WO2013132949A1 - 車両走行制御装置 - Google Patents

車両走行制御装置 Download PDF

Info

Publication number
WO2013132949A1
WO2013132949A1 PCT/JP2013/052974 JP2013052974W WO2013132949A1 WO 2013132949 A1 WO2013132949 A1 WO 2013132949A1 JP 2013052974 W JP2013052974 W JP 2013052974W WO 2013132949 A1 WO2013132949 A1 WO 2013132949A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
oncoming
calculated
road width
Prior art date
Application number
PCT/JP2013/052974
Other languages
English (en)
French (fr)
Inventor
健男 芝田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/376,303 priority Critical patent/US9216739B2/en
Priority to CN201380007566.0A priority patent/CN104080681B/zh
Priority to DE112013000600.6T priority patent/DE112013000600B4/de
Publication of WO2013132949A1 publication Critical patent/WO2013132949A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a travel control device for a vehicle, and more particularly to a travel control device that changes the travel characteristics of a vehicle according to the environment around the host vehicle.
  • a travel control device has been developed so as to realize vehicle control adapted to road conditions.
  • a travel control device has been proposed in which the target acceleration / deceleration is changed according to the distance to an obstacle ahead of the host vehicle to improve the drivability and safety of the vehicle (for example, Patent Document 1). reference).
  • the vehicle driving control characteristic is changed only by the distance to the obstacle in this way, the actual road condition or the driver's feeling may not be met. For example, if there are obstacles on the lane but the remaining road is wide enough, or if there are obstacles in front of the vehicle but on the opposite lane and not on the lane, the driver may Although it is considered that the vehicle passes through the vehicle without changing the vehicle speed, the conventional technique may change the vehicle characteristics even in such a situation, which may cause the driver to feel uncomfortable.
  • a travel control device that controls the travel characteristics of a vehicle according to the situation around the host vehicle has been proposed (for example, Patent Document 2). Specifically, the travel control device searches for a predetermined range in front of the host vehicle, detects an obstacle in front of the host vehicle, and the remaining road width at the position where the detected obstacle exists. A road width remaining amount calculating unit for calculating, and a vehicle characteristic changing unit for changing the running characteristics of the vehicle based on the calculated road width remaining amount are provided.
  • JP 2008-62894 A Japanese Patent Laid-Open No. 11-348598
  • the present invention has been made in view of such points, and the object of the present invention is that when the vehicle travels in a situation where the road width becomes narrow due to the presence of obstacles and oncoming vehicles, It is an object of the present invention to provide a vehicle travel control device that can appropriately avoid an obstacle without stopping the driver's vehicle at an optimal position and then giving a burden to the driver at the time of a subsequent recurrence.
  • a vehicle travel control device travels based on a preset speed that is set in advance, and controls the travel of the vehicle according to the situation around the vehicle.
  • the vehicle traveling side virtual lane on which the own vehicle can travel on the own vehicle traveling side is calculated, the road width, the position and width of the obstacle.
  • the oncoming vehicle running side virtual lane in which the own vehicle can run on the oncoming vehicle running side is calculated, and the road width and the own vehicle running side virtual are calculated.
  • the remaining road width of the host vehicle traveling road is calculated, and when there is a point where the calculated remaining road width is smaller than a predetermined value, The traveling of the own vehicle is stopped at the position.
  • the vehicle when the vehicle travels in a situation in which the road width becomes narrow due to the presence of an obstacle and an oncoming vehicle, the vehicle is stopped at an optimal position, and the driver is notified at the time of subsequent recurrence. Obstacles can be suitably avoided without giving a burden.
  • FIG. 1 It is a figure showing the schematic structure of the vehicles provided with the run control device concerning the embodiment of the present invention. It is the flowchart which showed the process of the traveling control performed in the control unit shown in FIG. It is a flowchart for calculating the limit position where the own vehicle can pass. It is a flowchart for demonstrating the method to change the driving
  • (A)-(f) is the schematic diagram which applied the target speed and the request
  • (A)-(e) is the schematic diagram which applied the request
  • (A)-(f) is the schematic diagram which applied the request
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle (own vehicle) including a vehicle travel control device according to an embodiment of the present invention.
  • This vehicle is a rear wheel drive vehicle having a general configuration including an engine 1 as a power source, an automatic transmission 2 as a drive system, a propeller shaft 3, a differential gear 4, and a drive shaft 5. A certain wheel 6 is driven.
  • the vehicle shown here is an example of a vehicle applicable in the embodiment according to the present invention, and does not limit the configuration of the vehicle to which the present invention can be applied.
  • a stereo camera 7 is attached to the front part of the vehicle, and the stereo camera 7 calculates the position, relative speed, width, and road width of the preceding vehicle, obstacle, oncoming vehicle, etc. ahead of the host vehicle from the host vehicle. At this time, distance measurement may be performed using a laser range finder, a CCD camera, or the like instead of the stereo camera 7.
  • the control unit 8 including the travel control device controls the travel of the vehicle. Based on the operation amounts of the accelerator pedal 9 and the brake pedal 10 and information from the stereo camera, the engine 1, the automatic transmission 2, The brake 11 is controlled, and as a result, the traveling of the vehicle (own vehicle) is controlled.
  • the vehicle speed can be calculated from the engine speed and the range of the automatic transmission. In this embodiment, the vehicle speed is generally known so that the vehicle speed becomes a preset speed.
  • the apparatus configuration is such that ACC control can be performed by the above method.
  • FIG. 2 is a flowchart showing processing performed in the control unit shown in FIG. 1.
  • the flowchart shows the operation of the control unit 8 and is repeatedly executed at predetermined time intervals.
  • step S11 a predetermined range in front of the host vehicle is searched by the stereo camera 7, and the road width of the host vehicle traveling road ahead of the host vehicle corresponding to the left side from the center of the road is detected (road width detecting unit). . Specifically, a predetermined range on the left side from the center of the road is searched, and the road width of the own vehicle traveling path is detected.
  • step S12 to detect an obstacle on the own vehicle travel path (obstacle detection unit). If it is determined in step S12 that the obstacle is on the own lane, the process proceeds to step S13.
  • a virtual left lane Wl (y) in which the host vehicle can travel on the host vehicle travel side (left side), that is, a host vehicle travel side virtual lane is calculated (host vehicle travel side virtual lane calculation unit). Specifically, as shown in FIGS. 5 and 6, the virtual left lane Wl (y) is calculated (calculated) based on the road width, the position and width of the obstacle, and the own vehicle speed. Note that the virtual lane is the right end of the area in which the host vehicle can travel calculated based on the road width, the position and width of the obstacle, the position, width and speed of the oncoming vehicle, the host vehicle speed, etc. And the leftmost line.
  • the virtual left lane Wl (y) which is the left virtual line, is calculated.
  • the virtual left lane start distance Yl is calculated using the approach angle ⁇ .
  • a method of calculating the virtual left lane start distance Yl will be described with reference to FIG.
  • the x component of the virtual left lane Wl (y) corresponding to the y component is calculated from the coordinates of the left lane in FIG.
  • xl3, xl4, and xl5 in FIG. 7 are calculated as follows.
  • xl3 Xo ⁇ (Yo ⁇ y3) / tan ⁇
  • xl4 Xo ⁇ (Yo ⁇ y4)
  • tan ⁇ xl5 Xo ⁇ (Yo ⁇ y5) / tan ⁇
  • step S15 the stereo camera 7 searches a predetermined range on the right side from the center of the road ahead of the host vehicle, and detects the road width of the oncoming vehicle traveling path ahead of the host vehicle corresponding to the right side from the center of the road ( Road width detector). Furthermore, the oncoming vehicle on the own vehicle traveling path is detected by the stereo camera 7 (an oncoming vehicle detection unit). As a result of searching on the oncoming lane, if it is determined in step S16 that there is an oncoming vehicle, the process proceeds to step S17.
  • step S17 the estimated passing position Yt between the host vehicle and the oncoming vehicle is calculated.
  • the passing position Yt is calculated by the following equation from the own vehicle speed Va, the relative speed VRb of the oncoming vehicle, and the inter-vehicle distance Yb of the oncoming vehicle.
  • Yt (Yb * Va) / VRb
  • step S18 if an obstacle is detected on the oncoming lane from the result of searching on the oncoming lane in step S15, and if it is determined that there is an obstacle, the process proceeds to step S19.
  • step S19 as shown in FIG. 9, when the passing position Yt calculated in step S17 is located in the vicinity of the obstacle, that is, it is determined that the passing position Yt overlaps the obstacle position Yro.
  • the vicinity of the obstacle is a range between the obstacle passing lower limit distance Ylo and the obstacle passing upper limit distance Yhi based on the obstacle distance Yo, and the obstacle passing lower limit distance Ylo and the obstacle passing upper limit distance Yhi.
  • Ylo Yo-offset1
  • Yhi Yo + offset2
  • the obstacle passing range lower portion offset1 and the obstacle passing range upper portion offset2 may be a specific fixed value, and are calculated from a relational expression of a monotonically increasing function with respect to the relative speed of the host vehicle and the obstacle, or the relative speed of the host vehicle and the oncoming vehicle. May be.
  • step S19 If it is determined in step S19 that the passing position Yt overlaps the obstacle position Yro, the process proceeds to step S20.
  • step S20 a virtual right lane Wr (y) as shown in FIG. 9 is calculated. Based on the position and width of the obstacle, the own vehicle speed, and the position, width, and speed of the oncoming vehicle, the oncoming vehicle running side virtual lane in which the own vehicle can run on the oncoming vehicle running side is calculated (oncoming Vehicle lane virtual lane calculation unit).
  • step S19 if it is determined in step S19 that the passing position Yt calculated in step S17 is not located near the obstacle, the process proceeds to step S21.
  • step S21 the virtual right lane Wr (y) as shown in FIG. 10 is calculated by the following equation.
  • step S16 determines whether there is no oncoming vehicle. If it is determined in step S16 that there is no oncoming vehicle, the process proceeds to step S23. Furthermore, in step S23, it is determined whether there is an obstacle on the oncoming lane from the result of searching on the oncoming lane in step S15. If it is determined that there is an obstacle (no oncoming vehicle), the process proceeds to step S24. .
  • step S24 the virtual right lane Wr (y) as shown in FIG. 12 is calculated by the following equation.
  • Wr (y) Wo + Wor
  • step S23 when it is determined in step S23 that there is no obstacle on the oncoming lane, the process proceeds to step S25.
  • step S26 the road width W (y) of the vehicle traveling road ahead of the vehicle detected in steps S11 and S15, the virtual left lane Wl (y) calculated in steps S13 and S14, and steps S20 and S20.
  • the virtual own vehicle passage width (road width remaining amount) w (y) is calculated by the following equation. That is, here, the remaining road width of the own vehicle traveling path is calculated based on the own vehicle traveling side virtual lane and the oncoming vehicle traveling side virtual lane (road width remaining amount calculating unit).
  • w (y) W (y) ⁇ Wl (y) ⁇ Wr (y)
  • the remaining road width is calculated from the range of the estimated travel path of the own vehicle and the oncoming vehicle.
  • the vehicle travel state (travel characteristics) of the vehicle can be changed to the passing speed corresponding to the remaining road width without releasing the ACC control function and giving the driver a sense of incongruity.
  • step S27 based on the calculated virtual own vehicle passing width (road remaining width) w (y), the target speed (target passing speed) va (y) of the own vehicle at a point ahead of the own vehicle is calculated (target). Passing speed calculation unit). Specifically, the target speed va (y) corresponding to the virtual host vehicle passage width w (y) is calculated.
  • the relationship between the virtual host vehicle passage width w (y) and the target speed va (y) is preferably monotonically increasing. Therefore, the target speed can be calculated from, for example, a monotonically increasing function corresponding to the virtual host vehicle passage width w (y).
  • the virtual own vehicle passage is performed.
  • the host vehicle can be run more safely when the virtual vehicle passage width becomes narrower.
  • FIGS. 14A to 14F show an example of step S27.
  • the target speed va (y) is calculated from the virtual host vehicle passage width w (y) corresponding to each y point on the Y axis.
  • each y point on the Y-axis is shown as an example with an equal interval of 5 [m] from the current location, but the interval may be changed according to the vehicle speed. Further, the distance may be adjusted not narrowly but narrowly in a short distance and wide in a distant place.
  • FIG. 14 and FIGS. 16 and 17 to be described later show the distance at each point from the front of the host vehicle, the calculated target speed (target passing speed) and the required acceleration at that point.
  • step S28 as shown in FIG. 14 (a), the required acceleration a (y) is calculated from the current host vehicle speed Va and the target speed va (y) by the following equation (requested acceleration calculating unit).
  • a (y) (va (y) 2 -Va 2 ) / 2y
  • the vehicle running state (acceleration / deceleration state) is changed by controlling the engine and the automatic transmission based on the calculated required acceleration a (y) (vehicle running state changing unit).
  • step 28 the required acceleration is calculated, and if there is a limit position where the vehicle can pass, the process proceeds to the following flow.
  • FIG. 3 is a flowchart for calculating a limit position through which the vehicle can pass, and is a flowchart following step 28.
  • step S29 it is determined whether or not the virtual host vehicle passage width w (y) is smaller than a value Wa + ⁇ obtained by adding a predetermined margin ⁇ to the host vehicle width Wa.
  • Wa + ⁇ obtained by adding a predetermined margin ⁇
  • step S30 a passable limit position Ys as shown in FIG. 15 is calculated.
  • the passable limit position Ys is a position satisfying the relationship of w4 ⁇ (Wa + ⁇ ) ⁇ w5, and therefore the passable limit position Ys can be calculated from the following equation.
  • Ys ((y5-y4) / (w5-w4)) * (Wa + ⁇ ) + y4
  • the passable limit position Ys is the position before this point (passable limit position Ys), and the ACC control function. This value is calculated to stop the traveling of the vehicle without canceling.
  • step S31 the required acceleration a (y) is calculated so as to stop at the passable limit position Ys as shown in FIG. Next, the process proceeds to step S32.
  • FIG. 4 is a flowchart for explaining a method of changing the traveling state of the vehicle at the passable limit position, and is a flowchart following step 31.
  • the traveling of the own vehicle is stopped without releasing the ACC control function at a position before this point (passable limit position Ys).
  • Such traveling control is performed.
  • step S32 and step 33 when the requested acceleration (specifically, deceleration) calculated at each point is larger than the priority acceleration / deceleration threshold (deceleration is small), calculation is performed at each point.
  • the vehicle running state is changed based on the requested acceleration calculated at a point closest to the vehicle.
  • step S32 the required acceleration a (lower than the priority acceleration / deceleration threshold Alo (for example, ⁇ 3 [m / ss] (the sign of ⁇ is deceleration)) out of the required acceleration a (y) calculated in steps S28 and S31. If there is no y), the process proceeds to step S33.
  • Alo priority acceleration / deceleration threshold
  • step S33 the requested acceleration at the nearest y point is selected from the calculated requested acceleration a (y).
  • FIG. 16 shows an example of step S33.
  • the own vehicle speed Va is 5 [m / s]
  • the passable limit position Ys is 16.5 [m] in front of the own vehicle.
  • the target speed va (y) is also lower than 5 [m / s].
  • step S33 outputs a required acceleration of ⁇ 0.7 [m / ss].
  • the requested acceleration is output in the same manner at the times shown in FIGS. 16 (c) and 16 (d).
  • the vehicle can pass at the optimum vehicle speed corresponding to the virtual vehicle passing width w (y) at each y point through (a) to (e) of FIG.
  • step S32 when there is a required acceleration a (y) that is lower than the priority acceleration / deceleration threshold value Alo (for example, ⁇ 3 [m / ss]), that is, the required acceleration calculated at each point on the own vehicle traveling path is predetermined. If smaller than the value (when the deceleration is large), the process proceeds to step S34.
  • Alo priority acceleration / deceleration threshold value
  • step S34 the requested acceleration having the lowest value is selected from the calculated requested acceleration a (y).
  • FIG. 17 shows an example of step S34.
  • the own vehicle speed Va is 15 [m / s].
  • the target speed va (y) is also lower than 15 [m / s].
  • Alo for example, -3 [m / ss]
  • a priority acceleration / deceleration threshold Alo (for example, ⁇ 3 [m / ss]) is calculated from the required acceleration a (y) calculated from the target speed va (y) at each y point and the host vehicle speed 13.5 [m / s].
  • step S33 since there is no required acceleration a (y) lower than the priority acceleration / deceleration threshold value Alo (for example, ⁇ 3 [m / ss]), the process proceeds to step S33.
  • the required acceleration can be passed without suddenly changing with respect to a sudden change in the distant virtual vehicle passing width w (y).
  • step S35 acceleration / deceleration of the requested acceleration a (y) selected in step S32 or step S34 is performed.
  • the vehicle can be stopped at the passable limit position. it can. Thereby, an obstacle can be avoided suitably at the time of subsequent recurrence.
  • the stop of the host vehicle is controlled by the deceleration operation because the stop of the host vehicle is controlled from the virtual host vehicle passage width (the remaining road width) of the host vehicle travel path calculated based on the host vehicle travel side virtual lane and the oncoming vehicle travel side virtual lane.
  • the vehicle can travel without causing the driver to feel uncomfortable.
  • the remaining road width is estimated from the range of the running path estimated from the running state of the own vehicle and the oncoming vehicle. , You can stop at a point where you can avoid obstacles from the remaining road width and pass the oncoming vehicle.
  • the acceleration / deceleration is changed not only by changing the gear ratio of the automatic transmission and the assist amount of the brake, but also by changing the output by controlling the intake air amount and the fuel injection amount of the engine 1, or the hybrid vehicle or the electric vehicle.
  • the brake regeneration amount may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

 自車を最適な位置で停車させ、その後の再発車時に、運転者に負担を与えることなく、障害物を好適に回避することができる車両走行制御装置を提供する。 車両走行制御装置は、予め設定された設定速度に基づいて走行し、自車の周囲の状況に応じて該自車の走行を制御するものであり、自車走行側における前記自車が走行可能な自車走行側仮想車線と、対向車走行側における自車が走行可能な対向車走行側仮想車線と、道路幅と自車走行側仮想車線と対向車走行側仮想車線とに基づき、自車走行路の道幅残量を演算するものであり、演算された道幅残量が所定値より小さくなる地点があるときに、該地点の手前の位置で前記自車の走行を停止する。

Description

車両走行制御装置
 本発明は車両用の走行制御装置に関し、特に、自車両周囲の環境に応じて車両の走行特性を変更する走行制御装置に関する。
 従来から、道路状況に適合した車両制御を実現するように走行制御装置の開発がなされている。たとえば、走行制御装置として、自車前方の障害物までの距離に応じて目標加減速度を変更し、車両の運転性及び安全性の向上を図ったものが提案されている(たとえば、特許文献1参照)。
 しかしながら、このように障害物までの距離のみで車両の走行制御の特性を変更すると、実際の道路状況や運転者の感覚に沿わない場合が生じることがある。たとえば、自車線上に障害物はあるものの残りの道幅が十分に広い状況や、自車前方に障害物があるものの対向車線上にあり自車線上にはない状況では、運転者は減速操作等を行わずにそのままの車速で通過すると考えられるが、従来技術ではこのような状況であっても車両特性が変更されてしまい、運転者に違和感を与えてしまう可能性があった。
 このような点を鑑みて、たとえば、自車両周囲の状況に応じて車両の走行特性を制御する走行制御装置が提案されている(例えば特許文献2)。具体的には、走行制御装置は、自車前方の所定範囲を検索し、自車前方にある障害物を検出する障害物検出部と、検出された障害物の存在する位置における道幅残量を演算する道幅残量演算部と、演算された道幅残量に基づき車両の走行特性を変更する車両特性変更部とを備えている。
特開2008-62894号公報 特開平11-348598号公報
 上述した特許文献2の技術では、ACCを利用しているため、先行車、人、または障害物等が自車線上にない場合には、設定車速を維持するように制御される。しかしながら、自車走行路上に障害物があり、対向車線が走行している状況では、運転者は障害物を回避できる距離で停止し、対向車をやり過ごすと考えられる。ここで、運転者のブレーキ操作で減速した場合、ACC制御はキャンセルされるため、減速後にACC制御を行う場合は再度設定車速をセットする必要があり、運転者に負担を与えている。また、運転者の減速操作により障害物の直前で停止を行った場合、停止後の発車時に、障害物の回避が困難になる可能性もあった。
 本発明は、このような点を鑑みてなされたものであり、その目的とすることころは、道路幅が障害物および対向車の存在により狭くなるような状況下で自車が走行する場合、自車を最適な位置で停車させ、その後の再発車時に、運転者に負担を与えることなく、障害物を好適に回避することができる車両走行制御装置を提供することにある。
 前記課題を鑑みて、本発明に係る車両走行制御装置は、予め設定された設定速度に基づいて走行し、自車の周囲の状況に応じて該自車の走行を制御するものであり、道路幅と障害物の位置および幅と自車速度とに基づいて、自車走行側における前記自車が走行可能な自車走行側仮想車線を演算し、道路幅と、障害物の位置および幅と、自車速度と、対向車の位置、幅、および速度と、に基づいて、対向車走行側における自車が走行可能な対向車走行側仮想車線を演算し、道路幅と自車走行側仮想車線と対向車走行側仮想車線とに基づき、前記自車走行路の道幅残量を演算するものであり、演算された道幅残量が所定値より小さくなる地点があるときに、該地点の手前の位置で前記自車の走行を停止することを特徴とするものである。
 本発明によれば、道路幅が障害物および対向車の存在により狭くなるような状況下で自車が走行する場合、自車を最適な位置で停車させ、その後の再発車時に、運転者に負担を与えることなく、障害物を好適に回避することができる。
本発明の実施形態に係る走行制御装置を備えた車両の概略構成を示す図である。 図1に示すコントロールユニットにおいて行われる走行制御の処理を示したフローチャートである。 自車が通過することができる限界位置を演算するためのフローチャートである。 通過可能限界位置における車両の走行状態を変更する方法を説明するためのフローチャートである。 障害物があるときの仮想左側車線および仮想右側車線の演算を説明するための模式図。 図5の仮想左側車線および仮想右側車線の演算を説明するための模式図。 図6の障害物近傍の詳細を説明するための図。 図5の仮想左側車線の演算結果を説明するための模式図。 図2のステップS17で演算したすれ違い位置が障害物近傍にあるときの演算を説明するための模式図。 図2のステップS21において、対向車および障害物を考慮した仮想右側車線の演算方法を説明するための模式図。 図2のステップS22において、対向車線上に障害物がない場合の仮想右側車線の演算方法を説明するための模式図。 図2のステップS22において、対向車線上に対向車がない場合の仮想右側車線の演算方法を説明するための模式図。 仮想右側車線の演算結果を説明するための模式図。 (a)~(f)は時間経過ごとにおける、ステップS27およびステップS28で演算した目標速度および要求加速度を適用した模式図。 通過可能限界位置を演算する方法を説明するための模式図。 (a)~(e)は時間経過ごとにおける、ステップS33で演算した要求加速度を適用した模式図。 (a)~(f)は時間経過ごとにおける、ステップS34で演算した要求加速度を適用した模式図。
 本実施の形態について図面を参照して説明する。
 本発明の実施形態に係る車両の走行制御装置を備えた車両(自車)の概略構成を示す図である。この車両は、動力源としてエンジン1、駆動系として自動変速機2、プロペラシャフト3、ディファレンシャルギア4、ドライブシャフト5を備えた一般的な構成の後輪駆動車であり、エンジン1によって駆動輪である車輪6を駆動する。なお、ここに示した車両は本発明に係る実施形態で適用可能な車両の一例であり、本発明が適用可能な車両の構成を限定するものではなく、動力源としてエンジンに代えてモータ、あるいはエンジンとモータの両方を備えてもよい。
 車両のフロント部にはステレオカメラ7が取り付けられており、ステレオカメラ7は自車両から自車前方にある先行車、障害物、対向車などの位置、相対速度、幅や道路幅を演算する。このとき、ステレオカメラ7に代えてレーザレンジファインダやCCDカメラなどを用いて距離計測を行うようにしてもよい。
 また、走行制御装置を含むコントロールユニット8は、車両の走行を制御するものであり、アクセルペダル9およびブレーキペダル10の操作量およびステレオカメラからの情報に基づいて、エンジン1、自動変速機2、ブレーキ11が制御され、この結果として、車両(自車)の走行が制御される。なお、自車速度は、エンジンの回転数と、自動変速機のレンジから演算することができ、本実施形態では、この自車速度が予め設定された速度となるように、一般的に知られた方法でACC制御が実施可能な装置構成となっている。
 次に、この車両用制御装置の制御内容について示す。
 図2は、図1に示すコントロールユニットにおいて行われる処理を示したフローチャートであり、フローチャートはコントロールユニット8の動作を示したものであり、所定時間毎に繰り返し実行されるものである。
 まず、ステップS11では、ステレオカメラ7により自車前方の所定の範囲を検索し、道路の中心から左側に相当する、自車前方の自車走行路の道路幅を検出する(道路幅検出部)。具体的には、道路の中心から左側の所定範囲を検索し、自車走行路の道路幅を検出する。
 自車線上を検索した結果、ステップS12に進み、自車走行路上にある障害物を検出する(障害物検出部)。ステップS12で障害物が自車線上にあると判断した場合、ステップS13へ進む。
 ステップS13では、自車走行側(左側)における自車が走行可能な仮想左側車線Wl(y)、すなわち自車走行側仮想車線を演算する(自車走行側仮想車線演算部)。具体的は、図5および6に示すように、道路幅と、障害物の位置および幅と、自車速度とに基づいて、仮想左側車線Wl(y)を演算(算出)する。なお、仮想線とは、仮想車線とは、道路幅、障害物の位置および幅、対向車の位置、幅および速度、自車速度等に基づいて演算される自車が走行可能な領域の右端と左端の線をいい、ここでは、左側の仮想線である仮想左側車線Wl(y)を演算する。
 ここで、ステップS13における仮想左側車線Wl(y)の演算方法を図6で詳細に説明する。このステップS13では、ステレオカメラ7より道路幅方向における障害物の幅Wo、障害物の位置に基づいた左側車線(路肩)と障害物との間の幅Wol、自車から障害物までの距離Yoが検出される。また、自車と障害物Woの相対速度VRoより、自車が走行時において障害物を回避することができる仮想左側車線Wl(y)の進入角θを次の関係式で表すことができる。
 θ=α*VRo(0<θ<π/2、α=定数)
 進入角θを用いて、仮想左側車線開始距離Ylを演算する。仮想左側車線開始距離Ylの演算方法は図7で説明する。図7の左側車線の座標からy成分に対応する仮想左側車線Wl(y)のx成分を演算する。仮想左側車線Wlのx成分は下記の式で表せる。
 xl(y)=Xo-(Yo-y)/tanθ
 従って、図7のxl3、xl4、xl5は下記で演算される。
 xl3=Xo-(Yo-y3)/tanθ
 xl4=Xo-(Yo-y4)/tanθ
 xl5=Xo-(Yo-y5)/tanθ
 図7において、xl4>x4かつxl3<x3の関係にあるため、仮想左側車線開始距離Ylは下記の式で演算できる。
 Yl=(a(Yo-Xo)-y3tanθ)/(1-tanθ)
 a=(y4-y3)/(x4-x3)
 以上より、図6の仮想左側車線Wl(y)は下記の式で演算する。
 0<y ≦Ylの場合、
  Wl(y)=0
 Yl<y≦Yoの場合、
  Wl(y)=(y-Yl)tan(π/2-θ)
 Yo<yの場合、
  Wl(y)=Wol+Wo
 一方、図2に戻り、ステップS12で障害物が自車線上にないと判断した場合、ステップS14へ進む。
 ステップS14では図8に示すような仮想左側車線Wl(y)を下記の式で演算する。
 Wl(y)=0
 次に、ステップS15では、ステレオカメラ7により自車前方の道路の中心から右側の所定範囲を検索し、道路の中心から右側に相当する自車前方の対向車走行路の道路幅を検出する(道路幅検出部)。さらに、ステレオカメラ7により、自車走行路上にある対向車を検出する(対向車検出部)。対向車線上を検索した結果、ステップS16で対向車があると判断した場合、ステップS17へ進む。
 ステップS17では、図6に示すように、推定される自車と対向車のすれ違い位置Ytを演算する。自車速度Va、対向車の相対速度VRb、対向車の車間距離Ybより、すれ違い位置Ytは下記の式で演算する。
 Yt=(Yb*Va)/VRb
 次に、ステップS18へ進む。ステップS18ではステップS15の対向車線上を検索した結果より、対向車線上に障害物を検出し、障害物があると判断した場合、ステップS19へ進む。
 ステップS19では図9で示すように、ステップS17で演算したすれ違い位置Ytが障害物近傍に位置する場合、すなわち、すれ違い位置Ytが障害物の位置Yroと重なると判断する。ここで、障害物近傍とは障害物の距離Yoを基準とする障害物すれ違い下限距離Yloと障害物すれ違い上限距離Yhiの間の範囲であり、障害物すれ違い下限距離Yloと障害物すれ違い上限距離Yhiは障害物すれ違い範囲下部offset1と障害物すれ違い範囲上部offset2より下記の式で表せる。
 Ylo=Yo-offset1
 Yhi=Yo+offset2
 障害物すれ違い範囲下部offset1と障害物すれ違い範囲上部offset2は特定の固定値でもよく、自車と障害物の相対速度、または自車と対向車の相対速度に対して単調増加関数の関係式から演算してもよい。
 ステップS19で、すれ違い位置Ytが障害物の位置Yroと重なると判断した場合には、ステップS20へ進む。ステップS20では、図9で示すような仮想右側車線Wr(y)を演算する。障害物の位置および幅と、自車速度と、対向車の位置、幅、および速度と、に基づいて、対向車走行側における自車が走行可能な対向車走行側仮想車線を演算する(対向車走行側仮想車線演算部)。
 より具体的には、図9に示すように、対向車幅Wb、自車走行路の右側車線(路肩)と対向車との間の幅Wbr、障害物の幅Wo、自車走行路の右側車線(路肩)と障害物との間の幅Worより、仮想右側車線Wr(y)は下記の式で演算する。ここで、Wb+Wbrが、本発明にいう対向車の走行路幅に相当するものである。すなわち、対向車は、自車走行路の右側車線と対向車との間の幅Wbrを維持して、障害物をすり抜けると推定されるので、仮想右側車線Wr(y)は以下のように演算される。
 Wr(y)=Wo+Wor+Wb+Wbr
 一方、ステップS19において、ステップS17で演算したすれ違い位置Ytが障害物近傍に位置しないと判断した場合には、ステップS21へ進む。
 ステップS21では、図10で示すような仮想右側車線Wr(y)を下記の式で演算する。
 Wo+Wor>Wb+Wbrの場合
  WR(y)=Wo+Wor
 Wo+Wor≦Wb+Wbrの場合
  WR(y)=Wb+Wbr
 一方、ステップSS18において、対向車線上に障害物がないと判断した場合、ステップS22へ進む。
 ステップS22では図11で示すような仮想右側車線Wr(y)を下記の式で演算する。
 Wr(y)=Wb+Wbr
 一方、ステップS16において、対向車がないと判断した場合、ステップS23へ進む。
 さらに、ステップS23では、ステップS15の対向車線上を検索した結果より、対向車線上に障害物があるかを判断し、障害物がある(対向車がない)と判断した場合、ステップS24へ進む。
 ステップS24では図12で示すような仮想右側車線Wr(y)を下記の式で演算する。
 Wr(y)=Wo+Wor
 一方、ステップS23において、対向車線上に障害物がないと判断した場合、ステップS25へ進む。ステップS25では図13で示すような仮想右側車線Wr(y)を下記の式で演算する。
 Wr(y)=0
 次に、ステップS26へ進む。ステップS26では、ステップS11とステップS15で検出した自車前方の自車走行路の道路幅W(y)と、ステップS13とステップS14で演算した仮想左側車線Wl(y)と、ステップS20、ステップS21、ステップS22、ステップS24、ステップS25で演算した仮想右側車線Wr(y)より仮想自車両通過幅(道幅残量)w(y)を下記の式で演算する。すなわち、ここでは、自車走行側仮想車線と対向車走行側仮想車線に基づき、自車走行路の道幅残量を演算する(道幅残量演算部)。
 w(y)=W(y)-Wl(y)-Wr(y)
 このようにして、対向車線上に障害物があり、対向車が自車線内に入る可能性がある場合、自車と対向車の推定される走行路の範囲から、道幅残量がされる。これにより、ACC制御機能を解除せず、運転者に違和感を与えることなく、道幅残量に応じた通過速度に車両の車両走行状態(走行特性)を変更することがでる。
 次に、ステップS27へ進む。ステップS27では、演算された仮想自車両通過幅(道路残幅)w(y)に基づいて、自車前方の地点における自車の目標速度(目標通過速度)va(y)を演算する(目標通過速度演算部)。具体的には、仮想自車両通過幅w(y)に応じた目標速度va(y)を演算する。仮想自車両通過幅w(y)と目標速度va(y)との関係は単調増加の傾向にあることが好ましい。したがって、目標速度は、例えば、仮想自車両通過幅w(y)に応じた単調増加関数から演算することができる。
 このようにして、自車走行路上に障害物はあるものの残りの道幅が通過可能な場合、ACC制御機能を解除せずに、残りの道幅に応じた速度で通過するため、運転者の感覚にあった制御を実現できる。
 たとえば、仮想自車両通過幅w(y)に応じて目標速度va(y)を演算し、目標速度va(y)が、ACC制御における予め設定された設定車速より低い場合に、仮想自車両通過幅w(y)に応じた速度で走行するよう自車の走行を制御してもよい。このように、設定車速よりも仮想車両通過幅w(y)に応じた速度を優先することにより、仮想車両通過幅が狭くなった場合に、より安全に自車を走行させることができる。
 図14(a)~(f)はステップS27の一例を示している。図14(a)~(f)に示すように、Y軸の各y地点に対応する仮想自車両通過幅w(y)から目標速度va(y)を演算する。ここでY軸の各y地点は一例のため現在地から5[m]の等間隔で表されているが、自車速度に応じて間隔を変更してもよい。また、等間隔ではなく、近距離を狭く、遠方を広く間隔を調整してもよい。なお、図14および後述する図16および図17には、自車前方からの各地点における距離と、その地点における演算された目標速度(目標通過速度)および要求加速度を示している。
 次に、ステップS28へ進む。ステップS28では図14(a)に示すように現在の自車速度Vaと目標速度va(y)から要求加速度a(y)を下記の式で演算する(要求加速度演算部)。
 a(y)=(va(y)2- Va2)/2y
 そして、後述するように、演算された要求加速度a(y)に基づき、エンジンおよび自動変速機などを制御することにより、車両走行状態(加減速状態)を変更する(車両走行状態変更部)。
 ステップ28で要求加速度を演算し、さらに、自車が通過することができる限界位置がある場合、には、さらに以下のフローに進む。図3は、自車が通過することができる限界位置を演算するためのフローチャートであり、ステップ28に続くフローチャートである。ステップS29では、仮想自車両通過幅w(y)が自車両幅Waに所定の余裕αを持たせた値Wa+αより小さいかどうかを判断する。ここで、仮想自車両通過幅w(y)が、自車両幅Waに所定の余裕αを持たせた値Wa+αより小さい場合、自車の走行を停止させることが望ましく、ステップS30へ進む。
 ステップS30では、図15で示すような通過可能限界位置Ysを演算する。図15において、通過可能限界位置Ysは、w4<(Wa+α)<w5の関係を満たす位置であるため、通過可能限界位置Ysは下記の式から演算できる。
 Ys=((y5-y4)/(w5-w4))*(Wa+α)+y4
 すなわち、ここでは、通過可能限界位置Ysは、演算された道幅残量が自車両幅Waより小さくなる地点があるときに、この地点の手前の位置(通過可能限界位置Ys)で、ACC制御機能を解除せずに、自車の走行を停止させるために演算される値である。
 次に、ステップS30で通過可能限界位置Ysを演算した後はステップS31へ進む。ステップS31では図16(a)で示すような通過可能限界位置Ysで停止するよう要求加速度a(y)を演算する。次に、ステップS32へ進む。
 図4は、通過可能限界位置における車両の走行状態を変更する方法を説明するためのフローチャートであり、ステップ31に続くフローチャートである。演算された道幅残量が自車両幅Waより小さくなる地点があるときに、この地点の手前の位置(通過可能限界位置Ys)で、ACC制御機能を解除せずに自車の走行を停止するような走行制御を行う。具体的には、まず、ステップS32およびステップ33で、各地点において演算された要求加速度(具体的には減速度)が優先加減速度閾値より大きい(減速度が小さい)場合に、各地点において演算された要求加速度のうち、自車に対して最も近距離の地点で演算された要求加速度に基づき、車両走行状態を変更する。
 まず、ステップS32ではステップS28とステップS31で演算した要求加速度a(y)の中から優先加減速度閾値Alo(例えば-3[m/ss](-の符号は減速))を下回る要求加速度a(y)がない場合、ステップS33へ進む。
 ステップS33では演算された要求加速度a(y)の中から最も近いy地点にある要求加速度を選択する。図16でステップS33の一例を示す。図16の(a)は時間t=0[s]時点における各y地点の目標速度va(y)と要求加速度a(y)を示している。また自車速度Vaは5[m/s]であり、通過可能限界位置Ysが自車前方の16.5[m]の位置にある。
 この時、仮想自車両通過幅w(y)が前方にいくほど狭くなっているため目標速度va(y)も5[m/s]より低い値になっている。各y地点の目標速度va(y)と自車速度5[m/s]から演算した要求加速度a(y)の中に優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)がないため、最も近いy地点y=5[m]の要求加速度a(5)=-0.9[m/ss]を選択する。従って、t=0[s]時点でステップS33は、-0.9[m/ss]の要求加速度を出力する。
 次に、図16の(b)は図16の(a)の要求加速度-0.9[m/ss]で減速し、時間t=1.11[s]時点における各y地点の目標速度va(y)と要求加速度a(y)を示している。
 このとき、自車速度Vaは目標速度va(0)=4[m/s]と一致している。各y地点の目標速度va(y)と自車速度4[m/s]から演算した要求加速度a(y)の中で優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)がないため、最も近いy地点y=5[m]の要求加速度a(5)=-0.7[m/ss]を選択する。従って、t=1.11[s]時点でステップS33は-0.7[m/ss]の要求加速度を出力する。図16の(c)と(d)に示す時間においても同様の方法で要求加速度を出力する。
 次に、図16の(e)は、時間t=7.95[s]時点における各y地点の目標速度va(y)と要求加速度a(y)を示している。このとき、自車速度Vaは目標速度va(0)=0[m/s]と一致し、停止している。以上、図16の(a)から(e)を通して、各y地点での仮想自車両通過幅w(y)に対応する最適な自車速度で通過できる。
 一方、ステップS32において、優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)がある場合、すなわち、自車走行路の各地点で演算された要求加速度が所定値より小さい場合(減速度が大きい場合)に、ステップS34へ進む。
 ステップS34では演算された要求加速度a(y)の中から最も低い値の要求加速度を選択する。図17でステップS34の一例を示す。図17(a)は、時間t=0[s]時点における各y地点の目標速度va(y)と要求加速度a(y)を示している。また自車速度Vaは15[m/s]である。この時、仮想自車両通過幅w(y)が前方にいくほど狭くなっているため目標速度va(y)も15[m/s]より低い値になっている。各y地点の目標速度va(y)と自車速度15[m/s]から演算した要求加速度a(y)の中に優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)があるため(すなわち、要求減速度が-3[m/ss]よりも大きくなるため)、最も要求加速度値の大きい(要求減速度が大きい)y=15[m]の要求加速度a(15)=-4.17[m/ss]を選択する。従って、t=0[s]時点でステップS34は-4.17[m/ss]の要求加速度を出力する。
 次に、図17(b)は図17(a)の要求加速度-4.17[m/ss]で減速し、時間t=0.35[s]時点における各y地点の目標速度va(y)と要求加速度a(y)を示している。このとき、自車速度Vaは13.5[m/s]であり目標速度va(0)=14[m/s]を下回る。各y地点の目標速度va(y)と自車速度13.5[m/s]から演算した要求加速度a(y)の中で優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)があるため、最も値の低いy=10[m]の要求加速度a(10)=-4.11[m/ss]を選択する。従って、t=0.74[s]時点でステップS33は-4.11[m/ss]の要求加速度を出力する。図17(c)と(d)についても同様の方法で要求加速度を出力する。
 次に、図17(e)と(f)は優先加減速度閾値Alo(例えば-3[m/ss])を下回る要求加速度a(y)がないため、ステップS33へ進む。以上、図17の(a)から(f)を通して、遠方の仮想自車両通過幅w(y)の急激な変化に対して要求加速度を急変させることなく通過できる。
 次に、ステップS35へ進む。ACC制御機能を解除せずに、ステップS35ではステップS32またはステップS34で選択された要求加速度a(y)の加減速を実施する。
 このように、本実施形態では、道路幅が障害物および対向車の存在により狭くなるような状況下で自車が走行する場合であっても、自車を通過可能限界位置で停車させることができる。これにより、その後の再発車時に、障害物を好適に回避することができる。
 また、従来の如く、運転者のブレーキ操作で減速した場合、ACCはキャンセルされるため、減速後にACCを行う場合は再度設定車速をセットする必要があるところ、本実施形態によれば、この操作しなくてもよい場合があり、運転者の負担を軽減することがきる。
 自車走行側仮想車線と対向車走行側仮想車線に基づいて演算された自車走行路の仮想自車両通過幅(道幅残量)から、自車の停車を制御するので、減速操作により停止するか、設定車速のまま通過してしまうかの運転者の判断を軽減すると共に、運転者に違和感を与えることなく、走行可能である。
 さらに、自車線上に障害物があり、対向車線上へ入ってしまう可能性がある場合、自車と対向車の走行状態から推定される走行路の範囲から道幅残量を推定しているので、道幅残量から障害物を回避し、かつ対向車をやり過ごすことが可能な地点で停止することができる。
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。
 たとえば、障害物や対向車を検出する方法は上で述べた以外の方法を用いてもよい。また、加減速の変更も自動変速機の変速比やブレーキのアシスト量を変更するだけでなく、エンジン1の吸入空気量や燃料噴射量を制御して出力を変更、あるいは、ハイブリッド車や電気自動車に適用する場合、ブレーキ回生量を変更するようにしてもよい。
1  エンジン
2  自動変速機
3  プロペラシャフト
4  ディファレンシャルギア
5  ドライブシャフト
6  車輪
7  ステレオカメラ
8  コントロールユニット
9  アクセルペダル
10 ブレーキペダル
11 ブレーキ

Claims (6)

  1.  予め設定された設定速度に基づいて走行し、自車の周囲の状況に応じて該自車の走行を制御する車両の走行制御装置であって、
     該走行制御装置は、自車前方の自車走行路の道路幅を検出する道路幅検出部と、
     前記自車走行路上にある障害物の位置を検出する障害物検出部と、
     前記自車走行路上にある対向車の位置を検出する対向車検出部と、
     前記道路幅方向における検出された障害物と対向車の幅を検出する幅検出部と、
     前記道路幅と前記障害物の位置および幅と自車速度とに基づいて、前記自車走行側における前記自車が走行可能な自車走行側仮想車線を演算する自車走行側仮想車線演算部と、 前記道路幅と、前記障害物の位置および幅と、前記自車速度と、前記対向車の位置、幅、および速度と、に基づいて、前記対向車走行側における前記自車が走行可能な対向車走行側仮想車線を演算する対向車走行側仮想車線演算部と、
     前記道路幅と前記自車走行側仮想車線と前記対向車走行側仮想車線とに基づき、前記自車走行路の道幅残量を演算する道幅残量演算部と、を備え、
     前記演算された道幅残量が所定値より小さくなる地点があるときに、該地点の手前の位置で前記自車の走行を停止することを特徴とする走行制御装置。
  2.  前記演算された道幅残量に基づき、前記自車前方の各地点における自車の目標通過速度を演算する目標通過速度演算部と、該目標通過速度と自車速度に基づき、自車の要求加速度を演算する要求加速度演算部と、前記要求加速度に基づき車両走行状態を変更する車両走行状態変更部を備えたことを特徴とする請求項1に記載の走行制御装置。
  3.  前記目標通過速度演算部は、前記道幅残量に応じて前記目標通過速度を演算し、該目標通過速度が、予め設定された設定車速より低い場合に、道幅残量に応じた速度で走行するよう自車の走行を制御することを特徴とする請求項2に記載の走行制御装置。
  4.  前記障害物検出部が障害物を検出し、前記対向車検出部が、前記対向車を検出したときに、前記走行制御装置は、前記自車と前記対向車のすれ違い地点を推定し、
     該推定されたすれ違い地点が前記障害物近傍と一致する場合には、前記対向車の走行路幅を推定し、前記対向車走行側仮想車線演算部は、前記対向車の前記走行路幅に基づいて、対向車走行側仮想車線を演算することを特徴とする請求項1に記載の走行制御装置。
  5.  車両走行状態変更部は、各地点において演算された要求加速度が所定値より大きい場合に、各地点において演算された要求加速度のうち、自車に対して最も近距離の地点で演算された要求加速度に基づき、前記車両走行状態を変更することを特徴とする請求項2に記載の走行制御装置。
  6.  自車走行路の各地点で演算された要求加速度が所定値より小さい場合に、演算された要求加速度の中で最も低い値の要求加速度に基づき前記車両走行状態を変更することを特徴とする請求項5に記載の走行制御装置。
PCT/JP2013/052974 2012-03-07 2013-02-08 車両走行制御装置 WO2013132949A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/376,303 US9216739B2 (en) 2012-03-07 2013-02-08 Vehicle travel control apparatus
CN201380007566.0A CN104080681B (zh) 2012-03-07 2013-02-08 车辆行驶控制装置
DE112013000600.6T DE112013000600B4 (de) 2012-03-07 2013-02-08 Fahrzeugfahrtsteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050850 2012-03-07
JP2012050850A JP5757900B2 (ja) 2012-03-07 2012-03-07 車両走行制御装置

Publications (1)

Publication Number Publication Date
WO2013132949A1 true WO2013132949A1 (ja) 2013-09-12

Family

ID=49116433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052974 WO2013132949A1 (ja) 2012-03-07 2013-02-08 車両走行制御装置

Country Status (5)

Country Link
US (1) US9216739B2 (ja)
JP (1) JP5757900B2 (ja)
CN (1) CN104080681B (ja)
DE (1) DE112013000600B4 (ja)
WO (1) WO2013132949A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458213A (zh) * 2014-06-25 2017-02-22 日产自动车株式会社 车辆控制装置
JP2017187846A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 車両用装置、車両用プログラム
CN111712417A (zh) * 2018-09-28 2020-09-25 百度时代网络技术(北京)有限公司 用于自动驾驶车辆的、基于隧道的规划系统

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085325A1 (de) * 2011-10-27 2013-05-02 Robert Bosch Gmbh Verfahren zum Führen eines Fahrzeugs und Fahrerassistenzsystem
KR101787996B1 (ko) * 2013-04-11 2017-10-19 주식회사 만도 차선 추정 장치 및 그 방법
JP5917472B2 (ja) * 2013-11-08 2016-05-18 本田技研工業株式会社 運転支援装置
JP5952862B2 (ja) * 2014-06-27 2016-07-13 富士重工業株式会社 車両の運転支援装置
DE102014212478A1 (de) * 2014-06-27 2015-12-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erstellung eines Umfeldmodells eines Fahrzeugs
CN104670021A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有实时通信的智能车辆安全控制系统
CN104670243A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有语音控制的车辆安全辅助控制系统
CN104670244A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有语音控制的车辆安全控制系统
CN104599517A (zh) * 2015-01-29 2015-05-06 柳州市二和汽车零部件有限公司 智能车辆安全辅助控制系统
CN104608634A (zh) * 2015-01-29 2015-05-13 柳州市二和汽车零部件有限公司 智能车辆安全控制系统
CN104670083A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有语音控制的智能车辆安全控制系统
CN104590256A (zh) * 2015-01-29 2015-05-06 柳州市二和汽车零部件有限公司 车辆安全辅助控制系统
CN104680816A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有实时通信的智能车辆安全辅助控制系统
CN104670082A (zh) * 2015-01-29 2015-06-03 柳州市二和汽车零部件有限公司 具有语音控制和实时通信的车辆安全控制系统
JP6573769B2 (ja) * 2015-02-10 2019-09-11 国立大学法人金沢大学 車両走行制御装置
DE102015213576A1 (de) * 2015-05-11 2016-11-17 Robert Bosch Gmbh Verfahren zur Ansteuerung von Rückhaltemitteln für ein Fahrzeug, Computerprogramm, elektronisches Speichermedium und Vorrichtung Ansteuerung von Rückhaltemitteln für ein Fahrzeug
JP6573526B2 (ja) * 2015-10-21 2019-09-11 株式会社Subaru 車両の運転支援制御装置
DE102016203086B4 (de) 2016-02-26 2018-06-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrerassistenz
SE541225C2 (en) * 2016-11-10 2019-05-07 Scania Cv Ab Method and control unit for heavy vehicles
KR102568114B1 (ko) * 2016-11-30 2023-08-18 현대오토에버 주식회사 자율 주행 제어 장치 및 방법
JP6741871B2 (ja) * 2016-12-06 2020-08-19 ニッサン ノース アメリカ,インク 自律走行車両のソリューションパスオーバーレイインタフェース
JP2018097590A (ja) * 2016-12-13 2018-06-21 アイシン・エィ・ダブリュ株式会社 障害物判定システムおよび障害物判定プログラム
DE102017203624A1 (de) 2017-03-06 2018-09-06 Continental Automotive Gmbh Warneinrichtung vor Gegenverkehr.
WO2019008648A1 (ja) 2017-07-03 2019-01-10 日産自動車株式会社 運転支援車両の目標車速生成方法及び目標車速生成装置
CN107633683B (zh) * 2017-09-29 2020-08-07 深圳市富源信息技术有限公司 用于车辆超载的非现场执法管理系统
JP2019137189A (ja) * 2018-02-08 2019-08-22 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP6637537B2 (ja) * 2018-03-14 2020-01-29 本田技研工業株式会社 車両制御装置および車両制御方法
JP6754386B2 (ja) * 2018-03-14 2020-09-09 本田技研工業株式会社 車両制御装置
CN110364023B (zh) * 2018-04-10 2022-05-31 奥迪股份公司 驾驶辅助系统和方法
JP6924724B2 (ja) * 2018-06-14 2021-08-25 本田技研工業株式会社 車両の制御装置
CN110733496B (zh) * 2018-07-18 2024-08-23 松下知识产权经营株式会社 信息处理装置、信息处理方法以及记录介质
CN110738081B (zh) * 2018-07-19 2022-07-29 杭州海康威视数字技术股份有限公司 异常路况检测方法及装置
JP7377822B2 (ja) * 2019-01-15 2023-11-10 日産自動車株式会社 運転支援方法及び運転支援装置
JP7049283B2 (ja) * 2019-03-07 2022-04-06 本田技研工業株式会社 車両制御装置
US10915766B2 (en) * 2019-06-28 2021-02-09 Baidu Usa Llc Method for detecting closest in-path object (CIPO) for autonomous driving
DE102020204078A1 (de) * 2019-11-27 2021-05-27 Robert Bosch Gesellschaft mit beschränkter Haftung Fahrerassistenzsystem für Kraftfahrzeuge
WO2021111164A1 (ja) * 2019-12-02 2021-06-10 日産自動車株式会社 車両制御方法及び車両制御装置
CN111857127B (zh) * 2020-06-12 2021-10-01 珠海市一微半导体有限公司 一种机器人沿边行走的清洁分区规划方法、芯片及机器人
JP7386345B2 (ja) * 2020-06-17 2023-11-24 日産自動車株式会社 走行支援方法、及び、走行支援装置
WO2023244976A1 (en) * 2022-06-14 2023-12-21 Tusimple, Inc. Systems and methods for detecting restricted traffic zones for autonomous driving
CN118082873A (zh) * 2022-11-15 2024-05-28 北京三快在线科技有限公司 自动驾驶车辆行驶方法以及自动驾驶车辆
JP7435867B1 (ja) 2023-03-13 2024-02-21 いすゞ自動車株式会社 車速制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348598A (ja) * 1998-06-09 1999-12-21 Nissan Motor Co Ltd 車両用制御装置
JP2005182753A (ja) * 2003-11-28 2005-07-07 Denso Corp 車両運転支援装置
JP2006273000A (ja) * 2005-03-28 2006-10-12 Advics:Kk 車両用走行支援装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203113A (en) * 1975-02-24 1980-05-13 Baghdady Elie J Radar method and apparatus
EP0841648B1 (en) * 1992-09-30 2004-06-02 Hitachi, Ltd. Vehicle driving support system and vehicle therewith
US5754099A (en) * 1994-03-25 1998-05-19 Nippondenso Co., Ltd. Obstacle warning system for a vehicle
US7630806B2 (en) * 1994-05-23 2009-12-08 Automotive Technologies International, Inc. System and method for detecting and protecting pedestrians
JP3487054B2 (ja) * 1995-12-26 2004-01-13 株式会社デンソー 車両用障害物警報装置
JP3337197B2 (ja) * 1997-04-04 2002-10-21 富士重工業株式会社 車外監視装置
JP3358709B2 (ja) * 1997-08-11 2002-12-24 富士重工業株式会社 車両用運転支援装置
US6268803B1 (en) * 1998-08-06 2001-07-31 Altra Technologies Incorporated System and method of avoiding collisions
JP3596314B2 (ja) * 1998-11-02 2004-12-02 日産自動車株式会社 物体端の位置計測装置および移動体の通行判断装置
JP3681620B2 (ja) * 2000-07-26 2005-08-10 株式会社デンソー 車両用障害物認識装置
US7002452B2 (en) * 2000-11-24 2006-02-21 Aisin Seiki Kabushiki Kaisha Collision preventing apparatus for a vehicle
US7266220B2 (en) * 2002-05-09 2007-09-04 Matsushita Electric Industrial Co., Ltd. Monitoring device, monitoring method and program for monitoring
EP1475765A3 (de) 2003-05-08 2006-05-24 Robert Bosch Gmbh Vorrichtung zur Bestimmung einer Durchfahrtsmöglichkeit für ein Fahrzeug
US20050125121A1 (en) 2003-11-28 2005-06-09 Denso Corporation Vehicle driving assisting apparatus
US7561966B2 (en) * 2003-12-17 2009-07-14 Denso Corporation Vehicle information display system
US8280573B2 (en) 2006-08-10 2012-10-02 Komatsu Ltd. Guided control device for unmanned vehicle
JP4377898B2 (ja) 2006-09-11 2009-12-02 本田技研工業株式会社 ハイブリッド車両の制御装置
DE102007027494B4 (de) 2007-06-14 2012-12-06 Daimler Ag Verfahren und eine Vorrichtung zur Unterstützung des Fahrers eines Fahrzeugs bei der Fahrzeugführung
JP5407952B2 (ja) * 2009-06-18 2014-02-05 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
JP5180933B2 (ja) * 2009-09-04 2013-04-10 本田技研工業株式会社 車両用接触回避支援装置
JP5267592B2 (ja) * 2010-04-09 2013-08-21 株式会社デンソー 物体認識装置
JP5716343B2 (ja) * 2010-10-01 2015-05-13 トヨタ自動車株式会社 車両の物体認識システム
JP5516301B2 (ja) * 2010-10-05 2014-06-11 トヨタ自動車株式会社 車両の走路判定システム
JP5563025B2 (ja) * 2012-03-28 2014-07-30 本田技研工業株式会社 踏切遮断機推定装置及び車両
KR102028720B1 (ko) * 2012-07-10 2019-11-08 삼성전자주식회사 위험 요소에 대한 정보를 디스플레이하는 투명 디스플레이 장치 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11348598A (ja) * 1998-06-09 1999-12-21 Nissan Motor Co Ltd 車両用制御装置
JP2005182753A (ja) * 2003-11-28 2005-07-07 Denso Corp 車両運転支援装置
JP2006273000A (ja) * 2005-03-28 2006-10-12 Advics:Kk 車両用走行支援装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458213A (zh) * 2014-06-25 2017-02-22 日产自动车株式会社 车辆控制装置
CN106458213B (zh) * 2014-06-25 2018-04-06 日产自动车株式会社 车辆控制装置
JP2017187846A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 車両用装置、車両用プログラム
CN111712417A (zh) * 2018-09-28 2020-09-25 百度时代网络技术(北京)有限公司 用于自动驾驶车辆的、基于隧道的规划系统
CN111712417B (zh) * 2018-09-28 2023-09-01 百度时代网络技术(北京)有限公司 用于自动驾驶车辆的、基于隧道的规划系统

Also Published As

Publication number Publication date
JP2013184563A (ja) 2013-09-19
CN104080681A (zh) 2014-10-01
CN104080681B (zh) 2016-09-28
US20150039156A1 (en) 2015-02-05
US9216739B2 (en) 2015-12-22
DE112013000600T5 (de) 2014-10-23
JP5757900B2 (ja) 2015-08-05
DE112013000600B4 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
JP5757900B2 (ja) 車両走行制御装置
CN112061121B (zh) 车辆的行驶控制装置
JP6381079B2 (ja) 車両の走行制御装置
WO2014057706A1 (ja) 走行支援システム及び制御装置
US20080086269A1 (en) Obstacle avoidance control apparatus
WO2017077807A1 (ja) 車両走行制御装置
US20120226433A1 (en) System and Method for Improving the Fuel Economy of a Vehicle Combustion Engine
JP2018039303A (ja) 車両制御装置
JP2020001551A (ja) 車両制御装置
JP2006298008A (ja) 車両の運転支援装置
JPWO2019008647A1 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP6521487B2 (ja) 車両制御装置
JP2019172239A (ja) 車両の運転支援装置
JP6573526B2 (ja) 車両の運転支援制御装置
JP2018094943A (ja) 車両の自動運転装置
JP2017136968A (ja) 車両制御装置
JP2008074232A (ja) 車両用運転支援装置および方法
US20180037232A1 (en) Method and device for adapting a vehicle velocity for a vehicle
WO2012161815A1 (en) System and method for improving the fuel economy of a vehicle combustion engine
JP5042496B2 (ja) 運転支援装置
JP2008059366A (ja) 操舵角決定装置、自動車及び操舵角決定方法
WO2019073583A1 (ja) 自動運転車両の制御方法および制御装置
JP2007076389A (ja) 車速制御装置
JP7474279B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP5552455B2 (ja) 車両用運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000600

Country of ref document: DE

Ref document number: 1120130006006

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757893

Country of ref document: EP

Kind code of ref document: A1