WO2013155326A1 - Apparatuses and methods for providing set and reset voltages at the same time - Google Patents
Apparatuses and methods for providing set and reset voltages at the same time Download PDFInfo
- Publication number
- WO2013155326A1 WO2013155326A1 PCT/US2013/036209 US2013036209W WO2013155326A1 WO 2013155326 A1 WO2013155326 A1 WO 2013155326A1 US 2013036209 W US2013036209 W US 2013036209W WO 2013155326 A1 WO2013155326 A1 WO 2013155326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- memory cells
- reset
- voltages
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0097—Erasing, e.g. resetting, circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0028—Word-line or row circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0038—Power supply circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0061—Timing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
- G11C2013/0083—Write to perform initialising, forming process, electro forming or conditioning
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
- G11C2013/0085—Write a page or sector of information simultaneously, e.g. a complete row or word line
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
- G11C2013/0088—Write with the simultaneous writing of a plurality of cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/79—Array wherein the access device being a transistor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/12—Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
Definitions
- variable state materials For example, memory cells such as resistive random access memory (RRAM) cells include a variable state material whose state can be changed from a high resistance state to a low resistance state and back again.
- RRAM resistive random access memory
- Variable state materials are often non- volatile and can be configured in memory cells having a small form factor.
- variable state materials can exhibit longer program times than other storage technologies such as flash memory.
- Semiconductor device designs that provide improvements in performance, such as speed and reliability, are desired.
- FIG. 1 shows a block diagram setting a first state of a memory cell component according to an embodiment of the invention.
- FIG. 2 shows a block diagram setting a second state of the memory cell component from Figure 1 , according to an embodiment of the invention.
- FIG. 3 shows a voltage-current diagram of a variable resistive material according to an embodiment of the invention.
- FIG. 4 shows a circuit diagram of a memory device according to an embodiment of the invention.
- FIG. 5 shows a voltage table according to an embodiment of the invention.
- FIG. 6 shows a block diagram of a memory device according to an embodiment of the invention.
- FIG. 7 shows an information handling system, including a memory device, according to an embodiment of the invention.
- Figure 1 shows an example component 100 of a memory cell according to an embodiment of the invention.
- a variable state material 102 is shown located between a first electrode 104 and a second electrode 106.
- variable state material 102 is shown, in selected examples, other structures such as intervening material layers may be included along with the variable state material located between the first and second electrodes 104, 106.
- the variable state material 102 is a resistance switching material.
- Other examples of variable state materials 102 may include magnetic switching materials, or other switching materials having a detectable electronic state.
- the state of the variable state material 102 is changed from a high resistance state 103 to a low resistance state 105.
- the high resistance state may represent a digital bit of data, such as a logic 1 or a logic 0 value.
- Selection circuitry such as row and column selection circuitry, may be used to select a desired memory cell (including a variable state material 102) from an array of cells, to query and/or alter the resistance state, thus providing data recall and storage capability.
- a number of mechanisms can be used to change the physical state
- variable state material 102 is changed from a substantially amorphous state to a substantially crystalline state.
- one or more conductive filaments are formed within the variable state material 102 that bridge the distance between the first electrode 104 and the second electrode 106. In various mechanisms, the state change is reversible.
- Figure 2 shows the example component 100 from Figure 1 , in the low resistance state 105.
- the variable state material 102 is reversed from the low resistance state 105 back to the high resistance state 103.
- the physical state (and thus the resistance) of the variable state material 102 can be changed as desired to occupy a selected one of at least two possible states.
- Figure 3 shows an example voltage/current diagram 300 of a bipolar variable state material.
- the diagram shows voltage on the X-axis 302 and current on the Y-axis 304.
- a variable state material exhibits high resistance behavior along a high resistance portion 306 of the illustrated curve 301. If an applied voltage is within a first voltage range 310, or a second voltage range 312 with respect to a reference voltage level 318, the variable state material remains within the high resistance portion 306 of the curve 301.
- variable state material If an applied voltage is greater than or equal to a third voltage 314 (which is in turn greater than the upper limit of the voltage range 310) with respect to the reference voltage level 318, the variable state material exhibits low resistance, as illustrated by point 303 on the curve 301 and moves to a low resistance portion 308 of the curve 301. The variable state material will remain in the low resistance portion 308 of the curve 301 until an applied voltage magnitude is greater than or equal to a fourth voltage 316 (which is in turn greater than the magnitude of the voltage range 312) with respect to the reference voltage level 318. Then the variable state material will again returns to the high resistance portion 306 of the curve 301.
- Figure 3 illustrates a bipolar variable state material behavior
- some devices described herein may use a unipolar variable state material.
- the state may be changed by application of different magnitudes of applied voltage in the same direction.
- the reference voltage 318 is approximately zero volts, with the third voltage 314 and fourth voltage 316 being substantially equal in magnitude, and opposite in polarity.
- the third voltage 314 may be approximately 1 volt
- the fourth voltage 316 may be approximately -1 volt.
- the third voltage 314 may be approximately 4 volts (reference voltage 318 plus a voltage offset of about 1 volt), and the fourth voltage 316 may be approximately 2 volts (reference voltage 318 minus a voltage offset of about 1 volt).
- Variable state materials may be formed into relatively small, nonvolatile memory cells.
- a one transistor, one resistor (1T1R) configuration is possible, in contrast to transistor-based static random access memory (SRAM) cells that use six transistors.
- SRAM static random access memory
- Figure 4 shows an example circuit diagram of an apparatus 400 including a variable state material according to an embodiment of the invention.
- the apparatus 400 comprises a memory device.
- "apparatus” is used broadly to refer to any of a number of different structures, including, but not limited to, systems, devices, circuits, chip assemblies, etc.
- the apparatus 400 includes an array 402 of memory cells 410, and a driver circuit 404.
- the driver circuit 404 is configured to provide different voltages to different memory cells 410 in the array 402 at the same time.
- the cells 410 in the array 402 include a variable state material component 412.
- the variable state material component 412 includes a variable state material coupled between a first electrode and a second electrode, similar to or identical to the examples described in Figures 1 and 2.
- Memory cells 410 in the array 402 may further include a selector device 414. In selected examples, such as cross point architecture, a selector device may not be included.
- the selector device 414 includes an n-type metal oxide (NMOS) transistor.
- the selector device 414 includes an p-type metal oxide (PMOS) transistor.
- Other examples of selector devices 414 may include additional circuitry, diodes, and other electronic devices.
- Figure 4 further shows a number of access lines 408 coupled to selector devices 414 in the array 402.
- the number of access lines 408 includes a number of word lines.
- a source 403, and a number of data lines 406a - 406c are shown coupled to the memory cells 410 in the array 402.
- the number of data lines 406 includes a number of bit lines.
- the driver circuit 404 is configured as a column driver.
- the driver circuit 404 is configured to provide multiple different voltages to the data lines 406a - 406c of different memory cells at the same time.
- the driver circuit 404 is shown including a first voltage input node 420, a second voltage input node 422, and a third voltage input node 424. Although three different voltage input nodes are shown, other
- configurations including two voltage input nodes, or more than three voltage input nodes are within the scope of various embodiments.
- the driver circuit can also include selection circuitry 404 to selectively couple the voltage input nodes 420, 422 and 424 to different memory cells at the same time.
- the selection circuitry 404 can include a number of selector circuits 405a-405c that can each select any one of the voltage input nodes 420, 422, 424 and thus apply a selected voltage to one or more selected memory cells 410 in the array 402.
- the selector circuits 405a-405c are individually selectable to apply different voltages to different memory cells 410 in the array 402.
- the different voltages are discrete voltages that are substantially constant over the time that they are applied.
- the different voltages on the voltage input nodes 420, 422, 424 may be variable over a selected length of time.
- the voltage input nodes 420, 422, 424 are configured as a set voltage node, a reset voltage node, and an inhibit voltage node.
