WO2013121503A1 - セプタム電磁石および粒子線治療装置 - Google Patents

セプタム電磁石および粒子線治療装置 Download PDF

Info

Publication number
WO2013121503A1
WO2013121503A1 PCT/JP2012/053240 JP2012053240W WO2013121503A1 WO 2013121503 A1 WO2013121503 A1 WO 2013121503A1 JP 2012053240 W JP2012053240 W JP 2012053240W WO 2013121503 A1 WO2013121503 A1 WO 2013121503A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
septum
particle beam
magnetic field
electromagnet
Prior art date
Application number
PCT/JP2012/053240
Other languages
English (en)
French (fr)
Inventor
菅原 賢悟
克久 吉田
利宏 大谷
真一 益野
文彦 加島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/576,597 priority Critical patent/US8884256B2/en
Priority to CN201280001031.8A priority patent/CN103370991B/zh
Priority to PCT/JP2012/053240 priority patent/WO2013121503A1/ja
Priority to EP12755773.4A priority patent/EP2651197B1/en
Priority to JP2012516403A priority patent/JP5112571B1/ja
Priority to TW104139121A priority patent/TWI565498B/zh
Priority to TW101125026A priority patent/TWI515026B/zh
Publication of WO2013121503A1 publication Critical patent/WO2013121503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/087Arrangements for injecting particles into orbits by magnetic means

