WO2013157454A1 - 金属粉末の製造方法 - Google Patents

金属粉末の製造方法 Download PDF

Info

Publication number
WO2013157454A1
WO2013157454A1 PCT/JP2013/060786 JP2013060786W WO2013157454A1 WO 2013157454 A1 WO2013157454 A1 WO 2013157454A1 JP 2013060786 W JP2013060786 W JP 2013060786W WO 2013157454 A1 WO2013157454 A1 WO 2013157454A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal powder
reaction vessel
plasma
supplied
Prior art date
Application number
PCT/JP2013/060786
Other languages
English (en)
French (fr)
Inventor
史幸 清水
前川 雅之
友隆 西川
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to US14/391,269 priority Critical patent/US9561543B2/en
Priority to KR1020147028835A priority patent/KR102017657B1/ko
Priority to EP13777813.0A priority patent/EP2839906B1/en
Priority to CN201380025804.0A priority patent/CN104302427B/zh
Priority to CA2868596A priority patent/CA2868596C/en
Publication of WO2013157454A1 publication Critical patent/WO2013157454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/471Pointed electrodes

Definitions

  • the present invention relates to a metal powder manufacturing method for manufacturing metal powder with few impurities by a plasma method.
  • conductive metal powder is used to form conductor coatings and electrodes.
  • the properties and properties required for such metal powders are that there are few impurities, that it is a fine powder with an average particle size of about 0.01 to 10 ⁇ m, that the particle shape and particle size are uniform, and that there is little aggregation.
  • the dispersibility in the paste is good and the crystallinity is good.
  • conductor coatings and electrodes have been made thinner and fine pitches, and therefore, a finer, spherical and highly crystalline metal powder has been demanded.
  • FIG. 2 shows an example of an apparatus used in the plasma method.
  • the generated metal vapor is transferred to the cooling pipe 103 by a carrier gas, and cooled and condensed in the cooling pipe 103 to generate metal particles.
  • the carrier gas is a mixture of a plasma gas and a dilution gas supplied as necessary, and an inert gas or a reducing gas such as argon, helium, nitrogen, ammonia, methane, or a mixture thereof is usually used.
  • an inert gas or a reducing gas such as argon, helium, nitrogen, ammonia, methane, or a mixture thereof is usually used.
  • the plasma torch 104, the anode 105, the cathode 106, the plasma 107, and the dilution gas supply unit 110 are the same as the plasma torch 4, the anode 5, the cathode 6, the plasma 7, and the dilution gas supply unit 10 of FIG. Is.
  • oxygen gas is generally not used as a carrier gas, not only oxidizable base metals but also noble metals that are difficult to oxidize. This is because when oxygen is introduced into the reaction vessel, an oxide film is formed on the surface of the molten metal, resulting in a decrease in production efficiency, heat insulation of the reaction vessel, such as graphite, or a large amount of oxygen being added to the reaction vessel. This is because if it is present in the plasma, the plasma characteristics change and become unstable, resulting in poor production efficiency, and eventually the plasma will not ignite. Further, in DC plasma, there is a problem that electrode metal is oxidized and deteriorated.
  • patent documents 1 refractory materials such as carbides such as graphite and silicon carbide, oxides such as magnesia, alumina and zirconia, nitrides such as titanium nitride and boron nitride, borides such as titanium boride and the like. Is used. However, even if such a refractory material is used, a part of the constituent material of the reaction vessel such as the crucible evaporates due to long-time operation, and is mixed as an impurity in the generated metal powder.
  • Patent Document 3 It is known to change the quality (see Patent Document 3).
  • components such as zirconium, calcium, magnesium, yttrium, hafnium, silicon, etc. contained in the crucible material, even if a ceramic crucible made of stabilized zirconia, which is a highly heat-resistant and stable refractory material, is used. Inevitably mixed into nickel powder.
  • crucible a part of the crucible part that holds the molten metal (hereinafter referred to as “crucible”) is in contact with the molten metal, and some of the components of the crucible are eluted in the molten metal, This is thought to be due to contamination as an impurity in the generated metal powder.
  • the amount of impurities mixed varies depending on the temperature of the molten metal and the operating time of the apparatus, it causes variations in the impurity level of the product. Furthermore, the elution of the crucible components causes a decrease in durability due to a change in the material of the crucible at the same time, resulting in a problem that the crucible life is shortened. Furthermore, additive elements such as sulfur, phosphorus, platinum, rhenium, etc. may be included for the purpose of imparting sinterability and oxidation resistance to the metal powder and adjusting the catalytic activity.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and its solution is to suppress the mixing of impurity elements when producing metal powder, particularly base metal powder by the plasma method, and to produce extremely high purity metal powder. It is providing the manufacturing method of the metal powder which can be obtained. Moreover, it is providing the manufacturing method of the metal powder which can improve durability of reaction containers, such as a crucible, collectively.
  • Item 4 The method according to any one of Items 1 to 3, wherein an additional element selected from sulfur, phosphorus, platinum, rhenium, zinc, tin, aluminum, and boron is supplied into the reaction vessel.
  • a method for producing metal powder. 5 The method for producing a metal powder according to item 4, wherein the additive element is supplied in the form of an organic compound and / or a hydrogen compound. 6). 6.
  • the method for producing metal powder of the present invention by supplying oxygen gas into the reaction vessel, it is possible to produce a metal powder with a very small amount of impurities from the reaction vessel. Moreover, deterioration of the material of the reaction vessel can be prevented, and the life of the reaction vessel can be dramatically improved. Further, by controlling the amount of oxygen to be introduced to a specific amount, the amount of impurities mixed in can be reduced without causing a decrease in productivity and a change in the properties of the produced powder.
  • the metal powder produced by the metal powder production method of the present invention examples include noble metals such as silver, gold and platinum group metals, base metals such as nickel, copper, cobalt, iron, tantalum, titanium and tungsten, and alloys containing them.
  • the metal powder is a metal powder containing a base metal as a main component because the effects of the present invention can be enjoyed more.
  • the “main component” means that the proportion of the base metal in the entire metal powder is 50% by weight or more.
  • the metal raw material is not particularly limited as long as it is a substance containing the metal component of the target metal powder.
  • an alloy containing two or more metal components, Complexes, mixtures, compounds and the like can be used.
  • a granular or massive metal material or alloy material having a size of several mm to several tens mm from the viewpoint of easy handling.
  • the raw material metal is supplied into the reaction vessel of the plasma apparatus from the raw material feed port.
  • oxygen and, although not essential, a dilution gas are supplied.
  • the metal raw material is melted by plasma in the reaction vessel and stored as a molten metal in the crucible portion at the lower part of the reaction vessel.
  • the molten metal is further heated by plasma to evaporate to generate metal vapor.
  • the generated metal vapor is transferred from the reaction vessel to the cooling pipe by the plasma gas used for generating the plasma and the carrier gas containing the dilution gas supplied as necessary, and is cooled and condensed. Produce powder.
  • the graphite and ceramic type refractory material which are conventionally used for a plasma apparatus are used.
  • the effect of the present invention is remarkable when at least the crucible portion is made of an oxide ceramic material, especially a zirconia ceramic.
  • an inert gas or a reducing gas such as argon, helium, nitrogen, ammonia, methane, or a mixture thereof, which is usually used for producing metal powder, is used.
  • the oxygen gas may be supplied as a gas containing oxygen, such as air or a mixed gas of an inert gas and oxygen. Note that oxygen may be mixed with a diluent gas and supplied into the reaction vessel, or may not be mixed and supplied into the reaction vessel from an inlet different from the diluent gas.
  • the reason why the amount of impurities is reduced by supplying oxygen gas into the reaction vessel is not necessarily clear.
  • oxygen in the zirconia crucible moves into the molten metal at the solid-liquid interface where the crucible and the high-temperature nickel molten metal are in contact with each other, and zirconium, calcium, yttrium and other metals generated thereby are contained in the molten nickel.
  • zirconia has a solid electrolyte property at a high temperature of 1000 ° C. or more, and has high ionic conductivity.
  • oxygen moves from the inside of the crucible to the solid-liquid interface, and the amount of elution of oxygen and metal increases.
  • the oxygen introduced into the reaction vessel is dissolved in the molten nickel and the oxygen concentration in the molten nickel is increased. As a result, the movement of oxygen from the crucible is suppressed, It is speculated that the amount of impurities derived from the crucible may decrease.
  • the oxygen supply amount necessary for obtaining an equivalent impurity reduction effect is substantially proportional to the supply rate of the metal raw material (the generation rate of the metal powder). It shows in the quantity per 1Kg / hr.
  • the supply amount of oxygen gas is represented by the flow rate of oxygen gas at 25 ° C. and 1 atm. In particular, when oxygen is supplied in an amount of 0.1 mL / min or more, a remarkable effect is obtained, which is preferable.
  • oxygen is considered to have an effect of promoting the decomposition of these compounds and making the additive powder easily contained in the metal powder. For this reason, it is preferable that oxygen is supplied more than the stoichiometric amount necessary for the decomposition of the organic compound or the hydrogen compound.
  • the organic compound is not limited, but for example, in the case of sulfur, thiols such as methanethiol and ethanethiol, mercaptan compounds such as mercaptoethanol and mercaptobutanol, or thiophenes such as benzothiophene, Thiazoles are used.
  • phosphines such as triphenylphosphine, methylphenylphosphine, and trimethylphosphine, and phosphorane are used.
  • organic compound of platinum, rhenium, zinc, tin, aluminum, and boron include carboxylates, amine complexes, phosphine complexes, mercaptides, and organic derivatives of rhenic acid.
  • Examples of the hydrogen compounds include hydrogen sulfide, hydrides such as aluminum hydride and diborane, and organic derivatives thereof.
  • the plasma is a transfer type DC arc plasma because the effects of the present invention can be enjoyed more.
  • the flow rates of various gases are represented by the flow rates of gases at 25 ° C. and 1 atm as in the case of oxygen.
  • the transfer type DC arc plasma apparatus 1 shown in FIG. 1 was used as the plasma apparatus.
  • the reaction vessel 2 of this apparatus a reaction vessel made of calcium stabilized zirconia is used.
  • a plasma torch 4 is disposed above the reaction vessel 2, and a plasma generating gas is supplied to the plasma torch 4 through a supply pipe (not shown).
  • the plasma torch 4 generates a plasma 7 using the cathode 6 as a cathode and an anode (not shown) provided inside the plasma torch 4 as an anode, and then moves the anode to the anode 5, whereby the cathode 6 and the anode 5.
  • Plasma 7 is generated between them.
  • At least a part of the metal raw material supplied from the raw material feed port (not shown) to the crucible portion 9 of the reaction vessel 2 is melted by the heat of the plasma 7 to generate a molten metal 8. Further, a part of the molten metal 8 is evaporated by the heat of the plasma 7 to generate metal vapor.
  • Dilution gas is supplied from the dilution gas supply unit 10 into the reaction vessel 2.
  • the dilution gas is used as a carrier gas for conveying the metal vapor to the cooling pipe 3 together with the plasma generating gas.
  • Oxygen is supplied by introducing air from an oxygen supply unit 11 different from the dilution gas supply unit 10.
  • the metal vapor generated in the reaction vessel 2 is transferred to the cooling pipe 3 by a carrier gas containing a plasma generating gas and a dilution gas, and cooled and condensed to generate a metal powder.
  • Example 1 A nickel metal block as a metal raw material is supplied into the reaction vessel of the plasma apparatus at a supply rate of about 3.0 to 4.0 Kg / hr, argon as a plasma generation gas is supplied at a flow rate of 70 L / min, and nitrogen gas is supplied as a dilution gas at a flow rate of 630. Air was supplied at a flow rate of ⁇ 650 L / min and an oxygen amount as shown in Table 1, and the apparatus was operated for 500 hours under the condition of a plasma output of about 100 kW to produce nickel powder.
  • the nickel powder production rate (metal nickel lump supply rate), the oxygen supply amount into the reaction vessel, the specific surface area of the obtained nickel powder, the Ca content and Zr content as impurities, and the oxygen content are shown. Also shown in FIG. The specific surface area of the powder was measured by the BET method, the Ca content and the Zr content were measured by a fluorescent X-ray analyzer (Rigaku ZSX100e), and the oxygen content was measured by an oxygen / nitrogen measuring device (Horiba EMGA-920). .
  • Example 2 For the purpose of doping the nickel powder with sulfur, Example 1 is used except that hydrogen sulfide (H 2 S) gas is supplied from the oxygen supply unit 11 together with air into the reaction vessel at a rate of 350 mL / min (0.041 mol / min). Nickel powder was produced in substantially the same manner. Production rate of nickel powder (feed rate of metallic nickel lump), oxygen supply amount into the reaction vessel, specific surface area of the obtained nickel powder, Ca content and Zr content as impurities, and oxygen and sulfur content Is shown in Table 2. The sulfur content was measured with a carbon / sulfur measuring device (Horiba Seisakusho EMI-320V).
  • H 2 S hydrogen sulfide
  • Example 3 In the reaction vessel of the plasma apparatus, a metallic copper mass is supplied as a metal raw material at a supply rate of about 6.5 to 7.5 kg / hr. Copper powder was produced in the same manner as in Example 2 except that phenylphosphine was supplied into the reaction vessel at a rate of 1 mL / min (0.00419 mol / min). Production rate of copper powder (metal copper supply rate), oxygen supply amount into the reaction vessel, specific surface area of the obtained copper powder, Ca content and Zr content as impurities, and oxygen and phosphorus content Table 3 shows. The phosphorus content was measured with a fluorescent X-ray analyzer (Rigaku ZSX100e).
  • the transfer type DC arc plasma apparatus is used.
  • the present invention is not limited to this.
  • a high frequency induction type plasma apparatus, a microwave heating type plasma apparatus, or the like may be used.
  • oxygen is supplied from an oxygen supply unit different from the dilution gas supply unit, but may be supplied together with the dilution gas.
  • the present invention is a metal powder production method for producing metal powder by a plasma method, and can be suitably used to obtain an extremely high-purity metal powder particularly by suppressing the mixing of impurity elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Plasma Technology (AREA)

Abstract

 反応容器(2)内においてプラズマ(7)を利用して金属原料の少なくとも一部を溶融して金属溶湯(8)とし、更に該金属溶湯(8)を蒸発させて金属蒸気を生成させ、該金属蒸気を反応容器(2)内に供給されたキャリアガスと共に、反応容器(2)から冷却管(3)に移送して冷却し、凝結させて金属粉末を生成させる金属粉末の製造方法であって、酸素ガスを反応容器(2)内に供給する。

Description

金属粉末の製造方法
 本発明は、プラズマ法により不純物の少ない金属粉末を製造する金属粉末の製造方法に関する。
 電子回路や配線基板、抵抗、コンデンサ、ICパッケージ等の電子部品の製造において、導体被膜や電極を形成するために導電性の金属粉末が用いられている。このような金属粉末に求められる特性や性状としては、不純物が少ないこと、平均粒径が0.01~10μm程度の微細な粉末であること、粒子形状や粒径が揃っていること、凝集が少ないこと、ペースト中での分散性が良いこと、結晶性が良好であることなどが挙げられる。
 近年、電子部品や配線基板の小型化に伴い、導体被膜や電極の薄層化やファインピッチ化が進んでいることから、更に微細で球状かつ高結晶性の金属粉末が要望されている。
 このような微細な金属粉末を製造する方法の一つとして、プラズマを利用し、反応容器内において金属原料を溶融、蒸発させた後、金属蒸気をキャリアガスと共に前記反応容器から冷却管に移送して冷却し、凝結させて金属粉末を得るプラズマ法が知られている(特許文献1~3参照)。
 これらのプラズマ法では、金属蒸気を気相中で凝結させるため、不純物が少なく、微細で球状かつ結晶性の高い金属粉末を製造することが可能である。
 図2にプラズマ法で用いられる装置の一例を示す。これは、特許文献1と同様のDCアークを用いた移行型DCアークプラズマ装置101であり、反応容器102の内部の坩堝部分109で金属原料を溶融して金属溶湯108とし、これを蒸発させて、生成された金属蒸気をキャリアガスにより冷却管103に移送し、冷却管103内で冷却して凝結させることにより金属粒子を生成するものである。
 ここで、キャリアガスはプラズマガスと必要により供給される希釈ガスの混合物であり、通常アルゴン、ヘリウム、窒素、アンモニア、メタン、あるいはこれらの混合物などの不活性ガスまたは還元性ガスが使用される。図2中、プラズマトーチ104、アノード105、カソード106、プラズマ107、希釈ガス供給部110は、後述する図1のプラズマトーチ4、アノード5、カソード6、プラズマ7、希釈ガス供給部10と同様のものである。
 なお、プラズマ法で金属粉末を製造する場合、易酸化性の卑金属はもちろんのこと、酸化されにくい貴金属であっても、キャリアガスとして酸素ガスは使用されないのが普通である。これは、反応容器内に酸素を導入すると、金属溶湯表面に酸化膜が生じて製造効率が低下したり、反応容器の断熱材、例えばグラファイトが燃えてしまったり、また、多量の酸素が反応容器中に存在するとプラズマ特性が変化して不安定になって製造効率が悪くなり、最終的にはプラズマが着火しなくなる等といった問題を生じるからである。更に、DCプラズマでは、電極金属が酸化して劣化する問題もある。
 このため、例えば金属粉末表面に耐酸化性向上や焼結抑制のために酸化被膜を形成する場合であっても、反応容器内に酸化性ガスを導入するのではなく、特許文献2等に記載されているように、金属蒸気を冷却管に移送し、凝結させて金属粉末を生成させた後に、酸化性ガスを吹き混むなどの方法で酸化させなくてはならなかった。
特許第3541939号公報 特表2003-522835号公報 特許第3938770号公報
 ところで、前記特許文献に記載されたようなプラズマ装置においては、反応容器内の温度が極めて高く、金属溶湯の温度も例えば数千度といった高温になるため、反応容器の構成材料としては、特許文献1にも記載されているように、例えばグラファイト、炭化珪素等の炭化物、マグネシア、アルミナ、ジルコニア等の酸化物、窒化チタン、窒化硼素等の窒化物、硼化チタン等の硼化物などの耐火材料が使用される。
 しかし、このような耐火材料を使用しても、長時間の稼働により、坩堝などの反応容器の構成材料の成分の一部が蒸発して、生成する金属粉末中に不純物として混入し、製品の品質を変化させてしまうことが知られている(特許文献3参照)。
 例えばニッケル粉末を製造する場合、極めて耐熱性が高く安定な耐火材料である安定化ジルコニア製のセラミック坩堝を用いても、坩堝材料に含まれるジルコニウム、カルシウム、マグネシウム、イットリウム、ハフニウム、珪素等の成分のニッケル粉末への混入が避けられない。これは、本発明者等の研究によれば、特に金属溶湯を保持する坩堝部等(以下「坩堝」という)の溶湯と接する部分で、坩堝の成分の一部が金属溶湯中に溶出し、これが生成する金属粉末中に不純物として混入してしまうためと考えられる。
 また、不純物の混入量は溶湯の温度や装置の稼働時間によって変動するので、製品の不純物レベルのばらつきを招く。更に、坩堝の成分の溶出は同時に坩堝の材質の変化による耐久性の低下を引き起こすので、坩堝寿命が短くなるという問題も生じる。
 更に、金属粉末に焼結性や耐酸化性を付与したり、触媒活性等を調整したりする目的で硫黄、リン、白金、レニウム等の添加元素を含有させることがあるが、これらの添加元素をその前駆体、例えば有機化合物や水素化合物の形で前記反応容器中に供給することによって金属粉末に含有させる場合、坩堝からの不純物の混入がより増加する傾向があることがわかった。またニッケル、銅等の卑金属粉末では、貴金属粉末に比べてこのような不純物の混入、坩堝の劣化が大きい傾向がある。
 このような反応容器からの不純物の混入やその量のばらつきは、電子部品等の更なる小型化、高性能化が進んでくると、いっそう大きな問題になる。例えば積層コンデンサ等の積層セラミック電子部品の内部電極に使用されるニッケル粉末の場合、微量の不純物元素が電極の焼結性やセラミック層の特性に影響し、電子部品の特性の劣化やばらつきの増大を招くことがある。特に前述のカルシウム、イットリウム等の元素は誘電体セラミック層の特性に大きく影響すると考えられるので、含有しないか、含有量を厳密にコントロールする必要がある。従って、反応容器からのこれら不純物の混入をできる限り抑制することが求められている。
 本発明は、上記問題・状況に鑑みてなされたのもので、その解決課題は、プラズマ法により金属粉末、特に卑金属粉末を製造する際に、不純物元素の混入を抑制し、極めて高純度の金属粉末を得ることのできる金属粉末の製造方法を提供することである。また、併せて坩堝等の反応容器の耐久性を改善することのできる金属粉末の製造方法を提供することである。
 本発明に係る上記課題は、以下の手段により解決される。
1.反応容器内においてプラズマを利用して金属原料の少なくとも一部を溶融して金属溶湯とし、更に該金属溶湯を蒸発させて金属蒸気を生成させ、該金属蒸気を前記反応容器内に供給されたキャリアガスと共に、前記反応容器から冷却管に移送して冷却し、凝結させて金属粉末を生成させる金属粉末の製造方法であって、
