WO2013132673A1 - 樹脂金属複合シール容器及びその製造方法 - Google Patents

樹脂金属複合シール容器及びその製造方法 Download PDF

Info

Publication number
WO2013132673A1
WO2013132673A1 PCT/JP2012/070386 JP2012070386W WO2013132673A1 WO 2013132673 A1 WO2013132673 A1 WO 2013132673A1 JP 2012070386 W JP2012070386 W JP 2012070386W WO 2013132673 A1 WO2013132673 A1 WO 2013132673A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
metal foil
heat
foil
Prior art date
Application number
PCT/JP2012/070386
Other languages
English (en)
French (fr)
Inventor
能勢 幸一
中塚 淳
豊 松澤
村井 悠
Original Assignee
新日鉄住金マテリアルズ株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社, 本田技研工業株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to JP2014503759A priority Critical patent/JP6238887B2/ja
Priority to EP13757877.9A priority patent/EP2824728B1/en
Priority to US14/382,897 priority patent/US9905817B2/en
Priority to KR1020147025287A priority patent/KR101677680B1/ko
Priority to CN201380012516.1A priority patent/CN104145351B/zh
Priority to TW102105996A priority patent/TWI580622B/zh
Priority to PCT/JP2013/054368 priority patent/WO2013133039A1/ja
Publication of WO2013132673A1 publication Critical patent/WO2013132673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/003Apparatus or processes for encapsulating capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a resin-metal composite sealed container having a seal portion that is welded with a laser after welding a part of the heat-sealed portion with a laser and is metal-sealed with a weld bead outside the heat seal portion, and a method for manufacturing the same. And this container is used especially for an electrical storage cell use.
  • Cases of power storage elements such as storage batteries and capacitors are mainly made of metal plate materials, which can be formed into cylindrical or cuboid cans by pressing, brazing, laser welding, etc., and metal foil as a gas barrier. It is roughly classified into two types: a pouch type that forms a case (in this case, it is soft and is also referred to as a bag) by heat sealing using a resin film as a layer.
  • a pouch-type battery is used in a state in which a power storage element part and the outside world are blocked by packaging with a metal foil (laminated metal foil) laminated with a heat sealing resin and heat sealing the heat sealing resin. This is because leakage of the battery electrolyte to the outside or mixing of water vapor from the environment is fatal to the battery life.
  • the heat sealing part becomes a leakage path for electrolyte inside the battery or an intrusion path where water vapor enters from the outside environment to the inside.
  • the path length of the seal portion contributes to determining the life of the battery cell. Therefore, to increase the battery cell life, it is effective to increase the path length of the heat seal part.
  • the path length of the heat seal part is increased, useless space increases and the cell capacity per space is increased. Becomes smaller. Therefore, there is a trade-off relationship between the cell capacity per unit space and the battery life in the battery cells of the laminate pack that are joined by heat sealing.
  • laminated aluminum foil has been used as the laminated metal foil used in the pouch-type battery case.
  • the pouch-type case has been developed from a resin pouch bag body for food packaging, together with the feature of aluminum that it is easy to obtain a thin metal foil. That is, in the food packaging pouch bag, aluminum has been vapor-deposited as a barrier layer in order to provide gas barrier properties for extending the life of the food.
  • a gas barrier property that is much stricter than food is required. It is necessary to improve the reliability. For this reason, as a result of increasing the thickness of the aluminum of the gas barrier layer, the aluminum vapor deposition film has led to the application of aluminum foil.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-086744 discloses an “external body for hermetically storing an electrochemical cell main body such as a lithium ion battery main body, a capacitor, an electric double layer capacitor, etc.”
  • a packaging material for an electrochemical cell comprising a material layer, a metal foil layer whose surface is subjected to chemical conversion treatment, an acid-modified polyolefin layer, and a heat-adhesive resin layer, is sequentially disclosed.
  • the “base material layer” is a resin film to the last, and this expression alone shows that the metal foil layer has an accompanying role.
  • the metal foil layer 12 is a layer for preventing water vapor from entering the lithium ion battery from the outside”.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-340187 describes, as a polymer battery packaging material, “polymer battery packaging material composed of outermost layer / barrier layer / intermediate layer / innermost layer ...”, Furthermore, it is clearly shown that the metal foil layer (aluminum foil layer) is a barrier layer.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-153577 describes that a stainless steel foil can be used in addition to the aluminum foil disclosed as an example of the metal foil of the heat seal laminate. .
  • the joint part heat-sealed with the laminated resin the heat-seal part is not composed of metal, but the joint part is composed only of resin, other parts having a metal layer as a barrier layer, welding It does not have the gas barrier property of the joint part made of metal, such as a metal can, and the penetration of moisture has a fatal effect on the life, so it is sufficient for batteries that require high gas barrier property. There is a problem that the gas barrier property cannot be exhibited.
  • An object of the present invention is to provide a resin-metal composite sealed container having both a seal part by a metal weld part and a heat seal part that can constitute a joint part that realizes a high gas barrier property, and a method for manufacturing the same.
  • a high gas barrier property can be realized by further using laser bonding together with a heat seal portion constituted by a laminated resin.
  • materials coated with a material whose boiling point or thermal decomposition temperature of the coating substance (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate), such as galvanized steel plate or resin-coated metal plate, are laser welded.
  • such a coating material is gasified and blows away the weld metal in the molten state, so that it is very difficult to stably form a sound weld joint.
  • the metal thickness is thin and the thickness of the heat seal resin and the thickness of the metal foil are often the same, the proportion of the metal that is melted during welding is small, The condition is that the distance between the metals to be joined by welding is relatively large, and further welding is difficult.
  • the inventors conducted extensive research and development, and the melting point of the metal constituting the metal foil is sufficiently higher than the thermal decomposition temperature of the laminate resin used for heat sealing, and It has been found that if the specific gravity of the metal constituting the metal foil is sufficiently larger than the specific gravity of the laminate resin used for heat sealing, the heat sealed joint can be laser welded.
  • a resin-metal composite sealing container in which an end face of a metal foil having a heat sealing resin laminated on at least one side is sealed by heat sealing, and further on the outer side of the heat sealing portion of the metal foil by a weld bead
  • a resin-metal composite sealed container having a metal-sealed seal portion.
  • the melting point of the metal constituting the metal foil is 300 ° C. higher than the thermal decomposition temperature of the heat sealing resin,
  • the specific gravity of the metal which comprises the said metal foil is 5 or more,
  • the said weld bead is formed by laser welding,
  • a laser welded part can be used together with a heat seal part constituted by a laminated resin, and the barrier property against a gas typified by an electrolyte and water vapor is made of metal.
  • the remarkable effect that it is greatly enhanced by the constructed seal portion is achieved, and if most of the circumference of the heat seal portion can be welded, the significant effect that the life can be greatly increased is achieved.
  • FIG. 3A is a schematic external view of the electricity storage cell of the present invention.
  • FIG. 3B is a top view of the electricity storage cell of the present invention.
  • 3B is a cross-sectional photograph of the vicinity of the welded portion in FIGS. 3A and 3B.
  • FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3B, showing the relationship between the heat seal portion and the laser irradiation direction of laser welding.
  • It is BB 'sectional drawing of FIG. 3B.
  • It is a graph of a moisture penetration barrier property evaluation test result, and is a graph showing the relationship between the amount of moisture that penetrates from the outside to the inside of the sealed container and the evaluation test time.
  • FIG. 1 shows a structural example of the resin-metal composite sealed container of the present invention.
  • the metal foil 6 has a resin-metal composite seal structure in which the metal foil 6 is metal-bonded at the laser welding portion 7 and the heat-sealing resin 3 is bonded to the inside thereof at the heat-sealing portion 6 ′.
  • the container of the present invention is characterized in that the melting point of the metal constituting the metal foil is 300 ° C. or more higher than the thermal decomposition temperature of the heat sealing resin, and the specific gravity of the metal constituting the metal foil is 5 or more. It can be manufactured by laser welding after heat sealing using a laminated metal foil for laser welding.
  • the container of the present invention can be realized by using a metal foil as a stainless steel foil and the heat sealing resin as a resin mainly composed of polypropylene.
  • Laser welding part The problem in performing laser welding is to form a battery cell by forming a battery cell by heat sealing and then welding the metal outside it without destroying the container structure made of resin formed by heat sealing. It is.
  • Explosion is generally applied to materials coated with a material whose boiling point or thermal decomposition temperature of the coating material (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate), such as a galvanized steel sheet or a resin-coated metal plate.
  • a material whose boiling point or thermal decomposition temperature of the coating material (zinc or resin) is lower than the melting point of the base material (steel plate or metal plate)
  • the gasified coating material blows away the weld metal in a molten state and is generated.
  • the most effective method for avoiding explosions is to provide a certain clearance between the steel sheets to be welded together to provide a gas escape place.
  • this method cannot be applied to a laminated metal foil joining portion that is adhered by heat sealing.
  • the inventors have avoided the explosion of laminated metal foil by utilizing the fact that the nature of the causative substance to be blown off differs between the plated steel sheet and the laminated metal foil.
  • the present invention has been achieved.
  • the melting point of the metal constituting the metal foil is 300 ° C. higher than the decomposition temperature of the heat sealing resin, and the metal foil is constituted. It has been found that if the specific gravity of the metal is 5 or more, explosions are unlikely to occur.
  • the metal foil when the metal foil is a stainless steel foil and the heat sealing resin is a resin mainly made of polypropylene, it is found that this condition is satisfied, and the industrial availability is high. It was.
  • the resin for heat sealing that also serves as the inner surface resin used for the storage cell application is usually a polyolefin resin, and the polyolefin resin is a resin mainly composed of a resin having a repeating unit of the following (formula 1). is there.
  • the main component is that the resin having the repeating unit of (Formula 1) constitutes 50% by mass or more.
  • the polyolefin resin may be a homopolymer of the above-described structural units or two or more types of copolymers. It is preferable that five or more repeating units are chemically bonded. If it is less than 5, the polymer effect (for example, flexibility, extensibility, etc.) is hardly exhibited.
  • the above repeating unit is exemplified by the addition polymerization of terminal olefins such as propene, 1- butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1- decene and 1-dodecene.
  • terminal olefins such as propene, 1- butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1- decene and 1-dodecene.
  • aliphatic units such as repeating units, repeating units with addition of isobutene, and styrene monomers
  • o-methylstyrene m-methylstyrene, p-methylstyrene, o- ethylstyrene, m- ethylstyrene, o -Styrene monomer addition polymer units such as alkyl styrene such as ethyl styrene, ot-butyl styrene, mt-butyl styrene, pt-butyl styrene, halogenated styrene such as monochlorostyrene, and terminal methyl styrene Aromatic olefins and the like.
  • Examples of such homopolymers of repeating units include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, cross-linked polyethylene, polypropylene, polybutene, polypentene, Examples include polyhexene, polyoctenylene, polyisoprene, polybutadiene and the like.
  • Examples of the copolymer of the above repeating units are ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-propylene-hexadiene copolymer, ethylene-propylene-5-ethylidene-2-norbornene copolymer.
  • Examples thereof include aliphatic polyolefins such as olefins, and aromatic polyolefins such as styrene-based copolymers, but are not limited to these, as long as the above repeating units are satisfied. Moreover, a block copolymer or a random copolymer may be sufficient. These resins may be used alone or in combination of two or more.
  • the polyolefin used in the present invention is only required to have the above-mentioned olefin unit as a main component, and a vinyl monomer, a polar vinyl monomer, and a diene monomer, which are substitution products of the above unit, are copolymerized in a monomer unit or a resin unit. May be.
  • the copolymer composition is 50% by mass or less, preferably 30% by mass or less, based on the olefin unit. If it exceeds 50% by mass, properties as an olefin resin such as a barrier property against a corrosion-causing substance are deteriorated.
  • polar vinyl monomer examples include acrylic acid derivatives such as acrylic acid, methyl acrylate, and ethyl acrylate, methacrylic acid derivatives such as methacrylic acid, methyl methacrylate, and ethyl methacrylate, acrylonitrile, maleic anhydride, and maleic anhydride.
  • acrylic acid derivatives such as acrylic acid, methyl acrylate, and ethyl acrylate
  • methacrylic acid derivatives such as methacrylic acid, methyl methacrylate, and ethyl methacrylate
  • acrylonitrile maleic anhydride
  • maleic anhydride and maleic anhydride
  • Imide derivatives vinyl chloride and the like.
  • low density polyethylene medium density polyethylene, high density polyethylene, linear low density polyethylene, cross-linked polyethylene, polypropylene, or a mixture of two or more of these.
  • these polyolefin-based resins are generally suitable, but industrially, those mainly composed of polypropylene are further used in view of cost, distribution, easiness of heat lamination, and the like. Is preferred.
  • the resin mainly composed of polypropylene refers to a resin containing 50% by mass or more of polypropylene.
  • various polyethylenes such as low density polyethylene and high density polyethylene in a ratio of less than 50% by mass, Examples thereof include resins obtained by polymerizing polyolefins such as polybutene and polypentene.
  • resins obtained by polymerizing polyolefins such as polybutene and polypentene.
  • acid-modified polyolefin may be used. Even if it is a block copolymer, a random copolymer, or the olefin other than the polypropylene to be polymerized is one kind or two kinds or more, the main polypropylene may be 50% by mass or more.
  • the polypropylene is from 70% by mass or more and 90% by mass or more to the polypropylene itself.
  • what is polymerized is preferably one that lowers the decomposition temperature than when polypropylene alone is used, and a polyethylene resin is particularly suitable.
  • the specific gravity of aluminum is about 2.7 and the melting point is 660 ° C., which is relatively light and low melting among general-purpose metals.
  • the laminated metal foil is an aluminum laminated foil, the aluminum laminated foil could not form a sound weld by laser welding, but in the first place, the laminated aluminum foil is easy to heat seal regardless of welding.
  • metals suitable for the metal foil for welding of the present invention include stainless steel, pure iron, carbon steel, low alloy steel, copper, nickel, zirconium, vanadium, aluminum iron alloy, zinc copper alloy, and the like. .
  • Plating-coated metal coated with a refractory metal is also within the scope of the present invention. Specifically, as a plated steel, tin-free steel having a chromium oxide layer and a metal chromium layer, a nickel layer, or a nickel layer and nickel-iron Nickel-plated steel such as having an alloy layer is included.
  • Thermal decomposition temperature of heat sealing resin The reason why the melting point of the metal constituting the metal foil needs to be 300 ° C. higher than the thermal decomposition temperature of the heat sealing resin is that the difference between the thermal decomposition temperature of the heat sealing resin and the melting point of the metal constituting the metal foil This is because if the temperature is less than 300 ° C., the frequency of explosions increases.
  • the principle needs to be further analyzed, but as the melting point of the metal and the decomposition temperature of the resin are more distant, the resin decomposes and gas flows when the temperature rises in the vicinity of the weld during the welding process.
  • the inventors presume that the time lag from the occurrence of the metal to the melting of the metal can sufficiently dissipate the decomposition gas of the resin causing the explosion before the metal melts. Yes. Therefore, it is desirable that the difference between the melting point of the metal and the decomposition temperature of the resin is far away to some extent, and more desirably, the melting point of the metal constituting the metal foil is 400 than the thermal decomposition temperature of the heat sealing resin. More preferably, the melting point of the metal constituting the metal foil is 500 ° C. or more higher than the thermal decomposition temperature of the heat sealing resin, which is suitable for forming a sound weld.
  • the melting point of the metal constituting the metal foil is higher than 2000 ° C. with respect to the thermal decomposition temperature of the heat sealing resin, the amount of heat for melting the metal becomes enormous. Since the heat seal resin may be excessively decomposed by the amount of heat and the structure of the battery case made of the resin may be damaged, the difference between the heat decomposition temperature of the heat seal resin and the melting point of the metal constituting the metal foil is 2000 It is desirable that the temperature is not higher than ° C. Excessive heat history, even if the resin remains, damages the resin. From the viewpoint of damage to the remaining resin, more preferably, it constitutes the thermal decomposition temperature of the heat sealing resin and the metal foil.
  • the difference in melting point of the metal is desirably 1200 ° C. or less.
  • a resin that can be suitably used as a heat seal resin that raises the melting point of the metal by 300 ° C. or higher than the thermal decomposition temperature of the heat seal resin The selection may be made in consideration of the thermal decomposition temperature in relation to the melting point of the foil, and examples thereof include resins such as polypropylene, polyethylene, and copolymers thereof, and resins mainly composed of these.
  • Polypropylene has a thermal decomposition temperature of 430 ° C.
  • polyethylene has a thermal decomposition temperature of 450 ° C.
  • these copolymers show intermediate values.
  • the decomposition temperature refers to a temperature at which a mass change of 10% occurs.
  • the reason why the specific gravity of the metal constituting the metal foil needs to be 5 or more is that if the specific gravity of the metal constituting the metal foil is less than 5, there is a problem that the frequency of explosions increases.
  • the principle needs to be further analyzed to be precise, but even if the gas causing the explosion is generated when the metal is molten, if the specific gravity of the metal is large, it can be blown away without losing the gas pressure. It is qualitatively estimated that there is a higher probability of staying without being affected and it is less susceptible to gas.
  • the specific gravity of the metal constituting the metal foil is 6 or more, and more desirably, the specific gravity of the metal constituting the metal foil is 7 or more.
  • the specific gravity of the metal is preferably 20 or less from the viewpoint of a practical metal, and more preferably 10 or less when weight reduction is important.
  • the thickness of the metal foil is preferably 15 to 150 ⁇ m, more preferably 40 to 120 ⁇ m. If the metal foil is thin, the amount of metal for forming the weld metal is insufficient, weld defects are likely to occur, metal deformation is likely to occur, and welding control becomes difficult. On the other hand, if it is too thick, the weight as a container increases in the first place, and therefore the advantage of using a laminated metal foil is reduced.
  • the thickness of the heat sealing laminate resin is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m. If the laminate resin is thin, the resin that melts at the time of heat sealing becomes too small, and a sealing defect in which no resin exists between the metal foils starts to occur.
  • the thicker the metal foil the greater the resistance to the decomposition gas of the heat sealing resin, and the thinner the heat sealing resin, the less the generation of decomposition gas.
  • the ratio is preferably 0.7 or more, and more preferably 1.2 or more.
  • the width (path width) of the heat seal portion is not uniform depending on the structure and purpose, but is generally 1 to 50 mm, preferably 2 to 20 mm, more preferably 3 to 7 mm.
  • the weld bead since the weld bead is formed, it can be made narrower than in the case of only the conventional heat seal, but if the width of the heat seal part is made too narrow, the sealability of the heat seal part becomes insufficient.
  • a weld bead in order to form a weld bead without impairing the heat seal, it is preferable to form the weld bead from the end face side of the metal foil on the outer side with an interval from the heat seal portion.
  • a weld bead may be formed continuously from a part of the heat seal portion from the end surface side of the metal foil or from the upper and lower surface side of the metal foil. May be present.
  • a portion with the electrode tab cannot be welded, so the sealing by welding is just near the electrode tab.
  • the outer circumference up to is the maximum weld sealing circumference. Since heat sealing can also heat seal the part including the electrode tab, the entire circumference is the maximum sealing circumference.
  • the heat sealing part is a leakage path for electrolyte inside the battery or an intrusion path where water vapor enters from the outside environment to the inside.
  • the path length of the heat seal part contributes to determining the life of the battery cell.
  • the cross-sectional area of the moisture intrusion path increases in proportion to the circumference, so the longer the circumference of the heat seal, the greater the flow rate of intrusion moisture and the shorter the life. The influence of moisture intrusion increases as the path length of the heat seal portion is shorter and as the heat sealed circumference is longer.
  • the laminated metal foil used in the container of the present invention has a surface that is not coated with a heat seal resin, that is, the surface that is normally the outer surface of the container, and the surface of the metal foil is left as it is.
  • various resin laminates may be applied.
  • a coating thinner than the heat seal resin is applied, there is no effect on welding, and a laminated metal foil coated on the outer surface side to provide functions such as insulation and heat dissipation also falls within the scope of the present invention. It is.
  • covering the outer surface with a PET film having a thickness of 20 ⁇ m or less to provide insulation is also economical and suitable from the viewpoint of workability during embossing.
  • the heat seal resin on the inner surface side does not need to be a single layer, and an acid-modified polypropylene layer is laminated on the side in contact with the metal layer in order to improve adhesion to the metal, thereby improving heat sealability. It is also possible to apply a multilayer resin laminate such as laminating a polypropylene layer on the outer layer.
  • the inner surface side can be surface treated on the metal surface in order to improve the electrolytic solution resistance when used for a power storage case, and various chromate treatments such as electrolytic chromate and resin chromate, Chromate-free chemical conversion treatment may be performed.
  • various chromate treatments such as electrolytic chromate and resin chromate, Chromate-free chemical conversion treatment may be performed.
  • Tin-free steel, which has already been subjected to chromium-containing surface treatment as a product, has the same resistance to electrolytic solution as a metal surface subjected to various chromate treatments.
  • FIG. 2 shows a structure of a conventional externally-stored power storage element.
  • the power storage element 4 such as a battery or a capacitor is covered by embossing the laminated metal foil 1, and the periphery 6 of the power storage element 4 is heat-sealed 6 ′. Yes.
  • the laminated metal foil 1 is formed by laminating a metal foil 2 and a heat seal resin 3.
  • the heat seal length is represented by 22.
  • FIG. 3A is a perspective view of a power storage device packaged according to the present invention, but the external appearance of a conventional power storage device is substantially the same, and has an embossed portion 5 and a heat seal portion 6, and the power storage device from one end.
  • the electrode tab 10 connected to is pulled out.
  • FIG. 3B is a top view of the packaged electricity storage device of FIG. 3A, in which an embossed portion 5, a heat seal portion 6, and an electrode tab 10 can be seen.
  • FIG. 1 is a cross-sectional view taken along the line A-A ′ not passing through the electrode tab 10 shown in FIG.
  • the laminated metal foil 1 is embossed to cover the power storage element 4 as in FIG. 2, and the periphery 6 of the power storage element 4 is heat-sealed 6 ′.
  • the packaged electricity storage element of the present invention is further provided with a conventional exterior in that the side edge of the laminate metal foil 1 for exterior packaging around the electricity storage element 4 is laser-welded and a laser weld 7 is formed. Different from the stored electricity storage device.
  • the heat seal length is represented by 23.
  • FIG. 4 shows cross-sectional photographs of the heat seal portion 6 and the laser weld portion 7 of the external energy storage device actually heat sealed and laser welded.
  • Upper and lower two metal foils 2 (which appear white because they reflect light) 2 are welded 7 at the side edges. Resin 6 'heat sealed can be seen inside the laser weld 7.
  • the resin 9 outside the metal foil 2 is an outer surface resin film.
  • Reference numeral 24 denotes an embedded resin for photographing.
  • this laser welded portion 7 it is preferable to irradiate the end surface of the side surface of the laminated metal foil 2 with the laser beam 8 from the outside after heat sealing 6 'as shown in FIG.
  • the method of forming the weld bead is not limited to laser welding, and the laser irradiation method is not limited to the embodiment shown in FIG. 5 even in the case of laser welding.
  • the laser welding method may be a known method.
  • a carbon dioxide laser or a semiconductor laser can be used as a radiation source, and laser light reflected by a reflecting mirror is used, whether it is laser light that has passed through a fiber or laser light that has converged with a lens. You may do it.
  • FIG. 6 shows a cross section along the B-B ′ cross section line passing through the electrode tab of FIG. 3B.
  • An electrode tab seal material 11 is formed on the surface of the electrode tab 10, and a heat seal resin 6 ′′ of a laminated metal foil is heat sealed to the electrode tab seal material 9. Since the metal foil cannot be laser-welded, the laser weld 7 does not exist and the structure is only a heat seal 6 ′′. In the present invention, it is preferable that all parts other than the electrode tab are laser-welded.
  • both electrode tabs are formed so as to be pulled out from one end side, but may be pulled out from different ends, such as pulling out the electrode tab separately from the opposite end.
  • Example 1 In order to investigate the influence of specific gravity and melting point of metal foil on laser weldability after heat sealing, various metal foils shown in Table 1 were prepared, laminated on one or both sides, and weld bead formation by laser welding was investigated. did.
  • the heat seal resin used is as follows. PET12 and PET25 are biaxially stretched PET (polyethylene terephthalate) films having a thickness of 12 ⁇ m and 25 ⁇ m, respectively, and Emblicated PET manufactured by Unitika Ltd. was used.
  • Ny15 is a stretched nylon film having a thickness of 15 ⁇ m, and an emblem ON manufactured by Unitika Ltd. was used.
  • the outer surface resin was coated with urethane adhesive (Aronmite PU7000D manufactured by Toa Gosei Co., Ltd.) on the surface of the metal foil, and the outer surface side resin was stacked and pressure-bonded under curing conditions of 0.1 MPa, 25 ° C. and 90 minutes.
  • urethane adhesive Aronmite PU7000D manufactured by Toa Gosei Co., Ltd.
  • a film prepared by non-stretching a raw material resin into a film shape (width 300 mm) at an extrusion temperature of 250 ° C. using an extruder equipped with a T die was used. .
  • the inner surface film (3) is obtained by making Admer QE060 manufactured by Mitsui Chemicals, Inc. Toro Cello Co., Ltd. into a 50 ⁇ m-thick film, and the inner surface films (1) and (2) are overlapped to form the inner surface film (2).
  • the inner surface resin A, and the inner surface film (3) alone is the inner surface resin B. Both the inner surface resin A and the inner surface resin B have a thermal decomposition temperature of 430 ° C.
  • the metal foil is mainly rolled foil, but some metal species that are difficult to manufacture by rolling are manufactured into a foil shape as a foil ribbon by a single roll method after vacuum melting of a predetermined composition alloy, and crystallized by heat treatment And used.
  • the rolled foil used a 100 ⁇ 100 mm size
  • the single roll foil used a 100 ⁇ 30 mm size. The thickness was unified to 100 ⁇ m.
  • Tin Free Steel Foil is made by Nippon Super Steel Co., Ltd. Can Super, tempering grade T4CR, steel grade MR, surface finish: normal finish, plate thickness: 0.18mm product steel, grinding one side to total thickness The thickness was reduced to a predetermined thickness and used. The surface where plating remained was defined as the inner surface.
  • the metal species is indicated by the abbreviation TFS.
  • the nickel-plated foil is made of Nippon Steel Corporation super nickel, tempered grade T2, plating layer thickness 3 ⁇ m minimum guarantee, surface finish: B, plate thickness: 0.25mm The thickness was reduced to a predetermined thickness and used. The surface where plating remained was defined as the inner surface.
  • the metal species is indicated by the abbreviation SN.
  • the predetermined resin film for inner surface shown in Table 1 was overlaid on each metal foil, and hot-pressed under the conditions of 200 ° C., 1 MPa, and 1 minute to produce a laminated metal foil.
  • Each resin was affixed in a size larger than the metal foil and the resin protruded from the metal foil, and after pasting, it was cut into a metal foil shape with a cutter to adjust the shape of the sample.
  • the end faces of two identical laminated metal foils were heat sealed with a width of 5 mm to produce end face heat seal samples.
  • the heat seal was air-cooled using a heat seal tester having an aluminum heat seal bar and held at a set temperature of 190 ° C. and a pressure of 0.5 MPa for 5 seconds.
  • heat sealing and welding are performed with a side of 100 mm length as an end face, and for evaluation of resin soundness after welding, a 15 mm ⁇ 50 mm laminated metal foil sample is separately manufactured, and 15 mm long Heat sealing and welding were performed with the sides as end faces.
  • the heat-sealed end face was irradiated with a laser from the opposite direction, and the end face was then welded.
  • the laser used was ISL-1000F manufactured by Nippon Steel Technoresearch Corporation as a light source, pure Ar gas was used as a sealing gas, and irradiation was performed at an output of 180 W and a scanning speed of 2 m / min.
  • the laser beam was condensed so as to have a diameter of 0.5 mm at the weld.
  • the sound weld length is measured, and as a score of weldability, the ratio of the sound weld length to the weld length is less than 20%, with a score of 1, 20% to less than 50%, with a score of 2, 50. % Or more and less than 90% was assigned a rating of 3, 90% or more and less than 99% was assigned a rating of 4, and 99% or more was assigned a rating of 5. A score of 3 or higher was accepted.
  • the post-weld resin soundness evaluation sample is a 15mm wide end face heat seal / weld sample that is opened on the opposite side of the welded portion and subjected to a T peel test to check the adhesion of the heat seal resin before the welded portion, and welded.
  • the heat seal strength of 90% or more was evaluated as resin soundness A, 70% or more and less than 90% as B, and less than 70% as C.
  • the laminate metal foil of the present invention using a metal foil having a specific gravity of 5 or more and a melting point of 300 ° C. or more higher than the decomposition temperature of the heat seal resin had good weldability and the resin was sound.
  • Example 2 In the cell case having the structure according to the present invention, a test was conducted to confirm that the amount of water vapor entering from the outside environment can be suppressed as compared with the conventional cell case. Between two laminated metal foils, an electrolyte for a lithium battery was put together with a polypropylene small block for securing a space for holding the liquid, and a simulated cell serving as a comparative test body having four sides heat-sealed was produced. Furthermore, a simulated cell having the same structure as the test body of the structure of the present invention was fabricated, in which the four sides at the outer end of the heat seal were metal-sealed by laser welding. A constant temperature and humidity test was performed in which these were held in a high temperature and high humidity environment, and after a certain period of time, the amount of internal moisture was measured to investigate the moisture (water vapor) penetration behavior.
  • pure aluminum foil (model number: AL-013265, thickness 50 ⁇ mt) manufactured by Niraco and SUS304 stainless steel foil 100 ⁇ mt manufactured by Nippon Steel Materials were used as the metal foil.
  • Uniteka Corporation's Emblet PET # 12 (biaxially stretched PET (polyethylene terephthalate) film with a thickness of 12 ⁇ m) is used as the outer film, and a urethane adhesive (Aronmite PU7000D, manufactured by Toagosei Co., Ltd.) is applied to the surface of the metal foil.
  • the outer surface films were stacked and pressure-bonded under curing conditions of 0.1 MPa, 25 ° C. and 90 minutes.
  • the inner surface resin A used in Example 1 was used as the resin for heat sealing, and was adhered to the metal foil in the same manner to produce a laminated metal foil.
  • test specimens were made of two pieces of the same type obtained by cutting a laminated metal foil into a square of 150 mm ⁇ 150 mm. First, the three sides were heat-sealed with a width of 5 mm or 10 mm to form a bag. A polypropylene piece having a size of 30 mm ⁇ 30 mm and a thickness of 1 mm was inserted between two laminated metal foils from one unsealed side of a bag-like test body. This polypropylene piece is for holding in the vicinity of the center of the surface of 150 mm ⁇ 150 mm, and for securing an air gap between the foils in the vicinity thereof to put the electrolytic solution.
  • test body simulating the structure of the present invention was prepared by laser welding the above simulated cell on four sides. Since a specimen using an aluminum foil as a metal foil could not be welded, a specimen having a structure of the present invention uses a stainless steel foil as a metal foil. Table 2 shows the levels of the test specimens.
  • the electrolyte did not contain a lithium salt, and a solvent in which an equal volume of ethylene carbonate and ethyl methyl carbonate was mixed was used.
  • Welding was performed by irradiating a laser from the opposite direction to the heat-sealed end face and welding.
  • the laser used was ISL-1000F manufactured by Nippon Steel Technoresearch Corporation as a light source, pure Ar gas was used as a sealing gas, and irradiation was performed at an output of 180 W and a scanning speed of 2 m / min.
  • the laser beam was condensed so as to have a diameter of 0.5 mm at the weld.
  • FIG. 7 shows the test results in a graph with the constant temperature and humidity test elapsed time on the horizontal axis and the water content in the electrolyte on the vertical axis.
  • the moisture content increases with the elapsed time in the unwelded levels B, C, and D, whereas in the level A that is the structure of the present invention that has been welded, the time elapses.
  • the amount of water hardly increased, and a remarkable water penetration barrier property was exhibited.
  • Example 3 In order to investigate the influence of the thickness of the metal foil, various thicknesses of metal foil were used, and at the levels shown in Table 3, the same weldability test as in Example 1 and the same moisture penetration barrier property as in Example 2 were used. The test was conducted. However, in the moisture penetration barrier property test, the penetration water amount after 1400 hours of the constant temperature and humidity test elapsed time is 30 ppm or less with a score of 6 and more than 30 ppm and 50 ppm or less with a rating of 5 or 50 ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 高いガスバリア性を実現する接合部を持つ樹脂金属複合シール容器を提供する。ラミネートした金属箔の端面をヒートシールにより封止してなる容器であって、その端面のヒートシール部より外側にさらに、溶接ビードにより金属封止したシール部を持つ、樹脂金属複合シール容器を提供する。これは、金属箔を構成する金属の融点がヒートシール用樹脂の熱分解温度より300℃以上高く、前記金属箔を構成する金属の比重が5以上であるレーザー溶接用ラミネート金属箔により実現可能で、金属箔をステンレス箔とし、前記ヒートシール用樹脂がポリプロピレンを主とする樹脂とすることなどにより好適に実現することができる。

Description

樹脂金属複合シール容器及びその製造方法
 本発明は、ヒートシール後に、ヒートシールした部分の一部をレーザーで溶接して、ヒートシール部より外側に、溶接ビードにより金属封止したシール部を持つ、樹脂金属複合シール容器及びその製造方法であって、この容器は特に蓄電セル用途として用いられるものである。
 蓄電池やキャパシタ等の蓄電素子のケースは主に、金属板材を使用して、プレス加工や、捲き締め、レーザー溶接等により、円筒型や直方体の缶を形成する形式のものと、金属箔をガスバリア層として有する樹脂フィルムを用いてヒートシールによりケース(この場合は柔らかいので、袋体ともいう)を形成するパウチ形式のものと、2種類に大別される。
 パウチ形式の電池は、ヒートシール用樹脂をラミネートした金属箔(ラミネート金属箔)で包装し、ヒートシール用樹脂同士をヒートシールすることにより蓄電素子部と外界とを遮断した状態で使用される。これは、電池の電解液が外部に遺漏したり、水蒸気が環境から混入したりすることは電池の寿命に致命的であるからである。
 しかしながら、従来の、ラミネート金属箔をヒートシールのみで接合した電池セルの場合、ヒートシール部分は電池内部の電解液の漏洩パス、あるいは外環境から内部へ水蒸気などが混入する侵入パスになり、ヒートシール部の経路長さが電池セルの寿命を決める一因となる。そのため、電池セルの寿命を長くするにはヒートシール部の経路長を長くすることが有効となるが、一方、ヒートシール部の経路長を長くすると、無駄な空間が増え、空間あたりのセル容量が小さくなる。したがって、ヒートシールにより接合するラミネートパックの電池セルには、単位空間あたりのセル容量と電池の寿命との間にトレードオフの関係がある。
 なお、これまで、パウチ型電池ケースに用いられるラミネート金属箔としては、ラミネートアルミニウム箔が使用されてきた。これは、薄い金属箔が得易い、というアルミニウムの特徴と共に、パウチ型ケースが、食品包装用の樹脂パウチ袋体から発展した経緯と関係している。つまり、食品包装パウチ袋では、食品の寿命延長のためにガスバリア性を持たせるべく、アルミニウムがバリア層として蒸着されていた。これを、軽量かつ、ヒートシールにより簡易接合できる電池容器として適用する場合、特に非水電解質を使用するリチウムイオン電池などに於いては、食品よりも格段に厳しいガスバリア性が求められるため、ガスバリア層の信頼性を向上させる必要がある。このため、ガスバリア層のアルミニウムの厚みを厚くした結果、アルミニウム蒸着膜からアルミニウム箔の適用に至ったという経緯による。
 例えば、特許文献1(特開2010-086744号公報)には、リチウムイオン電池本体、キャパシタ、電気二重層キャパシタ等の電気化学セル本体を密封収納する外装体、電池外装用包装材として、「基材層と、表面に化成処理が施された金属箔層と、酸変性ポリオレフィン層と、熱接着性樹脂層とを、少なくとも順次積層して構成される電気化学セル用包装材料」が開示されている。ここでは、あくまで「基材層」は樹脂フィルムであり、この表現だけでも、金属箔層が付随的な役割にあることが分かる。実際に明細書内部でも、「金属箔層12は、外部からリチウムイオン電池の内部に水蒸気が浸入することを防止するための層」とされている。
 特許文献2(特開2000-340187号公報)には、ポリマー電池用包装材料として、「最外層/バリア層/中間層/最内層からなるポリマー電池用包装材料・・・」と記載して、さらに明らかに、金属箔層(アルミニウム箔層)がバリア層であることが明示されている。
 また、特許文献3(特開2000-153577号公報)には、ヒートシール用積層体の金属箔の実施例として開示されているアルミニウム箔の他、ステンレス箔を用いることができると記載している。
特開2010-086744号公報 特開2000-340187号公報 特開2000-153577号公報
 しかしながら、ラミネートされた樹脂によりヒートシールした接合部は、ヒートシール部は金属により構成されたものではなく樹脂のみで接合部が構成されており、金属層をバリア層として持つ他の部分や、溶接金属缶などの、金属により構成された接合部程のガスバリア性を有しておらず、特に水分の侵入が寿命に致命的な影響を与えるため、高いガスバリア性が要求される電池においては十分なガスバリア性を発揮できないという問題がある。
 本発明の目的は、高いガスバリア性を実現する接合部を構成しうる、金属溶接部によるシール部とヒートシール部を併せ持つ、樹脂金属複合シール容器及びその製造方法を提供することにある。
 本発明者らは、ラミネートされた樹脂により構成されるヒートシール部に、さらにレーザー接合を併用することで高いガスバリア性を実現しうることを見出した。
 しかし一般に、亜鉛めっき鋼板や、樹脂被覆金属板など、被覆物質(亜鉛や樹脂)の沸点や熱分解温度が、基材(鋼板や金属板)の融点より低い物質を被覆した材料は、レーザー溶接時に、そのような被覆物質がガス化して、溶融状態にある溶接金属を吹き飛ばすため、健全な溶接接合部を安定的に形成させることが非常に困難である。
 さらに、ラミネート金属箔に於いては、金属厚みが薄く、かつ、ヒートシール樹脂の厚みと金属箔の厚みが同程度になることが多いため、溶接時に溶融される金属の割合が少ない上に、溶接で接合されるべき金属間の距離が比較的大きい、という条件となり、さらに溶接が難しい。
 このような困難な課題に対して、発明者らは鋭意研究開発を行ったところ、金属箔を構成する金属の融点が、ヒートシールに用いられるラミネート樹脂の熱分解温度より十分に高く、かつ、金属箔を構成する金属の比重がヒートシールに用いられるラミネート樹脂の比重より、十分に大きければ、ヒートシールした接合部をレーザー溶接可能であることを見出した。
 これにより、これまで、現実的でないとして、検討すらされて来なかった、ラミネート箔の溶接接合、さらに、内部にヒートシール部を有しながら、溶接接合部も有するという、全く新しい容器構造を実現することが出来た。
 本発明は、以上の様な知見によりなされたもので、その要旨は以下の通りである。
 (1)少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端面をヒートシールにより封止してなる樹脂金属複合シール容器であって、前記金属箔のヒートシール部の外側にさらに、溶接ビードにより金属封止したシール部を持つことを特徴とする樹脂金属複合シール容器。
 (2)前記金属箔を構成する金属の融点が、前記ヒートシール用樹脂の熱分解温度より300℃以上高く、
 前記金属箔を構成する金属の比重が5以上であり、前記溶接ビードがレーザー溶接により形成されることを特徴とする(1)に記載の樹脂金属複合シール容器。
 (3)前記金属箔がステンレス箔であり、前記ヒートシール用樹脂がポリプロピレンを主とする樹脂であることを特徴とする(1)又は(2)に記載の樹脂金属複合シール容器。
 (4)前記金属箔が15~150μmの厚さであり、前記ヒートシール用樹脂が10~200μmの厚さであることを特徴とする(1)~(3)に記載の樹脂金属複合シール容器。
 (5)少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端面をヒートシールにより封止して容器を形成し、前記容器のヒートシール部の外側にさらに、溶接ビードにより金属封止したシール部を形成することを特徴とする樹脂金属複合シール容器の製造方法。
 本発明の樹脂金属複合シール容器によれば、ラミネートされた樹脂により構成されるヒートシール部と共にレーザー溶接部を併用することができ、電解液や、水蒸気に代表されるガスに対するバリア性が金属により構成されたシール部により飛躍的に高められるという顕著な効果を奏し、ヒートシール部の周長のほとんどを溶接出来れば、大幅な寿命延長が可能となるという顕著な効果を奏する。
本発明の樹脂金属複合シール容器の構造例を示す断面模式図である。 従来のシール溶接部の無い電池セルの構造模式図である。 図3Aは本発明の蓄電セルの外観模式図である。 図3Bは本発明の蓄電セルの上面図である。 図3A及び図3Bの溶接部近傍の断面写真である。 図3BのA-A‘断面図であり、ヒートシール部とレーザー溶接のレーザー照射方向の関係が示されている。 図3BのB―B‘断面図である。 水分侵入バリア性評価試験結果のグラフで、シール容器の外部から内部へ侵入する水分量と評価試験時間との関係を示すグラフである。
[第1の実施形態]
 第1の実施形態は、少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端面をヒートシールにより封止してなる容器であって、ヒートシール部の外側にさらに、溶接ビードにより金属封止したシール部を持つことを特徴とする樹脂金属複合シール容器である。
 図1に本発明の樹脂金属複合シール容器の構造例を示す。金属箔6がレーザー溶接部7において金属接合され、さらにその内部に、ヒートシール樹脂3がヒートシール部6’において、樹脂で接合されている、樹脂金属複合シール構造を持つ。
 本発明の容器は、前記金属箔を構成する金属の融点が、前記ヒートシール用樹脂の熱分解温度より300℃以上高く、前記金属箔を構成する金属の比重が5以上であることを特徴とするレーザー溶接用ラミネート金属箔を用いて、ヒートシール後にレーザー溶接することで製造可能である。
 例えば、本発明の容器は金属箔をステンレス箔とし、前記ヒートシール用樹脂がポリプロピレンを主とする樹脂とすることにより実現することができる。
(レーザー溶接部)
 レーザー溶接を行う上での課題は、ヒートシールにより電池セルを形成した後、ヒートシールにより構成された樹脂による容器構造を破壊せずに、その外部で金属を溶接して電池セルを構成することである。
 しかしながら、従来から用いられてきたアルミラミネート箔は、溶接により健全な溶接ビードを得ることが出来なかった。
 この原因を解析したところ、レーザー照射によりアルミニウムを溶融させる時に、ラミネート樹脂が同時に蒸発し、この樹脂の蒸発ガスにより、溶融したアルミニウムが吹き飛ばされ(以下、「爆飛」という。)、健全な溶接ビードを形成できないことが判明した。
 爆飛の形態としては、激しいブローホールが口を開けた穴だらけのビードを形成したり、ステッチ状の不連続ビードを形成したり、ひどい場合には、溶接するつもりが、溶融金属がほとんど吹き飛ばされ、切断している状態になってしまったりすることさえある。
 爆飛は、一般に、亜鉛めっき鋼板や、樹脂被覆金属板など、被覆物質(亜鉛や樹脂)の沸点や熱分解温度が、基材(鋼板や金属板)の融点より低い物質を被覆した材料において、溶接時に、ガス化した被覆物質が、溶融状態にある溶接金属を吹き飛ばし、発生する。
 亜鉛めっき鋼板のレーザー溶接の場合の最も有効な爆飛回避方法は、合わせ溶接される鋼板の間に、一定の隙間を設けて、ガスの逃げ場を設けてやることである。しかし、この方法は、ヒートシールにより密着したラミネート金属箔の合わせ部には適用できない。
 発明者らは、ラミネート金属箔のレーザー溶接法を詳細に検討した結果、めっき鋼板とラミネート金属箔で、爆飛させる原因物質の性質が異なることを利用して、ラミネート金属箔の爆飛を回避する方法に思い至り、実験・検討の結果、本発明に至った。
 樹脂の熱分解によるガスを起因とする爆飛が発生しない条件を検討したところ、金属箔を構成する金属の融点が、ヒートシール用樹脂の分解温度より300℃以上高いこと、金属箔を構成する金属の比重が5以上であれば、爆飛が生じにくいことを見出した。その原理は、正確にはさらなる解析が必要であるが、金属の融点と樹脂の分解温度が離れている程、樹脂が分解してガスが発生してから、金属が溶融するまでのタイムラグが大きいこと、金属が溶融している時にガスが発生しても、金属の比重が大きければ、ガスの影響を受けにくいことが、定性的には推定される。
 また、そうした金属箔として、金属箔がステンレス箔であり、ヒートシール用樹脂がポリプロピレンを主とする樹脂である場合にはこの条件を満足することを見出し、工業的に活用性の高いことを見出した。蓄電セル用途に用いられる内面樹脂を兼ねるヒートシール用樹脂は、通常、ポリオレフィン系樹脂が好適であり、ポリオレフィン系樹脂とは、下記(式1)の繰り返し単位を有する樹脂を主成分にする樹脂である。主成分とは、(式1)の繰り返し単位を有する樹脂が、50質量%以上を構成することである。
-CRH-CR-      (式1)
(式1中、R、Rは各々独立に炭素数1~12のアルキル基または水素を示し、Rは炭素数1~12のアルキル基、アリール基又は水素を示す)
 ポリオレフィン系樹脂は、前述のこれらの構成単位の単独重合体でも、2種類以上の共重合体であってもよい。繰り返し単位は,5個以上化学的に結合していることが好ましい。5個未満では高分子効果(例えば,柔軟性,伸張性など)が発揮し難い。
 上記繰り返し単位を例示すると、プロペン,1- ブテン,1-ペンテン,4-メチル-1-ペンテン,1-ヘキセン,1-オクテン,1- デセン,1-ドデセン等の末端オレフィンを付加重合した時に現われる繰り返し単位, イソブテンを付加したときの繰り返し単位等の脂肪族オレフィンや,スチレンモノマーの他に,o-メチルスチレン,m-メチルスチレン,p-メチルスチレン,o- エチルスチレン,m- エチルスチレン,o-エチルスチレン,o-t-ブチルスチレン,m-t- ブチルスチレン,p-t-ブチルスチレン等のアルキル化スチレン,モノクロロスチレン等のハロゲン化スチレン,末端メチルスチレン等のスチレン系モノマー付加重合体単位等の芳香族オレフィン等が挙げられる。
 このような繰り返し単位の単独重合体を例示すると, 末端オレフィンの単独重合体である低密度ポリエチレン,中密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,架橋型ポリエチレン,ポリプロピレン,ポリブテン,ポリペンテン,ポリへキセン,ポリオクテニレン,ポリイソプレン,ポリブタジエン等が挙げられる。また,上記繰り返し単位の共重合体を例示すると,エチレン-プロピレン共重合体,エチレン-ブテン共重合体,エチレン-プロピレン-ヘキサジエン共重合体,エチレン-プロピレン-5-エチリデン-2-ノルボーネン共重合体等の脂肪族ポリオレフィンや,スチレン系共重合体等の芳香族ポリオレフィン等が挙げられるが,これらに限定されるものではなく,上記の繰り返し単位を満足していればよい。また,ブロック共重合体でもランダム共重合体でもよい。また,これらの樹脂は単独もしくは2種類以上混合して使用してもよい。
 また,本発明に使用するポリオレフィンは,上記のオレフィン単位が主成分であればよく,上記の単位の置換体であるビニルモノマー,極性ビニルモノマー,ジエンモノマーがモノマー単位もしくは樹脂単位で共重合されていてもよい。共重合組成としては,上記オレフィン単位に対して50質量%以下,好ましくは30質量%以下である。50質量%超では腐食原因物質に対するバリア性等のオレフィン系樹脂としての特性が低下する。
 上記極性ビニルモノマーの例としては,アクリル酸,アクリル酸メチル,アクリル酸エチル等のアクリル酸誘導体,メタクリル酸,メタクリル酸メチル,メタクリル酸エチル等のメタクリル酸誘導体,アクリロニトリル,無水マレイン酸,無水マレイン酸のイミド誘導体,塩化ビニル等が挙げられる。
 取扱性,腐食原因物質のバリア性から最も好ましいのは,低密度ポリエチレン,中密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,架橋型ポリエチレン,ポリプロピレン又はこれらの2種類以上の混合物である。
 本発明で使用するヒートシール樹脂として、これらポリオレフィン系樹脂は一般的に好適であるが、工業的にはポリプロピレンを主とするものが、コスト、流通、熱ラミネートの容易性等の観点で、さらに好適である。
 ここでポリプロピレンを主とする樹脂とは、ポリプロピレンを50質量%以上含有する樹脂をいい、ポリプロピレン純粋樹脂の他に、合計が50質量%未満の割合で低密度ポリエチレンや高密度ポリエチレンなど各種ポリエチレン、ポリブテン、ポリペンテン等のポリオレフィンを重合した樹脂などを挙げることができる。また、金属箔との密着性を向上させるために酸変性ポリオレフィンとしたものでも良い。ブロック共重合体でも、ランダム共重合体でも、また、重合するポリプロピレン以外のオレフィンが1種類でも2種類以上でも、主となるポリプロピレンが50質量%以上となっていれば良い。より好ましくはポリプロピレンが70質量%以上、90質量%以上のものから、ポリプロピレンそのものまでである。好ましくは、重合されるものは、ポリプロピレン単独の時よりも分解温度を低下させるものの方が好ましく、ポリエチレン系の樹脂が特に好適である。
 一方、アルミニウムラミネート箔の場合には、アルミニウムの比重が2.7程度、融点は660℃と、汎用金属の中では比較的軽量、低融点であることを確認した。つまり、ラミネート金属箔がアルミラミネート箔の場合、アルミラミネート箔はレーザー溶接により健全な溶接部を形成することが出来なかったが、そもそも、ラミネートアルミ箔は、溶接などに依らず、ヒートシールにより簡便に接合できることが利点であり、また、元々が樹脂フィルムに金属をガスバリア層として蒸着していたものが出発点であったため、金属材料のように、溶接を適用する、ニーズも、方法も検討されなかったことが考えられる。
 本発明の溶接用金属箔に適した金属の例としては、ステンレス鋼のほか、純鉄、炭素鋼、低合金鋼、銅、ニッケル、ジルコニウム、バナジウム、アルミ鉄合金、亜鉛銅合金、などがある。高融点金属を被覆しためっき被覆金属も本発明の範疇であり、具体的には、めっき鋼として、酸化クロム層と金属クロム層を有するティンフリースティールや、ニッケル層、あるいはニッケル層とニッケル-鉄合金層を有する様なニッケルめっき鋼が含まれる。
(ヒートシール用樹脂の熱分解温度)
 金属箔を構成する金属の融点をヒートシール用樹脂の熱分解温度より300℃以上高くする必要がある理由は、ヒートシール用樹脂の熱分解温度と、金属箔を構成する金属の融点との差が300℃未満であると、爆飛の頻度が高くなるという問題が生じるからである。その原理は、正確にはさらなる解析が必要であるが、金属の融点と樹脂の分解温度が離れている程、溶接の過程で溶接部近傍で温度が上昇する時に、樹脂が分解してガスが発生してから、金属が溶融するまでのタイムラグが大きいことにより、爆飛の原因となる樹脂の分解ガスを金属が溶融する前に十分に放散できるからではないかと、発明者らは推定している。そのため、金属の融点と樹脂の分解温度の差は、ある程度までは離れている方が望ましく、より望ましくは、ヒートシール用樹脂の熱分解温度より、金属箔を構成する金属の融点の方が400℃以上、さらに望ましくは、ヒートシール用樹脂の熱分解温度よりも金属箔を構成する金属の融点の方が500℃以上高い方が、健全な溶接部の形成に好適である。
 一方、現実的な側面から、ヒートシール用樹脂の熱分解温度に対して、金属箔を構成する金属の融点が2000℃以上高温であると、金属を溶融するための熱量が膨大になり、その熱量で、ヒートシール樹脂が過大に熱分解して、樹脂による電池ケースの構成が損なわれる場合があるので、ヒートシール用樹脂の熱分解温度と金属箔を構成する金属の融点の差は、2000℃以下であることが望ましい。過大な熱履歴は、例え樹脂が残存したとしても、樹脂にダメージを与えるので、残存した樹脂に与えるダメージの観点からも、より望ましくは、ヒートシール用樹脂の熱分解温度と金属箔を構成する金属の融点の差は、1200℃以下であることが望ましい。
 このように金属の融点をヒートシール用樹脂の熱分解温度より300℃以上高くするヒートシール樹脂として好適に用いることができる樹脂の例としては、従来からヒートシール用に用いられている樹脂から金属箔の融点との関係で熱分解温度を考慮して選択すればよいが、たとえば、ポリプロピレン、ポリエチレン、これらの共重合体などの樹脂、及びこれらを主とする樹脂を挙げることができる。ポリプロピレンの熱分解温度は、430℃、ポリエチレンの熱分解温度は450℃で、これらの共重合体では、これらの中間程度の値を示す。なお、ここで分解温度は、10%の質量変化が生じた温度を言う。
(金属の比重)
 金属箔を構成する金属の比重を5以上とする必要がある理由は、金属箔を構成する金属の比重が5未満であると爆飛の頻度が高くなるという問題が生じるからである。その原理は、正確にはさらなる解析が必要であるが、金属が溶融している時に爆飛の原因となるガスが発生しても、金属の比重が大きければ、ガスの圧力に負けずに吹き飛ばないでとどまる確率が高くなり、ガスの影響を受けにくいことが、定性的には推定される。望ましくは、金属箔を構成する金属の比重が6以上、さらに望ましくは金属箔を構成する金属の比重が7以上であることが好適である。金属の比重は、実用される金属という意味から、20以下が好ましく、軽量化を重視する場合、さらに10以下がより好ましい。
(金属箔とラミネート樹脂の厚さ)
 金属箔の厚さは15~150μmが好ましく、さらに40~120μmがより好ましい。金属箔が薄いと溶接金属を形成するための金属量が不足し、溶接欠陥が発生しやすくなり、また金属の変形も生じやすく、溶接の制御が困難になる。一方、厚すぎると、そもそも容器としての重量が増すため、ラミネート金属箔を用いる利点が少なくなる。また、ヒートシール用のラミネート樹脂の厚さは10~200μmが好ましく、15~100μmがより好ましい。ラミネート樹脂が薄いとヒートシール時に溶融する樹脂が少なくなり過ぎ、金属箔間に樹脂の存在しないシールの欠陥が発生し始める。一方、厚すぎると、溶接時に溶融金属を吹き飛ばして溶接欠陥を生じさせる原因となる分解ガスを多く発生するようになり、良好な溶接部を形成するための溶接条件範囲が極端に狭くなる上に、溶接されるべき金属箔と金属箔の間の距離が広くなり過ぎて、溶融金属が分離し、溶接が成り立たなくなる。
 上述のように、金属箔が厚い程、ヒートシール用樹脂の分解ガスに対する抵抗は増し、またヒートシール樹脂が薄い程、分解ガスの発生は少ない傾向となるので、金属箔の厚みとヒートシール樹脂の厚みの比、つまり、(金属箔の厚み)/(ヒートシール樹脂の厚み)が大きい程、溶接性は良好となる。その比は0.7以上が好適であり、1.2以上あればさらに好適である。
(ヒートシール部と溶接部)
 ヒートシール部の幅(経路幅)は、構造や目的により一概ではないが、一般的に1~50mm、好ましくは2~20mm、より好ましくは3~7mmである。本発明では溶接ビードを形成するので、従来のヒートシールだけの場合よりも狭くすることが可能であるが、ヒートシール部の幅をあまり狭くすると、ヒートシール部のシール性が不十分になる。
 本発明では、ヒートシールを損なうことなく溶接ビードを形成するために、ヒートシール部に対して間隔をおいて外側に金属箔の端面側から溶接ビードを形成することが好ましい。しかし、可能なら、ヒートシール部の一部に連続して金属箔の端面側からあるいは金属箔の上下方面側から溶接ビードを形成してもよく、溶接ビードの内側のほか外側にヒートシール部が存在してもよい。
 なお、ヒートシール部を貫通して蓄電ケース外部に電極タブを取り付ける構造の蓄電セルケースの場合は、その電極タブのある部分は溶接できないため、溶接による封止は、電極タブの近傍ぎりぎりのところまでの外周、が最大の溶接封止周長となる。ヒートシールは、電極タブを含む部分もヒートシール出来るので、全周が最大封止周長となる。
(寿命延長効果)
 背景技術で述べたように、ラミネート金属箔をヒートシールのみで接合した電池セルの場合、ヒートシール部分は電池内部の電解液の漏洩パス、あるいは外環境から内部へ水蒸気などが混入する侵入パスになり、ヒートシール部の経路長さが電池セルの寿命を決める一因となる。特に外環境から内部への水蒸気=水分の侵入は、電池セルの寿命を短縮する非常に大きな要因である。周囲をヒートシールした構造では周長に比例して水分侵入経路の断面積が増えるため、ヒートシールの周長が長い程侵入水分の流量が増え、寿命が短くなる。水分の侵入の影響は、ヒートシール部の経路長さが短い程、ヒートシールした周長の長い程、大きくなる。
 これに対して、レーザー溶接した部分は、金属によりガスのバリアが形成されるため、溶接部分では樹脂と比較して、無視できる量の水分しか侵入しない。つまり、溶接によりシールした周辺長さの割合だけ、電池セルの寿命への水分の影響を抑制できることになる。概略、侵入する水分の流量と寿命短縮効果が比例し、侵入する水分流量は、溶接していない周辺長さに比例するため、周辺長さの半分を溶接出来れば、溶接を全くしていないヒートシールのみの場合に対して、侵入水分は半減し、水分起因による寿命は倍となる。周辺長さの90%以上を溶接出来れば、侵入水分量は10分の1以下となり、水分起因の寿命は10倍以上となる。電池セルの全周辺を溶接すれば水分侵入は完全に防げる筈であるが、電極タブの部分は溶接できないので、その部分は樹脂シール(ヒートシール)になる。
 本発明容器に用いるラミネート金属箔は、ヒートシール樹脂を被覆していない側の面、つまり、通常は容器の外面となる側の面については、金属箔の表面そのままでも、酸化物形成やめっき被覆、あるいは種々の樹脂ラミネートを施していても良い。特に、ヒートシール樹脂よりも薄い被覆が施されている場合は、溶接に影響は無く、絶縁性や、放熱性などの機能を持たせるために外面側を被覆したラミネート金属箔も本発明の範疇である。特に20μm以下の厚みのPETフィルムを外面に被覆して絶縁性を与えることは、経済的にも、エンボス加工時の加工性の観点からも好適である。
 また、内面側のヒートシール樹脂は、単層である必要はなく、金属との密着性を向上させるために酸変性させたポリプロピレン層を金属層に接する側にラミネートし、ヒートシール性を向上させたポリプロピレン層をその外層にラミネートするなど、複層の樹脂ラミネートを施すことも可能である。
 さらに、内面側は、蓄電ケースなどに使用する場合、耐電解液性を向上させるために、金属面に表面処理を施すことが可能であり、電解クロメート、樹脂クロメート等各種クロメート処理や、その他のクロメートフリー化成処理を施しても良い。なお製品として既にクロム含有表面処理の施されているティンフリースティールは、各種クロメート処理を施した金属面と同等に耐電解液性が良好である。
(電池ケースの構造とその製造方法)
 図2に、従来の外装された蓄電素子の構造を示すが、電池やキャパシタなどの蓄電素子4をラミネート金属箔1をエンボス加工して覆い、蓄電素子4の周囲6はヒートシール6’されている。ラミネート金属箔1は、金属箔2とヒートシール樹脂3がラミネートされて成っている。ヒートシール長さは22で表わされる。
 図3Aは本発明により外装された蓄電素子の斜視図であるが、従来の外装された蓄電素子の外観もほぼ同様であり、エンボス加工部5とヒートシール部6を有し、一端から蓄電素子に接続された電極タブ10が引き出されている。
 図3Bは、図3Aの外装された蓄電素子の上面図であり、エンボス加工部5と、ヒートシール部6と、電極タブ10が見られる。この図に示した電極タブ10を通らないA-A’の断面線に沿った断面図が図1である。図1は図2と同様にラミネート金属箔1をエンボス加工して蓄電素子4を覆い、蓄電素子4の周囲6はヒートシール6’されている。本発明の外装された蓄電素子は、さらに、蓄電素子4の周囲の外装用のラミネート金属箔1の側面端部がレーザー溶接されており、レーザー溶接部7が形成されている点で従来の外装された蓄電素子と異なる。図1においてヒートシール長さは23で表わされる。
 図4に実際にヒートシール及びレーザー溶接した外装蓄電素子のヒートシール部6及びレーザー溶接部7の断面写真を示す。上下2枚の金属箔(光反射するので白く見える)2が側面端部で溶接7されている。レーザー溶接部7の内部にヒートシールされた樹脂6’が見える。金属箔2の外側の樹脂9は外面樹脂フィルムである。24は、写真撮影用の埋め込み樹脂である。
 このレーザー溶接部7を形成するには、好適には、図5に示すように、ヒートシール6’をした後に、ラミネート金属箔2の側面の端面に外側からレーザー光8を照射すればよい。ただし、本発明においては、溶接ビードの形成方法はレーザー溶接に限定されないし、レーザー溶接の場合にもレーザーの照射方法は図5の態様に限定されるものではない。
 レーザー溶接の方法は公知の方法でよい。たとえば、炭酸ガスレーザーや、半導体レーザー等を線源として使用することができ、またファイバーを通したレーザー光でも、レンズで収束したレーザー光でも、反射鏡を使用して反射させたレーザー光を使用しても良い。
 図6に、図3Bの電極タブを通るB-B’断面線に沿った断面を示す。電極タブ10の表面には電極タブシール材11が形成されており、この電極タブシール材9に対してラミネート金属箔のヒートシール用樹脂6”がヒートシールされている。この電極タブ10のある箇所では、金属箔をレーザー溶接することができないので、レーザー溶接部7は存在せず、ヒートシール6”のみの構造である。本発明では、電極タブ以外の部分はすべてレーザー溶接することが好ましい。
 図3A~図6に示した態様では、電極タブは両方とも一端側から引き出すように形成されているが、電極タブを反対側の端より別々に引き出すなど、異なる端部から引き出してもよい。
 実施例1
 金属箔の比重と融点の、ヒートシール後レーザー溶接性に与える影響を調べるために、表1に示す種々の金属箔を準備し、片面あるいは両面にラミネートを施し、レーザー溶接による溶接ビード形成を調査した。