Definitions

  • the present invention relates to a septum electromagnet provided in a radiation source such as a circular particle accelerator or a storage ring device and used for supplying or taking out a particle beam.
  • a septum electromagnet moves a particle beam in a duct onto a circular orbit by generating a magnetic field in a duct provided so as to share a tangent with the circular orbit of the particle beam. It is a device that takes in the duct.
  • the C-shaped cross section has an open portion on the outer peripheral side, and the arc extending duct has an arc extending duct between the outer peripheral septum coil and the inner peripheral return coil. It arrange
  • the septum coil and the return coil are connected in series so that currents of the same magnitude flow in opposite directions in the circumferential direction. Thereby, the magnetic field perpendicular
  • the septum coil and the return coil are coiled by connecting copper pipes because of the necessity of cooling, and they have high rigidity unlike ordinary winding coils.
  • the septum electromagnet is configured so that a strong force is applied to the coil during operation, so that the yoke can be separated into the upper part and the lower part in the axial direction, that is, the vertical direction in the installed state, for convenience of maintenance.
  • the highly rigid septum coil and return coil can be divided into the upper part and the lower part together with the yoke.
  • the upper septum coil and the upper return coil are fixed to the upper yoke
  • the lower septum coil and the lower return coil are fixed to the lower yoke. Therefore, when the radial position is shifted between the upper coil and the lower coil, an unnecessary radial magnetic field (skew magnetic field) is generated.
  • JP-A-1-209700 page 2, FIGS. 1 and 2
  • JP-A-6-151096 page 2, FIGS. 1 and 2
  • JP 2001-43998 A 0010 to 0021, FIGS. 1 to 3
  • the disclosed technique controls the arrangement of the auxiliary coil and the magnitude of the current in order to improve the magnetic field distribution on a predetermined line in the cross section perpendicular to the traveling direction of the particle beam, It was difficult to improve the magnetic field distribution in the cross section. For this reason, even when applied to a septum electromagnet having a particle beam widely distributed in the cross section, a region where the unnecessary magnetic field is not suppressed is generated, and the trajectory of the particle beam traveling in the region cannot be accurately controlled. Therefore, it has been difficult to use a septum electromagnet that can be easily maintained and can accurately control the trajectory of the particle beam, for example, a device that requires precise particle beam control such as a particle beam therapy device. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a septum electromagnet and a particle beam therapy apparatus that can be easily maintained and can accurately control the trajectory of the particle beam.
  • the septum electromagnet of the present invention has an arc shape, has a gap portion that opens to the outer peripheral side and extends in the circumferential direction, and is configured to be divided at a substantially central portion in the axial direction, and a radial direction in the gap portion
  • a septum coil that flows outside in the circumferential direction and in which current flows in one direction in the circumferential direction, and is installed on the inner side in the radial direction in the gap so as to face the septum coil at a predetermined interval, and the septum coil A return coil through which a reverse current flows; and a vacuum duct installed between the septum coil and the return coil, the septum coil corresponding to the division of the yoke and the first part
  • the first portion of the septum coil is formed between the septum coil and the vacuum duct.
  • the auxiliary coil current flows in the circumferential direction at the portion corresponding to the second portion, characterized in that it is provided.
  • an auxiliary coil is provided between the septum coil and the vacuum duct so that currents in opposite directions correspond to the septum coil divided together with the yoke.
  • FIG. 1 the configuration and operation of the septum electromagnet according to Embodiment 1 of the present invention and the particle beam therapy system using the same will be described.
  • FIGS. 1 to 9 are for explaining the configuration and operation of the septum electromagnet according to the first embodiment of the present invention, and the configuration of the particle beam therapy system using the septum electromagnet.
  • FIGS. ) Is a side view (a) showing the configuration of the septum electromagnet, a cross-sectional view (b) in which the description in the depth direction is omitted, and a main part of the septum electromagnet. Among these, it is sectional drawing of the part corresponding to (b) for showing the relationship of the coil isolate
  • FIG. 2 is a wiring diagram of a coil constituting the septum electromagnet and its driving power source
  • FIG. 3 shows a magnetic field component in a plane perpendicular to the diameter and height direction in the vacuum duct, that is, perpendicular to the particle beam trajectory.
  • 4A and 4B show a magnetic field distribution in a plane perpendicular to the particle beam trajectory in the vacuum duct when the upper and lower septum electromagnets are displaced.
  • a) shows when the auxiliary coil is not operated, and (b) shows when it is operated.
  • FIG. 5 is a schematic cross-sectional view in the circumferential direction showing the trajectory of the particle beam in the vacuum duct. 1 (b), (c), FIG. 3, and FIG.
  • a cylindrical coordinate system (r, h, c (orthogonal coordinate system is used in the circumferential direction) consisting of a radial position, an axial height, and a circumferential position.
  • r, h, c orthogonal coordinate system
  • FIG. 6 is a diagram showing the configuration of the particle beam therapy system using the septum electromagnet according to the first embodiment of the present invention.
  • FIGS. 7 to 9 illustrate first to third control methods for adjusting the current value of the auxiliary coil as control methods for the septum magnet according to the first embodiment of the present invention. It is a flowchart of.
  • the septum electromagnet 10 has an arc shape and is arranged so as to share a tangent to a circular accelerator 100 described later and a duct 11 forming a part of a circular orbit path of the storage ring.
  • the yoke 1 having a C-shaped cross section (r, h plane) perpendicular to the extending direction as shown in FIG.
  • the height of the septum coil 3 and the return coil 4 is set so as to cover the rectangular opening of the yoke 1 in the axial direction (h: perpendicular to the radial direction r and the circumferential direction c), that is, in the vertical direction in the installed state.
  • the auxiliary coil 5 is sized so as to be the same height as the septum coil 3, but the upper half and the lower half are configured such that currents in opposite directions flow in the circumferential direction (c). ing.
  • the septum electromagnet 10 according to the first exemplary embodiment, as shown in FIG. 1 (c), the yoke 1 is separated from the yoke 1u and the lower yoke with the center in the axial direction (h) as a boundary. It can be separated into 1d.
  • the septum coil 3 can be separated into an upper septum coil 3u that is positioned and fixed with respect to the upper yoke 1u and a lower septum coil 3d that is positioned and fixed with respect to the lower yoke 1d.
  • the return coil 4 can also be separated into an upper return coil 4u that is positioned and fixed with respect to the upper yoke 1u and a lower return coil 4d that is positioned and fixed with respect to the lower yoke 1d.
  • the auxiliary coil 5 is also installed on the upper side, and consists of an upper auxiliary coil 5u that flows in one direction and a lower auxiliary coil 5d that is installed on the lower side and flows in a direction opposite to that of the upper auxiliary coil 5u. Both the 5u and the lower auxiliary coil 5d are positioned and fixed with respect to the vacuum duct 2.
  • the septum coil 3 and the return coil 4 are connected in series to the drive power supply 9M for the main coil, the auxiliary coil 5 is connected to the drive power supply 9S for the auxiliary coil, and the drive power supply 9M and the drive power supply. 9S is connected to the control part 60 which outputs the control signal for controlling drive, respectively.
  • a current having the same adjusted current value can be supplied to the septum coil 3 and the return coil 4, and a current having a separately adjusted current value can be supplied to the auxiliary coil 5.
  • a current in the opposite direction flows in the septum coil 3 and the return coil 4, which are the main coils of the septum electromagnet 10, in the circumferential direction.
  • the particle beam moving in the positive direction of the c direction along the circumferential direction (c) in the vacuum duct 2 is deflected toward the septum coil 3 side (positive direction of the r direction), whereby the vacuum duct. It moves from the 2 side to the duct 11 side (for example, the orbit of the accelerator).
  • the particle beam moving in the negative direction of the c direction in the duct 11 is deflected toward the return coil 4 side (the negative direction of the r direction), so that from the duct 11 (for example, the orbit of the accelerator).
  • the upper septum coil 3u and the lower septum coil 3d are not limited to the initial installation, but are always opened and closed for maintenance.
  • An installation error (misalignment) in the horizontal direction (r, c direction) may occur.
  • a magnetic field Bw having a skew magnetic field that is an unnecessary magnetic field component (r direction) other than the main magnetic field B (h direction) is generated on the midplane Pm.
  • the closer to the coil the higher the magnetic flux density. Therefore, as shown in FIG. 3 (b), the magnetic field Bw whose absolute value of the skew magnetic field component increases as it approaches the coil. It tends to increase.
  • the septum electromagnet 10 according to the first exemplary embodiment, unnecessary magnetic field components can be suppressed by adjusting the current flowing through the correction coil 5.
  • the septum coil 3 and the return coil 4 that generate the main magnetic field B are installed so that coils of the same height face each other at regular intervals, and the current flowing through the septum coil 3 passes through the return coil 4.
  • the auxiliary coil 5 is configured so that the same current flows in the opposite direction up and down. However, since the auxiliary coil 5 is positioned and fixed to the vacuum duct 2, there is no positional deviation between the upper auxiliary coil 5u and the lower auxiliary coil 5d.
  • the auxiliary coil 5 is a direction orthogonal to the main magnetic field B.
  • the upper and lower coils 5u-5d there is no deviation between the upper and lower coils 5u-5d, and the upper and lower coils 5u-5d are arranged so that they are aligned at the same height as the septum coil 3.
  • the spatial dependence of the magnetic field generated by the auxiliary coil 5 can be approximated to the spatial dependence of the unnecessary magnetic field generated by. Therefore, regardless of the coordinates on the midplane pm, the magnetic field distribution can be formed evenly in the vertical direction as shown in FIG.
  • FIG. 5 shows a Z-direction 300 mm corresponding to a quarter in the circumferential direction (c) of a cross section (XZ plane: corresponding to the rc plane) perpendicular to the Z-axis (corresponding to h in cylindrical coordinates) of the vacuum duct 2. It shows the orbit of the particle beam of the minute.
  • the horizontal axis is the Z direction length in the orthogonal coordinate system (X, Y, Z), and corresponds to the circumferential length (c) in the cylindrical coordinate system used in FIGS.
  • the X direction length corresponds to the radial length (r).
  • the particle beam passes between the duct aperture DPi on the inner side (return coil 4 side) and the duct aperture DPx on the outer side (septum coil 3 side) of the vacuum duct 2.
  • the passage region is a region having a predetermined width that is biased toward the septum coil 3 side from the inner track Oi in the substantially middle portion of the duct aperture to the outer track Ox in the vicinity of the outer duct aperture DPx.
  • the influence of the unnecessary magnetic field Bw is larger in the region near the septum coil 3 than in the region near the return coil 4 in the region in the vacuum duct 2.
  • the dimension constraint on the septum coil 3 side is larger than that on the return coil 4 side. Therefore, it is easier to install the auxiliary coil 5 on the return coil 4 side where the thickness restriction is smaller than on the septum coil 3 side that needs to be thinly finished.
  • the state of the unnecessary magnetic field varies depending on the region, so that the particle beam passing with a width receives an unnecessary magnetic field that varies depending on the region. Therefore, even if the unnecessary magnetic field is simply suppressed for a narrow area with the midplane Pm, the effect of suppressing the influence of the unnecessary magnetic field is low, and it is necessary to suppress the unnecessary magnetic field in the entire particle beam passage area.
  • the auxiliary coil 5 between the septum coil 3 and the vacuum duct 2 as in the present embodiment, the spatial dependence of the magnetic field created by the auxiliary coil 5 at least in the region affecting the orbit is reduced. By approaching the space dependence, the unnecessary magnetic field Bw that affects the trajectory control can be efficiently suppressed.
  • the above unnecessary magnetic field becomes stronger as the deviation between the upper and lower coils increases.
  • the amount of deviation in the radial direction (r) of the upper and lower septum coils 3u, 3d (the return coil 4 is also displaced in the same manner, but because the deviation of the septum coil 3 is problematic as described above).
  • 4 is 0.5 mm
  • the unnecessary magnetic field component is distributed from the septum coil 3 side to the central portion of the midplane Pm as shown in FIG.
  • a main coil current that is, a current about 1/20 of the current flowing through the septum coil 3
  • the auxiliary coil 5 having the above-described configuration, a spatially dependent magnetic field close to the spatial dependency of the unnecessary magnetic field is generated. It is possible to generate unnecessary magnetic fields.
  • a current that is approximately 1/65 of the current flowing through the septum coil 3 is caused to flow through the auxiliary coil 5 to generate a spatially dependent magnetic field that is close to the spatial dependence of the unnecessary magnetic field. Unnecessary magnetic field can be suppressed.
  • the positioning target of the auxiliary coil 5 is the upper and lower yokes 1u and 1d as in the case of the septum coil 3 and the return coil 4, the distance between the septum coil 3 and the auxiliary coil 5 is made equal in the vertical direction regardless of the installation situation. Can keep. However, it is more important to reduce the installation error between the upper and lower auxiliary coils 5u and 5d in order to bring the spatial dependence of the magnetic field generated by the auxiliary coil 5 closer to the spatial dependence of the unnecessary magnetic field. As shown in the above, it is desirable to set the vacuum duct 2 that does not separate the auxiliary coil 5 in the vertical direction as a positioning target.
  • the particle beam therapy system includes a circular accelerator 100 (hereinafter simply referred to as an accelerator) that is a synchrotron as a particle beam supply source, a transport system 30 that transports a particle beam supplied from the accelerator 100, and a transport.
  • the irradiation apparatus 40 which irradiates the patient K with the particle beam conveyed by the system
  • the septum electromagnet 10 includes an incident device 10A for taking the particle beam emitted from the pre-accelerator 20 into the accelerator 100, and an emitting device 10B for emitting the particle beam accelerated in the accelerator 100 to the transport system 30. It is provided in the accelerator 100.
  • the accelerator 100 includes a vacuum duct 11 serving as an orbital path around which the particle beam circulates, an incident device 10A for allowing the particle beam supplied from the front stage accelerator 20 to enter the orbit, and the particle beam into the orbit in the vacuum duct 11.
  • Deflection electromagnets 13a, 13b, 13c, 13d (collectively referred to as 13) for deflecting the particle beam trajectory so as to circulate along, and a converging electromagnet for converging so that the particle beam formed on the circular trajectory does not diverge.
  • a high-frequency acceleration cavity 15 that accelerates by applying a high-frequency voltage synchronized with a circulating particle beam, and a particle beam accelerated inside the accelerator 100 is taken out of the accelerator 100
  • the deflection electromagnet 13 includes a deflection electromagnet controller that controls the excitation current of the deflection electromagnet 13, and the high-frequency acceleration cavity 15 includes a high-frequency acceleration cavity 15.
  • the control unit 60 also includes an accelerator controller that controls other components such as the electromagnet 14 to control the entire accelerator 100.
  • the front accelerator 20 is illustrated as a single device in the figure for the sake of simplicity, but in reality, an ion source (ion) that generates charged particles (ions) such as protons and carbon (heavy particles) ( Ion beam generator) and a linear accelerator system for initial acceleration of the generated charged particles.
  • ion source ion
  • Ion beam generator ion beam generator
  • the charged particles incident on the accelerator 100 from the pre-stage accelerator 20 are accelerated by a high-frequency electric field and accelerated to about 70 to 80% of the speed of light while being bent by a magnet.
  • the particle beam accelerated by the accelerator 100 is emitted to a transport system 30 called a HEBT (High Energy Beam Transport) system.
  • the transport system 30 includes a vacuum duct 31 that serves as a particle beam transport path, a switching electromagnet 32 that is a switching device that switches the beam trajectory of the particle beam, and a deflection electromagnet 33 that deflects the particle beam to a predetermined angle. Then, the particle beam which is sufficiently energized by the accelerator 100 and is emitted from the extraction device 10B and traveling through the vacuum duct 31 is transported by the switching electromagnet 32 as needed (for the treatment room 50A transport path 30A and 50B).
  • the transport route 30B, ... 50N transport route 30N) is changed and guided to the irradiation device 40 provided for each designated treatment room 50.
  • the irradiation device 40 is a device that shapes the particle beam supplied from the transport system 30 into an irradiation field corresponding to the size and depth of the affected area of the patient K to be irradiated and irradiates the affected area.
  • the septum electromagnet 10 according to the first embodiment, the influence of the unnecessary magnetic field is suppressed and the particle beam is supplied in the set orbit, so that the irradiation field can be formed as set, Effective treatment can be performed with minimal influence on surrounding tissues.
  • the treatment room 50 is a room for performing treatment by actually irradiating the patient K with a particle beam, and basically includes the irradiation device described above for each treatment room.
  • the entire irradiation apparatus 40A rotates from the deflection electromagnet 33 portion around the patient K (treatment table), and the rotation irradiation room (the irradiation angle of the particle beam to the patient K can be freely set)
  • An example of a rotating gantry is also shown.
  • a horizontal irradiation chamber for irradiating a particle beam in a horizontal direction from an irradiation device to a patient fixed on a treatment table whose angle and position can be freely set, and other types
  • a horizontal irradiation chamber for irradiating a particle beam in a horizontal direction from an irradiation device to a patient fixed on a treatment table whose angle and position can be freely set
  • other types There are several different treatment rooms.
  • Control system As a control system of a system having a plurality of subsystems (the accelerator 100, the transport system 30, the irradiation device 40 for each treatment room 50, etc.) as described above, the sub-controller that controls each subsystem exclusively and the entire system are commanded. In many cases, a hierarchical control system including a main controller for controlling the system is used.
  • the control unit 60 of the particle beam therapy system according to the first embodiment of the present invention also employs the configurations of the main controller and the sub controller. Functions that can be controlled in the subsystem are sub-controllers, and operations that control a plurality of systems in cooperation are controlled by the main controller.
  • control unit 60 In the particle beam therapy system, a workstation or a computer is generally used for the control unit 60. Therefore, functions such as the main controller and the sub controller of the control unit 60 are expressed by software or the like, and do not always fit in specific hardware. Therefore, although they are collectively described as the control unit 60 in the drawing, this does not mean that the control unit 60 physically exists as a single piece of hardware.
  • the deviation of the septum coil 3 is not uniform in the A cross section, the B cross section, and the C cross section shown in FIG.
  • the distortion of the beam profile downstream of the septum electromagnet 10 is determined by an integration amount obtained by integrating unnecessary magnetic field components (skew magnetic fields) in each section in the circumferential direction. Therefore, the current flowing through the correction coil 5 can be calculated as a value corresponding to the integral value of the deviation amount as follows.
  • the first control example by monitoring the downstream beam profile (beam width, position fluctuation), the current value of the correction coil 5 (current value corresponding to the current value flowing through the septum coil 3; the same applies hereinafter). To decide.
  • a first control example will be described with reference to FIG. First, as the downstream beam state, the beam width or position fluctuation downstream of the septum electromagnet 10 is measured (step S10), and the kick angle or the skew magnetic field strength by the skew magnetic field is calculated from the measured downstream beam state by the beam calculation. (Step S20).
  • the current value (provisional value) passed through the correction coil 5 for canceling the calculated kick angle and skew magnetic field is calculated. Calculate (step S30). The current value of the correction coil 5 is adjusted to the calculated provisional value (step S40).
  • the downstream beam state is measured with the current adjusted to the provisional value flowing through the correction coil 5 (step S50). Thereby, if the fluctuation amount with respect to the setting value of the downstream beam state is equal to or less than the reference value (“Y” in step S60), the provisional value is ended as the setting value. On the other hand, if the fluctuation amount with respect to the setting value of the downstream beam state exceeds the reference value (“N” in step S60), the process proceeds to step S20 and readjustment is performed.
  • the skew magnetic field component is measured using a magnetic field sensor, and the current value of the correction coil 5 is determined from the integral value in the circumferential direction.
  • a magnetic field sensor such as a Hall element
  • the skew magnetic field in the vacuum duct 2 is measured at several points in the circumferential direction (step S12), and an integral value is calculated from the measured skew magnetic field or a long pickup coil or the like. (Step S22).
  • Step S30 a current value (provisional value) passed through the correction coil 5 for canceling the calculated skew magnetic field is calculated.
  • the current value of the correction coil 5 is adjusted to the calculated provisional value (step S40).
  • the skew magnetic field is measured with the current adjusted to the provisional value flowing through the correction coil 5 (step S52). As a result, if the skew magnetic field intensity is equal to or less than the reference value (“Y” in step S62), the provisional value is set as the set value, and the process ends. On the other hand, if the intensity of the skew magnetic field exceeds the reference value (“N” in step S62), the process proceeds to step S22 and readjustment is performed.
  • the deviation of the upper and lower coils is measured, the skew magnetic field is calculated from the deviation amount, and the current value of the correction coil 5 is determined from the integral value in the circumferential direction.
  • a third control example will be described with reference to FIG. First, the amount of deviation of the upper and lower coil positions is measured using a device that measures the position and dimensions of a laser displacement system or the like (step S13), and the skew magnetic field strength is calculated from the measured deviation by electromagnetic field analysis (step S23). ).
  • Step S33 a current value (provisional value) passed through the correction coil 5 for canceling the calculated skew magnetic field is calculated.
  • the current value of the correction coil 5 is adjusted to the calculated provisional value (step S40).
  • the skew magnetic field is measured with the current adjusted to the provisional value flowing through the correction coil 5 (step S53).
  • the provisional value is set as the set value, and the process ends.
  • the intensity of the skew magnetic field exceeds the reference value (“N” in step S63)
  • the process proceeds to step S33 and readjustment is performed.
  • the correction amount of the current value is recalculated based on the intensity of the adjusted skew magnetic field.
  • the downstream beam state is provisionally measured. It may be determined whether or not the value is suitable.
  • Such an adjustment is performed every time maintenance is performed, and an unnecessary magnetic field is generated by storing the current value flowing through the correction coil 5 in a table, for example, for each current value flowing through the septum coil 3. This makes it possible to extract the beam with an accurate trajectory.
  • the septum electromagnet 10 has an arc shape, has the gap 1s that opens to the outer peripheral side and extends in the circumferential direction (c), and in the axial direction (h).
  • a yoke 1 configured to be separable at a substantially central portion, a septum coil 3 installed on the outer side in the radial direction (r) in the gap 1 s and through which current flows in one direction in the circumferential direction, a septum coil 3 and a predetermined Installed between the septum coil 3 and the return coil 4, the return coil 4 that is installed inside the gap 1 s in the radial direction so as to be opposed to each other with a space therebetween, and a current in the direction opposite to that of the septum coil 3 flows.
  • a vacuum duct 2, and the septum coil 3 is formed to be separable into an upper part 3 u as a first part and a lower part 3 d as a second part corresponding to the division of the yoke 1.
  • auxiliary coil 5 in which reverse currents flow in the circumferential direction at portions (5 u, 5 d) corresponding to the upper portion 3 u and the lower portion 3 d of the septum coil 3. Since the upper and lower septum coils 3u and 3d are misaligned during installation and maintenance, a magnetic field having a distribution similar to that of the skew magnetic field generated by the misalignment is corrected. By generating at 5, it is possible to efficiently suppress the skew magnetic field. Therefore, it is possible to obtain a septum electromagnet and a particle beam therapy device that can be easily maintained and can accurately control the trajectory of the particle beam.
  • the auxiliary coil 5 is formed so that the dimension in the axial direction (h) is the same as that of the septum coil 3, the magnetic field to be generated can be made closer to the distribution of the skew magnetic field, and the skew magnetic field can be more efficiently performed. Can be suppressed.
  • auxiliary coil 5 is integrated with the vacuum duct 2 and positioned with respect to the vacuum duct 2, there is no positional deviation between the upper auxiliary coil 5u and the lower auxiliary coil 5d, and the generated magnetic field is further skewed.
  • the skew magnetic field can be suppressed more efficiently.
  • the particle beam therapy system includes an accelerator 100 that uses at least the septum electromagnet 10 according to the first embodiment for the particle beam extraction device 10B, and the particle beam emitted from the emission device 10B. Since the transport system 30 for transporting and the irradiation device 40 for forming and irradiating the particle beam supplied via the transport system 30 in a predetermined irradiation field are provided, the particle beam whose emission position and orbit are accurate is irradiated. Since it can supply to the apparatus 40, it can irradiate with an exact irradiation field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

弧状をなし、外周側に開口して周方向に延伸する空隙部(1s)を有し、軸方向における略中央部で分割可能に構成されたヨーク(1)と、空隙部(1s)内の径方向における外側に設置され、周方向における一方向に電流が流れるセプタムコイル(3)と、セプタムコイル(3)と所定の間隔をあけて対向するように空隙部(1s)内の径方向における内側に設置され、セプタムコイル(3)と逆向きの電流が流れるリターンコイル(4)と、セプタムコイル(3)とリターンコイル(4)との間に設置される真空ダクト(2)と、を備え、セプタムコイル(3)は、ヨーク(1)の分割に対応して第1の部分(3u)と第2の部分(3d)に分離可能に形成されているとともに、セプタムコイル(3)と真空ダクト(2)との間には、セプタムコイル(3)の第1の部分(3u)と第2の部分(3d)に対応する部分(5u,5d)で互いに周方向における逆向きの電流が流れる補助コイル(5)が設けられているように構成した。

Description

セプタム電磁石および粒子線治療装置
 本発明は、円形粒子加速器または蓄積リング装置のような線源に設けられ、粒子線の供給または取り出しに用いられるセプタム電磁石に関する。
 セプタム電磁石は、粒子線の周回軌道と接線を共有するように設けられたダクト内に磁場を発生させることにより、ダクト内の粒子線を周回軌道上に移動させる、あるいは周回軌道上の粒子線をダクト内に取り込む装置である。そして、基本的なセプタム電磁石では、断面がC型で開放部を外周側にして弧状に延びたヨークの空隙内に、弧状に延びるダクトが外周側のセプタムコイルと内周側のリターンコイルとの間に挟まれるように空隙部内に配置されている。そして、セプタムコイルとリターンコイルは、周方向において逆向きで同じ大きさの電流が流れるように直列に接続される。これにより、ダクト内に粒子線の進行方向である周方向および径方向に垂直な磁場を発生させ、粒子線を径方向に偏向させることができる。
 一方、セプタムコイルおよびリターンコイルは、コイルといっても冷却の必要性から銅パイプをつなぎ合わせてコイル状にしたものであり、一般的な巻線コイルと異なり剛性が高い。そして、セプタム電磁石では、動作中にコイルに強い力がかかるので、メンテナンスの都合上、ヨークを軸方向、つまり設置状態での鉛直方向における上部と下部に分離できるように構成する。その際、剛性の高いセプタムコイルとリターンコイルも、ヨークと共に、それぞれ上部と下部に分割できるようにする必要がある。この場合、上部セプタムコイルと上部リターンコイルは上部ヨークに対して固定し、下部セプタムコイルと下部リターンコイルは下部ヨークに対して固定するというように、上下別々にコイルの位置決めをする必要がある。そのため、上部コイルと下部コイルとの間で径方向の位置がずれると、不要な径方向の磁場(スキュー磁場)が発生することになる。
 そこで、例えば、磁場の分布を改善させたい領域の近傍に補助コイルを設ける技術(例えば、特許文献1~4参照。)を適用して、スキュー磁場を抑制することが考えられる。
特開昭63-224230号公報(3頁、第1図~第3図) 特開平1-209700号公報(2頁、第1図、第2図) 特開平6-151096号公報(0011~0021、図1~図6) 特開2001-43998号公報(0010~0021、図1~図3)
 しかしながら、開示された技術は、粒子線の進行方向に垂直な断面のうち、所定の線上の磁場分布を改善するために、補助コイルの配置や電流の大きさを制御しているのであって、断面内の磁場分布を改善することは困難であった。そのため、断面内に広く粒子線が分布するセプタム電磁石に適用しても、不要磁場が抑制されない領域が発生し、その領域を進行する粒子線の軌道を正確に制御することができなかった。したがって、例えば粒子線治療装置のように、正確な粒子線の制御が求められる装置に対して、容易にメンテナンスでき、粒子線の軌道を正確に制御できるセプタム電磁石を用いることが困難となっていた。
 本発明は、上記のような課題を解決するためになされたもので、容易にメンテナンスができるとともに、粒子線の軌道を正確に制御できるセプタム電磁石および粒子線治療装置を得ることを目的とする。
 本発明のセプタム電磁石は、弧状をなし、外周側に開口して周方向に延伸する空隙部を有するとともに、軸方向における略中央部で分割可能に構成されたヨークと、前記空隙部内の径方向における外側に設置され、周方向における一方向に電流が流れるセプタムコイルと、前記セプタムコイルと所定の間隔をあけて対向するように前記空隙部内の前記径方向における内側に設置され、前記セプタムコイルと逆向きの電流が流れるリターンコイルと、前記セプタムコイルと前記リターンコイルとの間に設置される真空ダクトと、を備え、前記セプタムコイルは、前記ヨークの分割に対応して第1の部分と第2の部分に分離可能に形成されているとともに、前記セプタムコイルと前記真空ダクトとの間には、前記セプタムコイルの第1の部分と第2の部分に対応する部分で互いに前記周方向における逆向きの電流が流れる補助コイルが設けられていることを特徴とする。
 本発明のセプタム電磁石によれば、セプタムコイルと真空ダクト間に、ヨークと共に分割するセプタムコイルに対応して互いに逆向きの電流が流れる補助コイルを設けるようにしたので、セプタムコイル内のずれに伴うスキュー磁場を効率的に抑制することにより、容易にメンテナンスができるとともに、粒子線の軌道を正確に制御できるセプタム電磁石および粒子線治療装置を得ることができる。
本発明の実施の形態1にかかるセプタム電磁石の構成を説明するための平面図と断面図およびメンテナンス時に分離できるパーツを示す断面図である。 本発明の実施の形態1にかかるセプタム電磁石の構成を説明するための各コイルと駆動電源との配線図である。 本発明の実施の形態1にかかるセプタム電磁石の動作を説明するための、真空ダクト内の粒子線の軌道に垂直な面内における磁場成分を示す断面模式図である。 本発明の実施の形態1にかかるセプタム電磁石の動作を説明するための、真空ダクト内の粒子線の軌道に垂直な面内における磁場分布を示す断面模式図である。 本発明の実施の形態1にかかるセプタム電磁石の動作を説明するための、真空ダクト内での粒子線の軌道を示す周方向の断面模式図である。 本発明の実施の形態1にかかるセプタム電磁石を用いた粒子線治療装置の構成を示す図である。 本発明の実施の形態1にかかるセプタム電磁石の第1の制御方法を説明するためのフローチャートである。 本発明の実施の形態1にかかるセプタム電磁石の第2の制御方法を説明するためのフローチャートである。 本発明の実施の形態1にかかるセプタム電磁石の第3の制御方法を説明するためのフローチャートである。
実施の形態1.
 以下、本発明の実施の形態1にかかるセプタム電磁石、およびこれを用いた粒子線治療装置の構成および動作について説明する。図1~図9は本発明の実施の形態1にかかるセプタム電磁石の構成と動作、およびセプタム電磁石を用いた粒子線治療装置の構成について説明するためのもので、図1(a)~(c)は、セプタム電磁石の構成を示す側面図(a)と、側面図におけるA-A線での切断面のうち、奥行き方向の記載を省略した断面図(b)と、セプタム電磁石の主要部分のうち、メンテナンス時に分離するコイルの関係を示すための(b)に対応した部分の断面図である。図2はセプタム電磁石を構成するコイルとその駆動電源との配線図、図3は真空ダクト内での径および高さ方向に垂直、つまり粒子線の軌道に垂直な面内での磁場成分を示す断面模式図、図4(a)および(b)は、上下のセプタム電磁石にずれがあった場合の真空ダクト内での粒子線の軌道に垂直な面内での磁場分布を示すもので、(a)は補助コイルを動作させなかったとき、(b)は動作させたときを示す。そして図5は真空ダクト内での粒子線の軌道を示す周方向の断面模式図である。なお、図1(b),(c)、図3、図4においては、径方向位置、軸方向高さ、周方向位置からなる円柱座標系(r,h,c(直交座標系を周方向に移動させる移動座標系に対応))で記載し、図5においては、直交座標系(X,Y,Z(静止座標系))で記載している。
 また、図6は本発明の実施の形態1にかかるセプタム電磁石を用いた粒子線治療装置の構成を示す図である。そして、図7~図9は本発明の実施の形態1にかかるセプタム電磁石の制御方法として、補助コイルの電流値を調整するための第1の制御方法~第3の制御方法をそれぞれ説明するためのフローチャートである。
 はじめに、図1と図2に基づいて、本実施の形態1にかかるセプタム電磁石の構成について説明する。
 セプタム電磁石10は弧状をなし、後述する円形加速器100や蓄積リングの周回軌道経路の一部をなすダクト11に対して接線を共有するように配置され、断面が略矩形で外周側に開口し周方向(c)に延伸する空隙部1sを設けることで、図1(b)に示すように延伸方向に垂直な断面(r,h面)がC型となるヨーク1と、ヨーク1の外周側に宛がわれる磁気シールド6と、空隙部1s内で、径方向(r)の外側に設置され周方向に電流が流れるセプタムコイル3と、径方向の内側にセプタムコイル3に対向するように設置され、セプタムコイル3と逆向きの電流が流れるリターンコイル4と、セプタムコイル3とリターンコイル4との間に挟まれて、周方向に延伸する真空ダクト2と、を備えるとともに、本発明の特徴的な構成として、セプタムコイル3と真空ダクト2との間に、真空ダクト2内の不要磁場(スキュー磁場)を抑制するための補助コイル5を備えたものである。
 セプタムコイル3およびリターンコイル4は、軸方向(h:径方向rと周方向cに垂直)、つまり設置状態における鉛直方向において、ヨーク1の矩形の開口を網羅するように高さが設定されている。そして、補助コイル5は、セプタムコイル3と同じ高さになるように寸法が設定されているが、上側半分と下側半分が周方向(c)で互いに逆向きの電流が流れるように構成している。
 そして、本実施の形態1にかかるセプタム電磁石10は、メンテナンスを容易にするため、図1(c)に示すように、ヨーク1が軸方向(h)の中心を境にしてヨーク1uと下ヨーク1dに分離できるようになっている。そして、セプタムコイル3は、上ヨーク1uに対して位置決め固定される上セプタムコイル3uと下ヨーク1dに対して位置決め固定される下セプタムコイル3dに分離できる。同様に、リターンコイル4も上ヨーク1uに対して位置決め固定される上リターンコイル4uと下ヨーク1dに対して位置決め固定される下リターンコイル4dに分離できる。一方、補助コイル5も上側に設置され、一方向に流れる上補助コイル5uと、下側に設置され、上補助コイル5uと逆向きの電流が流れる下補助コイル5dとからなるが、上補助コイル5uと下補助コイル5dは、ともに真空ダクト2に対して位置決め固定されている。