 酸素ガスを前記反応容器内に供給することを特徴とする金属粉末の製造方法。
2.前記反応容器の少なくとも金属溶湯と接する部分が、ジルコニア系セラミックで形成されていることを特徴とする第1項に記載の金属粉末の製造方法。
3.酸素ガスが、金属粉末の生成量1Kg/hrに対して1500mL/min以下の量で供給されることを特徴とする第1項又は第2項に記載の金属粉末の製造方法。
4.更に硫黄、リン、白金、レニウム、亜鉛、錫、アルミニウム、ホウ素から選択される添加元素を前記反応容器内に供給することを特徴とする第1項1~第3項のいずれか一項に記載の金属粉末の製造方法。
5.前記添加元素を、有機化合物及び/又は水素化合物の形態で供給することを特徴とする第4項に記載の金属粉末の製造方法。
6.前記金属粉末が、卑金属を主成分とするものであることを特徴とする第1項~第5項のいずれか一項に記載の金属粉末の製造方法。
7.前記プラズマが、移行型DCアークプラズマであることを特徴とする第1項~第6項のいずれか一項に記載の金属粉末の製造方法。
 本発明の金属粉末の製造方法によれば、反応容器内に酸素ガスを供給することにより、反応容器からの不純物の混入量が極めて少ない金属粉末を製造することができる。また、反応容器の材質の劣化も防止でき、反応容器の寿命を飛躍的に向上させることができる。また、導入する酸素の量を特定量にコントロールすることにより生産性の低下や生成粉末の性状の変化を招くことなく、不純物の混入量を低下させることができる。
実施例において使用するプラズマ装置を示す図である。 従来例において使用するプラズマ装置を示す図である。
 本発明の金属粉末の製造方法によって製造される金属粉末としては、銀、金、白金族金属等の貴金属や、ニッケル、銅、コバルト、鉄、タンタル、チタン、タングステン等の卑金属、これらを含む合金など、限定はないが、特に、金属粉末が卑金属を主成分とする金属粉末である場合、本発明の効果をより享受することができるので好ましい。
 ここで「主成分」とは、金属粉末全体に占める卑金属の比率が50重量%以上であるものをいう。
 本発明の金属粉末の製造方法において、金属原料としては、目的とする金属粉末の金属成分を含有する物質であれば特に制限はなく、純金属の他、2種以上の金属成分を含む合金や複合物、混合物、化合物等を使用することができる。特に制限はないが、取扱い易さの点から、数mm~数十mm程度の大きさの粒状や塊状の金属材料又は合金材料を使用することが好ましい。
 以下、一例を挙げて本発明の工程を説明する。
 原料の金属は、原料のフィードポートからプラズマ装置の反応容器内に供給される。
 反応容器内には、酸素と、必須ではないが希釈ガスが供給される。金属原料は反応容器内においてプラズマにより溶融されて、反応容器下部の坩堝部分に金属溶湯として貯留される。金属溶湯は更にプラズマにより加熱されて蒸発し、金属蒸気を生成する。生成した金属蒸気は、プラズマの生成に使用されたプラズマガスと、必要に応じて供給される前記希釈ガスを含むキャリアガスにより、前記反応容器から冷却管に移送されて冷却され、凝結して金属粉末を生成する。
 反応容器の構成材料としては、制限はなく、従来プラズマ装置に用いられるグラファイトやセラミック系の耐火材料が使用される。特に、少なくとも坩堝部分が酸化物系セラミック材料、わけてもジルコニア系セラミックで構成される場合、本発明の効果が顕著である。
 プラズマガス及び希釈ガスとしては、通常、金属粉末の製造に使用されるアルゴン、ヘリウム、窒素、アンモニア、メタン、あるいはこれらの混合物などの不活性ガスや還元性ガスが使用される。
 酸素ガスは、純酸素ガスの他に、例えば空気や、不活性ガスと酸素との混合ガスなど、酸素を含むガスとして供給してもよい。なお、酸素は希釈ガスと混合して反応容器内に供給してもよいし、混合せずに希釈ガスとは別の導入口から反応容器内に供給してもよい。
 反応容器内に酸素ガスを供給することにより不純物量が低下する理由は必ずしも明確ではないが、例えば金属原料として金属ニッケルを用い、安定化ジルコニア製の反応容器(以下坩堝部分を指して「ジルコニア坩堝」ともいう)を用いてニッケル粉末を製造する場合を例にとると、次のように考えられる。
 従来の方法では、ジルコニア坩堝中の酸素が、坩堝と高温のニッケル溶湯とが接触する固液界面で溶湯中に移動し、このために生じたジルコニウム、カルシウム、イットリウム等の金属がニッケル溶湯中に溶出することにより、生成するニッケル粉末中の不純物が増加する。ジルコニアは特に1000℃以上の高温では固体電解質の性質を持ち、イオン伝導性が大きいため、坩堝の内部から固液界面に酸素が移動して来ることにより、酸素や金属の溶出量が大きくなる。しかし、本発明においては、反応容器内に導入された酸素がニッケル溶湯中に溶解し、ニッケル溶湯中の酸素濃度が高くなる結果、坩堝からの酸素の移動が抑制され、生成したニッケル粉末中の、坩堝に由来する不純物の量が減少するのではないかと推測される。
 酸素ガスの供給量は、金属粉末の生成速度が1Kg/hrの場合の供給量にして0.05mL/min程度の少量でも、不純物低減の効果が確認される。
 本発明において、同等の不純物低減効果を得るために必要な酸素供給量は、金属原料の供給速度(金属粉末の生成速度)にほぼ比例するので、以下、酸素供給量は金属粉末の生成速度が1Kg/hrあたりの量で示す。ここで、酸素ガスの供給量は、25℃1気圧における酸素ガスの流量で表したものである。特に酸素が0.1mL/min以上の量で供給される場合、顕著な効果が得られるので好ましい。
 一方、酸素ガスの供給量が多くなると、溶湯中に酸素が過剰に溶解しすぎて金属溶湯表面が酸化されたり、プラズマが不安定になったりして製造効率が低下してしまう、また反応容器に使用される断熱材等が燃えてしまう、さらにDCプラズマでは、電極金属が酸化してしまう等の問題を生じるようになる。また供給された酸素のうち、前述の坩堝成分の溶出抑制や後述する化合物の分解のために消費されなかったものはキャリアガスの一部となるので、冷却管において金属蒸気が凝結して金属粉末が析出する際に、酸化を生じないような量に調整する必要もある。このため、目的の金属の種類や後述する添加元素によっても異なってくるが、後述する添加元素がない場合には最大でも1500mL/minを超えないことが好ましい。特に、酸素ガスが0.1~1000mL/minの量で供給される場合、前述の問題をほとんど生じることなく、顕著な効果が得られるので好ましい。
 更に、前述したように金属粉末に添加元素として硫黄、リン、白金、レニウム、亜鉛、錫、アルミニウム、ホウ素等の元素を含有させる目的で、プラズマ反応容器内にこれらの添加元素の化合物、特に有機化合物や水素化合物等を供給するは不純物が増加する傾向があったが、このような場合、酸素供給による不純物低減効果は特に顕著であり、本発明の効果をより享受できるので好ましい。即ち前記有機化合物や水素化合物は、高温の気相中で分解して還元性を示すため、前述の坩堝から金属溶湯中への酸素の溶出がより起こりやすくなるのではないかと推測されるが、酸素を供給するとその還元性が相殺され、不純物の低減に極めて効果的である。
