WO2013131455A1 - 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法 - Google Patents

从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法 Download PDF

Info

Publication number
WO2013131455A1
WO2013131455A1 PCT/CN2013/072119 CN2013072119W WO2013131455A1 WO 2013131455 A1 WO2013131455 A1 WO 2013131455A1 CN 2013072119 W CN2013072119 W CN 2013072119W WO 2013131455 A1 WO2013131455 A1 WO 2013131455A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
aluminum
solution
fischer
precipitate
Prior art date
Application number
PCT/CN2013/072119
Other languages
English (en)
French (fr)
Inventor
刘倩倩
韩奕铭
宋德臣
许莉
赖波
Original Assignee
阳光凯迪新能源集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11201405393SA priority Critical patent/SG11201405393SA/en
Priority to MX2014010727A priority patent/MX356685B/es
Priority to JP2014560232A priority patent/JP5852270B2/ja
Priority to AP2014007990A priority patent/AP2014007990A0/xx
Application filed by 阳光凯迪新能源集团有限公司 filed Critical 阳光凯迪新能源集团有限公司
Priority to CA2866224A priority patent/CA2866224C/en
Priority to BR112014021852-8A priority patent/BR112014021852B1/pt
Priority to KR1020147027927A priority patent/KR101609803B1/ko
Priority to EP13758445.4A priority patent/EP2824200B1/en
Priority to DK13758445.4T priority patent/DK2824200T3/en
Priority to RU2014140159/02A priority patent/RU2580575C1/ru
Priority to AU2013230407A priority patent/AU2013230407B2/en
Priority to IN1923MUN2014 priority patent/IN2014MN01923A/en
Publication of WO2013131455A1 publication Critical patent/WO2013131455A1/zh
Priority to US14/477,935 priority patent/US8986632B2/en
Priority to ZA2014/07146A priority patent/ZA201407146B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • C01F7/142Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent with carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/005Halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • C22B11/021Recovery of noble metals from waste materials
    • C22B11/026Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • C22B21/003Obtaining aluminium by wet processes from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/026Obtaining nickel or cobalt by dry processes from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the invention relates to a method for comprehensively recovering metal cobalt, lanthanum and aluminum from a Fischer-Tropsch synthesis waste catalyst Co-Ru/Al 2 0 3 , which belongs to the technical field of catalysts and metal recovery from spent catalysts. Background technique
  • the Fischer-Tropsch synthesis reaction converts the synthesis gas obtained by gasification of natural gas, coal, biomass and other carbonaceous materials into a liquid fuel (also called synthetic oil) under the action of a Fischer-Tropsch synthesis catalyst.
  • the synthetic oil can be subjected to post-processing such as subsequent processing and rectification, and can obtain steam diesel oil superior to the European V standard. It is an ultra-clean renewable energy source and has broad application prospects.
  • the main metal active components of the Fischer-Tropsch synthesis catalyst include Group VIA elements Fe, Co, Ni and Ru, etc.
  • the cobalt-based catalyst has become a hot spot of current research and application with its excellent catalytic performance.
  • Ru has the highest catalytic activity, it is generally used as an auxiliary agent to improve the activity and selectivity of the catalyst because of its limited resources and high price.
  • Fischer-Tropsch synthesis catalysts containing cobalt as the active component and ruthenium as a precious metal promoter have been disclosed in a large number of patents, such as US Pat. No. 4,082,824, CN 1617292A and CN 101698152A.
  • Alumina has been widely used as a carrier for Fischer-Tropsch synthesis catalysts due to its high melting point, good thermal stability and good anti-wear performance, especially for the carrier of slurry bed Fischer-Tropsch synthesis catalyst, in which the alumina carrier accounts for up to 50% of the catalyst. the above.
  • the existing literature and published patents there has been no report on the recovery of alumina from the Fischer-Tropsch synthesis catalyst.
  • China's cobalt resources and thorium resources are very scarce, and most of them rely on imports, and they are expensive, which directly leads to an increase in catalyst costs.
  • China's bauxite resources are abundant, in recent years, with the rapid growth of primary aluminum consumption, the contradiction between the production and demand of China's aluminum industry has become increasingly prominent. Therefore, the valuable metal cobalt, lanthanum and aluminum in the inactivated Fischer-Tropsch synthesis waste catalyst are recovered and prepared into metal salts or oxides which can be used for preparing the catalyst, thereby not only reducing environmental pollution, but also reducing the catalyst. Production costs.
  • patents for recovering cobalt from alumina-supported cobalt-based catalysts are mainly CN101270420 and CN 101700913Ao.
  • Chinese patent CN 101270420A first passes CO into deionized water and cobalt-containing Fischer-Tropsch catalyst (including Si0 2 , A1 2 ).
  • Co(N0 3 ) 2 _6H 2 0 is obtained.
  • the ruthenium)( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 20 0 obtained by this method has a purity of less than 99% and cannot be directly used for preparing a cobalt catalyst.
  • Chinese patent 101700913A grinds alumina-supported waste cobalt-based catalyst, concentrated hydrochloric acid, sodium sulfide, cobalt oxalate, calcination, nitric acid dissolution, evaporation crystallization, etc., and finally obtains high purity ⁇ with a purity of over 99%) ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0, but since the spent catalyst is not reduced, and the intermediate product CoS grains formed during the recovery process are fine, the filtration is difficult, and the cobalt is easily lost, resulting in a decrease in the recovery rate of cobalt, which is 92. %about.
  • CN 100387344C discloses a method for recovering a ruthenium catalyst supported on activated carbon.
  • the activated carbon supported ruthenium catalyst is calcined at 600 to 1000 ° C to remove the activated carbon support by "alkali fusion-oxidation distillation", and then KOH and KN0 3 are added.
  • Chinese patent CN 102108444 discloses a method for recovering ruthenium from a supported ruthenium metal catalyst, which removes organic matter by a high temperature calcination catalyst in a nitrogen atmosphere and activates the catalyst, and then at 100 to 300 ° C, 1 to 3 MPa 0 2 /0 3 Under the condition, the fluidized black catalyst solid is oxidized to Ru0 4 gas, Ru0 4 gas is passed into dilute hydrochloric acid, reduced to reddish brown ruthenium trichloride aqueous solution, and then distilled under reduced pressure to obtain P-RuCl 3 xH. 2 0.
  • the disadvantage of this method is that the recovery of rhodium is low.
  • Chinese patent CN 101331240 discloses a process for recovering ruthenium from a used ruthenium oxide-containing catalyst containing ruthenium oxide as ruthenium oxide supported on a support material which is hardly soluble in a mineral acid.
  • the method firstly treats the ruthenium oxide-containing catalyst in a hydrogen stream, so that the ruthenium oxide provided on the support is reduced to metal ruthenium, and then treated with heated hydrochloric acid in the presence of an oxygen-containing gas, so that the metal ruthenium provided on the support is
  • the ruthenium (III) chloride is dissolved and thus recovered as a ruthenium (III) chloride solution for further workup.
  • the disadvantage of this method is that the recovery of rhodium is low, and it is not suitable for recovering the rhodium oxide-containing catalyst supported by ⁇ - ⁇ 1 2 3 3 .
  • the method for comprehensively recovering metallic cobalt, lanthanum and aluminum from the Fischer-Tropsch synthesis waste catalyst Co-Ru/Al 2 0 3 of the present invention comprises the following steps:
  • the spent catalyst obtained in the step 1) is ground into a uniform powder, and then transferred to a fluidized bed reactor, first substituted with nitrogen for 0.5 hour, and then at a volume ratio of H 2 : N 2 mixed gas of 1 to 4: 1 , the space velocity is 1000 ⁇ 4000h - the pressure is 0.1 ⁇ lMPa, and the temperature is reduced from 350 °C to 800 °C for 8 ⁇ 12 hours;
  • step 2) The reduced spent catalyst and alkali flux are layered into the crucible, and then placed in a muffle furnace.
  • the muffle furnace is first heated to 200 ° C for 1 h, then programmed at 3 ° C / min. Performing an alkali fusion reaction at 900 to 1000 ° C for 2 to 4 hours, and cooling to room temperature to obtain an alkali melt;
  • the alkali melt obtained in the step 3) is immersed in deionized water at 90 to 100 ° C for 0.5 to 1 hour, and the solid-liquid ratio is 1:2 to 4, so that the water-soluble K 2 Ru0 4 and KA 10 2 or Na 2 Ru0 4 and NaA10 2 are all dissolved, and then filtered to obtain a filter residue;
  • the cobalt oxalate obtained in the step 6) is dried in an oven at 80 to 110 ° C and then charged into a fluidized bed reactor, first substituted with nitrogen for 0.5 hour, at 400-560 ° C, 0.1 to 1 MPa, 3 ⁇ 4: N 2
  • the volume ratio of the mixed gas is 1 to 4: 1.
  • step 8) adding dilute nitric acid solution to make the metal cobalt obtained in step 7) just completely dissolved, and then evaporating and crystallizing to obtain Co(N0 3 ) 2 -6H 2 0;
  • the black cesium hydroxide obtained in the step 9) is placed in a three-necked flask equipped with a stirring and refluxing device, concentrated hydrochloric acid is added, stirred and heated to 91-95 ° C for 1 to 2 hours, and then hydroxylamine hydrochloride is added.
  • the black cesium hydroxide is completely dissolved, allowed to stand, and the obtained solution is transferred to a distillation flask, and distilled under reduced pressure at a vacuum of 40 ⁇ lKPa until the solution is in a paste state, the heating is stopped, and the solution is evaporated to dryness by using residual heat.
  • the P-RuCl 3 _xH 2 0 crystal is obtained, and the reaction process is as follows:
  • the alkali flux is mixed with the alkali flux KOH and K 0 3 , or NaOH and NaN0 3
  • the response is:
  • Ru+2KOH+3K 0 3 K 2 Ru0 4 +3K 0 2 +H 2 0
  • Ru0 2 +2NaOH+NaN0 3 Na 2 Ru0 4 +NaN0 2 +H 2 0
  • Ru+2NaOH+3NaN0 3 Na 2 Ru0 4 +3NaN0 2 +H 2 0
  • the amount of alkali flux is 2.5 times the theoretical amount.
  • the alkali fusion method is a layered alkali fusion, which is divided into four layers in total, and the total amount of 2/3 KOH, spent catalyst, 1/3 KOH, KN0 3 is placed in order from the bottom to the top of the crucible. Or put a total of 2 / 3 of NaOH, spent catalyst, 1/3 of NaOH, NaN0 3 in order from the bottom to the top of the crucible; stratified alkali fusion can avoid sintering and Ru0 4 volatilization, thus reducing the loss of helium.
  • the alkali melting temperature in the step 3) is 950-1000 ° C, so that the cerium and the aluminum oxide are sufficiently reacted with the alkali flux.
  • the alkali fusion reaction time is selected for 3 hours.
  • the temperature of the deionized water in which the alkali melt is leached in the step 4) is 96-100 ° C to ensure complete leaching of the citrate and the meta-aluminate, especially to ensure complete leaching of the meta-aluminate.
  • the solid-liquid ratio in the step 4) is 1:3.
  • the concentration of the dilute nitric acid solution in the step 5) and the step 8) is 1 to 3 mol/L.
  • the temperature of reducing cobalt oxalate in the step 7) is 400-480 °C.
  • the reducing agent ethanol is excessive, and the cerium salt is completely converted into a cerium hydroxide precipitate.
  • the ratio of the molar amount of cerium to absolute ethanol in the spent catalyst is 1:3 ⁇ 5.
  • the concentrated hydrochloric acid in the step 10) is hydrochloric acid having a mass fraction of 36% to 38%.
  • the ratio of the molar amount of hydroxylamine hydrochloride to hydrazine element in the step 10) is 1:1, which is favorable for obtaining P-RuCl 3 xH 2 0 of high purity.
  • the reaction temperature is preferably 65 ⁇ 85 °C.
  • the flow rate of C0 2 introduced in the step 11) is 500 to 1500 mL/min.
  • the method is capable of efficiently separating and comprehensively recovering valuable metals such as cobalt, ruthenium and aluminum from the Fischer-Tropsch synthesis waste catalyst Co-Ru/Al 2 0 3 .
  • the cobalt slag is effectively separated in the alkali melting step, and then the cobalt slag, the oxalic acid or the ammonium oxalate cobalt, the cobalt oxalate reduction, the nitric acid dissolving the metal cobalt, etc. are obtained.
  • the purity of the product can reach more than 99%, and it does not contain sensitive ions such as chloride ions and sulfur ions which are easily poisoned by the catalyst during the Fischer-Tropsch synthesis process, and can be directly used for preparing the Fischer-Tropsch synthesis catalyst.
  • Embodiment 1 The technical solutions of the present invention are described below by using specific embodiments, but the scope of protection of the present invention is not limited thereto: Embodiment 1
  • the filter residue obtained in the step 4) is washed with deionized water to neutrality, and then 300 mL of a dilute nitric acid solution having a concentration of 3 mol/L is added to completely dissolve the metal cobalt and its oxide to obtain a cobalt nitrate solution;
  • the precipitate was washed to neutral with deionized water, and finally the precipitate was washed with absolute ethanol for dehydration treatment to obtain a pale red cobalt oxalate precipitate.
  • the preparation method of the oxalic acid solution was as follows: adding deionized water to make 39.01 g of oxalic acid solid (H 2 C 2 (V2H) 2 0 ) Just dissolve completely, and adjust the pH to 1.5 with 5% ammonia solution;
  • step 6) The cobalt oxalate obtained in step 6) is dried in an oven at 80 ° C and then charged into a fluidized bed reactor at a volume ratio of 560 ° C, 0.5 MPa, H 2 : N 2 mixture of 3:1, empty Reduction at a rate of 4000 h - 1 for 2 hours to obtain metallic cobalt;
  • step 10 Put the black cesium hydroxide obtained in step 9) into a three-necked flask with a stirring and refluxing device, add 36% ⁇ 38% concentrated hydrochloric acid, stir and heat to 91-95 °C. After an hour, 0.67 g of hydroxylamine hydrochloride was added to completely dissolve the black cesium hydroxide, and the solution was transferred to a distillation flask, and distilled under reduced pressure at a vacuum of 40 ⁇ 1 KPa until the solution became a paste.
  • step 2) grinding the spent catalyst in step 1) into a uniform powder, and then transferring it to a fluidized bed reactor at a volume ratio of H 2 : N 2 mixture of 2:1, a space velocity of 3000 h - a pressure of 0.8 MPa , reducing at a temperature of 700 ° C for 11 hours;
  • the stepped catalyst and the alkali flux are added to the crucible in layers, and NaOH 17.50g, spent catalyst, NaOH 8.75g, NaNO 3 4.02g are placed in order from the bottom to the top of the crucible, and then placed in the muffle furnace.
  • the muffle furnace is heated to 200 ° C for 1 hour, and then the temperature is heated to 900 ° C at 3 ° C / min to carry out alkali fusion reaction for 4 hours, cooled to room temperature to obtain an alkali melt;
  • the alkali melt obtained in the step 3) is immersed in deionized water at 95 ° C for 0.5 hour (solid-liquid ratio 1:3), and the water-soluble Na 2 RuO ⁇ BNaA10 2 is completely dissolved, and then filtered to obtain a filter residue. ;
  • ammonium oxalate solution is prepared by adding deionized water to make 44.30 g of ammonium oxalate ((NH 4 ) 2 C 2 0 4 0) Just dissolved completely, and adjusted the pH to 1.5 with 5% ammonia solution;
  • step 6) The cobalt oxalate obtained in step 6) is dried in an oven at 90 ° C and then charged into a fluidized bed reactor at 500 ° C. 0.8 MPa, H 2 /N 2 mixed gas volume ratio of 2: 1, and a space velocity of 3000 h - 1 for 3 hours to obtain metal cobalt;
  • step 10 The black cesium hydroxide obtained in step 9) is placed in a three-necked flask with a stirring and refluxing device, and a concentrated hydrochloric acid having a mass fraction of 36% to 38% is added, stirred and heated to 91-95 ° C to react 1.5. After an hour, 0.44 g of hydroxylamine hydrochloride was added to completely dissolve the black cesium hydroxide, and the solution was allowed to stand, and the obtained solution was transferred to a distillation flask, and distilled under reduced pressure at a vacuum of 40 ⁇ 1 KPa until the solution became a paste. The heating was stopped, and the solution was evaporated to dryness by using residual heat to obtain 1.603 g of PR U Cl 3 _xH 2 0 crystal. The ruthenium content was determined by ICP-AES method to be 37.96%, and the recovery of ruthenium was 95.59%;
  • step 2) grinding the spent catalyst in step 1) into a homogeneous powder, and then transferring it to a fluidized bed reactor at a volume ratio of H 2 : N 2 mixture of 3:1, a space velocity of 2000 h - a pressure of 0.5 MPa , reducing at a temperature of 350 ° C for 12 hours;
  • step 2) the spent catalyst after reduction with an alkali flux stratified into the crucible in accordance oriented sequentially placed from the bottom of the crucible NaOH 19.19g, spent catalyst, NaOH 9.59g, NaN0 3 2.66g, and then placed in a muffle furnace
  • the muffle furnace is heated to 200 ° C for 1 hour, then the temperature is heated to 1000 ° C at 3 ° C / min to carry out alkali fusion reaction for 2 hours, cooled to room temperature to obtain an alkali melt
  • the alkali melt obtained in the step 3) is immersed in deionized water at 100 ° C for 0.5 hour (solid-liquid ratio 1:4), and the water-soluble Na 2 RuO ⁇ BNaA10 2 is completely dissolved, and then filtered to obtain a filter residue. ;
  • the preparation method of the oxalic acid solution was as follows: adding deionized water to make 28.29 g of oxalic acid solid (H 2 C 2 (V2H) 2 0) Just dissolve completely, and adjust the pH to 1.5 with 5% ammonia solution;
  • the cobalt oxalate obtained in the step 6) is dried in an oven at 100 ° C and then charged into a fluidized bed reactor at a volume ratio of 1:1 at a temperature of 400 ° C, 1 MPa, H 2 /N 2 , and a space velocity of 1:1. Reduction under conditions of 4000 h -1 for 4 hours to obtain metallic cobalt;
  • the black cesium hydroxide obtained in the step 9) is placed in a three-necked flask with a stirring and refluxing device, and a concentrated hydrochloric acid having a mass fraction of 36% to 38% is added, stirred and heated to 91-95 ° C to react 1.5. Hours, then add 0.29g of hydroxylamine hydrochloride, completely dissolve the black cesium hydroxide, let it stand, transfer the obtained solution to a distillation flask, and distill it under reduced pressure at 40 ⁇ lKPa until the solution is mushy. Heating, using the residual heat to evaporate the solution to obtain 1.097 g of PR U Cl 3 _xH 2 0 crystal, the cerium content was determined by ICP-AES method was 37.06%, and the recovery of hydrazine was 96.52%;
  • the aluminum hydroxide is dried at 100 ° C, and then calcined at 700 ° C to obtain 13.56 g of alumina.
  • the purity is 99.07%, and the recovery rate of aluminum is 94.26%.
  • step 2) grinding the spent catalyst in step 1) into a homogeneous powder, and then transferring it to a fluidized bed reactor at a volume ratio of H 2 : N 2 mixture of 1: 1, a space velocity of 4000 h - a pressure of 0.4 MPa , reducing at a temperature of 500 ° C for 8 hours;
  • step 3 The stepped catalyst obtained by the reduction of step 2) and the alkali flux are layered into the crucible, and 30.95 g of KOH, waste catalyst, 15.47 g of KOH, 1.45 g of KN0 3 are placed in this order from the bottom to the top of the crucible, and then placed in a muffle furnace.
  • the muffle furnace is heated to 200 ° C for 1 hour, and then subjected to an alkali fusion reaction at a temperature of 3 ° C / min to 960 ° C for 4 hours, cooled to room temperature to obtain an alkali melt;
  • the filter residue obtained in the step 4) is washed with deionized water to neutrality, and then 320 mL of a dilute nitric acid solution having a concentration of 1 mol/L is added to completely dissolve the metal cobalt and its oxide to obtain a cobalt nitrate solution;
  • step 6) Adjust the concentration of Co 2+ in the cobalt nitrate solution obtained in step 5) to 20g/L, adjust the pH value to 1.5 with a mass fraction of 10% ammonia solution, and the temperature is 70 °C, then the cobalt nitrate solution and pH1.
  • the precipitate was washed to neutral by deionized water, and finally the precipitate was washed with anhydrous ethanol for dehydration treatment to obtain a pale red cobalt oxalate precipitate; wherein the ammonium oxalate solution was prepared by adding deionized water to make 22.68 g of ammonium oxalate ((NH 4 ) 2 C 2 (VH 2 0) was completely dissolved, and the pH was adjusted to 1.5 with a 5% aqueous ammonia solution;
  • the cobalt oxalate obtained in the step 6) is dried in an oven at 110 ° C and then charged into a fluidized bed reactor at a volume ratio of 480 ° C, 0.8 MPa, H 2 /N 2 mixed gas of 4:1, empty Reduction at a rate of 1000 h - 1 for 3 hours to obtain metallic cobalt;
  • step 10 Put the black cesium hydroxide obtained in step 9) into a three-necked flask with a stirring and refluxing device, add 36% ⁇ 38% concentrated hydrochloric acid, stir and heat to 91-95 °C. After an hour, 0.13 g of hydroxylamine hydrochloride was added to completely dissolve the black cesium hydroxide, and the solution was transferred to a distillation flask, and distilled under reduced pressure at a vacuum of 40 ⁇ 1 KPa until the solution became a paste. The heating was stopped, and the solution was evaporated to dryness by using residual heat to obtain 0.497 g of PR U Cl 3 _xH 2 0 crystal. The ruthenium content was determined by ICP-AES method to be 37.39%, and the recovery of ruthenium was 95.87%;
  • Example 4 The procedure of Example 4 was repeated, and the alkali melting temperature in the step 3) was set to 951 ° C, 970 ° C, 980 ° C, and 990 ° C, respectively, and the recovery results are shown in Table 1.
  • the method of mixed alkali fusion generally used in the prior art is employed, and is carried out at temperatures other than the alkali fusion temperature of the present invention.
  • step 3 The spent catalyst reduced in step 2) was mixed with an alkali flux (KOH 31.67 g, K Os 7.25 g) and added to the crucible, and then placed in a muffle furnace. First, the muffle furnace was heated to 200 ° C for 1 h to facilitate sufficient contact between the reactant phases. Then, the alkali fusion reaction was carried out by heating to 650 ° C for 4 hours, and cooled to room temperature to obtain an alkali melt. The amount of alkali flux is 2.5 times the theoretical amount.
  • Comparative Example 1 It can be seen from Comparative Example 1 that during the alkali fusion reaction, the general mixed alkali fusion method and the lower alkali melting temperature are obtained, and the obtained ⁇ )( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0 product has low purity, bismuth and aluminum. The recovery rate is also low, indicating that the method of mixing alkali fusion and the lower alkali melting temperature, the alkali fusion reaction is not complete, resulting in unsatisfactory recovery effect.
  • the alkali melt was leached by deionized water at 80 °C.
  • Example 2 Taking 20.68 g of Co-Ru/Al 2 0 3 spent catalyst, the elemental analysis results were: Co 25.33%, Ru 3.07%, and Al 32.53%.
  • Example 2 was repeated except that the alkali melt obtained in the step 3) was immersed in deionized water at 80 ° C for 1 hour (solid-liquid ratio 1: 2), and the other operation steps were unchanged.
  • the method of the present invention is used in this example.
  • the external parameters are manipulated for comparison.
  • oxalic acid solution is prepared by adding deionized water to make 28.29 g of oxalic acid solid (H 2 C 2 (V2H 2 0 ) is completely dissolved, and adjusting the pH to 1.5 with a 5% aqueous ammonia solution;
  • step 7) The cobalt oxalate obtained in the step 6) is dried in an oven at 100 ° C and then charged into a fluidized bed reactor at a volume ratio of 1:1, air velocity at 300 ° C, 1 MPa, H 2 /N 2 mixture. Reduction for 4 hours under conditions of 4000 h -1 to obtain metallic cobalt; repeating Example 3, step 8) -10);
  • Example 3, step 12) was repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