- the reference voltage 318 comprise an inhibit voltage.
- Memory cells 410 in the array 402 that receive the inhibit voltage will not be programmed to a high resistance state, or reversed from a high resistance state to a low resistance state.
- a set voltage may include an inhibit voltage plus an offset voltage, such as the third voltage 314.
- a reset voltage may include an inhibit voltage minus an offset voltage, such as the fourth voltage 316.
- a first selector circuit 405 a is shown selectively coupling the second voltage input node 422 to data line 406a.
- the second voltage input node 422 includes a set voltage.
- the set voltage is approximately equal to 4 volts.
- the second selector circuit 405b is shown selectively coupling the third voltage input node 424 to data line 406b.
- the third voltage input node 424 includes a reset voltage.
- the reset voltage is approximately equal to 2 volts.
- the third selector circuit 405c is shown selectively coupling the first voltage input node 420 to data line 406c.
- the first voltage input node 420 includes an inhibit voltage.
- the inhibit voltage is approximately equal to 3 volts.
- each of the selector circuits 405a-405c are individually selectable, and can provide any desired voltage from the voltage input lines 420, 422, 424 to any desired data line 406a - 406c at the same time.
- Performance of the apparatus 400 may be enhanced using the driver circuit 404 shown in Figure 4. For example, while selected cells in a given column of the array 402 are being set to a low resistance state, other selected cells in a different given column of the array 402 can be reset at the same time. Additionally, at the same time, other cells in the array 402 may have no operation performed on them as a result of an applied inhibit voltage. Data programming operation times may be reduced by a factor of more than two times when compared to devices that are only capable of driving one voltage to the array at a time.
- Figure 5 illustrates an example voltage table showing the operation of a selected data line 502, an unselected data line 504, a selected access line 506, and an unselected access line 508.
- a driver circuit 404 from Figure 4 drives the voltages shown in the table of Figure 5.
- the selected data line 502 is driven to a read voltage.
- a read voltage is the same as the first voltage range 310 from Figure 3.
- the selected access line 506 is driven to a logical high voltage, and the unselected access line 508 is driven to approximately ground.
- the unselected data line 504 is driven to a standby voltage.
- the selected data line 502 is driven to an inhibit voltage plus a voltage offset.
- a set voltage is the same as the third voltage 314 from Figure 3.
- the selected access line 506 is driven to a logical high voltage, and the unselected access line 508 is driven to approximately ground.
- the unselected data line 504 is driven to an inhibit voltage.
- the inhibit voltage is the same as the reference voltage 318 from Figure 3.
- the selected data line 502 is driven to an inhibit voltage minus a voltage offset.
- a reset voltage includes the fourth voltage 316 from Figure 3.
- the selected access line 506 is driven to a logical high voltage, and the unselected access line 508 is driven to approximately ground.
- the unselected data line 504 is driven to an inhibit voltage.
- the inhibit voltage includes the reference voltage 318 from Figure 3.
- FIG. 6 illustrates a portion of an apparatus in the form of a memory system 600 incorporating a driver circuit similar to or identical to the driver circuit 404 from Figure 4.
- the memory system 600 includes an array 602 of memory cells, which may comprise, for example, RRAM or other memory cells incorporating a variable state material that operates as described in various embodiments above.
- the memory system 600 includes a command decoder 606 that receives memory commands through a command bus 608 and generates corresponding control signals within the memory system 600 to carry out various memory operations. Row and column address signals are applied to the memory system 600 through an address bus 620 and provided to an address latch 610. The address latch then outputs a separate column address and a separate row address.
- the column address decoder 628 selects data lines extending through the array 602 corresponding to respective column addresses.
- the column address decoder 628 includes a driver circuit similar to the driver circuit 404 of Figure 4.
- the row address decoder 622 is connected to access line driver 624 that activates respective rows of memory cells in the array 602 corresponding to received row addresses.
- the rows of memory cells in the array 602 correspond to data lines 408 from
- the command decoder 606 responds to memory commands applied to the command bus 608 to perform various operations on the memory array 602.