 さらには、酸素にはこれらの化合物の分解を促進して添加元素が金属粉末に含有されやすくする効果もあると考えられる。このため、酸素は、前記有機化合物や水素化合物の分解に必要な化学量論量より多く供給されることが好ましい。
 前記有機化合物としては限定はないが、一例を挙げると、硫黄の場合は、メタンチオールやエタンチオールのようなチオール類、メルカプトエタノールやメルカプトブタノールのようなメルカプタン化合物、或いはベンゾチオフェンなどのチオフェン類やチアゾール類が使用される。
 リンの場合は、トリフェニルホスフィン、メチルフェニルホスフィン、トリメチルホスフィンなどのホスフィン類やホスホランなどが使用される。
 また、白金、レニウム、亜鉛、錫、アルミニウム、ホウ素の有機化合物としては、カルボン酸塩類、アミン錯体類、ホスフィン錯体類、メルカプチド類、或いはレニウム酸の有機誘導体などが挙げられる。
 前記水素化合物の一例を挙げると、硫化水素や、水素化アルミニウム、ジボラン等の水素化物及びその有機誘導体などが使用される。
 また、本発明では、前記プラズマが移行型DCアークプラズマである場合、本発明の効果をより享受できるので好ましい。
 次に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれに限定されない。なお、本実施例において、各種ガスの流量は、酸素と同様に25℃1気圧におけるガスの流量で表したものである。
 以下の実施例では、プラズマ装置としては図1に示される移行型DCアークプラズマ装置1を使用した。
 この装置の反応容器2としては、カルシウム安定化ジルコニア製の反応容器が用いられている。反応容器2の上方にはプラズマトーチ4が配置され、図示しない供給管を介してプラズマトーチ4にプラズマ生成ガスが供給されるようになっている。プラズマトーチ4は、カソード6を陰極、プラズマトーチ4の内部に設けられた図示しないアノードを陽極としてプラズマ7を発生させた後、陽極をアノード5に移行することにより、カソード6とアノード5との間でプラズマ7を生成する。図示しない原料フィードポートから反応容器2の坩堝部分9に供給された金属原料の少なくとも一部を当該プラズマ7の熱により溶融させ、金属の溶湯8を生成する。更にプラズマ7の熱により、溶湯8の一部を蒸発させ、金属蒸気を発生させる。
 反応容器2内には希釈ガスが、希釈ガス供給部10から供給される。希釈ガスは前記プラズマ生成ガスと共に、金属蒸気を冷却管3に搬送するためのキャリアガスとして使用される。酸素は、希釈ガス供給部10とは別の酸素供給部11から、空気を導入することにより供給される。
 反応容器2内で発生した金属蒸気はプラズマ生成ガスと希釈ガスを含むキャリアガスにより冷却管3に移送され、冷却、凝結して金属粉末を生成する。
[実施例1]
 前記プラズマ装置の反応容器内に、金属原料として金属ニッケル塊を約3.0~4.0Kg/hrの供給速度で供給し、またプラズマ生成ガスとしてアルゴンを流量70L/min、希釈ガスとして窒素ガスを流量630~650L/minで、更に酸素量が表1に示す通りとなるような流量で空気を供給し、プラズマ出力約100kWの条件で500時間装置を稼働させ、ニッケル粉末を製造した。
 ニッケル粉末の生成速度(金属ニッケル塊の供給速度)と、反応容器内への酸素供給量、得られたニッケル粉末の比表面積、不純物としてのCa含有量とZr含有量、および酸素含有量を表1に併せて示す。
 なお、粉末の比表面積はBET法で、Ca含有量とZr含有量は蛍光X線分析装置(リガクZSX100e)で、また酸素含有量は酸素・窒素測定装置(堀場製作所EMGA-920)により測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より、反応容器内へ酸素ガスが供給された場合、供給されない場合(試験番号1)と比べて不純物量が低減されることが明らかである。
 なお、酸素供給量が1500mL/minを超える試験番号8においては、不純物量の低減効果は確認できるものの、プラズマが不安定になり、プラズマ出力を維持するために金属ニッケル供給量を減少させた結果、製造効率が低下したほか、生成するニッケル粉末の粒子形状や粒度のばらつきが大きくなった。
[実施例2]
 ニッケル粉末に硫黄をドープする目的で、酸素供給部11から空気と共に硫化水素(HS)ガスを350mL/min(0.041mol/min)の速度で反応容器内に供給する以外は実施例1とほぼ同様にして、ニッケル粉末を製造した。
 ニッケル粉末の生成速度(金属ニッケル塊の供給速度)、反応容器内への酸素供給量、得られたニッケル粉末の比表面積、不純物としてのCa含有量とZr含有量、および酸素と硫黄の含有量を表2に示す。なお、硫黄の含有量は炭素・硫黄測定装置 (堀場製作所EMIA-320V)で測定した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、反応容器内へ酸素が供給されることにより、顕著な不純物低減効果があった。
[実施例3]
 前記プラズマ装置の反応容器内に、金属原料として金属銅塊を約6.5~7.5Kg/hrの供給速度で供給し、また銅粉末にリンをドープする目的で酸素供給部11から空気とともに液状のトリフェニルホスフィンを1mL/min(0.00419mol/min)の速度で反応容器内に供給する以外は実施例2と同様にして、銅粉末を製造した。
 銅粉末の生成速度(金属銅の供給速度)、反応容器内への酸素供給量、得られた銅粉末の比表面積、不純物としてのCa含有量とZr含有量、および酸素とリンの含有量を表3に示す。尚、リンの含有量は蛍光X線分析装置(リガクZSX100e)で測定したものである。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなように、反応容器内への酸素の供給により、顕著な不純物の低減効果が見られた。
 なお、本実施例においては、移行型DCアークプラズマ装置を使用したが、本発明はこれに限定されず、例えば高周波誘導式プラズマ装置や、マイクロ波加熱方式のプラズマ装置などを用いてもよい。
 また、本実施例では、酸素は希釈ガス供給部とは別の酸素供給部から供給したが、希釈ガスと共に供給されてもよい。
 本発明はプラズマ法により金属粉末を製造する金属粉末の製造方法において、特に不純物元素の混入を抑制し、極めて高純度の金属粉末を得るのに好適に利用することができる。
1 プラズマ装置
2 反応容器
3 冷却管
4 プラズマトーチ
5 アノード
6 カソード
7 プラズマ
8 溶湯
9 坩堝部分
10 希釈ガス供給部
11 酸素供給部

Claims (7)

  1.  反応容器内においてプラズマを利用して金属原料の少なくとも一部を溶融して金属溶湯とし、更に該金属溶湯を蒸発させて金属蒸気を生成させ、該金属蒸気を前記反応容器内に供給されたキャリアガスと共に、前記反応容器から冷却管に移送して冷却し、凝結させて金属粉末を生成させる金属粉末の製造方法であって、
     酸素ガスを前記反応容器内に供給することを特徴とする金属粉末の製造方法。
  2.  前記反応容器の少なくとも金属溶湯と接する部分が、ジルコニア系セラミックで形成されていることを特徴とする請求項1に記載の金属粉末の製造方法。
  3.  酸素ガスが、金属粉末の生成量1Kg/hrに対して1500mL/min以下の量で供給されることを特徴とする請求項1又は2に記載の金属粉末の製造方法。
  4.  更に硫黄、リン、白金、レニウム、亜鉛、錫、アルミニウム、ホウ素から選択される添加元素を前記反応容器内に供給することを特徴とする請求項1~3のいずれか一項に記載の金属粉末の製造方法。
  5.  前記添加元素を、有機化合物及び/又は水素化合物の形態で供給することを特徴とする請求項4に記載の金属粉末の製造方法。
  6.  前記金属粉末が、卑金属を主成分とするものであることを特徴とする請求項1~5のいずれか一項に記載の金属粉末の製造方法。
  7.  前記プラズマが、移行型DCアークプラズマであることを特徴とする請求項1~6のいずれか一項に記載の金属粉末の製造方法。
PCT/JP2013/060786 2012-04-20 2013-04-10 金属粉末の製造方法 WO2013157454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/391,269 US9561543B2 (en) 2012-04-20 2013-04-10 Method for manufacturing metal powder
KR1020147028835A KR102017657B1 (ko) 2012-04-20 2013-04-10 금속분말의 제조방법
EP13777813.0A EP2839906B1 (en) 2012-04-20 2013-04-10 Method for manufacturing metal powder with plasma
CN201380025804.0A CN104302427B (zh) 2012-04-20 2013-04-10 金属粉末的制造方法
CA2868596A CA2868596C (en) 2012-04-20 2013-04-10 Method for manufacturing metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012096480A JP5817636B2 (ja) 2012-04-20 2012-04-20 金属粉末の製造方法
JP2012-096480 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157454A1 true WO2013157454A1 (ja) 2013-10-24

Family

ID=49383413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060786 WO2013157454A1 (ja) 2012-04-20 2013-04-10 金属粉末の製造方法

Country Status (8)

Country Link
US (1) US9561543B2 (ja)
EP (1) EP2839906B1 (ja)
JP (1) JP5817636B2 (ja)
KR (1) KR102017657B1 (ja)
CN (1) CN104302427B (ja)
CA (1) CA2868596C (ja)
TW (1) TWI639476B (ja)
WO (1) WO2013157454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111314B2 (en) 2014-09-24 2018-10-23 Siemens Aktiengesellschaft Energy generation by igniting flames of an electropositive metal by plasmatizing the reaction gas
RU2807399C1 (ru) * 2022-11-15 2023-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в дистиллированной воде

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458276B (zh) * 2015-12-03 2017-12-15 北京矿冶研究总院 一种制备活性金属复合硼粉的方法
CN105499592B (zh) * 2015-12-08 2018-05-04 东北大学 一种利用热镀锌渣生产球形锌粉的方法
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
KR101777308B1 (ko) * 2016-01-13 2017-09-12 주식회사 풍산홀딩스 열플라즈마를 이용한 균일한 산소 패시베이션 층을 갖는 구리 나노 금속분말의 제조방법 및 이를 제조하기 위한 장치
CN105598460B (zh) * 2016-03-21 2018-03-06 台州市金博超导纳米材料科技有限公司 用于制造微纳米级金属粉末的高温蒸发器
US20190040503A1 (en) * 2017-08-03 2019-02-07 Hrl Laboratories, Llc Feedstocks for additive manufacturing, and methods of using the same
CA3065687C (en) * 2018-01-30 2021-03-02 Tekna Plasma Systems Inc. Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
AU2019290663B2 (en) * 2018-06-19 2023-05-04 6K Inc. Process for producing spheroidized powder from feedstock materials
CN109513917A (zh) * 2018-12-18 2019-03-26 江苏博迁新材料股份有限公司 一种pvd生产镍粉的降碳方法
WO2020223358A1 (en) 2019-04-30 2020-11-05 6K Inc. Mechanically alloyed powder feedstock
KR20240036705A (ko) 2019-04-30 2024-03-20 6케이 인크. 리튬 란타넘 지르코늄 산화물(llzo) 분말
CN110935885A (zh) * 2019-11-11 2020-03-31 山西中磁尚善科技有限公司 一种片状金属磨粉工艺
AU2020400980A1 (en) 2019-11-18 2022-03-31 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
CN111039318B (zh) * 2019-12-05 2022-06-03 大连理工大学 直流电弧等离子体制备SnS纳米材料的方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
KR102273282B1 (ko) * 2020-01-30 2021-07-06 주식회사 나노코리아 금속 분말의 제조방법
CN116034496A (zh) 2020-06-25 2023-04-28 6K有限公司 微观复合合金结构
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
CA3196653A1 (en) 2020-10-30 2022-05-05 Sunil Bhalchandra BADWE Systems and methods for synthesis of spheroidized metal powders
CN214260700U (zh) * 2021-01-08 2021-09-24 江苏博迁新材料股份有限公司 一种使用等离子转移弧加热的高温蒸发器
US20220324022A1 (en) * 2021-03-31 2022-10-13 6K Inc. Microwave plasma processing of spheroidized copper or other metallic powders
KR20230040468A (ko) 2021-09-16 2023-03-23 주식회사 솔루에타 절연 코팅된 금속 구조체, 그 제조 방법, 및 이를 이용하여 제조된 적층형 인덕터 소자
CN114288962A (zh) * 2021-12-09 2022-04-08 核工业西南物理研究院 一种热等离子体合成纳米氮化物粉体的装置及方法
CN114653959B (zh) * 2022-03-30 2023-04-28 中南大学 一种球形钽粉及其制备和在3d打印中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098309A (ja) * 1999-09-28 2001-04-10 Tokyo Parts Ind Co Ltd 金属微粉末の製造方法及びその装置並びに金属微粉末
JP2002530521A (ja) * 1998-08-18 2002-09-17 カナデイアン・エレクトロニク・パウダーズ・コーポレーシヨン 微細及び超微細の粉体の製造のための方法及び移行型アークプラズマシステム
JP2003522835A (ja) 2000-02-18 2003-07-29 カナディアン・エレクトロニクス・パウダーズ・コーポレーション 卑金属電極多層化セラミックコンデンサの電極として使用するためのニッケル粉末
JP2005097654A (ja) * 2003-09-24 2005-04-14 National Institute For Materials Science 超微粒子作製装置
JP2005307229A (ja) * 2004-04-16 2005-11-04 Tdk Corp ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝
JP2006265635A (ja) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology 微粒子製造方法及びその装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541939A (en) 1977-06-03 1979-01-09 Hokubu Kk Water restriction block for lake and river* and method of placing said block
JPS6193828A (ja) * 1984-10-16 1986-05-12 Natl Res Inst For Metals 混合超微粉の製造法
US4732369A (en) 1985-10-30 1988-03-22 Hitachi, Ltd. Arc apparatus for producing ultrafine particles
JPH08246010A (ja) * 1995-03-10 1996-09-24 Namitsukusu Kk 金属粉末の製造方法
AU2001288566A1 (en) * 2000-11-15 2002-05-27 Gt Equipment Technologies Inc. A protective layer for quartz crucibles used for silicon crystallization
CA2359347A1 (en) * 2001-10-18 2003-04-18 Cesur Celik Laminated ceramic capacitor internal electrode material
US6755886B2 (en) 2002-04-18 2004-06-29 The Regents Of The University Of California Method for producing metallic microparticles
JP2005161238A (ja) * 2003-12-04 2005-06-23 Sumitomo Osaka Cement Co Ltd ナノ粒子あるいはナノ構造体の製造方法
JP4839854B2 (ja) * 2006-01-20 2011-12-21 堺化学工業株式会社 ニッケル微粒子の製造方法
CN100582045C (zh) 2007-03-21 2010-01-20 大连理工大学 常温常压下等离子体化学气相沉积制备纳米晶TiO2薄膜的方法
KR20090026512A (ko) * 2007-09-10 2009-03-13 대주전자재료 주식회사 아크 플라즈마 장치를 이용한 니켈 나노분말의 제조방법 및장치
KR20090059749A (ko) * 2007-12-07 2009-06-11 주식회사 동진쎄미켐 플라스마를 이용한 금속 나노 분말의 합성장치 및 방법
KR101153961B1 (ko) * 2010-04-12 2012-06-08 희성금속 주식회사 공정합금을 이용한 탄탈럼(Ta) 분말의 제조방법
JP5824906B2 (ja) 2011-06-24 2015-12-02 昭栄化学工業株式会社 金属粉末製造用プラズマ装置及び金属粉末製造方法
CN104066537B (zh) 2011-12-06 2016-08-31 昭荣化学工业株式会社 金属粉末制造用等离子体装置和制造金属粉末的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530521A (ja) * 1998-08-18 2002-09-17 カナデイアン・エレクトロニク・パウダーズ・コーポレーシヨン 微細及び超微細の粉体の製造のための方法及び移行型アークプラズマシステム
JP3541939B2 (ja) 1998-08-18 2004-07-14 カナデイアン・エレクトロニク・パウダーズ・コーポレーシヨン 微細及び超微細の粉体の製造方法及び移行型アークプラズマシステム
JP2001098309A (ja) * 1999-09-28 2001-04-10 Tokyo Parts Ind Co Ltd 金属微粉末の製造方法及びその装置並びに金属微粉末
JP2003522835A (ja) 2000-02-18 2003-07-29 カナディアン・エレクトロニクス・パウダーズ・コーポレーション 卑金属電極多層化セラミックコンデンサの電極として使用するためのニッケル粉末
JP2005097654A (ja) * 2003-09-24 2005-04-14 National Institute For Materials Science 超微粒子作製装置
JP2005307229A (ja) * 2004-04-16 2005-11-04 Tdk Corp ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝
JP3938770B2 (ja) 2004-04-16 2007-06-27 Tdk株式会社 ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝
JP2006265635A (ja) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology 微粒子製造方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2839906A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111314B2 (en) 2014-09-24 2018-10-23 Siemens Aktiengesellschaft Energy generation by igniting flames of an electropositive metal by plasmatizing the reaction gas
RU2670600C1 (ru) * 2014-09-24 2018-10-24 Сименс Акциенгезелльшафт Зажигание пламени электроположительного металла путем перевода активного газа в состояние плазмы
RU2670600C9 (ru) * 2014-09-24 2018-11-22 Сименс Акциенгезелльшафт Зажигание пламени электроположительного металла путем перевода активного газа в состояние плазмы
RU2807399C1 (ru) * 2022-11-15 2023-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" Способ изготовления жаропрочного никелевого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ЖС6У в дистиллированной воде

Also Published As

Publication number Publication date
CN104302427A (zh) 2015-01-21
TWI639476B (zh) 2018-11-01
US20150101454A1 (en) 2015-04-16
TW201347878A (zh) 2013-12-01
CN104302427B (zh) 2016-11-23
KR102017657B1 (ko) 2019-09-03
CA2868596A1 (en) 2013-10-24
JP5817636B2 (ja) 2015-11-18
EP2839906A4 (en) 2015-02-25
EP2839906A1 (en) 2015-02-25
JP2013224458A (ja) 2013-10-31
CA2868596C (en) 2021-10-26
EP2839906B1 (en) 2020-05-13
KR20150007285A (ko) 2015-01-20
US9561543B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP5817636B2 (ja) 金属粉末の製造方法
TWI589375B (zh) 金屬粉末製造用電漿裝置及金屬粉末的製造方法
TWI778941B (zh) 以矽石製造高純度矽的裝置及方法
Wang et al. Size-controlled synthesis of high-purity tungsten carbide powders via a carbothermic reduction–carburization process
KR20090026512A (ko) 아크 플라즈마 장치를 이용한 니켈 나노분말의 제조방법 및장치
JP6559118B2 (ja) ニッケル粉末
JP4731347B2 (ja) 複合銅微粉の製造方法
KR20140102665A (ko) 금속분말 제조용 플라즈마 장치 및 이를 이용한 금속분말 제조방법
JP4921806B2 (ja) タングステン超微粉及びその製造方法
WO2007122684A1 (ja) 低酸素金属粉末の製造方法
Ryu et al. Plasma synthesis of tungsten carbide nanopowder from ammonium paratungstate
JP4957901B2 (ja) モリブデン超微粉の製造方法
CA2287373C (en) Process for the production of powdered nickel
JP6591129B1 (ja) 金属塩化物生成装置、および金属粉体の製造方法
Wu et al. Production of different morphologies and size of metallic W particles through hydrogen reduction
JP2000226607A (ja) タンタル又はニオブ粉末とその製造方法
KR101679725B1 (ko) 비이송식 열플라즈마 방법을 이용하여 은(Ag) 코팅된 마이크로 크기의 니켈(Ni) 입자의 제조 방법
RU2494041C1 (ru) Способ получения наноразмерного порошка нитрида алюминия
JP2002180112A (ja) 高融点金属粉末材料の製造方法
JP2006169559A (ja) 銅合金微粒子とその製造方法
KR20140030871A (ko) 니켈 분말 제조용 내화물 구조체 및 니켈 분말의 제조방법
KR102052754B1 (ko) 니켈 분말 제조용 내화물, 그 제조방법 및 니켈 분말의 제조방법
CN117548681A (zh) 金属陶瓷复合粉末的制备方法以及金属陶瓷复合粉末
JP2002371305A (ja) 金属粉末の製造方法
KR20140089147A (ko) 구리 분말 제조용 내화물 및 구리 분말의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2868596

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14391269

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147028835

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013777813

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE