WO2013125495A1 - 熱可塑性樹脂組成物および成形品 - Google Patents

熱可塑性樹脂組成物および成形品 Download PDF

Info

Publication number
WO2013125495A1
WO2013125495A1 PCT/JP2013/053900 JP2013053900W WO2013125495A1 WO 2013125495 A1 WO2013125495 A1 WO 2013125495A1 JP 2013053900 W JP2013053900 W JP 2013053900W WO 2013125495 A1 WO2013125495 A1 WO 2013125495A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
acid
resin
magnesium carbonate
Prior art date
Application number
PCT/JP2013/053900
Other languages
English (en)
French (fr)
Inventor
小林 隆弘
梅津 秀之
宏之 井砂
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147021434A priority Critical patent/KR20140136921A/ko
Priority to CN201380010116.7A priority patent/CN104144983A/zh
Publication of WO2013125495A1 publication Critical patent/WO2013125495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate

Definitions

  • the present invention is excellent in adhesion to metals and thermosetting resins in a high temperature and high humidity environment, and is further mounted on a thermoplastic resin composition excellent in thermal conductivity, dimensional stability and strength, and in automobiles.
  • a thermoplastic resin composition capable of obtaining a molded product having excellent adhesion with a thermosetting resin sealing a metal terminal and a semiconductor element of a motor component or power control unit component, and molding the same
  • the present invention relates to a molded article to be obtained.
  • Thermoplastic resins are used in various applications taking advantage of their superior properties.
  • Polyarylene sulfide resin a type of engineering plastics, has properties suitable as engineering plastics with excellent heat resistance, rigidity, dimensional stability, and flame retardancy. It is mainly used for various electric / electronic parts, machine parts, and automobile parts.
  • Polyamide resins have excellent balance between mechanical properties and toughness, so they are used in applications such as various electrical / electronic parts, machine parts and automobile parts.
  • Polyester resins such as polybutylene terephthalate (hereinafter sometimes referred to as PBT) It is widely used as a material for industrial molded products such as connectors, relays and switches for automobiles and electrical / electronic devices, utilizing its moldability, heat resistance, mechanical properties and chemical resistance.
  • PBT polybutylene terephthalate
  • thermosetting resin that seals the element Due to the rise, there is a problem that the protective function of the thermosetting resin that seals the element is reduced due to a decrease in adhesion at the interface between the element and the thermoplastic resin frame. Similarly, there is a problem of reduced adhesion at the interface between the metal terminal and the thermoplastic resin.
  • thermoplastic resin used as a protective material for internal parts of equipment is compared with metals and thermosetting resins. There is a need for new materials with excellent adhesion, heat dissipation, and processability.
  • Patent Document 1 As a resin composition excellent in thermal conductivity, water resistance, flame retardancy, and workability, a synthesis containing a synthetic resin such as polyphenylene sulfide resin and anhydrous magnesium carbonate having a predetermined specific surface area and an average particle size. Resin compositions are known (see, for example, Patent Document 1). However, Patent Document 1 does not disclose any adhesiveness between the synthetic resin composition and the metal or the thermosetting resin, and since there is no glass fiber, the dimensional change in a high-temperature and high-humidity environment. Therefore, it is estimated that the adhesion between the synthetic resin composition according to Patent Document 1 and the metal and the thermosetting resin is insufficient.
  • thermoplastic resin in order to produce a synthetic resin composition by mix
  • a predetermined specific surface area obtained by applying a resin composition for example, see Patent Document 2 in which anhydrous magnesium carbonate having a predetermined specific surface area and average particle diameter is blended with an engineering plastic, or a coating layer of an Si compound.
  • the resin composition for example, refer patent document 3 which mix
  • glass fiber is not contained as in Patent Document 1
  • the mechanical strength against dimensional change under high temperature and high humidity is insufficient, so that the adhesion between the metal and the thermosetting resin is insufficient.
  • the melt viscosity of the thermoplastic resin used is high, the thermoplastic resin and magnesium carbonate are not sufficiently mixed, resulting in compositional variation in the resulting composition, which can lead to increased characteristic variation. is there.
  • a filler selected from glass fiber, magnesium carbonate, etc., mainly composed of polyphenylene sulfide resin or polybutylene terephthalate resin.
  • Patent Document 4 A composite of a metal and a resin in which objects are joined is disclosed (for example, see Patent Document 4). The composite is described as having excellent bonding properties and sealing properties, but there is no example in which glass fiber and magnesium carbonate are used in combination as a filler, and the heat conduction of the resin composition used in the composite is not described. No mention or suggestion regarding sex.
  • an insulating sheet containing a polymer having a weight average molecular weight of 10,000 or more, a curable compound having an epoxy group or an oxetane group, a cyanate compound, a curing agent, and a filler such as magnesium carbonate is disclosed.
  • a polymer having a weight average molecular weight of 10,000 or more, a curable compound having an epoxy group or an oxetane group, a cyanate compound, a curing agent, and a filler such as magnesium carbonate is disclosed.
  • a thermosetting resin and a thermoplastic resin having a high melt viscosity is used.
  • the thermoplastic resin and magnesium carbonate are not sufficiently mixed, resulting in variation in composition in the resulting composition, which may increase characteristic variation.
  • the mechanical strength against dimensional change under high temperature and high humidity is insufficient, so that it is presumed that the adhesion between the metal and the thermosetting resin is insufficient.
  • JP 2006-291078 A (Claims, Examples) JP-A-2005-272752 (Claims, Examples) JP 2007-261922 A (Claims, Examples) JP 2008-173967 A (Claims, Examples) JP 2011-1224075 A (Claims, Examples)
  • the present invention has been achieved as a result of studying the solution of the problems in the above-described prior art as an issue. Accordingly, the present invention provides a thermoplastic resin composition and a molded article that are excellent in adhesion to metals and thermosetting resins under high temperature and high humidity, and further excellent in thermal conductivity, mechanical strength, and dimensional stability. This is the issue.
  • the thermoplastic resin composition of the present invention comprises (A) a thermoplastic resin, (B) magnesium carbonate, and (C) glass fibers.
  • a thermoplastic resin composition wherein the total amount of the (A) thermoplastic resin, the (B) magnesium carbonate and the (C) glass fiber is 100% by mass, and the (A) thermoplastic resin is 25 to 50% by mass.
  • the (B) magnesium carbonate is blended in a proportion of 10 to 70% by mass, and the (C) glass fiber is blended in a proportion of 5 to 40% by mass.
  • the (A) thermoplastic resin is a polyarylene sulfide resin, a polyamide resin and a polyester.
  • Magnesium has a mass reduction rate of 1% or less when the temperature is increased from 23 ° C. to 150 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere by thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the (A) thermoplastic resin is the following (a-1) polyarylene sulfide resin, (a-2) polyamide resin, and (a-3) polyester. It is at least one selected from resins.
  • Polyamide resin (a-3) having a melting viscosity of 1 to 200 Pa ⁇ s at a processing temperature of melting point + 45 ° C.
  • Polyester resin having a melt viscosity of 1 to 200 Pa ⁇ s at a shear rate of 1,000 (1 / s)
  • thermoplastic resin composition of the present invention is the above-described invention, wherein the magnesium carbonate (B) is heated from 23 ° C. to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere by thermogravimetric analysis (TGA). In this case, the mass reduction rate is 2% or less.
  • thermoplastic resin composition of the present invention in the above invention, further comprises (D) with respect to a total of 100 parts by mass of the (A) thermoplastic resin, the (B) magnesium carbonate and the (C) glass fiber. It is characterized by containing 1 to 20 parts by mass of an olefin resin.
  • thermoplastic resin composition of the present invention is characterized in that, in the above-mentioned invention, the fiber diameter of the (C) glass fiber is 5 to 8 ⁇ m.
  • the molded product of the present invention is obtained by injection molding the thermoplastic resin composition described in any one of the above.
  • the molded product of the present invention is characterized in that, in the above invention, the molded product is an automobile part, an electric / electronic part or a power generation / heat exchange equipment part.
  • the molded product of the present invention is characterized in that, in the above invention, the molded product is characterized in that the thermoplastic resin composition is in contact with a metal and / or a thermosetting resin.
  • thermoplastic resin composition of the present invention is excellent in adhesion to metals and thermosetting resins under high temperature and high humidity, thermal conductivity, mechanical strength and dimensional stability. According to the thermoplastic resin composition of the present invention, it can be continuously processed into a desired shape using an injection molding machine or the like, and is a composite of a metal and a thermosetting resin having excellent adhesion. It is possible to obtain The molded product of the present invention needs to protect internal parts and suppress deterioration of characteristics by maintaining the adhesion between the metal and the thermosetting resin when the periphery of the member is exposed to high temperature and high humidity. Useful for motor motor peripheral parts and power control unit peripheral parts.
  • FIG. 1 is a view showing a schematic shape of a molded product obtained by injection molding of the thermoplastic resin composition of the present invention.
  • the present invention is a thermoplastic resin composition
  • a thermoplastic resin composition comprising (A) a thermoplastic resin, (B) magnesium carbonate, and (C) a glass fiber, wherein (A) the thermoplastic resin, (B) ) Magnesium carbonate and (C) glass fiber in total 100% by mass, (A) 25 to 50% by mass of thermoplastic resin, (B) 10 to 70% by mass of magnesium carbonate, (C) glass fiber Is blended at a ratio of 5 to 40% by mass, and the (A) thermoplastic resin is at least one selected from polyarylene sulfide resin, polyamide resin and polyester resin, and shearing is performed under a predetermined processing temperature condition.
  • the melt viscosity at a speed of 1,000 (1 / s) is 1 to 200 Pa ⁇ s
  • (B) magnesium carbonate is 10 ° C./nitrogen atmosphere under a nitrogen atmosphere by thermogravimetric analysis (TGA). Weight loss rate when the temperature was raised to 0.99 ° C. from 23 ° C. at a heating rate is not less than 1%, the fiber diameter of the (C) glass fibers, characterized in that it is a 4 ⁇ 11 [mu] m.
  • thermoplastic resin used in the present invention is at least one selected from polyarylene sulfide resins, polyamide resins and polyester resins.
  • polyarylene sulfide resin examples include polyphenylene sulfide (hereinafter sometimes abbreviated as PPS), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof. Of these, polyphenylene sulfide is particularly preferably used.
  • PPS polyphenylene sulfide
  • Such polyphenylene sulfide is a polymer containing a repeating unit represented by the following structural formula (1), preferably 70 mol% or more, more preferably 90 mol% or more, and the repeating unit represented by the structural formula (1) is 70 When it contains more than mol%, it is preferable because heat resistance is excellent.
  • polyphenylene sulfide resin used in the present invention may be a random copolymer or a block copolymer containing 30 mol% or less of one or more repeating units selected from the structural formula shown below. A mixture thereof may also be used.
  • the polyarylene sulfide resin used in the present invention can be obtained by a generally known method, that is, a method for obtaining a polymer having a relatively low molecular weight described in JP-B-45-3368 or JP-B-52-12240 or It can be produced by a method for obtaining a polymer having a relatively large molecular weight described in JP-A-61-7332.
  • the polyarylene sulfide resin obtained as described above is subjected to crosslinking / polymerization by heating in air, heat treatment under an inert gas atmosphere such as nitrogen or under reduced pressure, an organic solvent, hot water, Of course, it is also possible to use after performing various treatments such as washing with an acid or the like.
  • Specific methods for crosslinking / high molecular weight polyarylene sulfide resin by heating include an atmosphere of an oxidizing gas such as air or oxygen, or a mixed gas atmosphere of the oxidizing gas and an inert gas such as nitrogen or argon.
  • an atmosphere of an oxidizing gas such as air or oxygen
  • a mixed gas atmosphere of the oxidizing gas and an inert gas such as nitrogen or argon.
  • the heat treatment temperature is preferably 150 to 280 ° C., more preferably 200 to 270 ° C.
  • the treatment time is preferably 0.5 to 100 hours, more preferably 2 A range of ⁇ 50 hours is selected.
  • the apparatus used for the heat treatment may be a normal hot air dryer or a heating apparatus with a rotary or stirring blade. However, when processing efficiently and more uniformly, a rotary or stirring blade is used. More preferably, a heating device is used.
  • a specific method for heat-treating the polyarylene sulfide resin under an inert gas atmosphere such as nitrogen or under reduced pressure is as follows: under an inert gas atmosphere such as nitrogen or under reduced pressure (preferably 7,000 Nm ⁇ 2 or less)
  • the heat treatment method include a heat treatment temperature of 150 to 280 ° C., preferably 200 to 270 ° C., and a heat time of 0.5 to 100 hours, preferably 2 to 50 hours.
  • the apparatus used for the heat treatment may be a normal hot air dryer or a heating apparatus with a rotary or stirring blade. However, when processing efficiently and more uniformly, a rotary or stirring blade is used. More preferably, a heating device is used.
  • the organic solvent used for washing is not particularly limited as long as it does not have an action of decomposing the polyarylene sulfide resin.
  • nitrogen-containing polar solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, sulfoxide-sulfone solvents such as dimethyl sulfoxide, dimethyl sulfone, ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone, acetophenone, dimethyl ether, dipropyl ether , Ether solvents such as tetrahydrofuran, halogen solvents such as chloroform, methylene chloride, trichloroethylene, dichloroethylene, dichloroethane, tetrachloroethane, chlorobenzene, methanol, ethanol, propanol, butanol, pentanol,
  • a specific method of washing with an organic solvent there is a method of immersing a polyarylene sulfide resin in an organic solvent, and stirring or heating can be appropriately performed as necessary.
  • the washing temperature when the polyarylene sulfide resin is washed with an organic solvent there is no particular limitation on the washing temperature when the polyarylene sulfide resin is washed with an organic solvent, and any temperature from room temperature to about 300 ° C. can be selected. Although the cleaning efficiency tends to increase as the cleaning temperature increases, a sufficient effect is usually obtained at a cleaning temperature of room temperature to 150 ° C.
  • the polyarylene sulfide resin that has been washed with an organic solvent is preferably washed several times with water or warm water in order to remove the remaining organic solvent.
  • the water washing temperature is preferably 50 to 90 ° C., more preferably 60 to 80 ° C.
  • the following method can be illustrated as a specific method when the polyarylene sulfide resin is washed with hot water. That is, the water used is preferably distilled water or deionized water in order to exhibit a preferable chemical modification effect of the polyarylene sulfide resin by hot water washing.
  • the operation of the hot water treatment is usually performed by adding a predetermined amount of polyarylene sulfide resin to a predetermined amount of water, and heating and stirring at normal pressure or in a pressure vessel.
  • the ratio of the polyarylene sulfide resin and water should be high in water, and is preferably used at a bath ratio of 200 g or less of polyarylene sulfide resin with respect to 1 liter of water.
  • the following method can be exemplified as a specific method when the polyarylene sulfide resin is washed with an acid. That is, there is a method of immersing a polyarylene sulfide resin in an acid or an aqueous solution of an acid, and stirring or heating can be appropriately performed as necessary.
  • the acid used is not particularly limited as long as it does not have the action of decomposing the polyarylene sulfide resin, such as aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, chloroacetic acid and dichloroacetic acid.
  • Halo-substituted aliphatic saturated carboxylic acids aliphatic unsaturated monocarboxylic acids such as acrylic acid and crotonic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, oxalic acid, malonic acid, succinic acid, phthalic acid, fumaric acid, etc.
  • Dicarboxylic acid and inorganic acids such as sulfuric acid, phosphoric acid, hydrochloric acid, carbonic acid and silicic acid are used. Of these acids, acetic acid and hydrochloric acid are particularly preferably used.
  • the polyarylene sulfide resin subjected to the acid treatment is preferably washed several times with water in order to remove the remaining acid or salt.
  • the temperature of the water washing is preferably 50 to 90 ° C., and preferably 60 to 80 ° C.
  • the water used for washing is preferably distilled water or deionized water in the sense that the effect of the preferred chemical modification of the polyarylene sulfide resin by acid treatment is not impaired.
  • the polyamide resin used as the thermoplastic resin according to the present invention is a resin composed of a polymer having an amide bond, and is mainly composed of amino acid, lactam, or diamine and dicarboxylic acid.
  • Representative examples of the raw materials include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ⁇ -caprolactam and ⁇ -laurolactam, tetramethylenediamine, penta Methylenediamine, hexamethylenediamine, 2-methylpentamethylenediamine, undecameethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, metaxylene Diamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-
  • polyamide resins in the present invention include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polypentamethylene adipamide (nylon 56), polytetramethylene.
  • nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, nylon 6/66, nylon 66 / 6T, nylon 6T / 6I copolymer and the like are particularly preferable examples.
  • nylon 6, nylon 66, nylon 610, nylon 11 Nylon 12 is most preferred.
  • the degree of polymerization of the polyamide resin used in the present invention is preferably in the range of 1.5 to 7.0 as a relative viscosity measured at 25 ° C. in a 98% concentrated sulfuric acid solution having a sample concentration of 0.01 g / ml.
  • Polyamide resins in the range of .8 to 6.0 are preferred.
  • amino end group concentration of the polyamide resin used in the present invention is preferably not more than 10 ⁇ 10 -5 mol / g, more preferably at most 8 ⁇ 10 -5 mol / g, 6 ⁇ 10 -5 Mol / g or less is particularly preferable.
  • the polyamide resin used in the present invention is a known polymerization method such as a usual melt polymerization, a method of producing a prepolymer, and further solid-phase polymerizing this at a temperature below the melting point or a method of increasing the degree of polymerization with a melt extruder. Can be used.
  • the polyester resin used in the present invention is selected from (a) a dicarboxylic acid or an ester-forming derivative thereof, a diol or an ester-forming derivative thereof, (b) a hydroxycarboxylic acid or an ester-forming derivative thereof, and (c) a lactone. Or a polymer or copolymer having at least one main structural unit.
  • the main structural unit means that 50 mol% or more of at least one selected from (a) to (c) is contained in all the structural units, and preferably 80 mol% or more.
  • dicarboxylic acid or ester-forming derivative thereof examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, Aromatic dicarboxylic acids such as 4,4'-diphenyl ether dicarboxylic acid, 5-tetrabutylphosphonium isophthalic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malon
  • Aromatic dicarboxylic acids such as 4,4'-diphenyl ether dicarboxylic acid, 5-tetrabutylphosphonium isophthalic acid, 5-sodium sulfoisophthalic acid, oxalic acid,
  • diol or its ester-forming derivative examples include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, Long chain glycols having a molecular weight of 200 to 100,000, such as aliphatic glycols having 2 to 20 carbon atoms such as cyclohexanediol and dimer diol, polyethylene glycol, poly-1,3-propylene glycol and polytetramethylene glycol, 4,4′-dihydroxy Aromatic dihydroxy compounds such as biphenyl, hydroquinone, t-butylhydroquinone, bisphenol A, bisphenol S, bisphenol F, and ester-forming derivatives thereof. It is.
  • Polymers or copolymers containing dicarboxylic acid or its ester-forming derivative and diol or its ester-forming derivative as structural units include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polycyclohexanedimethylene terephthalate, polyhexylene terephthalate.
  • Aromatic polyester resin polyethylene oxalate, polypropylene oxalate, polybutylene oxalate, polyethylene succinate, polypropylene succinate, polybutylene succinate, polyethylene adipate, polypropylene adipate, polybutylene adipate, polyneopentyl glycol adipate, polyethylene sebacate , Polypropylene sebake DOO, polybutylene sebacate, polyethylene succinate / adipate, polypropylene succinate / adipate, and aliphatic polyester resins such as polybutylene succinate / adipate and the like.
  • the hydroxycarboxylic acid or ester-forming derivative thereof includes glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2 Naphthoic acids and their ester-forming derivatives.
  • Examples of the polymer or copolymer having these as structural units include polyglycolic acid, polylactic acid, polyglycolic acid / polylactic acid, polyhydroxybutyric acid / poly- ⁇ -hydroxyvaleric acid, and other aliphatic polyester resins. Can be mentioned.
  • lactone examples include caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepan-2-one and the like.
  • polymer or copolymer having these as a structural unit examples include polycaprolactone, polyvalerolactone, polypropiolactone, polycaprolactone / polyvalerolactone, and the like.
  • a polymer or copolymer having a main structural unit of dicarboxylic acid or its ester-forming derivative and diol or its ester-forming derivative, or hydroxycarboxylic acid or its ester-forming derivative is preferable.
  • polymers or copolymers having a main structural unit of dicarboxylic acid or its ester-forming derivative and diol or its ester-forming derivative aromatic dicarboxylic acid or its ester-forming derivative and aliphatic diol or its ester More preferred is a polymer or copolymer having a formable derivative as a main structural unit, and terephthalic acid or an ester-forming derivative thereof and an aliphatic diol selected from ethylene glycol, propylene glycol and butanediol or an ester-forming derivative thereof.
  • a polymer or copolymer as the main structural unit is more preferred.
  • the ratio is preferably 30 mol% or more, and more preferably 40 mol% or more.
  • a liquid crystalline polyester capable of forming anisotropy when melted may be used.
  • the structural unit of the liquid crystalline polyester include an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic and / or aliphatic dicarbonyl unit, an alkylenedioxy unit, and an aromatic iminooxy unit.
  • the amount of carboxyl end groups of the polyester resin used in the present invention is preferably 50 eq / t or less, more preferably 30 eq / t or less, in terms of fluidity, hydrolysis resistance and heat resistance, and 20 eq / t It is more preferably t or less, and particularly preferably 10 eq / t or less.
  • the lower limit is 0 eq / t.
  • the amount of hydroxy end groups of the polyester resin used in the present invention is preferably 50 eq / t or more, more preferably 80 eq / t or more, and 100 eq / t or more in terms of moldability and fluidity. Is more preferable, and particularly preferably 120 eq / t or more. The upper limit is 180 eq / t.
  • the amount of the hydroxyl terminal group of the thermoplastic resin (A) is a value measured by 1H-NMR using a deuterated hexafluoroisopropanol solvent.
  • the molecular weight of the polyester resin used in the present invention is preferably in the range of more than 8,000 to 500,000, more preferably more than 8,000 to 300,000 in terms of heat resistance, more preferably 8,000 to 8,000. More preferably, it is in the range of more than 250,000.
  • Mw of the polyester resin is a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
  • the polyester resin used in the present invention can be produced by a known polycondensation method or ring-opening polymerization method. Either batch polymerization or continuous polymerization may be used, and both reaction by transesterification and direct polymerization can be applied, but the amount of carboxyl end groups can be reduced and the effect of improving fluidity is great. From the viewpoint of cost, continuous polymerization is preferable, and direct polymerization is preferable from the viewpoint of cost.
  • the direct polymerization method referred to here is a method for producing a polyester resin by carrying out an esterification reaction with a dicarboxylic acid and a diol as main components and then performing a polycondensation reaction under reduced pressure.
  • the transesterification method is a method for producing a polyester resin by carrying out an ester exchange reaction using an ester-forming derivative of a dicarboxylic acid and a diol as main components, followed by a polycondensation reaction under reduced pressure.
  • the polyester resin used in the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising a dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, a dicarboxylic acid
  • an ester-forming derivative thereof and a diol or an ester-forming derivative thereof can be produced by an esterification reaction or a transesterification reaction and then a polycondensation reaction.
  • the polymerization reaction catalyst include titanic acid methyl ester, tetra-n-propyl ester, tetra-n-butyl ester, tetraisopropyl ester, tetraisobutyl ester, tetra-tert-butyl ester, cyclohexyl ester, phenyl ester, Organic titanium compounds such as benzyl ester, tolyl ester, or mixed esters thereof, dibutyltin oxide, methylphenyltin oxide, tetraethyltin, hexaethylditin oxide, cyclohexahexyldistin oxide, didodecyltin oxide, triethyltin hydroxide , Triphenyltin hydroxide, triisobutyltin acetate, dibutyltin diacetate, diphenyltin dilaurate, monobutyltin trichloride,
  • organic titanium compounds and tin compounds are preferable, tetra-n-propyl ester, tetra-n-butyl ester and tetraisopropyl ester of titanic acid are more preferable, and tetra-n-butyl ester of titanic acid is particularly preferable.
  • Two or more of these polymerization reaction catalysts can be used in combination.
  • the addition amount of the polymerization reaction catalyst is preferably in the range of 0.005 to 0.5 parts by mass, and 0.01 to 0.2 parts by mass with respect to 100 parts by mass of the polyester resin in terms of mechanical properties, moldability and color tone. A range of parts is more preferred.
  • the thermoplastic resin (A) used in the present invention is at least one selected from a polyarylene sulfide resin, a polyamide resin and a polyester resin, and has a shear rate of 1,000 (1 / s ) Has a melt viscosity of 1 to 200 Pa ⁇ s.
  • the predetermined processing temperature is a melting point (Tm) + 10 ° C. to a melting point (Tm) of 30 ° C. measured by the measurement method described later for polyarylene sulfide resins, and a melting point (Tm) for polyamide resins.
  • the temperature range is + 25 ° C.
  • the polyester resin has a temperature range of the melting point (Tm) + 15 ° C. to the melting point (Tm) 35 ° C.
  • A When using 2 or more types together as a thermoplastic resin, what satisfy
  • the thermoplastic resin (A) used in the present invention is at least one selected from the following (a-1) polyarylene sulfide resins, (a-2) polyamide resins and (a-3) polyester resins. preferable.
  • (A-1) Polyarylene sulfide resin having a melt viscosity of 1 to 200 Pa ⁇ s at a shear rate of 1,000 (1 / s) at a processing temperature of melting point + 10 ° C. to melting point + 30 ° C.
  • Polyamide resin (a-3) having a melting viscosity of 1 to 200 Pa ⁇ s at a processing temperature of melting point + 45 ° C.
  • polyester resin with a melt viscosity of 1 to 200 Pa ⁇ s at a shear rate of 1,000 (1 / s) Balances fluidity, adhesion to metals and thermosetting resins, mechanical strength, and thermal conductivity at a high level. From this point, the melt viscosity is preferably in the above range.
  • the melt viscosity is preferably 1 to 100 Pa ⁇ s, more preferably 1 to 50 Pa ⁇ s, and particularly preferably in the range of 1 to 40 Pa ⁇ s.
  • thermoplastic resin If the melt viscosity of the thermoplastic resin is less than 1 Pa ⁇ s, the torque required for mixing cannot be obtained when the thermoplastic resin composition is kneaded, so magnesium carbonate and glass fibers are not uniformly dispersed, and heat Variations in characteristics such as fluidity of the plastic resin composition, mechanical properties of the molded product, and thermal conductivity occur. Furthermore, the adhesiveness of the entire molded product is reduced due to variations in the adhesiveness between the metal and the thermosetting resin. Further, many burrs are generated in the molded product, the continuous moldability is lowered, the burrs remain in the mold, and the adhesiveness is lowered due to insufficient filling of the molded product filling end portion of the thermoplastic resin composition.
  • thermoplastic resin (A) when the melt viscosity of the thermoplastic resin (A) is greater than 200 Pa ⁇ s, the fluidity of the thermoplastic resin composition is remarkably lowered, and the interface between the metal and the thermosetting resin can be contacted without unevenness. It becomes difficult and adhesion decreases.
  • the mechanical strength and thermal conductivity of the molded product vary greatly due to a decrease in fluidity of the thermoplastic resin composition. Furthermore, due to the decrease in fluidity, the load on the apparatus at the time of kneading the resin composition is increased, making the production difficult.
  • Two or more polyarylene sulfide resins, polyamide resins or polyester resins having different melt viscosities may be used in combination.
  • the melting point (Tm) is the difference between Tm1 + 20 ° C. after the observation of the endothermic peak temperature (Tm1) observed in the differential calorimetry (A) when the thermoplastic resin is measured at room temperature from the room temperature at 20 ° C./min. This is the endothermic peak temperature (Tm2) observed when the temperature is held for 5 minutes, cooled once to room temperature under a temperature drop condition of 20 ° C./min, and then measured again under a temperature rise condition of 20 ° C./min.
  • melt viscosity was measured using a capillograph (manufactured by Toyo Seiki Co., Ltd.) at a predetermined processing temperature under a shear rate of 1,000 (1 / s), a die length of 10 mm, a die hole diameter of 1. It is a value measured under the condition of 0 mm.
  • magnesium carbonate has the formula magnesium carbonate anhydrous salt does not contain crystal water represented by MgCO 3 or for Formula xMgCO 3 ⁇ Mg (OH) 2 ⁇ yH 2 O (Mg (OH) 2, , X is a ratio of 3 to 5, and y is a ratio of 3 to 7).
  • TGA increases temperature from 23 ° C to 300 ° C at a rate of 10 ° C / min in a nitrogen atmosphere from the viewpoint of better adhesion to metals or thermosetting resins in melt molding and wet heat environments, and mechanical strength.
  • Magnesium carbonate having a mass reduction rate of 2% or less when heated is preferred.
  • Magnesium carbonate having a mass reduction rate of 3% or less when heated from 23 ° C. to 500 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere by TGA is more preferable.
  • thermoplastic resin composition When the mass reduction rate at 500 ° C. by TGA of magnesium carbonate is 3% or less, gas generation and mass reduction components (desorption of crystal water and carbonic acid are accompanied by mass reduction during melt kneading of the thermoplastic resin composition.
  • the composition component of the thermoplastic resin composition due to gas generation) tends to be difficult to decompose and foam, and the balance of adhesion, mechanical properties, and thermal conductivity of the molded product formed from the obtained pellets Tend to improve.
  • Magnesium carbonate used in the present invention is subjected to heat treatment using a heat treatment apparatus such as a hot air drier to remove adhering water on the surface of magnesium carbonate and to desorb crystal water of basic magnesium carbonate.
  • a heat treatment apparatus such as a hot air drier to remove adhering water on the surface of magnesium carbonate and to desorb crystal water of basic magnesium carbonate.
  • the heat treatment conditions are not particularly limited as long as the apparatus dries the powder, but the airflow dryer, vacuum heat dryer, hot air dryer, fluidized bed dryer, external heating rotary dryer, vibration dryer It is preferable to dry in the temperature range of 100 to 400 ° C. for 1 hour or longer. Further, the inside of the dryer may be replaced with nitrogen or an incombustible gas.
  • the anhydrous magnesium carbonate containing no crystal water represented by the chemical formula MgCO 3 includes natural products and synthetic products. Since natural products have a large amount of impurities, there is a possibility that the adhesion to metals and thermosetting resins during wet heat may vary. For this reason, it is preferable that a magnesium carbonate anhydrous salt is a synthetic product.
  • the mass reduction rate at each measurement temperature is a value measured by increasing the temperature from 23 ° C. to 600 ° C. under a temperature increase condition of 10 ° C./min in a nitrogen gas atmosphere in a TGA (thermogravimetric analysis) measurement device. is there.
  • Magnesium carbonate used in the present invention preferably has an average particle size in the range of 0.1 to 40 ⁇ m.
  • the average particle diameter of magnesium carbonate is less than 0.1 ⁇ m, the fluidity of the thermoplastic resin composition during melt molding is reduced, and the contact with the metal or thermosetting resin is reduced. The glass fiber tends to be broken during melt kneading, so that the strength may decrease.
  • the average particle diameter of magnesium carbonate is larger than 40 ⁇ m, unevenness (variation) occurs in the fluidity of the thin-walled portion of the molded product, and the adhesiveness and mechanical strength tend to decrease.
  • the average particle diameter of magnesium carbonate is more preferably 1 to 35 ⁇ m, the average particle diameter is more preferably 5 to 30 ⁇ m, and the average particle diameter is particularly preferably 10 to 25 ⁇ m.
  • the average particle diameter is measured by laser light diffraction, using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation at a concentration of 100 ppm using water or an organic solvent as a dispersion medium.
  • the average particle size of two or more different within the above average particle size range Diameter (B) magnesium carbonate may be used.
  • the shape of (B) magnesium carbonate used in the present invention may be any of particles, flakes, polyhedrons, and fibers, but particles and polyhedrons are most preferable from the viewpoint of dispersibility.
  • Magnesium carbonate used in the present invention is a vinyl silane compound such as vinyl triethoxysilane or vinyl trichlorosilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3, Epoxy silane compounds such as 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane Aminosilane compounds such as ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane Aminosilane compounds such as ⁇ -methacryl
  • magnesium is preferable in terms of improving the affinity with the polyarylene sulfide resin and the polyamide resin or the polyester resin component, stabilizing the adhesion in a humid heat environment, and mechanical strength.
  • the glass fiber (C) used in the present invention has a fiber diameter of 4 to 11 ⁇ m.
  • the fiber diameter of (C) glass fiber is the average value of the single fiber diameter.
  • the glass fiber preferably has a fiber diameter in the above range from the viewpoint of fluidity and mechanical strength.
  • the fiber diameter of the glass fiber (C) is preferably in the range of 5 to 8 ⁇ m from the viewpoint that the fluidity and mechanical strength can be balanced at a high level.
  • the fiber diameter of the glass fiber is less than 4 ⁇ m, the glass fiber breaks during kneading of the thermoplastic resin composition, the mechanical strength is lowered, and the glass fiber is raised on the surface of the molded product.
  • the fiber diameter of (C) glass fiber can be measured by the following method.
  • the thermoplastic resin composition is heated in air at 600 ° C. for 5 hours to ash and remove the resin. The remaining one was observed with SEM-XMA at a magnification of 1,000 times, and the cross section (shortest part of each fiber) diameter of 25 glass fibers selected at random was measured to the ⁇ m unit, and the average value was obtained. Is calculated as the fiber diameter.
  • the fiber diameter of the glass fiber in the thermoplastic resin composition generally matches the fiber diameter of the glass fiber charged at the time of manufacturing the thermoplastic resin composition.
  • Examples of the material of the (C) glass fiber used in the present invention include E glass, H glass, A glass, C glass, natural quartz glass, and synthetic quartz glass, and E glass and H glass are particularly preferable.
  • the type of glass fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from, for example, a long fiber type, a short fiber type chopped strand, a milled fiber, or the like.
  • any of chopped glass fiber, milled glass fiber and the like can be used, but the fluidity of the thermoplastic resin composition and the mechanical strength of the molded article of the thermoplastic resin composition. From this point, chopped glass fiber is preferable.
  • thermoplastic resin composition of the present invention the blending amounts of (A) thermoplastic resin, (B) magnesium carbonate and (C) glass fiber are (A) thermoplastic resin, (B) magnesium carbonate and (C) glass.
  • the total 100% by mass of the fiber is (A) 25 to 50% by mass of thermoplastic resin, (B) 10 to 70% by mass of magnesium carbonate, and (C) 5 to 40% by mass of glass fiber.
  • thermoplastic resin is 30 to 50% by mass
  • (B) magnesium carbonate is 15 to 65% by mass
  • (C) glass fiber is 10 to 35% by mass
  • A) thermoplastic resin is 35% by mass. -50% by mass, (B) 20-60% by mass of magnesium carbonate, and (C) glass fiber in the range of 15-30% by mass.
  • thermoplastic resin composition When the amount of the thermoplastic resin is less than 25% by mass, the fluidity is lowered. On the other hand, when the content is more than 50% by mass, adhesion between the metal and the thermosetting resin during wet heat cannot be obtained. When the blending amount of (B) magnesium carbonate is less than 10% by mass, (B) magnesium carbonate becomes insufficiently dispersed, resulting in a decrease in thermal conductivity and adhesion between the metal and the thermosetting resin during wet heat. On the other hand, when the content is more than 70% by mass, the flowability of the thermoplastic resin composition is lowered and the load on the apparatus during kneading is increased, making the production difficult.
  • thermosetting resin When the compounding amount of the glass fiber is less than 5% by mass, the mechanical strength is lowered. In particular, cracks occur in the thermoplastic resin composition against stress due to dimensional changes at high temperature and high humidity at the interface where the thermoplastic resin composition is in contact with the metal and the thermosetting resin. On the other hand, if it exceeds 40% by mass, the load on the apparatus at the time of kneading the resin composition increases, making it difficult to manufacture, and the thermal conductivity is insufficient due to air entrainment due to insufficient fluidity during molding of the molded product. And adhesion with a thermosetting resin falls.
  • the thermoplastic resin composition constituting the molded article of the present invention is at least one selected from (a-1) a polyarylene sulfide resin, (a-2) a polyamide resin, and (a-3) a polyester resin.
  • B Magnesium carbonate having a mass reduction rate of 1% or less when heated from 23 ° C. to 150 ° C.
  • the thermal conductivity is a thickness obtained by preparing a square-shaped product (50 mm ⁇ 50 mm ⁇ 3 mm thickness, film gate) made of a thermoplastic resin composition and cutting both surfaces of this molded product to a depth of 0.5 mm. This is a value measured with a heat flow meter method thermal conductivity measuring device (GH-1S manufactured by Rigaku Corporation) using a test piece of length ⁇ width (20 mm ⁇ 20 mm) cut to 2 mm and further cut.
  • G-1S heat flow meter method thermal conductivity measuring device
  • thermoplastic resin composition of the present invention is generated from electronic components such as motor components and semiconductors and coils inside the power control unit when used in peripheral members such as motor components and power control unit components mounted on automobiles and the like.
  • the heat is dissipated, the deterioration of electronic parts such as motors, semiconductors, and coils due to heat is suppressed and the output is suppressed, and the metal terminals and the thermosetting resin that seals the semiconductor elements are in close contact It is preferable that the thermal deterioration of the part and the difference in shrinkage of the material feeling can be suppressed.
  • the thermoplastic resin composition of the present invention preferably has a thermal conductivity of 0.8 W / m ⁇ K or more, and a thermal conductivity of 1.0 W / m ⁇ K or more. It is more preferable that the thermal conductivity is 1.2 W / m ⁇ K or more.
  • the thermal conductivity of the thermoplastic resin composition of the present invention is less than 0.8 W / m ⁇ K, the output of the motor or electronic component due to the temperature rise of the heat generating portion is reduced and the product life is also reduced.
  • (D) an olefin-based resin from the viewpoint of further improving adhesion and mechanical strength by imparting toughness of the thermoplastic resin composition.
  • the blending amount of (D) olefin resin is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of (A) thermoplastic resin, (B) magnesium carbonate and (C) glass fiber.
  • the (D) olefin resin used in the present invention is a polymer obtained by (co) polymerizing olefins, specifically, olefin (co) polymers, and epoxy groups, acid anhydride groups, ionomers, and the like. And an olefinic (co) polymer (modified olefinic (co) polymer) obtained by introducing a monomer component having a functional group (hereinafter abbreviated as a functional group-containing component).
  • the olefinic resins may be used alone or in combination of two or more.
  • olefinic (co) polymer (co) heavy obtained by polymerizing ⁇ -olefin alone or two or more types such as ethylene, propylene, butene-1, pentene-1, 4-methylpentene-1, and isobutylene.
  • ⁇ -olefin with ⁇ , ⁇ -unsaturated acid and its alkyl ester such as acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate
  • a copolymer is mentioned.
  • the olefinic (co) polymer examples include polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / butene-1 copolymer, ethylene / ethyl acrylate copolymer, ethylene / butyl acrylate copolymer.
  • examples thereof include a polymer, an ethylene / methyl methacrylate copolymer, and an ethylene / butyl methacrylate copolymer.