 用いたヒートシール樹脂は、下記のものである。
 PET12、PET25は、それぞれ厚み12μm、25μmの2軸延伸PET(ポリエチレンテレフタレート)フィルムで、ユニチカ株式会社製エンブレットPETを用いた。
 Ny15は、厚み15μmの延伸ナイロンフィルムで、ユニチカ株式会社製エンブレムONを用いた。
 上記外面樹脂は、金属箔表面にウレタン系接着剤(東亜合成株式会社製アロンマイティPU7000D)を塗布し、外面側樹脂を重ねて、0.1MPa、25℃、90分の硬化条件で圧着した。
 ヒートシール用樹脂である内面側の樹脂は、原料樹脂を、Tダイスを装着した押出成形機にて250℃の押し出し温度でフィルム形状(幅300mm)に無延伸成形して作製したフィルムを使用した。
 原料樹脂の日本ポリプロ株式会社製ノバテックPP EA7Aを25μm厚みのフィルムにしたものを内面用フィルム(1)、原料樹脂の三井化学東セロ株式会社製アドマーQE060を25μm厚みのフィルムにしたものを内面用フィルム(2)、同三井化学東セロ株式会社製アドマーQE060を50μm厚みのフィルムにしたものを内面用フィルム(3)とし、内面用フィルム(1)と(2)を重ねて、内面用フィルム(2)を金属箔側になるように貼ったものを内面樹脂A、内面用フィルム(3)を単独で貼ったものを内面樹脂Bとした。内面樹脂Aも、内面樹脂Bも、熱分解温度は430℃である。
 金属箔は、主に圧延箔を用いたが、一部、圧延による箔製造が難しい金属種は、所定組成合金の真空溶解後、単ロール法により箔リボンとして箔形状に製造し、熱処理により結晶化させて用いた。圧延箔は100×100mmサイズを使用し、単ロール箔は100×30mmサイズを使用した。厚みは100μmに統一した。
 ティンフリースティール箔は、新日本製鐵株式会社製キャンスーパーの、調質度T4CR、鋼種MR、表面仕上げ:普通仕上げ、板厚:0.18mmの製品鋼板を、片面を研削して総厚みを所定の厚みまで減厚し、使用した。めっきの残存する面を内面とした。金属種としてはTFSという略号で示した。
 ニッケルめっき箔は、新日本製鐵株式会社製スーパーニッケルの、調質度T2、めっき層厚み3μmミニマム保証、表面仕上げ:B、板厚:0.25mmの製品鋼板を、片面を研削して総厚みを所定の厚みまで減厚し、使用した。めっきの残存する面を内面とした。金属種としてはSNという略号で示した。
 各金属箔に、表1に示す所定の内面用樹脂フィルムを重ねて、200℃、1MPa、1分の条件でホットプレスし、ラミネート金属箔を製造した。
 各樹脂は金属箔より大きなサイズで金属箔より樹脂がはみ出す形で貼り、貼り付けた後に金属箔形状にカッターで切断してサンプルの形状を整えた。
 2枚の同じラミネート金属箔の端面を5mm幅でヒートシールし、端面ヒートシールサンプルを製造した。ヒートシールは、アルミのヒートシールバーを持つヒートシールテスターを用いて、設定温度190℃、圧力0.5MPaで5秒保持後に空冷した。
Figure JPOXMLDOC01-appb-T000001
 溶接部健全性の評価には100mm長の辺を端面としてヒートシール・溶接し、溶接後の樹脂健全性の評価のためには、15mm×50mmのラミネート金属箔サンプルを別途製造し、15mm長の辺を端面としてヒートシール・溶接した。
 ヒートシールした端面に対して、対向する方向からレーザーを照射して端面を拝み溶接した。レーザーは、光源として日鉄テクノリサーチ社のISL-1000Fを使用し、純Arガスをシールガスに用い、180Wの出力で走査速度2m/分で照射した。レーザー光は溶接部で0.5mm径となるように集光した。
 溶接端面の外観より、健全溶接長さを測定し、溶接性の評点として、溶接実施長に対する健全溶接長さの割合が、20%未満を評点1、20%以上50%未満を評点2、50%以上90%未満を評点3、90%以上99%未満を評点4、99%以上を評点5とした。評点3以上を合格とした。
 また、溶接後樹脂健全性評価サンプルは、15mm幅端面ヒートシール・溶接サンプルを、溶接部と逆側で開いてTピール試験を実施し、溶接部手前のヒートシール樹脂の密着性を調べ、溶接を実施しないサンプルと比較して90%以上のヒートシール強度を維持していたものを樹脂健全性A、70%以上90%未満のものをB、70%未満のものをCとして評価した。
 表1に示すように比重5以上、融点がヒートシール樹脂の分解温度より300℃以上高い金属箔を用いた本発明ラミネート金属箔は、溶接性が良好で、樹脂も健全であった。
 実施例2
 本発明による構造のセルケースにおいて、従来型のセルケースよりも、外環境から侵入する水蒸気量が抑制できることを確認する試験を実施した。2枚のラミネート金属箔の間に、液保持用の空間確保のためのポリプロピレン製小ブロックと共にリチウム電池用電解液を入れて、4辺をヒートシールした比較試験体となる模擬セルを作製した。さらに同じ構造の模擬セルを、ヒートシールの外部端で4辺をレーザー溶接により金属シールした、本発明構造の試験体となる模擬セルを作製した。これらを高温高湿度の環境で保持する恒温恒湿試験を実施し、一定期間後に内部水分量を測定して、水分(水蒸気)侵入挙動を調査した。
 試験体は、金属箔としてニラコ社の純アルミニウム箔(型番:AL-013265、厚み50μmt)及び、新日鐵マテリアルズ社のSUS304ステンレス箔100μmtを使用した。
 外面フィルムとしてユニチカ株式会社製エンブレットPET#12(厚み12μmの2軸延伸PET(ポリエチレンテレフタレート)フィルム)を用い、金属箔表面にウレタン系接着剤(東亜合成株式会社製アロンマイティPU7000D)を塗布し、外面フィルムを重ねて、0.1MPa、25℃、90分の硬化条件で圧着した。
 ヒートシール用樹脂である内面側の樹脂は、実施例1で用いた内面樹脂Aを使用し、同じ方法で金属箔に密着させてラミネート金属箔を作製した。
 試験体は、150mm×150mmの四角形にラミネート金属箔を切断したもの同種2枚を一組とし、まず、その3辺を5mmあるいは10mm幅でヒートシールして袋状とした。30mm×30mm大で1mm厚のポリプロピレン片を、袋状の試験体の未シールの1辺より、2枚のラミネート金属箔の間に挿入した。このポリプロピレン片は、150mm×150mmの面内中央近傍に保持し、その周辺の箔と箔の間に空隙を確保して電解液を入れるためのものである。
 露点-80℃以下の乾燥アルゴンガスで置換したグローブボックス内で、各試験体それぞれに3.5gの電解液を空隙に注入し、残りの1辺を他の三辺と同じ幅でヒートシールして、全周の連続したヒートシールにより、密封した模擬セル試験体とした。
 本発明の構造を模擬した試験体としてはさらに、上記の模擬セルを4辺レーザー溶接して作製した。アルミニウム箔を金属箔に使用した試験体は溶接できなかったので、本発明構造の試験体はステンレス箔を金属箔に使用したものである。試験体の水準を表2に示す。
 電解液は模擬試験のため、リチウム塩は含まず、炭酸エチレンと炭酸エチルメチルを等容量混合した溶媒を使用した。
 溶接は、ヒートシールした端面に対して、対向する方向からレーザーを照射して端面を拝み溶接した。レーザーは、光源として日鉄テクノリサーチ社のISL-1000Fを使用し、純Arガスをシールガスに用い、180Wの出力で走査速度2m/分で照射した。レーザー光は溶接部で0.5mm径となるように集光した。
Figure JPOXMLDOC01-appb-T000002
 恒温恒湿試験は楠本化成株式会社恒温恒湿槽HIFLEX FX724Pに、全試験体を同時に入れ、35℃で90%RHの条件で保持した。所定時間の恒温恒湿試験後、露点-80℃以下の乾燥アルゴンガスで置換したグローブボックス内で、ラミネート金属箔を切断して内部の電解液を取り出し、電解液中の水分含有量を三菱化学アナリテック社の水分気化装置CA-100を用いて測定した。
 図7に試験結果を、恒温恒湿試験経過時間を横軸に、電解液中の水分量を縦軸にしてグラフで示す。
 図7で明らかなように、溶接していない水準B、C、Dが経過時間と共に水分量が増加しているのに対して、溶接を施した本発明構造である水準Aでは、時間が経過してもほとんど水分量が増大せず、顕著な水分侵入バリア性を示した。
 実施例3
 金属箔の厚みの影響を調査するために、種々の厚みの金属箔を使用し、表3に示す水準で、実施例1と同じ溶接性の試験、及び実施例2と同じ水分侵入バリア性の試験を実施した。ただし、水分侵入バリア性の試験においては、恒温恒湿試験経過時間1400時間後の侵入水分量で、30ppm以下のものを評点6、30ppmを超えて50ppm以下のものを評点5、50ppmを超えて100ppm以下のものを評点4、100ppmを超えて150ppm以下のものを評点3、150ppmを超えて200ppm以下のものを評点2、200ppmを超えるものを評点1とし、評点3以上を合格とした。
 金属箔の厚みによって、若干の溶接性や樹脂健全性のばらつきは生じたが、いずれも良好に溶接出来た。溶接性や樹脂健全性のばらつきに応じて、侵入水分量は若干ばらついたが、いずれも設定した評点以上の水分侵入バリア性を示した。
Figure JPOXMLDOC01-appb-T000003
 A-A’  電極タブの無い電池セル断面のための切断線位置を示す線(破線)
 B-B’  電極タブのある電池セル断面のための切断線位置を示す線(破線)
 1  レーザー溶接用ラミネート金属箔
 2  金属箔
 3  ヒートシール樹脂
 4  蓄電セル部分(蓄電素子)
 5  電池セルを収納するエンボス加工部
 6’  電池セルを外界と遮蔽するためのヒートシール部
 6”  電極タブシール材
 7  レーザー溶接部
 8  溶接用レーザー光
 9  外面樹脂フィルム
 10  金属箔(電極タブ)
 22、23  ヒートシール部の経路長
 24  埋込みレジン

Claims (5)

  1.  少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端面をヒートシールにより封止してなる樹脂金属複合シール容器であって、
     前記金属箔のヒートシール部の外側にさらに、溶接ビードにより金属封止したシール部を持つことを特徴とする樹脂金属複合シール容器。
  2.  前記金属箔を構成する金属の融点が、前記ヒートシール用樹脂の熱分解温度より300℃以上高く、前記金属箔を構成する金属の比重が5以上であり、前記溶接ビードがレーザー溶接により形成されることを特徴とする請求項1に記載の樹脂金属複合シール容器。
  3.  前記金属箔がステンレス箔であり、前記ヒートシール用樹脂がポリプロピレンを主とする樹脂であることを特徴とする請求項1又は2に記載の樹脂金属複合シール容器。
  4.  前記金属箔が15~150μmの厚さであり、前記ヒートシール用樹脂が10~200μmの厚さであることを特徴とする請求項1~3のいずれか1項に記載の樹脂金属複合シール容器。
  5.  少なくとも片面にヒートシール用樹脂をラミネートした金属箔の端面をヒートシールにより封止して容器を形成し、前記容器のヒートシール部の外側にさらに、溶接ビードにより金属封止したシール部を形成することを特徴とする樹脂金属複合シール容器の製造方法。
PCT/JP2012/070386 2012-03-05 2012-08-09 樹脂金属複合シール容器及びその製造方法 WO2013132673A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014503759A JP6238887B2 (ja) 2012-03-05 2013-02-21 樹脂金属複合シール容器及びその製造方法
EP13757877.9A EP2824728B1 (en) 2012-03-05 2013-02-21 Resin-metal composite sealed container and method for producing same
US14/382,897 US9905817B2 (en) 2012-03-05 2013-02-21 Resin-metal composite seal container and method for producing same
KR1020147025287A KR101677680B1 (ko) 2012-03-05 2013-02-21 수지 금속 복합 실 용기 및 그의 제조 방법
CN201380012516.1A CN104145351B (zh) 2012-03-05 2013-02-21 树脂金属复合密封容器及其制造方法
TW102105996A TWI580622B (zh) 2012-03-05 2013-02-21 Resin metal composite sealed container and manufacturing method thereof
PCT/JP2013/054368 WO2013133039A1 (ja) 2012-03-05 2013-02-21 樹脂金属複合シール容器及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-048432 2012-03-05
JP2012048432 2012-03-05

Publications (1)

Publication Number Publication Date
WO2013132673A1 true WO2013132673A1 (ja) 2013-09-12

Family

ID=49116181

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/070386 WO2013132673A1 (ja) 2012-03-05 2012-08-09 樹脂金属複合シール容器及びその製造方法
PCT/JP2013/054368 WO2013133039A1 (ja) 2012-03-05 2013-02-21 樹脂金属複合シール容器及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054368 WO2013133039A1 (ja) 2012-03-05 2013-02-21 樹脂金属複合シール容器及びその製造方法

Country Status (7)

Country Link
US (1) US9905817B2 (ja)
EP (1) EP2824728B1 (ja)
JP (1) JP6238887B2 (ja)
KR (1) KR101677680B1 (ja)
CN (1) CN104145351B (ja)
TW (1) TWI580622B (ja)
WO (2) WO2013132673A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116706A (ja) * 2013-12-17 2015-06-25 新日鉄住金マテリアルズ株式会社 シールケース及びその製造方法
JP6893575B1 (ja) * 2020-10-12 2021-06-23 エナックス株式会社 シート状二次電池及びシート状二次電池の製造方法
KR20210148281A (ko) 2019-06-10 2021-12-07 닛폰세이테츠 가부시키가이샤 전지용 케이스 및 그 제조 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405613B2 (ja) 2013-10-16 2018-10-17 Tdk株式会社 電気化学デバイス
WO2015109287A1 (en) * 2014-01-20 2015-07-23 Maxwell Technologies, Inc. Pouch cell housing
WO2017079025A1 (en) * 2015-11-02 2017-05-11 Rutgers, The State University Of New Jersey Electrochemical cell having thin metal foil packaging and a method for making same
EP3444859B1 (en) * 2016-04-15 2020-12-02 Yamaha Corporation Thermoelectric conversion module package
CN106129276B (zh) * 2016-08-09 2019-08-23 东莞市卓越新材料科技有限公司 一种钢塑膜的生产工艺
CN107863255A (zh) * 2016-09-22 2018-03-30 宁波碧彩实业有限公司 一种用于交流电动机的电容器卷绕方法
JP7022912B2 (ja) * 2017-12-18 2022-02-21 パナソニックIpマネジメント株式会社 薄型電池
KR102353921B1 (ko) * 2018-01-12 2022-01-20 주식회사 엘지에너지솔루션 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
US11307114B2 (en) 2018-12-17 2022-04-19 National Oilwell Varco, L.P. Pressure-based flaw detection
CN209550932U (zh) * 2019-01-30 2019-10-29 宁德时代新能源科技股份有限公司 焊接组件及电池模组
JP6853322B2 (ja) * 2019-09-25 2021-03-31 積水化学工業株式会社 積層型電池および積層型電池の搬送方法
JP7364881B2 (ja) * 2019-10-03 2023-10-19 日本製鉄株式会社 電池セルケース
CN114365329B (zh) * 2019-10-03 2024-03-22 日本制铁株式会社 电池单元壳体和使用该壳体的电池的制造方法
FR3109026B1 (fr) * 2020-04-07 2024-04-26 Accumulateurs Fixes Elément électrochimique pour batterie et batterie correspondante
EP4263910A1 (en) * 2021-02-18 2023-10-25 Ionobell, Inc. Silicon anode battery
CN113066986A (zh) * 2021-03-16 2021-07-02 珠海冠宇电池股份有限公司 集流体及其制备方法以及极片
EP4347540A1 (en) 2021-05-25 2024-04-10 Ionobell, Inc. Silicon material and method of manufacture
US11799075B2 (en) 2021-10-12 2023-10-24 Ionobell, Inc. Silicon battery and method for assembly
KR102655291B1 (ko) * 2022-07-15 2024-04-08 주식회사 엘지에너지솔루션 파우치형 전지셀 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223090A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd 電 池
JP2004087239A (ja) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd 電池およびその製造方法、ならびに組電池、組電池モジュール
JP2008021634A (ja) * 2006-07-10 2008-01-31 Lg Chem Ltd シーリング部の安全性が向上した二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502292A (en) 1994-08-04 1996-03-26 Midwest Research Institute Method for laser welding ultra-thin metal foils
JP3674345B2 (ja) 1998-11-20 2005-07-20 凸版印刷株式会社 多層体とその製造方法
JP4736146B2 (ja) 1999-05-26 2011-07-27 大日本印刷株式会社 ポリマー電池用包装材料
CN100353584C (zh) 1999-04-08 2007-12-05 大日本印刷株式会社 电池用包装材料、电池包装用袋体及其制造方法
EP1096589A1 (en) * 1999-05-14 2001-05-02 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device
JP4148458B2 (ja) * 2002-04-17 2008-09-10 日立マクセル株式会社 電池
JP2004055154A (ja) 2002-07-16 2004-02-19 Nissan Motor Co Ltd 積層型電池の密封構造および密封処理方法
JP2004095217A (ja) * 2002-08-29 2004-03-25 Nissan Motor Co Ltd 電池外装用ラミネート材、電池およびその製造方法、ならびに組電池、組電池モジュール
KR20040048295A (ko) * 2002-12-02 2004-06-07 히다치 막셀 가부시키가이샤 전지
JP4288472B2 (ja) * 2003-03-27 2009-07-01 大阪瓦斯株式会社 非水系二次電池
JP4929606B2 (ja) 2005-03-16 2012-05-09 トヨタ自動車株式会社 密閉型蓄電装置及びその製造方法
JP2009146645A (ja) * 2007-12-12 2009-07-02 Toyota Motor Corp 溶接構造体の製造方法及び電池の製造方法
JP5369583B2 (ja) 2008-09-30 2013-12-18 大日本印刷株式会社 電池外装用包装材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223090A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd 電 池
JP2004087239A (ja) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd 電池およびその製造方法、ならびに組電池、組電池モジュール
JP2008021634A (ja) * 2006-07-10 2008-01-31 Lg Chem Ltd シーリング部の安全性が向上した二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116706A (ja) * 2013-12-17 2015-06-25 新日鉄住金マテリアルズ株式会社 シールケース及びその製造方法
KR20210148281A (ko) 2019-06-10 2021-12-07 닛폰세이테츠 가부시키가이샤 전지용 케이스 및 그 제조 방법
JP6893575B1 (ja) * 2020-10-12 2021-06-23 エナックス株式会社 シート状二次電池及びシート状二次電池の製造方法
JP2022063629A (ja) * 2020-10-12 2022-04-22 エナックス株式会社 シート状二次電池及びシート状二次電池の製造方法

Also Published As

Publication number Publication date
US20150030912A1 (en) 2015-01-29
JP6238887B2 (ja) 2017-11-29
TW201341277A (zh) 2013-10-16
EP2824728B1 (en) 2018-04-25
EP2824728A4 (en) 2016-05-11
JPWO2013133039A1 (ja) 2015-07-30
KR101677680B1 (ko) 2016-11-18
CN104145351B (zh) 2016-10-12
US9905817B2 (en) 2018-02-27
KR20140133569A (ko) 2014-11-19
EP2824728A1 (en) 2015-01-14
CN104145351A (zh) 2014-11-12
TWI580622B (zh) 2017-05-01
WO2013133039A1 (ja) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6238887B2 (ja) 樹脂金属複合シール容器及びその製造方法
CN104916791B (zh) 包装材料、电池用外装壳体及电池
JP7381528B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP2009544492A (ja) プラスチックラミネートフィルム
JP6109058B2 (ja) シールケース及びその製造方法
JP2024026062A (ja) 全固体電池用外包材
JP2011142092A (ja) 電池用積層フィルムおよびそれを用いた電池用容器
JP6738171B2 (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP4580499B2 (ja) リチウムイオン電池タブ部のシール方法
JP2016207592A (ja) 蓄電デバイス
JP5889045B2 (ja) レーザー溶接用ラミネート金属箔
US20230173792A1 (en) Multilayer structure for a battery encasement
JP7364881B2 (ja) 電池セルケース
JP3237526U (ja) 電池用ケース
KR20220047998A (ko) 전지 셀 케이스 및 그것을 사용한 전지의 제조 방법
JP7215573B2 (ja) 電池用ケースおよびその製造方法
JP3225016U (ja) 電池用ケース
WO2024214636A1 (ja) 半固体電池用内袋フィルム及び半固体電池
JP2023026915A (ja) 全固体電池用外装材および全固体電池
KR20230065468A (ko) 염료층을 포함하는 전지용 케이스 및 이를 포함하는 이차 전지
JP2003031188A (ja) 電池用包装材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP