WO2013147309A1 - 血液試料中の物質の測定法 - Google Patents

血液試料中の物質の測定法 Download PDF

Info

Publication number
WO2013147309A1
WO2013147309A1 PCT/JP2013/060015 JP2013060015W WO2013147309A1 WO 2013147309 A1 WO2013147309 A1 WO 2013147309A1 JP 2013060015 W JP2013060015 W JP 2013060015W WO 2013147309 A1 WO2013147309 A1 WO 2013147309A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood sample
reagent
hemoglobin
surfactant
measurement
Prior art date
Application number
PCT/JP2013/060015
Other languages
English (en)
French (fr)
Inventor
豊美 山口
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49260542&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013147309(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to EP13767986.6A priority Critical patent/EP2832862B1/en
Priority to KR1020147027632A priority patent/KR102035881B1/ko
Priority to JP2014508261A priority patent/JP5834134B2/ja
Priority to US14/389,510 priority patent/US9551022B2/en
Priority to CN201380017615.9A priority patent/CN104245952B/zh
Publication of WO2013147309A1 publication Critical patent/WO2013147309A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to a method for measuring a substance in a blood sample by an enzymatic method using an oxidizable color reagent.
  • Measuring the concentration of various substances in a blood sample is important for diagnosing various diseases and determining the course of treatment. For example, the measurement of substances such as cholesterol, uric acid, glucose, triglycerides, phospholipids, choline, creatine, creatinine, free cholesterol, cholesterol esters in blood is important.
  • a method in which an oxidase is allowed to act on a derivative of a component, and hydrogen peroxide generated directly or indirectly from the enzyme reaction is allowed to act on an oxidizable color reagent that is a coloring reagent to quantify the coloration (oxidation Enzymatic methods using sex-coloring reagents are widely used.
  • bilirubin, hemoglobin, ascorbic acid, etc. greatly affects the measured value of the substance in the blood sample, causing an error in the measured value.
  • bilirubin, hemoglobin, etc. also act as dyes, they may cause errors depending on the measurement wavelength, and the absorption of these dyes changes over time during measurement due to light and components in the measurement reagent. It is known to affect the measurement results.
  • Patent Document 1 describes that an amphoteric surfactant is added to the first reagent for the purpose of avoiding the influence of bilirubin.
  • Patent Document 2 in a method for measuring a biological component in which hydrogen peroxide generated by an enzymatic reaction is detected with a peroxidase and an oxidizable color former, an amphoteric surface activity is present in the first reagent or both the first reagent and the second reagent.
  • a method for measuring a biological component in which an agent and a ferrocyan compound are present is described.
  • Patent Document 3 for the purpose of avoiding the influence of hemoglobin and / or bilirubin present in body fluids, an amphoteric surfactant (as an example, alkylbetaine oxide (product name: Amphithol 20N) only) is used in the measurement system.
  • an amphoteric surfactant as an example, alkylbetaine oxide (product name: Amphithol 20N) only
  • a method for measuring a substrate or enzyme activity in a body fluid that coexists with a first reagent or a second reagent is described.
  • Patent Document 3 there is no example in which the effects of both total hemoglobin and bilirubin in a reagent are simultaneously examined in the presence of an amphoteric surfactant.
  • Patent Document 4 describes a method using a peroxide and a nonionic surfactant or / and a zwitterionic surfactant as a method for avoiding the influence of both hemoglobin and bilirubin.
  • reagent adjustment is complicated, for example, it is necessary to treat the surfactant with light irradiation or the like, or it is necessary to adjust the peroxide concentration to be a constant amount.
  • an object of the present invention is to provide a method for measuring a substance in a blood sample that avoids the effects of both bilirubin and hemoglobin at the same time by a simple operation.
  • the present invention is a method for measuring a substance in a blood sample by an enzymatic method using an oxidizable color reagent, wherein (1) a nonionic surfactant is brought into contact with the blood sample, and (2) Provided is a method for measuring a substance in a blood sample, characterized in that a betaine type amphoteric surfactant is brought into contact with the sample, and an enzyme reaction and a color reaction with an oxidizable color reagent are performed simultaneously with or after the contact. Is.
  • the present invention also provides (A) a first reagent containing a nonionic surfactant, (B) a betaine amphoteric surfactant, and (C) an oxidase specific to a measurement object or a derivative thereof. And (D) an enzymatic assay reagent containing an oxidizable color reagent.
  • the effects of bilirubin and hemoglobin, which are widely present in blood samples can be avoided at the same time by adding only two kinds of surfactants, and various substances in blood samples can be avoided. It becomes possible to measure accurately.
  • a buffer solution containing an amphoteric surfactant was added to hemoglobin-added serum and reacted at 37 ° C. for 5 minutes, and then a buffer solution containing an amphoteric surfactant was further added and reacted at 37 ° C. for 5 minutes.
  • the time-dependent change of the absorption spectrum of hemoglobin is shown.
  • a buffer solution containing a nonionic surfactant is added to hemoglobin-added serum and reacted at 37 ° C. for 5 minutes, and then a buffer solution containing an amphoteric surfactant is added and reacted at 37 ° C. for 5 minutes. Shows the change with time of the absorption spectrum of hemoglobin.
  • a nonionic surfactant is brought into contact with the blood sample (first step), and then (2) a betaine amphoteric surfactant is brought into contact with the sample.
  • the enzyme reaction and the color reaction with the oxidizable color reagent are performed simultaneously with or after the contact (second step).
  • the enzyme method using the usual oxidizable color reagent is used. This is a method for measuring a substance in a blood sample.
  • Examples of the blood sample used in the first step include plasma, serum, urine, etc. Among these, plasma and serum that are highly likely to be affected by hemoglobin and bilirubin are more preferable.
  • Substances in the blood sample to be measured include substances in blood samples other than hemoglobin and bilirubin, such as uric acid, creatinine, cholesterol, triglycerides, polyamines, bile acids, 1,5-anhydroglutol Cytol, pyruvic acid, lactic acid, phospholipid, urea, glucose, choline, creatine, free fatty acid, etc. are mentioned, but it is not limited to these.
  • the first step of the present invention is a step of bringing a nonionic surfactant into contact with a blood sample before performing an oxidase reaction on a test substance.
  • betaine type amphoteric surfactant is used in the first step
  • betaine is used in both the first step and the second step.
  • a type amphoteric surfactant is used, the effects of both hemoglobin and bilirubin cannot be avoided.
  • a nonionic surfactant may be added to the blood sample, or a nonionic surfactant is contained in the diluted blood sample.
  • a nonionic surfactant-containing liquid may be used as a pretreatment liquid for the blood sample. It is preferable to use a nonionic surfactant-containing liquid as a blood sample pretreatment liquid (also referred to as a first reagent).
  • Nonionic surfactants used in the present invention include polyoxyethylene polyoxypropylene condensates (POE / POP condensates), polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polyhydric alcohols. Fatty acid esters are preferred.
  • Examples of POE / POP condensates include those represented by the following formulas (1) to (5).
  • l and n represent the average addition mole number of ethylene oxide
  • m represents the average addition mole number of propylene oxide
  • l and n are numbers from 0 to 250
  • l + n is 1 or more.
  • M is a number from 1 to 250.
  • l + n is preferably 10 to 300
  • m is preferably 10 to 100.
  • l and n may be the same or different.
  • R 2 represents a hydrogen atom or an alkyl group having 2 to 20 carbon atoms.
  • R 1 represents an alkyl group having 2 to 20 carbon atoms
  • l represents a number from 1 to 150
  • m represents a number from 1 to 100
  • Pluronic registered trademark, hereinafter the same
  • F-108 EO300 / PO50
  • Pluronic P-85 EO54 / PO39
  • Pluronic TR-704 molecular weight 5000, EO content 40% by mass
  • Pluronic TR-702 molecular weight 3500, An EO content of 20% by mass
  • the above-mentioned l, m, and n usually represent an average value having a certain degree of distribution, but the distribution is preferably within ⁇ 20%, more preferably within ⁇ 10%, and even more preferably within ⁇ 5%. It is good to have.
  • polyoxyethylene alkyl ether examples include polyoxyethylene C 10 -C 24 alkyl ether having 5 to 80 moles of added POE.
  • Commercially available polyoxyethylene alkyl ethers include Nikkor (registered trademark, the same applies hereinafter) BL-25 (manufactured by Nikko Chemicals, POE (25) lauryl (C12) ether), Emulgen (registered trademark, same applies hereinafter) 220 (Kao) POE (13) cetyl (C16) ether), Nikkor BT-9 (manufactured by Nikko Chemicals, POE (9) oleyl (C18) ether, C 15 H 31 O (CH 2 CH 2 O) 9 H), Emulgen 420 (manufactured by Kao Corporation, POE (13) oleyl (C18) ether) can be suitably used.
  • a more preferable range of the number of moles of added POE is 8-30.
  • polyoxyethylene alkyl phenyl ether examples include C 6 -C 18 alkyl phenyl ether having 5 to 80 moles of added POE.
  • polyoxyethylene alkylphenyl ethers examples include Nikkor NP-10 (manufactured by Nikko Chemicals, POE (10) nonyl (C10) phenyl ether), Nikkor NP-15 (manufactured by Nikko Chemicals, POE (15) nonyl ( C10) phenyl ether), Nikkor NP-20 (Nikko Chemicals, POE (20) nonyl (C10) phenyl ether), Neugen EA-143 (Daiichi Kogyo Seiyaku, POE (8) dodecyl (C12) phenyl ether ), Triton X-100 (manufactured by Sigma, POE (9.5) octyl (C8) phenyl ether) can be suitably used.
  • polyoxyethylene polyhydric alcohol fatty acid ester examples include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene pentaerythritol fatty acid ester, and the like. Of these, polyoxyethylene polyhydric alcohol fatty acid esters having 30 to 60 moles of POE are preferred, polyoxyethylene sorbitan fatty acid esters having 3 to 60 moles of POE are more preferred, and polyoxyethylene sorbitan fatty acid esters having 3 to 60 moles of POE. Ethylene sorbitan C 8 -C 24 fatty acid esters are preferred. As a commercial product of polyoxyethylene polyhydric alcohol fatty acid ester, Tween 20 (registered trademark) (polyoxyethylene sorbitan monolaurate (C12)) can be suitably used.
  • polyoxyethylene polyoxypropylene condensates are more preferred, POE / POP condensate, POE / POP alkylamine condensate or POE / POP diamine condensate. More preferred are.
  • the nonionic surfactant has a concentration of 0.1 to 10 w / v% after contact with a blood sample, further 0.5 to 10 w / v%, and further 0.5 to 1.0 w / v%. It is preferable to use so as to avoid the influence of both hemoglobin and bilirubin.
  • the reagent of the present invention is applied to a biochemical automatic analyzer.
  • the volume ratio of blood sample / first reagent / second reagent is often in the range of 1 to 10 ⁇ L / 50 to 300 ⁇ L / 20 to 200 ⁇ L, and the volume of the first reagent and the second reagent The ratio is often 1: 1 to 5: 1. Therefore, the difference between the concentration of the nonionic surfactant after contact with the blood sample and the concentration of the nonionic surfactant in the first reagent is slight, but the second reagent is different from the blood sample and the second sample. Since it is further added to the mixture of one reagent, it is complicated to display the concentration of the amphoteric surfactant as the concentration in the reaction system.
  • the concentration of the amphoteric surfactant is indicated by the concentration in the reagent containing the amphoteric surfactant.
  • a person skilled in the art can set the concentration of the amphoteric surfactant based on this description so as to be compatible with a measurement system for a desired sample / reagent volume ratio.
  • the contact between the blood sample and the nonionic surfactant is performed, for example, by adding a nonionic surfactant-containing liquid to the blood sample and then allowing to stand at 30 to 40 ° C., 1 minute to 10 minutes, and further at 37 ° C. for 5 minutes. Or it is preferable to incubate.
  • a betaine amphoteric surfactant is brought into contact with a blood sample that has been brought into contact with a nonionic surfactant, and coloration by an enzyme reaction and an oxidizable color reagent is performed simultaneously with or after the contact. Perform the reaction.
  • the surfactant used in the second step is a betaine amphoteric surfactant.
  • an amine oxide amphoteric surfactant such as lauryldimethylamine oxide described in Example 3 of Patent Document 2 is used in the second step, the influence of bilirubin can be avoided, but the influence of hemoglobin cannot be avoided.
  • betaine amphoteric surfactant used examples include alkylbetaines (R 3 N + (CH 3 ) 2 CH 2 COO ⁇ ), amidoalkyl betaines (R 3 CONH (CH 2 ) 3 N (CH 3 ) 2 CH 2 COO -), sulfobetaine (R 3 CONH (CH 2) 3 N + (CH 3) 2 CH 2 CH (OH) CH 2 SO 3 -), 2- alkyl -N- carboxymethyl -N- hydroxyethyl imidazolinium Betaine (R 3 C 3 H 4 N 2 (C 2 H 4 OH) CH 2 COO ⁇ ) and the like (wherein R 3 represents a C 8 to C 24 alkyl group). Of these, alkylbetaines and amidoalkylbetaines are more preferred.
  • betaine type amphoteric surfactants include, for example, Amphithol 24B (Kao Corporation, Lauryl Betaine, CAS No. 683-10-3) as an alkylbetaine derivative, and Enadicol C-30B (an amide alkylbetaine derivative).
  • Amphithol 24B Kao Corporation, Lauryl Betaine, CAS No. 683-10-3
  • Enadicol C-30B an amide alkylbetaine derivative
  • Lion oil coconut oil fatty acid amide alkylbetaine, CAS No. 61789-40-0
  • the preferred concentration of the betaine-type amphoteric surfactant is exemplified by the concentration in the reagent containing the betaine-type amphoteric surfactant as described above.
  • the betaine-type amphoteric surfactant is used in a concentration of 0.5 to 10 w / v%, and further 2.0 to 10 w / v% in the reagent, in order to avoid the influence of both hemoglobin and bilirubin. To preferred. Further, depending on the concentration of the nonionic surfactant, the case of 0.5 to 2.0 w / v% may be preferable.
  • the betaine amphoteric surfactant and the blood sample may be contacted by adding the betaine amphoteric surfactant to the blood sample after contact with the nonionic surfactant.
  • the enzyme reaction may be performed simultaneously with or after the contact between the blood sample and the betaine-type amphoteric surfactant. Accordingly, the betaine-type amphoteric surfactant may be added to the enzyme-containing sample (second reagent).
  • a nonionic surfactant and a second reagent are used as the first reagent.
  • a nonionic surfactant and a second reagent are used as the first reagent.
  • a betaine-type amphoteric surfactant and the concentration of the nonionic surfactant after contact with the blood sample is 0.5 to 1.0 w / v%, the concentration of the betaine-type amphoteric surfactant in the reagent Is preferably formulated so as to be 2.0 to 10 w / v%.
  • Enzymes used for measuring a substance to be measured in a blood sample to which the system of the present invention is applied include oxidases specific to the measurement object or its derivatives, such as uric acid (uricase, peroxidase), creatinine (Creatininase, creatinase, sarcosine oxidase, peroxidase), cholesterol (cholesterol oxidase, peroxidase), triglyceride (lipoprotein lipase, glycerol kinase, glycerol-3-phosphate oxidase, peroxidase), polyamine (polyamine amide hydrolase) , Polyamine oxidase, putrescine oxidase, peroxidase), bile acid (3- ⁇ -hydroxysteroid dehydrogenase, diaphorase, peroxidase), 1,5-anhydrog Cytol (1,5-anhydroglucitol oxidase, pyra
  • the oxidizable color reagent may be one or more components that develop color by reacting with hydrogen peroxide.
  • a combination of 4-aminoantipyrine and a phenol, naphthol, or aniline compound for example, a combination of 4-aminoantipyrine and a phenol, naphthol, or aniline compound.
  • combinations of 3-methyl-2-benzothiazolinone hydrazone and aniline compounds triphenylmethane leuco dyes, diphenylamine derivatives, benzidine derivatives, triallylimidazole derivatives, leucomethylene blue derivatives or O-phenylenediamine derivatives.
  • the second step is usually performed at 30 to 40 ° C. for 1 to 10 minutes, preferably at 37 ° C. for 5 minutes.
  • the measurement of coloration in the second step is performed by optically quantifying the color of the color reagent.
  • the influence of hemoglobin and bilirubin contained in the blood sample on the measured value can be avoided, and the test substance can be accurately quantified.
  • the measurement reagent for carrying out the method of the present invention includes (A) a first reagent containing a nonionic surfactant, (B) a betaine amphoteric surfactant, and (C) a measurement object or a derivative thereof. It is preferable that the reagent is an enzyme method measurement reagent comprising a specific oxidase and (D) an oxidizable color reagent.
  • a method for measuring a substance in a blood sample by an enzymatic method using an oxidizable color reagent wherein (1) a nonionic surfactant is contacted with the blood sample, and then (2) the sample is contacted
  • a method for measuring a substance in a blood sample comprising contacting a betaine type amphoteric surfactant and performing a color reaction with an enzymatic reaction and an oxidizable color reagent simultaneously with or after the contact.
  • a substance in a blood sample other than hemoglobin and bilirubin which can be measured by quantifying hydrogen peroxide generated by an enzymatic reaction, more preferably uric acid, creatinine, cholesterol, Measurement of [1] or [2], which is a substance selected from triglycerides, polyamines, bile acids, 1,5-anhydroglucitol, pyruvic acid, lactic acid, phospholipids, urea, glucose, choline, creatine and free fatty acids Law.
  • the nonionic surfactant is selected from polyoxyethylene polyoxypropylene condensates (POE / POP condensate), polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyhydric alcohol fatty acid ester. 1 type or 2 or more types selected, more preferably 1 type or 2 types or more selected from POE / POP condensate, POE / POP alkylamine condensate or POE / POP diamine condensate [1] to [ 3] Any of the measuring methods.
  • POE / POP condensate polyoxyethylene polyoxypropylene condensates
  • polyoxyethylene alkyl ether polyoxyethylene alkyl phenyl ether
  • polyoxyethylene polyhydric alcohol fatty acid ester 1 type or 2 or more types selected, more preferably 1 type or 2 types or more selected from POE / POP condensate, POE / POP alkylamine condensate or POE / P
  • the amount of the nonionic surfactant used is such that the concentration after contact with the blood sample is 0.1 to 10 w / v%, more preferably 0.5 to 10 w / v%. Any one of [1] to [4].
  • the betaine-type amphoteric surfactant is one or more selected from alkylbetaines, amidoalkylbetaines, sulfobetaines and 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolium betaines, and more The measurement method according to any one of [1] to [5], which is preferably one or more selected from alkylbetaines and amidoalkylbetaines.
  • A a first reagent containing a nonionic surfactant, (B) a betaine-type amphoteric surfactant, (C) an oxidase specific to a measurement object or a derivative thereof, D) a reagent for measuring an enzyme method, comprising a second reagent containing an oxidizable color reagent.
  • the absorption spectrum of hemoglobin in the measurement sample was measured using the first reagent and the second reagent having the composition shown in Table 1 below.
  • Hemoglobin (derived from blood cells) was added to the pooled serum at 500 mg / dL to prepare hemoglobin-added serum.
  • the first reaction and the second reaction were respectively performed according to the liquid volume ratio of 45 ⁇ L of the measurement sample, 1.8 mL of the first reagent, and 0.9 mL of the second reagent.
  • the absorption spectrum of hemoglobin was measured at 37 ° C. for 5 minutes. After the second reaction (7 minutes and 10 minutes), the liquid amount was corrected in consideration of the dilution ratio.
  • Hemoglobin has a peculiar peak in the vicinity of 540 nm and 575 nm, and the shape of the peak changes when the property of hemoglobin changes.
  • the peak shape did not change in the first reaction, but after the start of the second reaction, the peak collapsed and began to change into a gentle shape.
  • a peak characteristic of hemoglobin was observed 1 minute after the start of the first reaction, but the peak collapsed after 3 minutes, and the spectrum did not change significantly in the second reaction. From these results, it was found that Amphital 24B has an action of changing the spectrum of hemoglobin (FIGS. 1 to 3).
  • Example 1 The absorption spectrum of hemoglobin in the measurement sample was measured using the first reagent and the second reagent having the composition shown in Table 2 below.
  • Hemoglobin (derived from blood cells) was added to the pooled serum at 500 mg / dL to prepare hemoglobin-added serum.
  • the first reaction and the second reaction were respectively performed according to the liquid volume ratio of 45 ⁇ L of the measurement sample, 1.8 mL of the first reagent, and 0.9 mL of the second reagent.
  • the absorption spectrum of hemoglobin was measured at 37 ° C. for 5 minutes. After the second reaction (7 minutes and 10 minutes), the liquid amount was corrected in consideration of the dilution ratio.
  • Example 2 The effect of the present invention was confirmed using a uric acid measurement system.
  • the surfactants prescribed for the first reagent and the second reagent were combinations shown in Table 3, and the measurement reagents of Example 2 and Comparative Examples 1 to 4 were prepared.
  • Ditaurobilirubin (manufacturer: Promega) was added to the pooled serum at 50 mg / dL or hemoglobin (derived from blood cells) at 500 mg / dL to prepare bilirubin-added serum and hemoglobin-added serum.
  • the first reaction and the second reaction were performed at 37 ° C. for 5 minutes, respectively, with a liquid volume ratio of 5.0 ⁇ L of the sample, 200 ⁇ L of the first reagent, and 100 ⁇ L of the second reagent, and the main wavelength was 600 nm. / Absorbance at a subwavelength of 800 nm was measured by the end point method.
  • the concentration of uric acid in each blood sample was determined by comparison with a standard solution of known concentration (anaceram UA-E standard solution, the same applies hereinafter) (manufacturer: Sekisui Medical, catalog number: 154966).
  • the measured value of uric acid concentration of each blood sample for measurement was converted to a ratio where the measured value of uric acid concentration of control blood sample was 100, and the degree of avoidance of the effects of bilirubin and hemoglobin was converted into a relative value.
  • Example 2 In the case of Example 2 in which Pluronic TR-704 is used as the first reagent and Amphithol 24B is used as the second reagent, these comparative examples 1 to 4 are not affected by bilirubin and hemoglobin, and both bilirubin and hemoglobin. It was confirmed that the effects could be avoided at the same time.
  • Example 3 The optimum concentration range of each surfactant was confirmed using a uric acid measurement system.
  • Ditaurobilirubin (manufacturer: Promega) was added to the pooled serum at 40 mg / dL or hemoglobin (derived from blood cells) at 400 mg / dL to prepare bilirubin-added serum and hemoglobin-added serum.
  • Control blood sample To the pooled serum, physiological saline corresponding to the addition volume of ditaurobilirubin and hemoglobin at the time of preparing the measurement blood sample was added and used.
  • the first reaction and the second reaction were performed at 37 ° C. for 5 minutes, respectively, with a liquid volume ratio of 5.0 ⁇ L of the sample, 200 ⁇ L of the first reagent, and 100 ⁇ L of the second reagent, and the main wavelength was 600 nm. / Absorbance at a subwavelength of 800 nm was measured by the end point method. The uric acid concentration in each blood sample was determined by comparing with a standard solution with a known concentration.
  • the measured uric acid concentration of each blood sample for measurement was converted into a ratio with the measured uric acid concentration of the control blood sample as 100, and the degree of avoidance of the effects of bilirubin and hemoglobin was converted into a relative value (recovery rate (%)). The recovery rate was judged to be effective within ⁇ 10%.
  • Pluronic which is a nonionic surfactant
  • amphital which is an amphoteric surfactant
  • Pluronic which is a nonionic surfactant
  • Amphital which is an amphoteric surfactant
  • Example 4 A surfactant that can be used in the present invention was confirmed using a uric acid measurement system.
  • the types and concentrations of the surfactants prescribed for the first reagent and the second reagent were as shown in Table 5, and a measurement reagent was prepared.
  • Ditaurobilirubin (manufacturer: Promega) was added to the pooled serum at 50 mg / dL or hemoglobin (derived from blood cells) at 500 mg / dL to prepare bilirubin-added serum and hemoglobin-added serum.
  • the first reaction and the second reaction were performed at 37 ° C. for 5 minutes, respectively, with a liquid volume ratio of 5.0 ⁇ L of the sample, 200 ⁇ L of the first reagent, and 100 ⁇ L of the second reagent, and the main wavelength was 600 nm. / Absorbance at a subwavelength of 800 nm was measured by the end point method. The uric acid concentration in each blood sample was determined by comparing with a standard solution with a known concentration.
  • the measured uric acid concentration of each blood sample for measurement was converted into a ratio with the measured uric acid concentration of the control blood sample as 100, and the degree of avoidance of the effects of bilirubin and hemoglobin was converted into a relative value (recovery rate (%)). The recovery rate was judged to be effective within ⁇ 10%.
  • cocamidopropyl betaine which is an amidoalkyl betaine
  • sodium cocoamphoacetate which is 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine
  • 3-[(3-cholamidopropyl) dimethyl which is a sulfobetaine In amino] -1-propanesulfonate
  • Example 5 (First reagent) MES buffer solution 75 mmol / L (pH 7.0) TOOS (Dojindo: Catalog No. OC-13) 0.75 mmol / L Each surfactant 2.0w / v% (Second reagent) MES buffer solution 75 mmol / L (pH 7.0) Uricase (Manufacturer: Kikkoman, catalog number: 60199) 2.3 U / mL (Third reagent) MES buffer solution 75 mmol / L (pH 7.0) POD (Manufacturer: Toyobo, catalog number: PEO-301) 8.6 U / mL Potassium ferrocyanide (manufacturer: Kishida Chemical, catalog number: 63532) 0.05 mmol / L 4-aminoantipyrine (manufacturer: Tokyo Chemical Industry, catalog number: 6694) 0.75 mmol / L Each surfactant 2.0w / v%
  • the first reaction, the second reaction, and the third reaction were respectively performed at a liquid volume ratio of 5.0 ⁇ L for the sample, 200 ⁇ L for the first reagent, 30 ⁇ L for the second reagent, and 70 ⁇ L for the third reagent.
  • the reaction was carried out at 5 ° C. for 5 minutes (total reaction for 15 minutes), and the absorbance at the main wavelength of 600 nm / subwavelength of 800 nm was measured by the endpoint method.
  • the uric acid concentration in each blood sample was determined by comparing with a standard solution with a known concentration.
  • the sample liquid containing hemoglobin was contacted with the surfactant and the color former, and the uricase was reacted with the sample liquid obtained in the first process to produce hydrogen peroxide.
  • the third step can be divided into the second step in which POD is added to the sample liquid obtained in the second step, and the color is generated by oxidizing condensation of the color former with hydrogen peroxide.
  • the nonionic surfactant does not change the color tone of hemoglobin in the sample liquid in the first step, and the amphoteric surfactant does not make bilirubin a substrate for POD in the third step. It is considered that the influence of bilirubin and hemoglobin is avoided. In other words, it is not limited to enzymes that are specific to the substrate contained in the sample solution or the substrate used in the second step, but it is also effective when a substrate other than uric acid or an enzyme other than uricase is used. Conceivable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 簡便な操作により、ビリルビン及びヘモグロビンの両者の影響を回避した、血液試料中の物質の測定法を提供する。 被酸化性呈色試薬を用いた酵素法による血液試料中の物質の測定法であって、(1)血液試料に非イオン性界面活性剤を接触させ、次いで(2)当該試料にベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行うことを特徴とする血液試料中の物質の測定法。

Description

血液試料中の物質の測定法
 本発明は、被酸化性呈色試薬を用いた酵素法による血液試料中の物質の測定法に関する。
 血液試料中の種々の物質の濃度を測定することは、種々の疾患の診断、治療経過の判定のために重要である。例えば、血液中のコレステロール、尿酸、グルコース、トリグリセリド、リン脂質、コリン、クレアチン、クレアチニン、遊離コレステロール、コレステロールエステル等の物質の測定は、重要であり、その測定法としては、これらの成分あるいはこれらの成分の派生物に酸化酵素を作用させ、当該酵素反応から直接又は間接に生じた過酸化水素をその発色試薬である被酸化性呈色試薬に作用させてその呈色を定量する方法(被酸化性呈色試薬を用いた酵素法)が広く採用されている。
 ところが、血液試料中には、ビリルビン、ヘモグロビン、アスコルビン酸等の還元物質が存在し、これらの物質の存在により前記の血液試料中の物質の測定値は大きく影響を受け、測定値に誤差を生じることがある。また、ビリルビンやヘモグロビン等は色素としても作用することから、測定波長によっては誤差の原因となるし、光及び測定試薬中の成分等によりこれらの色素自身の吸収が測定中に経時的に変化し、測定結果に影響を与えることが知られている。
 これらの成分のうち、ビリルビンの影響を回避する方法として、両性界面活性剤を測定試薬に添加する方法が知られている。例えば、特許文献1には、ビリルビンの影響を回避する目的で第1試薬に両性界面活性剤を添加することが記載されている。特許文献2には、酵素反応により生成される過酸化水素をペルオキシターゼ及び被酸化性発色剤で検出する生体成分の測定法において、第一試薬又は第一試薬と第二試薬両方に、両性界面活性剤とフェロシアン化合物を存在させる生体成分の測定方法が記載されている。
 さらに、特許文献3には、体液中に存在するヘモグロビン又は/及びビリルビンの影響を回避する目的で、測定系に両性界面活性剤(実施例として、アルキルベタインオキサイド(製品名アンヒトール20N)のみ)を第一試薬又は第二試薬に共存させる、体液中の基質又は酵素活性の測定方法が記載されている。しかし、特許文献3では、両性界面活性剤の存在下、試薬中の総ヘモグロビンとビリルビンの両者の影響を同時に検討した実施例はない。また、特許文献4には、ヘモグロビンとビリルビン両方の影響を回避する方法として、過酸化物及び非イオン界面活性剤又は/及び両性イオン界面活性剤を用いる方法が記載されている。しかし、特許文献4では、界面活性剤に対して光照射などの処理が必要であったり、過酸化物濃度が一定量になるように調整する必要があるなど、試薬調整が煩雑であった。
特開平7-039394号公報 特開平7-155196号公報 特開平3-010696号公報 特開2006-081471号公報
 本発明者らはビリルビンの影響を回避する目的で特許文献1や2のように、測定用試薬に両性界面活性剤を用いたところ、溶血検体において、測定値が期待値に対して乖離する場合があることを見出した。この機序について検討したところ、両性界面活性剤がヘモグロビンの吸収スペクトルを変化させていることが判明した。
 従って、本発明の課題は、簡便な操作により、ビリルビン及びヘモグロビンの両者の影響を同時に回避した、血液試料中の物質の測定法を提供することにある。
 上記課題を解決すべく種々の界面活性剤の添加効果を検討したところ、ビリルビン及びヘモグロビンの影響回避効果は、界面活性剤の種類によって大きく相違し、また界面活性剤を測定系に添加する時期によっても大きく相違することを見出した。上記知見についてさらに検討したところ、先ず血液試料に非イオン性界面活性剤を接触させ、次いで酵素反応時にベタイン型両性界面活性剤を接触させたときにビリルビンとヘモグロビンの両者の影響が同時に回避できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、被酸化性呈色試薬を用いた酵素法による血液試料中の物質の測定法であって、(1)血液試料に非イオン性界面活性剤を接触させ、次いで(2)当該試料にベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行うことを特徴とする血液試料中の物質の測定法を提供するものである。
 また、本発明は、(A)非イオン性界面活性剤を含有する第1試薬と、(B)ベタイン型両性界面活性剤と、(C)測定対象物又はその派生物に特異的な酸化酵素と、(D)被酸化性呈色試薬を含む酵素法測定試薬を提供するものである。
 本発明の測定法によれば、2種の界面活性剤をそれぞれ添加するだけで、血液試料中に広く存在するビリルビン及びヘモグロビンの影響を同時に回避することができ、血液試料中の種々の物質を正確に測定することが可能となる。
ヘモグロビン添加血清に、界面活性剤を含まない緩衝液を添加して、37℃、5分反応させた後に、両性界面活性剤を含む緩衝液を添加して、37℃、5分反応させたときの、ヘモグロビンの吸収スペクトルの経時的な変化を示す。 ヘモグロビン添加血清に、両性界面活性剤を含む緩衝液を添加して、37℃、5分反応させた後に、界面活性剤を含まない緩衝液を添加して、37℃、5分反応させたときの、ヘモグロビンの吸収スペクトルの経時的な変化を示す。 ヘモグロビン添加血清に、両性界面活性剤を含む緩衝液を添加して、37℃、5分反応させた後に、更に両性界面活性剤を含む緩衝液を添加して、37℃、5分反応させたときの、ヘモグロビンの吸収スペクトルの経時的な変化を示す。 ヘモグロビン添加血清に、非イオン性界面活性剤を含む緩衝液を添加して、37℃、5分反応させた後に、両性界面活性剤を含む緩衝液を添加して、37℃、5分反応させたときの、ヘモグロビンの吸収スペクトルの経時的な変化を示す。
 本発明の血液試料中の物質の測定法は、(1)血液試料に非イオン性界面活性剤を接触させ(第1工程)、次いで(2)当該試料にベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行う(第2工程)ことを特徴とし、この操作以外は通常の被酸化性呈色試薬を用いた酵素法による血液試料の物質の測定法である。
 第1工程に用いられる血液試料としては、血漿、血清、尿等が挙げられるが、このうち、測定値にヘモグロビン及びビリルビンの影響が生じる可能性の高い血漿、血清がより好ましい。
 被測定対象である血液試料中の物質(被検物質)としては、ヘモグロビン及びビリルビン以外の血液試料中の物質、例えば尿酸、クレアチニン、コレステロール、トリグリセリド、ポリアミン、胆汁酸、1,5-アンヒドログルシトール、ピルビン酸、乳酸、リン脂質、尿素、グルコース、コリン、クレアチン、遊離脂肪酸等が挙げられるが、特にこれらに限定されるものではなく、酵素反応により生成する過酸化水素を定量することによって測定が可能な体液成分は全て測定可能である。
 本発明の第1工程は、非イオン性界面活性剤を、被検物質に対するオキシダーゼ反応を行う前の血液試料と接触させる工程である。本発明においては、第1工程に非イオン性界面活性剤を用いることが重要であり、第1工程にベタイン型両性界面活性剤を用いた場合や、第1工程及び第2工程の両方にベタイン型両性界面活性剤を用いた場合には、ヘモグロビン及びビリルビン両者の影響を回避できない。非イオン性界面活性剤と血液試料との接触手段としては、血液試料に非イオン性界面活性剤を添加してもよいし、血液試料の希釈液中に非イオン性界面活性剤を含有させてもよいし、血液試料の前処理液として非イオン性界面活性剤含有液を用いてもよい。血液試料の前処理液(第1試薬ともいう)として非イオン性界面活性剤含有液を用いるのが好ましい。
 本発明に用いられる非イオン性界面活性剤としては、ポリオキシエチレンポリオキシプロピレン縮合物(POE・POP縮合物)類、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多価アルコール脂肪酸エステルが好適である。
 POE・POP縮合物類としては、下記式(1)~(5)で表されるものが挙げられる。(a)下記式(1)で示される、POE・POP縮合物。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、l及びnはエチレンオキシドの平均付加モル数を示し、またmはプロピレンオキシドの平均付加モル数を示し、l及びnは0~250の数であり、l+nは1以上であり、mは1~250の数である。l+nは10~300が好ましく、mは10~100が好ましい。lとnは同じでも異なっていてもよい。R2は、水素原子又は炭素数2~20のアルキル基を示す。
(b)下記式(2)~(5)で示されるポリオキシエチレンポリオキシプロピレンアルキルアミン縮合物又はポリオキシエチレンポリオキシプロピレンジアミン縮合物。
Figure JPOXMLDOC01-appb-C000002
(式中、R1は炭素数2~20のアルキル基を示し、lは、1~150の数を示し、mは1~100の数を示す)
 式(1)のPOE・POP縮合物の市販品としては、プルロニック(登録商標、以下同じ)F-108(EO300・PO50)、プルロニックP-85(EO54・PO39)が好適に使用できる。
 式(2)又は式(3)のPOE・POPアルキルアミン縮合物又はPOE・POPジアミン縮合物としては、プルロニックTR-704(分子量5000、EO含量40質量%)、プルロニックTR-702(分子量3500、EO含量20質量%)が好適に使用できる。
 上記l、m及びnは、通常ある程度の分布を有するものの平均値を表すが、その分布は好ましくは±20%以内、より好ましくは±10%以内、さらに好ましくは±5%以内の分布となっていることがよい。
 ポリオキシエチレンアルキルエーテルとしては、POE付加モル数5~80のポリオキシエチレンC10-C24アルキルエーテルが挙げられる。ポリオキシエチレンアルキルエーテルの市販品としては、ニッコール(登録商標、以下同じ)BL-25(日光ケミカルズ社製、POE(25)ラウリル(C12)エーテル)、エマルゲン(登録商標、以下同じ)220(花王社製、POE(13)セチル(C16)エーテル)、ニッコールBT-9(日光ケミカルズ社製、POE(9)オレイル(C18)エーテル、C1531O(CH2CH2O)9H)、エマルゲン420(花王社製、POE(13)オレイル(C18)エーテル)が好適に使用できる。POE付加モル数のより好適な範囲は、8~30である。
 ポリオキシエチレンアルキルフェニルエーテルとしては、POE付加モル数5~80のC6-C18アルキルフェニルエーテルが挙げられる。ポリオキシエチレンアルキルフェニルエーテルの市販品としては、ニッコールNP-10(日光ケミカルズ社製、POE(10)ノニル(C10)フェニルエーテル)、ニッコールNP-15(日光ケミカルズ社製、POE(15)ノニル(C10)フェニルエーテル)、ニッコールNP-20(日光ケミカルズ社製、POE(20)ノニル(C10)フェニルエーテル)、ノイゲンEA-143(第一工業製薬社製、POE(8)ドデシル(C12)フェニルエーテル)、TritonX-100(Sigma社製、POE(9.5)オクチル(C8)フェニルエーテル)が好適に使用できる。
 ポリオキシエチレン多価アルコール脂肪酸エステルとしては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンペンタエリスリトール脂肪酸エステル等が挙げられる。このうち、POE付加モル数30~60のポリオキシエチレン多価アルコール脂肪酸エステルが好ましく、POE付加モル数3~60のポリオキシエチレンソルビタン脂肪酸エステルがより好ましく、POE付加モル数3~60のポリオキシエチレンソルビタンC8-C24脂肪酸エステルが好ましい。
 ポリオキシエチレン多価アルコール脂肪酸エステルの市販品としては、Tween20(登録商標)(ポリオキシエチレンソルビタンモノラウレート(C12))が好適に使用できる。
 これらの非イオン性界面活性剤のうち、ポリオキシエチレンポリオキシプロピレン縮合物(POE・POP縮合物)類がより好ましく、POE・POP縮合物、POE・POPアルキルアミン縮合物又はPOE・POPジアミン縮合物がさらに好ましい。
 非イオン性界面活性剤は、血液試料と接触させた後の濃度が0.1~10w/v%、さらに0.5~10w/v%、よりさらに0.5~1.0w/v%となるように用いるのが、ヘモグロビン及びビリルビン両方の影響を回避する点から好ましい。本発明の方法が好適に使用される臨床検査の分野では、本発明の試薬は、生化学自動分析装置に対して適用される。生化学自動分析装置では、血液試料/第1試薬/第2試薬の容量比が、1~10μL/50~300μL/20~200μLの範囲にある場合が多く、第1試薬と第2試薬の容量比は1:1~5:1である場合が多い。従って、血液試料と接触させた後の非イオン性界面活性剤の濃度と第1試薬中の非イオン性界面活性剤の濃度の希釈による差はわずかであるが、第2試薬は血液試料と第1試薬の混合物に対してさらに添加されるため、両性界面活性剤の濃度を反応系での濃度で表示しようとすると煩雑になる。これより本明細書において両性界面活性剤の濃度は両性界面活性剤を含む試薬中の濃度で表示する。当業者であれば、この記載から所望の試料・試薬容量比の測定系に適合するよう両性界面活性剤の濃度を設定することができる。
 血液試料と非イオン性界面活性剤との接触は、例えば血液試料に非イオン性界面活性剤含有液を添加した後、30~40℃、1分~10分間、さらに37℃、5分間静置又はインキュベーションするのが好ましい。
 本発明の第2工程は、非イオン性界面活性剤と接触させた血液試料に、ベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行う。
 第2工程に用いられる界面活性剤は、ベタイン型両性界面活性剤である。この第2工程に特許文献2の実施例3記載のラウリルジメチルアミンオキシド等のアミンオキシド型両性界面活性剤を用いた場合、ビリルビンの影響は回避できるが、ヘモグロビンの影響は回避できない。用いられるベタイン型両性界面活性剤としては、アルキルベタイン(R3+(CH32CH2COO-)、アミドアルキルベタイン(R3CONH(CH23N(CH32CH2COO-)、スルホベタイン(R3CONH(CH23+(CH32CH2CH(OH)CH2SO3 -)、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン(R3342(C24OH)CH2COO-)等が挙げられる(ここで、R3はC8~C24アルキル基を示す)。このうち、アルキルベタイン及びアミドアルキルベタインがより好ましい。
 ベタイン型両性界面活性剤の市販品としては、例えばアルキルベタイン誘導体としてアンヒトール24B(花王社製、ラウリルベタイン、CAS No.683-10-3)等が、アミドアルキルベタイン誘導体としてはエナジコールC-30B(ライオン社製、ヤシ油脂肪酸アミドアルキルベタイン、CAS No.61789-40-0)等が挙げられる。
 ベタイン型両性界面活性剤の好適な濃度を前記したようにベタイン型両性界面活性剤を含む試薬中の濃度で例示する。ベタイン型両性界面活性剤は、試薬中の濃度で0.5~10w/v%、さらに、2.0~10w/v%となるように用いるのが、ヘモグロビン及びビリルビン両方の影響を回避する点から好ましい。また、非イオン性界面活性剤の濃度によっては0.5~2.0w/v%である場合が好ましい場合もある。
 ベタイン型両性界面活性剤と血液試料との接触は、非イオン性界面活性剤と接触したあとの血液試料にベタイン型両性界面活性剤を添加すればよい。酵素反応は、血液試料とベタイン型両性界面活性剤との接触と同時、又は接触後に行ってもよい。従って、ベタイン型両性界面活性剤は酵素含有試料(第2試薬)に添加してもよい。
 本発明の実施態様の一つである第1試薬と第2試薬からなる二試薬系で測定系(試薬系)を構成する場合には、第1試薬に非イオン性界面活性剤、第2試薬にベタイン型両性界面活性剤を含有させ、血液試料と接触させた後の非イオン性界面活性剤の濃度が0.5~1.0w/v%、試薬中のベタイン型両性界面活性剤の濃度が2.0~10w/v%となるように処方するのが好ましい。
 本発明の系が適用される血液試料中の被測定物質の測定に使用される酵素類としては、測定対象物又はその派生物に特異的な酸化酵素、例えば尿酸(ウリカーゼ、パーオキシダーゼ)、クレアチニン(クレアチニナーゼ、クレアチナーゼ、ザルコシンオキシダーゼ、パーオキシダーゼ)、コレステロール(コレステロールオキシダーゼ、パーオキシダーゼ)、トリグリセライド(リポプロテインリパーゼ、グリセロールキナーゼ、グリセロール-3-リン酸オキシダーゼ、パーオキシダーゼ)、ポリアミン(ポリアミンアミドヒドロラーゼ、ポリアミンオキシダーゼ、プトレスシンオキシダーゼ、パーオキシダーゼ)、胆汁酸(3-α-ヒドロキシステロイドデヒドロゲナーゼ、ジアホラーゼ、パーオキシダーゼ)、1,5-アンヒドログルシトール(1,5-アンヒドログルシトールオキシダーゼ、ピラノースオキシダーゼ、パーオキシダーゼ)、ピルビン酸(ピルビン酸オキシダーゼ、パーオキシダーゼ)、乳酸(乳酸オキシダーゼ、パーオキシダーゼ)、リン脂質(ホスホリパーゼD、コリンオキシダーゼ、パーオキシダーゼ)、尿素(ウレアアミドリアーゼ、ピルベートキナーゼ、ピルビン酸オキシダーゼ、パーオキシダーゼ)等が挙げられる。
 被酸化性呈色試薬としては、過酸化水素と反応して呈色する1種又は2種以上の成分であればよく、例えば、4-アミノアンチピリンとフェノール系、ナフトール系若しくはアニリン系化合物の組み合わせ、3-メチルー2-ベンゾチアゾリノンヒドラゾンとアニリン系化合物の組み合わせ、トリフェニルメタン系ロイコ色素、ジフェニルアミン誘導体、ベンジジン誘導体、トリアリルイミダゾール誘導体、ロイコメチレンブルー誘導体又はO-フェニレンジアミン誘導体が挙げられる。
 第2工程は、通常30~40℃で1分~10分間、好ましくは37℃で5分間行われる。pHの調整には、リン酸塩、クエン酸塩、ホウ酸塩、炭酸塩、トリス緩衝剤、グッド緩衝剤等が用いられる。第2工程による呈色の測定は、呈色試薬の発色を光学的により定量することにより行われる。
 本発明方法によれば、血液試料中に含まれるヘモグロビン及びビリルビンによる測定値への影響を回避することができ、正確な被検物質の定量が可能である。
 本発明方法を実施するための測定試薬は、(A)非イオン性界面活性剤を含有する第1試薬と、(B)ベタイン型両性界面活性剤と、(C)測定対象物又はその派生物に特異的な酸化酵素と、(D)被酸化性呈色試薬とを含む酵素法測定試薬であるのが好ましい。
 本発明の好ましい実施態様を以下に示す。
[1]被酸化性呈色試薬を用いた酵素法による血液試料中の物質の測定法であって、(1)血液試料に非イオン性界面活性剤を接触させ、次いで(2)当該試料にベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行うことを特徴とする血液試料中の物質の測定法。
[2]血液試料が、測定値にヘモグロビン及びビリルビンの影響が生じる可能性の高い血漿又は血清である[1]の測定法。
[3]血液試料中の物質が、酵素反応により生成する過酸化水素を定量することによって測定が可能な、ヘモグロビン及びビリルビン以外の血液試料中の物質であり、より好ましくは尿酸、クレアチニン、コレステロール、トリグリセリド、ポリアミン、胆汁酸、1,5-アンヒドログルシトール、ピルビン酸、乳酸、リン脂質、尿素、グルコース、コリン、クレアチン及び遊離脂肪酸から選ばれる物質である[1]又は[2]の測定法。
[4]非イオン性界面活性剤が、ポリオキシエチレンポリオキシプロピレン縮合物(POE・POP縮合物)類、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル及びポリオキシエチレン多価アルコール脂肪酸エステルから選ばれる1種又は2種以上であり、より好ましくはPOE・POP縮合物、POE・POPアルキルアミン縮合物又はPOE・POPジアミン縮合物から選ばれる1種又は2種以上である[1]~[3]のいずれかの測定法。
[5]非イオン性界面活性剤の使用量が、血液試料と接触させた後の濃度が0.1~10w/v%、より好ましくは0.5~10w/v%となる量である[1]~[4]のいずれかの測定法。
[6]ベタイン型両性界面活性剤が、アルキルベタイン、アミドアルキルベタイン、スルホベタイン及び2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリウムベタインから選ばれる1種又は2種以上であり、より好ましくはアルキルベタイン及びアミドアルキルベタインから選ばれる1種又は2種以上である[1]~[5]のいずれかの測定法。
[7]ベタイン型界面活性剤の使用量が、試薬中濃度で0.5~10w/v%となる量である[1]~[6]のいずれかの測定法。
[8]酵素が、測定対象物又はその派生物に特異的な酸化酵素である[1]~[7]のいずれかの測定法。
[9]被酸化性呈色試薬が、過酸化水素と反応して呈色する1種又は2種以上の成分である[1]~[8]のいずれかの測定法。
[10]血液試料中のヘモグロビン及びビリルビンの測定値に対する影響を回避するための測定法である[1]~[9]のいずれかに記載の測定法。
[11](A)非イオン性界面活性剤を含有する第1試薬と、(B)ベタイン型両性界面活性剤と、(C)測定対象物又はその派生物に特異的な酸化酵素と、(D)被酸化性呈色試薬を含有する第2試薬とを含むことを特徴とする酵素法測定試薬。
 次に実施例を挙げて本発明をさらに詳細に説明する。
〔試験例1〕
 下記の表1の組成の第1試薬、第2試薬を用いて、測定用試料中のヘモグロビンの吸収スペクトルを測定した。
Figure JPOXMLDOC01-appb-T000003
(測定用試料)
 プール血清に対し、ヘモグロビン(血球由来)を500mg/dLになるよう添加して、ヘモグロビン添加血清を調製した。
(測定方法)
 日立U3310形分光光度計(日立製作所社製)を使用し、測定用試料45μL、第1試薬1.8mL、第2試薬0.9mLの液量比により、第1反応、第2反応をそれぞれ、37℃、5分間行い、ヘモグロビンの吸収スペクトルを測定した。なお、第2反応以降(7分、10分)は希釈比を考慮して液量補正を行った。
(結果)
 ヘモグロビンは540nm、575nm付近に特有のピークを有しており、ヘモグロビンの性状に変化があるとピークの形状が変化する。例1では、第1反応ではピークの形状に変化がないが、第2反応開始後ピークが崩れてなだらかな形状に変化し始めた。例2および例3では第1反応開始1分後にはヘモグロビン特有のピークが認められたものの、3分後にはピークが崩れ、第2反応においてもスペクトルに大きな変化はなかった。これらの結果から、アンヒトール24Bはヘモグロビンのスペクトルを変化させる作用を有することが分かった(図1~図3)。
〔実施例1〕
 下記の表2の組成の第1試薬、第2試薬を用いて、測定用試料中のヘモグロビンの吸収スペクトルを測定した。
Figure JPOXMLDOC01-appb-T000004
(測定用試料)
 プール血清に対し、ヘモグロビン(血球由来)を500mg/dLになるよう添加して、ヘモグロビン添加血清を調製した。
(測定方法)
 日立U3310形分光光度計(日立製作所社製)を使用し、測定用試料45μL、第1試薬1.8mL、第2試薬0.9mLの液量比により、第1反応、第2反応をそれぞれ、37℃、5分間行い、ヘモグロビンの吸収スペクトルを測定した。なお、第2反応以降(7分、10分)は希釈比を考慮して液量補正を行った。
(結果)
 実施例1では第1反応、第2反応のいずれにおいてもヘモグロビン特有の540、575付近のピークの形状は変化しなかった(図4)。
〔実施例2〕
 尿酸測定系を用いて本発明の効果を確認した。
 第1試薬及び第2試薬に処方する界面活性剤は、表3記載の組み合わせとし、実施例2及び比較例1~4の測定試薬を調製した。
(第1試薬)
 MES緩衝液               75mmol/L (pH7.0)
 TOOS(製造元:同仁化学、カタログ番号:OC13)0.75mmol/L
 POD(製造元:東洋紡績、カタログ番号:PEO-301)3U/mL
 界面活性剤                2.0w/v%
 プルロニックTR-704(製造元:アデカ、CAS No.11111-34-5)
又はアンヒトール24B(製造元:花王、CAS No.683-10-3)
(第2試薬)
 MES緩衝液               75mmol/L (pH7.0)
 フェロシアン化カリウム(製造元:キシダ化学、カタログ番号:63532)0.05mmol/L
 4-アミノアンチピリン(4-AAP)(製造元:東京化成工業、カタログ番号:6694)0.75mmol/L
 ウリカーゼ(製造元:キッコーマン、カタログ番号:60199)0.7U/mL
 界面活性剤                2.0w/v%
 プルロニックTR-704(製造元:アデカ、CAS No.11111-34-5)
又はアンヒトール24B(製造元:花王、CAS No.683-10-3)
(測定用血液試料)
 プール血清に対し、ジタウロビリルビン(製造元:Promega)を50mg/dL、又はヘモグロビン(血球由来)を500mg/dLになるよう添加して、ビリルビン添加血清とヘモグロビン添加血清を調製した。
(測定方法)
 日立7170型自動分析装置を使用し、検体5.0μL、第1試薬200μL、第2試薬100μLの液量比により、第1反応、第2反応をそれぞれ、37℃、5分間行い、主波長600nm/副波長800nmの吸光度をエンドポイント法により測定した。
 各血液試料中の尿酸濃度は、濃度既知の標準液(アナセラムUA-E標準液、以下同じ)(製造元:積水メディカル、カタログ番号:154966)と対比させて求めた。
(効果の確認方法)
 各測定用血液試料の尿酸濃度測定値を、対照用血液試料の尿酸濃度測定値を100とする比率に換算し、ビリルビン及びヘモグロビンの影響回避程度を相対値化した。
(結果)
 第1試薬にアンヒトール24Bを処方した比較例2及び比較例4の場合、第2試薬の界面活性剤の種類によらずビリルビンの影響を受けないものの、ヘモグロビンの影響を強く受けた。この場合の相対値は、第1試薬及び第2試薬に界面活性剤を含有しない比較例1の相対値よりも低くかった。
 第1試薬及び第2試薬にプルロニックTR-704を処方した比較例3の場合、ヘモグロビンの影響は受けないもののビリルビンの影響を強くうけていた。
 これら比較例1~4に対し、第1試薬にプルロニックTR-704、第2試薬にアンヒトール24Bを処方した実施例2の場合、ビリルビン及びヘモグロビンの影響を受けておらず、ビリルビン及びヘモグロビンの両者の影響を同時に回避できることが確認された。
Figure JPOXMLDOC01-appb-T000005
〔実施例3〕
 尿酸測定系を用いて、各界面活性剤の至適濃度範囲を確認した。
(第1試薬)
 MES緩衝液               75mmol/L (pH7.0)
 TOOS(製造元:同仁化学、カタログ番号:OC13)0.75mmol/L
 POD(製造元:東洋紡績、カタログ番号:PEO-301)3U/mL
 界面活性剤                2.0w/v%
 プルロニックTR-704(製造元:アデカ、CAS No.11111-34-5)
(第2試薬)
 MES緩衝液               75mmol/L (pH7.0)
 フェロシアン化カリウム(製造元:キシダ化学、カタログ番号:63532)0.05mmol/L
 4-アミノアンチピリン(製造元:東京化成工業、カタログ番号:6694)0.75mmol/L
 ウリカーゼ(製造元:キッコーマン、カタログ番号:60199)0.7U/mL
 界面活性剤                2.0w/v%
 アンヒトール24B(製造元:花王、CAS No.683-10-3)
(測定用血液試料)
 プール血清に対し、ジタウロビリルビン(製造元:Promega)を40mg/dL、又はヘモグロビン(血球由来)を400mg/dLになるよう添加して、ビリルビン添加血清とヘモグロビン添加血清を調製した。
(対照用血液試料)
 上記プール血清に対し、上記測定用血液試料調製時のジタウロビリルビン及びヘモグロビン添加容量相当分の生理食塩水を添加して使用した。
(測定方法)
 日立7170型自動分析装置を使用し、検体5.0μL、第1試薬200μL、第2試薬100μLの液量比により、第1反応、第2反応をそれぞれ、37℃、5分間行い、主波長600nm/副波長800nmの吸光度をエンドポイント法により測定した。
 各血液試料中の尿酸濃度は、濃度既知の標準液と対比させて求めた。
(効果の確認方法)
 各測定用血液試料の尿酸濃度測定値を、対照用血液試料の尿酸濃度測定値を100とする比率に換算し、ビリルビン及びヘモグロビンの影響回避程度を相対値化(回収率(%))した。回収率は±10%以内を効果ありと判断した。
(結果)
 各界面活性剤の至適濃度範囲を検討したところ、非イオン性界面活性剤であるプルロニックは0.1%~10%、両性界面活性剤であるアンヒトールは0.5%~10%で本発明の効果があった。特に、非イオン性界面活性剤であるプルロニックが0.5~1.0%、両性界面活性剤であるアンヒトールが2.0~10%でその効果は顕著であった。
Figure JPOXMLDOC01-appb-T000006
〔実施例4〕
 尿酸測定系を用いて本発明に使用可能な界面活性剤を確認した。
 第1試薬及び第2試薬に処方する界面活性剤の種類及び濃度は、表5記載のとおりとし、測定試薬を調製した。
(第1試薬)
 MES緩衝液               75mmol/L (pH7.0)
 TOOS(製造元:同仁化学、カタログ番号:OC-13)0.75mmol/L
 POD(製造元:キッコーマン、カタログ番号:PEO-301)3U/mL
 界面活性剤
(第2試薬)
 MES緩衝液               75mmol/L (pH7.0)
 フェロシアン化カリウム(製造元:キシダ化学、カタログ番号:63532)0.05mmol/L
 4-アミノアンチピリン(製造元:東京化成工業、カタログ番号:6694)0.75mmol/L
 ウリカーゼ(製造元:キッコーマン、カタログ番号:60199)0.7U/mL
 界面活性剤
(測定用血液試料)
 プール血清に対し、ジタウロビリルビン(製造元:Promega)を50mg/dL、又はヘモグロビン(血球由来)を500mg/dLになるよう添加して、ビリルビン添加血清とヘモグロビン添加血清を調製した。
(測定方法)
 日立7170型自動分析装置を使用し、検体5.0μL、第1試薬200μL、第2試薬100μLの液量比により、第1反応、第2反応をそれぞれ、37℃、5分間行い、主波長600nm/副波長800nmの吸光度をエンドポイント法により測定した。
 各血液試料中の尿酸濃度は、濃度既知の標準液と対比させて求めた。
(効果の確認方法)
 各測定用血液試料の尿酸濃度測定値を、対照用血液試料の尿酸濃度測定値を100とする比率に換算し、ビリルビン及びヘモグロビンの影響回避程度を相対値化(回収率(%))した。回収率は±10%以内を効果ありと判断した。
(結果)
 表5に示した通り、プルロニックTR-704以外の非イオン性界面活性剤を使用した場合においてもビリルビン、ヘモグロビンともに影響を回避できることが判った。両性界面活性剤としてベタイン型であるアンヒトール24Bの代わりにN-オキシド型であるアンヒトール20Nを使用したところ、ヘモグロビンの影響を大きく受けることが確認された。アンヒトール20Nは従来ヘモグロビンまたはビリルビンの影響をそれぞれ回避することができるとされていたが、発明者らの検討によるとその効果は実用的なレベルではないことが明らかになった。一方、アミドアルキルベタインであるコカミドプロピルベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインであるココアンホ酢酸ナトリウム、スルホベタインである3-[(3-コールアミドプロピル)ジメチルアミノ]-1-プロパンスルフォネートでは、アミドベタインと同様の効果が確認された。
Figure JPOXMLDOC01-appb-T000007
〔実施例5〕
(第1試薬)
 MES緩衝液               75mmol/L (pH7.0)
 TOOS(同仁化学:カタログ番号:OC-13)0.75mmol/L
 各界面活性剤                2.0w/v%
(第2試薬)
 MES緩衝液               75mmol/L (pH7.0)
 ウリカーゼ(製造元:キッコーマン、カタログ番号:60199)2.3U/mL
(第3試薬)
 MES緩衝液               75mmol/L (pH7.0)
 POD(製造元:東洋紡績、カタログ番号:PEO-301)8.6U/mL
 フェロシアン化カリウム(製造元:キシダ化学、カタログ番号:63532)0.05mmol/L
 4-アミノアンチピリン(製造元:東京化成工業、カタログ番号:6694)0.75mmol/L
 各界面活性剤                2.0w/v%
(測定方法)
 日立7170型自動分析装置を使用し、検体5.0μL、第1試薬200μL、第2試薬30μL、第3試薬70μLの液量比により、第1反応、第2反応、第3反応をそれぞれ、37℃、5分間行い(計15分反応)、主波長600nm/副波長800nmの吸光度をエンドポイント法により測定した。
 各血液試料中の尿酸濃度は、濃度既知の標準液と対比させて求めた。
Figure JPOXMLDOC01-appb-T000008
(結果)
 実施例5、比較例5~8の手順は、ヘモグロビンを含む検体液と界面活性剤、発色剤を接触させる第一工程、第一工程で得られた検体液にウリカーゼを反応させて過酸化水素を生成させる第二工程、第二工程で得られた検体液にPODを添加し、過酸化水素が発色剤を酸化縮合させて呈色する第三工程、と分けることができる。本発明においては、第一工程で非イオン性界面活性剤が検体液中のヘモグロビンの色調を変化させないこと、及び、第三工程で両性界面活性剤がビリルビンをPODの基質になりにくくすること、によってビリルビン及びヘモグロビンの影響が回避されると考えられる。すなわち、検体液に含まれる基質や第二工程で使用される基質に特異的な酵素に制限されるものではなく、尿酸以外の基質、ウリカーゼ以外の酵素を使用した場合も効果を発揮するものと考えられる。

Claims (10)

  1.  被酸化性呈色試薬を用いた酵素法による血液試料中の物質の測定法であって、(1)血液試料に非イオン性界面活性剤を接触させ、次いで(2)当該試料にベタイン型両性界面活性剤を接触させ、接触と同時又は接触後に酵素反応及び被酸化性呈色試薬による呈色反応を行うことを特徴とする血液試料中の物質の測定法。
  2.  血液試料が、測定値にヘモグロビン及びビリルビンの影響が生じる可能性が高い血漿又は血清である請求項1記載の測定法。
  3.  血液試料中の物質が、酵素反応により生成する過酸化水素を定量することによって測定が可能な、ヘモグロビン及びビリルビン以外の血液試料中の物質である請求項1又は2記載の測定法。
  4.  非イオン性界面活性剤が、ポリオキシエチレンポリオキシプロピレン縮合物、ポリオキシエチレンポリオキシプロピレンアルキルアミン縮合物、ポリオキシエチレンポリオキシプロピレンジアミン縮合物、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレン多価アルコール脂肪酸エステルから選ばれる1種又は2種以上である請求項1~3のいずれか1項記載の測定法。
  5.  非イオン性界面活性剤の使用量が、血液試料と接触させた後の濃度が0.1~10w/v%となる量である請求項1~4のいずれか1項に記載の測定法。
  6.  ベタイン型両性界面活性剤が、アルキルベタイン、アミドアルキルベタイン、スルホベタイン、及び2-アルキル-N-カルボキシメチル-N-ヒドロキシエチ12ルイミダゾリニウムベタインから選ばれる1種又は2種以上である請求項1~5のいずれか1項記載の測定法。
  7.  酵素が、測定対象物又はその派生物に特異的な酸化酵素である請求項1~6のいずれか1項記載の測定法。
  8.  被酸化性呈色試薬が、過酸化水素と反応して呈色する1種又は2種以上の成分である請求項1~7のいずれか1項記載の測定法。
  9.  血液試料中のヘモグロビン及びビリルビンの測定値に対する影響を回避するための測定法である請求項1~8のいずれか1項に記載の測定法。
  10.  (A)非イオン性界面活性剤を含有する第1試薬と、(B)ベタイン型両性界面活性剤と、(C)測定対象物又はその派生物に特異的な酸化酵素と、(D)被酸化性呈色試薬を含有する第2試薬とを含むことを特徴とする酵素法測定試薬。
PCT/JP2013/060015 2012-03-30 2013-04-01 血液試料中の物質の測定法 WO2013147309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13767986.6A EP2832862B1 (en) 2012-03-30 2013-04-01 Method for measuring substance in blood sample
KR1020147027632A KR102035881B1 (ko) 2012-03-30 2013-04-01 혈액시료 내의 물질 측정 방법
JP2014508261A JP5834134B2 (ja) 2012-03-30 2013-04-01 血液試料中の物質の測定法
US14/389,510 US9551022B2 (en) 2012-03-30 2013-04-01 Dual surfactant enzymatic method for measuring a substrate in a blood sample
CN201380017615.9A CN104245952B (zh) 2012-03-30 2013-04-01 血液样品中的物质的测定法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082977 2012-03-30
JP2012-082977 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147309A1 true WO2013147309A1 (ja) 2013-10-03

Family

ID=49260542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060015 WO2013147309A1 (ja) 2012-03-30 2013-04-01 血液試料中の物質の測定法

Country Status (6)

Country Link
US (1) US9551022B2 (ja)
EP (1) EP2832862B1 (ja)
JP (3) JP5834134B2 (ja)
KR (1) KR102035881B1 (ja)
CN (1) CN104245952B (ja)
WO (1) WO2013147309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062891A (ja) * 2017-10-02 2019-04-25 アークレイ株式会社 糖化蛋白質の測定
WO2023085323A1 (ja) * 2021-11-12 2023-05-19 東洋紡株式会社 溶血ヘモグロビンによる測定誤差を低減する方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872117A (zh) * 2017-05-11 2018-11-23 广州市伊川生物科技有限公司 一种总胆汁酸测定试剂盒及其测定方法
CN112334767B (zh) * 2018-09-12 2024-01-09 积水医疗株式会社 血红蛋白类测定用试剂以及血红蛋白类的测定方法
CN109799331A (zh) * 2019-03-18 2019-05-24 湖南海源医疗科技股份有限公司 一种恶性肿瘤特异性生长因子tsgf分析试条
WO2023112442A1 (ja) * 2021-12-13 2023-06-22 テルモ株式会社 生体成分濃度測定試薬、測定方法およびセンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310696A (ja) * 1989-06-09 1991-01-18 Wako Pure Chem Ind Ltd 体液成分の測定方法
JPH0739394A (ja) * 1993-07-29 1995-02-10 Kyowa Medex Co Ltd 物質の測定法
JPH0751095A (ja) * 1993-08-13 1995-02-28 Nissho Corp 生体成分測定試薬
JPH08308593A (ja) * 1995-05-16 1996-11-26 Bayer Corp 白血球の内因性ペルオキシダーゼ活性に基く、新鮮並びに時間を置いた全血試料についての白血球分画計数を実施するための改良された方法と試薬組成物
JP2006081471A (ja) 2004-09-16 2006-03-30 Toyobo Co Ltd 生体成分測定用試薬及び測定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073368A (en) 1991-05-15 1991-12-17 Colgate-Palmolive Company Sanguinaria mouthrinse having improved anti microbial activity and stability
JPH07155196A (ja) 1993-12-10 1995-06-20 Dai Ichi Pure Chem Co Ltd 生体成分の測定法
JPH09224697A (ja) * 1996-02-22 1997-09-02 Kainosu:Kk 生体成分の測定方法および測定用組成物
JP3620037B2 (ja) 1998-09-14 2005-02-16 ニプロ株式会社 γ−グルタミルトランスフェラーゼ活性測定用試薬
JP4129704B2 (ja) 1998-09-22 2008-08-06 ニプロ株式会社 ロイシンアミノペプチダーゼ活性測定用試薬
JP2000189194A (ja) 1998-12-30 2000-07-11 Shino Test:Kk α―アミラ―ゼ活性測定試薬及び測定方法
WO2002027331A1 (fr) 2000-09-28 2002-04-04 Arkray, Inc. Methode d'analyse utilisant une reaction d'oxydo-reduction
US7083911B2 (en) * 2001-02-16 2006-08-01 Promega Corporation Method for detection of ATP
JP4669205B2 (ja) 2001-04-17 2011-04-13 シスメックス株式会社 アルカリホスファターゼ活性測定用試薬および測定方法
JPWO2005049858A1 (ja) * 2003-11-19 2007-11-29 第一化学薬品株式会社 ヘモグロビン含有試料中の基質の測定方法
JP4889396B2 (ja) * 2005-07-27 2012-03-07 積水メディカル株式会社 ロイコ色素の安定化方法
WO2008053973A1 (en) * 2006-11-02 2008-05-08 Kyowa Medex Co., Ltd. Method of immunoassay of component to be measured
US8440419B2 (en) * 2007-10-10 2013-05-14 Denka Seiken Co., Ltd. Method and kit for quantitatively determining small, dense LDL cholesterol
TWI455728B (zh) 2010-01-14 2014-10-11 Colgate Palmolive Co 牙劑組成物
EP2607901A4 (en) * 2010-07-23 2014-01-15 Denka Seiken Kk METHOD FOR QUANTIFYING THE QUANTITY OF CHOLESTEROL IN HIGH DENSITY LIPOPROTEIN 3

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310696A (ja) * 1989-06-09 1991-01-18 Wako Pure Chem Ind Ltd 体液成分の測定方法
JPH0739394A (ja) * 1993-07-29 1995-02-10 Kyowa Medex Co Ltd 物質の測定法
JPH0751095A (ja) * 1993-08-13 1995-02-28 Nissho Corp 生体成分測定試薬
JPH08308593A (ja) * 1995-05-16 1996-11-26 Bayer Corp 白血球の内因性ペルオキシダーゼ活性に基く、新鮮並びに時間を置いた全血試料についての白血球分画計数を実施するための改良された方法と試薬組成物
JP2006081471A (ja) 2004-09-16 2006-03-30 Toyobo Co Ltd 生体成分測定用試薬及び測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832862A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062891A (ja) * 2017-10-02 2019-04-25 アークレイ株式会社 糖化蛋白質の測定
JP7195847B2 (ja) 2017-10-02 2022-12-26 アークレイ株式会社 糖化蛋白質の測定
WO2023085323A1 (ja) * 2021-11-12 2023-05-19 東洋紡株式会社 溶血ヘモグロビンによる測定誤差を低減する方法

Also Published As

Publication number Publication date
CN104245952B (zh) 2017-08-29
JP2016010410A (ja) 2016-01-21
JP2015119729A (ja) 2015-07-02
EP2832862B1 (en) 2019-08-21
JPWO2013147309A1 (ja) 2015-12-14
CN104245952A (zh) 2014-12-24
EP2832862A1 (en) 2015-02-04
JP5834134B2 (ja) 2015-12-16
US20150072367A1 (en) 2015-03-12
EP2832862A4 (en) 2015-09-23
KR20140142716A (ko) 2014-12-12
JP6342353B2 (ja) 2018-06-13
US9551022B2 (en) 2017-01-24
JP6272283B2 (ja) 2018-01-31
KR102035881B1 (ko) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6272283B2 (ja) 血液試料中の物質の測定法
CN106198509B (zh) 用于测定肌酐的试剂盒和方法
EP1813680A1 (en) Compositions for lipase activity determination and method of determining activity
JP6446875B2 (ja) 生体成分の測定方法および測定用組成物
CN104245953B (zh) 样品中的测定对象成分的测定方法
JP6435605B2 (ja) 生体成分の測定方法および測定用組成物
JP6569193B2 (ja) 生体成分の測定方法および測定用組成物
EP2653551B1 (en) Method for measuring component to be measured
JP6459268B2 (ja) 生体成分の測定方法および測定用組成物
JP2796150B2 (ja) フルクトサミンの測定方法
EP2199404B1 (en) Method of reducing measurement error caused by catalase inhibition by azide
JP3601648B2 (ja) 生体成分測定用試薬および測定方法
JP6585244B1 (ja) γ−アミノ酪酸の測定方法、及びそのためのキット
JPH0372280B2 (ja)
JP6047778B2 (ja) 測定対象物質の測定方法及び測定試薬、並びにビリルビンに由来する影響の回避方法
CN110082306A (zh) 单胺氧化酶测定试剂盒
JP4244168B2 (ja) エタノールアミン含有リン脂質の分析方法および組成物
JP7330516B2 (ja) 2-アミノフェノール類の測定方法
JP2017000152A (ja) 測定対象物質の測定方法、測定対象物質の測定試薬、及びビリルビンに由来する影響の回避方法
JPH11243993A (ja) 生体成分の測定におけるビリルビンの干渉を回避する方法
WO2022054890A1 (ja) 測定誤差低減方法
JP2006010711A (ja) 試薬組成物の安定化方法及び安定化された試薬組成物
JPS62245963A (ja) 過酸化水素の酵素的高感度簡易測定法
JPS6322196A (ja) 基質の定量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508261

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013767986

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027632

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389510

Country of ref document: US