WO2013172350A1 - Nouvelle nanodispersion de graphène et son procédé de préparation - Google Patents

Nouvelle nanodispersion de graphène et son procédé de préparation Download PDF

Info

Publication number
WO2013172350A1
WO2013172350A1 PCT/JP2013/063438 JP2013063438W WO2013172350A1 WO 2013172350 A1 WO2013172350 A1 WO 2013172350A1 JP 2013063438 W JP2013063438 W JP 2013063438W WO 2013172350 A1 WO2013172350 A1 WO 2013172350A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
graphene
mixed
dispersion
compound
Prior art date
Application number
PCT/JP2013/063438
Other languages
English (en)
Japanese (ja)
Inventor
相田 卓三
パク・チョン
ラビ・サイスワン
道生 松本
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US14/400,877 priority Critical patent/US10030155B2/en
Priority to CN201380024682.3A priority patent/CN104284890B/zh
Priority to EP13791216.8A priority patent/EP2851364A4/fr
Priority to KR1020147029675A priority patent/KR101922893B1/ko
Priority to JP2014515640A priority patent/JP6234922B2/ja
Publication of WO2013172350A1 publication Critical patent/WO2013172350A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/15Use of centrifuges for mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to a novel ionic liquid capable of dispersing graphene at a high concentration, a graphene nano-dispersion using the ionic liquid, and a method for preparing the dispersion.
  • Graphite a carbon material
  • Graphene has a layered structure, one of which is called graphene.
  • Graphene consists only of hexagonal network-bonded carbon atoms, with a thickness of only one carbon atom, extremely high thermal conductivity, and excellent electrical properties such as electrical conductivity. Expected as a nanosheet.
  • Non-Patent Document 1 The Nobel Prize-winning Geim et al. Stuck graphene on cellophane tape, folded it so that the flake was sandwiched between the adhesive surfaces of the tape, and then peeled off the tape again to peel off the graphene. Obtained (Non-Patent Document 1).
  • Non-patent Document 2 a method of obtaining graphene oxide by oxidizing graphite and then exfoliating it in water.
  • the other method is a method of exfoliating graphite in a solvent or a surfactant solution by ultrasonic treatment or the like (liquid phase exfoliation) to obtain graphene dispersed in the liquid.
  • Non-patent Document 2 Non-patent Document 2
  • the level of dispersibility at the present time is about 2 mg / mL, which is still insufficient for developing a wide range of applications.
  • An object of the present invention is to provide a novel ionic liquid capable of dispersing graphene at a high concentration.
  • Viscosity is defined as resistance to flow, but beyond that, the viscosity of a liquid represents the strength of non-covalent interactions between solvent molecules.
  • the present inventors have found that, in a known graphene dispersion having a surface tension approximate value, the higher the viscosity, the more graphene peeling tends to increase.
  • a novel ionic liquid can be provided that gives an extremely high concentration of graphene dispersion by connecting imidazolium-based ionic liquid portions with a core portion of alkylene oxide.
  • Ionic liquid represented by the following general formula (1) (Where R 1 and R 5 may be the same or different and each independently represents a substituted or unsubstituted C1-C7 linear or branched alkyl group; R 2 is represented by the following formula: Here, R 6 and R 7 may be the same or different, each independently represents a C1-C4 linear or branched alkylene group, m represents an integer of 1-5, R 3 and R 4 may be the same or different and each independently represents a hydrogen atom, a substituted or unsubstituted C1-C4 linear or branched alkyl group, X ⁇ represents a counter ion, n represents 0-30.
  • R 1 and R 5 may be the same or different and each independently represents a substituted or unsubstituted C1-C7 linear or branched alkyl group
  • R 2 is represented by the following formula:
  • R 6 and R 7 may be the same or different, each independently represents a C1-C4 linear or branched al
  • a graphene dispersion liquid having an extremely high concentration as compared with the prior art can be obtained.
  • a graphene dispersion liquid having an extremely high concentration as compared with the prior art can be obtained.
  • high dispersibility is obtained by the ionic liquid of the present invention, graphene can be applied to a wide range of applications, for example, many electronic components such as lithium ion secondary batteries and energy storage appliances.
  • the method for preparing a graphene dispersion of the present invention can obtain a high-concentration graphene dispersion by a one-step exfoliation process of graphite without going through graphene oxide. High value.
  • Raman spectrum of graphene powder obtained from graphene dispersion using graphite powder and ionic liquid of the present invention (compound 1) Graphene layer number distribution of graphite Graphene layer number distribution in graphene dispersion obtained by microwave treatment with Compound 1 Graphene layer number distribution in graphene dispersion obtained by ultrasonic wave treatment with Compound 1 Graphene layer number distribution in graphene dispersion obtained by microwave treatment with Compound 3 Graphene layer number distribution in graphene dispersion obtained by microwave treatment with BMIPF 6 Dynamic viscoelastic properties of dispersions before and after microwave treatment with Compound 1
  • Ionic liquid One form of this invention is related with the novel ionic liquid represented by following formula (1).
  • R 1 and R 5 may be the same or different, and each independently represents a substituted or unsubstituted C1-C7 linear or branched alkyl group.
  • R 1 and R 5 are preferably C1-C6 straight chain alkyl groups, ie methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl, particularly preferably n -Butyl.
  • R 2 is represented by the following formula (2).
  • R 6 and R 7 may be the same or different, and each independently represents a C1-C4 linear or branched alkylene group.
  • R 6 and R 7 are preferably a C2-C4 linear alkylene group, and more preferably an ethylene group.
  • m is an integer of 1 to 5, and preferably m is 2 or 3.
  • the moiety represented by the formula (2) forms a triethylene glycol nucleus, that is, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 —.
  • the portion represented by the formula (2) functions as a flexible core of an imidazolium salt skeleton having a surface tension in the vicinity of 40 mJ / m 2. In addition, it is considered that it also has a role as a hydrogen acceptor. When this portion is triethylene glycol, it is considered that these characteristics are optimized.
  • R 3 and R 4 may be the same or different and each independently represents a hydrogen atom, a substituted or unsubstituted C1-C4 linear or branched alkyl group. In the present invention, both R 3 and R 4 are preferably hydrogen.
  • X ⁇ represents a counter ion, and is preferably selected from PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , BF 4 ⁇ , TSFI ⁇ , Cl ⁇ or Br ⁇ .
  • n represents 0-30.
  • n is an integer of 0 to 2
  • the imidazolium salt portion is a dimer, trimer or tetramer.
  • the synthesis of the ionic liquid of formula (1) uses a continuous synthesis method instead of the sequential synthesis method.
  • the ionic liquid of formula (1) consists of several types of n. It is a mixture of compounds, and n is the average of these.
  • the present invention includes the case where the ionic liquid represented by the formula (1) is such a mixture.
  • an ionic liquid can be synthesized by a continuous synthesis method.
  • Scheme 2 is an example of a method for producing an ionic liquid by a continuous synthesis method, and the compound 4 obtained here is a mixture of several kinds of n, and n is an average value thereof.
  • an acetonitrile solution of compound B (1,1 ′-[1,2-ethanediylbis (oxy-2,1-ethanediyl)] bis (imidazole)
  • triethylene glycol bis p-toluenesulfonate
  • any of the ionic liquids represented by the formula (1) can be used as A.
  • R 2 in the formula (1) is a triethylene glycol or tetraethylene glycol group.
  • the volume ratio of A and B may vary depending on the type of the ionic liquid of A.
  • A may be in the range of greater than 0 and less than 1.0, and B of less than 1.0 and greater than 0.
  • a further aspect of the present invention relates to a graphene dispersion comprising graphene and the ionic liquid or mixed ionic liquid of the present invention.
  • graphene is dispersed at a high concentration.
  • graphene has a layer number distribution and is often a mixture of a single layer of graphene and a plurality of layers of graphene.
  • graphene includes not only single-layer graphene but also one in which a plurality of graphene layers, preferably 9 layers or less, are stacked.
  • the graphene dispersion of the present invention preferably contains 10 mg or more, more preferably 20 mg or more, and further preferably 40 mg or more of graphene per 1 ml of the dispersion. Such a dispersion containing graphene at a high concentration can be provided for the first time in the present invention.
  • the graphene dispersion of the present invention is prepared, for example, by the following method, but is not limited thereto.
  • the method for preparing a graphene dispersion in the present invention includes an ionic liquid represented by the formula (1) or a mixed ionic liquid of the ionic liquid and butylmethylimidazolium hexafluorophosphate or butylmethylimidazolium bis (trifluoromethanesulfonyl) imide.
  • the graphite particles that can be used in the preparation method of the present invention have an average particle size of 100 ⁇ m or less, preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle diameter is the particle size d 50 at an accumulation of 50%.
  • any ultrasonic disperser can be used, but a horn type ultrasonic disperser is preferably used.
  • the frequency of the ultrasonic wave is about 10 kHz to 1 MHz.
  • the amplitude of the ultrasonic wave is about 1 ⁇ m or more and 100 ⁇ m or less (zero-to-peak value).
  • the application time of the ultrasonic wave is not particularly limited, but is usually 1 minute or longer, preferably 1 minute or longer and 6 hours or shorter.
  • any microwave oven can be used.
  • a general microwave oven of 500 W, 2.4 GHz can be used.
  • the microwave application time is not particularly limited, but is usually 10 seconds or longer, preferably 10 seconds to 10 minutes.
  • a low-energy microwave can be applied to 1 to 100 W, 2.4 GHz, for example. In this case, the application time is about 0.2 to 48 hours.
  • the method for preparing a graphene dispersion of the present invention may include a step of centrifuging the liquid after application of ultrasonic waves, and may further include a step of recovering the liquid layer from the mixed solution after centrifugation.
  • the graphene dispersion is obtained by, for example, centrifuging the whole or part of the obtained mixture with a centrifuge and collecting the supernatant. Centrifugation conditions can be appropriately adjusted depending on the desired graphene concentration.
  • the ionic liquid layer was dried over Na 2 SO 4 , concentrated on a rotary evaporator and dried in a vacuum oven with P 2 O 5 at 105 ° C. overnight to give a yellow liquid (44.5 g, 0. 048 mol, yield: 92%).
  • FIG. 1 shows the Raman spectrum of the graphite powder and the graphene powder obtained from the dispersion.
  • A is the spectrum of graphite powder and B is the spectrum of graphene powder.
  • the change in the shape of the two-dimensional peak is due to disordered and unstacked graphene.
  • Example 1 The same experiment as in Example 1 was performed using butylmethylimidazolium hexafluorophosphate as a dispersion medium. The obtained dispersion liquid was confirmed to contain graphene at a concentration of 5.33 mg / ml.
  • Example 2 Compound 1 and butylmethylimidazolium hexafluorophosphate (BMIPF 6 ) were mixed at 0: 100, 35:65, 56:44, 70:30, 100: 0 (volume ratio) to prepare a mixed ionic liquid. Using this mixed ionic liquid as a dispersion medium, the same experiment as in Example 1 was performed. Table 1 shows the measurement results of the graphene concentration of the obtained dispersion.
  • BIPF 6 butylmethylimidazolium hexafluorophosphate
  • Example 3 Compound 3 and BMIPF 6 were mixed at 0: 100, 35:65, 56:44, 70:30, 100: 0 (volume ratio) to prepare a mixed ionic liquid. Using this mixed ionic liquid as a dispersion medium, the same experiment as in Example 1 was performed. Table 1 shows the measurement results of the graphene concentration of the obtained dispersion.
  • a high-concentration graphene dispersion can be provided by using the novel ionic liquid of the present invention. It has also been found that a mixed ionic liquid of the novel ionic liquid of the present invention and BMIPF 6 can provide a higher concentration of graphene dispersion than the use of the novel ionic liquid of the present invention alone.
  • FIG. 2 is a graphene layer number distribution of graphite obtained by adding a graphite to acetonitrile and measuring a Raman spectrum without sonication and centrifugation. From FIG. 2, it can be seen that in graphite not subjected to special dispersion treatment, the number of graphene layers larger than 9 accounts for 60% or more. In the following examples, the graphene layer number distribution was examined using the ionic liquid of the present invention.
  • Example 4 A graphite mixed solution was prepared by adding graphite to the ionic liquid of Compound 1 to a concentration of 100 mg / mL. Using a microwave reactor CEM Discovery, a microwave was applied to the mixture for 30 seconds under the conditions of 100 W and 2.4 GHz to obtain a graphene dispersion.
  • FIG. 3 shows the result of examining the graphene layer number distribution of the obtained graphene dispersion.
  • FIG. 4 shows the results of examining the graphene layer number distribution of the graphene dispersion obtained by applying ultrasonic waves to the above mixed solution for 1 hour.
  • FIG. 3 shows that the ratio of the graphene layers of 1 to 2 is 50% or more by the short-time microwave treatment.
  • Example 5 Using the ionic liquid of Compound 3, in the same manner as in Example 4, a microwave was applied to the graphite mixed liquid to obtain a graphene dispersion.
  • FIG. 5 shows the result of examining the graphene layer number distribution of the obtained graphene dispersion.
  • microwave treatment is an effective means for obtaining a graphene dispersion when the ionic liquid of the present invention is used.
  • the dispersibility is obtained by the ionic liquid of the present invention, it becomes easy to form a graphene film, and the graphene is applied to many electronic components such as lithium ion secondary batteries and energy storage appliances. It becomes possible to do.
  • the manufacturing method of this invention can obtain a high concentration graphene dispersion by the one-step exfoliation process of graphite, without going through a graphene oxide, production efficiency is high and industrially high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Le problème décrit par la présente invention est de fournir un nouveau liquide ionique susceptible de disperser le graphène à une concentration élevée. Pour ce faire, l'invention concerne un liquide ionique représenté par la formule générale (1). (Dans la formule, R1 et R5 peuvent être identiques ou différents et représentent chacun indépendamment un groupe alkyle en C1 à C7, à chaîne linéaire ou ramifiée, substitué ou non ; R2 est représenté par la formule (2), dans laquelle R6 et R7 peuvent être identiques ou différents et représentent chacun indépendamment un groupe alcényle en C1 à C4, à chaîne linéaire ou ramifiée, substitué ou non, et m représente un entier de 1 à 5 ; R3 et R4 peuvent être identiques ou différents et représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C1 à C4, à chaîne linéaire ou ramifiée, substitué ou non ; X- représente un contre-ion ; et n représente un nombre de 0 à 30).
PCT/JP2013/063438 2012-05-14 2013-05-14 Nouvelle nanodispersion de graphène et son procédé de préparation WO2013172350A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/400,877 US10030155B2 (en) 2012-05-14 2013-05-14 Graphene nanodispersion and method for preparing same
CN201380024682.3A CN104284890B (zh) 2012-05-14 2013-05-14 新型石墨烯纳米分散液及其制备方法
EP13791216.8A EP2851364A4 (fr) 2012-05-14 2013-05-14 Nouvelle nanodispersion de graphène et son procédé de préparation
KR1020147029675A KR101922893B1 (ko) 2012-05-14 2013-05-14 신규 그래핀 나노분산액 및 그 조제 방법
JP2014515640A JP6234922B2 (ja) 2012-05-14 2013-05-14 新規グラフェンナノ分散液及びその調製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012111019 2012-05-14
JP2012-111019 2012-05-14
JP2013060376 2013-03-22
JP2013-060376 2013-03-22

Publications (1)

Publication Number Publication Date
WO2013172350A1 true WO2013172350A1 (fr) 2013-11-21

Family

ID=49583755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063438 WO2013172350A1 (fr) 2012-05-14 2013-05-14 Nouvelle nanodispersion de graphène et son procédé de préparation

Country Status (6)

Country Link
US (1) US10030155B2 (fr)
EP (1) EP2851364A4 (fr)
JP (1) JP6234922B2 (fr)
KR (1) KR101922893B1 (fr)
CN (2) CN104284890B (fr)
WO (1) WO2013172350A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104118865A (zh) * 2014-05-09 2014-10-29 湖北大学 基于离子液晶剥离石墨制备石墨烯的方法
WO2014175449A1 (fr) * 2013-04-26 2014-10-30 国立大学法人 東京大学 Nouvelle nanodispersion de graphène et procédé de préparation associé
WO2015159635A1 (fr) * 2014-04-17 2015-10-22 株式会社Adeka Liquide contenant une substance en couches et son procédé de fabrication
CN105084348A (zh) * 2014-05-20 2015-11-25 中国科学院大连化学物理研究所 一种制备水相可分散的导电石墨烯分散浆液或固体的方法
JP2015218093A (ja) * 2014-05-20 2015-12-07 株式会社Adeka 層状物質含有液及びその製造方法
JP5873588B1 (ja) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 薄片状炭素材料の製造方法
JP2016030713A (ja) * 2014-07-29 2016-03-07 住友化学株式会社 成膜方法、膜及び分散液
WO2016056582A1 (fr) * 2014-10-10 2016-04-14 株式会社Adeka Liquide contenant une substance multicouche et son procédé de préparation
JP2017502900A (ja) * 2013-12-26 2017-01-26 エルジー・ケム・リミテッド グラフェンの製造方法
JPWO2016148252A1 (ja) * 2015-03-18 2017-12-28 株式会社Adeka 層状物質含有液及びその製造方法
CN107619618A (zh) * 2017-10-30 2018-01-23 成都新柯力化工科技有限公司 一种改善石墨烯在涂料中分散性的方法
WO2018117013A1 (fr) 2016-12-19 2018-06-28 株式会社Adeka Solution contenant une substance en couches, et son procédé de production
WO2020027041A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Procédé de production d'un matériau composite
WO2020027023A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Matériau composite
WO2020027039A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Matériau composite

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106276883B (zh) * 2016-08-31 2018-09-04 无锡东恒新能源科技有限公司 一种回转型石墨烯浆料制备系统及其制备方法
TWI624101B (zh) * 2016-09-12 2018-05-11 國立成功大學 以醚基爲架橋之雙陽離子及其離子液體電解質與儲電裝置
CN106829941A (zh) * 2017-04-07 2017-06-13 厦门大学 一种石墨烯的制备方法
CN107161993B (zh) * 2017-07-03 2019-11-12 北京旭碳新材料科技有限公司 高浓度石墨烯浆料及其制备方法和装置
CN110655596B (zh) * 2019-10-18 2021-10-01 常州碳孚新材料技术有限公司 星形阳离子石墨烯分散剂及其应用
CN111471361A (zh) * 2020-04-02 2020-07-31 成都石墨烯应用产业技术研究院有限公司 石墨烯散热涂料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142972A (ja) * 2002-10-23 2004-05-20 Japan Science & Technology Agency カーボンナノチューブとイオン性液体とから成るゲル状組成物とその製造方法
CN101781253A (zh) * 2009-01-16 2010-07-21 南京理工大学 一类具有氟两相性质双子离子液体的制备方法
CN101781254A (zh) * 2009-01-16 2010-07-21 南京理工大学 一类具有氟两相性质双子离子液体以及利用该离子液体制得的催化剂及其用途
JP2010220490A (ja) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc セルロース含有材料からその分解産物を生産する方法
JP2011219318A (ja) 2010-04-12 2011-11-04 Idemitsu Kosan Co Ltd グラファイト分散液及びその製造方法並びにグラファイト粉末

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911133A (en) * 1971-10-14 1975-10-07 Ici Ltd Compositions containing antibacterial bis(imidazolium quaternary salts) and methods of using said salts
GB9221997D0 (en) * 1992-10-20 1992-12-02 Ici Plc Inhibition of microbial growth in swimming pools and spas
PL202539B1 (pl) * 2006-07-13 2009-07-31 Politechniks Poznanska Nowa generacja „zielonych” rozpuszczalników - sole 1,2,3-propanotris[oksymetylo-3-(1-alkilo- lub 1,2-dialkiloimidazoliowe)] oraz sposób ich otrzymywania
CN101049575A (zh) * 2007-04-27 2007-10-10 陕西师范大学 固载多层离子液体及其制备方法和用途
WO2011024988A1 (fr) * 2009-08-31 2011-03-03 和光純薬工業株式会社 Liquide ionique contenant un anion allylsulfonate
WO2011068944A1 (fr) * 2009-12-04 2011-06-09 Sigma-Aldrich Co. Sels liquides tétraioniques et leurs méthodes d'application
EP2518103A4 (fr) 2009-12-22 2014-07-30 Suh Kwang Suck Dispersion de graphène et composé de polymère liquide ionique-graphène

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142972A (ja) * 2002-10-23 2004-05-20 Japan Science & Technology Agency カーボンナノチューブとイオン性液体とから成るゲル状組成物とその製造方法
CN101781253A (zh) * 2009-01-16 2010-07-21 南京理工大学 一类具有氟两相性质双子离子液体的制备方法
CN101781254A (zh) * 2009-01-16 2010-07-21 南京理工大学 一类具有氟两相性质双子离子液体以及利用该离子液体制得的催化剂及其用途
JP2010220490A (ja) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc セルロース含有材料からその分解産物を生産する方法
JP2011219318A (ja) 2010-04-12 2011-11-04 Idemitsu Kosan Co Ltd グラファイト分散液及びその製造方法並びにグラファイト粉末

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
D. NUVOLI; L. VALENTINI; V. ALZARI; S. SCOGNAMILLO; S.B. BON; M. PICCININI; J. ILLESCAS; A. MARIANI, J. MATER. CHEM., vol. 21, 2011, pages 3428 - 3431
HOLBREY,J.D. ET AL.: "Mercury(II) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquid", GREEN CHEMISTRY, vol. 5, no. 2, 2003, pages 129 - 135, XP002601956 *
J.E. BARA, IND. ENG. CHEM. RES., vol. 50, 2011, pages 13614
K.S. NOVOSELOV; A.K. GEIM; S.V. MOROZOV; D. JIANG; Y. ZHANG; S.V. DUBONOS; I.V. GRIGORIEVA; A.A. FIRSOV, SCIENCE, vol. 306, 2004, pages 666
KIM,J.Y. ET AL.: "Novel thixotropic gel electrolytes based on dicationic bis- imidazolium salts for quasi-solid-state dye- sensitized solar cells", JOURNAL OF POWER SOURCES, vol. 175, no. 1, 2008, pages 692 - 697, XP022361696 *
LEE,W.R. ET AL.: "Electrochemical and optical behavior of bis-imidazolium ionic liquids", POLYMER PREPRINTS, vol. 48, no. 2, 2007, pages 235 - 236, XP055175457 *
LEE,W.R. ET AL.: "Electro-fluorescence switching of bis-imidazolium ionic liquids", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 8, no. 9, 2008, pages 4630 - 4634, XP008175435 *
NAT. MAT., vol. 11, 2012, pages 217
NUVOLI, D. ET AL.: "High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 10, 2011, pages 3428 - 3431, XP002678745 *
S. PARK; R.S. RUOFF, NATURE NANOTECH., vol. 4, 2009, pages 217 - 224
See also references of EP2851364A4
Y. HERNANDEZ; V. NICOLOSI; M. LOTYA; F.M. BLIGHE; Z. SUN; S. DE; I.T. MCGOVERN; B. HOLLAND; M. BYRNE; Y.K. GUN'KO, NATURE NANOTECH., vol. 3, 2008, pages 563 - 568

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175449A1 (fr) * 2013-04-26 2014-10-30 国立大学法人 東京大学 Nouvelle nanodispersion de graphène et procédé de préparation associé
JP2017502900A (ja) * 2013-12-26 2017-01-26 エルジー・ケム・リミテッド グラフェンの製造方法
US9950930B2 (en) 2013-12-26 2018-04-24 Lg Chem, Ltd. Preparation method of graphene
KR20160146789A (ko) * 2014-04-17 2016-12-21 가부시키가이샤 아데카 층상 물질 함유액 및 그 제조 방법
WO2015159635A1 (fr) * 2014-04-17 2015-10-22 株式会社Adeka Liquide contenant une substance en couches et son procédé de fabrication
EP3144279A4 (fr) * 2014-04-17 2018-04-18 Adeka Corporation Liquide contenant une substance en couches et son procédé de fabrication
KR102301298B1 (ko) 2014-04-17 2021-09-10 가부시키가이샤 아데카 층상 물질 함유액 및 그 제조 방법
JPWO2015159635A1 (ja) * 2014-04-17 2017-04-13 株式会社Adeka 層状物質含有液及びその製造方法
CN106414336A (zh) * 2014-04-17 2017-02-15 株式会社Adeka 层状物质含有液及其制造方法
CN104118865A (zh) * 2014-05-09 2014-10-29 湖北大学 基于离子液晶剥离石墨制备石墨烯的方法
CN105084348A (zh) * 2014-05-20 2015-11-25 中国科学院大连化学物理研究所 一种制备水相可分散的导电石墨烯分散浆液或固体的方法
JP2015218093A (ja) * 2014-05-20 2015-12-07 株式会社Adeka 層状物質含有液及びその製造方法
JP2016030713A (ja) * 2014-07-29 2016-03-07 住友化学株式会社 成膜方法、膜及び分散液
JP2016079044A (ja) * 2014-10-10 2016-05-16 株式会社Adeka 層状物質含有液及びその製造方法
WO2016056582A1 (fr) * 2014-10-10 2016-04-14 株式会社Adeka Liquide contenant une substance multicouche et son procédé de préparation
JPWO2016148252A1 (ja) * 2015-03-18 2017-12-28 株式会社Adeka 層状物質含有液及びその製造方法
US10946360B2 (en) 2015-03-18 2021-03-16 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
WO2016181760A1 (fr) * 2015-05-12 2016-11-17 マイクロ波化学株式会社 Matériau lamellaire carboné et son procédé de fabrication
JP5873588B1 (ja) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 薄片状炭素材料の製造方法
WO2018117013A1 (fr) 2016-12-19 2018-06-28 株式会社Adeka Solution contenant une substance en couches, et son procédé de production
CN110088209A (zh) * 2016-12-19 2019-08-02 株式会社Adeka 层状物质含有液及其制造方法
US11634545B2 (en) 2016-12-19 2023-04-25 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
CN107619618A (zh) * 2017-10-30 2018-01-23 成都新柯力化工科技有限公司 一种改善石墨烯在涂料中分散性的方法
WO2020027041A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Procédé de production d'un matériau composite
WO2020027023A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Matériau composite
WO2020027039A1 (fr) 2018-07-30 2020-02-06 株式会社Adeka Matériau composite
JPWO2020027039A1 (ja) * 2018-07-30 2021-08-12 株式会社Adeka 複合材料
JP7225239B2 (ja) 2018-07-30 2023-02-20 株式会社Adeka 複合材料

Also Published As

Publication number Publication date
EP2851364A1 (fr) 2015-03-25
JP6234922B2 (ja) 2017-11-22
US20150137027A1 (en) 2015-05-21
KR101922893B1 (ko) 2018-11-28
EP2851364A4 (fr) 2015-12-30
KR20150020163A (ko) 2015-02-25
CN107417621A (zh) 2017-12-01
JPWO2013172350A1 (ja) 2016-01-12
CN104284890A (zh) 2015-01-14
CN104284890B (zh) 2017-08-15
US10030155B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
JP6234922B2 (ja) 新規グラフェンナノ分散液及びその調製方法
JP6122949B2 (ja) 新規グラフェンナノ分散液及びその調製方法
WO2018211020A1 (fr) Composites de nanoparticules de métal et/ou d'oxyde métallique supportés par du graphène, leur méthode de fabrication et leurs utilisations
Zhou et al. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene
JP6216724B2 (ja) グラフェンの製造
Hanifah et al. Synthesis of graphene oxide nanosheets via modified Hummers’ method and its physicochemical properties
Zhang et al. Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability
Tripathi et al. High yield synthesis of electrolyte heating assisted electrochemically exfoliated graphene for electromagnetic interference shielding applications
KR20050061551A (ko) 탄소 나노 튜브 및 이온성 액체로 이루어진 겔형 조성물,및 그 제조 방법
Fard-Jahromi et al. Sonochemical synthesis of nanoscale mixed-ligands lead (II) coordination polymers as precursors for preparation of Pb2 (SO4) O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies
Li et al. Ammonium-and phosphonium-based temperature control-type polyoxometalate ionic liquids
JP3985025B2 (ja) 両親媒性化合物、可溶性カーボンナノチューブ複合体
Pendolino et al. The structural change of graphene oxide in a methanol dispersion
WO2015131933A1 (fr) Procédé de production de graphène par exfoliation du graphite
EP2890633B1 (fr) Matériau à base de carbone nanostructuré
Zheng et al. Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets
US9428395B2 (en) Method for preparing graphene
Huang et al. Mono-molecule-layer nano-ribbons formed by self-assembly of bolaamphiphiles
Raić et al. Structural and capacitive properties of graphene obtained by a green method of graphene oxide reduction
JP2014172781A (ja) 表面修飾グラフェン
JP5381976B2 (ja) 液状ポルフィリン誘導体、及びその製造方法
Muñoz et al. Multivalent fullerene/π-extended TTF electroactive molecules–non-covalent interaction with graphene and charge transfer implications
US8841465B2 (en) Method for selective functionalization of single-walled carbon nanotubes
Cha et al. Size-selective Pd nanoparticles stabilized by dialkylmorpholinium ionic liquids
Garrido et al. Polyaromatic cores for the exfoliation of popular 2D materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147029675

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400877

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013791216

Country of ref document: EP