- the command decoder 606 is used to generate internal control signals to read data from and write data to the memory array 602.
- FIG. 7 is a block diagram of an information handling system 700 incorporating at least one chip or chip assembly 704 that includes a memory device 707 (e.g., a device similar to or identical to the apparatus 400 shown in Figure 4 and/or the apparatus 600 shown in Figure 6) according to an embodiment of the invention.
- the assembly 704 may also include a processor 706 and other logic 708.
- the memory device 707 includes a variable state material memory device such as an RRAM.
- the information handling system 700 shown in Figure 7 is merely one example of a system in which the present invention can be used.
- Other examples include, but are not limited to, personal data assistants (PDAs), tablet computers, cameras, cellular telephones, MP3 players, aircraft, satellites, military vehicles, etc.
- information handling system 700 comprises a data processing system that includes a system bus 702 to couple the various components of the system.
- System bus 702 provides communications links among the various components of the information handling system 700 and may be implemented as a single bus, as a combination of busses, or in any other suitable manner.
- Chip assembly 704 is coupled to the system bus 702.
- Chip assembly 704 may include any circuit or operably compatible combination of circuits.
- chip assembly 704 includes a processor 706 that can be of any type.
- processor means any type of computational circuit such as, but not limited to, a microprocessor, a microcontroller, a graphics processor, a digital signal processor (DSP), or any other type of processor or processing circuit. Multiple processors such as “multi-core” devices are also within the scope of the invention.
- a memory device 707 such as a memory device described in embodiments above, is included in the chip assembly 704.
- the memory configuration includes RRAM.
- the memory cells are arranged in different logical configurations, such as NAND memory or NOR memory.
- additional logic chips 708 other than processor chips are included in the chip assembly 704.
- An example of a logic chip 708 other than a processor includes an analog to digital converter.
- Other circuits on logic chips 708 such as custom circuits, an application-specific integrated circuit (ASIC), etc. are also included in one embodiment of the invention.
- Information handling system 700 may also include an external memory 711 , which in turn can include one or more memory elements suitable to the particular application, such as one or more hard drives 712, and/or one or more drives that handle removable media 713 such as flash drives, compact disks (CDs), digital video disks (DVDs), and the like.
- an external memory 711 can include one or more memory elements suitable to the particular application, such as one or more hard drives 712, and/or one or more drives that handle removable media 713 such as flash drives, compact disks (CDs), digital video disks (DVDs), and the like.
- Information handling system 700 may also include a display device 709 such as a monitor, additional peripheral components 710, such as speakers, etc. and a keyboard and/or controller 714, which can include a mouse, a touchscreen interface, or any other device that permits a system user to input information into and receive information from the information handling system 700.
- a display device 709 such as a monitor
- additional peripheral components 710 such as speakers, etc.
- a keyboard and/or controller 714 which can include a mouse, a touchscreen interface, or any other device that permits a system user to input information into and receive information from the information handling system 700.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015505916A JP2015518230A (ja) | 2012-04-12 | 2013-04-11 | セット電圧とリセット電圧とを同時に供給する装置および方法 |
| KR1020147030963A KR101984681B1 (ko) | 2012-04-12 | 2013-04-11 | 세트 및 리셋 전압들을 동시에 제공하기 위한 장치들 및 방법들 |
| CN201380026853.6A CN104335283A (zh) | 2012-04-12 | 2013-04-11 | 用于同时提供设置及复位电压的设备及方法 |
| EP13775893.4A EP2837000B1 (en) | 2012-04-12 | 2013-04-11 | Apparatuses and methods for providing set and reset voltages at the same time |
| CN202010488121.0A CN111640464B (zh) | 2012-04-12 | 2013-04-11 | 用于同时提供设置及复位电压的设备及方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/445,577 US9053784B2 (en) | 2012-04-12 | 2012-04-12 | Apparatuses and methods for providing set and reset voltages at the same time |
| US13/445,577 | 2012-04-12 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013155326A1 true WO2013155326A1 (en) | 2013-10-17 |
Family
ID=49324939
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/036209 Ceased WO2013155326A1 (en) | 2012-04-12 | 2013-04-11 | Apparatuses and methods for providing set and reset voltages at the same time |
Country Status (7)
| Country | Link |
|---|---|
| US (3) | US9053784B2 (enExample) |
| EP (1) | EP2837000B1 (enExample) |
| JP (1) | JP2015518230A (enExample) |
| KR (1) | KR101984681B1 (enExample) |
| CN (2) | CN111640464B (enExample) |
| TW (1) | TWI585763B (enExample) |
| WO (1) | WO2013155326A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9053784B2 (en) | 2012-04-12 | 2015-06-09 | Micron Technology, Inc. | Apparatuses and methods for providing set and reset voltages at the same time |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102151183B1 (ko) * | 2014-06-30 | 2020-09-02 | 삼성전자주식회사 | 저항성 메모리 장치 및 저항성 메모리 장치의 동작방법 |
| CN104794261A (zh) * | 2015-03-27 | 2015-07-22 | 山东华芯半导体有限公司 | 一种具有复位功能的阻变型随机存储器模型及存储方法 |
| GB2545264B (en) * | 2015-12-11 | 2020-01-15 | Advanced Risc Mach Ltd | A storage array |
| TWI626660B (zh) * | 2017-04-21 | 2018-06-11 | 瞻誠科技股份有限公司 | 記憶體裝置及其製作方法 |
| JP6723402B1 (ja) * | 2019-02-28 | 2020-07-15 | ウィンボンド エレクトロニクス コーポレーション | 抵抗変化型ランダムアクセスメモリ |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080259678A1 (en) * | 2003-12-18 | 2008-10-23 | Matsushita Electric Industrial Co., Ltd. | Method for initializing resistance-variable material, memory device containing a resistance-variable material, and method for initializing nonvolatile memory circuit including variable resistor |
| US20090039332A1 (en) * | 2007-08-09 | 2009-02-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistive non-volatile memory device |
| US20090135637A1 (en) | 2007-10-05 | 2009-05-28 | Kabushiki Kaisha Toshiba | Resistance change memory device |
| US20100080037A1 (en) | 2006-12-06 | 2010-04-01 | Kohji Inoue | Nonvolatile semiconductor memory device |
| US20100103724A1 (en) * | 2008-10-23 | 2010-04-29 | Samsung Electronics Co., Ltd. | Variable Resistance memory device |
| US20100296330A1 (en) | 2009-05-19 | 2010-11-25 | Sharp Kabushiki Kaisha | Semiconductor memory device |
| US20100321978A1 (en) * | 2007-12-10 | 2010-12-23 | Kabushiki Kaisha Toshiba | Semiconductor memory device and memory cell voltage application method |
| US20120014163A1 (en) | 2010-07-16 | 2012-01-19 | Shinobu Yamazaki | Semiconductor memory device and method of driving the same |
| US20120020141A1 (en) | 2010-07-21 | 2012-01-26 | Sony Corporation | Variable-resistance memory device and its driving method |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6032248A (en) * | 1998-04-29 | 2000-02-29 | Atmel Corporation | Microcontroller including a single memory module having a data memory sector and a code memory sector and supporting simultaneous read/write access to both sectors |
| US7362604B2 (en) * | 2005-07-11 | 2008-04-22 | Sandisk 3D Llc | Apparatus and method for programming an array of nonvolatile memory cells including switchable resistor memory elements |
| KR100757410B1 (ko) * | 2005-09-16 | 2007-09-11 | 삼성전자주식회사 | 상 변화 메모리 장치 및 그것의 프로그램 방법 |
| JP4203506B2 (ja) | 2006-01-13 | 2009-01-07 | シャープ株式会社 | 不揮発性半導体記憶装置及びその書き換え方法 |
| KR100816748B1 (ko) * | 2006-03-16 | 2008-03-27 | 삼성전자주식회사 | 프로그램 서스펜드/리줌 모드를 지원하는 상 변화 메모리장치 및 그것의 프로그램 방법 |
| WO2008032394A1 (en) * | 2006-09-15 | 2008-03-20 | Renesas Technology Corp. | Semiconductor device |
| JP5214208B2 (ja) * | 2007-10-01 | 2013-06-19 | スパンション エルエルシー | 半導体装置及びその制御方法 |
| KR101202429B1 (ko) * | 2007-10-11 | 2012-11-16 | 삼성전자주식회사 | 저항체를 이용한 비휘발성 메모리 장치 |
| KR101407362B1 (ko) * | 2008-06-23 | 2014-06-16 | 삼성전자주식회사 | 상 변화 메모리 장치 |
| JP5549105B2 (ja) | 2009-04-15 | 2014-07-16 | ソニー株式会社 | 抵抗変化型メモリデバイスおよびその動作方法 |
| JP2011004830A (ja) | 2009-06-23 | 2011-01-13 | Shimadzu Corp | X線撮影装置 |
| JP5214566B2 (ja) * | 2009-09-02 | 2013-06-19 | 株式会社東芝 | 抵抗変化メモリ装置 |
| JP4705204B1 (ja) | 2009-10-15 | 2011-06-22 | パナソニック株式会社 | 抵抗変化型不揮発性記憶装置 |
| KR101068333B1 (ko) | 2009-12-23 | 2011-09-28 | 주식회사 하이닉스반도체 | Rfid 장치 |
| US8446753B2 (en) * | 2010-03-25 | 2013-05-21 | Qualcomm Incorporated | Reference cell write operations at a memory |
| JP5054803B2 (ja) | 2010-05-26 | 2012-10-24 | シャープ株式会社 | 半導体記憶装置 |
| JP5598338B2 (ja) * | 2011-01-13 | 2014-10-01 | ソニー株式会社 | 記憶装置およびその動作方法 |
| CN103222004B (zh) * | 2011-09-09 | 2015-06-17 | 松下电器产业株式会社 | 交叉点型电阻变化非易失性存储装置及其写入方法 |
| ITTO20120192A1 (it) * | 2012-03-05 | 2013-09-06 | St Microelectronics Srl | Architettura e metodo di decodifica per dispositivi di memoria non volatile a cambiamento di fase |
| US9053784B2 (en) | 2012-04-12 | 2015-06-09 | Micron Technology, Inc. | Apparatuses and methods for providing set and reset voltages at the same time |
| JP2013254545A (ja) * | 2012-06-08 | 2013-12-19 | Sharp Corp | 不揮発性半導体記憶装置、及び、可変抵抗素子の抵抗制御方法 |
| US20130336037A1 (en) * | 2012-06-15 | 2013-12-19 | Sandisk 3D Llc | 3d memory having vertical switches with surround gates and method thereof |
| KR20140028480A (ko) * | 2012-08-29 | 2014-03-10 | 에스케이하이닉스 주식회사 | 가변 저항 메모리 장치 및 그것의 동작 방법 |
| US9190146B2 (en) * | 2013-02-28 | 2015-11-17 | Kabushiki Kaisha Toshiba | Variable resistance memory system with redundancy lines and shielded bit lines |
| KR102179275B1 (ko) * | 2014-02-21 | 2020-11-16 | 삼성전자주식회사 | 불휘발성 메모리 장치 및 그것의 리셋 방법 |
| US9697896B2 (en) * | 2014-02-26 | 2017-07-04 | Stmicroelectronics S.R.L. | High throughput programming system and method for a phase change non-volatile memory device |
-
2012
- 2012-04-12 US US13/445,577 patent/US9053784B2/en active Active
-
2013
- 2013-04-11 WO PCT/US2013/036209 patent/WO2013155326A1/en not_active Ceased
- 2013-04-11 EP EP13775893.4A patent/EP2837000B1/en active Active
- 2013-04-11 CN CN202010488121.0A patent/CN111640464B/zh active Active
- 2013-04-11 CN CN201380026853.6A patent/CN104335283A/zh active Pending
- 2013-04-11 KR KR1020147030963A patent/KR101984681B1/ko active Active
- 2013-04-11 JP JP2015505916A patent/JP2015518230A/ja active Pending
- 2013-04-12 TW TW102113165A patent/TWI585763B/zh active
-
2015
- 2015-06-08 US US14/733,603 patent/US9570172B2/en active Active
-
2017
- 2017-02-13 US US15/431,364 patent/US9711218B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080259678A1 (en) * | 2003-12-18 | 2008-10-23 | Matsushita Electric Industrial Co., Ltd. | Method for initializing resistance-variable material, memory device containing a resistance-variable material, and method for initializing nonvolatile memory circuit including variable resistor |
| US20100080037A1 (en) | 2006-12-06 | 2010-04-01 | Kohji Inoue | Nonvolatile semiconductor memory device |
| US20090039332A1 (en) * | 2007-08-09 | 2009-02-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistive non-volatile memory device |
| US20090135637A1 (en) | 2007-10-05 | 2009-05-28 | Kabushiki Kaisha Toshiba | Resistance change memory device |
| US20100321978A1 (en) * | 2007-12-10 | 2010-12-23 | Kabushiki Kaisha Toshiba | Semiconductor memory device and memory cell voltage application method |
| US20100103724A1 (en) * | 2008-10-23 | 2010-04-29 | Samsung Electronics Co., Ltd. | Variable Resistance memory device |
| US20100296330A1 (en) | 2009-05-19 | 2010-11-25 | Sharp Kabushiki Kaisha | Semiconductor memory device |
| US20120014163A1 (en) | 2010-07-16 | 2012-01-19 | Shinobu Yamazaki | Semiconductor memory device and method of driving the same |
| US20120020141A1 (en) | 2010-07-21 | 2012-01-26 | Sony Corporation | Variable-resistance memory device and its driving method |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2837000A4 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9053784B2 (en) | 2012-04-12 | 2015-06-09 | Micron Technology, Inc. | Apparatuses and methods for providing set and reset voltages at the same time |
| US9570172B2 (en) | 2012-04-12 | 2017-02-14 | Micron Technology, Inc. | Apparatuses and methods for providing set and reset voltages at the same time |
| US9711218B2 (en) | 2012-04-12 | 2017-07-18 | Micron Technology, Inc. | Apparatuses and methods for providing set and reset voltages at the same time |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111640464A (zh) | 2020-09-08 |
| KR101984681B1 (ko) | 2019-05-31 |
| US20130272053A1 (en) | 2013-10-17 |
| CN104335283A (zh) | 2015-02-04 |
| US9053784B2 (en) | 2015-06-09 |
| US9570172B2 (en) | 2017-02-14 |
| JP2015518230A (ja) | 2015-06-25 |
| TW201403604A (zh) | 2014-01-16 |
| US9711218B2 (en) | 2017-07-18 |
| EP2837000B1 (en) | 2020-03-25 |
| KR20150002759A (ko) | 2015-01-07 |
| EP2837000A1 (en) | 2015-02-18 |
| EP2837000A4 (en) | 2015-07-08 |
| US20170154676A1 (en) | 2017-06-01 |
| TWI585763B (zh) | 2017-06-01 |
| US20150269999A1 (en) | 2015-09-24 |
| CN111640464B (zh) | 2023-09-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9711218B2 (en) | Apparatuses and methods for providing set and reset voltages at the same time | |
| US10783965B2 (en) | Apparatuses and methods including memory access in cross point memory | |
| US10210928B2 (en) | Apparatuses including current compliance circuits and methods | |
| US9508427B2 (en) | Apparatuses and methods including supply current in memory | |
| US9899079B2 (en) | Memory devices | |
| US10818352B2 (en) | Resistive memory devices having address-dependent parasitic resistance compensation during programming | |
| US11475951B2 (en) | Material implication operations in memory |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13775893 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015505916 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013775893 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20147030963 Country of ref document: KR Kind code of ref document: A |