提供一种从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法。首先经除烃、还原处理的废催化剂,在碱熔步骤中有效分离出钴渣,再经酸浸钴渣、草酸或草酸铵沉钴、还原草酸钴,硝酸溶解金属钴等步骤得到Co(ΝO3)2•6Η2O。通过碱熔、去离子水浸取步骤溶出的钌酸盐,经乙醇还原、浓盐酸溶解、减压蒸馏等步骤,得到的β-RuCl3•XH2O产品纯度高。采用CO2碳分法,控制反应温度、CO2的流速、反应终点的pH值等参数从偏铝酸盐溶液中制备氢氧化铝,经高温煅烧,得到氧化铝,产品质量达到国标一级氧化铝的质量要求。所得的产品,其回收率高,其中钴≥97%,钌≥95%,铝≥92%。

Description

从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法 技术领域
本发明涉及一种从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方 法, 属于催化剂及从废催化剂中回收金属技术领域。 背景技术
近年来, 随着世界石油资源的日益枯竭和环境污染的逐渐加剧, 寻找清洁、 可再生 的替代液体燃料已经成为刻不容缓的问题。 费托合成反应可以将天然气、 煤炭、 生物质 等含碳物质经气化过程得到的合成气, 在费托合成催化剂的作用下转化为液体燃料 (也 称合成油)。该合成油经过后续加工、精馏等后处理工序, 可以得到优于欧 V标准的汽柴 油, 是一种超清洁的可再生能源, 具有广泛的应用前景。
费托合成催化剂的主金属活性组分包括第 VIA族元素 Fe、 Co、 Ni和 Ru等, 尤其是钴 基催化剂以其优异的催化性能成为当前研究和应用的热点。 Ru虽然催化活性最高,但是 因其资源有限, 价格昂贵, 所以一般用作助剂来改善催化剂的活性和选择性。 以钴为主 活性组分、钌为贵金属助剂的费托合成催化剂已经有大量专利公开,如 US 4822824、 CN 1617292A和 CN 101698152A等。
氧化铝由于熔点高, 热稳定性好, 抗磨损性能好等优点, 广泛用作费托合成催化剂 的载体, 尤其是浆态床费托合成催化剂的载体, 其中氧化铝载体占催化剂比重高达 50% 以上。 但是, 现有的文献和公开专利中, 尚无从费托合成催化剂中回收氧化铝的报道。
我国钴资源和钌资源都非常匮乏, 绝大多数都依靠进口, 而且价格昂贵, 直接导致 催化剂成本升高。 我国铝土矿资源虽然丰富, 但是近年来随着原铝消费的迅速增长, 我 国铝工业产需不足的矛盾日益突出。 因此, 对失活的费托合成废催化剂中有价值的金属 钴、 钌和铝进行回收, 并制备成可用于制备催化剂的金属盐或氧化物, 不但可以减少对 环境的污染, 而且可以降低催化剂的生产成本。
目前从氧化铝负载的钴基催化剂中回收钴的专利主要有 CN101270420 和 CN 101700913Ao其中, 中国专利 CN 101270420A首先将 CO通入含有去离子水和含钴费托废 催化剂 (包括以 Si02、 A1203 、 Zr02、 Ti02为载体的含钴废催化剂) 的反应釜中, 加热 并恒温; 然后降温将 CO气体从反应釜中放出, 然后将含钴溶液排出, 向含钴溶液中加入 碱液, 使钴沉淀为 Co(OH)2 ; 在沉淀中加入硝酸溶解, 蒸发结晶, 得到 Co(N03)2_6H20。 该方法得到的 Ο)(Ν03)2·6Η20纯度低于 99%, 不能直接用于制备钴催化剂。 中国专利 101700913A对氧化铝负载的废钴基催化剂进行研磨、 浓盐酸溶解、 硫化钠沉钴、 草酸沉 钴、煅烧、硝酸溶解、蒸发结晶等步骤,最终得到纯度达 99%以上的高纯 Ο)(Ν03)2·6Η20, 但由于未对废催化剂进行还原, 并且回收过程中生成的中间产物 CoS晶粒很细, 过滤困 难, 容易损失钴, 从而导致钴的回收率降低, 为 92%左右。
已知的从废催化剂中回收钌的专利方法中, 使用比较多的是蒸馏的方法。 例如 CN 100387344C公开了一种活性炭负载的钌催化剂的回收方法, 采用"碱熔-氧化蒸馏法", 将 活性炭负载的钌催化剂在 600〜1000°C焙烧除去活性碳载体,然后加入 KOH和 KN03混合, 300〜950°C恒温 1〜5小时进行碱熔反应, 冷却得到碱熔物, 碱熔物在 50〜90°C的热水中溶 解得到 K2Ru04溶液, 加入次氯酸钠和浓硫酸, 50〜90 蒸馏2〜4小时, 生成 Ru04气体, 并用强酸溶液吸收, 再经常压或减压蒸馏, 得到相应的钌盐。 该方法的缺点是氧化蒸馏 产物 Ru04为强氧化剂, 遇低分子有机物会爆炸, 有剧毒, 反应必须在密闭的通风橱中进 行, 而且过程复杂, 回收流程长。 中国专利 CN 102108444公开了一种从负载型钌金属催 化剂中回收钌的方法, 通过氮气气氛中高温焙烧催化剂除去有机物质并活化催化剂, 然 后在 100〜300°C、 l〜3MPa 02/03条件下将处于流态化的黑色催化剂固体氧化成 Ru04气体, Ru04气体通入稀盐酸中, 将其还原成红棕色的三氯化钌水溶液, 再经减压蒸馏得到 P-RuCl3 xH20。 该方法的缺点是钌的回收率低。
中国专利 CN 101331240公开了一种从使用过的含氧化钌的催化剂中回收钌的方法, 所述催化剂含有负载于难以溶于无机酸中的载体材料上的作为氧化钌的钌。 该方法首先 将含氧化钌的催化剂在氢气流中处理, 使得载体上提供的氧化钌被还原为金属钌, 然后 在含氧气的气体存在下用加热的盐酸处理, 使得载体上提供的金属钌以氯化钌 (III) 溶 解, 并因此以氯化钌 (III) 溶液回收, 进一步后处理。 该方法的缺点是钌的回收率低, 而且不适合于回收以 γ-Α1203为载体的含氧化钌催化剂。
以上专利均致力于单种金属的回收, 综合回收钴、 钌、 铝三种金属的专利尚未见公 开报道。 由于不同金属的性质不同, 回收处理过程中, 处理方法对其产品的回收率和纯 度影响很大。 发明内容
本发明的目的是提供一种安全、高效的从费托合成废催化剂 Co-Ru/Al203中综合回收 金属钴、 钌和铝的方法。
本发明的技术方案: 本发明的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法包括以下步骤:
1 ) 将松散的 Co-Ru/Al203废催化剂颗粒装入马弗炉中, 通入空气, 在 350°C〜500°C 下焙烧 3〜6小时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温;
2)将步骤 1 )得到的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 先通 氮气置换 0.5小时, 然后在 H2:N2混合气体积比为 1〜4: 1, 空速为 1000〜4000h— 压力为 0.1〜lMPa, 温度 350°C〜800°C的条件下还原 8〜12小时;
3 ) 上述步骤 2) 还原后的废催化剂与碱熔剂分层加入坩埚中, 然后放入马弗炉中, 先将马弗炉升温至 200°C恒温 lh, 然后以 3 °C/min程序升温至 900〜1000°C下进行碱熔反 应 2〜4小时, 冷却至室温, 得到碱熔物;
4)将步骤 3 )得到的碱熔物用 90〜100°C的去离子水浸取 0.5〜1小时,固液比为 1 :2〜4, 使水溶性的 K2Ru04和 KA102或者 Na2Ru04和 NaA102全部溶解, 然后过滤, 得到滤渣;
5 )将步骤 4)得到的滤渣用去离子水洗涤至中性, 然后加入过量稀硝酸溶液, 使金 属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6) 调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+ 的浓度为 20g/L, pH值为 1.5, 温度为 70 °C , 加入 pH值 1.5、 70°C的草酸溶液或草酸铵溶液, 以沉淀钴, 其中草酸溶液中草酸 的用量或者草酸铵溶液中草酸铵的用量为钴摩尔量的 3〜4倍; 趁热过滤, 并用 65〜80°C 的去离子水洗涤沉淀, 最后用无水乙醇洗涤沉淀作脱水处理, 得到淡红色草酸钴沉淀, 所发生的反应为:
Co(N03)2+H2C204+2H20=CoC204 2H2C +2HN03 或者
Co(N03)2+(NH4) 2C204+2H20=CoC204 2H20丄 +2NH4N03
7)将步骤 6)得到的草酸钴于 80〜110°C烘箱中干燥后装入流化床反应器中, 先通氮 气置换 0.5 小时, 在 400-560°C、 0.1〜lMPa、 ¾: N2混合气体积比为 1〜4: 1、 空速为 1000-4000h- 1的条件下还原 2〜4小时, 得到金属钴, 所发生的反应为: CoC204 2H20=Co+2C02+2H20;
8 ) 加入稀硝酸溶液使步骤 7 ) 得到的金属钴刚好完全溶解, 然后蒸发结晶得到 Co(N03)2-6H20;
9)将步骤 4)得到的滤液和步骤 5 )得到的洗涤液混合, 然后滴加还原剂无水乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65°C〜80°C的去离子水反复 洗涤沉淀, 直至洗涤液为中性, 且无钾离子或钠离子为止, 再用无水乙醇洗涤沉淀三次, 所发生的反应为:
E^m^O. 4 — * ^|0¾ I- +2 ¾ l:0 + ϋ: 或者
«Γ - .
10)将步骤 9)得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里,加浓盐酸, 搅拌并加热至 91-95°C反应 1〜2小时, 然后加入盐酸羟胺, 使黑色氢氧化钌完全溶解, 静置, 将得到的溶液转移到蒸馏瓶内, 在真空度 40±lKPa的条件下减压蒸馏至溶液呈糊 状时, 停止加热, 利用余热使溶液蒸干, 得到 P-RuCl3_xH20晶体, 反应过程如下:
Ru(OH)4+4HCl=RuCl4+4H20
2RuCl4+2NH2OH HCl=2RuCl3+N2†+4HCl+2H20;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 通入纯 度大于 99.0%的 C02并搅拌, 控制反应温度为 25°C〜95°C, 生成白色氢氧化铝沉淀, 当溶 液 pH=10.0 时认为反应完全, 过滤, 用 65〜80°C的去离子水洗涤沉淀至中性且不含钾离 子或钠离子为止, 再用无水乙醇洗涤沉淀三次, 所发生的反应为:
2KA102+C02+3H20=K2C03+2Al(OH)3丄或者
2NaA102+C02+3H20=Na2C03+2Al(OH)3丄;
12)将氢氧化铝于 80〜130°C烘干, 然后在 500〜750°C下进行高温煅烧, 得到氧化铝, 所发生的反应为:
2Α1(ΟΗ)3=Α1203+3Η20。
所述的步骤 3 ) 中碱熔剂为混合碱熔剂 KOH和 K 03, 或者 NaOH和 NaN03, 所发生 的反应为:
Ru02+2KOH+K 03=K2Ru04+K 02+H20
Ru+2KOH+3K 03=K2Ru04+3K 02+H20
Α1203+2ΚΟΗ=2ΚΑ10220
或者
Ru02+2NaOH+NaN03=Na2Ru04+NaN02+H20
Ru+2NaOH+3NaN03=Na2Ru04+3NaN02+H20
Al203+2NaOH=2NaA102+H20
碱熔剂的用量为其理论用量的 2.5倍。
所述的步骤 3 ) 中碱熔方式为分层碱熔, 总共分为四层, 按照从坩埚底部至上依次 放入总量 2/3的 KOH、 废催化剂、 1/3的 KOH、 KN03, 或者按照从坩埚底部至上依次放 入总量 2/3的 NaOH、废催化剂、 1/3的 NaOH、 NaN03; 分层碱熔可以避免烧结及 Ru04挥 发, 因而减少了钌的损失。
所述的步骤 3 ) 中碱熔温度为 950-1000°C, 以使钌和氧化铝与碱熔剂充分反应。 所述的步骤 3 ) 中碱熔反应时间选 3小时。
所述的步骤 4) 中浸取碱熔物的去离子水温度为 96-100°C, 以保证钌酸盐和偏铝酸 盐完全浸出, 尤其是保证偏铝酸盐完全浸出。
所述的步骤 4) 中固液比为 1 :3。
所述的步骤 5 ) 和步骤 8) 中稀硝酸溶液的浓度为 l〜3mol/L。
所述的步骤 6) 硝酸钴溶液与草酸溶液或草酸铵溶液缓慢对加, 同时滴加质量分数 5%的氨水保持溶液 pH=1.5〜1.7, 使溶液中的钴沉淀完全, 以获得较高的钴回收率。
所述的步骤 7) 中还原草酸钴的温度为 400-480°C。
所述的步骤 9) 中还原剂乙醇是过量的, 使钌酸盐完全转化为氢氧化钌沉淀, 废催 化剂中钌与无水乙醇的摩尔量之比为 1 : 3〜5。
所述的步骤 10) 中的浓盐酸是质量分数为 36%-38%的盐酸。
所述的从步骤 10) 中盐酸羟胺与钌元素的摩尔量之比为 1 :1, 有利于得到高纯度的 P-RuCl3 xH20。
所述的步骤 11 ) 中为了得到较大粒径的氢氧化铝以方便过滤, 反应温度优选为 65〜85 °C。
所述的步骤 11 ) 中通入 C02的流速为 500〜1500mL/min。
本发明的优点是:
( 1 ) 本方法能够从费托合成废催化剂 Co-Ru/Al203中有效分离和综合回收有价金属 钴、 钌和铝。
(2)经除烃、还原处理的废催化剂,在碱熔步骤中有效分离出钴渣,再经酸浸钴渣、 草酸或草酸铵沉钴、还原草酸钴, 硝酸溶解金属钴等步骤得到 Ο)(Ν03)2·6Η20, 产品纯度 可以达到 99%以上, 不含费托合成过程中容易使催化剂中毒的氯离子、 硫离子等敏感离 子, 可直接用于制备费托合成催化剂。
( 3 )通过碱熔、 去离子水浸取步骤溶出的钌酸盐, 经乙醇还原、 浓盐酸溶解、 减压 蒸馏等步骤, 得到的 P-RUCl3_xH20产品纯度高, 整个过程不涉及有剧毒且易爆炸的 Ru04 气体, 操作安全。
(4) 采用 C02碳分法, 控制反应温度、 C02的流速、 反应终点的 pH值等参数从偏铝 酸盐溶液中制备氢氧化铝, 经高温煅烧, 得到氧化铝, 产品质量达到国标一级氧化铝的 质量要求, 过程经济环保。
( 5 ) 金属的回收率高, 其中钴≥97%, 钌≥95%, 铝≥92%。
( 6)本方法操作安全简便, 使用设备和化工产品价廉易得, 成本低, 适于工业化生 产。 附图说明
附图是本发明的流程示意图。 具体实施方式
以下用具体实施例来说明本发明的技术方案, 但本发明的保护范围不限于此: 实施例 1 :
1 ) 取松散的 Co-Ru/Al203废催化剂 20.23g, 元素分析结果为: 含 Co 30.05%、 含 Ru 4.83%、 含 Al 27.90%; 将废催化剂颗粒装入马弗炉中, 通入空气, 在 500°C下焙烧 3小 时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温; 2)将步骤 1 )中的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 在1¾^2 混合气体积比为 4: 1, 空速为 1000h— 压力为 IMPa, 温度 800°C的条件下还原 10小时;
3 )将步骤 2)还原后的废催化剂与碱熔剂分层加入坩埚中, 按照从坩埚底部至上依 次放入 KOH 21.31g、 废催化剂、 KOH 10.65g、 K 03 7.32g, 然后放入马弗炉中, 先将马 弗炉升温至 200°C恒温 1小时, 然后以 3 °C/min程序升温至 950°C进行碱熔反应 3小时, 冷却至室温, 得到碱熔物;
4)对步骤 3 )得到的碱熔物用 90°C的去离子水浸取 1小时(固液比 1 :2), 使水溶性 的^^04和^102全部溶解, 然后过滤, 得到滤渣;
5 ) 对步骤 4) 得到的滤渣用去离子水洗涤至中性, 然后加入浓度为 3mol/L的稀硝 酸溶液 300mL, 使金属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6) 调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+浓度为 20g/L, 用质量分数 10%的氨水 溶液调节 pH值约为 1.5, 温度为 70°C, 然后将硝酸钴溶液与 pH值 1.5、 70°C的草酸溶液 缓慢对加, 同时滴加质量分数 5%的氨水溶液保持溶液 pH=1.5〜1.7,使溶液中的钴沉淀完 全, 趁热过滤, 并用 65〜80°C的去离子水洗涤沉淀至中性, 最后用无水乙醇洗涤沉淀作 脱水处理, 得到淡红色草酸钴沉淀; 其中草酸溶液配制方法为: 加去离子水使 39.01g草 酸固体 (H2C2(V2H20 ) 刚好全部溶解, 并用 5%的氨水溶液调节 pH值至 1.5 ;
7) 将步骤 6) 得到的草酸钴在 80°C烘箱中干燥后装入流化床反应器中, 在 560°C、 0.5MPa、 H2: N2混合气体积比为 3: 1、 空速为 4000h- 1的条件下还原 2小时, 得到金属钴;
8 )加入 3mol/L的稀硝酸溶液使步骤 7)得到的金属钴刚好完全溶解, 然后蒸发结晶 得到 Ο)(Ν03)2·6Η20,放入干燥器中冷却至室温,取出后称重,得到 Ο)(Ν03)2·6Η20 29.52g, 根据 GBT 15898-1995 提供的方法测得纯度为 99.41%, 钴的回收率为 97.75%;
9) 将步骤 4) 得到的滤液和步骤 5 ) 得到的洗涤液混合, 然后缓慢滴加 30mL无水 乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65 °C〜80°C的去离子 水反复洗涤沉淀, 直至洗涤液为中性, 且无钾离子为止, 再用无水乙醇洗涤沉淀三次;
10) 将步骤 9) 得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里, 加质量 分数为 36%〜38%的浓盐酸, 搅拌并加热至 91-95 °C反应 2小时, 然后加入 0.67g盐酸羟 胺,使黑色氢氧化钌完全溶解,静置,将得到的溶液转移到蒸馏瓶内,在真空度 40±1 KPa 的条件下减压蒸馏至溶液呈糊状时,停止加热,利用余热使溶液蒸干,得到 P-RUCl3_xH20 晶体 2.415g, 采用 ICP-AES方法测得钌含量为 38.58%, 钌的回收率为 95.36%;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 加热至 95 °C, 以 1500mL/min的流速通入纯度大于 99.0%的 C02并搅拌,生成白色氢氧化铝沉淀, 当溶液 pH=10.0 时, 停止反应, 过滤, 用去离子水洗涤沉淀至中性且不含钾离子为止, 再用无水乙醇洗涤沉淀三次;
12) 将氢氧化铝于 120°C烘干, 然后在 500°C下进行高温煅烧, 得到氧化铝 10.04g, 纯度 99.31%, 铝的回收率 93.47%。
实施例 2:
1 ) 取松散的 Co-Ru/Al203废催化剂 20.74g, 元素分析结果为: 含 Co 25.33%、 含 Ru 3.07%、 含 A1 32.53%; 将废催化剂颗粒装入马弗炉中, 通入空气, 在 350°C下焙烧 6小 时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温;
2)将步骤 1 )中的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 在 H2:N2 混合气体积比为 2: 1,空速为 3000h- 压力为 0.8MPa,温度 700°C的条件下还原 11小时;
3 )将步骤 2)还原后的废催化剂与碱熔剂分层加入坩埚中, 按照从坩埚底部至上依 次放入 NaOH 17.50g、 废催化剂、 NaOH 8.75g、 NaNO34.02g, 然后放入马弗炉中, 先将 马弗炉升温至 200°C恒温 1小时, 然后以 3 °C/min程序升温至 900°C下进行碱熔反应 4小 时, 冷却至室温, 得到碱熔物;
4)对步骤 3 )得到的碱熔物用 95 °C的去离子水浸取 0.5小时 (固液比 1 :3 ), 使水溶 性的 Na2RuO^BNaA102全部溶解, 然后过滤, 得到滤渣;
5 ) 对步骤 4) 得到的滤渣用去离子水洗涤至中性, 然后加入浓度为 2mol/L的稀硝 酸溶液 360mL, 使金属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6) 调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+浓度为 20g/L, 用质量分数 10%的氨水 溶液调节 pH值约为 1.5, 温度为 70°C, 然后将硝酸钴溶液与 pH值 1.5、 70°C的草酸铵溶 液缓慢对加, 同时滴加质量分数 5%的氨水溶液保持溶液 pH=1.5〜1.7,使溶液中的钴沉淀 完全, 趁热过滤, 并用 65〜80°C的去离子水洗涤沉淀至中性, 最后用无水乙醇洗涤沉淀 作脱水处理,得到淡红色草酸钴沉淀;其中草酸铵溶液配制方法为:加去离子水使 44.30g 草酸铵 ((NH4)2C204 0) 刚好全部溶解, 并用 5%的氨水溶液调节 pH值至 1.5 ;
7) 将步骤 6) 得到的草酸钴在 90°C烘箱中干燥后装入流化床反应器中, 在 500°C、 0.8MPa、 H2/N2混合气体积比为 2: 1、 空速为 3000h- 1的条件下还原 3小时, 得到金属钴;
8 )加入 2mol/L的稀硝酸溶液使步骤 7)得到的金属钴刚好完全溶解, 然后蒸发结晶 得到 Ο)(Ν03)2·6Η20,放入干燥器中冷却至室温,取出后称重,得到 Ο)(Ν03)2·6Η20 25.59g, 根据 GBT 15898-1995 提供的方法测得纯度为 99.26%, 钴的回收率为 97.90%;
9) 将步骤 4) 得到的滤液和步骤 5 ) 得到的洗涤液混合, 然后缓慢滴加 20mL无水 乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65 °C〜80°C的去离子 水反复洗涤沉淀, 直至洗涤液为中性, 且无钠离子为止, 再用无水乙醇洗涤沉淀三次;
10) 将步骤 9) 得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里, 加质量 分数为 36%〜38%的浓盐酸, 搅拌并加热至 91-95 °C反应 1.5小时, 然后加入 0.44g盐酸羟 胺,使黑色氢氧化钌完全溶解,静置,将得到的溶液转移到蒸馏瓶内,在真空度 40±1 KPa 的条件下减压蒸馏至溶液呈糊状时,停止加热,利用余热使溶液蒸干,得到 P-RUCl3_xH20 晶体 1.603g, 采用 ICP-AES方法测得钌含量为 37.96%, 钌的回收率为 95.59%;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 加热至 65 °C, 以 1200mL/min的流速通入纯度大于 99.0%的 C02并搅拌,生成白色氢氧化铝沉淀, 当 pH=10.0 时, 停止反应, 过滤, 用去离子水洗涤沉淀至中性且不含钠离子为止, 再用 无水乙醇洗涤沉淀三次;
12) 将氢氧化铝于 80°C烘干, 然后在 600°C下进行高温煅烧, 得到氧化铝 11.93g, 纯度 98.95%, 铝的回收率 92.64%。
实施例 3 :
1 ) 取松散的 Co-Ru/Al203废催化剂 19.96g, 元素分析结果为: 含 Co 18.94%、 含 Ru 2.11%、 含 A1 37.80%; 将废催化剂颗粒装入马弗炉中, 通入空气, 在 400°C下焙烧 5小 时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温;
2)将步骤 1 )中的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 在 H2:N2 混合气体积比为 3: 1,空速为 2000h- 压力为 0.5MPa,温度 350°C的条件下还原 12小时;
3 )将步骤 2)还原后的废催化剂与碱熔剂分层加入坩埚中, 按照从坩埚底部至上依 次放入 NaOH 19.19g、 废催化剂、 NaOH 9.59g、 NaN032.66g, 然后放入马弗炉中, 先将 马弗炉升温至 200°C恒温 1小时, 然后以 3 °C/min程序升温至 1000°C下进行碱熔反应 2 小时, 冷却至室温, 得到碱熔物; 4) 对步骤 3 ) 得到的碱熔物用 100°C的去离子水浸取 0.5小时 (固液比 1 :4), 使水 溶性的 Na2RuO^BNaA102全部溶解, 然后过滤, 得到滤渣;
5 ) 对步骤 4) 得到的滤渣用去离子水洗涤至中性, 然后加入浓度为 lmol/L的稀硝 酸溶液 390mL, 使金属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6)调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+浓度为 20g/L, 用质量分数 10%的氨水 溶液调节 pH值约为 1.5, 温度为 70°C, 然后将硝酸钴溶液与 pH1.5、 70°C的草酸溶液缓慢 对加, 同时滴加质量分数 5%的氨水溶液保持溶液 pH=1.5〜1.7, 使溶液中的钴沉淀完全, 趁热过滤, 并用 65〜80°C的去离子水洗涤沉淀至中性, 最后用无水乙醇洗涤沉淀作脱水 处理, 得到淡红色草酸钴沉淀; 其中草酸溶液配制方法为: 加去离子水使 28.29g草酸固 体 (H2C2(V2H20) 刚好全部溶解, 并用 5%的氨水溶液调节 pH值至 1.5 ;
7)将步骤 6)得到的草酸钴在 100°C烘箱中干燥后装入流化床反应器中, 在 400°C、 lMPa、 H2/N2混合气体积比为 1 : 1、 空速为 4000h- 1的条件下还原 4小时, 得到金属钴;
8 )加入 lmol/L的稀硝酸溶液使步骤 7)得到的金属钴刚好完全溶解, 然后蒸发结晶 得到 Ο)(Ν03)2·6Η20,放入干燥器中冷却至室温,取出后称重,得到 Ο)(Ν03)2·6Η20 18.44g, 根据 GBT 15898-1995 提供的方法测得纯度为 99.18%, 钴的回收率为 97.96%;
9) 将步骤 4) 得到的滤液和步骤 5 ) 得到的洗涤液混合, 然后缓慢滴加 l lmL无水 乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65 °C〜80°C的去离子 水反复洗涤沉淀, 直至洗涤液为中性, 且无钠离子为止, 再用无水乙醇洗涤沉淀三次;
10)将步骤 9)得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里, 加质量分 数为 36%〜38%的浓盐酸,搅拌并加热至 91-95 °C反应 1.5小时,然后加入 0.29g盐酸羟胺, 使黑色氢氧化钌完全溶解, 静置, 将得到的溶液转移到蒸馏瓶内, 在真空度 40±lKPa的 条件下减压蒸馏至溶液呈糊状时, 停止加热, 利用余热使溶液蒸干, 得到 P-RUCl3_xH20 晶体 1.097g, 采用 ICP-AES方法测得钌含量为 37.06%, 钌的回收率为 96.52%;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 加热至 40°C, 以 800mL/min的流速通入纯度大于 99.0%的 C02并搅拌, 生成白色氢氧化铝沉淀, 当溶液 pH=10.0 时, 停止反应, 过滤, 用去离子水洗涤沉淀至中性且不含钠离子为止, 再用无水乙醇洗涤沉淀三次;
12) 将氢氧化铝于 100°C烘干, 然后在 700°C下进行高温煅烧, 得到氧化铝 13.56g, 纯度 99.07%, 铝的回收率 94.26%。
实施例 4:
1 ) 取松散的 Co-Ru/Al203废催化剂 20.18g, 元素分析结果为: 含 Co 11.66%、 含 Ru 0.96%、 含 A1 43.85%; 将废催化剂颗粒装入马弗炉中, 通入空气, 在 450°C下焙烧 4小 时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温;
2)将步骤 1 )中的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 在 H2:N2 混合气体积比为 1 : 1, 空速为 4000h- 压力为 0.4MPa, 温度 500°C的条件下还原 8小时;
3 )将步骤 2)还原后的废催化剂与碱熔剂分层加入坩埚中, 按照从坩埚底部至上依 次放入 KOH 30.95g、 废催化剂、 KOH 15.47g、 KN03 1.45g, 然后放入马弗炉中, 先将马 弗炉升温至 200°C恒温 1小时,然后以 3 °C/min程序升温至 960°C下进行碱熔反应 4小时, 冷却至室温, 得到碱熔物;
4)对步骤 3 )得到的碱熔物用 98°C的去离子水浸取 1小时(固液比 1 :3 ), 使水溶性 的^^04和^102全部溶解, 然后过滤, 得到滤渣;
5 ) 对步骤 4) 得到的滤渣用去离子水洗涤至中性, 然后加入浓度为 lmol/L的稀硝 酸溶液 320mL, 使金属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6) 调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+浓度为 20g/L, 用质量分数 10%的氨水 溶液调节 pH值为 1.5, 温度为 70°C, 然后将硝酸钴溶液与 pH1.5、 70°C的草酸铵溶液缓慢 对加, 同时滴加质量分数 5%的氨水溶液保持溶液 pH=1.5〜1.7, 使溶液中的钴沉淀完全, 趁热过滤, 并用 65〜80°C的去离子水洗涤沉淀至中性, 最后用无水乙醇洗涤沉淀作脱水 处理, 得到淡红色草酸钴沉淀; 其中草酸铵溶液配制方法为: 加去离子水使 22.68g草酸 铵 ((NH4)2C2(VH20) 刚好全部溶解, 并用 5%的氨水溶液调节 pH值至 1.5 ;
7)将步骤 6)得到的草酸钴在 110°C烘箱中干燥后装入流化床反应器中, 在 480°C、 0.8MPa、 H2/N2混合气体积比为 4: 1、 空速为 1000h- 1的条件下还原 3小时, 得到金属钴;
8 )加入 lmol/L的稀硝酸溶液使步骤 7)得到的金属钴刚好完全溶解, 然后蒸发结晶 得到 Ο)(Ν03)2·6Η20,放入干燥器中冷却至室温,取出后称重,得到 Ο)(Ν03)2·6Η20 11.36g, 根据 GBT 15898-1995 提供的方法测得纯度为 99.72%, 钴的回收率为 97.48%;
9) 将步骤 4) 得到的滤液和步骤 5 ) 得到的洗涤液混合, 然后缓慢滴加 12mL无水 乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65 °C〜80°C的去离子 水反复洗涤沉淀, 直至洗涤液为中性, 且无钾离子为止, 再用无水乙醇洗涤沉淀三次;
10) 将步骤 9) 得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里, 加质量 分数为 36%〜38%的浓盐酸, 搅拌并加热至 91-95 °C反应 1小时, 然后加入 0.13g盐酸羟 胺,使黑色氢氧化钌完全溶解,静置,将得到的溶液转移到蒸馏瓶内,在真空度 40±1 KPa 的条件下减压蒸馏至溶液呈糊状时,停止加热,利用余热使溶液蒸干,得到 P-RUCl3_xH20 晶体 0.497g, 采用 ICP-AES方法测得钌含量为 37.39%, 钌的回收率为 95.87%;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 加热至 25 °C, 以 500mL/min的流速通入纯度大于 99.0%的 C02并搅拌, 生成白色氢氧化铝沉淀, 当 pH=10.0 时, 停止反应, 过滤, 用去离子水洗涤沉淀至中性且不含钾离子为止, 再用 无水乙醇洗涤沉淀三次;
12) 将氢氧化铝于 130°C烘干, 然后在 750°C下进行高温煅烧, 得到氧化铝 15.76g, 纯度 99.21%, 铝的回收率 93.53%。
实施例 5-8
重复实施例 4方法,将步骤 3 )中碱熔温度分别设定为 951 °C、 970 °C、 980°C、 990 °C, 回收结果如表 1所示。
表 1 不同温度下碱熔反应得到的钴钌铝的回收结果
Figure imgf000014_0001
从实施例 1-8 中的数据可以看出, 碱熔温度选择 900-1000°C, 回收得到的 Ο)(Ν03)2·6Η20产品的纯度能够达到 99%以上,回收得到的 P-RuCl xH20和氧化铝的回收 率和纯度较高。 表 1说明在 950〜1000°C下进行碱熔反应, 可以使钌及其氧化物、 氧化铝 与碱熔剂充分反应而熔出, 保证钌、 铝与钴的完全分离, 这对于获得理想的回收结果是 非常必要的。
对比例 1 :
为了说明本发明中碱熔方式和碱熔温度的重要性, 在本例中, 采用现有技术中通常 使用的混合碱熔的方法, 并在本发明所述碱熔温度以外的其他温度下进行碱熔反应。
取 Co-Ru/Al203废催化剂 20.04g,元素分析结果为: Co 30.05%、 Ru 4.83%、 Al 27.90%。 重复实施例 1, 只是将步骤 3 ) 更改为: 将步骤 2) 还原后的废催化剂与碱熔剂 (KOH 31.67g、 K Os 7.25g) 混合均匀后加入坩埚中, 然后放入马弗炉中, 先将马弗炉升温至 200°C恒温 lh, 以有利于各反应物相充分接触, 然后程序升温至 650°C下进行碱熔反应 4 小时, 冷却至室温, 得到碱熔物。 碱熔剂的用量为理论用量的 2.5倍。 其他操作步骤不 变。 得到 Co(N03 6H20 31.13g, 根据 GBT 15898-1995 提供的方法测得纯度为 94.34%, 钴的回收率为 98.75%; 得到 P-RuCl3_xH20晶体 2.248g, 采用 ICP-AES方法测得钌含量为 37.22%, 钌的回收率为 86.43%; 得到氧化铝 9.45g, A1203的含量为 99.17%, 铝的回收 率为 88.72%。
由对比例 1可以看出, 碱熔反应过程中, 采用一般的混合碱熔的方法和较低的碱熔 温度, 得到的 Ο)(Ν03)2·6Η20产品纯度低, 钌和铝的回收率也偏低, 说明混合碱熔的方法 以及较低的碱熔温度下, 碱熔反应不完全, 导致回收效果不理想。
对比例 2:
为了说明本发明中用于浸取碱熔物的去离子水的温度对铝的回收率的影响, 本例采 用 80 °C的去离子水浸取碱熔物。
取 Co-Ru/Al203废催化剂 20.68g,元素分析结果为: Co 25.33%、 Ru 3.07%、 Al 32.53%。 重复实施例 2,只是将步骤 3 )得到的碱熔物用 80°C的去离子水浸取 1小时(固液比 1 :2), 其他操作步骤不变。 得到 Co(N03)2_6H20 25.31g, 根据 GBT 15898-1995 提供的方法测得 纯度为 99.14%, 钴的回收率为 96.99% ; 得到 P-RUC13'XH20晶体 1.604g, 采用 ICP-AES方 法测得钌含量为 37.63%, 钌的回收率为 95.09%; 得到氧化铝 10.34g, A1203的含量为 99.35%, 铝的回收率为 80.81%。
由对比例 2可以看出, 用 80°C的去离子水浸取碱熔物, 得到的铝的回收率较低, 说 明用于浸取碱熔物的去离子水的温度低于本发明所述温度时, 不能将碱熔物中的偏铝酸 盐完全浸出。
对比例 3 :
为了说明本发明中沉钴步骤中草酸或草酸铵的加入方式、 还原草酸钴的温度以及碳 分法分离氢氧化铝反应终点的控制等参数的重要性, 本例中采用本发明所述方法之外的 参数进行操作, 以便对比。
取 Co-Ru/Al203废催化剂 20.01g, 元素分析结果为: 含 Co 18.94%、 含 Ru 2.11%、 含 A1 37.80%;
重复实施例 3步骤 1 ) -5 );
6) 将步骤 5 ) 得到的硝酸钴溶液用质量分数 10%氨水溶液调节 pH值为 1.5, 温度为 70 °C , 然后向硝酸钴溶液中加入预热至 70°C、 pH1.5的草酸溶液, 并不断搅拌, 用质量 分数 5%的氨水溶液调节终点至 pH=1.5,趁热过滤, 并用 65〜80°C的去离子水洗涤沉淀至 中性, 最后用无水乙醇洗涤沉淀作脱水处理, 得到淡红色草酸钴沉淀; 其中草酸溶液配 制方法为: 加去离子水使 28.29g草酸固体 (H2C2(V2H20 ) 刚好全部溶解, 用 5%的氨水 溶液调节 pH值至 1.5 ;
7)将步骤 6)得到的草酸钴在 100°C烘箱中干燥后装入流化床反应器中, 在 300°C、 lMPa、 H2/N2混合气体积比为 1 : 1、 空速为 4000h- 1的条件下还原 4小时, 得到金属钴; 重复实施例 3步骤 8 ) -10);
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 加热至 40°C, 以 800mL/min的流速通入纯度大于 99.0%的 C02并搅拌, 生成白色氢氧化铝沉淀, 当溶液 pH值为 11.5时,停止反应,过滤,用去离子水洗涤沉淀至中性且不含钠离子为止, 再用无水乙醇洗涤沉淀三次;
重复实施例 3步骤 12)。
得到 Ο)(Ν03)2·6Η20 17.03g, 根据 GBT 15898-1995 提供的方法测得纯度为 99.09%, 钴的回收率为 90.16%; 得到 P-RuCl3_xH20晶体 1.085g, 采用 ICP-AES方法测得钌含量为 37.22%, 钌的回收率为 95.61%; 得到氧化铝 11.47g, A1203的含量为 99.04%, 铝的回收 率为 79.47%。
由对比例 3可以看出, 采用一般的草酸或者草酸铵的加入方式, 并在较低的温度下 还原草酸钴, 导致钴的回收率降低; 碳分法分离氢氧化铝反应终点的控制不合理, 会使 反应不完全, 从而导致铝的回收率大幅降低。

Claims

权利要求书
1 . 一种从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 包括 以下步骤:
1 ) 将松散的 Co-Ru/Al203废催化剂颗粒装入马弗炉中, 通入空气, 在 350°C〜500°C 下焙烧 3〜6小时, 以脱除催化剂颗粒表面的重质烃类, 然后冷却至室温;
2)将步骤 1 )得到的废催化剂研磨成均匀粉末, 然后转入到流化床反应器中, 先通 氮气置换 0.5小时, 然后在 H2:N2混合气体积比为 1〜4: 1, 空速为 1000〜4000h— 压力为 0.1〜lMPa, 温度 350°C〜800°C的条件下还原 8〜12小时;
3 ) 上述步骤 2) 还原后的废催化剂与碱熔剂分层加入坩埚中, 然后放入马弗炉中, 先将马弗炉升温至 200°C恒温 lh, 然后以 3 °C/min程序升温至 900〜1000°C下进行碱熔反 应 2〜4小时, 冷却至室温, 得到碱熔物;
4)将步骤 3 )得到的碱熔物用 90〜100°C的去离子水浸取 0.5〜1小时,固液比为 1 :2〜4, 使水溶性的 K2RuC ¾KA102或者 Na2RuO^BNaA102全部溶解, 然后过滤, 得到滤渣;
5 )将步骤 4)得到的滤渣用去离子水洗涤至中性, 然后加入过量稀硝酸溶液, 使金 属钴及其氧化物全部溶解, 得到硝酸钴溶液;
6) 调节步骤 5 ) 中得到的硝酸钴溶液中 Co2+ 的浓度为 20g/L, pH值为 1.5, 温度为 70 °C , 加入 pH值 1.5、 70°C的草酸溶液或草酸铵溶液, 以沉淀钴, 其中草酸溶液中草酸 的用量或者草酸铵溶液中草酸铵的用量为钴摩尔量的 3〜4倍; 趁热过滤, 并用 65〜80°C 的去离子水洗涤沉淀, 最后用无水乙醇洗涤沉淀作脱水处理, 得到淡红色草酸钴沉淀, 所发生的反应为:
Co(N03)2+H2C204+2H20=CoC204 2H2C +2HN03 或者
Co(N03)2+(NH4) 2C204+2H20=CoC204 2H2C +2NH4N03
7)将步骤 6)得到的草酸钴于 80〜110°C烘箱中干燥后装入流化床反应器中, 先通氮 气置换 0.5 小时, 在 400-560°C、 0.1〜lMPa、 ¾: N2混合气体积比为 1〜4: 1、 空速为 1000-4000h- 1的条件下还原 2〜4小时, 得到金属钴, 所发生的反应为:
CoC204 2H20=Co+2C02+2H20;
8 ) 加入稀硝酸溶液使步骤 7 ) 得到的金属钴刚好完全溶解, 然后蒸发结晶得到 Co(N03)2-6H20;
9)将步骤 4)得到的滤液和步骤 5 )得到的洗涤液混合, 然后滴加还原剂无水乙醇, 搅拌, 使红色的钌酸盐转化成黑色氢氧化钌沉淀, 过滤, 用 65°C〜80°C的去离子水反复 洗涤沉淀, 直至洗涤液为中性, 且无钾离子或钠离子为止, 再用无水乙醇洗涤沉淀三次, 所发生的反应为:
β『
ES;m^o¾ 4 o¾ ¾環:— * mCo¾ - € sc; +: : ϋ: 或者
€¾『
€; 漏—— * £Ms£MO m¾ il ;
10)将步骤 9)得到的黑色氢氧化钌装入带有搅拌和回流装置的三颈瓶里,加浓盐酸, 搅拌并加热至 91-95°C反应 1〜2小时, 然后加入盐酸羟胺, 使黑色氢氧化钌完全溶解, 静置, 将得到的溶液转移到蒸馏瓶内, 在真空度 40±lKPa的条件下减压蒸馏至溶液呈糊 状时, 停止加热, 利用余热使溶液蒸干, 得到 P-RUCl3_xH20晶体, 反应过程如下:
Ru(OH)4+4HCl=RuCl4+4H20
2RuCl4+2NH2OH HCl=2RuCl3+N2†+4HCl+2H20;
11 ) 将步骤 9) 中过滤氢氧化钌沉淀得到的滤液和洗涤沉淀的洗涤液合并, 通入纯 度大于 99.0%的 C02并搅拌, 控制反应温度为 25°C〜95°C, 生成白色氢氧化铝沉淀, 当溶 液 pH=10.0 时认为反应完全, 过滤, 用 65〜80°C的去离子水洗涤沉淀至中性且不含钾离 子或钠离子为止, 再用无水乙醇洗涤沉淀三次, 所发生的反应为:
2KA102+C02+3H20=K2C03+2Al(OH)3丄或者
2NaA102+C02+3H20=Na2C03+2Al(OH)3丄;
12)将氢氧化铝于 80〜130°C烘干, 然后在 500〜750°C下进行高温煅烧, 得到氧化铝, 所发生的反应为:
2Α1(ΟΗ)3=Α1203+3Η20。
2. 根据权利要求 1所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌 和铝的方法,其特征在于:所述步骤 3 )中碱熔剂为混合碱熔剂 KOH和 K 03,或者 NaOH 和 NaN03, 所发生的反应为:
Ru02+2KOH+K 03=K2Ru04+K 02+H20
Ru+2KOH+3K 03=K2Ru04+3K 02+H20 Α1203+2ΚΟΗ=2ΚΑ10220
或者
Ru02+2NaOH+NaN03=Na2Ru04+NaN02+H20
Ru+2NaOH+3NaN03=Na2Ru04+3NaN02+H20
Al203+2NaOH=2NaA102+H20
碱熔剂的用量为其理论用量的 2.5倍。
3.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 3 ) 中碱熔方式为分层碱熔, 总共分为四层, 按 照从坩埚底部至上依次放入总量 2/3的 KOH、 废催化剂、 1/3的 KOH、 KN03, 或者按照 从坩埚底部至上依次放入总量 2/3的 NaOH、 废催化剂、 1/3的 NaOH、 NaN03; 分层碱熔 可以避免烧结及 Ru04挥发, 因而减少了钌的损失。
4.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 3 ) 中碱熔温度为 950-1000°C, 以使钌和氧化铝 与碱熔剂充分反应。
5.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 3 ) 中碱熔反应时间选 3小时。
6.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 4) 中浸取碱熔物的去离子水温度为 96-100°C, 以保证钌酸盐和偏铝酸盐完全浸出, 尤其是保证偏铝酸盐完全浸出。
7.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 4) 中固液比为 1 :3。
8.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 5 )和步骤 8 ) 中稀硝酸溶液的浓度为 l〜3mol/L。
9.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 6) 硝酸钴溶液与草酸溶液或草酸铵溶液缓慢对 加, 同时滴加质量分数 5%的氨水保持溶液 pH=1.5〜1.7, 使溶液中的钴沉淀完全, 以获得 较高的钴回收率。
10.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 7) 中还原草酸钴的温度为 400-480°C。
11 .根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 9) 中还原剂乙醇是过量的, 使钌酸盐完全转化 为氢氧化钌沉淀, 废催化剂中钌与无水乙醇的摩尔量之比为 1 : 3〜5。
12.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 10) 中的浓盐酸是质量分数为 36%-38%的盐酸。
13.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 10) 中盐酸羟胺与钌元素的摩尔量之比为 1 : 1, 有利于得到高纯度的 P-RuCl3_xH20。
14.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法,其特征在于:所述步骤 11 )中为了得到较大粒径的氢氧化铝以方便过滤, 反应温度优选为 65〜85 °C。
15.根据权利要求 1或 2所述的从费托合成废催化剂 Co-Ru/Al203中综合回收金属钴、 钌和铝的方法, 其特征在于: 所述步骤 11 ) 中通入 C02的流速为 500〜1500mL/min。
PCT/CN2013/072119 2012-03-05 2013-03-04 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法 WO2013131455A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
BR112014021852-8A BR112014021852B1 (pt) 2012-03-05 2013-03-04 Processo para a recuperação dos metais cobalto, rutênio e alumínio a partir do resíduo do catalisador co-ru/al²o³ na síntese de fischer-tropsch
JP2014560232A JP5852270B2 (ja) 2012-03-05 2013-03-04 フィッシャー・トロプシュ合成のCo−Ru/Al2O3廃触媒からの金属コバルト、ルテニウムおよびアルミニウムの包括的回収方法
AP2014007990A AP2014007990A0 (en) 2012-03-05 2013-03-04 Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum form waste catalyst co-ru/al2O3 in fischertropsch synthesis
EP13758445.4A EP2824200B1 (en) 2012-03-05 2013-03-04 Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum from waste catalyst co-ru/al2o3 in fischer-tropsch synthesis
CA2866224A CA2866224C (en) 2012-03-05 2013-03-04 Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum from waste catalyst co-ru/al2o3 in fischer-tropsch synthesis
MX2014010727A MX356685B (es) 2012-03-05 2013-03-04 Proceso para la recuperación integral de cobalto, rutenio y aluminio metalicos a partir de un catalizador residual de co-ru/ai2o3 para la síntesis de fischer-tropsch.
KR1020147027927A KR101609803B1 (ko) 2012-03-05 2013-03-04 피셔-트롭쉬 합성에서 Co-Ru/Al2O3 폐촉매제로부터 금속 코발트, 루테늄 및 알루미늄의 종합적인 회수를 위한 공정
SG11201405393SA SG11201405393SA (en) 2012-03-05 2013-03-04 PROCESS FOR THE COMPREHENSIVE RECOVERY OF METAL COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CATALYST CO-RU/AL<sb>2</sb>O<sb>3 </sb>IN FISCHER-TROPSCH SYNTHESIS
DK13758445.4T DK2824200T3 (en) 2012-03-05 2013-03-04 METHOD OF COMPREHENSIVE RECOVERY OF METALLIC COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CO-RU / AL2O3 CATALYSTS FOR FISCHER-TROPSCH SYNTHESE
RU2014140159/02A RU2580575C1 (ru) 2012-03-05 2013-03-04 СПОСОБ КОМПЛЕКСНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛИЧЕСКОГО КОБАЛЬТА, РУТЕНИЯ И АЛЮМИНИЯ ИЗ ОТРАБОТАННОГО КАТАЛИЗАТОРА Сo-Ru/Al2O3 ДЛЯ СИНТЕЗА ФИШЕРА-ТРОПША
AU2013230407A AU2013230407B2 (en) 2012-03-05 2013-03-04 Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum from waste catalyst Co-Ru/Al2O3 in fischer-tropsch synthesis
IN1923MUN2014 IN2014MN01923A (zh) 2012-03-05 2013-03-04
US14/477,935 US8986632B2 (en) 2012-03-05 2014-09-05 Process for recovery of cobalt, ruthenium, and aluminum from spent catalyst
ZA2014/07146A ZA201407146B (en) 2012-03-05 2014-10-02 Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum from waste catalyst co-ru/al2o3 in fischer-tropsch synthesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210055817.X 2012-03-05
CN201210055817.XA CN102796873B (zh) 2012-03-05 2012-03-05 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/477,935 Continuation-In-Part US8986632B2 (en) 2012-03-05 2014-09-05 Process for recovery of cobalt, ruthenium, and aluminum from spent catalyst

Publications (1)

Publication Number Publication Date
WO2013131455A1 true WO2013131455A1 (zh) 2013-09-12

Family

ID=47196168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072119 WO2013131455A1 (zh) 2012-03-05 2013-03-04 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法

Country Status (17)

Country Link
US (1) US8986632B2 (zh)
EP (1) EP2824200B1 (zh)
JP (1) JP5852270B2 (zh)
KR (1) KR101609803B1 (zh)
CN (1) CN102796873B (zh)
AP (1) AP2014007990A0 (zh)
AU (1) AU2013230407B2 (zh)
BR (1) BR112014021852B1 (zh)
CA (1) CA2866224C (zh)
DK (1) DK2824200T3 (zh)
IN (1) IN2014MN01923A (zh)
MX (1) MX356685B (zh)
MY (1) MY157635A (zh)
RU (1) RU2580575C1 (zh)
SG (1) SG11201405393SA (zh)
WO (1) WO2013131455A1 (zh)
ZA (1) ZA201407146B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559859A (zh) * 2021-07-23 2021-10-29 中国地质大学(武汉) 一种担载型钴基加氢催化剂及其制备方法和应用
CN115055181A (zh) * 2022-07-06 2022-09-16 四川大学 一种废贵金属催化剂回收制备高性能co催化剂的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796873B (zh) * 2012-03-05 2014-02-26 阳光凯迪新能源集团有限公司 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法
CN102583580B (zh) * 2012-03-05 2014-03-12 武汉凯迪工程技术研究总院有限公司 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法
JP5999478B2 (ja) * 2012-05-30 2016-09-28 国立研究開発法人産業技術総合研究所 複合酸化物を経由する貴金属の回収方法および装置
JP6585955B2 (ja) * 2015-07-31 2019-10-02 Jx金属株式会社 セレン白金族元素含有物からRu、RhおよびIrを分離する方法
CN105543496B (zh) * 2015-12-29 2017-10-20 武汉凯迪工程技术研究总院有限公司 费托合成废催化剂Co‑Rh/Al2O3中金属钴、铑和铝的回收方法
CN106861741B (zh) * 2017-01-06 2019-07-02 南京工业大学 一种苯酚加氢Pd@CN催化剂的后处理方法
CN107986341A (zh) * 2017-12-18 2018-05-04 西安宏星电子浆料科技有限责任公司 片式电阻浆料用氧化钌粉及其制备方法
CN108330287B (zh) * 2018-01-31 2019-11-08 北京三聚环保新材料股份有限公司 一种以碱金属钌酸盐形式回收催化剂废剂中钌的方法
CN109110793A (zh) * 2018-03-22 2019-01-01 云南大学 一种氧化铝负载纳米氧化铈复合金和钌氧化物的制备方法
CN111100997B (zh) * 2018-10-26 2021-11-05 贵研资源(易门)有限公司 从失效氯化氢氧化制氯气催化剂回收钌的方法
CN111100999B (zh) * 2018-10-26 2021-11-05 贵研资源(易门)有限公司 废催化剂钌的回收方法
KR102319523B1 (ko) * 2019-11-29 2021-10-29 주식회사 모노리스 탈황 폐촉매로부터 유가금속의 분리 및 회수방법
CN112993243A (zh) * 2019-12-17 2021-06-18 格林美(江苏)钴业股份有限公司 一种高密度铝掺杂氧化钴的制备方法
MX2022013266A (es) * 2020-04-24 2023-01-11 Nuorganics LLC Sistema y metodo para recuperar nutrientes de un desperdicio liquido altamente nitrogenado.
CN112645372B (zh) * 2021-01-19 2023-05-05 广西化工研究院有限公司 一种双氧水用废活性氧化铝再生剂回收利用的方法
CN112981105B (zh) * 2021-02-06 2022-12-09 昆明贵研新材料科技有限公司 一种从废氧化铝载体贵金属催化剂中回收贵金属的方法
CN112939094B (zh) * 2021-02-23 2023-05-09 华电光大(宜昌)环保技术有限公司 一种制备纳米钨酸钴和回收粗钛渣的方法
CN113215402A (zh) * 2021-04-07 2021-08-06 武汉理工大学 一种从废旧超级电容器回收钌的方法
KR102445476B1 (ko) * 2021-09-15 2022-09-21 주식회사 한내포티 알칼리 소결 성형체를 이용한 탈질폐촉매 함유 유가금속 추출방법
WO2023043095A1 (ko) * 2021-09-15 2023-03-23 주식회사 한내포티 탈질폐촉매 함유 유가금속의 추출방법
CN113921800B (zh) * 2021-10-11 2024-01-09 吉林大学 大洋粘土镁热还原制备多孔硅作为锂离子电池负极材料
CN115814565B (zh) * 2022-11-30 2024-05-31 攀钢集团攀枝花钢铁研究院有限公司 一种推板窑煅烧制备钒氮合金的钾钠吸收方法及吸收剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822824A (en) 1986-07-02 1989-04-18 Exxon Research And Engineering Company Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis
CN1617292A (zh) 2004-11-05 2005-05-18 中国科学院上海光学精密机械研究所 短程钼箔封接的脉冲氙灯
CN100387344C (zh) 2006-06-21 2008-05-14 浙江工业大学 一种活性炭负载的钌催化剂的回收方法
CN101270420A (zh) 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种钴基费托合成催化剂中钴的回收方法
CN101331240A (zh) 2005-12-23 2008-12-24 巴斯夫欧洲公司 从使用过的含氧化钌的催化剂中回收钌的方法
CN101698152A (zh) 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN101700913A (zh) 2009-11-17 2010-05-05 中南民族大学 利用费托合成用氧化铝负载钴基废催化剂制备高纯硝酸钴
CN102108444A (zh) 2011-04-01 2011-06-29 开滦能源化工股份有限公司 从负载型钌金属催化剂中回收钌的方法
CN102796873A (zh) * 2012-03-05 2012-11-28 阳光凯迪新能源集团有限公司 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668938B1 (fr) * 1990-11-12 1995-03-17 Inst Francais Du Petrole Nouveau procede de traitement antipollution d'un catalyseur de raffinage a l'etat use et recuperation total des differents constituants metalliques dudit catalyseur.
WO2002018663A2 (en) * 2000-08-29 2002-03-07 Sasol Technology (Pty) Ltd Selective recovery of aluminium, cobalt and platinum values from a spent catalyst composition
JP3733909B2 (ja) * 2002-01-07 2006-01-11 住友金属鉱山株式会社 ルテニウムの精製方法
JP2004002927A (ja) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd 超硬質合金スクラップの処理方法
RU2239666C1 (ru) * 2003-04-24 2004-11-10 Институт неорганической химии им. А.В. Николаева СО РАН (статус государственного учреждения) Способ получения концентрата родия, палладия и рутения из азотнокислых растворов
GB0604285D0 (en) * 2006-03-03 2006-04-12 Johnson Matthey Plc Catalyst reprocessing
US8191052B2 (en) 2006-12-01 2012-05-29 Murex S.A.S. Producer graph oriented programming and execution
US7935173B1 (en) * 2010-07-23 2011-05-03 Metals Recovery Technology Inc. Process for recovery of precious metals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822824A (en) 1986-07-02 1989-04-18 Exxon Research And Engineering Company Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis
CN1617292A (zh) 2004-11-05 2005-05-18 中国科学院上海光学精密机械研究所 短程钼箔封接的脉冲氙灯
CN101331240A (zh) 2005-12-23 2008-12-24 巴斯夫欧洲公司 从使用过的含氧化钌的催化剂中回收钌的方法
CN100387344C (zh) 2006-06-21 2008-05-14 浙江工业大学 一种活性炭负载的钌催化剂的回收方法
CN101270420A (zh) 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 一种钴基费托合成催化剂中钴的回收方法
CN101698152A (zh) 2009-10-20 2010-04-28 武汉凯迪科技发展研究院有限公司 一种钴基费托合成催化剂及其制备方法和应用
CN101700913A (zh) 2009-11-17 2010-05-05 中南民族大学 利用费托合成用氧化铝负载钴基废催化剂制备高纯硝酸钴
CN102108444A (zh) 2011-04-01 2011-06-29 开滦能源化工股份有限公司 从负载型钌金属催化剂中回收钌的方法
CN102796873A (zh) * 2012-03-05 2012-11-28 阳光凯迪新能源集团有限公司 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559859A (zh) * 2021-07-23 2021-10-29 中国地质大学(武汉) 一种担载型钴基加氢催化剂及其制备方法和应用
CN115055181A (zh) * 2022-07-06 2022-09-16 四川大学 一种废贵金属催化剂回收制备高性能co催化剂的方法

Also Published As

Publication number Publication date
US20140377151A1 (en) 2014-12-25
AU2013230407B2 (en) 2015-10-08
EP2824200B1 (en) 2018-05-16
BR112014021852B1 (pt) 2019-04-16
KR101609803B1 (ko) 2016-04-06
CA2866224A1 (en) 2013-09-12
CA2866224C (en) 2016-12-20
JP5852270B2 (ja) 2016-02-03
ZA201407146B (en) 2015-12-23
CN102796873B (zh) 2014-02-26
MX2014010727A (es) 2015-03-10
EP2824200A4 (en) 2015-12-02
DK2824200T3 (en) 2018-08-27
RU2580575C1 (ru) 2016-04-10
CN102796873A (zh) 2012-11-28
JP2015513614A (ja) 2015-05-14
MY157635A (en) 2016-07-15
KR20140131998A (ko) 2014-11-14
AU2013230407A1 (en) 2014-10-16
MX356685B (es) 2018-06-07
IN2014MN01923A (zh) 2015-07-10
US8986632B2 (en) 2015-03-24
EP2824200A1 (en) 2015-01-14
AP2014007990A0 (en) 2014-10-31
SG11201405393SA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013131455A1 (zh) 从费托合成废催化剂Co-Ru/Al2O3中综合回收金属钴、钌和铝的方法
CN109750156B (zh) 一种从废弃scr脱硝催化剂中回收钒、钨/钼和钛元素的方法
WO2016202271A1 (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN107385214B (zh) 一种分段酸解法从废fcc催化剂中回收有价金属的方法
WO2013131453A1 (zh) 氧化铝负载钌废催化剂中回收钌的方法
CN102560100A (zh) 一种利用铜钴铁合金制备高纯超细钴粉的工艺方法
CN105543496B (zh) 费托合成废催化剂Co‑Rh/Al2O3中金属钴、铑和铝的回收方法
CN111807322B (zh) 一种铝水反应制氢联产拟薄水铝石和/或氧化铝的方法
CN103420386A (zh) 一种由煤矸石提铝废渣制备白炭黑的方法
CN102502722A (zh) 一种高纯氧化镁的生产方法
US11697597B2 (en) Integrated process for mineral carbonation
JP5837998B2 (ja) Co/sio2廃触媒を使用する高純度の硝酸コバルト結晶の調製方法
CN115074554B (zh) 从废加氢催化剂中分离回收钼和镍的方法
CN115386733B (zh) 一种利用硝-硫混合酸分解回收含钨废料的方法
CN115305364B (zh) 一种利用磷-硝混合酸分解回收含钨废料的方法
CN108425014A (zh) 一种从废钯-氧化铝催化剂中提取高纯金属钯的方法
CN115744991B (zh) 一种含钨废料制备氧化钨的方法
CN113564368A (zh) 一种从石油裂化催化剂粉尘中回收镍和钴的方法
TW201204636A (en) Alumina manufacturing method by recycling Nickel-Aluminum minera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560232

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2866224

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010727

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDP00201405535

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2013758445

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147027927

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014140159

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013230407

Country of ref document: AU

Date of ref document: 20130304

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021852

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021852

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140903