 そして、図2に示すように、セプタムコイル3とリターンコイル4はメインコイル用の駆動電源9Mに直列接続され、補助コイル5は補助コイル用の駆動電源9Sに接続され、駆動電源9Mと駆動電源9Sはそれぞれ駆動を制御するための制御信号を出力する制御部60に接続されている。これにより、セプタムコイル3とリターンコイル4には調整された同じ電流値の電流を流すことができ、補助コイル5にも別途調整された電流値の電流を流すことができる。
 つぎに、図3~図5を用いて動作について説明する。
 駆動電源9Mを駆動すると、セプタム電磁石10の主コイルであるセプタムコイル3とリターンコイル4に周方向で逆向きの電流が流れる。このとき、例えば、セプタムコイル3に周方向(c)の負方向(紙面手前向き)、リターンコイル4に周方向(c)の正方向(紙面奥向き)の電流が流れるとすると、真空ダクト2の周方向に対して垂直な断面(r、h)面では、図3(a)に示すように、ビーム通過領域となるミッドプレーンPmと呼ばれる上下方向の中間に位置する面上には、鉛直方向で下向きの主磁場Bが発生する。これにより、真空ダクト2内を周方向(c)に沿ってc方向の正方向に移動する粒子線は、セプタムコイル3側に向かって(r方向の正方向)偏向されることにより、真空ダクト2側からダクト11側(例えば、加速器の周回軌道)へ移動する。あるいは、ダクト11内をc方向の負方向に移動する粒子線は、リターンコイル4側に向かって(r方向の負方向)偏向されることにより、ダクト11(例えば、加速器の周回軌道)側から真空ダクト2へ移動する。
 このとき、上記のように、ヨーク1が上ヨーク1uと下ヨーク1dとに分離可能になっていると、初期設置時にとどまらず、メンテナンスによる開閉のたびに、上セプタムコイル3uと下セプタムコイル3d間で水平方向(r,c方向)での設置誤差(ミスアライメント)が発生することがある。この場合、図3(b)に示すように、ミッドプレーンPm上に、主磁場B(h方向)以外の不要な磁場成分(r方向)であるスキュー磁場を有する磁場Bwが発生する。このとき、図4(a)に示すように、コイルに近いほど磁束密度が高くなるので、図3(b)に示すように、コイルに近づくに従ってスキュー磁場成分の絶対値が増加する磁場Bwが多くなる傾向にある。
 しかしながら、本実施の形態1にかかるセプタム電磁石10では、補正コイル5に流す電流を調整することによって、不要な磁場成分を抑制することができる。主磁場Bを作るセプタムコイル3とリターンコイル4とは、上述したように一定間隔で同じ高さのコイルが対向するように設置されており、セプタムコイル3を流れた電流はリターンコイル4を介して電源に戻る。一方、補助コイル5は、上下で逆方向に同じ電流が流れるようになっているが、真空ダクト2に位置決め固定されるために上補助コイル5uと下補助コイル5d間での位置ずれがなく、しかも、上下合わせてセプタムコイル3と同じ高さになるように形成されている。そのため、補助コイル5により発生する磁場の方向が主磁場Bと直交する方向となる。しかも、上記のように、上下コイル5u-5d間でずれがなく、上下合わせてセプタムコイル3と同じ高さになるように構成しているので、セプタムコイル3の上下コイル3u―3d間のずれによって発生する不要磁場の空間依存性に対して、補助コイル5が作る磁場の空間依存性を近似させることできる。そのため、ミッドプレーンpm上の座標によらず、図4(b)に示すように磁場分布を上下均等に形成し、不要磁場をキャンセルすることができる。
 ここで、セプタム電磁石10の真空ダクト2内でのビーム軌道について説明する。
 図5は真空ダクト2のZ軸(円柱座標におけるhに相当)に垂直な断面(XZ面:同rc面に対応)のうち、周方向(c)における4分の1に対応するZ方向300mm分の粒子線の軌道を示したものである。図中、横軸は直交座標系(X,Y,Z)におけるZ方向長さで、図1,3,4で用いた円柱座標系における周方向長さ(c)に対応し、縦軸はX方向長さで径方向長さ(r)に対応する。図に示すように、粒子線は真空ダクト2の内側(リターンコイル4側)のダクトアパーチャDPiと外側(セプタムコイル3側)のダクトアパーチャDPx間を通過することになる。その通過領域は、ダクトアパーチャの略中間部分の内側軌道Oiから、外側ダクトアパーチャDPx付近の外側軌道Oxに至るセプタムコイル3側に偏った所定幅の領域となる。
 つまり、真空ダクト2内の領域の内、リターンコイル4に近い領域に比べて、セプタムコイル3に近い方が不要磁場Bwによる影響が大きい。一方、セプタム電磁石10の性質上、リターンコイル4側よりもセプタムコイル3側の寸法制約の方が大きい。そのため、薄く仕上げる必要があるセプタムコイル3側よりも、厚みの制約の小さいリターンコイル4側に補助コイル5を設置する方が容易である。あるいは、真空ダクト2の上下面側に補助コイルを設けることも考えられる。しかし、図4に示すように、不要磁場の状態は、領域により変化しているので、幅を持って通過する粒子線は領域によって異なる不要磁場を受けることになる。したがって、単にミッドプレーンPmのある狭い領域に対して不要磁場を抑制しても不要磁場の影響を抑制する効果は低く、粒子線の通過領域全体で不要磁場を抑制する必要がある。
 そこで、本実施の形態のように、補助コイル5をセプタムコイル3と真空ダクト2の間に設けることで、少なくとも軌道に影響を及ぼす領域において補助コイル5で作る磁場の空間依存性を不要磁場の空間依存性に近づけることにより、軌道制御に影響する不要磁場Bwを効率的に抑制することが可能となる。なお、補助コイル5を薄く仕上げるためには、セプタムコイル3にように、管状(ホローコンダクタ)にして、内部に水を流して冷却することが難しい。その場合には、例えば真空ダクト2と電気的な絶縁を取った状態で密着させて熱伝導経路を形成し、冷却させるようにしてもよい。
 上記不要磁場は、上下コイルのずれが大きければ大きいほど強くなる。例えば、上下のセプタムコイル3u、3d(リターンコイル4も同様にずれるが、上述したようにセプタムコイル3のずれが問題であるので、セプタムコイル3について記載する)の径方向(r)のずれ量が0.5mmのときは、図4に示すように、不要磁場成分はセプタムコイル3側からミッドプレーンPmの中央部分にまで分布するようになる。しかし、上述した構成の補助コイル5に、メインのコイル電流、つまり、セプタムコイル3に流す電流の1/20程度の電流を流すことにより、不要磁場の空間依存性に近い空間依存性の磁場を発生させ、不要磁場を抑制することができる。同様に、ずれ量が0.3mmなら、補助コイル5に、セプタムコイル3に流す電流の1/65程度の電流を流すことにより、不要磁場の空間依存性に近い空間依存性の磁場を発生させ、不要磁場を抑制することができる。
 なお、補助コイル5の位置決め対象を、セプタムコイル3やリターンコイル4と同様に、上下のヨーク1u、1dとすれば、設置状況に関わらずセプタムコイル3と補助コイル5の間隔を上下で均等に保つことができる。しかし、補助コイル5で作る磁場の空間依存性を不要磁場の空間依存性に近づけるには、上下の補助コイル5u、5d間の設置誤差を低減することの方が重要であり、本実施の形態で示したように、補助コイル5を上下に分離しない真空ダクト2を位置決め対象にすることが望ましい。
 つぎに、本発明の実施の形態1にかかるセプタム電磁石10を備えた粒子線治療装置の構成について図6を用いて説明する。
 図において、粒子線治療装置は、粒子線の供給源として、シンクロトロンである円形加速器100(以降、単に加速器と称する)と、加速器100から供給された粒子線を輸送する輸送系30と、輸送系30によって運ばれた粒子線を患者Kに対して照射する照射装置40と、照射装置40を備えた治療室50とを有している。そして、セプタム電磁石10は、前段加速器20から出射された粒子線を加速器100内に取り込むための入射装置10Aと、加速器100内で加速した粒子線を輸送系30に出射するための出射装置10Bとして加速器100内に設けられている。
<加速器>
 加速器100は、粒子線が周回する軌道経路となる真空ダクト11、前段加速器20から供給された粒子線を周回軌道内に入射するための入射装置10A、粒子線が真空ダクト11内の周回軌道に沿って周回するよう粒子線の軌道を偏向させるための偏向電磁石13a,13b,13c,13d(まとめて13と称する)、周回軌道上に形成された粒子線が発散しないように収束させる収束用電磁石14a,14b,14c,14d(まとめて14と称する)、周回する粒子線に同期した高周波電圧を与えて加速する高周波加速空洞15、加速器100内で加速させた粒子線を加速器100外に取りだし、輸送系30に出射するための出射装置10B、出射装置10Bから粒子線を出射させるために粒子線の周回軌道に共鳴を励起する六極電磁石17を備えている。
 なお、セプタム電磁石10の駆動について図2で説明したのと同様に、偏向電磁石13には、偏向電磁石13の励磁電流を制御する偏向電磁石制御装置や、高周波加速空洞15には、高周波加速空洞15に高周波電圧を供給するための高周波源、高周波源を制御するための高周波制御装置というように、各部を制御するための図示しない装置が備えられており、偏向電磁石制御装置、高周波制御装置や収束用電磁石14などその他のコンポーネントを制御して加速器100全体を制御する加速器制御装置等も制御部60内に備えている。
 また、前段加速器20は、図では簡略化のためにひとつの機器のように記載しているが、実際には、陽子、炭素(重粒子)等の荷電粒子(イオン)を発生させるイオン源(イオンビーム発生装置)と、発生させた荷電粒子を初期加速する線形加速器系とを備えている。そして、前段加速器20から加速器100に入射した荷電粒子は、高周波数の電界で加速され、磁石で曲げられながら、光速の約70~80%まで加速される。
<輸送系>
 加速器100により加速された粒子線は、HEBT(高エネルギービーム輸送:High Energy Beam Transport)系と称される輸送系30へと出射される。輸送系30は、粒子線の輸送経路となる真空ダクト31と、粒子線のビーム軌道を切替える切替装置である切替電磁石32と、粒子線を所定角度に偏向する偏向電磁石33とを備えている。そして加速器100により十分にエネルギーが与えられ、出射装置10Bから出射されて真空ダクト31内を進む粒子線を、切替電磁石32で必要に応じて輸送経路(治療室50A用輸送経路30A、同50B用輸送経路30B、・・・同50N用輸送経路30N)を変え、指定された治療室50毎に設けられた照射装置40へと導く。
<照射装置>
 照射装置40は、輸送系30から供給された粒子線を照射対象である患者Kの患部の大きさや深さに応じた照射野に成形して患部へ照射する装置である。照射野を成形する方法は複数あるが、例えば、粒子線を走査させて照射野を形成するスキャニング照射法では、とくに入射した際の軌道精度が形成する照射野の精度に大きく影響する。したがって、本実施の形態1にかかるセプタム電磁石10を用いることにより、不要磁場の影響を抑制して設定どおりの軌道で粒子線が供給されるので、設定通りに照射野を形成することができ、周辺組織への影響を最低限にして効果的な治療を行うことができる。
<治療室>
 治療室50は、患者Kに対して実際に粒子線を照射して治療を行うための部屋であり、基本的には治療室ごとに上述した照射装置を備えている。なお、図において、治療室50Aでは、偏向電磁石33部分から照射装置40A全体が患者K(治療台)を中心に回転し、患者Kへの粒子線の照射角度を自由に設定できる回転照射室(回転ガントリとも言われる)の例を示している。通常、ひとつの加速器100に対して、例えば、角度や位置を自在に設定可能な治療台に固定された患者に対して照射装置から水平方向に粒子線を照射する水平照射室や、その他タイプの異なる治療室を複数備えている。
 <制御系>
 上記のような、複数のサブシステム(加速器100、輸送系30、治療室50ごとの照射装置40等)を備えたシステムの制御系として、各サブシステムを専ら制御するサブ制御器と全体を指揮し制御するメイン制御器からなる階層型の制御系統を用いることが多い。本発明の実施の形態1にかかる粒子線治療装置の制御部60においても、このメイン制御器とサブ制御器の構成を採用している。そして、サブシステム内で制御できる動作はサブ制御器で、複数のシステムを連携して制御する動作はメイン制御器が制御するというように、制御系統内での機能を分担している。
 一方、粒子線治療装置においては、制御部60には、ワークステーションやコンピュータを用いることが一般的である。そのため、制御部60のメイン制御器やサブ制御器といった機能は、ソフトウェア等により発現されることになり、必ずしも特定のハードウェアに収まるとは限らない。そのため、図ではそれらをまとめて制御部60として記載するが、それは、制御部60が物理的に一つのまとまったハードウェアとして存在するものであることを意味するものではない。
 このような粒子線治療装置において、上述した補助コイル5に流す電流値をどのように制御するかについて、図7~図9に示すフローチャートを用いて説明する。
 まず、セプタムコイル3のずれは、図1(a)に示すA断面、B断面、C断面において、一様ではない。しかし、セプタム電磁石10下流でのビームプロファイルの歪は各断面における不要磁場成分(スキュー磁場)を周方向で積分した積分量で決定される。そのため、補正コイル5に流す電流を以下のようにずれ量の積分値に対応した値として算出することができる。なお、これらの制御は、上述した制御部60を介して実行される。
 第1の制御例.
 第1の制御例では、下流でのビームプロファイル(ビーム幅、位置変動)をモニタすることにより、補正コイル5の電流値(セプタムコイル3に流す電流値に応じた電流値。以下、同様。)を決定する。図7を用いて、第1の制御例について説明する。
 はじめに、下流ビーム状態として、セプタム電磁石10の下流におけるビーム幅もしくは位置変動を計測し(ステップS10)、ビーム計算により、計測した下流ビーム状態から、スキュー磁場による蹴り角、もしくはスキュー磁場強度を計算する(ステップS20)。
 そして、電磁界解析結果、もしくは補正コイル5に実際に電流を流した時の磁場測定結果を基に、計算した蹴り角やスキュー磁場を打ち消すための補正コイル5に流す電流値(暫定値)を算出する(ステップS30)。補正コイル5の電流値を算出した暫定値に調整する(ステップS40)。
 補正コイル5に暫定値に調整した電流を流した状態で、下流ビーム状態を計測する(ステップS50)。これにより、下流ビーム状態の設定値に対する変動量が基準値以下なら(ステップS60で「Y」)、暫定値を設定値として終了する。一方、下流ビーム状態の設定値に対する変動量が基準値を超えていれば(ステップS60で「N」)、ステップS20に移行して、再調整を行う。
 第2の制御例.
 第2の制御例では、磁場センサを用いてスキュー磁場成分を計測し、周方向での積分値から補正コイル5の電流値を決定する。図8を用いて、第2の制御例について説明する。
 はじめに、ホール素子などの磁場センサを用いて、真空ダクト2内のスキュー磁場を周方向における数点で計測し(ステップS12)、計測したスキュー磁場から計算あるいはロングピックアップコイル等により積分値を計算する(ステップS22)。
 そして、電磁界解析結果、もしくは補正コイル5に実際に電流を流した時の磁場測定結果を基に、計算したスキュー磁場を打ち消すための補正コイル5に流す電流値(暫定値)を算出する(ステップS30)。補正コイル5の電流値を算出した暫定値に調整する(ステップS40)。
 補正コイル5に暫定値に調整した電流を流した状態で、スキュー磁場を計測する(ステップS52)。これにより、スキュー磁場の強度が基準値以下なら(ステップS62で「Y」)、暫定値を設定値として終了する。一方、スキュー磁場の強度が基準値を超えていれば(ステップS62で「N」)、ステップS22に移行して、再調整を行う。
 第3の制御例.
 第3の制御例では、上下のコイルのずれを計測し、ずれ量からスキュー磁場を計算して周方向での積分値から補正コイル5の電流値を決定する。図9を用いて、第3の制御例について説明する。
 はじめに、レーザー変位系等の位置や寸法を測定する装置を用いて上下のコイル位置のずれ量を計測し(ステップS13)、計測したずれ量から電磁界解析によってスキュー磁場強度を計算する(ステップS23)。
 そして、電磁界解析結果、もしくは補正コイル5に実際に電流を流した時の磁場測定結果を基に、計算したスキュー磁場を打ち消すための補正コイル5に流す電流値(暫定値)を算出する(ステップS33)。補正コイル5の電流値を算出した暫定値に調整する(ステップS40)。
 補正コイル5に暫定値に調整した電流を流した状態で、スキュー磁場を計測する(ステップS53)。これにより、スキュー磁場の強度が基準値以下なら(ステップS63で「Y」)、暫定値を設定値として終了する。一方、スキュー磁場の強度が基準値を超えていれば(ステップS63で「N」)、ステップS33に移行して、再調整を行う。このとき、ステップS33では、調整後のスキュー磁場の強度を基に電流値の補正量を再計算する。
 なお、第3の本調整例では、ステップS53において、スキュー磁場を計測した例について説明したが、例えば、第1の調整例のステップS50、S60のように、下流ビーム状態を計測することで暫定値が適したものか否かを判断するようにしてもよい。
 このような調整を、メンテナンスを行うごとに実施して、補正コイル5に流す電流値をセプタムコイル3に流す電流値ごとに、例えばテーブル化して制御部60に記憶させておくことで、不要磁場の影響を抑制して正確な軌道でビームを取り出すことができるようになる。
 以上のように、本実施の形態1にかかるセプタム電磁石10によれば、弧状をなし、外周側に開口して周方向(c)に延伸する空隙部1sを有するとともに、軸方向(h)における略中央部で分割可能に構成されたヨーク1と、空隙部1s内の径方向(r)における外側に設置され、周方向における一方向に電流が流れるセプタムコイル3と、セプタムコイル3と所定の間隔をあけて対向するように空隙部1s内の径方向における内側に設置され、セプタムコイル3と逆向きの電流が流れるリターンコイル4と、セプタムコイル3とリターンコイル4との間に設置される真空ダクト2と、を備え、セプタムコイル3は、ヨーク1の分割に対応して第1の部分である上部分3uと第2の部分である下部分3dに分離可能に形成されているとともに、セプタムコイル3と真空ダクト2との間には、セプタムコイル3の上部分3uと下部分3dに対応する部分(5u、5d)で互いに周方向における逆向きの電流が流れる補助コイル5が設けられているように構成したので、設置やメンテナンスの際に上下のセプタムコイル3u,3dに位置ずれが生じても、位置ずれに伴って生じるスキュー磁場の分布と同様の分布の磁場を補正コイル5で発生させることにより、スキュー磁場を効率的に抑制することができる。そのため、容易にメンテナンスができるとともに、粒子線の軌道を正確に制御できるセプタム電磁石および粒子線治療装置を得ることができる。
 とくに、補助コイル5は、軸方向(h)における寸法がセプタムコイル3と同じになるように形成されているので、発生させる磁場をよりスキュー磁場の分布により近づけることができ、さらに効率よくスキュー磁場を抑制することができる。
 さらに、補助コイル5は、真空ダクト2と一体化して、真空ダクト2に対して位置決めされているので、上補助コイル5uと下補助コイル5dの位置ずれがなく、発生させる磁場をより一層スキュー磁場の分布により近づけることができ、さらに効率よくスキュー磁場を抑制することができる。
 また、本実施の形態1にかかる粒子線治療装置は、本実施の形態1にかかるセプタム電磁石10を少なくとも粒子線の出射装置10Bに使用する加速器100と、出射装置10Bから出射された粒子線を輸送する輸送系30と、輸送系30を介して供給された粒子線を所定の照射野に形成して照射する照射装置40と、を備えたので、出射位置及び軌道が正確な粒子線を照射装置40に供給できるので、正確な照射野で照射ができる。
1:ヨーク(1u:上ヨーク、1d:下ヨーク、1s:空隙部)、
2:真空ダクト、
3:セプタムコイル(3u:上セプタムコイル(第1の部分)、3d:下セプタムコイル(第2の部分))、
4:リターンコイル(4u:上リターンコイル、4d:下リターンコイル)、
5:補助コイル(5u:上補助コイル(第1の部分に対応する部分)、5d:下補助コイル(第2の部分に対応する部分))、
6:磁気シールド、
9:駆動電源(9M:メインコイル用、9S:補助コイル用)、
10:セプタム電磁石、11:ダクト(周回軌道経路)
20:前段加速器、30:輸送系、40:照射装置、50:治療室、60:制御部、
100 加速器。

Claims (4)

  1.  弧状をなし、外周側に開口して周方向に延伸する空隙部を有するとともに、軸方向における略中央部で分割可能に構成されたヨークと、
     前記空隙部内の径方向における外側に設置され、周方向における一方向に電流が流れるセプタムコイルと、
     前記セプタムコイルと所定の間隔をあけて対向するように前記空隙部内の前記径方向における内側に設置され、前記セプタムコイルと逆向きの電流が流れるリターンコイルと、
     前記セプタムコイルと前記リターンコイルとの間に設置される真空ダクトと、を備え、
     前記セプタムコイルは、前記ヨークの分割に対応して第1の部分と第2の部分に分離可能に形成されているとともに、
     前記セプタムコイルと前記真空ダクトとの間には、前記セプタムコイルの第1の部分と第2の部分に対応する部分で互いに前記周方向における逆向きの電流が流れる補助コイルが設けられていることを特徴とするセプタム電磁石。
  2.  前記補助コイルは、前記軸方向における寸法が前記セプタムコイルと同じになるように形成されていることを特徴とする請求項1に記載のセプタム電磁石。
  3.  前記補助コイルは、前記真空ダクトと一体化されていることを特徴とする請求項1または2に記載のセプタム電磁石。
  4.  請求項1ないし3のいずれか1項に記載のセプタム電磁石を少なくとも粒子線の出射装置に使用する加速器と、
     前記出射装置から出射された粒子線を輸送する輸送系と、
     前記輸送系を介して供給された粒子線を所定の照射野に形成して照射する照射装置と、を備えたことを特徴とする粒子線治療装置。
PCT/JP2012/053240 2012-02-13 2012-02-13 セプタム電磁石および粒子線治療装置 WO2013121503A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/576,597 US8884256B2 (en) 2012-02-13 2012-02-13 Septum magnet and particle beam therapy system
CN201280001031.8A CN103370991B (zh) 2012-02-13 2012-02-13 切割电磁铁及粒子射线治疗装置
PCT/JP2012/053240 WO2013121503A1 (ja) 2012-02-13 2012-02-13 セプタム電磁石および粒子線治療装置
EP12755773.4A EP2651197B1 (en) 2012-02-13 2012-02-13 Septum electromagnet and particle beam therapy device
JP2012516403A JP5112571B1 (ja) 2012-02-13 2012-02-13 セプタム電磁石および粒子線治療装置
TW104139121A TWI565498B (zh) 2012-02-13 2012-07-12 中隔電磁石之控制方法
TW101125026A TWI515026B (zh) 2012-02-13 2012-07-12 中隔電磁石及粒子束治療裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053240 WO2013121503A1 (ja) 2012-02-13 2012-02-13 セプタム電磁石および粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2013121503A1 true WO2013121503A1 (ja) 2013-08-22

Family

ID=47676449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053240 WO2013121503A1 (ja) 2012-02-13 2012-02-13 セプタム電磁石および粒子線治療装置

Country Status (6)

Country Link
US (1) US8884256B2 (ja)
EP (1) EP2651197B1 (ja)
JP (1) JP5112571B1 (ja)
CN (1) CN103370991B (ja)
TW (2) TWI515026B (ja)
WO (1) WO2013121503A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012848B2 (ja) * 2013-03-14 2016-10-25 三菱電機株式会社 電磁石支持台
CN106961780B (zh) * 2017-04-27 2019-04-05 中国科学技术大学 一种粒子注入系统及环形粒子加速器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143400A (ja) * 1985-12-17 1987-06-26 三菱電機株式会社 Sor装置
JPS63224230A (ja) 1987-03-12 1988-09-19 Fujitsu Ltd X線露光装置
JPH01209700A (ja) 1988-02-15 1989-08-23 Mitsubishi Electric Corp 荷電粒子蓄積リング用偏向電磁石
JPH02174099A (ja) * 1988-12-27 1990-07-05 Mitsubishi Electric Corp 超電導偏向電磁石
JPH06151096A (ja) 1992-11-06 1994-05-31 Hitachi Ltd 加速器用ビームダクト
JP2001043998A (ja) 1999-07-30 2001-02-16 Hitachi Ltd 電磁石、及びそれを用いた円形加速器と円形加速器システム
JP2002008899A (ja) * 2000-06-19 2002-01-11 Ishikawajima Harima Heavy Ind Co Ltd 真空チェンバの渦電流補正装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263136A (en) * 1964-01-20 1966-07-26 Hayden S Gordon High energy accelerator magnet structure
JPS61159714A (ja) * 1985-01-07 1986-07-19 Mitsubishi Electric Corp 超電導マグネツト
DE3704442A1 (de) * 1986-02-12 1987-08-13 Mitsubishi Electric Corp Ladungstraegerstrahlvorrichtung
US4783634A (en) * 1986-02-27 1988-11-08 Mitsubishi Denki Kabushiki Kaisha Superconducting synchrotron orbital radiation apparatus
JPS63158800A (ja) * 1986-12-23 1988-07-01 石川島播磨重工業株式会社 シンクロトロン放射光発生装置
JP2511990B2 (ja) * 1987-07-22 1996-07-03 株式会社日立製作所 偏向マグネット、及びその励磁装置
JPS6467900A (en) * 1987-09-08 1989-03-14 Toshiba Corp Synchrotron device
JPH0712000B2 (ja) * 1987-11-02 1995-02-08 株式会社日立製作所 シンクロトロン放射光発生装置、及びその製作方法
JPH01282500A (ja) * 1988-05-07 1989-11-14 Mitsubishi Electric Corp 荷電粒子装置用偏向電磁石
JPH01307198A (ja) * 1988-06-03 1989-12-12 Hitachi Ltd セプタムマグネツト
GB2223350B (en) 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
JPH0294400A (ja) * 1988-09-30 1990-04-05 Hitachi Ltd セプタムマグネット及び荷電粒子の蓄積装置
JPH03122999A (ja) * 1989-10-06 1991-05-24 Hitachi Ltd 偏向電磁石およびそれを用いた円形加速器の荷電粒子加速方法
JP2529492B2 (ja) * 1990-08-31 1996-08-28 三菱電機株式会社 荷電粒子偏向電磁石用コイルおよびその製造方法
JPH0466100U (ja) * 1990-10-17 1992-06-10
JPH05196799A (ja) * 1992-01-14 1993-08-06 Mitsubishi Electric Corp 偏向電磁石装置
JPH05258897A (ja) * 1992-03-16 1993-10-08 Hitachi Ltd セプタム電磁石
JP2944317B2 (ja) * 1992-07-28 1999-09-06 三菱電機株式会社 シンクロトロン放射光源装置
US5576602A (en) * 1993-08-18 1996-11-19 Hitachi, Ltd. Method for extracting charged particle beam and small-sized accelerator for charged particle beam
JP2600109B2 (ja) * 1994-09-05 1997-04-16 高エネルギー物理学研究所長 正イオン、負イオン両用入射装置
JP3090654B2 (ja) * 1997-05-09 2000-09-25 株式会社日立製作所 電磁石及び加速器、並びに加速器システム
US5913872A (en) * 1997-10-10 1999-06-22 Newcore, Usa Magnetic nose clip
JPH11345700A (ja) * 1998-06-02 1999-12-14 Hitachi Ltd 電磁石及びそれを用いたシンクロトロン
JP2000043998A (ja) * 1998-07-31 2000-02-15 Tokico Ltd 給油装置
JP2000082599A (ja) * 1998-09-02 2000-03-21 Mitsubishi Electric Corp 円形加速器用電磁石
JP3513417B2 (ja) * 1999-03-15 2004-03-31 三菱電機株式会社 セプタム電磁石
JP2001023798A (ja) 1999-07-06 2001-01-26 Toshiba Corp 偏向磁石及びこの磁石を用いた装置
JP3761836B2 (ja) * 2002-05-07 2006-03-29 三菱電機株式会社 加速器用入出射装置
CN100420353C (zh) * 2004-04-19 2008-09-17 三菱电机株式会社 带电粒子束加速器、粒子束照射医疗系统及其运行方法
DE202004009421U1 (de) * 2004-06-16 2005-11-03 Gesellschaft für Schwerionenforschung mbH Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen
CN201229822Y (zh) * 2008-04-17 2009-04-29 中国科学院近代物理研究所 C型冲片二极弯曲电磁铁
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
CN101631420B (zh) * 2009-01-12 2010-10-13 中国科学院近代物理研究所 用于质子-重离子束治癌的加速器
JP2012022776A (ja) * 2010-07-12 2012-02-02 Hitachi Ltd シンクロトロンおよびそれを用いた粒子線治療装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143400A (ja) * 1985-12-17 1987-06-26 三菱電機株式会社 Sor装置
JPS63224230A (ja) 1987-03-12 1988-09-19 Fujitsu Ltd X線露光装置
JPH01209700A (ja) 1988-02-15 1989-08-23 Mitsubishi Electric Corp 荷電粒子蓄積リング用偏向電磁石
JPH02174099A (ja) * 1988-12-27 1990-07-05 Mitsubishi Electric Corp 超電導偏向電磁石
JPH06151096A (ja) 1992-11-06 1994-05-31 Hitachi Ltd 加速器用ビームダクト
JP2001043998A (ja) 1999-07-30 2001-02-16 Hitachi Ltd 電磁石、及びそれを用いた円形加速器と円形加速器システム
JP2002008899A (ja) * 2000-06-19 2002-01-11 Ishikawajima Harima Heavy Ind Co Ltd 真空チェンバの渦電流補正装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2651197A4

Also Published As

Publication number Publication date
CN103370991A (zh) 2013-10-23
CN103370991B (zh) 2015-12-09
JP5112571B1 (ja) 2013-01-09
EP2651197A4 (en) 2015-08-05
EP2651197A1 (en) 2013-10-16
US8884256B2 (en) 2014-11-11
JPWO2013121503A1 (ja) 2015-05-11
TW201609214A (zh) 2016-03-16
TW201332603A (zh) 2013-08-16
US20130207001A1 (en) 2013-08-15
EP2651197B1 (en) 2016-04-06
TWI515026B (zh) 2016-01-01
TWI565498B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
JP4954351B2 (ja) 粒子線照射システムおよび粒子線照射方法
JP4691576B2 (ja) 粒子線治療システム
KR101985252B1 (ko) 하전입자 빔 조사장치
JP6387476B1 (ja) 荷電粒子ビーム照射装置
CN110339491B (zh) 聚束电磁铁及带电粒子束照射装置
US10249419B2 (en) Superconductive electromagnet and charged particle beam therapy apparatus
JP6364141B1 (ja) 収束電磁石及び荷電粒子ビーム照射装置
JP6243263B2 (ja) 荷電粒子線治療装置
US20150340141A1 (en) Superconductive electromagnet device
JP5469224B2 (ja) セプタム電磁石の制御方法
JP5112571B1 (ja) セプタム電磁石および粒子線治療装置
JP6211736B2 (ja) 荷電粒子線治療装置
US20210031056A1 (en) Charged particle beam treatment apparatus
JP7125047B2 (ja) 粒子線治療システム
JP5700550B2 (ja) 荷電粒子線照射装置
US20220305295A1 (en) Particle beam treatment apparatus and accelerator
JP6998777B2 (ja) イオン源装置、及び荷電粒子線治療装置
TWI622418B (zh) 粒子射線治療裝置
JP2020141944A (ja) 走査電磁石
JP2014164874A (ja) 加速器及び中性子捕捉療法装置
JP2018166934A (ja) 荷電粒子線治療装置、及び電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001031.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012516403

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13576597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012755773

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE