WO2013133430A1 - 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置 - Google Patents

表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置 Download PDF

Info

Publication number
WO2013133430A1
WO2013133430A1 PCT/JP2013/056532 JP2013056532W WO2013133430A1 WO 2013133430 A1 WO2013133430 A1 WO 2013133430A1 JP 2013056532 W JP2013056532 W JP 2013056532W WO 2013133430 A1 WO2013133430 A1 WO 2013133430A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
metal oxide
optical semiconductor
oxide particles
modified
Prior art date
Application number
PCT/JP2013/056532
Other languages
English (en)
French (fr)
Inventor
恭行 栗野
大塚 剛史
佐藤 洋一
健児 山口
原田 健司
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201380003812.5A priority Critical patent/CN103987657B/zh
Priority to KR1020147013591A priority patent/KR101425545B1/ko
Priority to JP2013530263A priority patent/JP5472543B2/ja
Priority to US14/383,244 priority patent/US9972757B2/en
Publication of WO2013133430A1 publication Critical patent/WO2013133430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/398Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing boron or metal atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a surface-modified metal oxide particle material, an optical semiconductor element sealing composition, and an optical semiconductor device.
  • Silicone compositions are excellent in properties such as transparency, heat resistance, and light resistance, and are excellent in hardness and rubber elasticity, and are therefore used for optical semiconductor encapsulating materials and optical waveguide materials.
  • the methyl silicone composition is excellent in durability such as heat resistance and light resistance.
  • the silicone composition has problems such as a low refractive index, a large expansion coefficient, a large gas permeability, and a low adhesion to a substrate.
  • metal oxide particles such as zirconium oxide, titanium oxide, and silicon oxide are dispersed and compounded in the silicone composition to compensate for these drawbacks and improve the function.
  • a composition for coating a light emitting device in which metal oxide fine particles and a specific polyfunctional polysiloxane are combined for example, see Patent Document 1
  • zirconia nanoparticles surface-treated with an organosiloxane compound and terminal alkoxysilyl groups
  • a silicone resin composition containing a silicone resin and a chain length ratio between the organosiloxane compound and the silicone resin in a specific range see, for example, Patent Document 2
  • a metal oxide surface-modified with a vinyl-terminated silicone-modified material Silicone resin compositions obtained by reacting particles with organohydrogensiloxane (for example, see Patent Document 3), highly transparent silicone compositions containing silica particles grafted with siloxane (for example, see Patent Document 4), etc.
  • Patent Document 5 a method of combining three organic modifiers to make the viscosity 100 Pa ⁇ s or less (Patent Document 5) and a method of hydrophobizing inorganic oxide fine powder with an alkylsilazane compound (Patent Document 6). Has been.
  • JP 2009-091380 A JP 2011-144272 A JP 2011-26444 A JP 2009-120437 A JP 2009-24117 A JP 2003-192831 A
  • Patent Document 1 when polyfunctional polysiloxane is used (Patent Document 1), the blending amount of metal oxide fine particles and polyfunctional polysiloxane is limited. In particular, when the amount of metal oxide fine particles is large, there is a problem that pores and cracks are generated in the cured product. In addition, when polyfunctional polysiloxane is used, unreacted functional groups are likely to remain, so that there are problems that the composite characteristics after crosslinking change with time and that the durability is inferior.
  • Patent Document 3 In a silicone resin composition (Patent Document 3) obtained by reacting metal oxide particles surface-modified with a vinyl-terminated silicone-modified material and organohydrogensiloxane, the amount of surface modification with a silicone-modified material having a short chain length is 100 wt. There was a problem that the effect of improving the refractive index was low when it was combined with organohydrogensiloxane in a large amount of 262 to 522 parts by weight. The method described in Patent Document 3 does not become oily unless the surface modification amount is made very large, but if the surface modification amount is large, there is a problem that the characteristics of the metal oxide particles cannot be brought out.
  • Patent Documents 1 to 3 surface-modified particles are dispersed in a large amount of an organic solvent and then mixed and dispersed in another matrix silicone composition.
  • these documents do not consider the viscosity, when a large amount of solvent is contained in the material, the large amount of solvent must be evaporated during a process such as sealing to an optical semiconductor element.
  • the transparency of the composite is to be ensured, the applicable particle size is very small.
  • Patent Document 5 has a problem that heat resistance is low because the modifier is organic. Further, the method described in Patent Document 6 has a problem that the hydrophobized particle material is powdery and has no fluidity.
  • the present invention is a surface-modified metal having low viscosity and exhibiting excellent properties possessed by metal oxide particles to be compounded when used as a sealing material for optical elements, etc., and exhibiting high transparency.
  • An object of the present invention is to provide an oxide particle material and a photosemiconductor element sealing composition containing the surface-modified metal oxide particle material. It is another object of the present invention to provide an optical semiconductor device provided with a sealing material having high transparency.
  • the present inventors set the average primary particle diameter of the metal oxide particles within a predetermined range, and a surface modifier for applying a surface modification treatment thereto.
  • the inventors have found that the problem can be solved by setting the structure of a certain silicone compound to a specific structure, and have completed the present invention. That is, the present invention is as follows.
  • a surface-modified metal oxide particle material comprising surface-modified metal oxide particles whose surface is modified with a surface-modifying material
  • the surface modifier includes a silicone compound represented by the following formula (1), Surface-modified metal oxide in which the average primary particle diameter of the metal oxide particles is 3 to 10 nm, the viscosity at 25 ° C. is 1000 Pa ⁇ s or less, and the light transmittance at a wavelength of 400 to 800 nm is 60% or more at 1 mm thickness. Particle material.
  • X is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms
  • R 1 , R 2 , R a , and R b are each independently
  • Z 1 to Z 3 are each independently an alkyl group having 1 to 6 carbon atoms, 1 carbon atom
  • an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom, or a carboxy group at least one of which is an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom, or a carboxy group
  • n is an integer of 8 to 100.
  • the plurality of R a and the plurality of R b may be the same or different.
  • the refractive index of the metal oxide particles is 1.7 or more,
  • the volume ratio of the surface modifier to the metal oxide particles (surface modifier / metal oxide particles) is 1.5 to 9,
  • the surface-modified metal oxide according to [1] or [2], wherein the second surface modification is performed with a silylated material that hydrophobizes a hydroxyl group, and the viscosity at 25 ° C. is 100 Pa ⁇ s or less. Particulate material.
  • X, R b and n are the same as those in the formula (1).
  • Z is an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom or a carboxy group. (It is an integer from 1 to 3.)
  • the surface-modified metal has low viscosity and can exhibit high transparency while exhibiting the excellent characteristics of the metal oxide particles to be compounded when used as a sealing material for optical elements.
  • An oxide particle material and a photosemiconductor element sealing composition containing the surface-modified metal oxide particle material can be provided.
  • the surface-modified metal oxide particle material and the optical semiconductor element sealing composition of the present invention have low viscosity, it is necessary to use a large amount of solvent in the process such as sealing provided when manufacturing the optical semiconductor element. There is no (substantially solvent-free). As a result, workability in the process can be greatly improved.
  • the optical semiconductor device which comprised the sealing material which has high transparency can be provided. Thereby, light extraction efficiency and fluorescence intensity in the optical semiconductor device can be improved, and an optical semiconductor device with high emission intensity can be obtained.
  • the surface-modified metal oxide particle material of the present invention is obtained by using a surface-modifying material in which metal oxide particles having an average primary particle size of 3 to 10 nm include a silicone compound having a specific structure. It comprises surface-modified metal oxide particles that have been surface-modified.
  • the average primary particle size is less than 3 nm, the crystallinity is lowered, and the surface activity is high, so that interparticle interaction occurs, and the viscosity of the surface-modified metal oxide particle material becomes high. Further, when the material is used after being dispersed in a matrix resin (for example, a silicone composition including a methyl silicone composition), the viscosity of the mixed composition after the dispersion becomes high. Furthermore, since the specific surface area is large, the amount of the surface modifier covering the metal oxide particles increases, and it becomes difficult to obtain a high refractive index.
  • a matrix resin for example, a silicone composition including a methyl silicone composition
  • the average primary particle diameter is larger than 10 nm, the difference in refractive index between the metal oxide particles and the silicone compound in the surface modifier is large, so that the transmittance is significantly reduced due to scattering.
  • the average primary particle size is preferably 4 to 8 nm, and more preferably 4 to 6 nm.
  • the “average primary particle size” is a crystallite size determined by the Scherrer equation by X-ray diffraction.
  • Examples of the metal oxide constituting the metal oxide particles include zirconium (Zr), titanium (Ti), silicon (Si), aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), yttrium ( Y), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn), tantalum (Ta), tungsten (W), lead (Pb), bismuth (Bi), cerium (Ce), antimony ( An oxide of an element such as Sb) or germanium (Ge) is used.
  • oxides of these elements include zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO). Fe 3 O 4 ), copper oxide (CuO, Cu 2 O), zinc oxide (ZnO), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 , In 2 O), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 , W 2 O 5 ), lead oxide (PbO, PbO 2 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 , Ce 2 O 3 ), antimony oxide (Sb 2 O 3 , Sb 2 O 5 ), germanium oxide (GeO 2 , GeO) and the like. Moreover,
  • a general-purpose silicone resin has a low refractive index
  • metal oxide particles having a high refractive index, being colorless and transparent, and having a high hardness are preferably used when increasing the refractive index of a composite composition. be able to.
  • the refractive index of such metal oxide particles is preferably 1.7 or more, more preferably 1.9 or more, and further preferably 2.0 or more.
  • Examples of the metal oxide having a refractive index of 1.7 or more include zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide.
  • the metal oxide particles are surface-treated with a surface modifier containing a silicone compound having a specific structure, and the silicone compound is as shown in the following formula (1).
  • X is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms
  • R 1 , R 2 , R a , and R b are each independently
  • Z 1 to Z 3 are each independently an alkyl group having 1 to 6 carbon atoms, 1 carbon atom
  • an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom, or a carboxy group at least one of which is an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom, or a carboxy group
  • n is an integer of 8 to 100.
  • the plurality of R a and the plurality of R b may be the same or different.
  • the alkyl group having 1 to 6 carbon atoms is preferably a methyl group, an ethyl group, a propyl group, or a butyl group.
  • the alkenyl group having 2 to 6 carbon atoms is preferably a vinyl group or an allyl group.
  • Preferred examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • At least one of X, R 1 , R 2 , R a , and R b is preferably a methyl group.
  • at least one of X, R 1 , R 2 , R a , and R b is an alkenyl group having 2 to 6 carbon atoms.
  • the surface-modified metal oxide particle material of the present invention and the silicone composition are subjected to a hydrosilylation reaction with hydrogen silicone in the silicone composition serving as the matrix resin.
  • the surface-modified metal oxide particles can be prevented from phase separation in the matrix resin when the mixed composition is cured, and a strong composite can be obtained by crosslinking with the silicone composition.
  • the arrangement of the alkenyl group is preferably one end of the chain length (that is, the substituent X).
  • the alkenyl group in the silicone compound according to the present invention For example, hydrogen silicone contained in the laminated optical semiconductor element encapsulant is cross-linked by a hydrosilylation reaction, so that each interface can be bonded well to reduce light reflection at the interface. it can.
  • n is an integer of 8 to 100.
  • n is less than 8
  • the steric hindrance caused by a specific silicone compound is reduced between the surface-modified metal oxide particles, and the inter-particle mutual
  • the action is increased and the viscosity is increased, and that a chain length difference from a general-purpose silicone composition serving as a matrix resin is large and uniform dispersibility in the matrix resin cannot be obtained.
  • n is larger than 100, a long chain length causes a large steric hindrance, which causes a problem that a specific silicone compound does not efficiently bind to metal oxide particles.
  • n is preferably 10 to 80, more preferably 30 to 70.
  • At least one of Z 1 , Z 2, and Z 3 is an alkoxy group, a hydroxy group, a halogen atom, or a carboxy group because of metal oxide particles by hydrolysis / condensation or hydrogen bonding This is because they are firmly bonded to the hydroxyl groups on the surface.
  • An alkoxy group and a hydroxy group are preferable.
  • the silicone compound represented by the above formula (1) is preferably a silicone compound represented by the following formula (2).
  • X, R b and n are the same as those in the formula (1).
  • Z is an alkoxy group having 1 to 6 carbon atoms, a hydroxy group, a halogen atom or a carboxy group. (It is an integer from 1 to 3.)
  • the volume ratio of the surface modifier to the metal oxide particles is 1.5 to 9, preferably 2.0 to 8.0, preferably 2.5 to 6. More preferably 0.
  • the volume ratio is less than 1.5, the amount of the surface modifying material is small and the dispersibility in the silicone composition (matrix resin) is lowered, and the transparency is lowered.
  • the refractive index of surface modified metal oxide particle material will become low when it exceeds 9, for example, the refractive index of a methyl silicone composition (matrix resin) is about 1.41, Therefore Surface modified metal oxide Even if the particulate material is mixed and dispersed, the refractive index cannot be increased.
  • the surface modification method using the surface modification material includes a wet method and a dry method.
  • the wet method metal oxide particles and surface modifying material are added to the solvent, and if necessary, a catalyst for hydrolyzing the surface modifying material is added.
  • This is a method of dispersing while surface modification.
  • the dry method includes a method in which the metal oxide particles and the surface modification material are mixed with a kneader or the like to obtain the surface modification metal oxide particles.
  • the modifying material in the said surface modification material, you may use another modification material together with a specific silicone compound.
  • the modifying material that can be used in combination include silane compounds such as vinyltrimethoxysilane and alkylsilane.
  • the content of the surface modifying material is preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the surface-modified metal oxide particle material of the present invention is subjected to surface modification (first surface modification) with the surface modification material and then second modification with a silylated material that hydrophobizes the hydroxyl group.
  • first surface modification with the surface modification material
  • second modification with a silylated material that hydrophobizes the hydroxyl group.
  • the viscosity in 25 degreeC shall be 100 Pa.s or less.
  • the second surface modification is further performed on the metal oxide particles (the upper stage in FIG. 3) subjected to the first surface modification with the surface modification material containing a specific silicone compound.
  • the surface modification material containing a specific silicone compound containing a specific silicone compound.
  • the viscosity becomes 100 Pa ⁇ s or less, and it can be handled in the same manner as a general-purpose silicone composition (matrix resin) used as a sealing material for LEDs and the like, and mixing and dispersion in various resins becomes easy.
  • the total blending amount of the surface modifying material containing the specific silicone compound (the surface modifying material according to the first surface modification) and the silylated material is preferably 50 to 150 parts by mass with respect to 100 parts by mass of the metal oxide particles. 70 to 100 parts by mass is more preferable.
  • the total blending amount is less than 50 parts by mass, the viscosity of the silicone surface-modified metal oxide particle material becomes high. Get higher.
  • the modifying material is excessive, the content of the metal oxide particles is low, and for example, the characteristics as metal oxide particles such as refractive index cannot be sufficiently obtained.
  • silylated material examples include those shown below, but those having a small number of carbon atoms and those having no decomposition product chlorine are preferable from the viewpoint of heat resistance.
  • the amount of the silylated material is conveniently determined by the type of metal oxide particles, the particle size, the amount of the silicone compound surface modifying material, and the reaction efficiency with the surface of the metal oxide particles, but is 1 for 100 parts by mass of the metal oxide particles. To 100 parts by mass, more preferably 5 to 50 parts by mass.
  • Examples of the silylation method using a silylated material include a method in which the first surface modified metal oxide particles are brought into contact with the silylated material by a wet or dry method.
  • a wet or dry method In order to efficiently react with a surface hydroxyl group that is not bonded to the first surface modifying material on the surface of the object particle or a hydroxyl group that is not bonded to the surface of the metal oxide particle in the silicone compound modified material
  • the metal oxide particles subjected to the first surface modification are preferably dispersed in an organic solvent, and a silylated material is added and reacted.
  • the refractive index of the surface-modified metal oxide particle material when increasing the refractive index of the composite composition, is preferably 1.48 or more, more preferably 1.55 or more. More preferably, it is 60 or more. If the refractive index is less than 1.48, the refractive index may not be improved even when combined with a general-purpose silicone composition (matrix resin) used as an LED encapsulant or the like. In some cases, when the LED element is coated as a silicone surface-modified high refractive index metal oxide particle material, the refractive index cannot be made higher than when a general-purpose silicone composition is sealed on the LED element. To do.
  • the viscosity of the surface-modified metal oxide particle material of the present invention at 25 ° C. is 1000 Pa ⁇ s or less, preferably 900 Pa ⁇ s or less, more preferably 850 Pa ⁇ s or less, and 100 Pa ⁇ s. More preferably, it is as follows. By setting the viscosity to 1000 Pa ⁇ s or less at 25 ° C., it can be handled in the same manner as a general-purpose silicone composition (matrix resin) used as an LED sealing material, etc., and can be easily mixed and dispersed in the silicone composition (matrix resin). Become.
  • the surface-modified metal oxide particle material itself has a low viscosity, a small amount of organic solvent is required to adjust the viscosity when mixed with the silicone composition (matrix resin). Is unnecessary. In particular, when the viscosity is 100 Pa ⁇ s or less, an organic solvent for adjusting the viscosity is not required. On the other hand, when the viscosity is higher than 1000 Pa ⁇ s, it is necessary to lower the viscosity by using a large amount of an organic solvent when mixing with the silicone composition (matrix resin), and the process load for removing the solvent in the application process increases.
  • the light transmittance of the surface-modified metal oxide particle material of the present invention at a wavelength of 400 to 800 nm is 60% or more, preferably 70% or more, more preferably 80% or more when the thickness is 1 mm. If the transmittance is less than 60%, high transparency cannot be maintained when mixed and dispersed in the silicone composition (matrix resin).
  • the light transmittance at “1 mm thickness” is such that, for example, a quartz cell having an inner width of 1 mm is filled with a surface-modified metal oxide particle material, so that the optical path length of the surface-modified metal oxide particle material is 1 mm. After measuring the transmittance in this way, the measured value of the empty quartz cell may be calculated as a comparative control.
  • the surface-modified metal oxide particle material of the present invention it can be easily and uniformly applied to the later-described addition-type or condensation-type silicone composition without using a solvent or in a state where the use of the solvent is suppressed as much as possible. It can be mixed and dispersed in a transparent manner, and optical properties such as refractive index, mechanical properties, heat conduction properties, gas permeation resistance and the like of the addition type or condensation type silicone composition can be improved. Thereby, the refractive index of the part adjacent to the optical semiconductor element can be increased. Furthermore, if a known optical semiconductor element sealing composition is laminated thereon, an optical semiconductor device having a refractive index inclined from the optical semiconductor element to the air interface can be obtained.
  • the surface-modified metal oxide particle material of the present invention can contain a phosphor (for example, a YAG phosphor for blue InGaN or an RGB phosphor for ultraviolet light).
  • a fluorescent substance can be arrange
  • the optical semiconductor element sealing composition of the present invention comprises the surface-modified metal oxide particle material of the present invention.
  • various silicone resins matrix resins.
  • silicone resins include methyl silicone, methyl phenyl silicone, phenyl silicone, and modified silicone.
  • addition-curable silicone compositions and condensation-curable silicone compositions can be used.
  • the addition-curable silicone composition is a composition comprising at least an alkenyl group-containing silicone, a hydrogen silicone, and a platinum group metal catalyst.
  • Condensation-curable silicone composition comprises a silicone having at least a molecular chain end blocked with a hydroxyl group or a hydrolyzable group, and a silane compound containing 3 or more hydrolyzable groups bonded to a silicon atom and an amino group And a condensation catalyst containing an amino group, a ketoxime group or the like.
  • the optical semiconductor element is sealed by at least one sealing material layer, and the first sealing material layer in contact with the optical semiconductor element is the present invention described above.
  • the optical semiconductor element sealing composition is contained.
  • the sealing material layer may constitute the sealing material only with the first sealing material layer (first aspect), or may be composed of two or more sealing material layers and the layer in contact with the optical semiconductor element may be the first. It is good also as a structure (2nd aspect) made into 1 sealing material layer.
  • the optical semiconductor device will be specifically described taking a light emitting device as an example.
  • this invention is not specifically limited to the said example.
  • the first aspect (light emitting device 10) according to the present invention is such that the light emitting element 14 is disposed in the concave portion 12 ⁇ / b> A of the reflecting cup 12 and the concave portion is embedded in contact with the light emitting element 14.
  • the 1st sealing material layer 16 which consists of this sealing material is formed. According to such an apparatus, the light emitted from the light emitting element 14 passes through the boundary surface with the sealing material, passes through the sealing material, and is reflected directly or by the wall surface of the reflecting cup 12 and is extracted to the outside. It is.
  • Examples of light emitting elements that constitute a light emitting device include light emitting diodes (LEDs) and semiconductor lasers.
  • LEDs light emitting diodes
  • the light emitting diode a red light emitting diode that emits red light (for example, light having a wavelength of 640 nm), a green light emitting diode that emits green light (for example, light having a wavelength of 530 nm), and blue light (for example, having a wavelength of 450 nm).
  • An example is a blue light emitting diode that emits light).
  • the light emitting diode may have a so-called face-up structure or a flip chip structure.
  • the light-emitting diode includes a substrate and a light-emitting layer formed on the substrate, and may have a structure in which light is emitted from the light-emitting layer to the outside, or light from the light-emitting layer passes through the substrate. It is good also as a structure radiate
  • the light emitting diode is formed on, for example, a first cladding layer and a first cladding layer made of a compound semiconductor layer having a first conductivity type (for example, n-type) formed on a substrate.
  • Active layer and a structure in which a second cladding layer made of a compound semiconductor layer having a second conductivity type (for example, p-type) formed on the active layer is laminated, and is electrically connected to the first cladding layer.
  • the layer constituting the light emitting diode may be made of a known compound semiconductor material depending on the emission wavelength.
  • the second aspect (light emitting device 20) according to the present invention is formed so that the first sealing material layer 16 covers the surface of the light emitting element 14, and the outer side of the first sealing material layer 16 is the surface of the present invention. It is the same as that of the 1st aspect except the 2nd sealing material layer 18 from which an optical semiconductor element sealing composition differs in composition being formed.
  • the material of the second sealing material layer having a different composition include resins or resin compositions such as methyl silicone, methyl phenyl silicone, phenyl silicone, modified silicone, acrylic resin, epoxy resin, and polyimide resin.
  • the refractive index of the second sealing material layer is preferably equal to or lower than the refractive index of the first sealing material layer in order to reduce interface reflection between the first sealing material layer and the second sealing material layer. Moreover, you may contain the surface modification metal oxide particle of this invention in order to adjust the refractive index of a 2nd sealing material layer.
  • the optical semiconductor device of the present invention can also be an optical semiconductor device in which a light emitting element and a phosphor are combined.
  • the first sealing material layer in contact with the optical semiconductor element contains the above-described optical semiconductor element sealing composition of the present invention.
  • the aforementioned phosphor for example, a YAG phosphor for blue InGaN or an RGB phosphor for ultraviolet light
  • the phosphor previously contained in the surface modified metal oxide particle material of the present invention may be used, and the phosphor mixed with various silicones (matrix resin) is mixed with the surface modified metal oxide particle material of the present invention. May be used.
  • the first sealing material layer in the second aspect It is preferable to contain a phosphor.
  • the phosphor is preferably 5 to 80% by mass, and more preferably 20 to 70% by mass with respect to the mass of the first sealing material layer.
  • the second sealing material layer can also contain a phosphor. Examples of such an optical semiconductor device that combines a light emitting element and a phosphor include a white light emitting diode (for example, a light emitting diode that emits white light by combining an ultraviolet or blue light emitting diode and phosphor particles). Can do.
  • This fired product is put into pure water, stirred to form a slurry, washed with a centrifuge, sufficiently removed the added sodium sulfate, dried in a drier, and zirconium oxide Particle 1-A was obtained.
  • the average primary particle diameter of the obtained zirconium oxide particles 1-A was determined from the Scherrer equation by X-ray diffraction, the average primary particle diameter was 4 nm.
  • the refractive index of the zirconium oxide particles 1-A was determined as follows. By adjusting the pH of water, the zirconium oxide particles 1-A were dispersed in water to obtain a zirconium oxide particle 1-A aqueous dispersion.
  • aqueous dispersions having different solid content concentrations of zirconium oxide particles 1-A were prepared, and the refractive index of each aqueous dispersion was measured with an Abbe refractometer. The measured refractive index was extrapolated to obtain the refractive index of the zirconium oxide particles 1-A.
  • Zirconium oxide particles 1-B were produced in the same manner as zirconium oxide particles 1-A, except that the temperature for firing in the atmosphere using an electric furnace was 550 ° C. The average primary particle diameter of the obtained zirconium oxide particles 1-B was 6 nm.
  • Zirconium oxide particles 1-C were produced in the same manner as zirconium oxide particles 1-A, except that the firing temperature in the atmosphere using an electric furnace was changed to 450 ° C.
  • the average primary particle diameter of the obtained zirconium oxide particles 1-C was 2 nm.
  • Zirconium oxide particles 1-D were produced in the same manner as zirconium oxide particles 1-A, except that the temperature of firing in the atmosphere using an electric furnace was 600 ° C. The average primary particle diameter of the obtained zirconium oxide particles 1-D was 15 nm.
  • Titanium oxide particles 1 242.1 g of titanium tetrachloride and 111.9 g of tin (IV) chloride pentahydrate were put into 1.5 L (liter) of pure water at 5 ° C. and stirred to prepare a mixed solution. Next, the mixed solution is heated to adjust the temperature to 25 ° C., and an aqueous ammonium carbonate solution having a concentration of 10% by mass is added to the mixed solution to adjust the pH to 1.5. Aged for time to remove excess chloride ions. Next, using an evaporator, water was removed from the mixed solution, and then dried to produce titanium oxide particles 1. The average primary particle diameter of the obtained titanium oxide particles 1 was 4 nm.
  • Zinc oxide particles 1 161.5 g of zinc sulfate was put into pure 3 L (liter) at 5 ° C. to obtain an aqueous zinc sulfate solution.
  • 8.6 g of 28% ammonia water was dissolved in 2 L of pure water while stirring this aqueous solution, and diluted ammonia water at 5 ° C. was added dropwise to prepare a translucent slurry.
  • the slurry was then processed with a centrifuge to recover the solids.
  • the collected solid was freeze-dried to obtain zinc oxide particles 1.
  • the average primary particle diameter of the obtained zinc oxide particles 1 was 4 nm.
  • Silica particles 1 Snowtex OXS silica particles manufactured by Nissan Chemical Industries, Ltd. were used.
  • the average primary particle diameter of the silica particles was 5 nm.
  • the modifying materials 1-A to 1-F were prepared as follows. The outline of the synthesis flow when one end contains a vinyl group is shown below. Moreover, the synthetic
  • dimethylvinylsilanol is dissolved when one end contains a vinyl group, and trimethylsilanol is dissolved when one end is a trimethyl group, and n-hexane at a temperature of 0 ° C. is stirred.
  • N-Butyllithium dissolved in 1 was added and reacted for 3 hours to obtain lithium dimethylvinylsilanolate (when one end contains a vinyl group) and lithium trimethylsilanolate (when one end is a trimethyl group) (formula (See (A)).
  • n in the formula (1) has a desired degree of polymerization, and reacted at a temperature of 0 ° C. for 12 hours.
  • a vinyl group was included
  • lithium trimethylorganosilanolate when one end was a trimethyl group
  • chlorotriethoxysilane was added and reacted at a temperature of 0 ° C. for 12 hours (see formula (C)).
  • n-hexane was mixed to form a lithium chloride precipitate, and then the lithium chloride was removed by filtration to obtain a modified material of the formula (1).
  • the structure of the obtained modifying material was confirmed by 1H-NMR.
  • Modification Material 1-A Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 60 Si (OC 2 H 5 ) 3 Modification Material 1 according to the above in the following material ratio -A was synthesized. 4.6 g of dimethylvinylsilanol 150 ml of THF (milliliter) n-Butyllithium 2.9g Hexamethylcyclosiloxane 200.3g Chlorotriethoxysilane 8.9g
  • Modification Material 1-B Preparation of (CH 3 ) 3 SiO (SiO (CH 3 ) 2 ) 60 Si (OC 2 H 5 ) 3 Modification material 1-B was synthesized according to the above in the following material ratio. Trimethylsilanol 4.0g 150 ml of THF (milliliter) n-Butyllithium 2.9g Hexamethylcyclosiloxane 200.3g Chlorotriethoxysilane 8.9g
  • Modification Material 1-C Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 30 Si (OC 2 H 5 ) 3 Modification Material 1 according to the above in the following material ratio -C was synthesized.
  • Dimethylvinylsilanol 9.2g 300 ml of THF (milliliter)
  • n-Butyllithium 5.8g Hexamethylcyclosiloxane 200.3g 17.9 g of chlorotriethoxysilane
  • Modification Material 1-E Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 3 Si (OC 2 H 5 ) 3 Modification Material 1 according to the above with the following material ratios -E was synthesized. 45.9g of dimethylvinylsilanol 1500 ml of THF (milliliter) n-Butyllithium 28.8g Hexamethylcyclosiloxane 100.1g Chlorotriethoxysilane 89.4g
  • Example 1-1 After 10 g of the modifying material 1-A was dissolved in 80 g of toluene, 10 g of zirconium oxide particles 1-A were charged. Next, 100 g of 0.1 mm diameter glass beads impregnated with 5 g of 10% by mass acetic acid aqueous solution were added, and this mixed solution was treated with a sand grinder for 3 hours, and then the recovered slurry was stirred at 100 ° C. for 10 hours. did. After filtering the obtained dispersion, toluene was removed by an evaporator to obtain modified particles (surface-modified metal oxide particle material) of Example 1-1.
  • Example 1-2 The modified material 1-A (4.5 g) was dissolved in 80 g of toluene, and the zirconium oxide particles 1-B (10 g) were added. Then, modified particles of Example 1-2 were obtained according to Example 1-1.
  • Example 1-3 After 10 g of the modifying material 1-B was dissolved in 80 g of toluene and 10 g of zirconium oxide particles 1-A were added, the modified particles of Example 1-3 were obtained according to Example 1-1.
  • Example 1-4 After 5 g of the modifying material 1-C was dissolved in 80 g of toluene and 10 g of zirconium oxide particles 1-A were added, modified particles of Example 1-4 were obtained according to Example 1-1.
  • Example 1-5 The modified material 1-D7.5 g was dissolved in 80 g of toluene, and then the zirconium oxide particles 1-A10 g were added. Then, modified particles of Example 1-5 were obtained according to Example 1-1.
  • Example 1-6 After 13 g of the modifying material 1-A was dissolved in 80 g of toluene, and 1 and 10 g of titanium oxide particles were added, modified particles of Example 1-6 were obtained according to Example 1-1.
  • Example 1--7 After 10 g of the modifying material 1-A was dissolved in 80 g of toluene, and 1 and 10 g of zinc oxide particles were added, modified particles of Example 1-7 were obtained according to Example 1-1.
  • Comparative Example 1-1 After 20 g of the modifying material 1-A was dissolved in 80 g of toluene and 10 g of zirconium oxide particles 1-C were added, modified particles of Comparative Example 1-1 were obtained according to Example 1-1.
  • the surface-modified metal oxide particle materials in Examples 1-1 to 1-7 are represented by the above formula (1) into metal oxide particles having an average primary particle diameter of 3 to 10 nm and a refractive index of 1.7 or more.
  • Surface modification material containing a silicone compound, and the volume ratio of the surface modification material (surface modification material / metal oxide particles) is 1.5 to 9, so that the refractive index is 1.48.
  • the viscosity at 25 ° C. was 1000 Pa ⁇ s or less, and the light transmittance at a wavelength of 400 to 800 nm at a thickness of 1 mm was 60% or more.
  • the surface-modified metal oxide particle material in Comparative Example 1-1 has a high viscosity because the average primary particle diameter of the metal oxide particles is too small, and the refractive index is also high because the volume ratio of the surface-modifying material is too high. The desired value was not reached.
  • the average primary particle diameter of the metal oxide particles was too large, and the volume ratio of the surface modifying material was too low, so that the light transmittance was lowered.
  • the silicone chain of the silicone compound represented by the formula (1) is too short, so that an interparticle interaction occurs.
  • the surface-modified metal oxide particle material in Reference Example 1-1 had no problem with viscosity and transmittance, but had a low refractive index because silica having a low refractive index was used as the metal oxide particle.
  • Example 1-8 10 g of modified particles of Example 1-1, 10 g of methyl silicone resin as a sealing material (a mixture of A solution and B solution of OE-6351 manufactured by Toray Dow Corning in a mass ratio of 1: 1), toluene 0 And 5 g using a commercially available rotation / revolution mixer (AR-100, manufactured by Sinky), and the optical semiconductor element sealing composition of Example 1-8 (surface-modified metal oxide particle material-containing optical semiconductor element sealing) Composition).
  • a uniform mixed composition of the modified particles and the methyl silicone resin was obtained.
  • the resulting mixed composition had a viscosity at 25 ° C. of 80 Pa ⁇ s, a thickness of 1 mm, and a light transmittance of 82% at a wavelength of 400 to 800 nm.
  • 10 g of the modified particles of Example 1-1 and 10 g of methyl silicone resin (a mixture of A solution and B solution of OE-6351 manufactured by Toray Dow Corning in a mass ratio of 1: 1) as a sealing material, 2 g of phosphor (GLD (Y) -550A manufactured by Genelite) and 0.5 g of toluene were mixed using a commercially available rotation / revolution mixer (AR-100 manufactured by Sinky) and contained the phosphor of Example 1-8.
  • An optical semiconductor element sealing composition surface-modified metal oxide particle material-containing optical semiconductor element sealing composition was produced. There was no problem in mixing at the time of production, and a uniform mixed composition of modified particles, methyl silicone resin and phosphor was obtained.
  • the obtained optical semiconductor encapsulating composition containing the phosphor of Example 1-8 was injected into a package equipped with a commercially available optical semiconductor element using a dispenser, and the pressure was increased to 10 hPa in a vacuum dryer set at 50 ° C. The toluene was removed by drying for 2 hours. Next, the optical semiconductor encapsulating composition was cured by heat treatment at 150 ° C. for 1 hour to obtain an optical semiconductor device of Example 1-8.
  • the injection operation of the optical semiconductor element sealing composition containing the phosphor of Example 1-8 can be performed in the same manner as in the case of the methyl silicone resin alone containing no modifying particles, and there was no problem in the injection.
  • the organic solvent in the optical semiconductor encapsulating composition is small, the solvent can be removed by a simple process, and thus the optical semiconductor device can be produced without any problem. Moreover, it was confirmed that the light emission luminance of the obtained optical semiconductor device was improved as compared with the case where only the methyl silicone resin and the phosphor were used as the sealing material.
  • Example 1-9 10 g of the modified particles of Example 1-2 and 10 g of a methyl silicone resin (a mixture of A solution and B solution of OE-6351 manufactured by Toray Dow Corning in a mass ratio of 1: 1) as a sealing material are commercially available. Are mixed using a rotating / revolving mixer (AR-100 manufactured by Sinky) to produce an optical semiconductor element sealing composition (surface-modified metal oxide particle material-containing optical semiconductor element sealing composition) of Example 1-9 did. There was no problem in mixing at the time of producing the optical semiconductor element sealing composition, and a uniform mixed composition of the modified particles and the methyl silicone resin was obtained.
  • a rotating / revolving mixer AR-100 manufactured by Sinky
  • the obtained mixed composition had a viscosity of 75 Pa ⁇ s at 25 ° C., a thickness of 1 mm, and a light transmittance of 61% at a wavelength of 400 to 800 nm.
  • 10 g of the modified particles of Example 1-2 and 10 g of methyl silicone resin as a sealing material (a mixture of A solution and B solution of OE-6351 manufactured by Toray Dow Corning at a mass ratio of 1: 1), 2 g of phosphor (GLD (Y) -550A manufactured by Genelite) was mixed using a commercially available rotation / revolution mixer (AR-100 manufactured by Sinky), and an optical semiconductor device containing the phosphor of Example 1-9 was sealed
  • a composition (a surface-modified metal oxide particle material-containing optical semiconductor element sealing composition) was prepared. There was no problem in mixing at the time of production, and a uniform mixed composition of modified particles, methyl silicone resin and phosphor was obtained.
  • the obtained optical semiconductor encapsulating composition containing the phosphor of Example 1-9 was injected into a package equipped with a commercially available optical semiconductor element using a dispenser. Next, the optical semiconductor encapsulating composition was cured by heat treatment at 150 ° C. for 1 hour to obtain an optical semiconductor device of Example 1-9.
  • the injection operation of the optical semiconductor element sealing composition containing the phosphor of Example 1-9 can be performed in the same manner as in the case of the methyl silicone resin alone containing no modifying particles, and there was no problem in the injection.
  • the organic semiconductor encapsulating composition does not contain an organic solvent, it is not necessary to remove the solvent at the time of curing. We were able to produce without problem. Moreover, it was confirmed that the light emission luminance of the obtained optical semiconductor device was improved as compared with the case where only the methyl silicone resin and the phosphor were used as the sealing material.
  • Comparative Example 1-5 10 g of modified particles of Comparative Example 1-3, 10 g of methyl silicone resin as a sealing material (a mixture of A and B liquids of OE-6351 manufactured by Toray Dow Corning at a mass ratio of 1: 1), phosphor 2 g of GLD (Y) -550A manufactured by Genelite and 0.5 g of toluene were mixed using a commercially available rotation / revolution mixer (AR-100 manufactured by Sinky), and an optical semiconductor element sealing composition of Comparative Example 1-5 (Surface-modified metal oxide particle material-containing optical semiconductor element sealing composition) was prepared.
  • the mixed optical semiconductor element sealing composition after mixing was in a state in which massive modified particles and massive phosphor were dispersed in the methylsilicone resin, and a uniform mixed composition could not be obtained. This is probably because the modified particles of Comparative Example 1-1 were too high in viscosity and could not be mixed sufficiently. Note that an optical semiconductor device was not manufactured because a uniform mixed composition was not obtained.
  • Comparative Example 1-6 10 g of modified particles of Comparative Example 1-1, 10 g of methyl silicone resin as a sealing material (a mixture of A solution and B solution of OE-6351 manufactured by Toray Dow Corning at a mass ratio of 1: 1), phosphor 2 g of GLD (Y) -550A (Genelite) and 60 g of toluene were mixed using a commercially available rotation / revolution mixer (AR-100, manufactured by Sinky), and an optical semiconductor device containing the phosphor of Comparative Example 1-6 A stop composition (a surface-modified metal oxide particle material-containing optical semiconductor element sealing composition) was prepared.
  • the obtained optical semiconductor encapsulating composition of Comparative Example 1-6 was poured into a package equipped with a commercially available optical semiconductor element using a dispenser, and toluene was added for 2 hours at 10 hPa in a vacuum dryer set at 50 ° C. Removed dry. This injection and drying removal were repeated 5 times, and after filling the mixed composition in the package, the optical semiconductor encapsulating composition was cured by performing a heat treatment at 150 ° C. for 1 hour. An optical semiconductor device was obtained.
  • the injection operation of the optical semiconductor element sealing composition of Comparative Example 1-6 can be performed in the same manner as in the case of the methyl silicone resin alone containing no modifying particles, and there was no problem in injection. This is presumably because the viscosity is lowered due to the inclusion of toluene which is an organic solvent. However, since a large amount of toluene is contained, the volumetric shrinkage at the time of drying is remarkable, so that the mixed composition cannot be filled in the package unless injection and drying removal are repeated five times, and workability is greatly reduced.
  • the amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution. Subsequently, this mixture was filtered, and the moisture of the obtained cake was dried and removed, and then baked at 500 ° C. for 1 hour in the air using an electric furnace.
  • this fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, and after sufficiently removing the added sodium sulfate, dried in a dryer, Zirconium oxide particles 2-A were obtained.
  • the average primary particle diameter of the obtained zirconium oxide particles A was determined from the Scherrer equation by X-ray diffraction, the average primary particle diameter was 4 nm.
  • Zirconium oxide particles 2-B were produced in the same manner as zirconium oxide particles 2-A, except that the temperature for firing in the atmosphere using an electric furnace was 550 ° C. The average primary particle diameter of the obtained zirconium oxide particles B was 6 nm.
  • Zirconium oxide particles 2-C were produced in the same manner as zirconium oxide particles 2-A, except that the firing temperature in the atmosphere using an electric furnace was 450 ° C.
  • the average primary particle diameter of the obtained zirconium oxide particles 2-C was 2 nm.
  • Zirconium oxide particles 2-D It was produced in the same manner as the zirconium oxide particles 2-A, except that the temperature for firing in the atmosphere using an electric furnace was 600 ° C. The average primary particle diameter of the obtained zirconium oxide particles 2-D was 15 nm.
  • Titanium oxide particles 2 242.1 g of titanium tetrachloride and 111.9 g of tin (IV) chloride pentahydrate were put into 1.5 L (liter) of pure water at 5 ° C. and stirred to prepare a mixed solution. Next, the mixed solution is heated to adjust the temperature to 25 ° C., and an aqueous ammonium carbonate solution having a concentration of 10% by mass is added to the mixed solution to adjust the pH to 1.5. Aged for time to remove excess chloride ions. Subsequently, moisture was removed from this mixed solution using an evaporator, and then dried to produce titanium oxide particles 2. The average primary particle diameter of the obtained titanium oxide particles 2 was 4 nm.
  • Silica particles 2 Snowtex OXS silica particles manufactured by Nissan Chemical Industries, Ltd. were used.
  • the average primary particle diameter of the silica particles was 5 nm.
  • Modified materials 2-A to 2-G were prepared as follows. The outline of the synthesis flow is shown below. Then, the compounding quantity of the material applied to each modification material is shown.
  • hexamethylcyclosiloxane dissolved in THF solvent hexaphenylcyclotrisiloxane in the case of phenylsiloxane chain. Triphenyltrimethylcyclotrisiloxane in the case of methylphenylsiloxane chain
  • n in formula (1). Drop the amount that gives the desired degree of polymerization and react at a temperature of 0 ° C. for 12 hours.
  • Lithium dimethyl vinyl organosilanolate when one end contains a vinyl group
  • Lithium dimethyl organosilanolate when one end is a trimethyl group
  • Modification Material 2-A Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 60 Si (OC 2 H 5 ) 3 Modification Material 2 according to the above with the following material ratio -A was synthesized. 4.6 g of dimethylvinylsilanol 150 ml of THF (milliliter) n-Butyllithium 2.9g Hexamethylcyclosiloxane 200.3g Chlorotriethoxysilane 8.9g
  • Modified material 2-B Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (C 6 H 5 ) 2 ) 60 Si (OC 2 H 5 ) 3 Modified according to the above with the following material ratios Material 2-B was synthesized. Dimethylvinylsilanol 1.8g 60 ml of THF (milliliter) n-Butyllithium 1.2g Hexaphenylcyclotrisiloxane 213.9g Chlorotriethoxysilane 3.6g
  • Modification Material 2-E Preparation of (CH 3 ) 3 SiO (SiO (CH 3 ) 2 ) 60 Si (OC 2 H 5 ) 3 Modification Material 2-E was synthesized according to the above in the following material ratio. 4.1 g of trimethylsilanol 150 ml of THF (milliliter) n-Butyllithium 2.9g Hexamethylcyclosiloxane 200.3g Chlorotriethoxysilane 8.9g
  • Modification Material 2-F Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 3 Si (OC 2 H 5 ) 3 Modification Material 2 according to the above with the following material ratio -F was synthesized. 45.9g of dimethylvinylsilanol 1500 ml of THF (milliliter) n-Butyllithium 28.8g Hexamethylcyclosiloxane 100.1g Chlorotriethoxysilane 89.4g
  • Modification Material 2-G Preparation of (CH 2 ⁇ CH) (CH 3 ) 2 SiO (SiO (CH 3 ) 2 ) 150 Si (OC 2 H 5 ) 3
  • Modification Material 2 according to the above with the following material ratio -G was synthesized.
  • Dimethylvinylsilanol 1.8g 60 ml of THF (milliliter)
  • n-Butyllithium 1.2g Hexamethylcyclosiloxane 200.3g Chlorotriethoxysilane 3.6g
  • Example 2-1 After 8.0 g of the modifying material 2-A was dissolved in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-1.
  • Example 2-2 After 8.0 g of the modifying material 2-B was dissolved in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed liquid was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-2.
  • Example 2-3 After modifying 5.0 g of the modifying material 2-C in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-3.
  • Example 2-4 After modifying 5.0 g of the modifying material 2-D in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-4.
  • Example 2-5 After 6.5 g of the modifying material 2-A was dissolved in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-B were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 15 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-5.
  • Example 2-6 After dissolving 3.0 g of vinyltrimethoxysilane (KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.) in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed solution was treated with a sand grinder for 3 hours, 4.0 g of the modifying material 2-D was added, and further treated with a sand grinder for 3 hours, and then the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 15 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed by an evaporator to obtain modified particles of Example 2-6.
  • Example 2-7 After 4.0 g of the modifying material 2-A and 4.0 g of the modifying material 2-E were dissolved in 80.0 g of toluene, 10.0 g of zirconium oxide particles 2-A were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-7.
  • Example 2-8 8.0 g of the modifying material 2-B was dissolved in 80.0 g of toluene, and then 10.0 g of titanium oxide particles were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of titanium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-8.
  • Example 2-9 After 8.0 g of the modifying material 2-B was dissolved in 80.0 g of toluene, zinc oxide particles 2 and 10.0 g were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zinc oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-9.
  • Example 2-10 The concentration of Snowtex OXS manufactured by Nissan Chemical Industries, Ltd. was adjusted to 5% by mass in terms of silica particles. Next, a solution obtained by dissolving stearic acid in methanol so as to be 5% by mass and Snowtex OXS adjusted in concentration were mixed and stirred, and the precipitate was collected and dried. After 10.0 g of this dry powder was put into 80.0 g of toluene, 8.0 g of the modifying material A was added and stirred at 100 ° C. for 10 hours. After cooling to room temperature, 20 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zinc oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed with an evaporator to obtain modified particles of Example 2-10.
  • Comparative Example 2-2 The modifying material 2-A (2.5 g) was dissolved in 80.0 g of toluene, and then zirconium oxide particles 2-D (10.0 g) were added. After this mixed solution was treated with a sand grinder for 3 hours, the recovered slurry was stirred at 100 ° C. for 10 hours. After cooling to room temperature, 10 parts by mass of hexamethyldisilazane was added to 100 parts by mass of zirconium oxide particles, and the mixture was stirred at 100 ° C. for 5 hours. After filtering the obtained dispersion, toluene was removed by an evaporator to obtain modified particles of Comparative Example 2-2.
  • the surface-modified metal oxide particle material in Examples 2-1 to 2-10 includes a surface-modifying material containing a silicone compound represented by the above formula (1) in metal oxide particles having an average primary particle diameter of 3 to 10 nm. Since the first surface modification is performed by the above, and the second surface modification is performed by the silylated material, the viscosity at 25 ° C. is 100 Pa ⁇ s or less, and the transmission of light at a wavelength of 400 to 800 nm. The rate was 60% or more at a thickness of 1 mm. On the other hand, the surface modified metal oxide particle materials in Comparative Examples 2-1 to 2-6 had a viscosity at 25 ° C. of over 100 Pa ⁇ s.
  • the surface-modified metal oxide particle material in Comparative Example 2-1 had a high viscosity because the average primary particle diameter of the metal oxide particles was too small to cause interaction between particles.
  • the average primary particle size of the metal oxide particles is large, so that scattering occurs and the light transmittance is reduced. Since the total amount of the material and the silylated material was small, the viscosity was as high as 990 Pa ⁇ s.
  • the surface-modified metal oxide particle material in Comparative Example 2-3 had a high viscosity due to the interaction between particles because the silicone chain of the silicone compound represented by the formula (1) was too short.
  • the surface-modified metal oxide particle material in Comparative Example 2-4 had a high viscosity because the silicone chain of the silicone compound represented by the formula (1) was too long.
  • the surface-modified metal oxide particle materials in Comparative Examples 2-5 and 2-6 had high viscosity because the total amount of the surface-modifying material and silylated material relative to the metal oxide particles was small.
  • Examples 2-1 to 2- The viscosity was higher than 10 and the viscosity at 25 ° C. exceeded 100 Pa ⁇ s. This is probably because the hydroxyl group remains.
  • Example 2-11 10 g of the modified particles of Example 2-2 and 10 g of a methyl silicone resin (a mixture of A solution and B solution of OE-6630 manufactured by Toray Dow Corning in a mass ratio of 1: 4) as a sealing material are commercially available. Are mixed using a rotating / revolving mixer (AR-100, manufactured by Sinky) to produce an optical semiconductor element sealing composition (an optical semiconductor element sealing composition containing a surface-modified metal oxide particle material) of Example 2-11 did. There was no problem in mixing at the time of producing the optical semiconductor element sealing composition, and a uniform mixed composition of the modified particles and the methyl silicone resin was obtained.
  • AR-100 rotating / revolving mixer
  • the obtained mixed composition had a viscosity at 25 ° C. of 15 Pa ⁇ s, a thickness of 1 mm, and a light transmittance of 78% at a wavelength of 400 to 800 nm.
  • 10 g of the modified particles of Example 2-2 and 10 g of a methyl silicone resin (a mixture of A solution and B solution of OE-6630 manufactured by Toray Dow Corning in a mass ratio of 1: 4) as a sealing material, 2 g of phosphor (GLD (Y) -550A manufactured by Genelite) and 0.5 g of toluene were mixed using a commercially available rotation / revolution mixer (AR-100 manufactured by Sinky) and contained the phosphor of Example 2-11.
  • An optical semiconductor element sealing composition surface-modified metal oxide particle material-containing optical semiconductor element sealing composition was produced. There was no problem in mixing at the time of production, and a uniform mixed composition of modified particles, methyl silicone resin and phosphor was obtained.
  • the obtained optical semiconductor encapsulating composition containing the phosphor of Example 2-11 was injected into a package including a commercially available optical semiconductor element using a dispenser. Next, the optical semiconductor encapsulating composition was cured by heat treatment at 150 ° C. for 1 hour to obtain an optical semiconductor device of Example 2-11.
  • the injection operation of the optical semiconductor element sealing composition containing the phosphor of Example 2-11 can be performed in the same manner as in the case of the methyl silicone resin alone containing no modifying particles, and there was no problem in the injection.
  • the organic semiconductor encapsulating composition does not contain an organic solvent, it is not necessary to remove the solvent at the time of curing. We were able to produce without problem. Moreover, it was confirmed that the light emission luminance of the obtained optical semiconductor device was improved as compared with the case where only the methyl silicone resin and the phosphor were used as the sealing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

 表面修飾材により金属酸化物粒子に表面修飾がされた表面修飾金属酸化物粒子を含む表面修飾金属酸化物粒子材料であって、表面修飾材が所定のシリコーン化合物を含み、金属酸化物粒子の平均一次粒子径が3~10nmで、25℃における粘度が1000Pa・s以下であり、1mm厚で波長400~800nmにおける光の透過率が60%以上である表面修飾金属酸化物粒子材料、光半導体素子封止組成物、及びこれを用いた光半導体装置である。

Description

表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
 本発明は、表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置に関する。
 シリコーン組成物は、透明性、耐熱性、耐光性等の特性が優れ、また硬さやゴム弾性に優れるため、光半導体封止材や光導波路材料等に用いられる。なかでも、メチルシリコーン組成物は耐熱性、耐光性といった耐久性が優れている。しかし、シリコーン組成物は屈折率が低いことや、膨張係数が大きい、ガス透過性が大きい、基材との密着性が低い等の問題がある。
 そこで、酸化ジルコニウム、酸化チタン、酸化ケイ素といった金属酸化物粒子をシリコーン組成物に分散、複合化することでこれらの欠点を補うとともに機能の向上が図られている。
 例えば、金属酸化物の微粒子と特定の多官能ポリシロキサンとを複合化した発光素子コーティング用組成物(例えば、特許文献1参照)、オルガノシロキサン化合物で表面処理されたジルコニアナノ粒子と末端アルコキシシリル基含有シリコーン樹脂とを含有し、オルガノシロキサン化合物とシリコーン樹脂との鎖長比を特定の範囲としたシリコーン樹脂組成物(例えば、特許文献2参照)、ビニル末端シリコーン修飾材料で表面修飾した金属酸化物粒子とオルガノハイドロジェンシロキサンとを反応させたシリコーン樹脂組成物(例えば、特許文献3参照)、シロキサンをグラフト化したシリカ粒子を含む高透明シリコーン組成物(例えば、特許文献4参照)等が提案されている。
 また、有機系の修飾剤3種を組み合わせて粘度を100Pa・s以下とする方法(特許文献5)アルキルシラザン系化合物で無機酸化物微粉末を疎水化処理する方法(特許文献6)等が提案されている。
特開2009-091380号公報 特開2011-144272号公報 特開2011-26444号公報 特開2009-120437号公報 特開2009-24117号公報 特開2003-192831号公報
 しかし、多官能ポリシロキサンを用いる場合(特許文献1)は、金属酸化物の微粒子と多官能ポリシロキサンとの配合量に制約がある。特に金属酸化物の微粒子の量が多い場合に、硬化物にポアやクラックが発生する問題があった。また、多官能ポリシロキサンを用いる場合では、未反応の官能基が残留し易いため、架橋後の複合体特性が経時的に変化し、更には、耐久性に劣るといった問題があった。
 特許文献2のように鎖長比によって複合組成物を得る場合、マトリックスシリコーン材料(末端アルコキシシリル基含有シリコーン樹脂)の鎖長が特定されてしまうことと、マトリックスシリコーンにアルコキシ基を必ず含有しなければならず、汎用的でない問題があった。
 ビニル末端シリコーン修飾材料で表面修飾した金属酸化物粒子とオルガノハイドロジェンシロキサンとを反応させたシリコーン樹脂組成物(特許文献3)では、鎖長の短いシリコーン修飾材料による表面修飾量が酸化ジルコニウム100重量部に対して262~522重量部と多量であり、さらにオルガノハイドロジェンシロキサンと複合化した場合、屈折率の向上効果が低いという問題があった。特許文献3に記載の方法では、表面修飾量を非常に多くしなければオイル状にならないが、表面修飾量が多いと金属酸化物粒子の特性を引き出せないという問題がある。
 また、特許文献1~3のいずれの場合も、表面修飾された粒子を多量の有機溶剤に分散させた後に他のマトリックスシリコーン組成物に混合・分散している。これらの文献では粘度について考慮されていないが、材料中に多量の溶剤を含有している場合、光半導体素子への封止等の工程中で多量の溶剤を蒸発させなければならない。このような工程における作業性を考慮すれば、材料中の含有溶剤は可能な限り少なくすることが好ましく、非含有とすることがより好ましい。つまり、他のマトリックスシリコーン組成物と混合するためには表面修飾粒子の粘度が低いことが望まれる。
 しかしながら、複合体の透明性を確保しようとすると、適用できる粒子の粒径は非常に小さいものとなる。屈折率等の特性をより高める目的では粒子添加量は多くする必要があるが、シングルナノメートルサイズの粒子を多量に添加すると粒子間の距離が非常に近くなり、また、この粒径範囲の粒子は表面活性が高く、粒子間での相互作用により粘度が高くなってしまうという問題を生じる。
 また、特許文献4のようにシリカ粒子にポリシロキサンをグラフト化した場合、屈折率向上効果は決して大きくはない。また、シリカの屈折率は1.45程度でメチルシリコーンの屈折率1.41に近いため、粒子径が大きくても透明性は損なわれないが、屈折率1.8以上の金属酸化物粒子では粒子径が10nmより大きくなると透明性を著しく損なってしまう。
 また、特許文献4に記載の方法では、粒子径が小さくなるとポリシロキサンをグラフトしただけでは修飾粒子の粘度を低くすることができない。
 特許文献5に記載の方法では、修飾剤が有機系であるため耐熱性が低いという問題がある。また、特許文献6に記載の方法では、疎水化処理粒子材料としては粉末状であり流動性がないという問題がある。
 以上から、本発明は粘性が低く、光学素子用の封止材等とした場合に複合化する金属酸化物粒子が有する優れた特性を発揮させつつ、かつ高い透明性を発揮し得る表面修飾金属酸化物粒子材料、該表面修飾金属酸化物粒子材料を含有する光半導体素子封止組成物を提供することを目的とする。また、高い透明性を有する封止材を具備した光半導体装置を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意研究を行った結果、金属酸化物粒子の平均一次粒子径を所定の範囲とし、かつ、これに表面修飾処理を施すための表面修飾材であるシリコーン化合物の構造を特定の構造とすることにより、当該課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は下記の通りである。
[1] 表面修飾材により金属酸化物粒子に表面修飾がされた表面修飾金属酸化物粒子を含む表面修飾金属酸化物粒子材料であって、
 前記表面修飾材が下記式(1)で表されるシリコーン化合物を含み、
 前記金属酸化物粒子の平均一次粒子径が3~10nmで、25℃における粘度が1000Pa・s以下であり、1mm厚で波長400~800nmにおける光の透過率が60%以上である表面修飾金属酸化物粒子材料。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Xは、水素原子、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基であり、R1、R2、Ra、及びRbはそれぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、又は炭素数2~6のアルケニル基である。Z1~Z3はそれぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基であり、少なくとも1つが炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。nは8~100の整数である。複数あるRa同士及び複数あるRb同士は、それぞれ同一でも異なっていてもよい。)
[2] 前記金属酸化物粒子の屈折率が1.7以上であり、
 前記金属酸化物粒子に対する前記表面修飾材の体積比率(表面修飾材/金属酸化物粒子)が1.5~9であり、
 当該材料の屈折率が1.48以上である[1]に記載の表面修飾金属酸化物粒子材料。
[3] さらに、水酸基を疎水化するシリル化材料によって第2の表面修飾がなされて、25℃における粘度が100Pa・s以下とされた[1]又は[2]に記載の表面修飾金属酸化物粒子材料。
[4] 前記シリコーン化合物を含む第1の表面修飾材料とシリル化材料との合計配合量が金属酸化物粒子100質量部に対し50~150質量部である[3]に記載の表面修飾金属酸化物粒子材料。
[5] 式(1)で表されるシリコーン化合物が、下記式(2)で表される[1]~[4]のいずれかに記載の表面修飾金属酸化物粒子材料。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、X、Rb及びnは、式(1)と同様である。Zは、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。mは1~3の整数である。)
[6] さらに、蛍光体を含有してなる[1]~[5]のいずれかに記載の表面修飾金属酸化物粒子材料。
[7] [1]~[6]のいずれかに記載の表面修飾金属酸化物粒子材料を含有してなる光半導体素子封止組成物。
[8] 少なくとも1層の封止材層により光半導体素子が封止されてなる光半導体装置であって、
 前記光半導体素子に接する第1封止材層が[7]に記載の光半導体素子封止組成物を含有してなる光半導体装置。
[9] 前記第1封止材層上に、[7]に記載の光半導体素子封止組成物とは組成の異なる第2封止材層が形成されてなる請求項8に記載の光半導体装置。
[10] 前記第1封止材層にさらに蛍光体が含有されてなる[8]又は[9]に記載の光半導体装置。
 本発明によれば、粘性が低く、光学素子用の封止材等とした場合に複合化する金属酸化物粒子が有する優れた特性を発揮させつつ、かつ高い透明性を発揮し得る表面修飾金属酸化物粒子材料、該表面修飾金属酸化物粒子材料を含有する光半導体素子封止組成物を提供することができる。
 特に、本発明の表面修飾金属酸化物粒子材料及び光半導体素子封止組成物は粘性が低いため、光半導体素子を製造する際に設けられる封止等の工程中で多量の溶剤を使用する必要がない(実質的に溶媒不要)。その結果、当該工程における作業性を大幅に向上させることができる。
 また、本発明によれば、高い透明性を有する封止材を具備した光半導体装置を提供することができる。これにより、光半導体装置における光取り出し効率や蛍光強度を向上させ、発光強度の高い光半導体装置を得ることができる。
本発明の光半導体装置の一実施形態を模式的に示す断面図である。 本発明の光半導体装置の他の実施形態を模式的に示す断面図である。 金属酸化物粒子に第1の表面修飾がなされ、さらに、水酸基を疎水化するシリル化材料によって第2の表面修飾がなされた場合の表面状態の変化を説明する概略説明図である。
[1]表面修飾金属酸化物粒子材料
 本発明の表面修飾金属酸化物粒子材料は、平均一次粒子径が3~10nmの金属酸化物粒子が、特定の構造を有するシリコーン化合物を含む表面修飾材により表面修飾されてなる表面修飾金属酸化物粒子を含んでなる。
 平均一次粒子径が3nm未満では、結晶性が低くなるのに加え、表面活性が高いために粒子間相互作用を生じて、表面修飾金属酸化物粒子材料の粘度が高くなってしまう。また、当該材料をマトリックス樹脂(例えば、メチルシリコーン組成物をはじめとしたシリコーン組成物)に分散させて使用する場合、分散後の混合組成物の粘度が高くなってしまう。さらに、比表面積が大きいため金属酸化物粒子を被覆する表面修飾材の量が多くなり、高い屈折率を得ることが困難となる。
 また、平均一次粒子径が10nmより大きくなると、金属酸化物粒子と表面修飾材中のシリコーン化合物との屈折率差が大きいため、散乱による透過率の低下が顕著となる。
 平均一次粒子径は4~8nmであることが好ましく、4~6nmであることがより好ましい。
 なお、上記「平均一次粒子径」とは、X線回折によるシェラーの式により求められる結晶子径である。
 金属酸化物粒子を構成する金属酸化物としては、ジルコニウム(Zr)、チタン(Ti)、ケイ素(Si)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、タンタル(Ta)、タングステン(W)、鉛(Pb)、ビスマス(Bi)、セリウム(Ce)、アンチモン(Sb)、ゲルマニウム(Ge)等の元素の酸化物が用いられる。
 これらの元素の酸化物としては、例えば、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化鉄(Fe23、FeO、Fe34)、酸化銅(CuO、Cu2O)、酸化亜鉛(ZnO)、酸化イットリウム(Y23)、酸化ニオブ(Nb25)、酸化モリブデン(MoO3)、酸化インジウム(In23、In2O)、酸化スズ(SnO2)、酸化タンタル(Ta25)、酸化タングステン(WO3、W25)、酸化鉛(PbO、PbO2)、酸化ビスマス(Bi23)、酸化セリウム(CeO2、Ce23)、酸化アンチモン(Sb23、Sb25)、酸化ゲルマニウム(GeO2、GeO)等が挙げられる。
 また、錫ドープ酸化インジウム(ITO)、イットリア安定化ジルコニア(YSZ)等の複合酸化物であってもよい。
 特に、汎用的なシリコーン樹脂は屈折率が低いことから複合組成物を高屈折率化する場合には、高い屈折率を有し、無色透明であり硬度も高い金属酸化物粒子を、好適に用いることができる。このような金属酸化物粒子の屈折率は、1.7以上であることが好ましく、1.9以上であることがより好ましく、2.0以上であることがさらに好ましい。屈折率1.7以上の金属酸化物としては、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化アルミニウム等が挙げられる。
 金属酸化物粒子は、特定の構造を有するシリコーン化合物を含む表面修飾材により表面処理されてなるが、当該シリコーン化合物としては、下記式(1)に示す通りである。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Xは、水素原子、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基であり、R1、R2、Ra、及びRbはそれぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、又は炭素数2~6のアルケニル基である。Z1~Z3はそれぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基であり、少なくとも1つが炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。nは8~100の整数である。複数あるRa同士及び複数あるRb同士は、それぞれ同一でも異なっていてもよい。)
 本発明において、炭素数1~6のアルキル基として好ましくは、メチル基、エチル基、プロピル基、ブチル基が挙げられる。炭素数2~6のアルケニル基として好ましくは、ビニル基、アリル基が挙げられる。炭素数1~6のアルコキシ基として好ましくはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基が挙げられる。
 式(1)において、耐熱性を考慮すると、X、R1、R2、Ra、及びRbの少なくとも1つはメチル基であることが好ましい。
 また、X、R1、R2、Ra、及びRbの少なくとも1つを炭素数2~6のアルケニル基とすることが好ましい。炭素数2~6のアルケニル基とすることで、マトリックス樹脂となるシリコーン組成物中のハイドロジェンシリコーンとヒドロシリル化反応をすることにより、本発明の表面修飾金属酸化物粒子材料とシリコーン組成物との混合組成物を硬化させるときに表面修飾金属酸化物粒子がマトリックス樹脂中で相分離することを防ぐことができ、またシリコーン組成物と架橋することで強固な複合体が得られるからである。アルケニル基の配置は鎖長の片末端(すなわち、置換基X)が好ましい。
 さらに、本発明の表面修飾金属酸化物粒子材料を光半導体素子に被覆して、その被覆層の上に公知の光半導体素子封止材を積層する場合、本発明に係るシリコーン化合物中のアルケニル基と積層される光半導体素子封止材に含有する、例えばハイドロジェンシリコーンがヒドロシリル化反応により架橋することから、それぞれの界面が良好に結合することにより、当該界面での光反射を低減することができる。
 式(1)中のnは8~100の整数であるが、これはnが8未満だと表面修飾された金属酸化物粒子間において特定のシリコーン化合物により生じる立体障害が小さくなり、粒子間相互作用が大きくなって粘度が高くなる問題や、マトリックス樹脂となる汎用的なシリコーン組成物との鎖長差が大きくマトリックス樹脂中での均一分散性が得られないという問題が生じる。一方、nが100より大きいと、長い鎖長が大きな立体障害となり特定のシリコーン化合物が金属酸化物粒子と効率的に結合しないという問題が生じる。さらに、鎖長が長い場合でも短い場合でも粒子単位面積あたりの表面修飾材料の個数は同数であり、鎖長が長いほど、本発明に係る表面修飾金属酸化物粒子中の金属酸化物粒子の相対体積率が小さくなり、表面修飾金属酸化物粒子材料の屈折率が低くなってしまう。nは10~80であることが好ましく、30~70であることがより好ましい。
 また、式(1)中、Z1、Z2及びZ3のうち少なくとも1つをアルコキシ基、ヒドロキシ基、ハロゲン原子、カルボキシ基としたのは、加水分解・縮合や水素結合によって金属酸化物粒子表面の水酸基と強固に結合するからである。好ましくはアルコキシ基、ヒドロキシ基である。
 上記式(1)で表されるシリコーン化合物は下記式(2)で表されるシリコーン化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、X、Rb及びnは、式(1)と同様である。Zは、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。mは1~3の整数である。)
 本発明に係るシリコーン化合物として具体的には、以下に示すものが好ましい。
(CH3)3SiO((SiOCH3)2)30Si(OCH3)3
(CH3)3SiO((SiOCH3)2)45Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)60Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)30Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)45Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)60Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OC2H5)3
H(CH3)2SiO(SiO(CH3)2)30Si(OCH3)3
H(CH3)2SiO(SiO(CH3)2)45Si(OCH3)3
H(CH3)2SiO(SiO(CH3)2)60Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)30Si(OH)3
(CH3)3SiO(SiO(CH3)2)45Si(OH)3
(CH3)3SiO(SiO(CH3)2)60Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OH)3
H(CH3)2SiO(SiO(CH3)2)30Si(OH)3
H(CH3)2SiO(SiO(CH3)2)45Si(OH)3
H(CH3)2SiO(SiO(CH3)2)60Si(OH)3
(CH3)3SiO(SiO(CH3)2)30SiCl3
(CH3)3SiO(SiO(CH3)2)45SiCl3
(CH3)3SiO(SiO(CH3)2)60SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60SiCl3
(CH3)3SiO(SiO(C6H5)2)30Si(OH)3
(CH3)3SiO(SiO(C6H5)2)45Si(OH)3
(CH3)3SiO(SiO(C6H5)2)60Si(OH)3
(CH3)3SiO(SiO(C6H5)2)30Si(OCH3)3
(CH3)3SiO(SiO(C6H5)2)45Si(OCH3)3
(CH3)3SiO(SiO(C6H5)2)60Si(OCH3)3
(CH3)3SiO(SiO(C6H5)2)30Si(OC2H5)3
(CH3)3SiO(SiO(C6H5)2)45Si(OC2H5)3
(CH3)3SiO(SiO(C6H5)2)60Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)30Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)45Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)60Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)30Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)45Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)60Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)30Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)45Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)60Si(OC2H5)3
(CH3)3SiO(SiO(CH3)(C6H5))30Si(OH)3
(CH3)3SiO(SiO(CH3)(C6H5))45Si(OH)3
(CH3)3SiO(SiO(CH3)(C6H5))60Si(OH)3
(CH3)3SiO(SiO(CH3)(C6H5))30Si(OCH3)3
(CH3)3SiO(SiO(CH3)(C6H5))45Si(OCH3)3
(CH3)3SiO(SiO(CH3)(C6H5))60Si(OCH3)3
(CH3)3SiO(SiO(CH3)(C6H5))30Si(OC2H5)3
(CH3)3SiO(SiO(CH3)(C6H5))45Si(OC2H5)3
(CH3)3SiO(SiO(CH3)(C6H5))60Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))30Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))45Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))60Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))30Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))45Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))60Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))30Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))45Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)(C6H5))60Si(OC2H5)3
(CH3)3SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OCH3)3
(CH3)3SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OH)3
(CH3)3SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)15SiO(SiO(CH3)2)15Si(OC2H5)3
(CH3)3SiO(SiO(C6H5)2)30O(SiO(CH3)2)30Si(OCH3)3
(CH3)3SiO(SiO(C6H5)2)30O(SiO(CH3)2)30Si(OH)3
(CH3)3SiO(SiO(C6H5)2)30O(SiO(CH3)2)30Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)30O(SiO(CH3)2)30Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(C6H5)2)30O(SiO(CH3)2)30Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)15(SiO(C6H5)2)15Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)15(SiO(C6H5)2)15Si(OH)3
(CH3)3SiO(SiO(CH3)2)15(SiO(C6H5)2)15Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)15(SiO(C6H5)2)15Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)15(SiO(C6H5)2)15Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)30Si(CH3)2COOH
(CH3)3SiO(SiO(CH3)2)45Si(CH3)2COOH
(CH3)3SiO(SiO(CH3)2)60Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(CH3)2COOH
 なかでも、下記シリコーン化合物が好ましい。
(CH3)3SiO(SiO(CH3)2)30Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)45Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)60Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OCH3)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OCH3)3
(CH3)3SiO(SiO(CH3)2)30Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)45Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)60Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OC2H5)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OC2H5)3
(CH3)3SiO(SiO(CH3)2)30Si(OH)3
(CH3)3SiO(SiO(CH3)2)45Si(OH)3
(CH3)3SiO(SiO(CH3)2)60Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(OH)3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(OH)3
(CH3)3SiO(SiO(CH3)2)30SiCl3
(CH3)3SiO(SiO(CH3)2)45SiCl3
(CH3)3SiO(SiO(CH3)2)60SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45SiCl3
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60SiCl3
(CH3)3SiO(SiO(CH3)2)30Si(CH3)2COOH
(CH3)3SiO(SiO(CH3)2)45Si(CH3)2COOH
(CH3)3SiO(SiO(CH3)2)60Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)30Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)45Si(CH3)2COOH
(CH2=CH)(CH3)2SiO(SiO(CH3)2)60Si(CH3)2COOH
 金属酸化物粒子に対する当該表面修飾材の体積比率(表面修飾材/金属酸化物粒子)は1.5~9であり、2.0~8.0であることが好ましく、2.5~6.0であることがより好ましい。体積比率が1.5未満であると、表面修飾材料の量が少なくシリコーン組成物(マトリックス樹脂)への分散性が低くなって、透明性が低下してしまう。また、9を超えると表面修飾金属酸化物粒子材料の屈折率が低くなるのに対し、例えば、メチルシリコーン組成物(マトリックス樹脂)の屈折率は1.41程度であるから、表面修飾金属酸化物粒子材料を混合分散させても屈折率を高めることができない。
 表面修飾材料による表面修飾方法としては、湿式法や乾式法等が挙げられる。湿式法は溶媒に金属酸化物粒子と表面修飾材料、必要に応じて表面修飾材料を加水分解させるための触媒を投入し、加熱撹拌やビーズメディア等外部からエネルギーを加えて金属酸化物粒子に溶媒中で表面修飾させながら分散させる方法である。また、乾式法は金属酸化物粒子と表面修飾材料を混練機等により混合しながら表面修飾金属酸化物粒子を得るといった方法が挙げられる。
 なお、当該表面修飾材料においては、特定のシリコーン化合物とともに、その他の修飾材料を併用してもよい。併用できる修飾材料としては、ビニルトリメトキシシランやアルキルシラン等のシラン化合物が挙げられる。この場合の当該表面修飾材料の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 さらに、本発明の表面修飾金属酸化物粒子材料は、表面修飾材料により表面修飾(第1の表面修飾)された後、水酸基を疎水化するシリル化材料によって第2の表面修飾がなされてなることが好ましい。その際、25℃における粘度が100Pa・s以下とされてなることが好ましい。
 本発明では、図3に示すように、特定のシリコーン化合物を含む表面修飾材料により第1の表面修飾がなされた金属酸化物粒子(図3の上段)に、さらに第2の表面修飾がなされることで、金属酸化物粒子の表面上にあって第1の表面修飾材料と結合していない表面上の水酸基(表面水酸基)、及びシリコーン化合物修飾材料中にあって金属酸化物粒子表面と結合していない水酸基がシリル化処理される(図3の下段)。これによって粘度が100Pa・s以下となり、LED等の封止材等として用いられる汎用的なシリコーン組成物(マトリックス樹脂)と同様に扱え、種々の樹脂への混合分散も容易となる。
 特定のシリコーン化合物を含む表面修飾材料(第1の表面修飾に係る表面修飾材料)とシリル化材料との合計配合量は金属酸化物粒子100質量部に対し50~150質量部であることが好ましく、70~100質量部であることがより好ましい。合計配合量が50質量部未満だとシリコーン表面修飾金属酸化物粒子材料の粘度が高くなり、150質量部より多いと粒子と反応しない過剰な修飾材料が粒子と反応した修飾材料と絡み合って粘度が高くなる。また、修飾材料が過剰なために金属酸化物粒子の含有量が低くなり、例えば屈折率等の金属酸化物粒子としての特性が十分引き出せない。
 シリル化材料としては、以下に示すものが挙げられるが、好ましくは耐熱性の面から炭素数は少ないもの、分解生成塩素のないものがよい。シリル化材料の量は金属酸化物粒子の種類、粒径およびシリコーン化合物表面修飾材料の量および金属酸化物粒子表面との反応効率によって便宜決定されるが金属酸化物粒子100質量部に対して1~100質量部、より好ましくは5~50質量部である。
(CH3)3SiCl [トリメチルシリルクロライド]
(CH3)3SiNHSi(CH3)3 [ヘキサメチルジシラザン]
(CH3)3SiNHCONHSi(CH3)3 [N,N’ビス(トリメチルシリル)ウレア]
(C2H5)3SiCl [トリエチルシリルクロライド]
tert-Bu(CH3)2SiCl [t-ブチルジメチルシリルクロライド]
i-Pr3SiCl [トリ-i-プロピルシリルクロライド]
Cl(i-Pr)2SiOSi(i-Pr)2Cl [1,3-ジクロロ-1,1,3,3-テトラ-トリ-i-プロピルジシロキサン]
ClCH2Si(CH3)3 [クロロメチルトリメチルシラン]
(CH3)3SiOCH3 [トリメチルモノメトキシシラン]
 シリル化材料によるシリル化方法としては、第1の表面修飾をされた金属酸化物粒子に湿式または乾式方法によりシリル化材料を接触させる方法が挙げられるが、加水分解したシリル化材料を、金属酸化物粒子の表面上にあって第1の表面修飾材料と結合していない表面水酸基や、シリコーン化合物修飾材料中にあって金属酸化物粒子表面と結合していない水酸基と効率良く反応させるためには、第1の表面修飾をされた金属酸化物粒子を有機溶剤中に分散させ、シリル化材料を加え、反応させるのが良い。
 本発明において、複合組成物を高屈折率化する場合には、表面修飾金属酸化物粒子材料の屈折率は1.48以上であることが好ましく、1.55以上であることがより好ましく、1.60以上であることがさらに好ましい。屈折率が1.48未満では、LED封止材等として用いられる汎用的なシリコーン組成物(マトリックス樹脂)と複合化させた際にも屈折率を向上させることができない場合があったり、また、シリコーン表面修飾高屈折率金属酸化物粒子材料としてLED素子に被覆した際にも汎用的なシリコーン組成物をLED素子上に封止したときに比べて屈折率を高くすることができない場合があったりする。
 また、本発明の表面修飾金属酸化物粒子材料の25℃における粘度は、1000Pa・s以下であり、900Pa・s以下であることが好ましく、850Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましい。粘度を25℃で1000Pa・s以下とすることでLED封止材等として用いられる汎用的なシリコーン組成物(マトリックス樹脂)と同様に扱え、シリコーン組成物(マトリックス樹脂)への混合分散も容易となる。すなわち、表面修飾金属酸化物粒子材料自体が低粘度であることから、シリコーン組成物(マトリックス樹脂)との混合時に、粘度を調整するために必要とする有機溶媒が少量の使用ですみ、場合によっては使用しないですむ。特に、粘度が100Pa・s以下であれば、粘度を調整するための有機溶媒を必要としない。一方、粘度が1000Pa・sより高いとシリコーン組成物(マトリックス樹脂)と混合するときに多量の有機溶剤を用いて低粘度化しなければならず、アプリケーションプロセスにおいて溶剤除去の工程負荷が大きくなる。
 本発明の表面修飾金属酸化物粒子材料の波長400~800nmにおける光の透過率は、1mm厚で60%以上であり、70%以上であることが好ましく、80%以上であることがより好ましい。透過率が60%未満では、シリコーン組成物(マトリックス樹脂)に混合分散したときに高い透明性を維持することができなくなる。
 ここで、「1mm厚」での光の透過率は、例えば内幅が1mmの石英セルに表面修飾金属酸化物粒子材料を充填することで、表面修飾金属酸化物粒子材料の光路長が1mmになるようにして透過率を測定した後、空の石英セルの測定値を比較対照として算出すればよい。
 以上のように、本発明の表面修飾金属酸化物粒子材料によれば、溶媒を介することなく、あるいは溶媒の使用を極力抑えた状態で、後述の付加型又は縮合型シリコーン組成物に容易に均一透明に混合分散でき、付加型又は縮合型シリコーン組成物の屈折率等の光学特性や機械的特性、熱伝導特性、耐ガス透過性等の特性を向上させることができる。これにより、光半導体素子に隣接した部分の屈折率を高めることができる。さらにその上に公知の光半導体素子封止組成物を積層すれば、光半導体素子から空気界面にかけて屈折率が傾斜した光半導体装置とすることができる。
 また、本発明の表面修飾金属酸化物粒子材料は蛍光体(例えば、青色InGaN用のYAG蛍光体や紫外光用のRGB蛍光体)を含有することができる。これにより、光半導体素子に隣接した屈折率の高い部分に蛍光体を配置することができる。
[2]光半導体素子封止組成物
 本発明の光半導体素子封止組成物は、本発明の表面修飾金属酸化物粒子材料を含有してなる。
 当該表面修飾金属酸化物粒子材料の他には、種々のシリコーン樹脂(マトリックス樹脂)を含有することが好ましく、シリコーン樹脂としてはメチルシリコーン、メチルフェニルシリコーン、フェニルシリコーン、変性シリコーンがある。硬化の方法により、付加硬化型シリコーン組成物や縮合硬化型シリコーン組成物が挙げられる。
 付加硬化型シリコーン組成物は、少なくともアルケニル基含有シリコーンとハイドロジェンシリコーンと白金族金属系触媒とを含有してなる組成物である。
 縮合硬化型シリコーン組成物は、少なくとも分子鎖末端が水酸基又は加水分解性基で封鎖されたシリコーンとケイ素原子に結合した加水分解可能な基を1分子中に3個以上含有するシラン化合物とアミノキシ基、アミノ基、ケトオキシム基等を含有する縮合触媒とを含有してなる組成物である。
[3]光半導体装置
 本発明の光半導体装置は、少なくとも1層の封止材層により光半導体素子が封止されてなり、光半導体素子に接する第1封止材層が既述の本発明の光半導体素子封止組成物を含有してなる。封止材層は、この第1封止材層だけで封止材を構成(第1の態様)してもよく、2層以上の封止材層で構成し光半導体素子に接する層を第1封止材層とする構成(第2の態様)としてもよい。
 当該光半導体装置について発光装置を例に具体的に説明する。なお、本発明は当該例に特に限定されるものではない。
 本発明に係る第1の態様(発光装置10)は、図1に示すように、反射カップ12の凹部12Aに発光素子14が配置され、発光素子14に接して凹部を埋め込むように、本発明の封止材からなる第1封止材層16が形成されてなる。
 かかる装置によれば、発光素子14から出射された光は封止材との境界面を通過した後、封止材内を通り、直接に、あるいは反射カップ12の壁面で反射されて外部に取り出される。
 発光装置を構成する発光素子として、例えば、発光ダイオード(LED)及び半導体レーザを挙げることができる。ここで、発光ダイオードとしては、赤色光(例えば、波長640nmの光)を発光する赤色発光ダイオード、緑色光(例えば、波長530nmの光)を発光する緑色発光ダイオード、青色光(例えば、波長450nmの光)を発光する青色発光ダイオードを例示することができる。発光ダイオードは、いわゆるフェイスアップ構造を有していてもよいし、フリップチップ構造を有していてもよい。すなわち、発光ダイオードは、基板、及び、基板上に形成された発光層から構成されており、発光層から光が外部に出射される構造としてもよいし、発光層からの光が基板を通過して外部に出射される構造としてもよい。
 より具体的には、発光ダイオード(LED)は、例えば、基板上に形成された第1導電型(例えばn型)を有する化合物半導体層からなる第1クラッド層、第1クラッド層上に形成された活性層、活性層上に形成された第2導電型(例えばp型)を有する化合物半導体層からなる第2クラッド層が積層された構造を有し、第1クラッド層に電気的に接続された第1電極、及び、第2クラッド層に電気的に接続された第2電極を備えている。発光ダイオードを構成する層は、発光波長に依存して、周知の化合物半導体材料から構成すればよい。
 本発明に係る第2の態様(発光装置20)は、図2に示すように、第1封止材層16が発光素子14の表面を覆うように形成されてなり、その外側を本発明の光半導体素子封止組成物とは組成の異なる第2封止材層18が形成されてなる以外は、第1の態様と同様である。
 組成の異なる第2封止材層の材料としては、メチルシリコーン、メチルフェニルシリコーン、フェニルシリコーン、変性シリコーン、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂等の樹脂又は樹脂組成物が挙げられる。第2の封止材層の屈折率は、第1封止材層と第2封止材層の界面反射をより少なくするために、第1封止材層の屈折率以下であることが好ましい。また、第2封止材層の屈折率を調整する目的で本発明の表面修飾金属酸化物粒子を含有してもよい。
 また、本発明の光半導体装置は、発光素子と蛍光体とを組み合わせた光半導体装置とすることもできる。本発明の光半導体装置によれば、光半導体素子に接する第1封止材層が既述の本発明の光半導体素子封止組成物を含有しているが、この第1封止材層に、既述の蛍光体(例えば、青色InGaN用のYAG蛍光体や紫外光用のRGB蛍光体)を含有させればよい。蛍光体は、予め本発明の表面修飾金属酸化物粒子材料に含有させたものを用いてもよく、種々のシリコーン(マトリックス樹脂)に混合したものを本発明の表面修飾金属酸化物粒子材料と混合して用いてもよい。
 特に、コスト面で蛍光体の使用量を削減する場合や発光素子近傍に蛍光体を集中的に配置して光変換効率を高める場合を考慮すると、第2の態様における第1封止材層に蛍光体を含有させることが好ましい。蛍光体は、第1封止材層の質量に対して5~80質量%であることが好ましく、20~70質量%であることがより好ましい。なお、第2封止材層にも蛍光体を含有させることができる。
 このような、発光素子と蛍光体とを組み合わせた光半導体装置としては、白色発光ダイオード(例えば、紫外または青色発光ダイオードと蛍光体粒子とを組み合わせて白色光を出射する発光ダイオード)を例示することができる。
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[A]第1の実施例
(金属酸化物粒子の作製)
(1)酸化ジルコニウム粒子1-A
 オキシ塩化ジルコニウム8水塩261.5gを純水4L(リットル)に溶解させたジルコニウム塩溶液を撹拌しながら、28%アンモニア水34.4gを純水2Lに溶解させた希アンモニア水を滴下してジルコニア前駆体スラリーを調製した。
 次いで、このスラリーに、硫酸ナトリウム30gを0.5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。次いで、この混合物をろ過し、得られたケーキの水分を乾燥除去後、電気炉を用いて、大気中、500℃にて1時間焼成し焼成物を得た。
 この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥機にて乾燥させ、酸化ジルコニウム粒子1-Aを得た。
 得られた酸化ジルコニウム粒子1-Aの平均一次粒子径を、X線回折によるシェラーの式より求めたところ、当該平均一次粒子径は4nmであった。
 また、酸化ジルコニウム粒子1-Aの屈折率を下記のようにして求めた。
 水のpHを調整することで酸化ジルコニウム粒子1-Aを水中に分散させ、酸化ジルコニウム粒子1-A水分散液を得た。同様に酸化ジルコニウム粒子1-Aの固形分濃度の異なる水分散液を4点調製し、それぞれの水分散液の屈折率をアッベ屈折率計によって測定した。測定した屈折率を外挿し、酸化ジルコニウム粒子1-Aの屈折率を得た。
(2)酸化ジルコニウム粒子1-B
 電気炉を用いた大気中での焼成の温度を550℃にした以外は酸化ジルコニウム粒子1-Aと同様の方法で酸化ジルコニウム粒子1-Bを作製した。
 得られた酸化ジルコニウム粒子1-Bの平均一次粒子径は6nmであった。
(3)酸化ジルコニウム粒子1-C
 電気炉を用いた大気中での焼成の温度を450℃にした以外は酸化ジルコニウム粒子1-Aと同様の方法で酸化ジルコニウム粒子1-Cを作製した。
 得られた酸化ジルコニウム粒子1-Cの平均一次粒子径は2nmであった。
(4)酸化ジルコニウム粒子1-D
 電気炉を用いた大気中での焼成の温度を600℃にした以外は酸化ジルコニウム粒子1-Aと同様の方法で酸化ジルコニウム粒子1-Dを作製した。
 得られた酸化ジルコニウム粒子1-Dの平均一次粒子径は15nmであった。
(5)酸化チタン粒子1
 四塩化チタン242.1gと、塩化スズ(IV)5水和物111.9gとを、5℃の純水1.5L(リットル)に投入し、撹拌して混合溶液を作製した。
 次いで、この混合溶液を加温して温度を25℃に調整し、この混合溶液に濃度が10質量%の炭酸アンモニウム水溶液を加えてpHを1.5に調整し、その後、25℃にて24時間熟成し、過剰の塩化物イオンを取り除いた。
 次いで、エバポレータを用いて、この混合溶液から水分を除去し、その後乾燥させ、酸化チタン粒子1を作製した。
 得られた酸化チタン粒子1の平均一次粒子径は4nmであった。
(6)酸化亜鉛粒子1
 硫酸亜鉛161.5gを5℃の純粋3L(リットル)に投入し、硫酸亜鉛水溶液を得た。
 次いで、この水溶液を撹拌しながら28%アンモニア水8.6gを純水2Lに溶解させ、5℃とした希アンモニア水を滴下して半透明のスラリーを作製した。
 次いで、スラリーを遠心分離機で処理して固形物を回収した。回収した固形物を凍結乾燥させ、酸化亜鉛粒子1を得た。
 得られた酸化亜鉛粒子1の平均一次粒子径は4nmであった。
(7)シリカ粒子1
 日産化学工業(株)製スノーテックスOXSのシリカ粒子を用いた。当該シリカ粒子の平均一次粒子径は5nmであった。
(修飾材料の調製)
 修飾材料1-A~1-Fを下記のようにして調製した。
 以下に片末端がビニル基を含む場合の合成フローの概要を示す。
 また、片末端がビニル基を含む場合及び片末端がトリメチル基の場合の合成方法をさらに以下に示し、その後、それぞれの修飾材料に適用した材料の配合量を示す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 窒素雰囲気下でテトラヒドロフラン(THF)溶媒中に、片末端がビニル基を含む場合はジメチルビニルシラノールを、片末端がトリメチル基の場合はトリメチルシラノールを溶解し、撹拌しながら温度0℃のn-ヘキサンに溶解したn-ブチルリチウムを滴下して3時間反応させ、リチウムジメチルビニルシラノレート(片末端がビニル基を含む場合)、リチウムトリメチルシラノレート(片末端がトリメチル基の場合)を得た(式(A)参照)。
 次いで、THF溶媒中に溶解したヘキサメチルシクロシロキサンを式(1)中のnが所望の重合度となる量を滴下し、温度0℃で12時間反応させ、リチウムジメチルオルガノシラノレート(片末端がビニル基を含む場合)、リチウムトリメチルオルガノシラノレート(片末端がトリメチル基の場合)を得た(式(B)参照)。
 次いで、クロロトリエトキシシランを加え、温度0℃で12時間反応させた(式(C)参照)。
 次いで、n-ヘキサンを混合し、塩化リチウムの沈殿を生成させた後、塩化リチウムをろ過除去し、式(1)の修飾材料を得た。
 得られた修飾材料は、1H-NMRによって構造を確認した。
(1)修飾材料1-A:(CH2=CH)(CH32SiO(SiO(CH3260Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Aを合成した。
ジメチルビニルシラノール 4.6g
THF 150ml(ミリリットル)
n-ブチルリチウム 2.9g
ヘキサメチルシクロシロキサン 200.3g
クロロトリエトキシシラン 8.9g
(2)修飾材料1-B:(CH33SiO(SiO(CH3260Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Bを合成した。
トリメチルシラノール 4.0g
THF 150ml(ミリリットル)
n-ブチルリチウム 2.9g
ヘキサメチルシクロシロキサン 200.3g
クロロトリエトキシシラン 8.9g
(3)修飾材料1-C:(CH2=CH)(CH32SiO(SiO(CH3230Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Cを合成した。
ジメチルビニルシラノール 9.2g
THF 300ml(ミリリットル)
n-ブチルリチウム 5.8g
ヘキサメチルシクロシロキサン 200.3g
クロロトリエトキシシラン 17.9g
(4)修飾材料1-D:(CH2=CH)(CH32SiO(SiO(CH3245Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Dを合成した。
ジメチルビニルシラノール 9.2g
THF 300ml(ミリリットル)
n-ブチルリチウム 5.8g
ヘキサメチルシクロシロキサン 300.4g
クロロトリエトキシシラン 17.9g
(5)修飾材料1-E:(CH2=CH)(CH32SiO(SiO(CH323Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Eを合成した。
ジメチルビニルシラノール 45.9g
THF 1500ml(ミリリットル)
n-ブチルリチウム 28.8g
ヘキサメチルシクロシロキサン 100.1g
クロロトリエトキシシラン 89.4g
(6)修飾材料1-F:(CH2=CH)(CH32SiO(SiO(CH32150Si(OC253の調製
 以下の材料比率で上記に従って修飾材料1-Fを合成した。
ジメチルビニルシラノール 1.8g
THF 60ml(ミリリットル)
n-ブチルリチウム 1.2g
ヘキサメチルシクロシロキサン 200.3g
クロロトリエトキシシラン 3.6g
(修飾粒子の作製と評価)
(実施例1-1)
 修飾材料1-A10gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した。次いで、10質量%の酢酸水溶液5gを含浸させた0.1mm径のガラスビーズ100gを投入し、この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例1-1の修飾粒子(表面修飾金属酸化物粒子材料)を得た。
(実施例1-2)
 修飾材料1-A4.5gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-B10gを投入した後、実施例1-1に従って実施例1-2の修飾粒子を得た。
(実施例1-3)
 修飾材料1-B10gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した後、実施例1-1に従って実施例1-3の修飾粒子を得た。
(実施例1-4)
 修飾材料1-C5gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した後、実施例1-1に従って実施例1-4の修飾粒子を得た。
(実施例1-5)
 修飾材料1-D7.5gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した後、実施例1-1に従って実施例1-5の修飾粒子を得た。
(実施例1-6)
 修飾材料1-A13gを80gのトルエン中に溶解した後、酸化チタン粒子1、10gを投入した後、実施例1-1に従って実施例1-6の修飾粒子を得た。
(実施例1-7)
 修飾材料1-A10gを80gのトルエン中に溶解した後、酸化亜鉛粒子1、10gを投入した後、実施例1-1に従って実施例1-7の修飾粒子を得た。
(比較例1-1)
 修飾材料1-A20gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-C10gを投入した後、実施例1-1に従って比較例1-1の修飾粒子を得た。
(比較例1-2)
 修飾材料1-A2.5gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-D10gを投入した後、実施例1-1に従って比較例1-2の修飾粒子を得た。
(比較例1-3)
 修飾材料1-E10gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した後、実施例1-1に従って比較例1-3の修飾粒子を得た。
(比較例1-4)
 修飾材料1-F10gを80gのトルエン中に溶解した後、酸化ジルコニウム粒子1-A10gを投入した後、実施例1-1に従って比較例1-4の修飾粒子を得た。
(参考例1-1)
 シリカゾル(分散媒:水)である日産化学工業(株)製スノーテックスOXSをシリカ粒子換算で5質量%となるよう濃度を調整した。次いで、ステアリン酸を5質量%となるようメタノールに溶解した溶液と濃度調整したスノーテックスOXSを混合撹拌し、沈殿物を回収して乾燥させた。この乾燥粉体20gをトルエン80gに投入した後、修飾材料1-A10gを添加し、100℃にて10時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、参考例1-1の修飾粒子を得た。
(表面修飾金属酸化物粒子材料の評価)
 実施例1-1~1-7、比較例1-1~1-4及び参考例1-1の表面修飾金属酸化物粒子材料について、下記の装置又は方法により、各種評価を行った。
(1)粘度
 レオメーター、レオストレスRS-6000(HAAKE製)を用いて、修飾粒子の粘度を測定した。
 なお、修飾粒子の粘度は、温度25℃、剪断速度=1.0(1/s)における値を測定した。この測定結果を下記表1に示す。
(2)透過率
 分光光度計(V-570、日本分光社製)にて積分球を用いて、修飾粒子を光路長1mmの薄層石英セルに挟み、波長350nm~800nmの範囲で測定した。
 ここで、石英セルのみ(空気)での測定値をブランクとした。波長400nmの透過率の測定結果を下記表1に示す。
 なお、400nmより長い波長では、いずれも400nmの透過率より高い値となった。
(3)屈折率
 日本工業規格:JIS K 7142「プラスチックの屈折率測定方法」に準拠し、アッベ屈折計により測定した。この測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000010
 実施例1-1~1-7における表面修飾金属酸化物粒子材料は、平均一次粒子径が3~10nmで屈折率が1.7以上の金属酸化物粒子に、前記式(1)で表されるシリコーン化合物を含む表面修飾材により表面修飾がなされており、その表面修飾材の体積比率(表面修飾材/金属酸化物粒子)が1.5~9であることから、屈折率が1.48以上であり、25℃における粘度が1000Pa・s以下であり、また1mm厚で波長400~800nmにおける光の透過率が60%以上であった。
 一方、比較例1-1における表面修飾金属酸化物粒子材料は、金属酸化物粒子の平均一次粒子径が小さすぎるために粘度が高く、また表面修飾材の体積比率も高すぎるために屈折率も所望の値に達しなかった。比較例1-2における表面修飾金属酸化物粒子材料は、金属酸化物粒子の平均一次粒子径が大きすぎ、また表面修飾材の体積比率も低すぎるために光の透過率が低下していた。比較例1-3における表面修飾金属酸化物粒子材料は、前記式(1)で表されるシリコーン化合物のシリコーン鎖が短すぎるために粒子間相互作用が生じること、一方比較例1-4では前記式(1)で表されるシリコーン化合物のシリコーン鎖が長すぎることから、共に粘度が高かった。
 また、参考例1-1における表面修飾金属酸化物粒子材料は、粘度と透過率は問題ないが、金属酸化物粒子として低屈折率のシリカを用いたため、屈折率が低かった。
(光半導体素子封止組成物及び光半導体装置の作製と評価)
(実施例1-8)
 実施例1-1の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10g、トルエン0.5gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例1-8の光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 光半導体素子封止組成物の作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂の均一な混合組成物が得られた。得られた混合組成物は、25℃における粘度が80Pa・sであり、また1mm厚で波長400~800nmにおける光の透過率が82%であった。
 次いで、実施例1-1の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10g、蛍光体(Genelite製 GLD(Y)-550A)2g、トルエン0.5gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例1-8の蛍光体を含有した光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂と蛍光体の均一な混合組成物が得られた。
 得られた実施例1-8の蛍光体を含有した光半導体有封止組成物を市販の光半導体素子を備えたパッケージにディスペンサーを用いて注入し、50℃に設定した真空乾燥機内で10hPaにて2時間トルエンを乾燥除去した。次いで、150℃で1時間の加熱処理を行うことによって光半導体封止組成物を硬化させ、実施例1-8の光半導体装置を得た。
 実施例1-8の蛍光体を含有した光半導体素子封止組成物の注入作業は、修飾粒子を含まないメチルシリコーン樹脂単体の場合と同様に行うことができ、注入に問題はなかった。また、硬化時においては、光半導体有封止組成物中の有機溶媒が少量であることから溶媒除去も簡易な工程で行うことができ、よって光半導体装置も問題なく作製できた。また、得られた光半導体装置の発光輝度は、封止材料としてメチルシリコーン樹脂と蛍光体のみを用いた場合に比べて向上していることが確認できた。
(実施例1-9)
 実施例1-2の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例1-9の光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 光半導体素子封止組成物の作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂の均一な混合組成物が得られた。得られた混合組成物は、25℃における粘度が75Pa・sであり、また1mm厚で波長400~800nmにおける光の透過率が61%であった。
 次いで、実施例1-2の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10g、蛍光体(Genelite製 GLD(Y)-550A)2gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例1-9の蛍光体を含有した光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂と蛍光体の均一な混合組成物が得られた。
 得られた実施例1-9の蛍光体を含有した光半導体有封止組成物を市販の光半導体素子を備えたパッケージにディスペンサーを用いて注入した。次いで、150℃で1時間の加熱処理を行うことによって光半導体封止組成物を硬化させ、実施例1-9の光半導体装置を得た。
 実施例1-9の蛍光体を含有した光半導体素子封止組成物の注入作業は、修飾粒子を含まないメチルシリコーン樹脂単体の場合と同様に行うことができ、注入に問題はなかった。また、光半導体有封止組成物中には有機溶媒を含まないことから、硬化時の溶媒除去は必要なく、よって樹脂単体と同様の硬化工程で行うことができたことから、光半導体装置も問題なく作製できた。また、得られた光半導体装置の発光輝度は、封止材料としてメチルシリコーン樹脂と蛍光体のみを用いた場合に比べて向上していることが確認できた。
(比較例1-5)
 比較例1-3の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10g、蛍光体(Genelite製 GLD(Y)-550A)2g、トルエン0.5gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、比較例1-5の光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 混合後の光半導体素子封止組成物は、メチルシリコーン樹脂中に塊状の修飾粒子および塊状の蛍光体が分散した状態であり、均一な混合組成物を得ることができなかった。これは、比較例1-1の修飾粒子の粘度が高すぎるために、十分な混合ができなかったためと考えられる。
 なお、均一な混合組成物が得られなかったため、光半導体装置の作製は行っていない。
(比較例1-6)
 比較例1-1の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6351のA液とB液を1:1の質量比で混合したもの)10g、蛍光体(Genelite製 GLD(Y)-550A)2g、トルエン60gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、比較例1-6の蛍光体を含有した光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 作製時の混合には問題がなかったが、トルエン含有量が多いために蛍光体の一部に沈降がみられた。
 得られた比較例1-6の光半導体有封止組成物を市販の光半導体素子を備えたパッケージにディスペンサーを用いて注入し、50℃に設定した真空乾燥機内で10hPaにて2時間トルエンを乾燥除去した。この、注入と乾燥除去を5回繰り返し、パッケージ内に混合組成物を満たした後、150℃で1時間の加熱処理を行うことによって光半導体封止組成物を硬化させ、比較例1-6の光半導体装置を得た。
 比較例1-6の光半導体素子封止組成物の注入作業は、修飾粒子を含まないメチルシリコーン樹脂単体の場合と同様に行うことができ、注入に問題はなかった。これは、有機溶媒であるトルエンが含有することにより粘度が低下しているためと考えられる。しかしながら、トルエンを多量に含むことから乾燥時の体積収縮が著しいために、注入と乾燥除去を5回繰り返さなければパッケージ内に混合組成物を満たすことができず、作業性が大幅に低下した。
 さらに、トルエンを多量に含む混合組成物を積層したために、特にパッケージ底部に近い部分で、残留トルエンの気化が原因と考えられる気泡が発生し、このために、得られた光半導体装置の発光輝度は、封止材料としてメチルシリコーン樹脂と蛍光体のみを用いた場合に比べて低下していた。なお、気泡が存在するため、封止材の透明性も低下していると考えられる。
[B]第2の実施例
(金属酸化物粒子の作製)
(1)酸化ジルコニウム粒子2-A
 オキシ塩化ジルコニウム8水塩261.5gを純水4L(リットル)に溶解させたジルコニウム塩溶液を撹拌しながら、28%アンモニア水34.4gを純水2Lに溶解させた希アンモニア水を滴下してジルコニア前駆体スラリーを調製した。
 次いで、このスラリーに、硫酸ナトリウム30gを0.5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
 次いで、この混合物をろ過し、得られたケーキの水分を乾燥除去後、電気炉を用いて、大気中、500℃にて1時間焼成した。
 次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥機にて乾燥させ、酸化ジルコニウム粒子2-Aを得た。
 得られた酸化ジルコニウム粒子Aの平均一次粒子径を、X線回折によるシェラーの式より求めたところ、当該平均一次粒子径は4nmであった。
(2)酸化ジルコニウム粒子2-B
 電気炉を用いた大気中での焼成の温度を550℃にした以外は酸化ジルコニウム粒子2-Aと同様の方法で酸化ジルコニウム粒子2-Bを作製した。
 得られた酸化ジルコニウム粒子Bの平均一次粒子径は6nmであった。
(3)酸化ジルコニウム粒子2-C
 電気炉を用いた大気中での焼成の温度が450℃にした以外は酸化ジルコニウム粒子2-Aと同様の方法で酸化ジルコニウム粒子2-Cを作製した。
 得られた酸化ジルコニウム粒子2-Cの平均一次粒子径は2nmであった。
(4)酸化ジルコニウム粒子2-D
 電気炉を用いた大気中での焼成の温度が600℃にした以外は酸化ジルコニウム粒子2-Aと同様の方法で作製した。
 得られた酸化ジルコニウム粒子2-Dの平均一次粒子径は15nmであった。
(5)酸化チタン粒子2
 四塩化チタン242.1gと、塩化スズ(IV)5水和物111.9gとを、5℃の純水1.5L(リットル)に投入し、撹拌して混合溶液を作製した。
 次いで、この混合溶液を加温して温度を25℃に調整し、この混合溶液に濃度が10質量%の炭酸アンモニウム水溶液を加えてpHを1.5に調整し、その後、25℃にて24時間熟成し、過剰の塩化物イオンを取り除いた。
次いで、エバポレータを用いて、この混合溶液から水分を除去し、その後乾燥させ、酸化チタン粒子2を作製した。
 得られた酸化チタン粒子2の平均一次粒子径は4nmであった。
(6)酸化亜鉛粒子2
 硫酸亜鉛161.5gを5℃の純粋3L(リットル)に投入し、硫酸亜鉛水溶液を得た。
 次いで、この水溶液を撹拌しながら28%アンモニア水8.6gを純水2Lに溶解させ、5℃とした希アンモニア水を滴下して半透明のスラリーを作製した。
 次いで、スラリーを遠心分離機で処理して固形物を回収した。回収した固形物を凍結乾燥させ、酸化亜鉛粒子2を得た。
 得られた酸化亜鉛粒子2の平均一次粒子径2は4nmであった。
(7)シリカ粒子2
 日産化学工業(株)製スノーテックスOXSのシリカ粒子を用いた。当該シリカ粒子の平均一次粒子径は5nmであった。
(シリコーン化合物を含む表面修飾材の調製)
 修飾材料2-A~2-Gを下記のようにして調製した。以下に合成フローの概要を示す。その後、それぞれの修飾材料に適用した材料の配合量を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 窒素雰囲気下でテトラヒドロフラン(THF)溶媒中に、片末端がビニル基を含む場合はジメチルビニルシラノールを、片末端がトリメチル基の場合はトリメチルシラノールを溶解し、撹拌しながら温度0℃n-ヘキサンに溶解したn-ブチルリチウムを滴下して3時間反応させ、リチウムジメチルビニルシラノレート(片末端がビニル基を含む場合)、リチウムトリメチルシラノレート(片末端がトリメチル基の場合)を得た(式(D)参照)。
 次いで、THF溶媒中に溶解したヘキサメチルシクロシロキサン(フェニルシロキサン鎖の場合は、ヘキサフェニルシクロトリシロキサン。メチルフェニルシロキサン鎖の場合は、トリフェニルトリメチルシクロトリシロキサン)を式(1)中のnが所望の重合度となる量を滴下し、温度0℃で12時間反応させ、リチウムジメチルビニルオルガノシラノレート(片末端がビニル基を含む場合)、リチウムジメチルオルガノシラノレート(片末端がトリメチル基の場合)を得た(式(E)参照)。
 次いで、クロロトリエトキシシランを加え、温度0℃で12時間反応させた(式(F)参照)。
 次いで、n-ヘキサンを混合し、塩化リチウムの沈殿を生成させた後、塩化リチウムをろ過除去し、式(1)の修飾材料を得た。
 得られた修飾材料は、1H-NMRによって構造を確認した。
(1)修飾材料2-A:(CH2=CH)(CH32SiO(SiO(CH3260Si(OC253の調製
以下の材料比率で上記に従って修飾材料2-Aを合成した。
 ジメチルビニルシラノール 4.6g
 THF 150ml(ミリリットル)
 n-ブチルリチウム 2.9g
 ヘキサメチルシクロシロキサン 200.3g
 クロロトリエトキシシラン 8.9g
(2)修飾材料2-B:(CH2=CH)(CH32SiO(SiO(C65260Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Bを合成した。
 ジメチルビニルシラノール 1.8g
 THF 60ml(ミリリットル)
 n-ブチルリチウム 1.2g
 ヘキサフェニルシクロトリシロキサン 213.9g
 クロロトリエトキシシラン 3.6g
(3)修飾材料2-C:(CH2=CH)(CH32SiO(SiO(C65245Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Cを合成した。
 ジメチルビニルシラノール 1.8g
 THF 60ml(ミリリットル)
 n-ブチルリチウム 1.2g
 ヘキサフェニルシクロトリシロキサン 160.5g
 クロロトリエトキシシラン 3.6g
(4)修飾材料2-D:(CH33SiO(SiO(CH3)(C65))30Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Dを合成した。
 トリメチルシラノール 8.1g
 THF 300ml(ミリリットル)
 n-ブチルリチウム 5.8g
 トリフェニルトリメチルシクロトリシロキサン 213.9g
 クロロトリエトキシシラン 17.9g
(5)修飾材料2-E:(CH33SiO(SiO(CH3260Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Eを合成した。
 トリメチルシラノール 4.1g
 THF 150ml(ミリリットル)
 n-ブチルリチウム 2.9g
 ヘキサメチルシクロシロキサン 200.3g
 クロロトリエトキシシラン 8.9g
(6)修飾材料2-F:(CH2=CH)(CH32SiO(SiO(CH323Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Fを合成した。
 ジメチルビニルシラノール 45.9g
 THF 1500ml(ミリリットル)
 n-ブチルリチウム 28.8g
 ヘキサメチルシクロシロキサン 100.1g
 クロロトリエトキシシラン 89.4g
(7)修飾材料2-G:(CH2=CH)(CH32SiO(SiO(CH32150Si(OC253の調製
 以下の材料比率で上記に従って修飾材料2-Gを合成した。
 ジメチルビニルシラノール 1.8g
 THF 60ml(ミリリットル)
 n-ブチルリチウム 1.2g
 ヘキサメチルシクロシロキサン 200.3g
 クロロトリエトキシシラン 3.6g
(修飾粒子の作製と評価)
(実施例2-1)
 修飾材料2-A8.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-1の修飾粒子を得た。
(実施例2-2)
 修飾材料2-B8.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-2の修飾粒子を得た。
(実施例2-3)
 修飾材料2-C5.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-3の修飾粒子を得た。
(実施例2-4)
 修飾材料2-D5.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-4の修飾粒子を得た。
(実施例2-5)
 修飾材料2-A6.5gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-B10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して15質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-5の修飾粒子を得た。
(実施例2-6)
 ビニルトリメトキシシラン(信越化学工業(株)製KBM-1003)3.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、修飾材料2-Dを4.0g添加し、さらにサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して15質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-6の修飾粒子を得た。
(実施例2-7)
 修飾材料2-A4.0gと修飾材料2-E4.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-7の修飾粒子を得た。
(実施例2-8)
 修飾材料2-B8.0gを80.0gのトルエン中に溶解した後、酸化チタン粒子2、10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化チタン粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-8の修飾粒子を得た。
(実施例2-9)
 修飾材料2-B8.0gを80.0gのトルエン中に溶解した後、酸化亜鉛粒子2、10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化亜鉛粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-9の修飾粒子を得た。
(実施例2-10)
 日産化学工業(株)製スノーテックスOXSをシリカ粒子換算で5質量%となるよう濃度を調整した。次いで、ステアリン酸を5質量%となるようメタノールに溶解した溶液と濃度調整したスノーテックスOXSを混合撹拌し、沈殿物を回収して乾燥させた。この乾燥粉体10.0gをトルエン80.0gに投入した後、修飾材料A8.0gを添加し、100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化亜鉛粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、実施例2-10の修飾粒子を得た。
(参考例2-1)
 修飾材料2-A8.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、参考例2-1の修飾粒子を得た。
(比較例2-1)
 修飾材料2-A10.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-C10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-1の修飾粒子を得た。
(比較例2-2)
 修飾材料2-A2.5gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-D10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して10質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-2の修飾粒子を得た。
(比較例2-3)
 修飾材料2-F10.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して25質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-3の修飾粒子を得た。
(比較例2-4)
 修飾材料2-G5.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して25質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-4の修飾粒子を得た。
(比較例2-5)
 修飾材料2-A3.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して10質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-5の修飾粒子を得た。
(比較例2-6)
 修飾材料2-A16.0gを80.0gのトルエン中に溶解した後、酸化ジルコニウム粒子2-A10.0gを投入した。この混合液をサンドグラインダーで3時間処理した後、回収したスラリーを100℃にて10時間撹拌処理した。室温まで冷却した後、ヘキサメチルジシラザンを酸化ジルコニウム粒子100質量部に対して20質量部添加し、100℃にて5時間撹拌処理した。得られた分散液をろ過後、エバポレータでトルエンを除去し、比較例2-6の修飾粒子を得た。
(表面修飾金属酸化物粒子材料の評価)
 実施例2-1~2-10、比較例2-1~2-6及び参考例2-1の表面修飾金属酸化物粒子材料について、下記の装置又は方法により、各種評価を行った。
(1)粘度
 レオメーター、レオストレスRS-6000(HAAKE製)を用いて、修飾粒子の粘度を測定した。なお、修飾粒子の粘度は、温度25℃、剪断速度=1.0(1/s)における値を測定した。この測定結果を表2及び表3に示す。
(2)透過率
 分光光度計(V-570、日本分光社製)にて積分球を用いて、修飾粒子を光路長1mmの薄層石英セルに挟み、波長350nm~800nmの範囲で測定した。ここで、石英セルのみ(空気)での測定値をブランクとした。波長400nmの透過率の測定結果を表2及び表3に示す。なお、400nmより長い波長では、いずれも400nmの透過率より高い値となった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例2-1~2-10における表面修飾金属酸化物粒子材料は、平均一次粒子径が3~10nmの金属酸化物粒子に、前記式(1)で表されるシリコーン化合物を含む表面修飾材により第1の表面修飾がなされ、さらに、シリル化材料によって第2の表面修飾がなされたものであることから、25℃における粘度が100Pa・s以下であり、また波長400~800nmにおける光の透過率が1mm厚で60%以上であった。
 一方、比較例2-1~2-6における表面修飾金属酸化物粒子材料は、25℃における粘度が100Pa・sを超えていた。ここで、比較例2-1における表面修飾金属酸化物粒子材料は、金属酸化物粒子の平均一次粒子径が小さすぎ粒子間相互作用が生じるために粘度が高かった。比較例2-2における表面修飾金属酸化物粒子材料は、金属酸化物粒子の平均一次粒子径が大きいために散乱が生じて光の透過率が低下しており、また金属酸化物粒子に対する表面修飾材料とシリル化材料の合計配合量が少ないために、粘度も990Pa・sと高めであった。比較例2-3における表面修飾金属酸化物粒子材料は、前記式(1)で表されるシリコーン化合物のシリコーン鎖が短すぎるために粒子間相互作用が生じるために粘度が高かった。比較例2-4における表面修飾金属酸化物粒子材料は、前記式(1)で表されるシリコーン化合物のシリコーン鎖が長すぎるために粘度が高かった。比較例2-5と2-6における表面修飾金属酸化物粒子材料は、金属酸化物粒子に対する表面修飾材料とシリル化材料の合計配合量が少ないために粘度が高かった。
 また、参考例2-1における表面修飾金属酸化物粒子材料は、シリル化材による第2の表面修飾を行っていないために、第2の表面修飾を行っている実施例2-1~2-10に比べて粘度が高く、25℃における粘度が100Pa・sを超えていた。これは水酸基が残存しているためと考えられる。
(光半導体素子封止組成物及び光半導体装置の作製と評価)
(実施例2-11)
 実施例2-2の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6630のA液とB液を1:4の質量比で混合したもの)10gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例2-11の光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 光半導体素子封止組成物の作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂の均一な混合組成物が得られた。得られた混合組成物は、25℃における粘度が15Pa・sであり、また1mm厚で波長400~800nmにおける光の透過率が78%であった。
 次いで、実施例2-2の修飾粒子10gと、封止材料としてのメチルシリコーン樹脂(東レ・ダウコーニング製OE-6630のA液とB液を1:4の質量比で混合したもの)10g、蛍光体(Genelite製 GLD(Y)-550A)2g、トルエン0.5gとを市販の自転・公転ミキサー(シンキー製AR-100)を用いて混合し、実施例2-11の蛍光体を含有した光半導体素子封止組成物(表面修飾金属酸化物粒子材料含有光半導体素子封止組成物)を作製した。
 作製時の混合には全く問題がなく、修飾粒子とメチルシリコーン樹脂と蛍光体の均一な混合組成物が得られた。
 得られた実施例2-11の蛍光体を含有した光半導体有封止組成物を市販の光半導体素子を備えたパッケージにディスペンサーを用いて注入した。次いで、150℃で1時間の加熱処理を行うことによって光半導体封止組成物を硬化させ、実施例2-11の光半導体装置を得た。
 実施例2-11の蛍光体を含有した光半導体素子封止組成物の注入作業は、修飾粒子を含まないメチルシリコーン樹脂単体の場合と同様に行うことができ、注入に問題はなかった。また、光半導体有封止組成物中には有機溶媒を含まないことから、硬化時の溶媒除去は必要なく、よって樹脂単体と同様の硬化工程で行うことができたことから、光半導体装置も問題なく作製できた。また、得られた光半導体装置の発光輝度は、封止材料としてメチルシリコーン樹脂と蛍光体のみを用いた場合に比べて向上していることが確認できた。
10・・・発光装置
12・・・反射カップ
12A・・・凹部
14・・・発光素子
16・・・第1封止材層

Claims (10)

  1.  表面修飾材により金属酸化物粒子に表面修飾がされた表面修飾金属酸化物粒子を含む表面修飾金属酸化物粒子材料であって、
     前記表面修飾材が下記式(1)で表されるシリコーン化合物を含み、
     前記金属酸化物粒子の平均一次粒子径が3~10nmで、25℃における粘度が1000Pa・s以下であり、1mm厚で波長400~800nmにおける光の透過率が60%以上である表面修飾金属酸化物粒子材料。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、水素原子、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基であり、R1、R2、Ra、及びRbはそれぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、又は炭素数2~6のアルケニル基である。Z1~Z3はそれぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基であり、少なくとも1つが炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。nは8~100の整数である。複数あるRa同士及び複数あるRb同士は、それぞれ同一でも異なっていてもよい。)
  2.  前記金属酸化物粒子の屈折率が1.7以上であり、
     前記金属酸化物粒子に対する前記表面修飾材の体積比率(表面修飾材/金属酸化物粒子)が1.5~9であり、
     当該材料の屈折率が1.48以上である請求項1に記載の表面修飾金属酸化物粒子材料。
  3.  さらに、水酸基を疎水化するシリル化材料によって第2の表面修飾がなされて、25℃における粘度が100Pa・s以下とされた請求項1又は2に記載の表面修飾金属酸化物粒子材料。
  4.  前記シリコーン化合物を含む第1の表面修飾材料とシリル化材料との合計配合量が金属酸化物粒子100質量部に対し50~150質量部である請求項3に記載の表面修飾金属酸化物粒子材料。
  5.  式(1)で表されるシリコーン化合物が、下記式(2)で表される請求項1~4のいずれか1項に記載の表面修飾金属酸化物粒子材料。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、X、Rb及びnは、式(1)と同様である。Zは、炭素数1~6のアルコキシ基、ヒドロキシ基、ハロゲン原子、又はカルボキシ基である。mは1~3の整数である。)
  6.  さらに、蛍光体を含有してなる請求項1~5のいずれか1項に記載の表面修飾金属酸化物粒子材料。
  7.  請求項1~6のいずれか1項に記載の表面修飾金属酸化物粒子材料を含有してなる光半導体素子封止組成物。
  8.  少なくとも1層の封止材層により光半導体素子が封止されてなる光半導体装置であって、
     前記光半導体素子に接する第1封止材層が請求項7に記載の光半導体素子封止組成物を含有してなる光半導体装置。
  9.  前記第1封止材層上に、請求項7に記載の光半導体素子封止組成物とは組成の異なる第2封止材層が形成されてなる請求項8に記載の光半導体装置。
  10.  前記第1封止材層にさらに蛍光体が含有されてなる請求項8又は9に記載の光半導体装置。
PCT/JP2013/056532 2012-03-09 2013-03-08 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置 WO2013133430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380003812.5A CN103987657B (zh) 2012-03-09 2013-03-08 表面修饰金属氧化物粒子材料及光半导体元件密封组合物以及光半导体装置
KR1020147013591A KR101425545B1 (ko) 2012-03-09 2013-03-08 표면 수식 금속산화물 입자 재료 및 광반도체 소자 밀봉 조성물, 및 광반도체 장치
JP2013530263A JP5472543B2 (ja) 2012-03-09 2013-03-08 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
US14/383,244 US9972757B2 (en) 2012-03-09 2013-03-08 Surface-modified-metal-oxide-particle material, composition for sealing optical semiconductor element, and optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012053527 2012-03-09
JP2012-053527 2012-03-09
JP2012-053529 2012-03-09
JP2012053529 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013133430A1 true WO2013133430A1 (ja) 2013-09-12

Family

ID=49116897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056532 WO2013133430A1 (ja) 2012-03-09 2013-03-08 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置

Country Status (6)

Country Link
US (1) US9972757B2 (ja)
JP (1) JP5472543B2 (ja)
KR (1) KR101425545B1 (ja)
CN (1) CN103987657B (ja)
TW (1) TWI468443B (ja)
WO (1) WO2013133430A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175804A (ja) * 2015-03-20 2016-10-06 住友大阪セメント株式会社 無機酸化物粒子分散液、樹脂組成物、マスターバッチ、樹脂複合体、及び光半導体発光装置
JP2016207692A (ja) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 ナノコンポジット熱電変換材料及びその製造方法
WO2016208640A1 (ja) * 2015-06-24 2016-12-29 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP2017507492A (ja) * 2014-02-21 2017-03-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
EP3178876A1 (en) 2015-12-08 2017-06-14 Shin-Etsu Chemical Co., Ltd. Inorganic particle-polysiloxane composite, disperson and solid material containing the composite, and making method
JP2018511680A (ja) * 2015-03-30 2018-04-26 ピクセリジェント・テクノロジーズ,エルエルシー 高屈折率で無溶剤のシリコーンナノ複合材料
JP2020084028A (ja) * 2018-11-26 2020-06-04 信越化学工業株式会社 吸湿性シリコーン樹脂組成物、有機el用透明封止材、有機el用透明乾燥材、及びその使用方法
US10961398B2 (en) * 2013-09-23 2021-03-30 Pixelligent Technologies, Llc High refractive index silicone nanocomposites
WO2021085586A1 (ja) * 2019-10-30 2021-05-06 ダウ・東レ株式会社 オルガノポリシロキサン、その製造方法、および熱伝導性シリコーン組成物
CN114560884A (zh) * 2022-02-17 2022-05-31 湖南科技学院 一种α-乙烯基,ω-羟基硅氧烷低聚物的制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003402B2 (ja) * 2012-08-28 2016-10-05 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
KR102351339B1 (ko) * 2014-01-24 2022-01-13 가부시기가이샤 닛뽕쇼꾸바이 금속산화물 입자를 포함하는 분산체
JP6565923B2 (ja) * 2014-10-16 2019-08-28 住友大阪セメント株式会社 表面修飾金属酸化物粒子分散液及びその製造方法、表面修飾金属酸化物粒子−シリコーン樹脂複合組成物、表面修飾金属酸化物粒子−シリコーン樹脂複合体、光学部材、及び発光装置
CN107109119B (zh) 2014-10-31 2019-08-23 住友化学株式会社 斥水斥油涂敷组合物
US11203674B2 (en) 2014-10-31 2021-12-21 Sumitomo Chemical Company, Limited Transparent film
US10472378B2 (en) 2014-10-31 2019-11-12 Sumitomo Chemical Company, Limited Transparent film
CN107109128B (zh) 2014-11-12 2021-05-25 住友化学株式会社 疏水疏油涂敷组合物及透明被膜
EP3267499B1 (en) * 2015-03-06 2019-09-04 Sumitomo Osaka Cement Co., Ltd. Composition for forming light scattering composite body, light scattering composite body and method for producing the same
US10174886B2 (en) * 2015-07-31 2019-01-08 Sharp Kabushiki Kaisha Wavelength conversion member and light emitting device
JP6524901B2 (ja) * 2015-12-08 2019-06-05 信越化学工業株式会社 シリコーンゴム組成物及びその硬化物
WO2017134910A1 (ja) * 2016-02-02 2017-08-10 エム・テクニック株式会社 色特性を制御された酸化亜鉛粒子、及びその製造方法並びにその酸化亜鉛粒子を含む塗布用組成物
JP2017155136A (ja) * 2016-03-02 2017-09-07 サムスン エレクトロニクス カンパニー リミテッド 無機酸化物含有硬化性シリコーン樹脂組成物及びそれを用いて形成される光学部材
JP6447557B2 (ja) 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法
CN105860540A (zh) * 2016-05-11 2016-08-17 强新正品(苏州)环保材料科技有限公司 一种增强型导热硅胶片的制备方法
EP3546497A4 (en) 2016-11-24 2020-05-27 Shin-Etsu Chemical Co., Ltd. INORGANIC PARTICLE / SILOXANE COMPOSITE, METHOD FOR PRODUCING IT AND A SILICONE COMPOSITION WITH INORGANIC PARTICLES
JP7248379B2 (ja) * 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
US11437229B2 (en) * 2018-01-09 2022-09-06 SCREEN Holdings Co., Ltd. Substrate processing method
JP6603777B1 (ja) * 2018-10-24 2019-11-06 株式会社アドマテックス 表面処理済金属酸化物粒子材料、その製造方法、及び電子材料用樹脂組成物、並びにシリコーン樹脂材料用のフィラー
DE102018127691A1 (de) * 2018-11-06 2020-05-07 Osram Opto Semiconductors Gmbh Deck- und/oder Füllmaterial, optoelektronische Vorrichtung, Verfahren zur Herstellung einer optoelektronischen Vorrichtung und Verfahren zur Herstellung eines Deck- und/oder Füllmaterials
JP7413881B2 (ja) * 2020-03-26 2024-01-16 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
CN113024809B (zh) * 2020-11-12 2022-07-29 杭州师范大学 一种单端三烷氧基硅氧基封端的聚硅氧烷流体的制备方法
WO2022126383A1 (zh) * 2020-12-15 2022-06-23 万华化学集团股份有限公司 不对称型硅油及其制备方法和应用
CN115216011A (zh) * 2022-08-02 2022-10-21 浙江新安化工集团股份有限公司 一种异端烷氧基硅油及其制备方法与用途
CN116376028A (zh) * 2023-05-22 2023-07-04 江苏至昕新材料有限公司 一种粉料表面处理剂及其制备方法与应用
CN116355419A (zh) * 2023-05-22 2023-06-30 江苏至昕新材料有限公司 一种低粘度高导热硅脂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095392A (ja) * 2008-10-14 2010-04-30 Mitsui Chemicals Inc 有機シロキサンオリゴマー修飾無機酸化物超微粒子
JP2010100784A (ja) * 2008-10-27 2010-05-06 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその分散体
JP2011105778A (ja) * 2009-10-21 2011-06-02 Jsr Corp 光半導体封止用組成物および発光装置
JP2012021117A (ja) * 2010-07-16 2012-02-02 Sumitomo Osaka Cement Co Ltd 無機酸化物粒子とシリコーン樹脂との複合組成物およびその製造方法、ならびに透明複合体およびその製造方法
JP2012022997A (ja) * 2010-07-16 2012-02-02 Jsr Corp 発光素子および粒子含有層形成用組成物
JP2012031353A (ja) * 2010-08-03 2012-02-16 Nissan Chem Ind Ltd コーティング組成物及び光学部材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887851B2 (ja) * 1996-10-04 2007-02-28 昭和電工株式会社 シリカ被膜形成用組成物及びシリカ被膜の形成方法
JP4164789B2 (ja) 2001-12-28 2008-10-15 日本アエロジル株式会社 樹脂用充填剤の製造方法
CN1948383B (zh) * 2005-10-14 2010-08-18 中国科学院化学研究所 磁性荧光复合材料及制备方法与应用
JP5167582B2 (ja) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
JP2007291302A (ja) * 2006-03-31 2007-11-08 Toyo Ink Mfg Co Ltd 顔料分散体の製造方法
CN101506969B (zh) * 2006-08-22 2011-08-31 三菱化学株式会社 半导体器件用部材、以及半导体器件用部材形成液和半导体器件用部材的制造方法、以及使用该方法制造的半导体器件用部材形成液、荧光体组合物、半导体发光器件、照明装置和图像显示装置
EP2067824A1 (en) * 2006-09-29 2009-06-10 Nippon Shokubai Co., Ltd. Curable resin composition, optical material, and method of regulating optical material
JP2008304686A (ja) * 2007-06-07 2008-12-18 Konica Minolta Opto Inc 光学用表面改質粒子及びその製造方法、光学用樹脂材料並びにそれを用いた光学素子
JP2009024117A (ja) 2007-07-23 2009-02-05 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2009091380A (ja) 2007-10-03 2009-04-30 Jsr Corp 発光素子コーティング用組成物および発光装置、ならびに発光素子コーティング用組成物の製造方法
JP2009120437A (ja) 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
JP5154519B2 (ja) 2009-07-24 2013-02-27 日東電工株式会社 光半導体素子封止材料
KR101768154B1 (ko) * 2009-10-23 2017-08-16 다우 코닝 도레이 캄파니 리미티드 신규한 오가노폴리실록산 코폴리머
JP2011144272A (ja) 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd ジルコニアナノ粒子を含むシリコーン樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095392A (ja) * 2008-10-14 2010-04-30 Mitsui Chemicals Inc 有機シロキサンオリゴマー修飾無機酸化物超微粒子
JP2010100784A (ja) * 2008-10-27 2010-05-06 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその分散体
JP2011105778A (ja) * 2009-10-21 2011-06-02 Jsr Corp 光半導体封止用組成物および発光装置
JP2012021117A (ja) * 2010-07-16 2012-02-02 Sumitomo Osaka Cement Co Ltd 無機酸化物粒子とシリコーン樹脂との複合組成物およびその製造方法、ならびに透明複合体およびその製造方法
JP2012022997A (ja) * 2010-07-16 2012-02-02 Jsr Corp 発光素子および粒子含有層形成用組成物
JP2012031353A (ja) * 2010-08-03 2012-02-16 Nissan Chem Ind Ltd コーティング組成物及び光学部材

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961398B2 (en) * 2013-09-23 2021-03-30 Pixelligent Technologies, Llc High refractive index silicone nanocomposites
JP2017507492A (ja) * 2014-02-21 2017-03-16 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
JP2016175804A (ja) * 2015-03-20 2016-10-06 住友大阪セメント株式会社 無機酸化物粒子分散液、樹脂組成物、マスターバッチ、樹脂複合体、及び光半導体発光装置
US10988598B2 (en) 2015-03-30 2021-04-27 Pixelligent Technologies, Llc High refractive index solvent free silicone nanocomposites
JP2018511680A (ja) * 2015-03-30 2018-04-26 ピクセリジェント・テクノロジーズ,エルエルシー 高屈折率で無溶剤のシリコーンナノ複合材料
JP2016207692A (ja) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 ナノコンポジット熱電変換材料及びその製造方法
JPWO2016208640A1 (ja) * 2015-06-24 2018-04-12 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
US10269670B2 (en) 2015-06-24 2019-04-23 Sumitomo Osaka Cement Co., Ltd. Curable silicone resin composition, silicone resin composite, photosemiconductor light emitting device, luminaire and liquid crystal imaging device
WO2016208640A1 (ja) * 2015-06-24 2016-12-29 住友大阪セメント株式会社 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP2017105897A (ja) * 2015-12-08 2017-06-15 信越化学工業株式会社 無機粒子−ポリシロキサン複合体、それを含む分散液、固体材料、及び該無機粒子−ポリシロキサン複合体の製造方法
EP3178876A1 (en) 2015-12-08 2017-06-14 Shin-Etsu Chemical Co., Ltd. Inorganic particle-polysiloxane composite, disperson and solid material containing the composite, and making method
JP2020084028A (ja) * 2018-11-26 2020-06-04 信越化学工業株式会社 吸湿性シリコーン樹脂組成物、有機el用透明封止材、有機el用透明乾燥材、及びその使用方法
WO2021085586A1 (ja) * 2019-10-30 2021-05-06 ダウ・東レ株式会社 オルガノポリシロキサン、その製造方法、および熱伝導性シリコーン組成物
CN114560884A (zh) * 2022-02-17 2022-05-31 湖南科技学院 一种α-乙烯基,ω-羟基硅氧烷低聚物的制备方法
CN114560884B (zh) * 2022-02-17 2024-02-27 湖南科技学院 一种α-乙烯基,ω-羟基硅氧烷低聚物的制备方法

Also Published As

Publication number Publication date
TWI468443B (zh) 2015-01-11
CN103987657A (zh) 2014-08-13
JP5472543B2 (ja) 2014-04-16
KR20140075803A (ko) 2014-06-19
KR101425545B1 (ko) 2014-08-01
US20150021643A1 (en) 2015-01-22
TW201341432A (zh) 2013-10-16
CN103987657B (zh) 2015-09-02
US9972757B2 (en) 2018-05-15
JPWO2013133430A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5472543B2 (ja) 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
CN107075289B (zh) 表面改性金属氧化物粒子分散液、硅酮树脂复合组合物及复合物、光学构件及发光装置
KR102263350B1 (ko) 신규한 오가노폴리실록산, 이를 포함하는 표면 처리제, 이를 포함하는 수지 조성물, 및 이의 겔상물 또는 경화물
KR101757786B1 (ko) 표면수식 금속산화물 입자재료, 분산액, 실리콘 수지 조성물, 실리콘 수지 복합체, 광반도체 발광 장치, 조명 기구 및 액정 화상 장치
JP5761397B2 (ja) 半導体発光デバイス用部材形成液、半導体発光デバイス用部材、航空宇宙産業用部材、半導体発光デバイス、及び蛍光体組成物
JP5780003B2 (ja) 無機酸化物粒子とシリコーン樹脂との複合組成物及び透明複合体
JP5555167B2 (ja) シリコーン樹脂組成物、酸化金属粒子及びその製造方法
US20100291374A1 (en) Composites Comprising Nanoparticles
US20150274938A1 (en) Curable Silicone Composition, And Semiconductor Sealing Material And Optical Semiconductor Device Using The Same
JP2014077117A (ja) 高屈折性表面処理剤、それを用いて表面処理された微細部材および光学材料
CN104603192A (zh) 可固化有机硅组合物及使用其的半导体密封材料和光学半导体装置
JP6468020B2 (ja) 無機酸化物粒子分散液、樹脂組成物、マスターバッチ、樹脂複合体、及び光半導体発光装置
CN107709465B (zh) 固化性硅酮树脂组合物、硅酮树脂复合体、光半导体发光装置、照明器具及液晶图像装置
WO2013172476A1 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP2014077115A (ja) 光学材料用表面処理剤および光学材料
JP5162879B2 (ja) 金属酸化物粒子−シリコーン樹脂複合体とそれを備えた光学部材及び発光装置並びに金属酸化物粒子−シリコーン樹脂複合体の製造方法
JP5884717B2 (ja) 被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体及びその製造方法
JP6027841B2 (ja) 複合金属酸化物含有硬化性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013591

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14383244

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13758465

Country of ref document: EP

Kind code of ref document: A1