  • Examples of functional group-containing components to be introduced in a modified olefin (co) polymer introduced with a monomer component having a functional group such as an epoxy group, an acid anhydride group, or an ionomer include maleic anhydride, itaconic anhydride Citraconic anhydride, endobicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid, endobicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic anhydride Monomers containing acid anhydride groups such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, glycidyl itaconate, ionomers such as carboxylic acid metal complexes The monomer containing is mentioned.
  • the method for introducing the functional group-containing component of the modified olefinic (co) polymer is not particularly limited, and a method such as copolymerization or graft introduction to the olefin polymer using a radical initiator can be used.
  • the amount of the functional group-containing component introduced is suitably in the range of 0.001 to 40 mol%, preferably 0.01 to 35 mol%, based on the whole modified olefinic (co) polymer.
  • modified olefinic (co) polymer used in the present invention examples include ethylene / propylene-g-glycidyl methacrylate copolymer (“g” represents a graft, the same shall apply hereinafter), ethylene / butene-1- g-glycidyl methacrylate copolymer, ethylene / glycidyl acrylate copolymer, ethylene / glycidyl methacrylate copolymer, ethylene / methyl acrylate / glycidyl methacrylate copolymer, ethylene / methyl methacrylate / glycidyl methacrylate copolymer Polymer, ethylene / propylene-g-maleic anhydride copolymer, ethylene / butene-1-g-maleic anhydride copolymer, ethylene / methyl acrylate-g-maleic anhydride copolymer, ethylene / acrylic acid Ethyl-g-male
  • Preferred examples of the modified olefin-based (co) polymer include ethylene / glycidyl methacrylate copolymer, ethylene / methyl acrylate / glycidyl methacrylate copolymer, ethylene / methyl methacrylate / glycidyl methacrylate copolymer, ethylene / Butene-1-g-maleic anhydride copolymer, ethylene / ethyl acrylate-g-maleic anhydride copolymer, and the like.
  • modified olefinic (co) polymer examples include ethylene / glycidyl methacrylate copolymer, ethylene / methyl acrylate / glycidyl methacrylate copolymer, ethylene / methyl methacrylate / glycidyl methacrylate copolymer, etc. Is mentioned.
  • the blending amount of the (D) olefin resin is 1 to 20 parts by mass, preferably 2 to 15 parts by mass with respect to 100 parts by mass in total of (A) thermoplastic resin, (B) magnesium carbonate, and (C) glass fiber. Part, more preferably 3 to 10 parts by weight.
  • (D) By blending 1 part by mass or more of the olefin resin, an effect of improving the flexibility and impact resistance of the thermoplastic resin composition can be obtained, and adhesion with the metal and the thermosetting resin is also improved. In addition, the mechanical strength is improved.
  • thermoplastic resin composition by blending 20 parts by mass or less, the thermal stability of the thermoplastic resin composition is not impaired, the thickening at the time of melt kneading when producing the thermoplastic resin composition can be suppressed, It is preferable because good injection moldability can be maintained.
  • the (D) olefin resin is a carbonic acid whose mass reduction rate is 1% or less when the temperature is increased from 23 ° C. to 150 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere by TGA (thermogravimetric analysis).
  • the mass reduction rate of (B) magnesium carbonate used is 2% or less when the temperature is increased from 23 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere by TGA (thermogravimetric analysis).
  • TGA thermogravimetric analysis
  • olefin olefin
  • thermoplastic resin composition used in the present invention includes plasticizers such as polyalkylene oxide oligomeric compounds, ester compounds, and organic phosphorus compounds, inorganic fine particles, and organic phosphorus compounds within a range that does not impair the effects of the present invention.
  • Crystal nucleating agents such as metal oxides and polyether ether ketones, polyolefins such as polyethylene and polypropylene, montanic acid waxes, montanic acid and metal salts thereof, esters thereof, half esters thereof, stearyl alcohol, stearamide, various bisamides, bis Metal soap such as urea, polyethylene wax, lithium stearate, aluminum stearate, ethylenediamine, stearic acid / sebacic acid polycondensate, mold release agents such as silicone compounds, coloring agents such as hypophosphite, phosphorus Antioxidant, sulfur-based Antioxidants such as antioxidants, weathering agents and ultraviolet light inhibitors (resorcinol, salicylate, benzotriazole, benzophenone, hindered amine, etc.), heat stabilizers (hindered phenol, hydroquinone, phosphite) These substitutes), foaming agents, pigments (cadmium sulfide, phthalocyanine, carbon black, metallic
  • thermoplastic resin composition of the present invention is usually produced by a known method.
  • (A) thermoplastic resin, (B) magnesium carbonate, (C) glass fiber, and other necessary additives such as (D) olefin resin are premixed or premixed as necessary. It is prepared by supplying to an extruder or the like without sufficient melting and kneading.
  • examples include a method of kneading a mixture of raw materials at a temperature of 250 to 400 ° C. using a commonly known melt kneader such as a single or twin screw extruder, a Banbury mixer, a kneader, or a mixing roll. be able to.
  • the mixing order of the raw materials is not particularly limited, and a method in which all raw materials are melt-kneaded by the above method, a method in which some raw materials are melt-kneaded by the above method, and the remaining raw materials are melt-kneaded, or Any method may be used, such as a method in which the remaining raw materials are mixed using a side feeder during melt kneading of a part of raw materials with a single-screw or twin-screw extruder.
  • a thermoplastic resin and (D) an olefin resin are melt-kneaded, and then (B) magnesium carbonate and (C) glass fibers are added and melt-kneaded.
  • thermoplastic resin and (D) olefin resin are supplied, and after melt kneading, (B) magnesium carbonate and (C) glass fiber are supplied and kneaded using a side feeder. Thereafter, a method of removing a gas generated by exposure to a vacuum state can be preferably mentioned.
  • a thermoplastic resin composition by such an extrusion process, a material in which each component is well dispersed can be obtained.
  • the small amount additive component other components may be kneaded and pelletized by the above-described method and then added before molding and used for molding.
  • a molded product is formed by melt-molding the thermoplastic resin composition by an ordinary molding method (injection molding, press molding, injection press molding, etc.).
  • injection molding press molding, injection press molding, etc.
  • thermoplastic resin composition of the present invention is not only excellent in moldability, thermal conductivity, dimensional stability and strength, but also excellent in adhesion to metals and thermosetting resins in a high temperature and high humidity environment.
  • the thermoplastic resin composition of the present invention is used in contact with a metal by insert molding or the like, and the molded article made of the thermoplastic resin composition of the present invention is heated. It is suitable for a member that is molded and used in close contact with a curable resin. Furthermore, when the periphery of these members is exposed to high temperatures and high humidity, the adhesion between the metal and the thermosetting resin and the thermoplastic resin composition of the present invention is maintained, thereby protecting the product and suppressing the deterioration of the characteristics. It is suitable for the members.
  • recently developed drive mechanisms include hybrid (HEV) vehicles that use a gasoline engine and an electric motor together, fuel cell vehicles that use only a motor as the drive mechanism, motor peripheral components for electric (EV) vehicles, and It can be suitably used for power control unit peripheral components that control the output of the battery to drive the motor.
  • HEV hybrid
  • EV electric
  • the peripheral parts of the motor include the housing around the motor stator, the peripheral parts of the cooling water circulation path and / or the cooling oil circulation path inside the motor stator, the motor insulator, the coil bobbin, and the thermosetting resin sealing the coil.
  • Examples include outer frames, protective frames for motor drive electrodes, motor cooling water and / or oil piping, piping retainers, caps, and other parts that are used under high temperatures and high humidity, as well as parts that come into contact with metals and thermosetting resins. .
  • the peripheral components of the power control unit include a boost converter housing, an inverter housing, a motor generator ECU housing, a power control unit housing, an electrode inside the boost converter and / or inverter and / or motor generator ECU, Examples thereof include a metal such as a terminal, a semiconductor, and / or a component that contacts a thermosetting resin that seals a circuit board on which the semiconductor is mounted.
  • a metal such as a terminal, a semiconductor, and / or a component that contacts a thermosetting resin that seals a circuit board on which the semiconductor is mounted.
  • These members can also be used as a composite of a molded article made of the thermoplastic resin composition of the present invention and a metal, a thermosetting resin, ceramics, or the like.
  • thermoplastic resin composition of the present invention is suitable for structural parts such as housings, electrical parts cases, and the like.
  • audio equipment parts such as audio / laser discs (registered trademark) / compact discs, lighting parts, refrigerator parts, air conditioner parts, water heaters, bath water quantity, temperature sensors, etc.
  • Household and office electrical parts represented by offices; office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, lighter and other machine-related parts; microscopes, binoculars, High-priced equipment such as cameras and watches, precision machinery-related parts: alternator terminal, alternator connector, IC regulator, light meter potential meter base, relay block, inhibitor switch, various valves such as an exhaust gas valve, fuel-related and exhaust Pipes, intake pipes, air intake nozzles, intake manifolds, fuel pumps, engine coolant joints, carburetor main bodies, carburetor spacers, exhaust gas sensors, coolant sensors, hot water temperature sensors, braces Pat wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, water pump impeller, turbine vane, dust distributor, starter switch, ignition coil And its bobbins, starter relays, transmission wire harnesses, window washer nozzles, air conditioner panel switch
  • the thermoplastic resin composition of the present invention may be in contact with a metal and a thermosetting resin, a method of insert molding the thermoplastic resin composition into a metal, or a thermosetting resin for a molded article of the thermoplastic resin composition And a method of injecting and curing.
  • the metal herein include aluminum, copper, iron, tin, nickel, zinc, and the like, but may be an aluminum alloy or an alloy such as stainless steel.
  • the surface is plated with aluminum, tin, nickel, gold, silver or the like can be preferably used. Of these, aluminum and aluminum alloys are preferable.
  • thermosetting resin examples include epoxy resin, polyurethane, phenol resin, diallyl phthalate resin, unsaturated polyester resin, urea resin, melamine resin, silicone resin, polyimide resin, and allyl ester resin.
  • An epoxy resin, a phenol resin, a polyamide resin, a silicone resin, and the like are preferable. Among them, an epoxy resin and a silicone resin are more preferable in terms of fluidity at the time of casting and heat and moisture resistance of the cured product.
  • melt viscosity is determined by using a capillograph (manufactured by Toyo Seiki Co., Ltd.) with a die length of 10 mm under the conditions of (A) a thermoplastic resin at a predetermined processing temperature and a shear rate of 1,000 (1 / s). The value measured under conditions of a die hole diameter of 1.0 mm.
  • thermoplastic resin composition is heated in air at 600 ° C. for 5 hours to ash and remove the resin. The remaining one was observed with SEM-XMA at a magnification of 1,000 times, and the cross section (shortest part of each fiber) diameter of 25 glass fibers selected at random was measured to the ⁇ m unit, and the average value was obtained. Was calculated as the fiber diameter.
  • the reaction vessel After distilling out 14.78 kg of water and 0.28 kg of NMP, the reaction vessel was cooled to 200 ° C.
  • the residual water content in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for the hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per mol of the charged alkali metal sulfide.
  • the obtained solid and 76 liters of ion-exchanged water were placed in an autoclave equipped with a stirrer, washed at 70 ° C. for 30 minutes, and then suction filtered through a glass filter.
  • 76 liters of ion-exchanged water heated to 70 ° C. was poured into a glass filter, and suction filtered to obtain a cake.
  • the obtained cake and 90 liters of ion-exchanged water were charged into an autoclave equipped with a stirrer, and acetic acid was added so that the pH was 7.
  • the temperature was raised to 192 ° C. and held for 30 minutes. Thereafter, the autoclave was cooled and the contents were taken out.
  • the contents were subjected to suction filtration with a glass filter, and then 76 liters of ion-exchanged water at 70 ° C. was poured into the contents, followed by suction filtration to obtain a cake.
  • the obtained cake was dried at 120 ° C. under a nitrogen stream to obtain dry PPS.
  • the obtained PPS was designated as PPS-1.
  • the residual water content in the system per 1 mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for the hydrolysis of NMP.
  • the amount of hydrogen sulfide scattered was 0.02 mol per mol of the charged alkali metal sulfide.
  • the content was diluted with about 35 liters of NMP, stirred as a slurry at 85 ° C. for 30 minutes, and then filtered through an 80 mesh wire mesh (aperture 0.175 mm) to obtain a solid.
  • the obtained solid was similarly washed and filtered with about 35 liters of NMP.
  • the operation of putting the obtained solid into 70 liters of ion exchanged water, stirring at 70 ° C. for 30 minutes, and filtering through an 80 mesh wire net to collect the solid was repeated 3 times in total.
  • the obtained solid and 32 g of acetic acid were put into 70 liters of ion exchange water, stirred at 70 ° C.
  • PPS-2 The obtained PPS was designated as PPS-2.
  • A1 PPS-1 of Reference Example 1, melting point 281 ° C., melt viscosity at 301 ° C. (melting point + 20 ° C.) 30 Pa ⁇ s
  • A2 PPS-2 of Reference Example 1, melting point 280 ° C., melt viscosity at 300 ° C. (melting point + 20 ° C.) 100 Pa ⁇ s
  • A3 Polyphenylene sulfide resin having a melt viscosity of 275 Pa ⁇ s at melting points of 277 ° C. and 297 ° C. (melting point + 20 ° C.)
  • A4 Polyamide 6 resin having a melt viscosity of 90 Pa ⁇ s at melting points of 225 ° C. and 260 ° C.
  • A5 Polyamide 6 resin having a melting viscosity of 340 Pa ⁇ s at melting points 225 ° C. and 260 ° C. (melting point + 35 ° C.)
  • A6 Polyamide 66 resin having a melting viscosity of 65 Pa ⁇ s at 300 ° C. (melting point + 35 ° C.)
  • A7 Polybutylene terephthalate resin having a melting viscosity of 125 Pa ⁇ s at melting points of 225 ° C. and 250 ° C. (melting point + 25 ° C.)
  • A8 Polybutylene having a melting viscosity of 320 Pa ⁇ s at melting points of 224 ° C. and 249 ° C. (melting point + 25 ° C.) Terephthalate resin
  • 150 ° C mass reduction rate is 0.01% or less, 300 ° C mass reduction rate is 0.01%, 500 ° C mass reduction rate is 0.10% B4: “TT” manufactured by Naikai Shigyo Co., Ltd.
  • 150 ° C mass reduction rate is 2.05%, 300 ° C mass reduction rate is 15.60%, 500 ° C mass reduction rate is 53.00%
  • Example 11 Using a twin screw extruder with a screw diameter of 44 mm (TEX-44, manufactured by Nippon Steel Works), the polyamide 6 resin of Reference Example 1 and the olefin resin of Reference Example 4 shown in Table 1 are incorporated.
  • the magnesium carbonate of Reference Example 2 and the glass fiber of Reference Example 3 were added from the intermediate addition port and melt-kneaded at a processing temperature shown in Table 1 at a screw rotation speed of 200 rpm to obtain pellets. Subsequently, the obtained pellets were vacuum-dried for 12 hours or more with an 80 ° C. vacuum dryer, and then evaluated as described later. The results are shown in Table 1.
  • Examples 13 and 24 Using a twin screw extruder with a screw diameter of 44 mm and rotating in the same direction (manufactured by Nippon Steel Works, TEX-44), the polyester resin of reference example 1 (polybutylene terephthalate resin) shown in Table 2 and the olefin of reference example 4 System resin is added from the original storage portion, the magnesium carbonate of Reference Example 2 and the glass fiber of Reference Example 3 are introduced from the intermediate addition port, melt kneading is performed at a processing speed shown in Table 2 at a screw rotation speed of 200 rpm, Pellets were obtained. Subsequently, the obtained pellets were dried with a hot air dryer at 110 ° C. for 6 hours, and then evaluated as described later. The results are shown in Table 2.
  • Comparative Examples 1-2, 4, 6, 9, 11, 14, 16, 17 The polyphenylene sulfide resin of Reference Example 1 and the olefin resin of Reference Example 4 shown in Tables 3 to 5 were used using a twin screw extruder with a screw diameter of 44 mm (TEX-44, manufactured by Nippon Steel). Add from the original storage part, add magnesium carbonate of Reference Example 2 and glass fiber of Reference Example 3 from the intermediate addition port, melt knead at a processing temperature shown in Tables 3 to 5 at a screw speed of 200 rpm, and pellets Got. In Comparative Example 6, the thermoplastic resin composition had a high viscosity, the extruder torque increased, and it was difficult to obtain pellets, and the yield was greatly reduced.
  • Comparative Example 9 gas was generated from the discharge port of the extruder during melt-kneading, making it difficult to obtain pellets, and the yield was greatly reduced.
  • the pellets obtained in Comparative Examples 1 to 2, 4, 11, 14, 16, and 17 were dried with a hot air drier at 130 ° C. for 5 hours, and then evaluated as described later. The results are shown in Tables 3-5.
  • Comparative Examples 7 and 12 Using a twin-screw extruder with a screw diameter of 44 mm and rotating vent in the same direction (manufactured by Nippon Steel Works, TEX-44), the polyamide resin of Reference Example 1 and the olefin resin of Reference Example 4 shown in Tables 3 to 4 were originally used.
  • the magnesium carbonate of Reference Example 2 and the glass fiber of Reference Example 3 were added from the intermediate addition port, and melt-kneaded at a processing temperature shown in Tables 3 to 4 and a screw rotation speed of 200 rpm.
  • Comparative Example 7 the viscosity of the resin composition was high, the extruder torque increased, making it difficult to obtain pellets, and the pellet yield was greatly reduced.
  • Comparative Example 12 the viscosity of the resin composition was high, the extruder torque was remarkably increased, and pellets could not be obtained. The results are shown in Tables 3 and 4.
  • Comparative Example 15 Using a twin-screw extruder with a screw diameter of 44 mm and rotating in the same direction (manufactured by Nippon Steel Works, TEX-44), the polyamide resin of Reference Example 1 and the olefinic resin of Reference Example 4 shown in Table 4 are used as a source portion.
  • the magnesium carbonate of Reference Example 2 and the glass fiber of Reference Example 3 were introduced from the intermediate addition port, and melt kneading was performed at a processing temperature shown in Table 4 at a screw rotation speed of 200 rpm. It was difficult to get the pellets rising and the pellet yield was greatly reduced. Subsequently, the obtained pellets were vacuum-dried for 12 hours or more with an 80 ° C. vacuum dryer, and then evaluated as described later. The results are shown in Table 4.
  • Comparative Examples 3, 5, 8, 10, 13 A polyester resin (polybutylene terephthalate resin) of Reference Example 1 shown in Tables 3 to 4 and Reference Example 4 using a twin screw extruder with a screw diameter of 44 mm (TEX-44, manufactured by Nippon Steel)
  • the olefin-based resin was added from the base containing portion, the magnesium carbonate of Reference Example 2 and the glass fiber of Reference Example 3 were introduced from the intermediate addition port, and melted at a processing speed shown in Tables 3 to 4 at a screw rotation speed of 200 rpm. Kneading was performed to obtain pellets.
  • the viscosity of the resin composition was high, the extruder torque increased, making it difficult to obtain pellets, and the pellet yield was greatly reduced.
  • Comparative Example 13 the viscosity of the resin composition was high, the extruder torque was remarkably increased, and pellets could not be obtained.
  • the pellets obtained in Comparative Examples 3, 5, and 10 were dried with a hot air dryer at 110 ° C. for 6 hours, and then evaluated as described later. The results are shown in Tables 3-4.
  • RTV silicone gel (one-component addition type KE-1850, manufactured by Shin-Etsu Silicone Co., Ltd.) is poured into this box-shaped molded product to the full inside of the box, cured at 120 ° C for 1 hour, and moisture absorption drying cycle thermosetting resin adhesion test 50 pieces were prepared for each. Next, the obtained test piece is subjected to moisture absorption treatment at 85 ° C./85% RH for 24 hours with a constant temperature and humidity machine, and then dried at 110 ° C. for 24 hours with a hot air dryer.
  • KE-1850 one-component addition type KE-1850, manufactured by Shin-Etsu Silicone Co., Ltd.
  • Mold fouling amount and appearance Pellets obtained by melt kneading were processed using injection molding machine SE-30D (30t) (manufactured by Sumitomo Heavy Industries, Ltd.) under the processing temperature and mold temperature conditions shown in Table 5.
  • Thin plate-shaped molded product (side gate of 50 mm length ⁇ 20 mm width ⁇ 2 mm thickness, 2 mm width ⁇ 1 mm thickness), and the size of the gas vent part is 20 mm length ⁇ 10 mm width ⁇ 5 ⁇ m depth
  • the injection speed is set to 100 mm / s
  • the injection pressure is set within 40 to 100 MPa so that the filling time for each resin composition is 0.4 seconds
  • the holding pressure is 25 MPa
  • the holding pressure speed is 30 mm.
  • FIG. 1 shows a schematic shape of a molded product using a mold.
  • FIG. 1A is a front view of a molded product
  • FIG. 1B is a side view of the molded product.

Abstract

 高温高湿度環境での金属および熱硬化性樹脂との密着性および熱伝導性、寸法安定性、機械的強度に優れた熱可塑性樹脂組成物、および成形品を提供する。本発明は、(A)熱可塑性樹脂と、(B)炭酸マグネシウムと、(C)ガラス繊維とを所定割合で配合してなる熱可塑性樹脂組成物であって、前記(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであり、前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下であり、前記(C)ガラス繊維の繊維径は4~11μmであることを特徴とする。

Description

熱可塑性樹脂組成物および成形品
 本発明は、高温高湿度環境での金属および熱硬化性樹脂との密着性に優れており、更に熱伝導性、寸法安定性、強度に優れた熱可塑性樹脂組成物、並びに自動車などに搭載されるモーター部品やパワーコントロールユニット部品の金属端子および半導体素子を封止している熱硬化性樹脂との密着性に優れた成形品を得ることができる、熱可塑性樹脂組成物およびそれを成形して得られる成形品に関するものである。
 熱可塑性樹脂、特に機械的特性、および耐熱性に優れるエンジニアリングプラスチックはその優れた特性を活かして様々な用途において使用されている。エンジニアリングプラスチックスの一種であるポリアリーレンスルフィド樹脂は、優れた耐熱性、剛性、寸法安定性、および難燃性などを備えるエンジニアリングプラスチックスとして好適な性質を有していることから、射出成形用を中心として各種電気・電子部品、機械部品および自動車部品などの用途に使用されている。また、ポリアミド樹脂は機械特性と靭性のバランスに優れることから各種電気・電子部品、機械部品および自動車部品などの用途に使用され、ポリブチレンテレフタレート(以下PBTと称することがある)などのポリエステル樹脂は、成形性、耐熱性、機械的性質および耐薬品性を活かして自動車や電気・電子機器のコネクター、リレー、スイッチなどの工業用成形品の材料として広く使用されている。
 近年、地球温暖化や資源エネルギー問題に関して、環境低負荷に対する観点から様々な取り組みがなされている。なかでも自動車産業では、駆動機構に電気モーターを使用した電気自動車、ガソリンエンジンなどの内燃機関と電気モーターを併用したハイブリッド自動車など走行中の二酸化炭素や窒素酸化物の排出量の低減、つまり燃料消費を低減するために電気モーターの高性能・高出力化が進められている。電気モーターの性能向上のためには、駆動に必要な電力についてバッテリーから送られてくる電圧を昇圧するコンバーターに加え、直流電圧を交流電圧に交換し、モーターを駆動するユニットを搭載したパワーコントロールユニット(以下PCUと称することがある)の性能向上も必要となる。
 電気モーターの高出力化にともない、モーター運転時の銅損や鉄損による発熱量が増大するため、周辺部材は高温にさらされる。さらに走行環境によっては、高湿度にさらされ、モーター内部のコイルや電極と密着・保護する部材の気密性が低下したり、蓄熱によりモーター寿命を低下させるため、保護材料の金属との密着性や放熱性を向上する課題がある。
 また、PCUにおいても高出力化するために、PCUを構成する複数の半導体パワー素子(トランジスタとダイオードからなる電流をオン・オフするスイッチング素子)をそれぞれ大電力化することから、それに伴う温度および湿度上昇により、素子を封止する熱硬化性樹脂の、該素子および熱可塑性樹脂製の枠との界面の密着性低下による保護機能の低下という課題を有する。同様に、金属端子と熱可塑性樹脂との界面の密着低下の課題がある。
 さらに、自動車以外の電気電子機器においても、高性能化による電力出力向上に伴い温度上昇するため、機器内部部品を保護材料として使用される熱可塑性樹脂に対して、金属や熱硬化性樹脂との密着性、放熱性、加工性に優れた新たな材料が求められている。
 ところで、熱伝導性、耐水性、難燃性、加工性に優れた樹脂組成物として、ポリフェニレンサルファイド樹脂などの合成樹脂と、所定の比表面積及び平均粒子径を有する無水炭酸マグネシウムとを含有する合成樹脂組成物が知られている(例えば、特許文献1参照)。
 しかしながら、特許文献1には、合成樹脂組成物と金属または熱硬化性樹脂等との密着性については何ら開示がなく、また、ガラス繊維が入っていないことから、高温高湿度環境下における寸法変化に対する機械的強度が不足するため、特許文献1にかかる合成樹脂組成物と金属および熱硬化性樹脂との密着性は不十分であると推測される。
 また、特許文献1の実施例では、未硬化の熱硬化性樹脂に無水炭酸マグネシウムを配合して合成樹脂組成物を作製するため、熱可塑性樹脂を使用する場合の溶融粘度については何ら考慮されておらず、使用する熱可塑性樹脂の溶融粘度が高い場合、熱可塑性樹脂と炭酸マグネシウムが十分に混合せず、得られた組成物中で組成バラツキがおき、それにより特性バラツキが大きくなる可能性がある。
 同様の技術として、エンジニアリングプラスチックに所定の比表面積及び平均粒子径を有する無水炭酸マグネシウムを配合した樹脂組成物(例えば、特許文献2参照)や、Si化合物の被覆層を施した、所定の比表面積及び平均粒子径を有する無水炭酸マグネシウムと、エステル結合を有する合成樹脂とを配合した樹脂組成物(例えば、特許文献3参照)が開示されている。これらの技術では、特許文献1と同様に、ガラス繊維が入っていないことから、高温高湿度下における寸法変化に対する機械的強度が不足するため、金属および熱硬化性樹脂との密着性が不十分であり、使用する熱可塑性樹脂の溶融粘度が高い場合、熱可塑性樹脂と炭酸マグネシウムが十分に混合せず、得られた組成物中で組成バラツキがおき、それにより特性バラツキが大きくなる可能性がある。
 また、特定の薬品処理を施したマグネシウム合金製の金属部品等に、ポリフェニレンサルファイド系樹脂またはポリブチレンテレフタレート系樹脂を主成分とし、ガラス繊維や炭酸マグネシウム等から選択された充填剤を配合した樹脂組成物を接合した、金属と樹脂の複合体が開示されている(例えば、特許文献4参照)。該複合体は、接合性、密閉性に優れると記載されているが、充填剤としてガラス繊維と炭酸マグネシウムとを併用した例はなく、また、該複合体に使用される樹脂組成物の熱伝導性に関して記載も示唆もされていない。
 さらに、重量平均分子量が1万以上であるポリマーと、エポキシ基又はオキセタン基を有する硬化性化合物と、シアネート化合物と、硬化剤と、炭酸マグネシウム等のフィラーとを含有する絶縁シートが開示されている(例えば、特許文献5参照)。しかしながら、特許文献5の絶縁シートは、比誘電率が低く、未硬化状態でのハンドリング性に優れると記載されているものの、熱硬化性樹脂についての記載であり、溶融粘度が高い熱可塑性樹脂を使用する場合、熱可塑性樹脂と炭酸マグネシウムが十分に混合せず、得られた組成物中で組成バラツキがおき、それにより特性バラツキが大きくなる可能性がある。また、ガラス繊維が入っていないことから、高温高湿度下における寸法変化に対する機械的強度が不足するため、金属および熱硬化性樹脂との密着性が不十分であると推測される。
特開2006-291078号公報(特許請求の範囲、実施例) 特開2005-272752号公報(特許請求の範囲、実施例) 特開2007-261922号公報(特許請求の範囲、実施例) 特開2008-173967号公報(特許請求の範囲、実施例) 特開2011-124075号公報(特許請求の範囲、実施例)
 本発明は、前述した従来技術における問題点の解決を課題として検討した結果、達成されたものである。従って本発明は、高温高湿度下での金属および熱硬化性樹脂との密着性に優れ、さらに熱伝導性、機械的強度、寸法安定性に優れた熱可塑性樹脂組成物および成形品を提供することを課題とする。
 上述した課題を解決し、目的を達成するために、本発明の熱可塑性樹脂組成物は、(A)熱可塑性樹脂と、(B)炭酸マグネシウムと、(C)ガラス繊維とを配合してなる熱可塑性樹脂組成物であって、前記(A)熱可塑性樹脂、前記(B)炭酸マグネシウムおよび前記(C)ガラス繊維の合計100質量%として、前記(A)熱可塑性樹脂が25~50質量%、前記(B)炭酸マグネシウムが10~70質量%、前記(C)ガラス繊維が5~40質量%の割合で配合され、前記(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであり、前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下であり、前記(C)ガラス繊維の繊維径が、4~11μmであることを特徴とする。
 また、本発明の熱可塑性樹脂組成物は、上記発明において、前記(A)熱可塑性樹脂は、下記(a-1)ポリアリーレンスルフィド樹脂、(a-2)ポリアミド樹脂および(a-3)ポリエステル樹脂から選ばれる少なくとも1種以上であることを特徴とする。
(a-1)融点+10℃~融点+30℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであるポリアリーレンスルフィド樹脂
(a-2)融点+25℃~融点+45℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリアミド樹脂
(a-3)融点+15℃~融点+35℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリエステル樹脂
 また、本発明の熱可塑性樹脂組成物は、上記発明において、前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から300℃まで加熱した場合の質量減少率が2%以下であることを特徴とする。
 また、本発明の熱可塑性樹脂組成物は、上記発明において、前記(A)熱可塑性樹脂、前記(B)炭酸マグネシウムおよび前記(C)ガラス繊維の合計100質量部に対して、さらに(D)オレフィン系樹脂を1~20質量部配合してなることを特徴とする。
 また、本発明の熱可塑性樹脂組成物は、上記発明において、前記(C)ガラス繊維の繊維径が5~8μmであることを特徴とする。
 また、本発明の成形品は、上記のいずれか一つに記載の熱可塑性樹脂組成物を射出成形して得られることを特徴とする。
 また、本発明の成形品は、上記発明において、前記成形品は、自動車部品、電気電子部品または発電・熱交換機器部品であることを特徴とする。
 また、本発明の成形品は、上記発明において、前記成形品は、前記熱可塑性樹脂組成物が金属および/または熱硬化性樹脂と接していることを特徴とする。
 本発明の熱可塑性樹脂組成物は、高温高湿度下での金属および熱硬化性樹脂との密着性、熱伝導性および機械的強度と寸法安定性に優れる。本発明の熱可塑性樹脂組成物によれば、射出成形機等を用いて連続的に所望の形状に加工することが可能であり、優れた密着性を有する金属や熱硬化性樹脂との複合体を得ることが可能である。
 本発明の成形品は、部材の周辺が高温高湿度下にさらされる際に金属および熱硬化性樹脂との密着性が保たれることにより、内部部品を保護、特性低下抑制が必要とされる自動車のモーター周辺部品およびパワーコントロールユニット周辺部品に有用である。
図1は、本発明の熱可塑性樹脂組成物を射出成形して得た成形品の概略形状を示す図である。
 以下、本発明を詳細に説明する。
 本発明は、(A)熱可塑性樹脂と、(B)炭酸マグネシウムと、(C)ガラス繊維とを配合してなる熱可塑性樹脂組成物であって、前記(A)熱可塑性樹脂、前記(B)炭酸マグネシウムおよび前記(C)ガラス繊維の合計100質量%として、前記(A)熱可塑性樹脂が25~50質量%、前記(B)炭酸マグネシウムが10~70質量%、前記(C)ガラス繊維が5~40質量%の割合で配合され、前記(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであり、前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下であり、前記(C)ガラス繊維の繊維径が、4~11μmであることを特徴とする。
 まず、(A)熱可塑性樹脂について説明する。本発明において使用する(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選択される1種以上である。
 ポリアリーレンスルフィド樹脂の代表例としては、ポリフェニレンスルフィド(以下PPSと略す場合もある)、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられ、中でもポリフェニレンスルフィドが特に好ましく使用される。かかるポリフェニレンスルフィドは、下記構造式(1)で示される繰り返し単位を、好ましくは70モル%以上、より好ましくは90モル%以上含む重合体であり、構造式(1)で示される繰り返し単位を70モル%以上含む場合、耐熱性が優れるため好ましい。
Figure JPOXMLDOC01-appb-C000001
 また、本発明で使用するポリフェニレンスルフィド樹脂は、下記に示す構造式から選択される1以上の繰り返し単位を、30モル%以下含むランダム共重合体、ブロック共重合体であってもよく、また、それらの混合物であってもよい。
Figure JPOXMLDOC01-appb-C000002
 本発明で使用するポリアリーレンスルフィド樹脂は、通常公知の方法、つまり特公昭45-3368号公報に記載される比較的分子量の小さな重合体を得る方法あるいは特公昭52-12240号公報や特開昭61-7332号公報に記載される比較的分子量の大きな重合体を得る方法などによって製造することができる。
 本発明においては、上記のようにして得られたポリアリーレンスルフィド樹脂を、空気中加熱による架橋/高分子量化、窒素などの不活性ガス雰囲気下あるいは減圧下での熱処理、有機溶媒、熱水、酸などによる洗浄などの種々の処理を施した上で使用することも、もちろん可能である。
 ポリアリーレンスルフィド樹脂を加熱により架橋/高分子量化する場合の具体的方法としては、空気、酸素などの酸化性ガス雰囲気下または前記酸化性ガスと窒素、アルゴンなどの不活性ガスとの混合ガス雰囲気下で、加熱容器中で所定の温度において希望する溶融粘度が得られるまで加熱を行う方法を例示することができる。この場合の加熱処理温度としては、好ましくは150~280℃、より好ましくは200~270℃の範囲が選択して使用され、処理時間としては、好ましくは0.5~100時間、より好ましくは2~50時間の範囲が選択される。加熱する温度および時間をコントロールすることによって、目標とする粘度レベルを得ることができる。加熱処理に用いる装置としては、通常の熱風乾燥機、または回転式もしくは撹拌翼付の加熱装置であってもよいが、効率良く、しかもより均一に処理する場合は、回転式もしくは撹拌翼付の加熱装置を用いるのがより好ましい。
 ポリアリーレンスルフィド樹脂を窒素などの不活性ガス雰囲気下または減圧下で熱処理する場合の具体的方法としては、窒素などの不活性ガス雰囲気下または減圧(好ましくは7,000Nm-2以下)下で、加熱処理温度150~280℃、好ましくは200~270℃、加熱時間0.5~100時間、好ましくは2~50時間の条件で加熱処理する方法を例示することができる。加熱処理に用いる装置としては、通常の熱風乾燥機、または回転式もしくは撹拌翼付の加熱装置であってもよいが、効率良く、しかもより均一に処理する場合は、回転式もしくは撹拌翼付の加熱装置を用いるのがより好ましい。
 ポリアリーレンスルフィド樹脂を有機溶媒で洗浄する場合に、洗浄に用いる有機溶媒としては、ポリアリーレンスルフィド樹脂を分解する作用などを有しないものであれば特に制限はなく使用することができる。例えばN-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホンなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、ジクロロエチレン、ジクロロエタン、テトラクロロエタン、クロロベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが使用される。これらの有機溶媒のなかでも、特にN-メチルピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどが好ましく使用される。また、これらの有機溶媒は、1種類または2種類以上の混合で使用される。
 かかる有機溶媒による洗浄の具体的方法としては、有機溶媒中にポリアリーレンスルフィド樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でポリアリーレンスルフィド樹脂を洗浄する際の洗浄温度については特に制限はなく、常温~300℃程度の任意の温度が選択できる。洗浄温度が高くなるほど洗浄効率が高くなる傾向があるが、通常は常温~150℃の洗浄温度で十分な効果が得られる。なお、有機溶媒洗浄を施されたポリアリーレンスルフィド樹脂は、残留している有機溶媒を除去するため、水または温水で数回洗浄することが好ましい。上記水洗浄の温度は50~90℃であることが好ましく、60~80℃であることがより好ましい。
 ポリアリーレンスルフィド樹脂を熱水で洗浄する場合の具体的方法としては、以下の方法を例示することができる。すなわち、熱水洗浄によるポリアリーレンスルフィド樹脂の好ましい化学的変性の効果を発現するために、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作は、通常、所定量の水に所定量のポリアリーレンスルフィド樹脂を投入し、常圧であるいは圧力容器内で加熱、撹拌することにより行われる。ポリアリーレンスルフィド樹脂と水との割合は、水が多い方がよく、好ましくは水1リットルに対し、ポリアリーレンスルフィド樹脂200g以下の浴比で使用される。
 ポリアリーレンスルフィド樹脂を酸で洗浄する場合の具体的方法としては、以下の方法を例示することができる。すなわち、酸または酸の水溶液にポリアリーレンスルフィド樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。用いられる酸としては、ポリアリーレンスルフィド樹脂を分解する作用を有しないものであれば特に制限はなく、ギ酸、酢酸、プロピオン酸、酪酸などの脂肪族飽和モノカルボン酸、クロロ酢酸、ジクロロ酢酸などのハロ置換脂肪族飽和カルボン酸、アクリル酸、クロトン酸などの脂肪族不飽和モノカルボン酸、安息香酸、サリチル酸などの芳香族カルボン酸、シュウ酸、マロン酸、コハク酸、フタル酸、フマル酸などのジカルボン酸、および硫酸、リン酸、塩酸、炭酸、珪酸などの無機酸などが用いられる。これらの酸のなかでも、特に酢酸、塩酸がより好ましく用いられる。酸処理を施されたポリアリーレンスルフィド樹脂は、残留している酸または塩などを除去するため、水で数回洗浄することが好ましい。上記水洗浄の温度は50~90℃であることが好ましく、60~80℃であることが好ましい。また、洗浄に用いる水は、酸処理によるポリアリーレンスルフィド樹脂の好ましい化学的変性の効果を損なわない意味で、蒸留水または脱イオン水であることが好ましい。
 次に、本発明にかかる熱可塑性樹脂として使用するポリアミド樹脂とは、アミド結合を有する高分子からなる樹脂のことであり、アミノ酸、ラクタム、あるいはジアミンとジカルボン酸とを主たる原料とするものである。その原料の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、メタキシレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられる。本発明においては、これらの原料から誘導されるポリアミドホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。
 本発明において、特に有用なポリアミド樹脂の具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリペンタメチレンアジパミド(ナイロン56)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリペンタメチレンセバカミド(ナイロン510)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ナイロン66/6I/6)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ナイロン6T/M5T)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ナイロン6T/5T)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)およびこれらの混合物ないし共重合体などが挙げられる。ここで、“-/-”は共重合を表し、以下同じとする。
 とりわけ好ましいものとしては、ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12、ナイロン6/66、ナイロン66/6T、ナイロン6T/6Iコポリマーなどの例を挙げることができる。更にこれらのポリアミド樹脂を成形性、耐熱性、靱性、表面性などの必要特性に応じて混合物として用いることも実用上好適であるが、これらの中でナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12が最も好ましい。
 本発明で使用するポリアミド樹脂の重合度は、サンプル濃度0.01g/mlの98%濃硫酸溶液中、25℃で測定した相対粘度として、1.5~7.0の範囲が好ましく、特に1.8~6.0の範囲のポリアミド樹脂が好ましい。
 本発明で使用するポリアミド樹脂のアミノ末端基濃度には特に制限はないが、10×10―5mol/g以下が好ましく、8×10―5mol/g以下がより好ましく、6×10―5mol/g以下が特に好ましい。
 本発明で用いられるポリアミド樹脂は、通常の溶融重合や、プレポリマーをつくり、これをさらに融点以下の温度で固相重合する方法あるいは溶融押出機で高重合度化する方法など公知の重合方法を用いることができる。
 本発明で使用するポリエステル樹脂とは、(イ)ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体、(ロ)ヒドロキシカルボン酸またはそのエステル形成性誘導体、(ハ)ラクトンから選択された一種以上を主構造単位とする重合体または共重合体である。ここで、主構造単位とするとは、全構造単位中(イ)~(ハ)から選択された一種以上を50モル%以上有することを指し、80モル%以上有することが好ましい。
 上記ジカルボン酸またはそのエステル形成性誘導体としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-テトラブチルホスホニウムイソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、ダイマー酸などの脂肪族ジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸およびこれらのエステル形成性誘導体などが挙げられる。
 上記ジオールまたはそのエステル形成性誘導体としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオールなどの炭素数2~20の脂肪族グリコール、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコールなどの分子量200~100000の長鎖グリコール、4,4’-ジヒドロキシビフェニル、ハイドロキノン、t-ブチルハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールFなどの芳香族ジヒドロキシ化合物およびこれらのエステル形成性誘導体などが挙げられる。
 ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体を構造単位とする重合体または共重合体としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリへキシレンテレフタレート、ポリエチレンイソフタレート、ポリプロピレンイソフタレート、ポリブチレンイソフタレート、ポリシクロヘキサンジメチレンイソフタレート、ポリへキシレンイソフタレート、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート/テレフタレート、ポリプロピレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリエチレンテレフタレート/ナフタレート、ポリプロピレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリエチレンテレフタレート/シクロヘキサンジメチレンテレフタレート、ポリエチレンテレフタレート/5-ナトリウムスルホイソフタレート、ポリプロピレンテレフタレート/5-ナトリウムスルホイソフタレート、ポリブチレンテレフタレート/5-ナトリウムスルホイソフタレート、ポリエチレンテレフタレート/ポリエチレングリコール、ポリプロピレンテレフタレート/ポリエチレングリコール、ポリブチレンテレフタレート/ポリエチレングリコール、ポリエチレンテレフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/ポリテトラメチレングリコール、ポリエチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリエチレンテレフタレート/サクシネート、ポリプロピレンテレフタレート/サクシネート、ポリブチレンテレフタレート/サクシネート、ポリエチレンテレフタレート/アジペート、ポリプロピレンテレフタレート/アジペート、ポリブチレンテレフタレート/アジペート、ポリエチレンテレフタレート/セバケート、ポリプロピレンテレフタレート/セバケート、ポリブチレンテレフタレート/セバケート、ポリエチレンテレフタレート/イソフタレート/アジペート、ポリプロピレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/サクシネート、ポリブチレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/セバケートなどの芳香族ポリエステル樹脂、ポリエチレンオキサレート、ポリプロピレンオキサレート、ポリブチレンオキサレート、ポリエチレンサクシネート、ポリプロピレンサクシネート、ポリブチレンサクシネート、ポリエチレンアジペート、ポリプロピレンアジペート、ポリブチレンアジペート、ポリネオペンチルグリコールアジペート、ポリエチレンセバケート、ポリプロピレンセバケート、ポリブチレンセバケート、ポリエチレンサクシネート/アジペート、ポリプロピレンサクシネート/アジペート、ポリブチレンサクシネート/アジペートなどの脂肪族ポリエステル樹脂などが挙げられる。
 また、上記ヒドロキシカルボン酸またはそのエステル形成性誘導体としては、グリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸およびこれらのエステル形成性誘導体などが挙げられる。また、これらを構造単位とする重合体または共重合体としては、ポリグリコール酸、ポリ乳酸、ポリグリコール酸/ポリ乳酸、ポリヒドロキシ酪酸/ポリ-β-ヒドロキシ吉草酸などの脂肪族ポリエステル樹脂などが挙げられる。
 また、上記ラクトンとしては、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどが挙げられる。また、これらを構造単位とする重合体または共重合体としては、ポリカプロラクトン、ポリバレロラクトン、ポリプロピオラクトン、ポリカプロラクトン/ポリバレロラクトンなどが挙げられる。
 これらの中で、ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体、あるいはヒドロキシカルボン酸またはそのエステル形成性誘導体を主構造単位とする重合体または共重合体が好ましい。また、ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体を主構造単位とする重合体または共重合体の中でも、芳香族ジカルボン酸またはそのエステル形成性誘導体と脂肪族ジオールまたはそのエステル形成性誘導体を主構造単位とする重合体または共重合体がより好ましく、テレフタル酸またはそのエステル形成性誘導体と、エチレングリコール、プロピレングリコールおよびブタンジオールから選ばれる脂肪族ジオールまたはそのエステル形成性誘導体を主構造単位とする重合体または共重合体がさらに好ましい。中でも、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート/テレフタレート、ポリプロピレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリエチレンテレフタレート/ナフタレート、ポリプロピレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/ナフタレートなどの芳香族ポリエステル樹脂が特に好ましく、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンナフタレートおよびポリシクロヘキサンジメチレンテレフタレートから選ばれる少なくとも一種の芳香族ポリエステル樹脂が最も好ましい。また、これらを2種以上任意の配合量で用いることもできる。
 本発明において、上記ジカルボン酸またはそのエステル形成性誘導体と、ジオールまたはそのエステル形成性誘導体とを主構造単位とする重合体または共重合体中の全ジカルボン酸に対するテレフタル酸またはそのエステル形成性誘導体の割合は、30モル%以上であることが好ましく、40モル%以上であることがさらに好ましい。
 本発明において使用するポリエステル樹脂としては、溶融時に異方性を形成し得る液晶性ポリエステルを用いてもよい。液晶性ポリエステルの構造単位としては、芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位、アルキレンジオキシ単位、芳香族イミノオキシ単位などが挙げられる。
 本発明で用いるポリエステル樹脂のカルボキシル末端基量は、流動性、耐加水分解性および耐熱性の点で、50eq/t以下であることが好ましく、30eq/t以下であることがより好ましく、20eq/t以下であることがさらに好ましく、10eq/t以下であることが特に好ましい。下限は0eq/tである。
 本発明で用いるポリエステル樹脂のカルボキシル末端基量は、ポリエステル樹脂1.5gをo-クレゾール/クロロホルム=2/1(vol/vol)混合溶液50mlに溶解させた後、0.05Nの水酸化カリウムエタノール溶液で滴定することにより測定することができる。
 本発明で用いるポリエステル樹脂のヒドロキシ末端基量は、成形性および流動性の点で、50eq/t以上であることが好ましく、80eq/t以上であることがより好ましく、100eq/t以上であることがさらに好ましく、120eq/t以上であることが特に好ましい。なお、上限は180eq/tである。なお、本発明において、(A)熱可塑性樹脂のヒドロキシル末端基量は、重水素化ヘキサフルオロイソプロパノール溶媒を用いて、1H-NMRにより測定した値である。
 本発明で用いるポリエステル樹脂の分子量は、耐熱性の点で、重量平均分子量(Mw)8000を超え500000以下の範囲であることが好ましく、8000を超え300000以下の範囲であることがより好ましく、8000を超え250000以下の範囲であることがさらに好ましい。本発明において、ポリエステル樹脂のMwは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメチルメタクリレート(PMMA)換算の値である。
 本発明で使用するポリエステル樹脂は、公知の重縮合法や開環重合法などにより製造することができる。バッチ重合および連続重合のいずれでもよく、また、エステル交換法および直接重合法による反応のいずれでも適用することができるが、カルボキシル末端基量を少なくすることができ、かつ、流動性向上効果が大きくなるという点で、連続重合が好ましく、コストの点で、直接重合法が好ましい。 ここでいう直接重合法とは、ジカルボン酸とジオールとを主成分としてエステル化反応を行い、次いで、減圧下で重縮合反応することによりポリエステル樹脂を製造する方法である。また、エステル交換法とは、ジカルボン酸のエステル形成誘導体とジオールとを主成分としてエステル交換反応を行い、次いで減圧下で重縮合反応することによりポリエステル樹脂を製造する方法である。
 本発明で使用するポリエステル樹脂が、ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とを主成分とする縮合反応により得られる重合体または共重合体である場合には、ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とを、エステル化反応またはエステル交換反応し、次いで重縮合反応することにより製造することができる。なお、エステル化反応またはエステル交換反応、および重縮合反応を効果的に進めるために、これらの反応時に重合反応触媒を添加することが好ましい。重合反応触媒の具体例としては、チタン酸のメチルエステル、テトラ-n-プロピルエステル、テトラ-n-ブチルエステル、テトライソプロピルエステル、テトライソブチルエステル、テトラ-tert-ブチルエステル、シクロヘキシルエステル、フェニルエステル、ベンジルエステル、トリルエステル、あるいはこれらの混合エステルなどの有機チタン化合物、ジブチルスズオキシド、メチルフェニルスズオキシド、テトラエチルスズ、ヘキサエチルジスズオキシド、シクロヘキサヘキシルジスズオキシド、ジドデシルスズオキシド、トリエチルスズハイドロオキシド、トリフェニルスズハイドロオキシド、トリイソブチルスズアセテート、ジブチルスズジアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、ジブチルスズジクロライド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズオキシド、メチルスタンノン酸、エチルスタンノン酸、ブチルスタンノン酸などのアルキルスタンノン酸などのスズ化合物、ジルコニウムテトラ-n-ブトキシドなどのジルコニア化合物、三酸化アンチモン、酢酸アンチモンなどのアンチモン化合物などが挙げられる。これらの中でも有機チタン化合物およびスズ化合物が好ましく、さらに、チタン酸のテトラ-n-プロピルエステル、テトラ-n-ブチルエステルおよびテトライソプロピルエステルが好ましく、チタン酸のテトラ-n-ブチルエステルが特に好ましい。これらの重合反応触媒を2種以上併用することもできる。重合反応触媒の添加量は、機械特性、成形性および色調の点で、ポリエステル樹脂100質量部に対して、0.005~0.5質量部の範囲が好ましく、0.01~0.2質量部の範囲がより好ましい。
 本発明で用いられる(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sである。
 ここで、所定の加工温度とは、ポリアリーレンスルフィド樹脂では、後述する測定方法により測定した融点(Tm)+10℃~融点(Tm)30℃の温度範囲であり、ポリアミド樹脂では、融点(Tm)+25℃~融点(Tm)45℃の温度範囲であり、ポリエステル樹脂では、融点(Tm)+15℃~融点(Tm)35℃の温度範囲である。(A)熱可塑性樹脂として2種以上を併用する場合、上記溶融粘度を満たすものを混合して使用してもよく、または上記溶融粘度を満たさないものであっても、混合により上記溶融粘度範囲内となればよい。
 本発明で使用する(A)熱可塑性樹脂は、下記(a-1)ポリアリーレンスルフィド樹脂、(a-2)ポリアミド樹脂および(a-3)ポリエステル樹脂から選ばれる少なくとも1種以上であることが好ましい。
(a-1)融点+10℃~融点+30℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであるポリアリーレンスルフィド樹脂
(a-2)融点+25℃~融点+45℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリアミド樹脂
(a-3)融点+15℃~融点+35℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリエステル樹脂
 流動性、金属および熱硬化性樹脂との密着性、機械的強度、熱伝導率を高位でバランス化する点から、溶融粘度が上記範囲であることが好ましい。溶融粘度が1~100Pa・sが好ましく、溶融粘度が1~50Pa・sがさらに好ましく、溶融粘度が1~40Pa・sの範囲のものが特に好ましい。
 (A)熱可塑性樹脂の溶融粘度が1Pa・s未満であると熱可塑性樹脂組成物の混練時に混合に必要なトルクが得られないことから、炭酸マグネシウムおよびガラス繊維が均一に分散せず、熱可塑性樹脂組成物の流動性、成形品の機械的物性、および熱伝導性等の特性バラツキが発生する。さらに、金属および熱硬化性樹脂との密着性にバラツキが発生することによる成形品全体の密着性が低下する。また、成形品にバリが多く発生し、連続成形性の低下、バリが金型に残り、熱可塑性樹脂組成物の成形品充填末端部の充填不足により密着性が低下する。
 また、(A)熱可塑性樹脂の溶融粘度が200Pa・sより大きくなると、熱可塑性樹脂組成物の流動性が著しく低下し、金属および熱硬化性樹脂との界面をムラ(バラツキ)なく接することが困難になり、密着性が低下する。また、熱可塑性樹脂組成物の流動性低下による成形品の機械的強度や熱伝導性の特性バラツキが大きくなる。さらに、流動性低下により樹脂組成物混練時の装置の負荷が増大し製造が困難になる。また溶融粘度の異なる2種以上のポリアリーレンスルフィド樹脂、ポリアミド樹脂またはポリエステル樹脂を併用して用いてもよい。
 なお、融点(Tm)は示差熱量測定において、(A)熱可塑性樹脂を室温から20℃/分の昇温条件で測定した際に観察される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を指す。
 ここで、溶融粘度は、所定の加工温度において、剪断速度1,000(1/s)の条件下でキャピログラフ(東洋精機(株)社製)装置を用い、ダイス長10mm、ダイス孔直径1.0mmの条件により測定した値である。
 本発明に用いる(B)炭酸マグネシウムは、化学式MgCOで示される結晶水を含まない炭酸マグネシウム無水塩、または化学式xMgCO・Mg(OH)・yHO(Mg(OH)に対して、xは3~5、yは3~7の比となる)で表される塩基性炭酸マグネシウムが挙げられ、溶融成形時および湿熱環境での金属または熱硬化性樹脂との密着性、機械的強度の点から、熱重量解析(以下、TGAと称することがある)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下の炭酸マグネシウムが挙げられる。溶融成形時および湿熱環境での金属または熱硬化性樹脂とのさらに優れた密着性、機械的強度の点から、TGAにより窒素雰囲気下10℃/分の昇温速度で23℃から300℃まで昇温した場合の質量減少率が2%以下の炭酸マグネシウムが好ましい。TGAにより窒素雰囲気下10℃/分の昇温速度で23℃から500℃まで昇温した場合の質量減少率が3%以下の炭酸マグネシウムがさらに好ましい。
 (B)炭酸マグネシウムのTGAによる150℃の質量減少率が1%を越える場合、熱可塑性樹脂組成物の溶融混練時に質量減少に伴うガスの発生および質量減少成分(付着水、結晶水の脱離)による熱可塑性樹脂組成物の配合成分の分解等が発生し、溶融混練物の取得が困難になる。または、得られたペレットを用いて成形した成形品の密着性、機械的物性が大きく低下する。
 (B)炭酸マグネシウムのTGAによる300℃の質量減少率が2%以下の場合、熱可塑性樹脂組成物の溶融混練時に質量減少に伴うガスの発生および質量減少成分(結晶水の脱離)による熱可塑性樹脂組成物の配合成分の分解および発泡等が発生しにくいため、得られたペレットを用いて成形した成形品の密着性、機械的物性、熱伝導性の特性バランスが向上する傾向にある。
 (B)炭酸マグネシウムのTGAによる500℃の質量減少率が3%以下の場合、熱可塑性樹脂組成物の溶融混練時に質量減少に伴うガスの発生および質量減少成分(結晶水の脱離、および炭酸ガス発生)による熱可塑性樹脂組成物の配合成分の分解および発泡等が発生しにくい傾向にあり、得られたペレットを用いて成形した成形品の密着性、機械的物性、熱伝導性の特性バランスが向上する傾向にある。
 本発明で使用する(B)炭酸マグネシウムは、熱風乾燥機などの加熱処理装置を用いて加熱処理を行い、炭酸マグネシウム表面の付着水の除去および塩基性炭酸マグネシウムの結晶水の脱離処理を施すことで150℃の質量減少率を1%以下にすることができる。
 なお、加熱処理の条件は粉体を乾燥する装置であれば特に限定されないが、気流式乾燥機、真空加熱乾燥機、熱風乾燥機、流動層乾燥機、外熱式ロータリー乾燥機、振動乾燥機等用いることができ、100~400℃の温度範囲で、1時間以上乾燥するのが好ましい。また、乾燥機内は窒素や不燃性気体で置換されていても良い。
 また、化学式MgCOで示される結晶水を含まない炭酸マグネシウム無水塩は、天然品および合成品が存在する。天然品は不純物量が多いため、湿熱時の金属および熱硬化性樹脂への密着性にバラツキが発生する可能性がある。このため、炭酸マグネシウム無水塩は、合成品であることが好ましい。
 ここで、各測定温度における質量減少率は、TGA(熱重量解析)測定装置において、窒素ガス雰囲気中、10℃/分の昇温条件で23℃から600℃まで昇温して測定した値である。
 本発明で使用される(B)炭酸マグネシウムは、平均粒子径が0.1~40μmの範囲にあることが好ましい。(B)炭酸マグネシウムの平均粒子径が0.1μm未満であると、溶融成形時の熱可塑性樹脂組成物の流動性が低下し、金属または熱硬化性樹脂との密着界面への接触が低下し、ガラス繊維が溶融混練時に折れやすくなるため、強度が低下することがある。(B)炭酸マグネシウムの平均粒子径が40μmより大きくなると、成形品の薄肉部の流動性にムラ(バラツキ)が発生し、密着性および機械的強度が低下する傾向がある。(B)炭酸マグネシウムの平均粒子径は、1~35μmがより好ましく、平均粒子径は5~30μmがさらに好ましく、平均粒子径は10~25μmが特に好ましい。
なお、平均粒径はレーザー光回折による測定、水や有機溶媒を分散媒として濃度100ppmで島津製作所社製レーザー回折式粒度分布測定装置SALD-3100を用いて測定する。
 熱可塑性樹脂組成物中の(B)炭酸マグネシウムの充填性を密にし、密着性および機械的強度の安定性を高めるために、上記平均粒子径の範囲であれば、異なる2種以上の平均粒子径の(B)炭酸マグネシウムが用いられても良い。
 本発明で使用される(B)炭酸マグネシウムの形状は、粒子状、フレーク状、多面体状、繊維状いずれでも良いが、分散性などの観点から、粒子状、多面体状が最も好適である。
 本発明で使用する(B)炭酸マグネシウムを、ビニルトリエトキシシラン、ビニルトリクロロシランなどのビニルシラン化合物、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ―アミノプロピルトリメトキシシランなどのアミノシラン化合物、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシランなどのメタクリロキシシラン化合物、ステアリン酸、オレイン酸、モンタン酸、ステアリルアルコールなどの長鎖脂肪酸または長鎖脂肪族アルコールで表面処理することが好ましく、特にエポキシシラン化合物、アミノシラン化合物で表面処理した(B)炭酸マグネシウムの適用は、ポリアリーレンスルフィド樹脂およびポリアミド樹脂またはポリエステル樹脂成分との親和性を向上させ、湿熱環境下の密着性安定化、機械的強度の点で好適である。
 本発明に用いる(C)ガラス繊維は、繊維径が4~11μmである。ここで、(C)ガラス繊維の繊維径とは、単繊維直径の平均値のことである。(C)ガラス繊維は、流動性、機械的強度の点から繊維径が上記範囲であることが好ましい。特に、(C)ガラス繊維の繊維径は、5~8μmの範囲のものが流動性、機械的強度を高位でバランス化できる点で好ましい。(C)ガラス繊維の繊維径が4μm未満であると熱可塑性樹脂組成物の混練時にガラス繊維が折損し、機械的強度が低下する他、成形品表面にガラス繊維が浮き出て、ガラス繊維と樹脂成分の界面へ水分が浸入することにより高温高湿度下での密着性が低下する。(C)ガラス繊維の繊維径が11μmより大きくなると、熱可塑性樹脂組成物中のガラス繊維の本数が減少することになり、ガラス繊維による補強効果が得にくくなることから機械的強度が劣るようになる他、ミクロベースで寸法安定性の大きい部位と小さい部位が形成され、高温高湿度下での密着性が低下する。
 また、理由は定かではないが、繊維径が5~8μmの範囲のガラス繊維は、後述する(D)オレフィン系樹脂と配合することで、機械的強度、引張伸びが大きく向上するため特に好ましい。
 ここで、(C)ガラス繊維の繊維径は以下の方法により測定することができる。熱可塑性樹脂組成物を、空気中において600℃で5時間加熱して樹脂を灰化させて除去する。残存したものをSEM-XMAを用いて倍率1,000倍にて観察し、無作為に選択した25本のガラス繊維の断面(各繊維の最短部)直径をμm単位まで測定し、その平均値を繊維径として算出する。
 熱可塑性樹脂組成物中のガラス繊維の繊維径は、一般的に熱可塑性樹脂組成物製造時に仕込んだガラス繊維の繊維径と一致する。
 本発明で使用する(C)ガラス繊維の材質としては、Eガラス、Hガラス、Aガラス、Cガラス、天然石英ガラス、合成石英ガラスなどが挙げられ、Eガラス、Hガラスが特に好ましい。ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。
 (C)ガラス繊維の形態としては、チョップドガラス繊維、ミルドガラス繊維等いずれのものでも使用することができるが、熱可塑性樹脂組成物の流動性、熱可塑性樹脂組成物の成形品の機械的強度の点からチョップドガラス繊維が好ましい。
 本発明の熱可塑性樹脂組成物において、(A)熱可塑性樹脂、(B)炭酸マグネシウムおよび(C)ガラス繊維の配合量は、(A)熱可塑性樹脂、(B)炭酸マグネシウムおよび(C)ガラス繊維の合計100質量%として(A)熱可塑性樹脂が25~50質量%、(B)炭酸マグネシウムが10~70質量%および(C)ガラス繊維が5~40質量%である。より好ましくは(A)熱可塑性樹脂が30~50質量、(B)炭酸マグネシウムが15~65質量%および(C)ガラス繊維が10~35質量%、さらに好ましくは(A)熱可塑性樹脂が35~50質量%、(B)炭酸マグネシウムが20~60質量%(C)ガラス繊維が15~30質量%の範囲である。
 (A)熱可塑性樹脂の配合量が25質量%より少ないと流動性が低下する。また、50質量%より多いと湿熱時の金属および熱硬化性樹脂との密着性が得られない。(B)炭酸マグネシウムの配合量が10質量%より少ないと(B)炭酸マグネシウムが分散不足となり、熱伝導性の低下や、湿熱時の金属および熱硬化性樹脂の密着性が低下する。また、70質量%より多いと、熱可塑性樹脂組成物の流動性低下や混練時の装置の負荷が増大し製造が困難になる。(C)ガラス繊維の配合量が5質量%より少ないと機械的強度が低下する。特に、熱可塑性樹脂組成物と金属および熱硬化性樹脂と接している界面が高温高湿度下での寸法変化による応力に対して、熱可塑性樹脂組成物にクラックが発生する。また、40質量%より多いと樹脂組成物混練時の装置の負荷が増大し製造が困難になる他、成形品の成形時流動性不足による空気の巻き込みにより、熱伝導性が不足し、さらに金属および熱硬化性樹脂との密着性が低下する。
 本発明の成形品を構成する熱可塑性樹脂組成物は、上記のとおり(a-1)ポリアリーレンスルフィド樹脂、(a-2)ポリアミド樹脂および、(a-3)ポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sである(A)熱可塑性樹脂、TGA(熱重量解析)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下である(B)炭酸マグネシウム、および繊維径4~11μmの(C)ガラス繊維を配合することにより、熱流計法で測定した熱伝導率が0.8W/m・K以上のものを得ることができる。ここで、熱伝導率は、熱可塑性樹脂組成物からなる角形成形品(50mm×50mm×3mm厚み、フィルムゲート)を作成し、この成形品の両表面を深さ0.5mm切削して厚さ2mmにし、さらに切削を行い縦×横(20mm×20mm)の試験片としたものを用いて熱流計法熱伝導率測定装置(リガク社製GH-1S)により測定した値である。
 本発明の熱可塑性樹脂組成物は、自動車などに搭載されるモーター部品やパワーコントロールユニット部品などの周辺部材に用いられる際に、モーター部品やパワーコントロールユニット内部の半導体やコイルなどの電子部品から発生した熱を放散し、熱によるモーターや半導体、コイル等の電子部品の劣化抑制ならびに出力低下を抑制し、さらには金属端子および半導体素子を封止している熱硬化性樹脂等と密着している部分の熱劣化、素材感の収縮率差を抑制しうることが好ましい。放熱性を最大限に発揮するため、本発明の熱可塑性樹脂組成物の熱伝導率は、0.8W/m・K以上であることが好ましく、熱伝導率は1.0W/m・K以上であることがより好ましく、熱伝導率は1.2W/m・K以上がさらに好ましい。本発明の熱可塑性樹脂組成物の熱伝導率が0.8W/m・K未満であると、発熱部分の温度上昇によるモーターや電子部品の出力が低下するとともに、製品寿命が低下する。
 また、本発明では、熱可塑性樹脂組成物の靭性付与によるさらなる密着性および機械的強度向上の観点から、さらに(D)オレフィン系樹脂を配合することが好ましい。(D)オレフィン系樹脂の配合量は、(A)熱可塑性樹脂、(B)炭酸マグネシウムおよび(C)ガラス繊維の合計100質量部に対し対して1~20質量部であることが好ましい。
 本発明で用いる(D)オレフィン系樹脂は、オレフィンを(共)重合した重合体であり、具体的には、オレフィン系(共)重合体、およびそれらにエポキシ基、酸無水物基、アイオノマーなどの官能基を有する単量体成分(以下、官能基含有成分と略す。)を導入して得られるオレフィン系(共)重合体(変性オレフィン系(共)重合体)などが挙げられる。
 本発明においてオレフィン系樹脂は1種または2種以上で使用することも可能である。
 オレフィン系(共)重合体としては、エチレン、プロピレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、イソブチレンなどのα-オレフィン単独または2種以上を重合して得られる(共)重合体、α-オレフィンとアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのα,β-不飽和酸およびそのアルキルエステルとの共重合体が挙げられる。
 オレフィン系(共)重合体の好適な具体例としては、ポリエチレン、ポリプロピレン、エチレン/プロピレン共重合体、エチレン/ブテン-1共重合体、エチレン/アクリル酸エチル共重合体、エチレン/アクリル酸ブチル共重合体、エチレン/メタクリル酸メチル共重合体、エチレン/メタクリル酸ブチル共重合体などが挙げられる。
 エポキシ基、酸無水物基、アイオノマーなどの官能基を有する単量体成分を導入した変性オレフィン系(共)重合体において、導入する官能基含有成分の例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-(2,2,1)-5-ヘプテン-2,3-ジカルボン酸、エンドビシクロ-(2,2,1)-5-ヘプテン-2,3-ジカルボン酸無水物などの酸無水物基を含有する単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジルなどのエポキシ基を含有する単量体、カルボン酸金属錯体などのアイオノマーを含有する単量体が挙げられる。
 変性オレフィン系(共)重合体の官能基含有成分を導入する方法は特に制限なく、共重合せしめたり、オレフィン重合体にラジカル開始剤を用いてグラフト導入するなどの方法を用いることができる。官能基含有成分の導入量は変性オレフィン系(共)重合体全体に対して0.001~40モル%、好ましくは0.01~35モル%の範囲内であるのが適当である。
 本発明で使用する変性オレフィン系(共)重合体の具体例としては、エチレン/プロピレン-g-メタクリル酸グリシジル共重合体(“g”はグラフトを表す、以下同じ)、エチレン/ブテン-1-g-メタクリル酸グリシジル共重合体、エチレン/アクリル酸グリシジル共重合体、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体、エチレン/アクリル酸メチル-g-無水マレイン酸共重合体、エチレン/アクリル酸エチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸メチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸エチル-g-無水マレイン酸共重合体、エチレン/メタクリル酸共重合体の亜鉛錯体、エチレン/メタクリル酸共重合体のマグネシウム錯体、エチレン/メタクリル酸共重合体のナトリウム錯体などを挙げることができる。
 変性オレフィン系(共)重合体の好ましい例としては、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体、エチレン/アクリル酸エチル-g-無水マレイン酸共重合体などが挙げられる。
 変性オレフィン系(共)重合体のとりわけ好ましい例としては、エチレン/メタクリル酸グリシジル共重合体、エチレン/アクリル酸メチル/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸メチル/メタクリル酸グリシジル共重合体などが挙げられる。
 (D)オレフィン系樹脂の配合量は、(A)熱可塑性樹脂、(B)炭酸マグネシウム、(C)ガラス繊維の合計100質量部に対して、1~20質量部、好ましくは2~15質量部、より好ましくは3~10質量部である。(D)オレフィン系樹脂を1質量部以上配合することで、熱可塑性樹脂組成物の柔軟性および耐衝撃性を改良する効果が得られるので好ましく、金属および熱硬化性樹脂との密着も向上するほか、機械的強度も向上する。また、20質量部以下配合することで、熱可塑性樹脂組成物の熱安定性が損なわれることがなく、熱可塑性樹脂組成物を製造する際の溶融混練時の増粘を抑えることもでき、また良好な射出成形性を維持することができるので好ましい。
 また、(D)オレフィン系樹脂は、TGA(熱重量解析)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下である炭酸マグネシウム(B)と併用した場合、溶融混練時および溶融成形時における(B)炭酸マグネシウムの質量減少成分(付着水、結晶水の脱離)による(D)オレフィン系樹脂の分解が抑制され、熱可塑性樹脂組成物のさらなる靱性向上、密着性が向上するばかりか、溶融成形時に(D)オレフィン系樹脂の分解により発生するガスによる金型付着物(金型汚れ)低減、成形品外観低下が低減される。
 さらに使用する(B)炭酸マグネシウムの質量減少率が、TGA(熱重量解析)により窒素雰囲気下10℃/分の昇温速度で23℃から300℃まで昇温した場合に2%以下、さらには、TGA(熱重量解析)により窒素雰囲気下10℃/分の昇温速度で23℃から500℃まで加熱した場合に3%以下と、より高温での質量減少率が低い場合、(D)オレフィン系樹脂の併用による熱可塑性樹脂組成物の靱性、および密着性の向上、金型付着物の低減、ならびに得られる成形品の外観が優れる等の効果が大きくなる。
 さらに、本発明で用いる熱可塑性樹脂組成物には、本発明の効果を損なわない範囲において、ポリアルキレンオキサイドオリゴマー系化合物、エステル系化合物、有機リン系化合物などの可塑剤、無機微粒子、有機リン化合物、金属酸化物、ポリエーテルエーテルケトンなどの結晶核剤、ポリエチレン、ポリプロピレン等のポリオレフィン、モンタン酸ワックス類、モンタン酸及びその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、各種ビスアミド、ビス尿素、ポリエチレンワックス、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン、ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、リン系酸化防止剤、硫黄系酸化防止剤等の酸化防止剤、耐候剤および紫外線防止剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体等)、発泡剤、顔料(硫化カドミウム、フタロシアニン、カーボンブラック、メタリック顔料等)、染料(ニグロシン等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンの組み合わせ等)などの通常の添加剤を添加することができる。
 本発明の熱可塑性樹脂組成物は、通常公知の方法で製造される。例えば、(A)熱可塑性樹脂、(B)炭酸マグネシウム、(C)ガラス繊維中に、必要に応じて(D)オレフィン系樹脂などのその他の必要な添加剤を予備混合して、または予備混合することなく押出機などに供給して十分溶融混練することにより調製される。具体的には原料の混合物を単軸あるいは二軸の押出機、バンバリーミキサー、ニーダー、ミキシングロールなどの通常公知の溶融混練機に供して250~400℃の温度で混練する方法などを例として挙げることができる。また、原料の混合順序にも特に制限はなく、全ての原材料を上記の方法により溶融混練する方法、一部の原材料を上記の方法により溶融混練し、さらに残りの原材料を溶融混練する方法、あるいは一部の原料を単軸あるいは二軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。好ましくは(A)熱可塑性樹脂、(D)オレフィン系樹脂を溶融混練後、(B)炭酸マグネシウム、(C)ガラス繊維を添加、溶融混練して製造する方法である。中でも二軸押出機を用いて、(A)熱可塑性樹脂、(D)オレフィン系樹脂を供給、溶融混練後、サイドフィーダーを用いて(B)炭酸マグネシウム、(C)ガラス繊維を供給、混練した後、真空状態に曝して発生するガスを除去する方法を好ましく挙げることができる。このような押出工程で熱可塑性樹脂組成物を得ることにより各成分の分散状態が良好な材料を得ることができる。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することももちろん可能である。
 本発明では、熱可塑性樹脂組成物を、通常の成形方法(射出成形、プレス成形、インジェクションプレス成形など)により、溶融成形することにより成形品を成形する。なかでも量産性の点から射出成形、インジェクションプレス成形により成形品を成形することが好ましい。
 本発明の熱可塑性樹脂組成物は、成形加工性、熱伝導性、寸法安定性、強度に優れているだけでなく、高温高湿度環境での金属および熱硬化性樹脂との密着性に優れているという未知なる属性を有しており、本発明の熱可塑樹脂組成物をインサート成形等により、金属と密着させて使用される部材、および本発明の熱可塑性樹脂組成物からなる成形品に熱硬化性樹脂を成形し、密着して利用される部材に適している。さらにそれら部材の周辺が高温高湿度下にさらされる際に金属および熱硬化性樹脂と本発明の熱可塑性樹脂組成物との密着性が保たれることにより、製品を保護、特性低下抑制が必要とされる部材に適している。特に近年開発が進んでいる駆動機構が、ガソリンエンジンと電気モーターを併用しているハイブリッド(HEV)自動車や、駆動機構がモーターのみで走行する燃料電池自動車、電気(EV)自動車のモーター周辺部品およびモーターを駆動させるためにバッテリーの出力を制御するパワーコントロールユニット周辺部品に好適に用いることが可能である。
 モーター周辺部品として具体的には、モーターステーター周辺の筐体、モーターステーター内部の冷却水循環路および/または冷却オイル循環路周辺部品、モーターインシュレーター、コイルボビン、コイルを封止している熱硬化性樹脂の外枠、モーター駆動電極の保護枠、モーター冷却水および/またはオイル配管、配管保持器具、キャップなど高温や高湿度下で使用される部材、さらには金属、熱硬化性樹脂と接する部品が挙げられる。
 パワーコントロールユニット周辺部品として具体的には、昇圧コンバーター筐体、インバーター筐体、モータージェネレーターECU筐体、パワーコントロールユニット筐体、さらには昇圧コンバーターおよび/またはインバーターおよび/またはモータージェネレーターECU内部の電極や端子などの金属、半導体および/または半導体が搭載されている回路基板を封止している熱硬化性樹脂と接する部品が挙げられる。これらの部材は、本発明の熱可塑性樹脂組成物からなる成形品と金属や熱硬化性樹脂またはセラミックスなどとの複合体として用いることもできる。
 また、本発明の熱可塑性樹脂組成物は、上記した部材の他に、ハウジングなどの構造部品、電装部品ケースなどに適している。センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、磁気ヘッドケース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、パラボラアンテナ、コンピューター関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスク等の音声機器部品、照明部品、冷蔵庫部品、エアコン部品、あるいは給湯機や風呂の湯量、温度センサーなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、ライターなどに代表される機械関連部品;顕微鏡、双眼鏡、カメラ、時計等に代表される高額機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシャルメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、湯温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ウォーターポンプインペラー、タービンベイン、デュストリビューター、スタータースイッチ、イグニッションコイルおよびそのボビン、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、走行駆動部以外のモーター関連部品(ワイパー可動部、パワーウインドウ可動部、ラジエターモーター用ブラッシュホルダー、インシュレーター、ローター、モーターコア、バスリング)等の自動車・車両関連部品、その他各種用途にも適用可能である。特に小型精密化による製品設計自由度および成形品の温度や湿度変化による成形品特性低下抑制、かつ機械強度、流動性に優れることから、特に成形品の形状自由度が要求され、自動車部品用途、電気・電子部品用途、熱機器部品用途等に有用である。
 本発明の熱可塑性樹脂組成物は、金属および熱硬化性樹脂と接していても良く、熱可塑性樹脂組成物を金属にインサート成形する方法や、熱可塑性樹脂組成物の成形品に熱硬化性樹脂を注入し硬化させる方法などが挙げられる。ここでいう金属とは、例えばアルミニウム、銅、鉄、スズ、ニッケル、亜鉛等が挙げられるが、アルミニウム合金または、ステンレス鋼等の合金でも良い。また、表面がアルミニウム、スズ、ニッケル、金、銀等でメッキ加工されたものでも好ましく用いることができる。なかでもアルミニウム、アルミニウム合金が好ましい。
 また、ここでいう熱硬化性樹脂とは、例えばエポキシ樹脂、ポリウレタン、フェノール樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂、アリルエステル樹脂等が挙げられるが、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、シリコーン樹脂等が好ましく、なかでもエポキシ樹脂、シリコーン樹脂が注型時の流動性、硬化物の耐湿熱性の点でより好ましい。
 以下、実施例を挙げて本発明を詳細に説明するが、以下の実施例は、例示的なものであり、本発明は以下の実施例に限定されるものではない。
 <融点の測定>
 示差熱量測定において、(A)熱可塑性樹脂を室温から20℃/分の昇温条件で測定した際に観察される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を融点(Tm)とした。
 <溶融粘度の測定>
 溶融粘度は、(A)熱可塑性樹脂を所定の加工温度の条件で、剪断速度1,000(1/s)の条件下でキャピログラフ(東洋精機(株)社製)装置を用い、ダイス長10mm、ダイス孔直径1.0mmの条件により測定した値である。
 <質量減少率>
 (B)炭酸マグネシウムを、TGA(熱重量解析)測定装置において、窒素ガス雰囲気中、10℃/分の昇温条件で23℃から600℃まで昇温した。150℃、300℃、500℃の質量減少率を測定した。
 <ガラス繊維の繊維径>
 熱可塑性樹脂組成物を、空気中において600℃で5時間加熱して樹脂を灰化させて除去する。残存したものをSEM-XMAを用いて倍率1,000倍にて観察し、無作為に選択した25本のガラス繊維の断面(各繊維の最短部)直径をμm単位まで測定し、その平均値を繊維径として算出した。
 参考例1 (A)熱可塑性樹脂(ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエステル樹脂)
 <PPS-1の調整>
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(以下、NMPと称することもある)11.45kg(115.50モル)、及びイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン10.48kg(71.27モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温した。270℃で100分反応した後、オートクレーブの底栓弁を開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
 得られた固形物およびイオン交換水76リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した76リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
 得られたケークおよびイオン交換水90リットルを撹拌機付きオートクレーブに仕込み、pHが7になるよう酢酸を添加した。オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
 内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76リットルを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。得られたPPSをPPS-1とした。
 <PPS-2の調整>
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、NMP11.45kg(115.50モル)、酢酸ナトリウム1.89kg(23.1モル)、及びイオン交換水5.50kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水9.77kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン10.42kg(70.86モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温し、270℃で140分反応した。その後、270℃から250℃まで15分かけて冷却しながら水2.40kg(133モル)を圧入した。ついで250℃から220℃まで75分かけて徐々に冷却した後、室温近傍まで急冷し内容物を取り出した。
 内容物を約35リットルのNMPで希釈しスラリーとして85℃で30分撹拌後、80メッシュ金網(目開き0.175mm)で濾別して固形物を得た。得られた固形物を同様にNMP約35リットルで洗浄濾別した。得られた固形物を70リットルのイオン交換水に投入し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収する操作を合計3回繰り返した。得られた固形物および酢酸32gを70リットルのイオン交換水に投入し、70℃で30分撹拌後、80メッシュ金網で濾過し、更に得られた固形物を70リットルのイオン交換水に投入し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収した。このようにして得られた固形物を窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。得られたPPSをPPS-2とした。
A1:参考例1のPPS-1、融点281℃、301℃(融点+20℃)での溶融粘度30Pa・s
A2:参考例1のPPS-2、融点280℃、300℃(融点+20℃)での溶融粘度100Pa・s
A3:融点277℃、297℃(融点+20℃)での溶融粘度275Pa・sのポリフェニレンスルフィド樹脂
A4:融点225℃、260℃(融点+35℃)での溶融粘度90Pa・sのポリアミド6樹脂
A5:融点225℃、260℃(融点+35℃)での溶融粘度340Pa・sのポリアミド6樹脂
A6:融点265℃、300℃(融点+35℃)での溶融粘度65Pa・sのポリアミド66樹脂
A7:融点225℃、250℃(融点+25℃)での溶融粘度125Pa・sのポリブチレンテレフタレート樹脂
A8:融点224℃、249℃(融点+25℃)での溶融粘度320Pa・sのポリブチレンテレフタレート樹脂
 参考例2 (B)炭酸マグネシウム
B1:ナイカイ塩業社製“TT”を熱風乾燥機で110℃、20hr加熱処理したもの。加熱処理後の150℃質量減少率は0.95%、300℃質量減少率は13.50%、500℃質量減少率は50.00%
B2:ナイカイ塩業社製“TT”を熱風乾燥機で300℃、3hr加熱処理したもの。加熱処理後の150℃質量減少率は0.45%、300℃質量減少率は0.65%、500℃質量減少率は42.80%
B3:神島化学工業社製“MSPS”。150℃質量減少率は0.01%以下、300℃質量減少率は0.01%、500℃質量減少率は0.10%
B4:ナイカイ塩業社製“TT”。150℃質量減少率は2.05%、300℃質量減少率は15.60%、500℃質量減少率は53.00%
 参考例3 (C)ガラス繊維
C1:日本電気硝子社製チョップドストランド“T-747H”、繊維径10.5μm
C2:日本電気硝子社製チョップドストランド“T-790DE”、繊維径6.5μm
C3:日本電気硝子社製チョップドストランド“T-717”、繊維径13μm
 参考例4 (D)オレフィン系樹脂
D1:住友化学工業社製“BF-E”、エチレン/グリシジルメタクリレート=88/12重量%共重合体
D2:三井化学社製“タフマーA4085”、エチレン/ブテン-1共重合体
D3:三井化学社製“タフマーMH5020”、エチレン/ブテン-1-g-無水マレイン酸共重合体
 実施例1~10、14~22
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表1~2に示す参考例1のポリフェニレンスルフィド樹脂、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表1~2に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。ついで得られたペレットを130℃の熱風乾燥機で5時間乾燥した後、後述する評価を行った。結果を表1~2に示す。
 実施例11
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表1に示す参考例1のポリアミド6樹脂および、参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表1に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。ついで得られたペレットを80℃の真空乾燥機で12時間以上真空乾燥した後、後述する評価を行った。結果を表1に示す。
 実施例12、23
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表2に示す参考例1のポリアミド66樹脂、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表2に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。ついで得られたペレットを80℃の真空乾燥機で12時間以上真空乾燥した後、後述する評価を行った。結果を表1~2に示す。
 実施例13、24
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表2に示す参考例1のポリエステル樹脂(ポリブチレンテレフタレート樹脂)、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表2に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。ついで得られたペレットを110℃の熱風乾燥機で6時間乾燥した後、後述する評価を行った。結果を表2に示す。
 比較例1~2、4、6、9、11、14、16、17
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表3~5に示す参考例1のポリフェニレンスルフィド樹脂、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表3~5に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。比較例6は、熱可塑性樹脂組成物の粘度が高く、押出機トルクが上昇しペレットを取得することが困難であり、収量が大幅に減少した。比較例9は、融混練時に押出機吐出口からガスが発生し、ペレットの取得が困難であり、収量が大幅に減少した。比較例1~2、4、11、14、16、17で得られたペレットを130℃の熱風乾燥機で5時間乾燥した後、後述する評価を行った。結果を表3~5に示す。
 比較例7、12
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表3~4に示す参考例1のポリアミド樹脂および、参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウム、および参考例3のガラス繊維を中間添加口から投入し、表3~4に示す加工温度で、スクリュー回転数200rpmで溶融混練を行ったが、比較例7は樹脂組成物の粘度が高く、押出機トルクが上昇しペレットを取得することが困難であり、ペレット収量が大幅に減少した。比較例12は、樹脂組成物の粘度が高く、押出機トルクが著しく上昇し、ペレットを取得することができなかった。結果を表3および4に示す。
 比較例15
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表4に示す参考例1のポリアミド樹脂、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表4に示す加工温度で、スクリュー回転数200rpmで溶融混練を行ったが、押出機トルクが上昇しペレットを取得することが困難であり、ペレット収量が大幅に減少した。ついで得られたペレットを80℃の真空乾燥機で12時間以上真空乾燥した後、後述する評価を行った。結果を表4に示す。
 比較例3、5、8、10、13
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表3~4に示す参考例1のポリエステル樹脂(ポリブチレンテレフタレート樹脂)、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表3~4に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。比較例8は樹脂組成物の粘度が高く、押出機トルクが上昇しペレットを取得することが困難であり、ペレット収量が大幅に減少した。比較例13は、樹脂組成物の粘度が高く、押出機トルクが著しく上昇し、ペレットを取得することができなかった。比較例3、5、10で得られたペレットを110℃の熱風乾燥機で6時間乾燥した後、後述する評価を行った。結果を表3~4に示す。
 実施例16、21、25、26
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、表5に示す参考例1のポリフェニレンスルフィド樹脂、および参考例4のオレフィン系樹脂を元込め部から添加し、参考例2の炭酸マグネシウムおよび、参考例3のガラス繊維を中間添加口から投入し、表5に示す加工温度で、スクリュー回転数200rpmで溶融混練を行い、ペレットを得た。ついで得られたペレットを130℃の熱風乾燥機で5時間乾燥した後、後述する評価を行った。結果を表5に示す。
 (1)吸湿乾燥サイクル金属密着性
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、5mm×5mm×50mm長さのアルミ製角柱の両端10mmから、厚さ5mmで長さ30mmを覆うように成形し(成形部外径寸法は、15mm×15mm×30mm長さ)、吸湿乾燥サイクル金属密着試験片を50個作製した。次いで得られた試験片を恒温恒湿機にて85℃/85%RHで24時間吸湿処理した後、熱風乾燥機にて110℃で24時間乾燥する。上記吸湿と乾燥を10回繰り返した後、赤インクに浸漬し水洗、乾燥したものを実体顕微鏡でクラックのチェックを行う浸透深傷法で評価した。成形品とアルミ製角柱との密着部位から、インクが浸み出てきた個数が少ないほど密着性に優れる。
 (2)吸湿乾燥サイクル熱硬化性樹脂密着性
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、外径寸法が35mm×35mm×15mm高さ、成形品厚み1.5mmの箱型成形品を50個作製した。この箱型成形品内にRTVシリコーンゲル(一液付加タイプKE-1850、信越シリコーン社製)を箱内面すりきりいっぱいまで注入し、120℃×1時間硬化させ、吸湿乾燥サイクル熱硬化性樹脂密着試験片を各50個作製した。次いで得られた試験片を恒温恒湿機にて85℃/85%RHで24時間吸湿処理した後、熱風乾燥機にて110℃で24時間乾燥する。上記吸湿と乾燥を10回繰り返した後、赤インクに浸漬し水洗、乾燥したものを実体顕微鏡でクラックのチェックを行う浸透深傷法で評価した。成形品とシリコーンゲルとの密着部位から、インクが浸み出てきた個数が少ないほど密着性に優れる。
 (3)引張強度
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、ASTM 1号ダンベル型試験片を作成し、ASTM D638に準拠して評価した。この値が高いほど剛性が優れる。
 (4)引張伸び
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、ASTM 1号ダンベル型試験片を作成し、ASTM D638に準拠して評価した。この値が高いほど靭性が優れる。
 (5)熱伝導率
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、角形成形品(50mm×50mm×3mm厚み、フィルムゲート)を作製し、この成形品の両表面を深さ0.5mm切削して厚さ2mmの試験片としたものを用いて熱流計法熱伝導率測定装置(リガク社製GH-1S)により熱伝導率を測定した。この値が高いほど熱伝導性に優れる。
 (6)寸法安定性(成形収縮率)
 溶融混練で得られたペレットを、射出成形機UH1000(80t)(日精樹脂工業社製)を用い、表1から表5の加工温度および金型温度条件で、角形成形品(30mm×30mm×3mm厚み、フィルムゲート)を成形下限厚+5MPaで成形し、金型寸法と、得られた成形品の流れ方向(MD)と垂直方向(TD)の寸法の比を算出し、成形収縮率とした。0%に近いほど寸法安定性に優れる。
 (7)金型汚れ量および外観
 溶融混練で得られたペレットを、射出成形機SE-30D(30t)(住友重機械工業社製)を用い、表5の加工温度および金型温度条件で、薄板状成形品(50mm長さ×20mm幅×2mm厚み、2mm幅×1mm厚みのサイドゲート)であって、ガスベント部のサイズが、20mm長さ×10mm幅×5μm深さの金型汚れ量および金型外観評価用金型で、射出速度100mm/sとして、樹脂組成物ごとの充填時間が0.4秒となるよう射出圧力40~100MPa内で設定し、さらに保圧25MPa、保圧速度30mm/s、保圧時間3秒として連続成形を行った。100ショット完了時にガスベント部および金型キャビティ部に汚れが見られなかった場合に「良好」(◎)、汚れが見られた場合に「不良」(×)として、金型外観を評価した。また、上記成形完了時にガスベント部に付着した汚れを、光学顕微鏡で確認しながらマイクロサンプリング用ナイフで採取し、質量を測定し、金型汚れ量とした。金型による成形品の概略形状を図1に示す。図1(A)は、成形品の正面図、図1(B)は成形品の側面図である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (8)

  1.  (A)熱可塑性樹脂と、(B)炭酸マグネシウムと、(C)ガラス繊維とを配合してなる熱可塑性樹脂組成物であって、
     前記(A)熱可塑性樹脂、前記(B)炭酸マグネシウムおよび前記(C)ガラス繊維の合計100質量%として、前記(A)熱可塑性樹脂が25~50質量%、前記(B)炭酸マグネシウムが10~70質量%、前記(C)ガラス繊維が5~40質量%の割合で配合され、
     前記(A)熱可塑性樹脂は、ポリアリーレンスルフィド樹脂、ポリアミド樹脂およびポリエステル樹脂から選ばれる少なくとも1種以上であって、所定の加工温度条件下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであり、
     前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から150℃まで昇温した場合の質量減少率が1%以下であり、
     前記(C)ガラス繊維の繊維径が、4~11μmであることを特徴とする熱可塑性樹脂組成物。
  2.  前記(A)熱可塑性樹脂は、下記(a-1)ポリアリーレンスルフィド樹脂、(a-2)ポリアミド樹脂および(a-3)ポリエステル樹脂から選ばれる少なくとも1種以上であることを特徴とする請求項1に記載の熱可塑性樹脂組成物。
    (a-1)融点+10℃~融点+30℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が1~200Pa・sであるポリアリーレンスルフィド樹脂
    (a-2)融点+25℃~融点+45℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリアミド樹脂
    (a-3)融点+15℃~融点+35℃の加工温度下、剪断速度1,000(1/s)における溶融粘度が、1~200Pa・sであるポリエステル樹脂
  3.  前記(B)炭酸マグネシウムは、熱重量解析(TGA)により窒素雰囲気下10℃/分の昇温速度で23℃から300℃まで加熱した場合の質量減少率が2%以下であることを特徴とする請求項1または2に記載の熱可塑性樹脂組成物。
  4.  前記(A)熱可塑性樹脂、前記(B)炭酸マグネシウムおよび前記(C)ガラス繊維の合計100質量部に対して、さらに(D)オレフィン系樹脂を1~20質量部配合してなることを特徴とする請求項1~3のいずれか一つに記載の熱可塑性樹脂組成物。
  5.  前記(C)ガラス繊維の繊維径が5~8μmであることを特徴とする請求項1~4のいずれか一つに記載の熱可塑性樹脂組成物。
  6.  請求項1~5のいずれか一つに記載の熱可塑性樹脂組成物を射出成形して得られることを特徴とする成形品。
  7.  前記成形品は、自動車部品、電気電子部品または発電・熱交換機器部品であることを特徴とする請求項6に記載の成形品。
  8.  前記成形品は、前記熱可塑性樹脂組成物が金属および/または熱硬化性樹脂と接していることを特徴とする請求項6または7に記載の成形品。
PCT/JP2013/053900 2012-02-23 2013-02-18 熱可塑性樹脂組成物および成形品 WO2013125495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147021434A KR20140136921A (ko) 2012-02-23 2013-02-18 열가소성 수지 조성물 및 성형품
CN201380010116.7A CN104144983A (zh) 2012-02-23 2013-02-18 热塑性树脂组合物和成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012037526 2012-02-23
JP2012-037526 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125495A1 true WO2013125495A1 (ja) 2013-08-29

Family

ID=49005680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053900 WO2013125495A1 (ja) 2012-02-23 2013-02-18 熱可塑性樹脂組成物および成形品

Country Status (5)

Country Link
JP (1) JPWO2013125495A1 (ja)
KR (1) KR20140136921A (ja)
CN (1) CN104144983A (ja)
TW (1) TW201343750A (ja)
WO (1) WO2013125495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
WO2023022139A1 (ja) * 2021-08-16 2023-02-23 ポリプラスチックス株式会社 二色成形用樹脂組成物及びその成形品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210422B2 (ja) * 2015-12-21 2017-10-11 パナソニックIpマネジメント株式会社 繊維集合体
KR102125332B1 (ko) * 2018-11-30 2020-06-22 주식회사 데스코 펌프 하우징용 수지 조성물
CN114555700B (zh) * 2020-02-28 2023-08-22 住友理工株式会社 片状柔软电极及其制造方法
CN115551952B (zh) * 2020-09-11 2023-12-08 日东纺绩株式会社 玻璃纤维强化树脂板
CN113372714B (zh) * 2021-07-14 2023-04-14 金旸(厦门)新材料科技有限公司 一种低磷化氢气体析出且高cti的聚酰胺复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172059A (ja) * 1986-01-27 1987-07-29 Toray Ind Inc ポリフエニレンサルフアイド樹脂組成物
JPH01135866A (ja) * 1987-10-20 1989-05-29 Bayer Ag 改善された色調安定性を有するポリフエニレンスルフイド成形材料
JPH01222062A (ja) * 1988-02-03 1989-09-05 Bayer Ag ポリアリーレンズフイド成形物の金属処理法
JPH02191665A (ja) * 1989-01-19 1990-07-27 Dainippon Ink & Chem Inc ポリフェニレンサルファイド樹脂組成物
JPH04227962A (ja) * 1990-05-29 1992-08-18 Bayer Ag 反射体の製造用のポリ硫化アリーレン
JP2003096299A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 樹脂成形体用ポリフェニレンスルフィド樹脂組成物および成形体
JP2007246883A (ja) * 2006-02-14 2007-09-27 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172059A (ja) * 1986-01-27 1987-07-29 Toray Ind Inc ポリフエニレンサルフアイド樹脂組成物
JPH01135866A (ja) * 1987-10-20 1989-05-29 Bayer Ag 改善された色調安定性を有するポリフエニレンスルフイド成形材料
JPH01222062A (ja) * 1988-02-03 1989-09-05 Bayer Ag ポリアリーレンズフイド成形物の金属処理法
JPH02191665A (ja) * 1989-01-19 1990-07-27 Dainippon Ink & Chem Inc ポリフェニレンサルファイド樹脂組成物
JPH04227962A (ja) * 1990-05-29 1992-08-18 Bayer Ag 反射体の製造用のポリ硫化アリーレン
JP2003096299A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 樹脂成形体用ポリフェニレンスルフィド樹脂組成物および成形体
JP2007246883A (ja) * 2006-02-14 2007-09-27 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその成形体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383491B2 (en) 2016-03-24 2022-07-12 Ticona Llc Composite structure
US11919273B2 (en) 2016-03-24 2024-03-05 Ticona Llc Composite structure
WO2023022139A1 (ja) * 2021-08-16 2023-02-23 ポリプラスチックス株式会社 二色成形用樹脂組成物及びその成形品

Also Published As

Publication number Publication date
KR20140136921A (ko) 2014-12-01
CN104144983A (zh) 2014-11-12
TW201343750A (zh) 2013-11-01
JPWO2013125495A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2013125495A1 (ja) 熱可塑性樹脂組成物および成形品
TWI482809B (zh) 難燃性熱塑性樹脂組成物及成形品
JP5177089B2 (ja) ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂組成物錠剤およびそれらから得られる成形品
JP5921967B2 (ja) 樹脂複合成形体および樹脂複合成形体を製造する方法
JP5292828B2 (ja) 熱可塑性樹脂成形品と金属の複合体の製造方法
JP2010076437A (ja) 熱可塑性樹脂組成物からなる成形体と金属の複合体の製造方法
JP2012201857A (ja) ポリブチレンテレフタレート樹脂組成物及びこれを用いた樹脂成形品
WO2012132429A1 (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形体
JP2007262217A (ja) ポリフェニレンサルファイド樹脂組成物およびそれからなる成形品
JPH09291213A (ja) ポリフェニレンスルフィド樹脂組成物
JP4529218B2 (ja) ポリアミド樹脂組成物
KR102535459B1 (ko) 폴리페닐렌설피드 수지 조성물, 그 제조 방법 및 성형체
JP4032563B2 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法およびそれからなる成形品
JP2009179757A (ja) ポリフェニレンサルファイド樹脂組成物、射出成形体および箱型成形体部品
JP2003301107A (ja) 樹脂組成物
JP3605933B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP2002088255A (ja) 熱可塑性樹脂組成物およびその製造方法
JP4010045B2 (ja) ウエルド部を有するポリプロピレンテレフタレート樹脂成形品
JP2003073555A (ja) 高誘電性樹脂組成物
JP2011012139A (ja) ポリアリーレンスルフィド組成物
JP2020019861A (ja) ポリアミド樹脂組成物およびそれを含む成形品
JP2006233101A (ja) ポリフェニレンスルフィド樹脂組成物
JP7206724B2 (ja) 熱可塑性ポリエステル樹脂組成物
JP2001348478A (ja) ポリフェニレンスルフィド樹脂組成物
JP2008163221A (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511425

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021434

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752226

Country of ref document: EP

Kind code of ref document: A1