極シート(正極)10と電気的に接続する正極端子72および捲回電極体80の負極シート(負極)20と電気的に接続する負極端子74が設けられている。
 正極シート10は、図2に示すように、長尺シート状の正極集電体12の両面に、正極活物質142を含む正極活物質層14が保持された構造を有している。図1に示すように、正極シート10の幅方向の端辺に沿う一方の側縁には、正極活物質層14を有さず正極集電体12が露出した正極活物質層非形成部10Aが設けられている。負極シート20も正極シート10と同様に、長尺シート状の負極集電体22の両面に、負極活物質242を含む負極活物質層24が保持された構造を有している。負極シート20の幅方向の端辺に沿う一方の側縁には、負極活物質層24を有さず負極集電体22が露出した負極活物質層非形成部20Aが設けられている。
 捲回電極体80を作製するに際しては、正極シート10、負極シート20がセパレータシート30を介して積層される。このとき、図1に示すように、正極シート10の正極活物質層非形成部10Aと負極シート20の負極活物質層非形成部20Aとがセパレータシート30の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせたシート10,20,30を長手方向に捲回することにより、捲回電極体80が作製され得る。
 捲回電極体80の捲回軸方向における中央部分には、捲回コア部分(すなわち、正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータシート30とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部では、正極シート10および負極シート20の電極活物質層非形成部10A,20Aが、それぞれ捲回コア部分から外方にはみ出している。かかる正極側はみ出し部分および負極側はみ出し部分に、正極集電板76および負極集電板78の一端がそれぞれ付設されている。これらの集電板76,78の他端は、上述の正極端子72および負極端子74とそれぞれ電気的に接続されている。
 セパレータシート30としては、図2に示すように、有機多孔質層32と、その第一面32Aに保持された無機多孔質層34と、を備える耐熱性セパレータとして構成されたものを好ましく採用し得る。本実施形態では、二枚の耐熱性セパレータ30が、それぞれ、無機多孔質層34が負極活物質層24に対面する向きで配置されている。なお、図2では図を見やすくするために各シート10,20,30の間を空けて示しているが、実際の電極体80では、これらのシートは実質的に隙間なく重なっていることが好ましい。
 図2に示す負極活物質層24に含まれる負極活物質242の表面には、オキサラトボレート型化合物に由来する被膜(OB膜)244が形成されている。また、正極活物質層14に含まれる正極活物質142の表面には、ジフルオロリン酸イオンを含有する被膜(DFP膜)144が形成されていることが好ましい。これらOB膜244およびDFP膜144の特徴や形成方法等については後述する。
 非水電解液90としては、非水溶媒とオキサラトボレート型化合物とを含むものが用いられる。正極シート10がDFP膜144を含む態様では、さらにジフルオロリン酸塩を含有する非水電解液90の使用が好ましい。リチウムイオン二次電池100は、かかる組成の非水電解液90を用いて構築された後、該非水電解液90中のオキサラトボレート型化合物およびジフルオロリン酸塩の一部または全部が分解したものであってもよい。
 このような構成のリチウムイオン二次電池100は、捲回電極体80および非水電解液90を電池ケース50に収容して電池セルを構築した後、該電池セルを充電して負極にOB膜を形成し、そのOB膜を改質することにより好ましく製造され得る。以下、OB膜の形成とその改質につき詳しく説明する。
≪非水電解液二次電池の製造≫
 ここに開示される製造方法では、オキサラトボレート型化合物を含む非水電解液を有する電池セルを構築した後、該電池セルを充電する。好ましい一態様において、上記充電は、上記電池のコンディショニング(初期充放電)の一環として行われ得る。上記コンディショニングは、上記電池を充電する操作と放電させる操作とを1~3回繰り返す処理を含み得る。上記充電は、典型的にはSOC100%程度まで行われる。充電レートは、例えば1/20C~5C程度とすることができる。上記放電は、典型的にはSOC0%程度まで行われる。放電レートは、例えば1/20C~5C程度とすることができる。
 非水電解液に含まれるオキサラトボレート型化合物は、上記コンディショニングの際(典型的には、主として初回の充電時)に、主に負極の表面またはその近傍において電気的に分解される。その分解生成物が負極活物質に付着(堆積、吸着等)することにより、負極活物質の表面に、オキサラトボレート型化合物に由来する被膜(すなわちOB膜)が形成される。なお、上記OB膜には、オキサラトボレート型化合物に由来する成分(オキサラトボレート型化合物の分解生成物)のほか、電解液を構成する他の成分(例えば非水溶媒)やその分解生成物等が含まれ得る。また、ここに開示される技術におけるオキサラトボレート型化合物の一好適例であるリチウムビス(オキサラト)ボレートは、約1.73Vで還元分解する。
 ここに開示される製造方法は、上記コンディショニングにより生じたOB膜を意図的に改質する処理を含むことによって特徴づけられる。この改質処理によって上記OB膜の抵抗を低下させ、ひいては該OB膜を含む負極の抵抗を低下させることができる。負極の抵抗の程度は、例えば、後述するLi析出試験を通じて把握することができる。
 OB膜の改質処理は、例えば、上記電池セルがある程度充電された状態で、該電池セルを常温を超える温度域に保持するエージング処理であり得る。例えば、上記電池セルをSOC50%以上に調整して改質処理を行うとよい。通常は、電池セルのSOCをより高くすることにより、より効率よくOB膜を改質することができる。換言すれば、所望の改質効果を得るために必要な改質時間を短縮し、これにより非水電解液二次電池の生産性を向上させることができる。かかる観点から、改質処理時における電池セルのSOCは60%以上(例えば65%以上)が好ましく、より好ましくは70%以上、さらに好ましくは80%以上(典型的には82%以上、例えば90%程度またはそれ以上)である。一方、改質処理中における電池の劣化を抑える等の観点から、通常は、改質処理時における電池セルのSOCを100%以下とすることが適当である。
 また、電池セル内に想定外の金属異物が存在する場合、該電池セルをある程度充電された状態で常温を超える温度域に保持することにより、上記金属異物の溶解を促進し、これにより電池の出荷前において該電池の不具合(微短絡等)をより的確に検出し得る。このような電池出荷前の不具合検出向上の観点から、上記エージング処理は、電池セルがSOC70%以上または電圧3.8V以上の少なくとも一方(好ましくは両方)を満たす条件で行うことが好ましい。かかる条件によると、金属異物の溶解が効果的に促進され得るためである。
 なお、後述する実施例に記載の構成を有する電池セルでは、SOC60%における端子間電圧は約3.7Vであり、SOC100%における端子間電圧は4.1Vである。
 また、上記改質処理は、上記電池セルを50℃以上の温度条件下に保持して行うとよい。より効率よくOB膜を改質するためには、電池セルを保持する温度が高いほうが有利である。かかる観点からは、上記電池セルを保持する温度を60℃以上とすることが好ましく、より好ましくは70℃以上である。一方、改質処理中における電池セルの劣化(例えば、正極活物質の劣化、非水溶媒の分解等)を抑える等の観点から、通常は、上記温度を90℃以下とすることが適当であり、85℃以下とすることが好ましい。
 改質処理を行う時間(すなわち、上記SOCに調整された電池セルを上記温度に保持する時間)は特に限定されず、所望の改質効果が得られるように適宜設定され得る。改質処理に要するコストや電池の生産性等を考慮して、通常は、改質処理を行う時間を240時間以下(すなわち10日以内)とすることが適当であり、好ましくは168時間以下(すなわち7日以内)、より好ましくは48時間以下、さらに好ましくは36時間以下(例えば30時間以下)である。この時間内に所望の改質効果が実現されるように、電池セルのSOCおよび保持温度を設定することが好ましい。十分な改質効果を得るためには、通常は、改質処理を行う時間を5時間以上とすることが適当であり、10時間以上(例えば15時間以上)とすることが好ましい。
 なお、上述した改質処理時の電池セルの好ましいSOCは、改質処理開始時のSOCを指し、改質処理時間中にSOCが若干低下することは許容され得る。処理効率の観点からは、改質処理の終了時までSOCが50%以上(より好ましくは60%以上、さらに好ましくは70%以上)に維持されることが好ましい。
 上記OB膜は、典型的には、オキサラトボレート型化合物(例えば、リチウムビス(オキサラト)ボレート(LiBOB))に由来して、ホウ素(B)と、シュウ酸イオンとを含有する。OB膜中のホウ素は、該OB膜を負極活物質表面で安定化し、このOB膜上においてSEI膜が過剰に成長することを抑制するために効果的な成分である。一方、OB膜に含まれるシュウ酸イオンは、該OB膜の抵抗を高める要因となり得る。したがって、OB膜中のシュウ酸イオン量を低下させることにより、このOB膜がSEI膜の成長を抑制する効果を維持しつつ、該OB膜の抵抗を低下させることができる。
 すなわち、ここに開示される技術において、上記OB膜の改質処理は、該OB膜に含まれるホウ素のモル数mに対して、シュウ酸イオンのモル数mを低減する処理であり得る。換言すれば、シュウ酸イオンの含有モル数mに対するホウ素の含有モル数mの比(m/m比)を増大させる処理であり得る。例えば、OB膜からシュウ酸イオンを除去する(離脱させる)ことによりm/m比を増大させることができる。上記エージング処理は、OB膜のm/m比を増大させる方法の一好適例である。すなわち、ここに開示される技術におけるOB膜の改質処理は、上記エージング処理以外の方法によってm/m比を増大させる処理であってもよく、上記エージング処理とそれ以外の方法とを組み合わせてm/m比を増大させる処理であってもよい。
 上記改質処理によりm/m比を増大させる程度は特に限定されず、改質後のm/m比が改質前のm/m比よりも大きければよい。すなわち、上記改質処理は、改質後のm/m比が改質前のm/m比の1.0倍よりも大きくなるように行われ得る。好ましい一態様において、上記改質処理は、例えば改質後のm/m比が改質前のm/m比の1.2倍以上となるように行うことができ、1.5倍以上となるように行うことがより好ましく、2.0倍以上となるように行うことがさらに好ましい。
 なお、改質前におけるOB膜のm/m比は、使用したオキサラトボレート型化合物の化学構造を概ね反映した値となり得る。例えば、オキサラトボレート型化合物としてLiBOBを単独で含む非水電解液を用いた場合、改質前のOB膜のm/m比は凡そ2.0程度(通常2.0±0.3、典型的には2.0±0.2)となり得る。
 ここに開示される非水電解液二次電池製造方法において、上記OB膜の改質処理は、m/m比が例えば2.5以上となるように行うことができる。より高い抵抗低減効果を得るためには、m/m比が3.0以上となるように改質処理を行うことが好ましく、より好ましくは3.5以上、さらに好ましくは4.0以上(例えば5.0以上)である。m/m比の上限は特に限定されないが、電池セルの生産性や他の電池性能への影響を考慮して、通常は、m/m比が25以下(典型的には20以下、例えば15以下)となる程度にOB膜の改質処理を行うことが適当である。
 この明細書によると、ホウ素とシュウ酸イオンとを含むOB膜を含む負極を備えた非水電解液二次電池であって、該OB膜のm/m比が2.5以上(好ましくは3.0以上、より好ましくは3.5以上、さらに好ましくは4.0以上、例えば5.0以上)である非水電解液二次電池が提供される。この非水電解液二次電池において、上記OB膜のm/m比は25以下(典型的には20以下、例えば15以下)であることが好ましい。
 改質後のOB膜に含まれるシュウ酸イオンの量は、負極の面積1cm当たり0.10μmol以下(すなわち、0.10μmol/cm以下)であることが好ましく、より好ましくは0.09μmol/cm以下、さらに好ましくは0.08μmol/cm以下(例えば0.07μmol/cm以下)である。かかるシュウ酸イオン濃度(面積当たりの含有量)のOB膜を備えた負極を含む非水電解液二次電池が好ましい。好ましい一態様において、改質後のOB膜におけるシュウ酸イオン濃度は0.06μmol/cm以下であり得る。ここで、上記「負極の面積」とは、負極のうち負極活物質が配置された領域の面積を指す。したがって、シート状の集電体と該集電体上に設けられた負極活物質層とを含む構成の負極においては、負極活物質層の面積としても把握され得る。
 改質後のOB膜におけるシュウ酸イオン濃度の下限は特に限定されないが、処理効率等の観点から、通常は0.001μmol/cm以上(例えば0.01μmol/cm以上)であることが適当である。実質的にシュウ酸イオンを含まないOB膜であってもよい。ここで「実質的にシュウ酸イオンを含まない」とは、IC(イオンクロマトグラフ)分析においてシュウ酸イオンが検出限界以下であることをいう。
 改質前のOB膜におけるシュウ酸イオン濃度は特に限定されないが、通常は0.05~3.0μmol/cm程度が適当であり、0.07~2.0μmol/cm程度が好ましい。
 改質後のOB膜に含まれるホウ素の量は、当該OB膜上におけるSEI膜の成長を効果的に抑制するという観点から、負極の面積1cm当たり0.15μmol以上(すなわち、0.15μmol/cm以上)であることが好ましく、0.20μmol/cm以上(例えば0.25μmol/cm以上)であることがより好ましい。かかるホウ素濃度のOB膜を備えた負極を含む非水電解液二次電池が好ましい。また、改質後のOB膜において上記ホウ素濃度を実現するために、改質前のOB膜に含まれるホウ素の量は、0.15μmol/cm以上が適当であり、0.20μmol/cm以上(例えば0.25μmol/cm以上)が好ましい。
 また、改質後のOB膜に含まれるホウ素の量は、2.0μmol/cm以下であることが好ましく、1.0μmol/cm以下であることがより好ましい。このことによって、より初期抵抗の低い負極を備えた非水二次電池が実現され得る。同様の理由から、改質前のOB膜に含まれるホウ素の量もまた、2.0μmol/cm以下であることが好ましく、1.0μmol/cm以下であることがより好ましい。
 なお、ICP(高周波誘導結合プラズマ)発光分析においてホウ素が検出限界以下であることを、「実質的にホウ素を含まない」と表現することがある。
 このように、OB膜からシュウ酸イオンを除去することにより、該OB膜の抵抗が低減され得る。OB膜からシュウ酸イオンを除去するためには、ある程度充電された電池セルを常温を超える温度域に保持することが有効である。所望の改質効果をより短時間で実現するためには、比較的高いSOC(典型的には80%以上、好ましくは82%以上、例えば85%以上)または比較的高い電池電圧(典型的には3.8V以上、例えば3.9V以上)に調整された電池セルを、60℃以上の温度(例えば60℃~80℃)に保持するエージング処理を行うことが好ましい。
 ここで、上記エージング処理における温度条件を60℃以上とすると、このエージング処理中に、正極活物質に含まれる遷移金属元素の一部が溶出することがあり得る。このような遷移金属元素の溶出は、正極活物質がリチウム遷移金属酸化物を含む場合に起こりすく、特に、少なくともMnを構成金属元素として含む層状構造のリチウム遷移金属酸化物(例えば、後述するLiNiCoMn酸化物)を含む場合に起こりやすい。正極活物質から遷移金属元素が溶出すると、該正極活物質の組成が変化して電池の耐久性能が低下傾向となることがあり得る。また、溶出した遷移金属元素が正極活物質の外部(例えば負極)において析出すると、負極活物質の実効容量(充放電に寄与し得る容量)を消費し、電池の容量維持率を低下させる要因となり得る。
 ここに開示される技術の好ましい一態様では、正極活物質から遷移金属元素が溶出する上記事象を防止するために、オキサラトボレート型化合物に加えてジフルオロリン酸塩を含む非水電解液を用いて電池セルを構築する。ジフルオロリン酸塩は、電池セルの充電により(主として初回の充電時に)分解され、その分解生成物が正極活物質に付着(堆積、吸着等)することにより、正極活物質の表面にジフルオロリン酸イオンを含む被膜(DFP膜)を形成し得る。このDFP膜によって、正極活物質から遷移金属元素(例えばMn)が溶出する事象が防止され得る。
 上記遷移金属元素の溶出を防止する効果をよりよく発揮するためには、ジフルオロリン酸イオンの量が正極の面積1cm当たり0.0015μmol以上となるようにDFP膜を形成することが好ましい。ここで、上記「正極の面積」とは、正極のうち正極活物質が配置された領域の面積を指す。したがって、シート状の集電体と該集電体上に設けられた正極活物質層とを含む構成の正極においては、正極活物質層の面積としても把握され得る。上記ジフルオロリン酸イオンの量を0.002μmol/cm以上(例えば0.0025μmol/cm以上)とすることにより、より高い遷移金属元素溶出防止効果が実現され得る。上記ジフルオロリン酸イオンの量が0.005μmol/cm以上であってもよい。また、他の電池性能との兼ね合いから、通常は、上記ジフルオロリン酸イオンの量が0.05μmol/cm以下(好ましくは0.01μmol/cm以下)となるようにDFP膜を形成することが適当である。
 なお、上述のような捲回電極体を備えるリチウムイオン二次電池において、上記負極シートが負極集電体とその外側面(すなわち、捲回体の外周に向いた面)および内側面に形成された負極活物質層とを含み、かつ捲回電極体の最外周において上記外側面に形成された負極活物質層が正極活物質層と対向しない正極活物質層非対向部となっている場合には、上記OB膜の改質処理において、上記遷移金属元素(例えばMn)が溶出する事象が特に起こりやすい。これは、改質処理の開始時において、負極活物質層のうち上記正極活物質層非対向部はリチウムイオンが十分に充填されていない状態となりやすいところ、上記改質処理中に、上記正極活物質層非対向部の裏面の負極活物質層(負極集電体の内側面に形成された負極活物質層)から上記正極活物質層非対向部へとリチウムイオンが拡散し、これにより上記裏面の負極活物質層に対向する部分で正極シートの電位が他の部分よりも高くなるためと考えられる。上記現象は、正極シートのうち正極活物質層が形成されている側の端部(典型的には、正極活物質層非形成部とは反対側の端部)において特に生じやすい。この箇所の正極活物質層に対向する負極活物質層(正極活物質層非対向部の裏面の負極活物質層)から正極活物質層非対向部へのリチウムイオンの拡散が最も大きいためである。したがって、このような構成を有するリチウムイオン二次電池その他の非水電解液二次電池では、正極活物質から遷移金属元素が溶出する事象を防止することが特に有意義である。
 なお、上述の現象は、捲回電極体に限らず、積層型電極体においても同様に生じ得ると考えられる。
 ここに開示される非水二次電池製造方法は、必要に応じて任意のタイミングでガス抜きや品質検査等の工程を含み得る。例えば、上記コンディショニングの後および上記OB膜の改質処理の後の少なくとも一方のタイミングでガス抜きを行ってもよい。
≪非水電解液≫
 ここに開示される技術において、電池セルの構築に用いられる非水電解質としては、非水溶媒とオキサラトボレート型化合物とを含むものが用いられる。典型的には、非水溶媒およびオキサラトボレート型化合物に加えて、該非水溶媒に溶解してリチウムイオンを供給し得るリチウム化合物(支持電解質)をさらに含む非水電解液が用いられる。
≪非水溶媒≫
 非水溶媒としては、従来の一般的なリチウムイオン二次電池用電解液と同様のものを用いることができる。かかる非水電解液は、典型的には、非水溶媒と、該溶媒に溶解してリチウムイオンを供給し得るリチウム化合物(支持電解質)とを含む。上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等の、一般にリチウムイオン二次電池用の電解液に使用し得るものとして知られている非水溶媒から選択される一種または二種以上を用いることができる。
 ここに開示される技術における電解液用非水溶媒の好適例として、カーボネート類を主体とする非水溶媒が挙げられる。かかる組成の非水電解液を備える非水電解液二次電池では、ここに開示される技術の適用意義が特に大きい。例えば、非水溶媒として一種または二種以上のカーボネート類を含み、それらカーボネート類の合計体積が非水溶媒全体の体積の60体積%以上(より好ましくは75体積%以上、さらに好ましくは90体積%以上であり、実質的に100体積%であってもよい。)を占める非水電解液を好ましく採用し得る。
≪オキサラトボレート型化合物≫
 ここに開示される技術におけるオキサラトボレート型化合物の典型例は、少なくとも一つのシュウ酸イオン(C 2-)がホウ素(B)に配位した構造部分を有するオキサラト錯体である。好ましいオキサラトボレート型化合物として、下記式(I)または(II)で表される化合物が例示される。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 ここで、式(I)中のRおよびRは、それぞれ独立して、ハロゲン原子(例えば、F,Cl,Br。好ましくはF)および炭素原子数1~10(好ましくは1~3)のパーフルオロアルキル基から選択される。式(I)、(II)中のAは、無機カチオンおよび有機カチオンのいずれでもよい。無機カチオンの具体例としては、Li,Na,K等のアルカリ金属のカチオン;Be,Mg,Ca等のアルカリ土類金属のカチオン;その他、Ag,Zn,Cu,Co,Fe,Ni,Mn,Ti,Pb,Cr,V,Ru,Y、ランタノイド、アクチノイド等の金属のカチオン;プロトン;等が挙げられる。有機カチオンの具体例としては、テトラブチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラメチルアンモニウムイオン、トリエチルメチルアンモニウムイオン等のテトラアルキルアンモニウムイオン;トリメチルアンモニウムイオン、トリエチルアンモニウムイオン等のトリアルキルアンモニウムイオン;その他、ピリジニウムイオン、イミダゾリウムイオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン;等が挙げられる。好ましいカチオンの例として、Liイオン、テトラアルキルアンモニウムイオンおよびプロトンが挙げられる。
 このようなオキサラトボレート型化合物は、公知の方法により作成することができ、あるいは市販品の購入等により入手することができる。通常は、オキサラトボレート型化合物として、上記式(II)で表される化合物を好ましく用いることができる。なかでも好ましいオキサラトボレート型化合物として、式(III)で表されるリチウムビス(オキサラト)ボレート(LiB(C、以下「LiBOB」と表記することもある。)が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 ここに開示される技術において、電池セルの構築に用いられる非水電解液におけるオキサラトボレート型化合物の濃度Mcは特に限定されず、所望のSEI膜成長抑制効果を実現し得るOB膜を負極上に形成し得るように、適宜設定することができる。非水電解液の調製容易性等の観点から、通常は、オキサラトボレート型化合物の濃度Mcが0.005mol/kg~0.50mol/kg程度(より好ましくは0.01mol/kg~0.20mol/kg程度)である非水電解液を好ましく使用することができる。例えば、Mcが0.015mol/kg~0.10mol/kg(より好ましくは0.015mol/kg~0.05mol/kg)である非水電解液の使用が好ましい。Mcが低すぎると、SEI膜の成長を抑制する効果が少なくなることがあり得る。Mcが高すぎると、OB膜の改質に要する時間が長くなって生産性が低下傾向となることがあり得る。
≪ジフルオロリン酸塩≫
 ここに開示される技術において用いられるジフルオロリン酸塩は、ジフルオロリン酸アニオン(PO )を有する各種の塩であり得る。かかるジフルオロリン酸塩におけるカチオン(カウンターカチオン)は、無機カチオンおよび有機カチオンのいずれでもよい。無機カチオンの具体例としては、Li,Na,K等のアルカリ金属のカチオン;Be,Mg,Ca等のアルカリ土類金属のカチオン;等が挙げられる。有機カチオンの具体例としては、テトラアルキルアンモニウム、トリアルキルアンモニウム等のアンモニウムカチオンが挙げられる。このようなジフルオロリン酸塩は、公知の方法により作成することができ、あるいは市販品の購入等により入手することができる。通常は、ジフルオロリン酸塩として、ジフルオロリン酸アニオンと無機カチオン(例えばアルカリ金属のカチオン)との塩を用いることが好ましい。ここに開示される技術におけるジフルオロリン酸塩の一好適例として、ジフルオロリン酸リチウム(LiPO)が挙げられる。
 ここに開示される技術において、電池セルの構築に用いられる非水電解液におけるジフルオロリン酸塩の濃度Mcは特に限定されず、所望の遷移金属溶出防止効果を実現し得るDFP膜を正極上に形成し得るように、適宜設定することができる。非水電解液の調製容易性等の観点から、通常は、Mcが凡そ0.02mol/kg~1.0mol/kg程度(より好ましくは0.02mol/kg~0.50mol/kg、さらに好ましくは0.03mol/kg~0.20mol/kg、例えば0.05mol/kg~0.15mol/kg)である非水電解液を好ましく使用することができる。
 ここに開示される技術において、電池セルの構築に用いられる非水電解液は、該非水電解液1kg当たりに含まれるジフルオロリン酸塩のモル数がオキサラトボレート型化合物のモル数の1.5倍~10倍であることが好ましい。すなわち、ジフルオロリン酸塩の濃度Mcがオキサラトボレート型化合物の濃度Mcの1.5倍~10倍である非水電解液を好ましく使用し得る。かかる組成の非水電解液によると、オキサラトボレート型化合物の使用による効果と、ジフルオロリン酸塩の使用による効果(すなわち、OB膜の改質により生じ得る遷移金属元素の溶出を防止する効果)とをバランスよく両立させることができる。ジフルオロリン酸塩の濃度Mcがオキサラトボレート型化合物の濃度Mcの1.5倍~5倍である非水電解液の使用がより好ましい。
≪支持電解質≫
 上記支持電解質としては、リチウムイオン二次電池の支持電解質として機能し得ることが知られている各種の材料を適宜採用することができる。例えば、LiPF,LiBF,LiN(SOCF,LiN(SO,LiCFSO,LiCSO,LiC(SOCF,LiClO等の、リチウムイオン二次電池の支持電解質として機能し得ることが知られている各種のリチウム塩(オキサラトボレート型化合物またはジフルオロリン酸塩に該当するリチウム塩を除く。)から選択される一種または二種以上を用いることができる。なかでもLiPFを好ましく使用し得る。
 支持電解質(支持塩)の濃度は特に制限されず、例えば従来のリチウムイオン二次電池と同程度とすることができる。通常は、支持電解質を0.1mol/L~5mol/L(好ましくは0.8mol/L~1.5mol/L、例えば1.0~1.2mol/L)の濃度で含有する非水電解液を好ましく使用することができる。
 上記非水電解液は、本発明の効果を大きく損なわない限度で、上述したオキサラトボレート型化合物、ジフルオロリン酸塩、支持電解質および非水溶媒以外の成分を必要に応じて含有することができる。かかる任意成分の一例として、モノフルオロリン酸塩(典型的にはリチウム塩)、リン(P)含有オキサラト化合物、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)およびフルオロエチレンカーボネート(FEC)等の添加剤が挙げられる。このような任意成分としての添加剤の濃度(複数種類を含む場合にはそれらの合計濃度)は、通常、0.20mol/kg以下とすることが適当であり、例えば0.10mol/kg以下(典型的には0.01~0.10mol/kg)とすることができる。あるいは、オキサラトボレート型化合物、ジフルオロリン酸塩、支持電解質および非水溶媒以外の成分を実質的に含有しない非水電解液であってもよい。
 なお、オキサラトボレート型化合物(例えばLiBOB)を含む非水電解液を用いてなる非水電解液二次電池であることは、例えば、該電池の構成部材(正極活物質層の表面、負極活物質層の表面等)から測定試料を採取し、ICP発光分析、イオンクロマトグラフィ等によりホウ素(B)を検出することによって把握することができる。上記測定資料は、適当な溶媒(例えばEMC)で洗浄する等の適切な前処理を行った上で分析に供することが好ましい。
 また、電池セルの構築に用いられた非水電解液中のオキサラトボレート型化合物の量(換言すれば、電池ケース内に供給されたオキサラトボレート型化合物の量)は、例えば、ICP発光分析により正極および負極に含まれるホウ素の量を定量する;該電池の容器内に溜まった非水電解液をICP発光分析により分析して該電解液に含まれるホウ素の量を定量する;上記正極および負極や電解液をイオンクロマトグラフィにより分析してオキサラトボレート型化合物およびその分解物に起因する化学種を定量する;等の方法により把握することができる。このオキサラトボレート型化合物の量と電池ケース内にある電解液の量とから、電池セルの構築に用いられた非水電解液のオキサラトボレート型化合物濃度[mol/kg]を算出することができる。
 また、改質前または改質後のOB膜に含まれるホウ素の量は、例えば、ICP発光分析により定量することができる。
 改質前または改質後のOB膜に含まれるシュウ酸イオンの量は、例えば、イオンクロマトグラフィにより定量することができる。
 ジフルオロリン酸塩を含む非水電解液を用いてなる非水電解液二次電池であることは、例えば、該電池の構成部材(正負極活物質層の表面等)から測定試料を採取し、ICP発光分析、イオンクロマトグラフィ、マススペクトロメトリー(質量分析法;MS)等によりリン(P)を検出することによって把握することができる。かかる分析によると、例えば支持電解質(支持塩)としてLiPFを含む非水電解液を用いた電池であっても、LiPFに由来するリンとは区別して、ジフルオロリン酸塩(例えばLiPO)に由来するリンの存在を認識することができる。
 また、上記電池セルの構築に用いられた非水電解液中のジフルオロリン酸塩の量(換言すれば、電池ケース内に供給されたジフルオロリン酸塩の量)は、例えば、イオンクロマトグラフィにより正負極活物質層表面のPOイオン、POFイオン、POイオンの量を定量する;該電池の容器内に溜まった非水電解液をイオンクロマトグラフィにより分析してジフルオロリン酸塩およびそれらの分解物に起因する化学種を定量する;等の方法により把握することができる。このジフルオロリン酸塩の量と電池ケース内にある電解液の量とから、電池セルの構築に用いられた非水電解液のジフルオロリン酸塩濃度[mol/kg]を算出することができる。
 また、DFP膜に含まれるジフルオロリン酸イオンの量は、例えば、イオンクロマトグラフィにより定量することができる。
 負極に析出したMnの量は、例えば、ICP発光分析により定量することができる。そして、この負極に析出したMn量の多少によって、正極活物質から溶出したMn量が多いか少ないかを把握することができる。すなわち、正極活物質からのMnの溶出は主として高いSOC状態において生じるところ、このとき負極電位は低い状態にあるため(例えば、負極電位0.1V/対Li)、溶出したMnは負極において析出しやすいと考えられる。したがって、負極のMn量を定量することにより、正極活物質から溶出したMn量の程度(多いか少ないか)を把握することができる。
≪負極シート≫
 負極シートを構成する負極活物質層は、例えば、負極活物質および必要に応じて用いられるバインダ等を適当な溶媒に分散させたペーストまたはスラリー状の組成物を負極集電体に付与し、該組成物を乾燥させることにより好ましく作製することができる。乾燥後、必要に応じて全体をプレスしてもよい。負極集電体の単位面積当たりに設けられる負極活物質層の質量(負極集電体の両面に負極活物質層を有する構成では、両面の合計質量)は、例えば6~30mg/cm程度とすることが適当である。負極活物質層の密度は、例えば0.9~1.5g/cm程度とすることができる。
 負極集電体としては、導電性の良好な金属からなる部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。例えば、厚みが5μm~30μm程度の銅製シート(銅箔)を、負極集電体として好ましく使用し得る。
 バインダとしては、カルボキシメチルセルロース(CMC;典型的にはナトリウム塩が用いられる。)、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。このようなバインダは、一種を単独で、または二種以上を適宜組み合わせて用いることができる。
 負極活物質層全体に占める負極活物質の割合は特に限定されないが、通常は凡そ50質量%以上とすることが適当であり、好ましくは凡そ90~99質量%(例えば凡そ95~99質量%)である。バインダを使用する場合、その添加量は、負極活物質の種類や量に応じて適宜選択すればよく、例えば、負極活物質層全体の1~5質量%程度とすることができる。
≪負極活物質≫
 負極活物質としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。好適な負極活物質として炭素材料が挙げられる。少なくとも一部にグラファイト構造(層状構造)を有する粒子状の炭素材料(カーボン粒子)が好ましい。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの等の、いずれの炭素材料も好適に使用され得る。なかでも特に、天然黒鉛等のグラファイト粒子を好ましく使用することができる。グラファイトの表面に非晶質(アモルファス)カーボンが付与されたカーボン粒子等であってもよい。
 負極活物質の平均粒径は、例えば5μm~40μm(より好ましくは5μm~30μm、例えば5μm~20μm)の範囲にあることが好ましい。
 負極活物質のBET比表面積は、例えば1.0~10.0m/g(より好ましくは3.0~6.0m/gの範囲にあることが好ましい。
≪正極シート≫
 正極シートを構成する正極活物質層は、例えば、正極活物質および必要に応じて用いられる導電材、結着剤(バインダ)等を適当な溶媒に分散させたペーストまたはスラリー状の組成物を正極集電体に付与し、該組成物を乾燥させることにより好ましく作製することができる。乾燥後、必要に応じて全体をプレスしてもよい。正極集電体の単位面積当たりに設けられる正極活物質層の質量(正極集電体の両面に正極活物質層を有する構成では、両面の合計質量)は、例えば8~30mg/cm程度とすることが適当である。正極活物質層の密度は、例えば1.8~2.9g/cm程度とすることができる。
 正極集電体としては、導電性の良好な金属からなる部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。例えば、厚みが10μm~30μm程度のアルミニウムシート(アルミニウム箔)を、正極集電体として好ましく使用し得る。
 導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラック、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト粉末等が好ましい。導電材は、一種のみを単独で、または二種以上を組み合わせて用いることができる。上記バインダとしては、上述した正極と同様のものを、単独で、または二種以上を組み合わせて用いることができる。
 正極活物質層全体に占める正極活物質の割合は、凡そ50質量%以上(典型的には50~95質量%)とすることが適当であり、通常は凡そ70~95質量%であることが好ましい。導電材を使用する場合、正極活物質層全体に占める導電材の割合は、例えば凡そ2~20質量%とすることができ、通常は凡そ2~15質量%とすることが好ましい。バインダを使用する場合には、正極活物質層全体に占めるバインダの割合を例えば凡そ1~10質量%とすることができ、通常は凡そ2~5質量%とすることが適当である。
≪正極活物質≫
 正極活物質としては、リチウムを可逆的に吸蔵および放出可能な材料が用いられ、リチウムイオン二次電池の正極活物質として使用し得ることが知られている各種の材料の一種または二種以上を、特に限定なく使用することができる。例えば、リチウムと少なくとも一種の遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を好ましく採用し得る。例えば、層状またはスピネル型の結晶構造を有するリチウム遷移金属酸化物を用いることができる。
 正極活物質として使用し得る材料の他の好適例として、オリビン型リン酸リチウムその他のポリアニオン系材料が挙げられる。上記オリビン酸リチウムは、例えば、一般式LiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)で表記されるオリビン型リン酸リチウム(LiFePO、LiMnPO等)であり得る。
 好ましい一態様に係る正極活物質は、層状の結晶構造(典型的には、六方晶系に属する層状岩塩型構造)を有するリチウム遷移金属酸化物を含む。上記リチウム遷移金属酸化物は、Ni,CoおよびMnのうちの少なくとも一種を含むことが好ましい。例えば、少なくともNiを含む組成の正極活物質を好ましく採用し得る。例えば、正極活物質に含まれるリチウム以外の金属元素の総量を100モル%として、Niを10モル%以上(より好ましくは20モル%以上)含有する正極活物質が好ましい。
 上記リチウム遷移金属酸化物の一好適例として、Ni,CoおよびMnの全てを含むリチウム遷移金属酸化物(以下「LiNiCoMn酸化物」ともいう。)が挙げられる。例えば、原子数基準で、Ni,CoおよびMnの合計量を1として、Ni,CoおよびMnの量がいずれも0を超えて0.7以下(より好ましくは0.1を超えて0.6以下、典型的には0.3を超えて0.5以下)であるLiNiCoMn酸化物が好ましい。Ni,CoおよびMnの量が概ね同程度であるLiNiCoMn酸化物が特に好ましい。
 上記正極活物質は、Ni,CoおよびMnの少なくとも一種の他に、付加的な構成元素(添加元素)として他の1種または2種以上の元素を含有し得る。かかる付加的な元素の好適例として、W,Cr,Mo,Ti,Zr,Nb,V,Al,Mg,Ca,Na,Fe,Cu,Zn,Si,Ga,In,Sn,BおよびFが例示される。
 好ましい一態様に係る正極活物質は、上記添加元素として、W,CrおよびMoから選択される少なくとも一種の金属元素を含む。特に、上記添加元素として少なくともWを含む組成の正極活物質が好ましい。かかる正極活物質を用いた電池は、反応抵抗が低減され、入出力特性に優れたものとなり得る。
 正極活物質における添加元素(例えばW)の含有量は、該正極活物質に含まれるNi,CoおよびMnの合計モル数を100モル%として、例えば0.001~5モル%とすることができ、通常は0.01~3モル%とすることが適当であり、0.05~1モル%(より好ましくは0.1~1モル%、例えば0.2~1モル%)とすることが好ましい。
 ここに開示される技術における正極活物質は、例えば、湿式法によって調製した水酸化物(前駆体)を、適当なリチウム化合物と混合し、所定の温度で焼成することにより形成することができる。上記添加元素を含む正極活物質は、該添加元素を含む水酸化物を調製するとよい。この方法によると、正極活物質中の添加元素の分布において、局所的な凝集が防止された正極活物質を得ることができる。
 前記正極活物質は、該正極活物質に含まれるLi以外の全ての金属元素の合計量mMallに対して過剰量のLiを含む組成を有することが好ましい(すなわち、1.00<(mLi/mMall))。このようにmMallに対してLiを過剰に含む組成の正極活物質によると、より高性能な(例えば、出力性能の良い)リチウムイオン二次電池が実現され得る。好ましい一態様では(mLi/mMall)が1.05以上であり、より好ましくは1.10以上である(すなわち、1.10≦(mLi/mMall))。mLi/mMallの上限は特に限定されない。通常は、mLi/mMallが1.4以下(好ましくは1.3以下、例えば1.2以下)であることが好ましい。
 正極活物の平均粒径は、例えば2μm~10μm(より好ましくは3μm~8μm)の範囲にあることが好ましい。
 ここに開示される正極活物質のBET比表面積は、凡そ0.3m/g以上であることが好ましく、より好ましくは0.5m/g以上、さらに好ましくは0.8m/g以上である。また、上記BET比表面積は、例えば、凡そ3.0m/g以下(例えば2.0m/g以下)とすることができ、1.7m/g以下であってもよく、さらに1.5m/g以下であってもよい。好ましい一態様に係る正極活物質は、BET比表面積が概ね0.5~2.0m/gの範囲にある。
 ここに開示される技術における正極活物質は、多孔質構造または中空構造の粒子であってもよい。ここで、多孔質構造とは、実体のある部分と空隙部分とが粒子全体にわたって混在している構造(スポンジ状構造)を指す。多孔質構造を有する正極活物質の代表例として、いわゆる噴霧焼成製法(スプレードライ製法と称されることもある。)により得られた正極活物質(典型的には、一次粒子が集まった二次粒子の形態を呈する。)が挙げられる。また、中空構造とは、殻部とその内側の中空部(空洞部)とを有する構造を指す。このような中空構造の粒子は、実体のある部分が殻部に偏っており、上記中空部に明確にまとまった空間が形成されている点で、多孔質構造の粒子とは、構造上、明らかに区別されるものである。なお、上記中空構造の粒子において、上記中空部のまとまった空間は、典型的には、二次粒子を構成する一次粒子同士の間(近接し焼結し合って隣り合う一次粒子の間)に存在する隙間よりも大きな空間である。
 上記殻部は、粒子外部と上記中空部とを連通させる貫通孔を有していることが好ましい。以下、殻部に上記貫通孔を有する中空構造を「孔空き中空構造」という。ここに開示される技術における正極活物質としては、このような孔空き中空構造の粒子(孔空き中空活物質粒子)を好ましく採用することができる。上記殻部の厚さは、通常、3.0μm以下が適当であり、好ましくは2.5μm以下(典型的には2.2μm以下、より好ましくは2.0μm以下、例えば1.5μm以下)である。殻部の厚さの下限値は特に限定されないが、機械的強度や製造容易性の観点から、通常は0.1μm以上であることが適当であり、0.2μm以上であることが好ましい。
 孔空き中空活物質粒子の粒子空孔率は、典型的には5%以上であり、通常は10%以上(例えば15%以上)であることが好ましい。ここで「粒子空孔率」とは、孔空き中空活物質粒子の見かけの体積のうち、中空部が占める体積の割合をいう。この割合は、活物質粒子の断面SEM画像に基づいて把握することができる。上記粒子空孔率が20%以上(典型的には23%以上、好ましくは30%以上)であってもよい。また、粒子空孔率が75%以下(例えば70%以下)である孔空き中空活物質粒子が好ましい。
 上記孔空き中空活物質粒子としては、平均硬度が概ね0.5MPa以上(典型的には1.0MPa以上、例えば2.0~10MPa)であるものを好ましく採用し得る。ここで「平均硬度」とは、直径50μmの平面ダイヤモンド圧子を使用して、負荷速度0.5mN/秒~3mN/秒の条件で行われるダイナミック微小硬度測定により得られる値をいう。かかるダイナミック微小硬度測定には、例えば、株式会社島津製作所製の微小硬度計、型式「MCT-W500」を用いることができる。
 孔空き中空活物質粒子の材質としては、リチウム遷移金属酸化物(典型的には、層状構造のリチウム遷移金属酸化物)が好ましい。製造容易性等の観点から、少なくともNiを含むリチウム遷移金属酸化物が特に好ましい。上記リチウム遷移金属酸化物の一好適例として、LiNiCoMn酸化物が挙げられる。
 このような孔空き中空構造の活物質粒子は、例えば、遷移金属の水溶液から遷移金属水酸化物(前駆体水酸化物)を析出させる原料水酸化物生成工程と、その前駆体水酸化物とリチウム化合物とを混合して未焼成の混合物を調製する混合工程と、その未焼成混合物を焼成する焼成工程と、を包含する方法により好ましく製造され得る。ここで、上記原料水酸化物生成工程は、典型的には、前記水溶液から前記遷移金属水酸化物を析出させる核生成段階と、その析出した遷移金属水酸化物を成長させる粒子成長段階とを含む。上記粒子成長段階は、液中のアンモニア濃度を制御しつつ(例えば、所定値以下に制御しつつ)行うことが好ましい。
 上記核生成段階では、上記混合溶液から短時間のうちに(例えば、ほぼ同時に)多数の核を析出させることが好ましい。かかる析出態様を好適に実現するために、上記核生成段階をpH12.0以上(典型的にはpH12.0~14.0、例えばpH12.2~13.0)の条件で行うことが好ましい。なお、本明細書中において、pHの値は、液温25℃を基準とするpH値をいうものとする。この核生成段階をアンモニアを含む液中で行う場合、そのアンモニア濃度は特に限定されないが、通常は25g/L以下(3~25g/L、好ましくは10~25g/L))とすることが適当である。
 上記粒子成長段階では、核生成段階で析出した遷移金属水酸化物の核を、好ましくは該核生成段階よりも低pH域のアルカリ性条件下で成長させる。例えば、pH12.0未満(典型的にはpH10.0以上12.0未満、好ましくはpH10.0以上11.8以下、例えばpH11.0以上11.8以下)で粒子成長させるとよい。この粒子成長段階は、アンモニアを含む液中で行うことが好ましい。その液中アンモニア濃度は、例えば25g/L以下とすることができ、通常は20g/L以下とすることが適当であり、好ましくは15g/L以下、より好ましくは10g/L以下、例えば8g/L以下である。液中アンモニア濃度の下限は特に限定されないが、通常は、概ね1g/L以上(好ましくは3g/L以上)とすることが適当である。粒子成長段階における液中アンモニア濃度を、核生成段階におけるアンモニア濃度よりも低い濃度に(典型的には75%以下、例えば50%以下の濃度に)制御することが好ましい。
 核生成段階および粒子成長段階を通じて、反応液の温度は凡そ20℃~60℃(例えば30℃~50℃)の範囲とすることが好ましい。反応液および反応槽内の雰囲気は、核生成段階および粒子成長段階を通じて非酸化性雰囲気(例えば、酸素濃度が概ね20%以下、好ましくは10%以下の非酸化性雰囲気)に維持することが好ましい。
 このようにして得られた遷移金属水酸化物(前駆体水酸化物)を、炭酸リチウム、水酸化リチウム等のリチウム化合物(リチウム源)と混合して焼成することによって、孔空き中空構造の活物質粒子を得ることができる。上記焼成は、典型的には酸化性雰囲気中(例えば大気中)で行われる。焼成温度は、例えば700℃~1100℃とすることができる。最高焼成温度が800℃以上(好ましくは800℃~1100℃、例えば800℃~1050℃)となるように焼成することが好ましい。
≪セパレータ≫
 正極シートと負極シートとの間に介在されるセパレータとしては、当該分野において一般的なセパレータと同様のものを特に限定なく用いることができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シートや、このような樹脂からなる不織布等を用いることができる。好適例として、一種または二種以上のポリオレフィン樹脂を主体に構成された、単層構造または多層構造の多孔性樹脂シートが挙げられる。多層構造の多孔性樹脂シートとしては、例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。上記多孔性樹脂シートの厚さは、例えば、10μm~40μm程度であることが好ましい。
 ここに開示される技術におけるセパレータは、上記のような多孔質シート、不織布等からなる有機多孔質層と、この有機多孔質層の片面または両面(典型的には片面)に保持された無機多孔質層(耐熱層)と、を備えた耐熱性セパレータとして構成されていてもよい。上記耐熱層の厚さは、例えば2μm~10μm程度とすることができる。
 この耐熱層は、例えば、無機フィラーとバインダとを含む層であり得る。例えば、アルミナ、ベーマイト(Boehmite;組成式Al・HOで示されるアルミナ一水和物)、シリカ、チタニア、カルシア、マグネシア、ジルコニア、窒化ホウ素、窒化アルミニウム等の無機フィラーを好ましく採用し得る。無機フィラーの性状としては、粒状、繊維状、フレーク状等の粉末状が好ましい。無機フィラー粉末の平均粒径は、例えば0.05μm~2μm(典型的には0.1μm~2μm、好ましくは0.4μm~0.7μm)程度であり得る。あるいは、平均粒径0.5μm~5μmのフレーク状(板状)の無機フィラーを用いてもよい。かかるフレーク状無機フィラーとしては、例えば、平均厚みが0.02μm~0.7μmのものを好ましく採用し得る。
≪正極と負極との容量比≫
 特に限定するものではないが、ここに開示される非水電解液二次電池は、正極の初期充電容量(C)に対する負極の初期充電容量(C)の比として算出される対向容量比(C/C)が1.0~2.1となるように調整されていることが好ましい。上記対向容量比(C/C)が1.2~2.0であることが好ましく、1.6~2.0であることがより好ましい。C/Cが小さすぎると、電池の使用条件によっては(例えば、急速充電時等に)、金属リチウムが析出しやすくなる等の不都合が生じ得る。一方、C/Cが大きすぎると、電池のエネルギー密度が低下しやすくなることがある。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<実験例1>
  (正極活物質の作製)
 硫酸ニッケル(NiSO)、硫酸コバルト(CoSO)、硫酸マンガン(MnSO)および硫酸ジルコニウムを水に溶解させて、Ni:Co:Mnのモル比が1:1:1であり、かつNi,Co,MnおよびZrの合計濃度が1.8mol/Lである水溶液aqを調製した。また、パラタングステン酸アンモニウム(5(NHO・12WO)を水に溶解させて、W濃度が0.1mol/Lの水溶液aq(W水溶液)を調製した。攪拌装置および窒素導入管を備えた反応槽に、25%(質量基準)水酸化ナトリウム水溶液と25%(質量基準)アンモニア水とをそれぞれ適量加えて、pHが12.0であり、液相のアンモニア濃度が20g/Lであるアルカリ性水溶液を調製した。
 このアルカリ性水溶液に、上記でそれぞれ調製した水溶液aqと、水溶液aqと、25%水酸化ナトリウム水溶液と、25%アンモニア水とを、一定速度で供給することにより、反応液をpH12.0以上(具体的にはpH12.0~14.0)、かつアンモニア濃度20g/Lに維持しつつ、該反応液から水酸化物を晶析させた(核生成段階)。次いで、上記反応槽への各液の供給速度を調節して反応液のpH12.0未満(具体的にはpH10.5~11.9)に調整し、液相のアンモニア濃度を1~10g/Lの範囲の所定濃度に制御しつつ、上記で生成した核の粒子成長反応を行った(粒子成長段階)。生成物を反応槽から取り出し、水洗し、乾燥させて、(Ni+Co+Mn):Zr:Wのモル比が100:0.2:0.5である複合水酸化物(前駆体水酸化物)を得た。この前駆体水酸化物に、大気雰囲気中、150℃で12時間の熱処理を施した。
 その後、上記前駆体水酸化物とLiCO(リチウム源)とを、Li:(Ni+Co+Mn)のモル比が1.14:1となるように混合した(混合工程)。この未焼成混合物を、大気雰囲気中、800℃~950℃で5時間~15時間焼成した。その後、焼成物を冷却し、解砕し、篩分けを行った。このようにして、Li1.14Ni0.34Co0.33Mn0.33Zr0.0020.005で表される平均組成を有する孔空き中空構造の正極活物質を得た。
 この正極活物質の平均粒径(メジアン径D50)は3μm~8μmであり、比表面積は0.5~1.9m/gであり、平均硬度は0.5MPa~10MPaであった。この正極活物質の断面SEM観察を行ったところ、一次粒子が集まった二次粒子の形態であって、明確な殻部と中空部とを備えていた。該殻部には貫通孔が形成され、その貫通孔以外の部分では殻部が緻密に焼結していることが確認された。殻部の平均厚さは約1.5μmであり、断面積比から求めた空孔率は約23.7%であった。
  (正極シートの作製)
 上記で作製した正極活物質と、AB(導電材)と、PVDF(結着材)とを、これらの材料の質量比が90:8:2となるようにN-メチルピロリドン(NMP)と混合して、正極活物質層形成用のスラリー状組成物を調製した。この組成物を、厚さ15μmの長尺状のアルミニウム箔(正極集電体)の両面に塗付した。塗付量は、両面の塗付量が略同等であり両面の合計塗付量が約11.3mg/cm(乾燥後、固形分基準)となるように調節した。上記組成物を乾燥させた後、圧延プレス機によりプレスして、正極活物質層の密度を1.8~2.4g/cmに調整した。これを裁断して、長さ3000mmの長尺状であって、その長手方向に沿って幅98mmの帯状の塗工部(活物質層が形成された部分を指す。以下同じ。)を有する正極シートを作製した。
  (負極シートの作製)
 負極活物質としては、グラファイト粒子の表面にアモルファスカーボンがコートされた構造のカーボン粒子を使用した。より具体的には、天然黒鉛粉末とピッチとを混合して該黒鉛粉末の表面にピッチを付着させ(天然黒鉛粉末:ピッチの質量比は96:4とした。)、不活性ガス雰囲気下において1000℃~1300℃で10時間焼成した後、篩いにかけて、平均粒径(D50)5~20μm、比表面積3.0~6.0m/gの負極活物質を得た。この負極活物質とSBRとCMCとを、これらの材料の質量比が98.6:0.7:0.7となるようにイオン交換水と混合して、負極活物質層形成用のスラリー状組成物を調製した。この組成物を、厚さ10μmの長尺状の銅箔(負極集電体)の両面に塗付した。塗付量は、両面の塗付量が略同等であり両面の合計塗付量が約7.3mg/cm(乾燥後、固形分基準)となるように調節した。乾燥後、圧延プレス機によりプレスして、負極活物質層の密度を約0.9g/cm~1.3g/cmに調整した。これを裁断して、長さ3200mmの長尺状であって、その長手方向に沿って幅102mmの帯状の塗工部を有する負極シートを作製した。
  (耐熱性セパレータの作製)
 無機フィラーとしてのアルミナ粉末と、アクリル系バインダと、増粘剤としてのCMCとを、Al:バインダ:CMCの配合比が98:1.3:0.7となるように、イオン交換水を溶媒として混練した。このスラリーを、厚さ20μmのポリエチレン製単層多孔質シートの片面に塗付し、70℃で乾燥させて無機多孔質層を形成することにより耐熱性セパレータを得た。上記スラリーの塗付量(目付量)は、固形分基準で0.7mg/cmとなるように調整した。乾燥後の無機多孔質層の厚みは4μmであった。
  (電池セルの構築)
 上記正極シートおよび上記負極シートを、2枚の上記耐熱性セパレータを介して重ね合わせた。2枚の上記耐熱性セパレータは、それらの無機多孔質層がそれぞれ負極シートの負極活物質層に対面する向きで配置した。これを長尺方向に29ターン捲回し、その捲回体を側面方向から押圧して拉げさせることにより、扁平形状の捲回電極体を作製した。
 この捲回電極体を、非水電解液とともに箱型の電池容器に収容し、電池容器の開口部を気密に封口した。非水電解液としては、ECとEMCとDMCとを3:3:4の体積比で含む混合溶媒中に、支持塩としてのLiPFを約1モル/Lの濃度で含み、さらに表1に示す濃度[モル/kg]でリチウムビスオキサレートボレート(LiBOB)を含むものを使用した。このようにして電池セルA1~A9を構築した。なお、これらの電池セルの初期容量比(C/C)は1.5~1.9に調整されている。
  (コンディショニング)
 上記のように構築した各電池セルに対し、25℃において、次の手順1~2に従ってコンディショニングを施した。
 [手順1]1.5Cの定電流充電によって4.1Vに到達後、定電圧にて2時間充電し、10秒間休止する。
 [手順2]1Cの定電流放電によって3.0Vに到達後、定電圧にて2時間放電し、10秒間停止する。
 なお、サンプルA1~A9の電池セルの定格容量(初期容量)は凡そ3.8Ahであった。この定格容量は、以下の手順で測定した。
  (定格容量の測定)
 上記コンディショニング後の電池セルについて、温度25℃、3.0Vから4.1Vの電圧範囲で、次の手順1~3に従って定格容量を測定した。
 [手順1]1Cの定電流で3.0Vまで放電し、続いて定電圧で2時間放電し、10秒間休止する。
 [手順2]1Cの定電流で4.1Vまで充電し、続いて定電圧で2.5時間充電し、10秒間休止する。
 [手順3]1Cの定電流で3.0Vまで放電し、続いて定電圧で2時間放電し、10秒間停止する。
 そして、手順3における定電流放電および定電圧放電による放電容量(CCCV放電容量)を定格容量とした。
  (初期における負極抵抗の評価)
 以下の手順で行われるLi析出試験により、上記電池セルの負極抵抗を評価した。
 すなわち、上記コンディショニング後の各電池セルをSOC80%に調整した後、0℃において、以下の(I)~(IV)を1サイクルとするパルス充放電を1000サイクル行った。その間、20サイクル毎に、各電池セルをSOC80%の充電状態に調整した。
 (I)20Cの定電流で5秒間充電する。
 (II)10分間休止する。
 (III)20Cの定電流で5秒間放電する。
 (IV)10分間休止する。
 上記1000回のパルス充放電の後、電池セルを解体し、負極活物質層の表面を目視により観察してLi析出の有無を評価した。これにより負極活物質の表面にLiの析出が認められた電池セルは、上記のような低温かつハイレートでのパルス充放電において、負極活物質のLiイオン受け入れ性が低い、すなわち負極抵抗が高いと評価し得る。その結果を、Liの析出が認められなかった場合には負極抵抗○(負極抵抗が低く、Li析出耐性が高い)、Liの析出が認められた場合には負極抵抗×(負極抵抗が高く、Li析出耐性が低い)として、表1の「初期負極抵抗」の欄に表示した。
  (保存耐久後における負極抵抗の評価)
 上記コンディショニング後の電池セルを、SOC80%(電池電圧3.86V)に調整して60℃の環境下に300日間保存した(保存耐久試験)。この保存耐久試験後の各電池セルについて、上記と同様のLi析出試験を行って負極抵抗を評価した。その結果を表1の「保存耐久後負極抵抗」の欄に示した。
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、オキサラトボレート型化合物(ここではLiBOB)の濃度Mcが0.01mol/kg以下である非水電解液を用いたA1~A3では、保存耐久試験後のLi析出試験においてLiの析出がみられた。これは、保存耐久試験により負極活物質上にSEI膜が厚く成長したことにより、負極抵抗が上昇したことを示している。一方、Mcが0.01mol/kgよりも大きい非水電解液を用いたA4~A7では、保存耐久試験後のLi析出耐性は良好であったが、初期のLi析出耐性が低かった。これは、A4~A7では上記コンディショニングにより負極上にA1~A3よりも強固なOB膜が形成され、このOB膜により初期の負極抵抗が高くなったことを示唆している。
<実験例2>
 本実験例では、ECとEMCとDMCとを3:3:4の体積比で含む混合溶媒中にLiPFを約1モル/Lの濃度で含み、さらに表2に示す濃度[モル/kg]でLiBOBを含む非水電解液を用い、その他の点についてはセルA1~A9と同様にして、電池セルB1~B14を構築した。
 これらの電池セルに、実験例1と同様のコンディショニングを施した。
  (改質処理)
 上記コンディショニング後の各電池セルに対し、該コンディショニングにより生じたOB膜を改質する処理を行った。具体的には、各電池セルをSOC90%に調整し、それぞれ表2に示す各改質条件に保持した。例えば、電池セルB11では、SOC90%(電池電圧3.97V)に調整した後、75℃の環境下に35時間保持した。
  (負極抵抗の評価)
 上記改質後の各電池セルにつき、実験例1と同様のLi析出試験を行って負極抵抗を評価した。その結果を、表2の「改質後初期負極抵抗」の欄に示した。また、上記改質処理を施す前の電池セルB1~B14につき、同様にして負極抵抗を評価した。その結果を、表2の「改質前初期負極抵抗」の欄に示した。
  (OB膜の組成)
 上記改質後の電池セルを解体し、負極活物質層のICP発光分析を行って、該負極活物質層の面積当たりに含まれるホウ素(B)のモル数m[μmol/cm]を求めた。また、イオンクロマトグラフィにより、負極活物質層の面積当たりに含まれるシュウ酸イオンのモル数m[μmol/cm]を求めた。各電池セルについてmおよびmの値から、シュウ酸イオンのモル数mに対するホウ素のモル数mの比(m/m)を算出した。これらの結果を表2に示した。なお、表中の「-」は未測定または計算不可であることを示している。
 負極活物質層の面積当りに含まれるホウ素のモル数mの定量は、具体的には、以下の条件で行った。
 1)電池を3Vまで放電し、解体し、負極シートを取り出した。
 2)その負極シートをエチルメチルカーボネート(EMC)に浸漬して洗浄した。
 3)捲回体の凡そ半ターン(0.5ターン)に相当する長さの負極シート(102mm×50mm)を分析に供した。
 4)分析装置としては、島津製作所製のICP発光分析装置(ICPS8100)を使用した。
 5)得られたホウ素量(μg)をモル数に換算し、分析した負極活物質層の面積で除してホウ素のモル数mを算出した。
 また、負極活物質層の面積当りに含まれるシュウ酸イオンのモル数mの定量は、具体的には、以下の条件で行った。
 1)電池を3Vまで放電し、解体し、負極シートを取り出した。
 2)その負極シートをEMCに浸漬して洗浄した。
 3)上記負極シートを所定の面積(ここでは直径40mm)に打ち抜いた。
 4)分析装置としては、日本ダイオネクス社製のイオンクロマトグラフ装置(ICS-3000)を使用した。
 5)得られたシュウ酸イオン量(μg)をモル数に換算し、分析した負極活物質層の面積で除してシュウ酸イオンのモル数mを算出した。
Figure JPOXMLDOC01-appb-T000005
 表2に示されるように、Mcが0.01mol/kgよりも大きい非水電解液を使用したB2~B14のうち、B5~B14は、表2に示す条件でOB膜の改質処理を行うことにより、シュウ酸イオンの量が十分に低減された。その結果、負極抵抗が低減されて良好なLi析出耐性を示すものとなった。これに対してB2,B3は、mおよびm/m比の値からもわかるように、表2に示す条件ではOB膜の改質効果が不十分であった。改質条件を85℃としたB4では、正極活物質の劣化(活物質表面の構造変化、例えばNiの価数の低下等)が生じて正極の抵抗が上昇し、これにより電池抵抗が上昇してしまうという不都合が生じた。また、改質後の電池セルB1~B14について、実験例1と同様の保存耐久試験を行った後にLi析出試験を行ったところ、B2~B14ではLiの析出は認められなかったが、B1ではLiの析出が認められた。
<実験例3>
 本実験例では、ECとEMCとDMCとを3:3:4の体積比で含む混合溶媒中にLiPFを約1モル/Lの濃度で含み、さらに0.025モル/kgの濃度でLiBOBを含む非水電解液を用いた。その他の点についてはセルA1~A9と同様にして、電池セルC1~C4を構築した。
 これらの電池セルに、実験例1と同様のコンディショニングを施した。
 上記コンディショニング後の各電池セルをSOC90%(電池電圧3.97V)に調整し、それぞれ表3に示す各改質条件に保持した。
  (Mn析出量の評価)
 上記改質後の各電池セルを3Vまで放電し、解体し、負極シートのうち捲回電極体の最外周に位置していた部分につき、負極活物質層のICP発光分析を行ってMnの存在量を調べた。これらの電池セルの構築に使用した材料のうちMnを含む材料は正極活物質のみであるため、上記改質後の負極に存在するMnは、正極活物質から溶出して負極上で析出したものと考えられる。上記Mnの存在量(質量基準)を、分析対象とした領域に含まれる負極活物質の質量に対するMnの質量に対する百分率として求めた。その結果を、表3の「Mn析出量」の欄に示した。このMn析出量の多少は、正極活物質からのMnの溶出量の多少を反映するものと考えられる。なお、表中のNDはMn析出量が検出限界(ここでは0.001wt%)以下であったことを示している。
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、改質条件が60℃以上になるとMnの溶出が認められ、その溶出量は温度が高くなるにつれてさらに多くなった。
<実験例4>
 本実験例では、ECとEMCとDMCとを3:3:4の体積比で含む混合溶媒中にLiPFを約1モル/Lの濃度で含み、さらに表4に示す濃度[モル/kg]でLiBOBおよびジフルオロリン酸リチウム(LiPO)を含む非水電解液を用いた。その他の点についてはセルA1~A9と同様にして、電池セルD1~D7を構築した。
 これらの電池セルに、実験例1と同様のコンディショニングを施した。
 上記コンディショニング後の各電池セルをSOC90%に調整し、それぞれ表4に示す各改質条件にて改質処理を行った。
 上記改質後の各電池セルの負極につき、実験例3と同様にしてMn析出量を求めた。
  (DFP膜の組成)
 上記改質後の各電池セルを3Vまで放電し、解体し、正極活物質層のイオンクロマトグラフィを行って、該正極活物質層の面積当たりに含まれるジフルオロリン酸イオン(PO)のモル数m[μmol/cm]を調べた。これらの結果を表4に示した。
 正極活物質層の面積当りに含まれるジフルオロリン酸イオンのモル数mの定量は、具体的には、以下の条件で行った。
 1)電池を3Vまで放電し、解体、正極シートを取り出した。
 2)その正極シートをEMCに浸漬して洗浄した。
 3)上記正極シートを所定の面積(ここでは直径40mm)に打ち抜いた。
 4)分析装置としては、日本ダイオネクス社製のイオンクロマトグラフ装置(ICS-3000)を使用した。
 5)得られたジフルオロリン酸イオン量(μg)をモル数に換算し、分析した正極活物質層の面積で除してジフルオロリン酸イオンのモル数mpを算出した。
Figure JPOXMLDOC01-appb-T000007
 表4に示されるように、LiBOBに加えてLiPOを含む非水電解液を用いたD2~D7は、いずれも、LiPOを含まない非水電解液を用いたD1に比べてMnの溶出が抑制されていた。DFP膜のmが0.002mol/cm以上であるD5~D7では、特に高いMn溶出防止効果が実現された。
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
  1  車両
 10  正極シート(正極)
 10A 正極活物質層非形成部
 12  正極集電体
 14  正極活物質層
 142 正極活物質
 144 DFP膜
 20  負極シート(負極)
 20A 負極活物質層非形成部
 22  負極集電体
 24  負極活物質層
 242 負極活物質
 244 OB膜
 30  セパレータシート(耐熱性セパレータ)
 32  有機多孔質層(多孔質樹脂シート)
 32A 第一面(負極対向面)
 34  無機多孔質層
 50  電池ケース
 52  ケース本体
 54  蓋体
 72  正極端子
 74  負極端子
 76  正極集電板
 78  負極集電板
 80  捲回電極体(電極体)
 90  非水電解液
100  リチウムイオン二次電池(非水電解液二次電池)

Claims (9)

  1.  非水電解液二次電池を製造する方法であって:
     正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒およびオキサラトボレート型化合物を含む非水電解液とを備える電池セルを構築すること;
     前記電池セルを充電して、前記オキサラトボレート型化合物に由来する被膜であってホウ素(B)とシュウ酸イオンとを含む被膜を前記負極上に形成すること;および、
     前記電池セルに対し、前記被膜におけるシュウ酸イオンの含有モル数mに対するホウ素の含有モル数mの比(m/m比)を増大させる改質処理を施すこと;
     を包含する、非水電解液二次電池製造方法。
  2.  非水電解液二次電池を製造する方法であって:
     正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒およびオキサラトボレート型化合物を含む非水電解液とを備える電池セルを構築すること;
     前記電池セルを充電して、前記オキサラトボレート型化合物に由来する被膜を前記負極上に形成すること;および、
     前記電池セルに対し、該電池セルがSOC82%以上および電圧3.9V以上の少なくとも一方を満たす状態で、該電池セルを60℃以上の温度に保持するエージング処理を施すこと;
     を包含する、非水電解液二次電池製造方法。
  3.  前記電池セルの構築に用いられる前記非水電解液は、前記オキサラトボレート型化合物を0.015mol/kg~0.5mol/kgの濃度で含む、請求項1または2に記載の非水電解液二次電池製造方法。
  4.  前記電池セルの構築に用いられる前記非水電解液は、さらにジフルオロリン酸塩を含む、請求項1から3のいずれか一項に記載の非水電解液二次電池製造方法。
  5.  前記電池セルの構築に用いられる前記非水電解液は、前記ジフルオロリン酸塩を0.05mol/kg~1.0mol/kgの濃度で含む、請求項4に記載の非水電解液二次電池製造方法。
  6.  前記電池セルの構築に用いられる前記非水電解液は、前記ジフルオロリン酸塩の濃度Mcが前記オキサラトボレート型化合物の濃度Mcの1.5倍~5倍である、請求項4または5に記載の非水電解液二次電池製造方法。
  7.  前記正極活物質は、Mnを構成金属元素として含むリチウム遷移金属酸化物である、請求項1から6のいずれか一項に記載の非水電解液二次電池製造方法。
  8.  非水電解液二次電池であって、
     正極活物質を含む正極と、負極活物質を含む負極と、非水電解液とを備え、
     前記負極は、オキサラトボレート型化合物に由来する被膜を備え、該被膜はホウ素とシュウ酸イオンとを含有し、
     前記被膜は、シュウ酸イオンの含有モル数mに対するホウ素の含有モル数mの比(m/m比)が3~15である、非水電解液二次電池。
  9.  前記正極は、
     正極活物質としてのリチウム遷移金属酸化物と、
     ジフルオロリン酸イオンを含有する被膜とを含み、
     前記リチウム遷移金属酸化物は構成金属元素としてMnを含有し、
     前記被膜におけるジフルオロリン酸イオンの含有量が前記正極の面積1cm当たり0.002μmol以上である、請求項8に記載の非水電解液二次電池。
PCT/JP2013/062660 2012-06-29 2013-04-30 非水電解液二次電池 WO2014002611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/408,733 US9768446B2 (en) 2012-06-29 2013-04-30 Non-aqueous electrolyte secondary battery
EP13809611.0A EP2869390A4 (en) 2012-06-29 2013-04-30 SECONDARY BATTERY WITH WATER-FREE ELECTROLYTE
CN201380034813.6A CN104428942B (zh) 2012-06-29 2013-04-30 非水电解液二次电池
KR1020157002031A KR101722863B1 (ko) 2012-06-29 2013-04-30 비수 전해액 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012147825A JP5765582B2 (ja) 2012-06-29 2012-06-29 非水電解液二次電池
JP2012-147825 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002611A1 true WO2014002611A1 (ja) 2014-01-03

Family

ID=49782785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062660 WO2014002611A1 (ja) 2012-06-29 2013-04-30 非水電解液二次電池

Country Status (6)

Country Link
US (1) US9768446B2 (ja)
EP (1) EP2869390A4 (ja)
JP (1) JP5765582B2 (ja)
KR (1) KR101722863B1 (ja)
CN (1) CN104428942B (ja)
WO (1) WO2014002611A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203621A1 (ja) * 2013-06-19 2014-12-24 日産自動車株式会社 非水電解質二次電池
WO2015121731A1 (en) 2014-02-17 2015-08-20 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
EP3018751A4 (en) * 2013-07-02 2016-06-22 Toyota Motor Co Ltd NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND METHOD FOR PRODUCING THE SAME
CN105742563A (zh) * 2014-12-26 2016-07-06 丰田自动车株式会社 非水电解质二次电池
CN106133990A (zh) * 2014-03-28 2016-11-16 丰田自动车株式会社 锂离子二次电池生产方法
KR20170086116A (ko) * 2014-12-26 2017-07-25 도요타 지도샤(주) 비수 전해질 이차 전지, 전지 조립체, 및 그 제조 방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080017B2 (ja) * 2013-11-11 2017-02-15 トヨタ自動車株式会社 非水系二次電池の製造方法
WO2015136604A1 (ja) * 2014-03-10 2015-09-17 株式会社日立製作所 二次電池用正極活物質およびそれを用いたリチウムイオン二次電池
JP6398326B2 (ja) * 2014-05-27 2018-10-03 株式会社Gsユアサ 非水電解質二次電池
JP6128393B2 (ja) * 2014-06-04 2017-05-17 トヨタ自動車株式会社 非水電解液二次電池および該電池の製造方法
JP6361920B2 (ja) 2014-09-05 2018-07-25 トヨタ自動車株式会社 リチウムイオン電池
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6720974B2 (ja) * 2015-07-15 2020-07-08 日本電気株式会社 リチウムイオン二次電池
JP2017091851A (ja) * 2015-11-11 2017-05-25 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP6634648B2 (ja) * 2016-02-29 2020-01-22 三菱重工業株式会社 リチウムイオン二次電池
JP6629110B2 (ja) * 2016-03-16 2020-01-15 株式会社東芝 非水電解質電池、電池パックおよび車両
US11522191B2 (en) 2016-03-16 2022-12-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2017191720A (ja) * 2016-04-14 2017-10-19 株式会社デンソー 非水電解質二次電池及びその製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6879799B2 (ja) * 2017-03-30 2021-06-02 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN109148951B (zh) * 2017-06-28 2020-10-13 宁德时代新能源科技股份有限公司 电解液及锂离子电池
CN108844878A (zh) * 2018-05-24 2018-11-20 宁德时代新能源科技股份有限公司 负极极片、极片活性比表面积的测试方法及电池
WO2020137818A1 (ja) * 2018-12-28 2020-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP7337096B2 (ja) * 2018-12-28 2023-09-01 三洋電機株式会社 非水電解質二次電池
JP7473527B2 (ja) * 2019-02-26 2024-04-23 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
CN110676447B (zh) * 2019-09-29 2021-06-01 中国科学院化学研究所 一种高电压可工作的复合正极及其制备方法
JP7232801B2 (ja) 2020-10-15 2023-03-03 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン電池の製造方法
JP7476783B2 (ja) 2020-12-18 2024-05-01 マツダ株式会社 電池の皮膜形成方法および皮膜形成装置
CN114843580B (zh) * 2021-02-01 2023-09-22 宁德时代新能源科技股份有限公司 锂离子电池、电池模块、电池包、及用电装置
KR20240073691A (ko) * 2022-11-18 2024-05-27 에스케이온 주식회사 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2007250288A (ja) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2008004503A (ja) * 2006-06-26 2008-01-10 Sony Corp 非水電解質組成物及び非水電解質二次電池
JP2011034893A (ja) 2009-08-05 2011-02-17 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829030C1 (de) * 1998-06-30 1999-10-07 Metallgesellschaft Ag Lithium-bisoxalatoborat, Verfahren zu dessen Herstellung und dessen Verwendung
JP4407205B2 (ja) * 2003-08-22 2010-02-03 三菱化学株式会社 リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
KR101531483B1 (ko) * 2007-03-19 2015-06-25 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
US9048508B2 (en) * 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
JP4793378B2 (ja) * 2007-11-16 2011-10-12 ソニー株式会社 非水電解質電池
JP5278442B2 (ja) * 2009-01-06 2013-09-04 株式会社村田製作所 非水電解液二次電池
US9099756B2 (en) * 2009-02-17 2015-08-04 Samsung Sdi Co., Ltd. Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP5678539B2 (ja) 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
JP2011082033A (ja) 2009-10-07 2011-04-21 Mitsubishi Chemicals Corp 非水系電解液二次電池モジュール
JP5145367B2 (ja) * 2010-03-11 2013-02-13 株式会社日立製作所 非水電解液及びこれを用いたリチウム二次電池
WO2012035821A1 (ja) * 2010-09-16 2012-03-22 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP5694833B2 (ja) * 2010-09-22 2015-04-01 富士フイルム株式会社 非水二次電池用電解液及びリチウム二次電池
JP6036298B2 (ja) * 2010-10-18 2016-11-30 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液電池
EP2634847B1 (en) 2010-10-29 2018-12-12 Mitsubishi Chemical Corporation Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
CN116525945A (zh) * 2011-02-10 2023-08-01 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2007250288A (ja) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
JP2008004503A (ja) * 2006-06-26 2008-01-10 Sony Corp 非水電解質組成物及び非水電解質二次電池
JP2011034893A (ja) 2009-08-05 2011-02-17 Sanyo Electric Co Ltd 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869390A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203621A1 (ja) * 2013-06-19 2014-12-24 日産自動車株式会社 非水電解質二次電池
EP3018751A4 (en) * 2013-07-02 2016-06-22 Toyota Motor Co Ltd NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND METHOD FOR PRODUCING THE SAME
WO2015121731A1 (en) 2014-02-17 2015-08-20 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US10199689B2 (en) 2014-02-17 2019-02-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
CN106133990A (zh) * 2014-03-28 2016-11-16 丰田自动车株式会社 锂离子二次电池生产方法
CN105742563A (zh) * 2014-12-26 2016-07-06 丰田自动车株式会社 非水电解质二次电池
JP2016126909A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 非水電解質二次電池
KR20170086116A (ko) * 2014-12-26 2017-07-25 도요타 지도샤(주) 비수 전해질 이차 전지, 전지 조립체, 및 그 제조 방법
CN107112501A (zh) * 2014-12-26 2017-08-29 丰田自动车株式会社 非水电解质二次电池、电池组装体及其制造方法
US9960449B2 (en) 2014-12-26 2018-05-01 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including tungsten
KR101938729B1 (ko) 2014-12-26 2019-01-15 도요타 지도샤(주) 비수 전해질 이차 전지, 전지 조립체, 및 그 제조 방법
CN107112501B (zh) * 2014-12-26 2020-09-15 丰田自动车株式会社 非水电解质二次电池、电池组装体及其制造方法

Also Published As

Publication number Publication date
CN104428942A (zh) 2015-03-18
KR101722863B1 (ko) 2017-04-05
JP5765582B2 (ja) 2015-08-19
EP2869390A1 (en) 2015-05-06
JP2014011065A (ja) 2014-01-20
KR20150031314A (ko) 2015-03-23
US9768446B2 (en) 2017-09-19
US20150207147A1 (en) 2015-07-23
EP2869390A4 (en) 2015-06-17
CN104428942B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5765582B2 (ja) 非水電解液二次電池
JP5884967B2 (ja) 非水電解液二次電池及びその製造方法
JP6128393B2 (ja) 非水電解液二次電池および該電池の製造方法
WO2013080379A1 (ja) リチウム二次電池とその製造方法
KR101884521B1 (ko) 리튬 이차 전지용 정극 재료 및 그 제조 방법
JP2013246936A (ja) 非水系二次電池用正極活物質
JP5614591B2 (ja) 非水電解液二次電池およびその製造方法
JP5517007B2 (ja) リチウムイオン二次電池
JP6455708B2 (ja) 非水電解液二次電池およびその製造方法
EP2658010A2 (en) Cathode mixture for secondary battery and secondary battery comprising same
JP6128398B2 (ja) 非水電解質二次電池
EP4080609A1 (en) Positive electrode active material, method for producing same, and lithium secondary battery including same
JP5713191B2 (ja) 非水電解液二次電池とその製造方法
KR101993034B1 (ko) 비수 전해질 이차 전지용 정극 재료 및 그 제조 방법
KR20210010402A (ko) 비수전해질 이차 전지
JP2021018893A (ja) 非水電解質二次電池
JP6120069B2 (ja) 非水電解液二次電池の製造方法
JP2022141208A (ja) 正極および当該正極を備える非水電解質二次電池
JP7144371B2 (ja) 非水電解質二次電池
JP2019061782A (ja) 非水電解質二次電池及びその製造方法
JP7275094B2 (ja) 正極活物質調製用材料とその利用
JP6822181B2 (ja) 非水電解質蓄電素子及びその製造方法
KR20230173030A (ko) 정극 및 이것을 구비하는 비수전해질 이차 전지
CN113258066A (zh) 二次电池的正极材料和二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809611

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013809611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14408733

Country of ref document: US

Ref document number: 2013809611

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157002031

Country of ref document: KR

Kind code of ref document: A