WO2013117109A1 - 阵列基板和双视场显示装置及其制造方法 - Google Patents

阵列基板和双视场显示装置及其制造方法 Download PDF

Info

Publication number
WO2013117109A1
WO2013117109A1 PCT/CN2012/087238 CN2012087238W WO2013117109A1 WO 2013117109 A1 WO2013117109 A1 WO 2013117109A1 CN 2012087238 W CN2012087238 W CN 2012087238W WO 2013117109 A1 WO2013117109 A1 WO 2013117109A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
pixel electrode
pixel
sub
field
Prior art date
Application number
PCT/CN2012/087238
Other languages
English (en)
French (fr)
Inventor
武延兵
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/994,740 priority Critical patent/US9293481B2/en
Publication of WO2013117109A1 publication Critical patent/WO2013117109A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • Embodiments of the present invention relate to an array substrate and a dual field of view display device and a method of fabricating the same. Background technique
  • Dual field of view display technology refers to the technique of seeing different content in the field of view on both sides of the display screen.
  • a dual field of view device typically includes a display screen and a baffle as shown in FIG.
  • the display screen 1 includes a plurality of pixel units, each of which includes a sub-pixel electrode 11 for displaying a specific field of view and a control circuit (for example, a TFT circuit) covered by the black matrix 12.
  • a control circuit for example, a TFT circuit
  • the width of the sub-pixel electrode 11 is P
  • the width of the black matrix 12 between two adjacent sub-pixel electrodes is B
  • the distance between the baffle 2 and the display screen 1 is H
  • the opening edge of the baffle 2 is on the display screen 1
  • the distance at the position of the pixel electrode 11 projected to the edge of the black matrix 12 is A.
  • the centerline of the baffle opening coincides with the centerline of two adjacent sub-pixel electrodes, so the baffle opening width is B+2A.
  • the angle ⁇ is the angle of the single field of view. Only in this range can the viewer see the light emitted by the dotted sub-pixels. Increasing the angle ⁇ can increase the viewing range of the single field of view, which in turn can improve the display quality of the dual field of view display.
  • Equation 1 the distance A from the edge of the opening of the baffle at the position of the sub-pixel electrode on the display screen to the edge of the black matrix, two adjacent sub-pixels
  • the width B of the black matrix between the electrodes is constant, in order to increase the angle ⁇ , the distance H between the baffle and the light-emitting point of the color film may be correspondingly reduced, or the sub-pixel electrode width P may be appropriately lowered.
  • reducing the distance H between the baffle and the color point of the color film means reducing the thickness of the color filter glass.
  • the structure of the TFT array substrate of the conventional dual field of view liquid crystal display device is as shown in FIG. 2.
  • One pixel unit 2 includes a sub-pixel electrode 21 and a TFT circuit 22.
  • the width P of the sub-pixel electrode 21 is usually 50 ⁇ m.
  • the TFT circuit 22 is difficult to reduce in the same proportion as the sub-pixel electrode width ⁇ decreases.
  • the proportion of the sub-pixel area occupied by the black matrix covering the TFT circuit will increase accordingly, so that the aperture ratio is significantly reduced, affecting the quality of the liquid crystal display device.
  • OLED Organic Light Emitting Diode
  • Embodiments of the present invention provide an array substrate and a dual field of view display device and a method of fabricating the same, to solve the problem that the glass substrate must be thinned due to the expansion of the unilateral field of view, thereby increasing the production cost and the substrate.
  • An aspect of the present invention provides an array substrate including a plurality of pixel units divided by horizontally and vertically intersecting gate lines and data lines, each of the pixel units including a pixel electrode and a TFT circuit, wherein the pixel electrode of each pixel unit includes At least two first pixel electrodes and at least two second pixel electrodes spaced apart from each other; a TFT circuit of each pixel unit includes a first sub-TFT circuit connected to the first pixel electrode and connected to the second pixel electrode The second sub-TFT circuit.
  • the first pixel electrode as a whole constitutes a first comb structure
  • the second pixel electrode as a whole constitutes a second comb structure
  • the branch portion of the first comb structure and The branch portions of the second comb structure are disposed to intersect each other.
  • Another aspect of the present invention provides a dual view display device comprising: a display panel and a dual view baffle disposed on the display panel, wherein the display panel comprises the array substrate as described above.
  • the display panel may be a liquid crystal panel.
  • the liquid crystal panel may include an array substrate, a color filter substrate, and a liquid crystal filled between the array substrate and the color filter substrate;
  • the color filter substrate includes a transparent substrate and a color film disposed thereon;
  • the array substrate is the above array substrate.
  • the display panel may be an OLED panel; the OLED panel includes an array substrate and an encapsulation layer, wherein the array substrate includes a gate line and a data line that are intersected by horizontal and vertical crossings.
  • a plurality of pixel units each including an electroluminescent EL layer and a control circuit, the EL layer including a metal cathode, a pixel electrode, and an organic luminescent material between the metal cathode and the pixel electrode;
  • the pixel electrode includes at least two first pixel electrodes and at least two second pixel electrodes spaced apart from each other;
  • a control circuit of each pixel unit includes a first sub-control circuit and the second connected to the first pixel electrode A second sub-control circuit to which the pixel electrode is connected.
  • Another aspect of the present invention provides a method for fabricating a dual field of view liquid crystal display device, comprising: obtaining a TFT circuit and a pixel electrode by a patterning process on a lower substrate, wherein a pixel electrode of each pixel unit includes at least two spaced apart from each other a first pixel electrode and at least two second pixel electrodes; a TFT circuit of each pixel unit including a first sub-TFT circuit connected to the first pixel electrode and a second sub-TFT circuit connected to the second pixel electrode .
  • a double-view baffle and a color film are obtained by a patterning process on the upper substrate.
  • the upper substrate and the lower substrate are opposed to a cartridge, and the cartridge is filled with a liquid helium.
  • a method for fabricating a dual field of view OLED display device includes: forming a control circuit on a lower substrate by a patterning process; forming an EL layer on the lower substrate on which the control circuit is formed, wherein The EL layer includes a metal cathode, a pixel electrode, and an organic luminescent material between the metal cathode and the pixel electrode, and the pixel electrode of each pixel unit includes at least two first pixel electrodes and at least two second pixel electrodes spaced apart from each other
  • the control circuit of each pixel unit includes a first sub-control circuit connected to the first pixel electrode and a second sub-control circuit connected to the second pixel electrode.
  • a double-view baffle is obtained by a patterning process on the upper substrate.
  • the upper substrate is covered on the lower substrate.
  • the first pixel electrode and the second pixel electrode in each pixel unit may be separately driven, and the display of the corresponding area may be separately formed after being formed into a display panel (such as a liquid crystal panel or an OLED panel).
  • a display panel such as a liquid crystal panel or an OLED panel.
  • the double-view baffle can be fabricated in the display panel, thereby avoiding the addition of new processes or the use of new production equipment, thereby reducing the production cost of the dual-view display device.
  • the dual-view liquid crystal display device and the manufacturing method thereof are provided by the embodiment of the present invention, and the sub-pixel electrodes for displaying a specific field of view in one pixel unit in the prior art are separated from each other.
  • the plurality of first field of view pixel electrodes and second field of view pixel electrodes substantially reduce the width of the single field of view pixel electrodes, thereby expanding the visual range of each unilateral field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the visual range of each unilateral field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • FIG. 1 is a schematic structural view of a conventional dual field of view liquid crystal display device
  • FIG. 2 is a schematic structural diagram of a TFT array substrate of a conventional dual-view liquid crystal display device
  • FIG. 3 is a schematic structural view of a dual-view liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4b is a schematic structural diagram of a TFT array substrate of another dual-view liquid crystal display device according to an embodiment of the present invention.
  • FIG. 5 is a comparison diagram of pixel display effects of a dual-view liquid crystal display device and a conventional liquid crystal display device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a dual-view liquid crystal display device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another dual-view liquid crystal display device according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a dual-view OLED display device according to an embodiment of the present invention
  • FIG. 9b is a dual-view OLED display according to an embodiment of the present invention
  • Schematic diagram of the TFT array substrate of the device
  • FIG. 9c is a schematic structural diagram of another dual field of view OLED display device according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides an array substrate, as shown in FIG. 4a, including a plurality of pixel units 43 divided by horizontally and vertically intersecting gate lines 41 and data lines 42, each of which includes a pixel electrode 431 and a thin film transistor. (TFT) circuit 432.
  • TFT thin film transistor.
  • the pixel electrode 431 of each pixel unit 43 includes at least two first pixel electrodes 4311 and at least two second pixel electrodes 4312 spaced apart from each other.
  • the TFT circuit 432 of each pixel unit 43 includes a first sub-TFT circuit 4321 connected to the first pixel electrode 4311 and a second sub-TFT circuit 4322 connected to the second pixel electrode 4312. That is, all of the first pixel electrodes 4311 are connected to the corresponding first sub-TFT circuits 4321, and all of the second pixel electrodes 4312 are connected to the corresponding second sub-TFT circuits 4322.
  • Each of the first pixel electrodes 4311 may be connected to the first sub-TFT circuit 4321 by any structure that can achieve circuit conduction, and each of the second pixel electrodes 4312 may be connected to the second sub-TFT circuit by any structure that can achieve circuit conduction. Above 4322.
  • each pixel unit 43 may be similar in size to an existing normal pixel unit. Since at least two first pixel electrodes 4311 and at least two second pixel electrodes 4312 are included in each pixel unit 43, in the case where the sizes of the pixel units are close, the pixel electrodes of the present embodiment are larger than the usual common array substrate. The pixel electrode in the pixel unit is much smaller. Therefore, the pixel structure on the array substrate of the embodiment of the present invention may be referred to as a "micropixel" structure.
  • each pixel unit all of the first pixel electrodes 4311 integrally constitute a first comb structure, and all of the second pixel electrodes 4312 integrally constitute a second comb structure, and the branch portions of the first comb structure a (electrode) and a branch portion (electrode) of the second comb structure are disposed to cross each other;
  • This structure is shown in Figure 4a.
  • This structure because the structure of the first comb structure and the second comb structure is relatively regular, is easy to manufacture, has good process yield, and has a regular electric field that is relatively easy to control.
  • the width of the first pixel electrode 4311 and the second pixel electrode 4312 may be 1-20 ⁇ m. This width parameter allows for better electric field control while maintaining process yield.
  • the gate of the first sub-TFT circuit 4321 and the gate of the second sub-TFT circuit 4322 are connected to the same laterally extending gate line 41; the first sub-TFT The source of the circuit 4321 and the source of the second sub-TFT circuit 4322 are respectively connected to the data lines 42 (422, 421) at both ends of one pixel unit; the drain of the first sub-TFT circuit 4321 is connected to the first pixel electrode 4311, and the second sub- The drain of the TFT circuit 4322 is connected to the second pixel electrode 4312.
  • the double view baffle can be fabricated on the display panel.
  • the addition of new processes or the use of new production equipment is avoided, thereby reducing the production cost of the dual field of view display device and improving the yield and reliability of the substrate.
  • the principle of dual-view display is basically the same as the principle of 3D display, different fields of view display information are distinguished, but the 3D display needs to distinguish between the left-eye and right-eye field signals (by the same viewer). Different eyes receive), and the dual view display needs to distinguish between the first field of view signal and the second field of view signal (received by different viewers). Therefore, those skilled in the art can understand that the array substrate of the embodiment can also be used to implement 3D display.
  • the first pixel electrode corresponds to the left eye signal
  • the second pixel electrode corresponds to the right eye signal
  • the first pixel electrode corresponds to the right eye signal
  • the second pixel electrode corresponds to the left eye signal.
  • the first pixel electrode corresponds to the first field of view signal
  • the second pixel electrode corresponds to the second field of view signal
  • the first pixel electrode corresponds to the second field of view signal
  • the second pixel electrode corresponds to the first field of view signal
  • the array substrate may be a flexible array substrate for fabricating a flexible display device, or may be a general array substrate such as a glass substrate or a plastic substrate. Moreover, the array substrate may be an array substrate of a TN mode, an ADS mode, or other modes.
  • the array substrate is an ADS type array substrate, in each pixel unit, a common electrode (not shown) between the substrate substrate of the array substrate and the pixel electrode is further included; further, the public The electrode can be Comb or plate shape.
  • the array substrate provided by the embodiment of the present invention includes a first pixel electrode and a second pixel electrode in each pixel unit, and the first pixel electrode and the second pixel electrode can be separately driven by inputting display signals respectively, and thus can be fabricated
  • the display panel (such as a liquid crystal panel, or an OLED panel, or other type of display panel) controls the image display of the corresponding area separately.
  • the same or different display signals may be input to the first pixel electrode and the second pixel electrode according to actual needs; or, the first pixel electrode and the second pixel electrode may operate simultaneously or at different times.
  • the array substrate of the present embodiment can be specifically applied to different types of display devices, such as 3D, touch, flexible display, etc. according to actual needs; and, the array substrate of the embodiment, It may be a common array substrate, an oxide semiconductor array substrate, or an organic semiconductor array substrate, which is not limited herein.
  • the embodiment and the following embodiment 3 provide a dual field of view display device, using the array substrate as described in the above embodiment 1, for example, a dual field of view liquid crystal display device and a dual field of view OLED display device .
  • the first field-of-view pixel electrode described in the following embodiments corresponds to the first pixel electrode in the array substrate according to the first embodiment; the second field-of-view pixel electrode corresponds to the array substrate in the first embodiment.
  • a dual-view liquid crystal display device uses the array substrate as described in Embodiment 1 above, as shown in FIG.
  • the display device includes a dual view baffle 31, a box-shaped TFT array substrate 32, and a color filter substrate.
  • the TFT array substrate 32 includes a plurality of pixel units 43 divided by horizontally and vertically intersecting gate lines 41 and data lines 42, each of which includes a pixel electrode 431 and a TFT circuit 432.
  • the pixel electrode 431 of each pixel unit 43 includes at least two first field of view pixel electrodes 4311 and at least two second field of view pixel electrodes 4312 spaced apart from each other.
  • the TFT circuit 432 of each pixel unit 43 includes a first sub-TFT circuit 4321 connected to the first field of view pixel electrode 4311 and a second sub-TFT circuit 4322 connected to the second field of view pixel electrode 4312. That is, in these pixel units, all of the first field of view pixel electrodes 4311 are connected to the corresponding first sub-TFT circuits 4321, and all of the second field of view pixel electrodes 4312 are connected to the corresponding second sub-TFT circuits 4322.
  • Each of the first field of view pixel electrodes 4311 can be electrically realized by any The circuit-on structure is connected to the first sub-TFT circuit 4321, and each of the second field-of-view pixel electrodes 4312 can be connected to the second sub-TFT circuit 4322 by any structure that can achieve circuit conduction.
  • the dual-view liquid crystal display device provided by the embodiment of the present invention is configured to change a plurality of first field-of-view pixels that are spaced apart from each other by using a sub-pixel electrode of a sub-pixel for displaying a specific field of view in one pixel unit in the prior art.
  • the electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each single side field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the visual range of each unilateral field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • At least two first field of view pixel electrodes 4311 and at least two second field of view pixel electrodes 4312 which are spaced apart from each other are elongated strip electrodes.
  • the mutually spaced at least two first field of view pixel electrodes 4311 and at least two second field of view pixel electrodes 4312 may be parallel to the gate line 41 or may be parallel to the data line 42.
  • at least two first field of view pixel electrodes 4311 and at least two second field of view pixel electrodes 4312 spaced apart from each other are parallel to the data line 42. The example is explained.
  • each pixel unit 43 in each pixel unit 43, all the first field of view pixel electrodes 4311 constitute a first comb structure as a whole, all The second field of view pixel electrode 4312 integrally constitutes a second comb structure, and the branch portion of the first comb structure and the branch portion of the second comb structure are disposed to cross each other; that is, all of the first field of view pixel electrodes 4311 and all The second field of view pixel electrode 4312 may be a comb structure that is spaced apart from each other as a whole.
  • the widths of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 are equal; in this embodiment, both of the widths are a, and a may be 1-20 ⁇ m.
  • the widths of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 may not be equal.
  • the number of the first field of view pixel electrodes 4311 and the second field of view pixel electrodes 4312 is equal, and a better display effect can be achieved.
  • the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 are eight, that is, each comb electrode has eight branches. Obviously, the invention is not limited thereto.
  • the block-shaped single-view sub-pixel electrodes in the two adjacent pixel units are changed to be comb-shaped first field-of-view pixel electrodes and second field of view interposed in the same pixel unit.
  • Pixel electrode When the two fields of view pixels display different colors, if the influence of the micro electric field existing between the two field of view pixel electrodes on the liquid crystal is ignored, the dual field of view liquid crystal display provided by the embodiment of the present invention
  • the pixel display effect of the device and the existing liquid crystal display device can be as shown in FIG. 5. It can be clearly seen that the liquid crystal display device provided by the embodiment of the present invention substantially reduces the width of the single field of view pixel electrode compared to the prior art. Since the width of the unilateral field of view pixel electrode in such a pixel structure is much smaller than that of the prior art sub-pixel electrode structure, such a pixel structure can be named "micro-pixel structure".
  • the gate 441 of the first sub-TFT circuit 4321 and the gate 451 of the second sub-TFT circuit 4322 are connected to the same gate line 41; the source 442 and the first of the first sub-TFT circuit 4321 The source 452 of the two sub-TFT circuits 4322 are respectively connected to the data lines 421 and 422 at both ends of one pixel unit; the drain 443 of the first sub-TFT circuit 4321 is connected to the first field-of-view pixel electrode 4311, and the second sub-TFT circuit 4322 The drain 453 is connected to the second field of view pixel electrode 4312.
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same TFT, so that the pixel aperture ratio is limited to be reduced, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the double view baffle 31 may be located above or below the color film 331 of the color filter substrate 33, and the distance from the color film 331 may be 1 -100 ⁇ .
  • the double view shutter 31 includes a plurality of black stripes parallel to each other, and a portion between the black stripes is transparent for light transmission for display.
  • a transparent layer 332 having a thickness of 1-100 ⁇ m may be disposed between the double view shutter 31 and the color film 331.
  • the center line of the double view shutter 31 coincides with the center line of the display area 40 of the display device on the straight line m.
  • the transparent layer 332 may be a transparent film formed using any one of light-transmitting materials, for example, a transparent film may be formed using a plastic film or a silicone rubber film.
  • the transparent layer 332 is mainly used to isolate a certain height between the double view baffle 322 and the color film 321 , and the thickness of the transparent layer 332 is the distance H between the baffle and the display screen.
  • the distance H between the baffle and the color film illumination point may be 5 ⁇ m
  • the width a of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 may be 3 ⁇ m
  • the width b of the slit between the electrode 4311 and the second field of view pixel electrode 4312 may be 2 ⁇ m; when the distance from the edge of the baffle opening to the edge of the black matrix at the position of the sub-pixel electrode on the display screen is 0, it can be calculated
  • the viewing angle of a single field of view is 45. .
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same TFT, so that the reduction of the pixel aperture ratio is limited, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the display principle of the dual field of view liquid crystal display device provided by the embodiment of the present invention is as shown in FIG. 6. 6 is only a schematic view. As described above, the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 are spaced apart from each other, but the interval between them is not shown in the figure, but the interval is counted into the electrode. Consider the width of the middle. The gap between the stripes on the parallax barrier 31 corresponds to a portion of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 adjacent to each other (for example, a branch portion of the two comb electrodes crossing each other) .
  • the width a of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 may be 3 ⁇ m
  • the thickness ⁇ of the transparent layer 332 between the double view baffle 31 and the color film 331 may be 5 ⁇ m.
  • the direction of light emission is as shown by the arrow in the figure. It can be seen that the viewing angle of the left and right fields of view is ⁇ .
  • FIG. 1 Another dual field of view liquid crystal display device provided by the embodiment of the present invention is shown in FIG. 1
  • the structure of the TFT array substrate is substantially similar to that of the embodiment shown in FIG. 3, except that the dual-view baffle 31 can also be located below the color film 331.
  • the double view shutter 31 can be directly positioned on the upper surface of the TFT array substrate 32.
  • the distance from the surface of the TFT array substrate to the double-view baffle generally includes the color film thickness, the array thickness, and the liquid crystal alignment film thickness, the sum of these thicknesses is usually 4-7 ⁇ m. In this way, in the case where the transparent layer is not used as the spacer, the distance between the baffle and the light-emitting point of the color film can be satisfied, and the range can be within the range of 1-100 ⁇ m, thereby simplifying the process and saving the cost.
  • the display principle of the above dual field of view liquid crystal display device is as shown in FIG. 8 is only a schematic view.
  • the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 are spaced apart from each other, but the interval between them is not shown in the drawing, but the interval is counted into the electrode.
  • the gap between the stripes on the parallax barrier 31 corresponds to a portion of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 adjacent to each other (for example, a branch portion of the two comb electrodes crossing each other) .
  • the width a of the first field of view pixel electrode 4311 and the second field of view pixel electrode 4312 may be 3 ⁇ m, and the distance ⁇ between the double view baffle 31 and the pixel electrode may be 5 ⁇ m, on the double view baffle 31
  • the direction of light emission is as shown by the arrow in the figure. It can be seen that the viewing angles of the left and right fields of view are also ⁇ .
  • the color filter substrate is an example of an opposed substrate disposed opposite to the array substrate.
  • the liquid crystal display device may not include a separate color filter substrate.
  • the center line of the double vision shutter coincides with the center line of the display area of the display device. That is, the slit center line at the center of the double view baffle coincides with the slit between the first field of view pixel electrode and the second field of view pixel electrode at the center of the display screen. Further, the number of slits of the double view baffle is half the sum of the number of the first field of view pixel electrode and the second field of view pixel electrode.
  • a dual-field OLED display device uses the pixel unit structure of the array substrate according to the first embodiment.
  • the pixel unit structure includes: a double view shutter 91, a TFT array substrate 92, and an encapsulation layer 93.
  • the TFT array substrate 92 as shown in Fig. 9b, includes a plurality of pixel units 96 divided by horizontally and vertically intersecting gate lines 94 and data lines 95, each of which includes an EL layer 97 and a control circuit 98.
  • the EL layer 97 includes a metal cathode 971, a pixel electrode (anode) 972, and an organic light-emitting material 973 between the metal cathode 971 and the pixel electrode 972, and the pixel electrode 972 of each pixel unit 96 includes mutually spaced At least two first field of view pixel electrodes 9721 and at least two second field of view pixel electrodes 9722.
  • the metal cathode 971, the pixel electrode 972, and the organic light-emitting material 973 can be formed using materials known in the related art.
  • the control circuit 98 of each pixel unit includes a first sub-control circuit 981 coupled to the first field of view pixel electrode 9721 and a second sub-control circuit 982 coupled to the second field of view pixel electrode 9722.
  • the first sub-control circuit 981 and the second sub-control circuit 982 in Figure 9b are merely schematic and do not represent the true structure of the two; for example, 9811, 9812, and 9813 (or 9821, 9822, and 9823) are not necessarily a TFT (The switching transistor or the driving transistor) has a gate, a source, and a drain, and may belong to different TFTs.
  • a dual-view OLED display device provided by an embodiment of the present invention is configured to change a plurality of first views of a sub-pixel electrode for displaying a specific field of view in a pixel unit in the prior art
  • the field pixel electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each unilateral field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the visual range of each unilateral field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • At least two first field of view pixel electrodes 9721 and at least two second field of view pixel electrodes 9722 spaced apart from each other are elongated strip electrodes.
  • the mutually spaced at least two first field of view pixel electrodes 9721 and at least two second field of view pixel electrodes 9722 may be parallel to the gate line 94 or may be parallel to the data line 95.
  • at least two first field of view pixel electrodes 9721 and at least two second field of view pixel electrodes 9722 spaced apart from each other are parallel to the data line 95. The example is explained.
  • the control circuit refers to a partial TFT circuit for controlling the pixel electrodes.
  • the control circuit may include a switching transistor TFT circuit for controlling the on and off of the pixel electrode and a driver tube TFT circuit for controlling the potential change of the pixel electrode.
  • all of the first field of view pixel electrodes 9721 constitute a first comb structure as a whole
  • all of the second field of view pixel electrodes 9722 constitute a second comb as a whole.
  • a branch structure, the branch portion of the first comb structure and the branch portion of the second comb structure intersect each other; that is, all of the first field of view pixel electrode 9721 and all of the second field of view pixel electrode 9722 are mutually spaced combs Structure.
  • the widths of the first field of view pixel electrode 9721 and the second field of view pixel electrode 9722 are equal; in this embodiment, both of the widths are c, and c may be 1 -20 ⁇ m.
  • the widths of the first field of view pixel electrode 9721 and the second field of view pixel electrode 9722 may not be equal.
  • the number of the first field of view pixel electrodes 9721 and the second field of view pixel electrodes 9722 are equal, and a better display effect can be achieved.
  • the first field of view pixel electrode 9721 and the second field of view pixel electrode 9722 are eight, that is, each comb electrode has eight branches. Obviously, the invention is not limited thereto.
  • the first sub-control circuit 981 is connected to the gate 9811 of the switch and the second sub-control circuit 982 is connected to the same gate line; the first sub-control circuit 981 is connected to the source 9812 and the second sub-control circuit.
  • the source 9822 of the 982 switch tube is respectively connected to the data line at both ends of one pixel unit; the first sub-control circuit 981 drives the drain 9813 of the tube to be connected with the first field of view pixel electrode 9721,
  • the second sub-control circuit 982 drives the drain 9823 of the tube to be connected to the second field of view pixel electrode 9722.
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same sub-control circuit, so that the pixel aperture ratio is limited to be reduced, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the double view shutter 91 may be located above or below the encapsulation layer 93 and may be spaced from the EL layer 97 by a distance of 1-20 ⁇ m. As shown in FIG. 9a, when the double view baffle 91 is located above the encapsulation layer 93, the encapsulation layer 93 is disposed on the upper surface of the EL layer 97, and the double view baffle 91 may be directly disposed on the upper surface of the encapsulation layer 93, double view The distance n1 from the upper surface of the baffle 91 to the EL layer 97 may be 1-100 ⁇ m.
  • the double-view baffle 91 and the pixel electrode 972 may further have a transparent layer 99, and the transparent layer 99 may have a thickness n2 of 1-20 ⁇ m.
  • the center line of the double view shutter 91 coincides with the center line of the display area of the display device.
  • the transparent layer 99 may be a vacuum layer or a gas layer, or a transparent spacer (such as a plastic film) may be used as the transparent layer.
  • the structure and the connection relationship between the pixel electrode and the control circuit in the dual-view OLED display device can refer to the pixel electrode and the TFT circuit in the dual-view liquid crystal display device (in combination with the characteristics of the OLED display in the prior art).
  • the beneficial effects of various structures have been described in detail in the dual field of view liquid crystal display device, and are not mentioned here.
  • the center line of the double view baffle coincides with the center line of the display area of the display device. That is, the slit center line at the center of the double view baffle coincides with the slit between the first field of view pixel electrode and the second field of view pixel electrode at the center of the display area of the display device. Further, the number of slits of the double view baffle is half the sum of the number of the first field of view pixel electrode and the second field of view pixel electrode.
  • the method for manufacturing the dual field of view liquid crystal display device provided by the embodiment of the invention may include the following steps.
  • the TFT circuit and the pixel electrode are processed by a patterning process on the lower substrate, wherein the pixel electrode of each pixel unit includes at least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other; TFT circuit of pixel unit includes pixel electrode with first field of view A first sub-TFT circuit connected and a second sub-TFT circuit connected to the second field of view pixel electrode. That is, all of the first field of view pixel electrodes 4311 are connected to the corresponding first sub-TFT circuits 4321, and all of the second field of view pixel electrodes 4312 are connected to the corresponding second sub-TFT circuits 4322.
  • the embodiment provides a method for manufacturing a dual-view liquid crystal display device, by changing sub-pixel electrodes for displaying a specific field of view in one pixel unit in the prior art into a plurality of first field-of-view pixels spaced apart from each other.
  • the electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each single side field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the visual range of each unilateral field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • At least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other are elongated strip electrodes.
  • the mutually spaced at least two first field of view pixel electrodes and the at least two second field of view pixel electrodes may be parallel to the gate lines or may be parallel to the data lines.
  • at least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other are parallel to the data line as an example for description. .
  • the widths of the first field of view pixel electrode and the second field of view pixel electrode are equal; the width of the two may be 1-20 ⁇ m.
  • the widths of the first field of view pixel electrode and the second field of view pixel electrode may not be equal.
  • the number of the first field of view pixel electrode and the second field of view pixel electrode are equal, and a better display effect can be achieved at this time.
  • the gate of the first sub-TFT circuit and the gate of the second sub-TFT circuit are connected to the same gate line; the source of the first sub-TFT circuit and the source of the second sub-TFT circuit are respectively connected to one pixel unit
  • the data line of the terminal is connected; the drain of the first sub-TFT circuit is connected to the pixel of the first field of view, and the drain of the second sub-TFT circuit is connected to the pixel of the second field of view.
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same TFT.
  • the pixel aperture ratio is reduced to a limited extent, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the double view baffle can be located above or below the upper substrate color film.
  • the macroscopic separation from the color film can be 1-100 ⁇ .
  • the steps of the method of fabricating the dual field liquid crystal display device can be as follows.
  • the TFT circuit and the pixel electrode are processed by a patterning process on the lower substrate, wherein the pixel electrode of each pixel unit includes at least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other;
  • the TFT circuit of the pixel unit includes a first sub-TFT circuit connected to the first field of view pixel electrode and a second sub-TFT circuit connected to the second field of view pixel electrode.
  • a transparent layer having a thickness of 1-100 ⁇ m may be formed on the color film.
  • the double view baffle When the double view baffle is located below the color film, the double view baffle may be located on the upper surface of the TFT array substrate.
  • the visible range of the single field of view is expanded without reducing the thickness of the glass substrate, and the robustness of the glass substrate is ensured.
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same TFT, so that the pixel aperture ratio is limited to be reduced, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the method for manufacturing a dual-view liquid crystal display device provides a plurality of first fields of view in which a sub-pixel electrode for displaying a specific field of view in a pixel unit in the prior art is spaced apart from each other.
  • the pixel electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each unilateral field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the viewing range of each unilateral field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • This embodiment provides a method for manufacturing a dual field of view OLED display device, including the following steps.
  • a control circuit is obtained by processing on a lower substrate by a patterning process. 51202. Form an EL layer on a lower substrate formed with a control circuit, wherein the EL layer includes a metal cathode, a pixel electrode, and an organic luminescent material between the metal cathode and the pixel electrode, and the pixel electrodes of each pixel unit are spaced apart from each other At least two first field of view pixel electrodes and at least two second field of view pixel electrodes; a control circuit of each pixel unit comprising a first sub-control circuit coupled to the first field of view pixel electrode and a second field of view pixel A second sub-control circuit to which the electrodes are connected.
  • a double vision baffle is obtained by a patterning process on the upper substrate.
  • a method for manufacturing a dual-view OLED display device provides a plurality of first fields of view in which a sub-pixel electrode for displaying a specific field of view in a pixel unit in the prior art is spaced apart from each other.
  • the pixel electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each unilateral field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the visual range of each unilateral field of view is expanded, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • At least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other are elongated strip electrodes.
  • the mutually spaced at least two first field of view pixel electrodes and the at least two second field of view pixel electrodes may be parallel to the gate lines or may be parallel to the data lines.
  • at least two first field of view pixel electrodes and at least two second field of view pixel electrodes spaced apart from each other are parallel to the data line as an example for description. .
  • the control circuit involved in the embodiment of the present invention refers to a partial TFT circuit for controlling the pixel electrodes.
  • the control circuit may include a switching transistor TFT circuit for controlling the on and off of the pixel electrode and a driving transistor TFT circuit for controlling the potential change of the pixel electrode.
  • each pixel unit all of the first field of view pixel electrodes integrally constitute a first comb structure, and all of the second field of view pixel electrodes integrally constitute a second comb structure, the first comb structure
  • the branch portion and the branch portion of the second comb structure are disposed to intersect each other; that is, all of the first field of view pixel electrodes and all of the second field of view pixel electrodes are entirely spaced apart comb structures.
  • the widths of the first field of view pixel electrode and the second field of view pixel electrode are equal; in this embodiment, the width of the two may be 1-20 ⁇ m.
  • the widths of the first field of view pixel electrode and the second field of view pixel electrode may not be equal.
  • the first field of view pixel electrode and the second field of view image The number of element electrodes is equal, and a better display effect can be achieved at this time.
  • the gate of the first sub-control circuit switch tube and the gate of the second sub-control circuit switch tube are connected to the same gate line; the source of the first sub-control circuit switch tube and the second sub-control circuit switch tube The source is respectively connected to the data lines at both ends of one pixel unit; the drain of the first sub-control circuit driving tube is connected to the first field of view pixel electrode, and the drain of the second sub-control circuit driving tube is connected with the second field of view pixel electrode .
  • the pixel electrodes of the same field of view share the same data line, the gate line and the same sub-control circuit, so that the pixel aperture ratio is limited to be reduced, thereby avoiding the problem that the aperture ratio of the liquid crystal display device is greatly reduced.
  • the dual field of view OLED display device manufacturing method provided by this embodiment may include the following steps.
  • a control circuit is obtained by processing on a lower substrate by a patterning process.
  • an EL layer on a lower substrate formed with a control circuit, wherein the EL layer includes a metal cathode, a pixel electrode, and an organic light emitting material between the metal cathode and the pixel electrode, and the pixel electrodes of each pixel unit are spaced apart from each other At least two first field of view pixel electrodes and at least two second field of view pixel electrodes; a control circuit of each pixel unit comprising a first sub-control circuit coupled to the first field of view pixel electrode and a second field of view pixel A second sub-control circuit to which the electrodes are connected.
  • the center line of the double view baffle may coincide with the center line of the display area of the display device.
  • the upper substrate involved in the method for manufacturing the dual field of view OLED display device provided by the embodiment of the present invention refers to an encapsulation layer for packaging the OLED display device.
  • a method for manufacturing a dual-view OLED display device by changing a sub-pixel electrode for displaying a specific field of view in a pixel unit in the prior art into a plurality of first views spaced apart from each other
  • the field pixel electrode and the second field of view pixel electrode greatly reduce the width of the single field of view pixel electrode, thereby expanding the visual range of each unilateral field of view. In this way, on the basis of not reducing the thickness of the glass substrate, the expansion of the visual range of each single-sided field of view is realized, the production cost is reduced, and the yield and reliability of the substrate are improved.
  • the present invention provides a 3D display device and a method of fabricating the same, using the array substrate having the "micropixel" structure described in Embodiment 1.
  • the principle of dual-view display is basically the same as the principle of 3D display, different fields of view display information are distinguished, but the 3D display needs to distinguish between the left-eye and right-eye field signals (by the same viewer). Different eyes receive), and the dual view display needs to distinguish between the first field of view signal and the second field of view signal (received by different viewers). Therefore, the dual field of view display implementation method of the foregoing embodiment can be utilized to realize 3D display using the array substrate of the above embodiment. Therefore, the present embodiment provides a 3D display device and a method of fabricating the same.
  • the 3D display device includes: a display panel and a grating layer disposed on the display panel, wherein the display panel comprises the array substrate according to the first embodiment.
  • the display panel may be a liquid crystal panel
  • the liquid crystal panel may include an array substrate, a color filter substrate, and a liquid crystal filled between the array substrate and the color filter substrate;
  • the color filter substrate may include a transparent substrate and a color film disposed thereon;
  • the array substrate is the array substrate described in the first embodiment.
  • the display panel may also be an OLED panel
  • the OLED panel includes an array substrate and an encapsulation layer, wherein the array substrate includes a plurality of pixel units divided by horizontally and vertically intersecting gate lines and data lines, each of the pixel units including an electroluminescent EL layer and a control circuit.
  • the EL layer includes a metal cathode, a pixel electrode, and an organic luminescent material between the metal cathode and the pixel electrode;
  • a pixel electrode of each pixel unit includes at least two first pixel electrodes and at least two second pixel electrodes spaced apart from each other;
  • the control circuit of each pixel unit includes a first sub-control circuit coupled to the first pixel electrode and a second sub-control circuit coupled to the second pixel electrode.
  • the 3D display device provided by the embodiment of the present invention is configured to change a plurality of first pixel electrodes that are spaced apart from each other by a sub-pixel electrode in a pixel unit for displaying a specific field of view in the prior art.
  • the second pixel electrode greatly reduces the width of the single field of view pixel electrode.
  • a reduction in the width of the single field of view pixel electrode can reduce the thickness of the grating layer.
  • the grating layer is a parallax barrier
  • the reduction in the thickness of the parallax barrier allows the parallax barrier to be fabricated directly into the housing of the display device without the need to additionally create a layer of parallax barrier on the display device that has been formed into the cartridge.
  • the grating layer is a lens grating
  • the reduction in the thickness of the lens grating can lower the arch height of the lenticular lens. In this way, the existing production process can meet the production requirements of the product, avoiding the addition of new processes or the use of new production equipment, thereby reducing production costs.

Abstract

一种阵列基板(32)和双视场显示装置及其制造方法,该阵列基板(32)包括由横纵交叉的栅线(41)和数据线(42)划分出的多个像素单元(43),每个像素单元(43)包括像素电极(431)和TFT电路(432),其中,每个像素单元(43)的像素电极(431)包括相互间隔的至少两个第一像素电极(4311)和至少两个第二像素电极(4312);每个像素单元(43)的TFT电路(432)包括与所述第一像素电极(4311)连接的第一子TFT电路(4321)和与所述第二像素电极(4312)连接的第二子TFT电路(4322)。上述阵列基板(32)可以将双视挡板(31)制作在显示装置内,可降低生产成本。

Description

阵列基板和双视场显示装置及其制造方法 技术领域
本发明的实施例涉及一种阵列基板和双视场显示装置及其制造方法。 背景技术
双视场显示技术是指在显示屏幕的两边的视场可以看到不同内容的技 术。 一个双视场器件一般包括一个显示屏幕和一个挡板, 如图 1所示。 显示 屏幕 1包含多个像素单元, 每个像素单元又包括用以显示某一特定视场的亚 像素电极 11和由黑矩阵 12遮盖的控制电路(例如 TFT电路), 这样的像素 结构通常被称为"亚像素结构"。 亚像素电极 11的宽度是 P, 两个相邻亚像素 电极之间的黑矩阵 12的宽度为 B, 挡板 2和显示屏幕 1的距离为 H, 挡板 2 开口边缘在显示屏幕 1上亚像素电极 11位置处的投影到黑矩阵 12边缘的距 离为 A。 挡板开口的中心线与两个相邻亚像素电极的中心线重合, 所以挡板 开口宽度为 B+2A。 角度 Θ就是单视场的角度, 只有在这个范围内, 观看者 才能看到点状亚像素所发出的光。 增大角度 Θ可以扩大单视场可视范围, 进 而可以提高双视场显示器的显示质量。 角度 6与卩、 H、 A、 B存在着如式 1 所述的关系: tan^ =— ― 式 1
H2 + (B + A)(B + A + P) 由式 1可知, 当挡板开口边缘在显示屏幕上亚像素电极位置处的投影到 黑矩阵边缘的距离 A、 两个相邻亚像素电极之间黑矩阵的宽度 B为定值时, 为了增大角度 Θ, 可以相应地减小挡板和彩膜发光点的距离 H, 或者适当地 降低亚像素电极宽度 P。 对于现有技术而言, 当釆用 TFT-LCD (薄膜晶体管 液晶显示器 )作为显示装置时, 减小挡板和彩膜发光点的距离 H意味着降低 彩膜玻璃的厚度。 但是, 要做出极薄的彩膜玻璃是很困难的, 而且随着彩膜 玻璃厚度的减小, 彩膜玻璃的坚固性也会大幅的降低, 这将严重影响液晶显 示装置的质量。现有的双视场液晶显示装置的 TFT阵列基板的结构如图 2所 示, 一个像素单元 2包括亚像素电极 21和 TFT电路 22。 在像素单元 2中, 亚像素电极 21宽度 P通常为 50μπι。 当亚像素电极 21宽度 Ρ降低到一非常 小的值时(如 3μπι ) , TFT电路 22难以随着亚像素电极宽度 Ρ的降低而同 等比例的减小。 遮盖 TFT电路的黑矩阵所占亚像素区域的比例将随之增大, 从而使得开口率产生明显的下降, 影响液晶显示装置的质量。 当釆用 OLED (有机发光二极管 )作为显示装置时, 减小挡板和发光点的距离 H同样需要 降低玻璃基板的厚度。
可见, 对于现有技术而言, 为了扩大双视场显示装置的每一单边视场可 视范围, 需要将玻璃基板的厚度下降, 这使得生产成本升高、 基板的良率和 可靠性大幅度降低。 发明内容
本发明的实施例提供一种阵列基板和双视场显示装置及其制造方法, 以 解决因单边视场可视范围扩大而必须使玻璃基板减薄, 从而造成的生产成本 升高、 基板的良率和可靠性大幅度降低的问题。
本发明一方面提供一种阵列基板, 包括由横纵交叉的栅线和数据线划分 出的多个像素单元, 每个像素单元包括像素电极和 TFT电路, 其中, 每个像 素单元的像素电极包括相互间隔的至少两个第一像素电极和至少两个第二像 素电极; 每个像素单元的 TFT 电路包括与所述第一像素电极连接的第一子 TFT电路和与所述第二像素电极连接的第二子 TFT电路。
例如,在每个像素单元中,所述第一像素电极整体上构成第一梳状结构, 所述第二像素电极整体上构成第二梳状结构, 所述第一梳状结构的分支部分 与所述第二梳状结构的分支部分相互交叉设置。
本发明另一方面提供一种双视显示装置, 包括: 显示面板和设置于所述 显示面板之上的双视挡板, 其中, 所述显示面板包括如上所述的阵列基板。
例如, 所述显示面板可以为液晶面板。
例如, 所述液晶面板可以包括阵列基板、 彩膜基板以及填充在所述阵列 基板和所述彩膜基板之间的液晶; 所述彩膜基板包括透明基板和设置于其上 的彩膜; 所述阵列基板为上述的阵列基板。
进一步地, 所述显示面板可以为 OLED面板; 所述 OLED面板包括阵列 基板和封装层, 其中所述阵列基板包括由横纵交叉的栅线和数据线划分出的 多个像素单元,每个像素单元包括电致发光 EL层和控制电路,所述 EL层包 括金属阴极、像素电极和位于所述金属阴极和像素电极之间的有机发光材料; 每个像素单元的像素电极包括相互间隔的至少两个第一像素电极和至少两个 第二像素电极; 每个像素单元的控制电路包括与所述第一像素电极连接的第 一子控制电路和与所述第二像素电极连接的第二子控制电路。
本发明的另一方面提供一种双视场液晶显示装置制造方法, 包括: 在下 基板上通过构图工艺处理得到 TFT电路和像素电极, 其中, 每个像素单元的 像素电极包括相互间隔的至少两个第一像素电极和至少两个第二像素电极; 每个像素单元的 TFT电路包括与所述第一像素电极连接的第一子 TFT电路 和与所述第二像素电极连接的第二子 TFT电路。
例如, 在上述方法之中, 在上基板上通过构图工艺处理得到双视挡板、 彩膜。
例如, 在上述方法之中, 将所述上基板和下基板对盒, 并在盒中填充液 曰曰。
本发明另一方面, 提供一种双视场 OLED显示装置制造方法, 包括: 在 下基板上通过构图工艺处理得到控制电路; 在形成有控制电路的所述下基板 上形成 EL层, 其中, 所述 EL层包括金属阴极、像素电极和位于所述金属阴 极和像素电极之间的有机发光材料, 每个像素单元的像素电极包括相互间隔 的至少两个第一像素电极和至少两个第二像素电极; 每个像素单元的控制电 路包括与所述第一像素电极连接的第一子控制电路和与所述第二像素电极连 接的第二子控制电路。
例如, 在上述方法之中, 在上基板上通过构图工艺处理得到双视挡板。 例如, 在上述方法之中, 将所述上基板覆盖在所述下基板上。
本发明实施例提供的阵列基板中, 每个像素单元内的第一像素电极和第 二像素电极可以单独驱动 , 可以在制作成显示面板 (如液晶面板或 OLED面 板)后对对应区域的显示单独进行控制。 进而可以将双视挡板制作在显示面 板内, 避免了增加新的工序或釆用新的生产设备, 从而降低了双视显示装置 生产成本。
本发明实施例提供的双视场液晶显示装置及其制造方法, 通过将现有技 术中一个像素单元内的用以显示某一特定视场的亚像素电极变为相互间隔的 多个第一视场像素电极和第二视场像素电极, 大幅度减小了单视场像素电极 的宽度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基 板厚度的基础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提高了基板的良率和可靠性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有的双视场液晶显示装置的结构示意图;
图 2为现有的双视场液晶显示装置的 TFT阵列基板的结构示意图; 图 3为本发明实施例提供的一种双视场液晶显示装置的结构示意图; 图 4a为本发明实施例提供的一种阵列基板的结构示意图;
图 4b为本发明实施例提供的另一双视场液晶显示装置的 TFT阵列基板 的结构示意图;
图 5为本发明实施例提供的一种双视场液晶显示装置与现有液晶显示装 置的像素显示效果对比图;
图 6为本发明实施例提供的一种双视场液晶显示装置的显示原理图; 图 7为本发明实施例提供的另一双视场液晶显示装置的结构示意图; 图 8为本发明实施例提供的另一双视场液晶显示装置的显示原理图; 图 9a为本发明实施例提供的一种双视场 OLED显示装置的结构示意图; 图 9b为本发明实施例提供的一种双视场 OLED显示装置的 TFT阵列基 板的结构示意图;
图 9c为本发明实施例提供的另一双视场 OLED显示装置的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的"第一"、 "第二 "以及类似的词语并不表示任何顺序、 数量 或者重要性, 而只是用来区分不同的组成部分。 同样, "一个 "或者 "一,,等类 似词语也不表示数量限制, 而是表示存在至少一个。 "连接 "或者 "相连 "等类 似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的连接, 不 管是直接的还是间接的。 "上"、 "下"、 "左"、 "右,,等仅用于表示相对位置关 系, 当被描述对象的绝对位置改变后, 则该相对位置关系也相应地改变。
实施例一
本发明实施例提供一种阵列基板,如图 4a所示, 包括由横纵交叉的栅线 41和数据线 42划分出的多个像素单元 43 , 每个像素单元 43包括像素电极 431和薄膜晶体管 (TFT ) 电路 432。
每个像素单元 43的像素电极 431包括相互间隔的至少两个第一像素电极 4311和至少两个第二像素电极 4312。
每个像素单元 43的 TFT电路 432包括与第一像素电极 4311连接的第一 子 TFT电路 4321和与第二像素电极 4312连接的第二子 TFT电路 4322。即, 所有的第一像素电极 4311均与相应的第一子 TFT电路 4321连接,所有的第 二像素电极 4312均与相应的第二子 TFT电路 4322连接。各个第一像素电极 4311可以通过任何可以实现电路导通的结构连接于第一子 TFT电路 4321之 上,各个第二像素电极 4312可以通过任何可以实现电路导通的结构连接于第 二子 TFT电路 4322之上。
在实施例中,每个像素单元 43在尺寸规模上可以与现有的普通像素单元 相接近。 由于每个像素单元 43中包括至少两个第一像素电极 4311和至少两 个第二像素电极 4312, 那么在像素单元的尺寸相接近的情况下, 本实施例的 像素电极比通常的普通阵列基板中的像素单元中的像素电极要小很多。因此, 本发明实施例的阵列基板上的像素结构可以称为"微像素 "结构。
优选地,在每个像素单元中,所有的第一像素电极 4311整体上构成第一 梳状结构,所有的第二像素电极 4312整体上构成第二梳状结构,第一梳状结 构的分支部分(电极)与第二梳状结构的分支部分(电极)相互交叉设置; 图 4a示出了这种结构。这一结构, 由于第一梳状结构与第二梳状结构的结构 比较规则, 易于制造, 具有较好的工艺良率, 并具有较易于控制的规则的电 场。
优选地, 本实施例的阵列基板中, 第一像素电极 4311 和第二像素电极 4312的宽度可以为 1-20μπι。 这一宽度参数, 可以在保证工艺制造良率的同 时, 实现更好的电场控制。
进一步地, 在本发明实施例中, 如图 4a所示, 第一子 TFT电路 4321的 栅极和第二子 TFT电路 4322的栅极与同一条横向延伸的栅线 41连接;第一 子 TFT电路 4321的源极和第二子 TFT电路 4322的源极分别与一个像素单 元两端的数据线 42 ( 422,421 )连接; 第一子 TFT电路 4321的漏极与第一像 素电极 4311连接,第二子 TFT电路 4322的漏极与第二像素电极 4312连接。
本发明实施例提供的阵列基板, 由于该阵列基板上的像素单元的特定结 构 ("微像素"结构) , 在用于双视场显示装置的制造时, 可以将双视挡板制 作在显示面板内, 避免了增加新的工序或釆用新的生产设备, 从而降低了双 视场显示装置生产成本, 并提高了基板的良率和可靠性。
由于双视显示的原理与 3D显示的原理在基本原理上相同, 都是区分出 不同的视场显示信息,只是 3D显示需要区分的是左眼与右眼的视场信号(被 同一观看者的不同眼睛接收) , 而双视显示需要区分的是第一视场信号和第 二视场信号(被不同观看者接收) 。 因此本领域的技术人员可以理解, 本实 施例的阵列基板, 也可以用于实现 3D显示。在实现 3D显示时,每个像素单 元内, 第一像素电极对应左眼信号, 第二像素电极对应右眼信号, 或者, 第 一像素电极对应右眼信号,第二像素电极对应左眼信号。在实现双视显示时, 每个像素单元内, 第一像素电极对应第一视场信号, 第二像素电极对应第二 视场信号, 或者, 第一像素电极对应第二视场信号, 第二像素电极对应第一 视场信号。
在本发明实施中, 该阵列基板可以为用于制作柔性显示器件的柔性阵列 基板, 也可以为釆用玻璃基板、 塑料基板等的普通阵列基板。 并且, 该阵列 基板可以是 TN模式、 ADS模式或其他模式的阵列基板。 当阵列基板为 ADS 型阵列基板时, 在每个像素单元中, 还包括位于所述阵列基板的衬底基板与 所述像素电极之间的公共电极(未示出) ; 进一步地, 所述公共电极可以为 梳状或板状。
本发明实施例提供的阵列基板, 每个像素单元内包括第一像素电极和第 二像素电极, 第一像素电极和第二像素电极可以通过分别输入显示信号进行 单独驱动, 因此, 可以在制作成显示面板(如液晶面板, 或 OLED面板, 或 其他类显示面板)后对对应区域的图像显示单独地进行控制。 并且, 可以根 据实际需要, 对第一像素电极和第二像素电极输入相同或不同的显示信号; 或者, 第一像素电极和第二像素电极可以同时或不同时进行工作。 本领域的 技术人员可以理解, 本实施例的阵列基板, 可以根据实际需要具体应用于不 同类型的显示装置中, 比如 3D、 触摸(Touch ) 、 柔性显示等; 并且, 本实 施例的阵列基板, 可以为普通阵列基板, 也可以为氧化物半导体阵列基板, 或有机半导体阵列基板, 在此不作限定。
实施例二
本实施例及下述实施例三提供一种双视场显示装置, 使用了如上述实施 例 1所述的阵列基板, 例如为一种双视场液晶显示装置和一种双视场 OLED 显示装置。 下述各实施例所述的第一视场像素电极, 对应实施例一所述的阵 列基板中的第一像素电极; 第二视场像素电极, 对应实施例一所述的阵列基 板中的第二像素电极。
本发明实施例提供的一种双视场液晶显示装置, 使用了如上述实施例 1 所述的阵列基板, 如图 3所示。
该显示装置包括双视挡板 31、 对盒成型的 TFT阵列基板 32和彩膜基板
33 , TFT阵列基板 32和彩膜基板 33之间填充有液晶 34。 TFT阵列基板 32 如图 4a所示,包括由横纵交叉的栅线 41和数据线 42划分出的多个像素单元 43 , 每个像素单元 43包括像素电极 431和 TFT电路 432。
每个像素单元 43的像素电极 431包括相互间隔的至少两个第一视场像素 电极 4311和至少两个第二视场像素电极 4312。
每个像素单元 43的 TFT电路 432包括与第一视场像素电极 4311连接的 第一子 TFT电路 4321和与第二视场像素电极 4312连接的第二子 TFT电路 4322。即在这些像素单元中,所有的第一视场像素电极 4311均与相应的第一 子 TFT电路 4321连接, 所有的第二视场像素电极 4312均与相应的第二子 TFT电路 4322连接。 各个第一视场像素电极 4311可以通过任何可以实现电 路导通的结构连接于第一子 TFT电路 4321之上,各个第二视场像素电极 4312 可以通过任何可以实现电路导通的结构连接于第二子 TFT电路 4322之上。
本发明实施例提供的双视场液晶显示装置, 通过将现有技术中一个像素 单元内用以显示某一特定视场的亚像素的亚像素电极变为相互间隔的多个第 一视场像素电极和第二视场像素电极,大幅度减小了单视场像素电极的宽度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基板厚度的 基础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提高了基 板的良率和可靠性。
需要说明的是,相互间隔的至少两个第一视场像素电极 4311和至少两个 第二视场像素电极 4312均为细长的条状电极。这些相互间隔的至少两个第一 视场像素电极 4311和至少两个第二视场像素电极 4312可以平行于栅线 41 , 也可以平行于数据线 42。 示例性的, 在本发明实施例提供的双视场液晶显示 装置中,以相互间隔的至少两个第一视场像素电极 4311和至少两个第二视场 像素电极 4312平行于数据线 42为例进行说明。
进一步地, 如图 4a所示, 本发明实施例提供的双视场液晶显示装置中, 在每个像素单元 43中, 所有的第一视场像素电极 4311整体上构成第一梳状 结构,所有的第二视场像素电极 4312整体上构成第二梳状结构,第一梳状结 构的分支部分与第二梳状结构的分支部分相互交叉设置; 即所有的第一视场 像素电极 4311和所有的第二视场像素电极 4312可以整体上为相互间隔的梳 状结构。 优选地, 第一视场像素电极 4311 , 第二视场像素电极 4312的宽度 相等; 在本实施例中, 二者的宽度均为 a, a可以为 1-20μπι。 当然, 第一视 场像素电极 4311、 第二视场像素电极 4312的宽度也可以不相等。 优选地, 在每个像素单元 43 中, 第一视场像素电极 4311与第二视场像素电极 4312 的个数相等, 此时可以实现更好的显示效果。 在图 4a所示实施例中, 在每个 像素单元 43中, 第一视场像素电极 4311和第二视场像素电极 4312均为 8 个, 即每个梳状电极具有 8个分支。 显然, 本发明不限于此。
在本实施例中, 原本两个相邻像素单元中的块状单视场亚像素电极变更 为了在同一个像素单元中的相互对插的梳状的第一视场像素电极和第二视场 像素电极。 当两个视场像素显示不同颜色时, 如果忽略两个视场像素电极之 间存在的微小电场对液晶产生的影响, 本发明实施例提供的双视场液晶显示 装置与现有液晶显示装置的像素显示效果对比可以如图 5所示。 可以清楚地 发现, 相对于现有技术, 本发明实施例提供的液晶显示装置大幅度减小了单 视场像素电极的宽度。 由于这样一种像素结构中的单边视场像素电极的宽度 要远小于现有技术中的亚像素电极结构, 因此可以将这样一种像素结构命名 为"微像素结构"。
进一步地, 如图 4a所示, 第一子 TFT电路 4321的栅极 441和第二子 TFT电路 4322的栅极 451与同一条栅线 41连接; 第一子 TFT电路 4321的 源极 442和第二子 TFT电路 4322的源极 452分别与一个像素单元两端的数 据线 421和 422连接; 第一子 TFT电路 4321的漏极 443与第一视场像素电 极 4311连接, 第二子 TFT电路 4322的漏极 453与第二视场像素电极 4312 连接。
这样一来, 同一视场像素电极共用同一条数据线、 栅线和同一个 TFT, 使得像素开口率降低有限, 从而避免了液晶显示装置开口率大幅度下降的问 题。
更近一步地,如图 3所示, 在双视场液晶显示装置中, 双视挡板 31可以 位于彩膜基板 33 的彩膜 331 的上方或下方, 且与彩膜 331 的距离可以为 1-100μπι。 双视挡板 31包括多个彼此平行的黑色条紋, 黑色条紋之间的部分 为透明的, 用于透光以进行显示。
当双视挡板 31位于彩膜 331的上方时, 双视挡板 31与彩膜 331之间还 可以设有厚度为 1-100μπι的透明层 332。
进一步地, 如图 4b所示, 双视挡板 31的中心线与显示装置的显示区域 40的中心线重合于直线 m。
透明层 332可以是使用任意一种透光材料形成的透明薄膜, 例如可以釆 用塑料薄膜或有机硅橡胶薄膜形成透明层。 透明层 332主要用于在双视挡板 322和彩膜 321之间隔绝出一定高度, 透明层 332的厚度即为挡板和显示屏 幕的距 H。 在本发明实施例中, 例如, 挡板和彩膜发光点的距离 H可以为 5μπι,第一视场像素电极 4311和第二视场像素电极 4312的宽度 a可以为 3μπι, 第一视场像素电极 4311 和第二视场像素电极 4312 间狭缝的宽度 b可以为 2μπι; 当挡板开口边缘在显示屏幕上亚像素电极位置处的投影到黑矩阵边缘 的距离 Α为 0时, 可以计算出单视场的可视角度为 45。。 这样一来, 在不降 低彩膜玻璃基板厚度的基础上, 实现了单视场可视范围的扩大, 保证了彩膜 玻璃基板的坚固性。 另一方面, 同一视场像素电极共用同一条数据线、 栅线 和同一个 TFT, 使得像素开口率的降低有限, 从而避免了液晶显示装置开口 率大幅度下降的问题。
本发明实施例提供的双视场液晶显示装置的显示原理如图 6所示。 图 6 仅为示意图, 如上所述第一视场像素电极 4311和第二视场像素电极 4312是 彼此间隔开地, 但是图中并无示出它们之间的间隔, 而是将该间隔算入电极 的宽度之中考虑。视差挡板 31上的条紋之间的间隙与第一视场像素电极 4311 和第二视场像素电极 4312与彼此相邻的部分(例如两个梳状电极中彼此交叉 的分支部分)相对应。
例如, 第一视场像素电极 4311和第二视场像素电极 4312的宽度 a可以 为 3μπι, 双视挡板 31和彩膜 331之间的透明层 332的厚度 Η可以为 5μπι。 光线出射方向如图中箭头所示, 可见左右视场的可视角度均为 α。
本发明实施例提供的另一种双视场液晶显示装置, 如图 7所示。
本实施例提供的该另一种双视场液晶显示装置,其 TFT阵列基板的结构 基本与图 3所示实施例结构类似,只是双视挡板 31还可以位于彩膜 331的下 方。 当双视挡板 31位于彩膜 331的下方时, 双视挡板 31可以直接位于 TFT 阵列基板 32的上表面上。
由于 TFT阵列基板上表面发光点到双视挡板的距离通常包括彩膜厚度、 阵列厚度和液晶取向膜厚度, 这些厚度之和通常为 4-7μπι。 这样一来, 在没 有透明层作为隔垫物的情况下,也可以满足挡板和彩膜发光点的距离 Η可以 在 1-100μπι的范围之内, 从而简化了流程, 节约了成本。
上述双视场液晶显示装置的显示原理如图 8所示。 图 8仅为示意图, 如 上所述第一视场像素电极 4311和第二视场像素电极 4312是彼此间隔开地, 但是图中并无示出它们之间的间隔,而是将该间隔算入电极的宽度之中考虑。 视差挡板 31上的条紋之间的间隙与第一视场像素电极 4311和第二视场像素 电极 4312与彼此相邻的部分(例如两个梳状电极中彼此交叉的分支部分 )相 对应。
例如, 第一视场像素电极 4311和第二视场像素电极 4312的宽度 a可以 为 3μπι, 双视挡板 31和像素电极间的距离 Η可以为 5μπι, 双视挡板 31的上 方有彩膜 331。 光线出射方向如图中箭头所示, 可见, 左右视场的可视角度 也均为 α。
上述图 3和图 7的实施例中, 彩膜基板为与阵列基板相对设置的对置基 板的一个示例。 当阵列基板上形成有彩膜时, 则液晶显示装置也可以不包括 单独的彩膜基板。
需要说明的是, 在如图 3或图 7所示的双视场液晶显示装置中, 双视挡 板的中心线均与显示装置的显示区域的中心线重合。 即双视挡板中心处的狭 缝中心线与显示屏中心处的第一视场像素电极和第二视场像素电极之间的狭 缝重合。 此外, 双视挡板的狭缝个数为第一视场像素电极和第二视场像素电 极个数之和的一半。
实施例三
本实施例提供的一种双视场 OLED显示装置,使用了实施例一所述的阵 列基板的像素单元结构。 如图 9a所示, 该像素单元结构包括: 双视挡板 91、 TFT阵列基板 92和封装层 93。 TFT阵列基板 92如图 9b所示, 包括由横纵 交叉的栅线 94和数据线 95划分出的多个像素单元 96 , 每个像素单元 96包 括 EL层 97和控制电路 98。
如图 9a所示, EL层 97包括金属阴极 971、 像素电极(阳极) 972和位 于金属阴极 971和像素电极 972之间的有机发光材料 973 , 每个像素单元 96 的像素电极 972包括相互间隔的至少两个第一视场像素电极 9721和至少两个 第二视场像素电极 9722。 对于金属阴极 971、 像素电极 972和有机发光材料 973可以釆用相关领域已知的材料形成。
每个像素单元的控制电路 98如图 9b 所示, 包括与第一视场像素电极 9721连接的第一子控制电路 981和与第二视场像素电极 9722连接的第二子 控制电路 982。
图 9b中的第一子控制电路 981和第二子控制电路 982仅为示意,并不代 表二者的真实结构; 比如 9811、 9812和 9813 (或者 9821、 9822和 9823 )并 非一定为一个 TFT (开关管或驱动管)栅极、 源极、 漏极, 而可能属于不同 的 TFT。
本发明实施例提供的双视场 OLED显示装置,通过将现有技术中一个像 素单元内的用以显示某一特定视场的亚像素电极变为相互间隔的多个第一视 场像素电极和第二视场像素电极, 大幅度减小了单视场像素电极的宽度, 从 而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基板厚度的基 础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提高了基板 的良率和可靠性。
需要说明的是,相互间隔的至少两个第一视场像素电极 9721和至少两个 第二视场像素电极 9722均为细长的条状电极。这些相互间隔的至少两个第一 视场像素电极 9721和至少两个第二视场像素电极 9722可以平行于栅线 94, 也可以平行于数据线 95。示例性的,在本发明实施例提供的双视场 OLED显 示装置中,以相互间隔的至少两个第一视场像素电极 9721和至少两个第二视 场像素电极 9722平行于数据线 95为例进行说明。
由于在 OLED显示装置中,可能存在多个 TFT电路,本实施例所涉及到 的控制电路是指用于控制像素电极的部分 TFT电路。 例如, 控制电路可以包 括用于控制像素电极通断电的开关管 TFT 电路和用于控制像素电极电位变 化的驱动管 TFT电路。
进一步地, 如图 9b所示, 在每个像素单元 96中, 所有的第一视场像素 电极 9721整体上构成第一梳状结构, 所有的第二视场像素电极 9722整体上 构成第二梳状结构, 第一梳状结构的分支部分与第二梳状结构的分支部分相 互交叉; 即所有的第一视场像素电极 9721和所有的第二视场像素电极 9722 整体上为相互间隔的梳状结构。 优选地, 第一视场像素电极 9721、 第二视场 像素电极 9722 的宽度相等; 在本实施例中, 二者的宽度均为 c, c 可以为 1 -20μπι。 当然, 第一视场像素电极 9721、 第二视场像素电极 9722的宽度也 可以不相等。 优选地, 在每个像素单元 96中, 第一视场像素电极 9721与第 二视场像素电极 9722的个数相等, 此时可以实现更好的显示效果。 在图 9b 所示实施例中, 在每个像素单元 96中, 第一视场像素电极 9721和第二视场 像素电极 9722均为 8个, 即每个梳状电极具有 8个分支。显然, 本发明不限 于此。
第一子控制电路 981开关管的栅极 9811和第二子控制电路 982开关管的 栅极 9821与同一条栅线连接; 第一子控制电路 981开关管的源极 9812和第 二子控制电路 982开关管的源极 9822分别与一个像素单元两端的数据线连 接;第一子控制电路 981驱动管的漏极 9813与第一视场像素电极 9721连接, 第二子控制电路 982驱动管的漏极 9823与第二视场像素电极 9722连接。 第 一子控制电路的开关管与驱动管的连接关系, 以及第二控制电路的开关管与 驱动管的连接关系, 可以根据现有技术在满足 OLED驱动条件的前提下任意 设定, 此处不赘述。
这样一来, 同一视场像素电极共用同一条数据线、 栅线和同一个子控制 电路, 使得像素开口率降低有限, 从而避免了液晶显示装置开口率大幅度下 降的问题。
双视挡板 91可以位于封装层 93的上方或下方,且与 EL层 97的距离可 以为 1-20μπι。 如图 9a所示, 当双视挡板 91位于封装层 93的上方时, 封装 层 93设置在 EL层 97的上表面, 双视挡板 91可以直接设置于封装层 93的 上表面, 双视挡板 91的上表面到 EL层 97的距离 nl可以为 1-100μπι。
进一步地, 如图 9c所示, 双视挡板 91与像素电极 972之间还可以具有 透明层 99, 透明层 99的厚度 n2可以为 1-20μπι。 双视挡板 91的中心线与显 示装置的显示区域的中心线重合。
需要说明的是,透明层 99可以是真空层或气体层,也可以釆用透明隔垫 物 (比如塑料薄膜)作为透明层。
具体的, 上述双视场 OLED显示装置中的像素电极和控制电路的结构及 连接关系可以参照前述双视场液晶显示装置中的像素电极和 TFT电路(并结 合现有技术中 OLED显示的自身特点), 各种结构所产生的有益效果已在双 视场液晶显示装置作了详尽的描述, 此处不做赞述。
需要说明的是, 在如图 9a或图 9c所示的双视场 OLED显示装置中, 双 视挡板的中心线均与显示装置的显示区域的中心线重合。 即双视挡板中心处 的狭缝中心线与显示装置的显示区域中心处的第一视场像素电极和第二视场 像素电极之间的狭缝重合。 此外, 双视挡板的狭缝个数为第一视场像素电极 和第二视场像素电极个数之和的一半。
实施例四
本发明实施例提供的双视场液晶显示装置制造方法,可以包括如下步骤。
S1001、在下基板上通过构图工艺处理得到 TFT电路和像素电极, 其中, 每个像素单元的像素电极包括相互间隔的至少两个第一视场像素电极和至少 两个第二视场像素电极;每个像素单元的 TFT电路包括与第一视场像素电极 连接的第一子 TFT电路和与第二视场像素电极连接的第二子 TFT电路。 即,所有的第一视场像素电极 4311均与相应的第一子 TFT电路 4321连 接, 所有的第二视场像素电极 4312均与相应的第二子 TFT电路 4322连接。
S1002、 在上基板上通过构图工艺处理得到双视挡板、 彩膜。
S1003、 将上基板和下基板对盒, 并在盒中填充液晶。
本实施例提供一种双视场液晶显示装置制造方法, 通过将现有技术中一 个像素单元内的用以显示某一特定视场的亚像素电极变为相互间隔的多个第 一视场像素电极和第二视场像素电极,大幅度减小了单视场像素电极的宽度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基板厚度的 基础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提高了基 板的良率和可靠性。
需要说明的是, 相互间隔的至少两个第一视场像素电极和至少两个第二 视场像素电极均为细长的条状电极。 这些相互间隔的至少两个第一视场像素 电极和至少两个第二视场像素电极可以平行于栅线, 也可以平行于数据线。 示例性的, 在本发明实施例提供的双视场液晶显示装置中, 以相互间隔的至 少两个第一视场像素电极和至少两个第二视场像素电极平行于数据线为例进 行说明。
例如, 在每个像素单元中, 所有的第一视场像素电极整体上构成第一梳 状结构, 所有的第二视场像素电极整体上构成第二梳状结构, 第一梳状结构 的分支部分与第二梳状结构的分支部分相互交叉; 即所有的第一视场像素电 极和所有的第二视场像素电极整体上为相互间隔的梳状结构。 优选地, 第一 视场像素电极、 第二视场像素电极的宽度相等; 二者的宽度可以为 1-20μπι。 当然, 第一视场像素电极、 第二视场像素电极的宽度也可以不相等。优选地, 在每个像素单元中, 第一视场像素电极与第二视场像素电极的个数相等, 此 时可以实现更好的显示效果。
进一步地, 第一子 TFT电路的栅极和第二子 TFT电路的栅极与同一条 栅线连接; 第一子 TFT电路的源极和第二子 TFT电路的源极分别与一个像 素单元两端的数据线连接; 第一子 TFT 电路的漏极与第一视场像素电极连 接, 第二子 TFT电路的漏极与第二视场像素电极连接。
这样一来, 同一视场像素电极共用同一条数据线、 栅线和同一个 TFT, 使得像素开口率降低有限, 从而避免了液晶显示装置开口率大幅度下降的问 题。
更近一步地, 双视挡板可以位于上基板彩膜的上方或下方。 且与彩膜的 巨离可以为 1-100μπι。
当双视挡板位于所述彩膜的上方时, 该双视场液晶显示装置制造方法的 步骤可以如下所示。
51101、在下基板上通过构图工艺处理得到 TFT电路和像素电极, 其中, 每个像素单元的像素电极包括相互间隔的至少两个第一视场像素电极和至少 两个第二视场像素电极;每个像素单元的 TFT电路包括与第一视场像素电极 连接的第一子 TFT电路和与第二视场像素电极连接的第二子 TFT电路。
51102、 在上基板上形成彩膜后, 可以在彩膜上形成厚度为 1-100μπι的 透明层。
51103、 在该透明层上形成双视挡板。
51104、 将上基板和下基板对盒, 并在盒中填充液晶。
当双视挡板位于彩膜的下方时,双视挡板可以位于 TFT阵列基板的上表 面。
这样一来, 在不降低玻璃基板厚度的基础上, 实现了单视场可视范围的 扩大, 保证了玻璃基板的坚固性。 另一方面, 同一视场像素电极共用同一条 数据线、 栅线和同一个 TFT, 使得像素开口率降低有限, 从而避免了液晶显 示装置开口率大幅度下降的问题。
进一步地,双视挡板的中心线可以与显示装置的显示区域的中心线重合。 本实施例提供的一种双视场液晶显示装置制造方法, 通过将现有技术中 一个像素单元内的用以显示某一特定视场的亚像素电极变为相互间隔的多个 第一视场像素电极和第二视场像素电极, 大幅度减小了单视场像素电极的宽 度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基板厚 度的基础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提高 了基板的良率和可靠性。
实施例五
本实施例提供了一种双视场 OLED显示装置制造方法, 包括如下步骤。
S1201、 在下基板上通过构图工艺处理得到控制电路。 51202、 在形成有控制电路的下基板上形成 EL层, 其中, 该 EL层包括 金属阴极、 像素电极和位于金属阴极和像素电极之间的有机发光材料, 每个 像素单元的像素电极包括相互间隔的至少两个第一视场像素电极和至少两个 第二视场像素电极; 每个像素单元的控制电路包括与第一视场像素电极连接 的第一子控制电路和与第二视场像素电极连接的第二子控制电路。
51203、 在上基板上通过构图工艺处理得到双视挡板。
51204、 将上基板覆盖在下基板上。
本实施例提供的一种双视场 OLED显示装置制造方法, 通过将现有技术 中一个像素单元内的用以显示某一特定视场的亚像素电极变为相互间隔的多 个第一视场像素电极和第二视场像素电极, 大幅度减小了单视场像素电极的 宽度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃基板 厚度的基础上, 实现了每一单边视场可视范围的扩大, 降低了生产成本, 提 高了基板的良率和可靠性。
需要说明的是, 相互间隔的至少两个第一视场像素电极和至少两个第二 视场像素电极均为细长的条状电极。 这些相互间隔的至少两个第一视场像素 电极和至少两个第二视场像素电极可以平行于栅线, 也可以平行于数据线。 示例性的, 在本发明实施例提供的双视场 OLED显示装置中, 以相互间隔的 至少两个第一视场像素电极和至少两个第二视场像素电极平行于数据线为例 进行说明。
由于在 OLED显示装置中,可能存在多个 TFT电路,本发明实施例中所 涉及到的控制电路是指用于控制像素电极的部分 TFT电路。 具体的, 控制电 路可以包括用于控制像素电极通断电的开关管 TFT 电路和用于控制像素电 极电位变化的驱动管 TFT电路。
具体的, 在每个像素单元中, 所有的第一视场像素电极整体上构成第一 梳状结构, 所有的第二视场像素电极整体上构成第二梳状结构, 第一梳状结 构的分支部分与第二梳状结构的分支部分相互交叉设置; 即所有的第一视场 像素电极和所有的第二视场像素电极整体上为相互间隔的梳状结构。优选地, 第一视场像素电极、 第二视场像素电极的宽度相等; 在本实施例中, 二者的 宽度可以为 1-20μπι。 当然, 第一视场像素电极、 第二视场像素电极的宽度也 可以不相等。 优选地, 在每个像素单元中, 第一视场像素电极与第二视场像 素电极的个数相等, 此时可以实现更好的显示效果。
进一步地, 第一子控制电路开关管的栅极和第二子控制电路开关管的栅 极与同一条栅线连接; 第一子控制电路开关管的源极和第二子控制电路开关 管的源极分别与一个像素单元两端的数据线连接; 第一子控制电路驱动管的 漏极与第一视场像素电极连接, 第二子控制电路驱动管的漏极与第二视场像 素电极连接。
这样一来, 同一视场像素电极共用同一条数据线、 栅线和同一个子控制 电路, 使得像素开口率降低有限, 从而避免了液晶显示装置开口率大幅度下 降的问题。
进一步地, 本实施例提供的双视场 OLED显示装置制造方法可以包括如 下步骤。
S 1301、 在下基板上通过构图工艺处理得到控制电路。
51302、 在形成有控制电路的下基板上形成 EL层, 其中, 该 EL层包括 金属阴极、 像素电极和位于金属阴极和像素电极之间的有机发光材料, 每个 像素单元的像素电极包括相互间隔的至少两个第一视场像素电极和至少两个 第二视场像素电极; 每个像素单元的控制电路包括与第一视场像素电极连接 的第一子控制电路和与第二视场像素电极连接的第二子控制电路。
51303、在下基板上形成 EL层后 ,在该 EL层上形成厚度可以为 1-100μπι 的透明隔垫层
S1304、 在透明隔垫层上形成双视挡板。
S1305、 将上基板覆盖在下基板上。
进一步地,双视挡板的中心线可以与显示装置的显示区域的中心线重合。 需要说明的是, 本发明实施例提供的双视场 OLED显示装置制造方法中 涉及到的上基板均指用于封装 OLED显示装置的封装层。
本发明实施例提供的一种双视场 OLED显示装置制造方法,通过将现有 技术中一个像素单元内的用以显示某一特定视场的亚像素电极变为相互间隔 的多个第一视场像素电极和第二视场像素电极, 大幅度减小了单视场像素电 极的宽度, 从而扩大了每一单边视场的可视范围。 这样一来, 在不减薄玻璃 基板厚度的基础上, 实现了每一单边视场可视范围的扩大,降低了生产成本, 提高了基板的良率和可靠性。 实施例六
本发明实施提供一种 3D显示装置及其制造方法, 使用了实施例 1所述 的具有 "微像素"结构的阵列基板。
由于双视显示的原理与 3D显示的原理在基本原理上相同, 都是区分出 不同的视场显示信息,只是 3D显示需要区分的是左眼与右眼的视场信号(被 同一观看者的不同眼睛接收) , 而双视显示需要区分的是第一视场信号和第 二视场信号(被不同观看者接收) 。 因此, 可以利用前述实施例的双视场显 示实现方法, 使用上述实施例的阵列基板, 实现 3D显示。 因此, 本实施例 提供一种 3D显示装置及其制造方法。
该 3D显示装置包括: 显示面板和设置于所述显示面板之上的光栅层, 其中, 所述显示面板包括如实施例一所述的阵列基板。
进一步地, 所述显示面板可以为液晶面板;
所述液晶面板可以包括阵列基板、 彩膜基板以及填充在所述阵列基板和 所述彩膜基板之间的液晶;
所述彩膜基板可以包括透明基板和设置于其上的彩膜;
所述阵列基板为实施例一所述的阵列基板。
进一步地, 所述显示面板还可以为 OLED面板;
所述 OLED面板包括阵列基板和封装层, 其中所述阵列基板包括由横纵 交叉的栅线和数据线划分出的多个像素单元,每个像素单元包括电致发光 EL 层和控制电路, 所述 EL层包括金属阴极、 像素电极和位于所述金属阴极和 像素电极之间的有机发光材料;
每个像素单元的像素电极包括相互间隔的至少两个第一像素电极和至少 两个第二像素电极;
每个像素单元的控制电路包括与所述第一像素电极连接的第一子控制电 路和与所述第二像素电极连接的第二子控制电路。
本发明实施例提供的 3D显示装置的制造方法以及该 3D显示装置的具体 结构, 可参考前述实施例二、 三、 四、 五的双视场显示装置的实现方案, 此 处不赘述。
本发明实施例提供的 3D显示装置, 通过将现有技术中一个像素单元内 的用以显示某一特定视场的亚像素电极变为相互间隔的多个第一像素电极和 第二像素电极, 大幅度减小了单视场像素电极的宽度。 单视场像素电极宽度 的减小可以降低光栅层的厚度。 当光栅层为视差挡板时, 视差挡板厚度的减 小使得视差挡板可以直接制作在显示装置的盒内而无需在已对盒成形的显示 装置上额外制作一层视差挡板。 当光栅层为透镜光栅时, 透镜光栅厚度的减 小可以使柱状透镜的拱高降低。 这样一来, 釆用现有的制作工艺就可以满足 产品的生产要求, 避免了增加新的工序或釆用新的生产设备, 从而降低了生 产成本。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、一种阵列基板, 包括由横纵交叉的栅线和数据线划分出的多个像素单 元, 每个像素单元包括像素电极和 TFT电路, 其中,
每个像素单元的像素电极包括相互间隔的至少两个第一像素电极和至少 两个第二像素电极;
每个像素单元的 TFT 电路包括与所述第一像素电极连接的第一子 TFT 电路和与所述第二像素电极连接的第二子 TFT电路。
2、根据权利要求 1所述的阵列基板, 其中, 在每个像素单元中, 所述第 一像素电极整体上构成第一梳状结构, 所述第二像素电极整体上构成第二梳 状结构, 所述第一梳状结构的分支部分与所述第二梳状结构的分支部分相互 交叉设置。
3、根据权利要求 1所述的阵列基板, 其中, 所述第一像素电极、 第二像 素电极的宽度为 1-20μπι。
4、 根据权利要求 1所述的阵列基板, 其中, 所述第一子 TFT电路的栅 极和所述第二子 TFT电路的栅极与同一条栅线连接; 所述第一子 TFT电路 的源极和所述第二子 TFT电路的源极分别与不同的两条数据线连接;所述第 一子 TFT电路的漏极与所述第一像素电极连接, 所述第二子 TFT电路的漏 极与所述第二像素电极连接。
5、 根据权利要求 1~4任一项所述的阵列基板, 其中, 在每个像素单元 中, 还包括位于所述阵列基板的衬底基板与所述像素电极之间的公共电极, 所述公共电极为梳状或板状。
6、 一种双视场显示装置, 包括: 显示面板和设置于所述显示面板之上的 双视挡板,其中,所述显示面板包括如权利要求 1~5任一项所述的阵列基板。
7、根据权利要求 6所述的双视场显示装置, 其中, 所述双视挡板的中心 线与所述显示面板的显示区域的中心线重合。
8、根据权利要求 6或 7所述的双视场显示装置, 其中, 所述显示面板为 液晶面板。
9、根据权利要求 8所述的双视场显示装置, 其中, 所述液晶面板还包括 彩膜基板, 所述双视挡板位于所述彩膜基板的彩膜的上方或下方, 且与所述彩膜的 距离为 1-100μπι。
10、 根据权利要求 9所述的双视场显示装置, 其中, 所述双视挡板位于 所述彩膜的上方, 所述双视挡板与所述彩膜之间设有厚度为 1-100μπι的透明 层。
11、 根据权利要求 6或 7所述的双视场显示装置, 其中, 所述显示面板 为 OLED面板。
12、 根据权利要求 11所述的双视场显示装置, 其中, 所述 OLED面板 还包括封装层, 所述双视挡板位于所述封装层的上方或下方。
13、根据权利要求 12所述的双视场显示装置, 其中, 所述双视挡板位于 所述封装层的下方, 所述双视挡板与所述像素电极之间设有厚度为 1-100μπι 的透明层。
14、 一种双视场液晶显示装置制造方法, 包括:
在下基板上通过构图工艺处理得到 TFT电路和像素电极, 其中, 每个像 素单元的像素电极包括相互间隔的至少两个第一像素电极和至少两个第二像 素电极; 每个像素单元的 TFT 电路包括与所述第一像素电极连接的第一子 TFT电路和与所述第二像素电极连接的第二子 TFT电路;
在上基板上通过构图工艺处理得到双视挡板;
将所述上基板和下基板对盒, 并在盒中填充液晶。
15、根据权利要求 14所述的制造方法, 其中, 在每个像素单元中, 所有 的所述第一像素电极整体上构成第一梳状结构, 所有的所述第二像素电极整 体上构成第二梳状结构, 所述第一梳状结构的分支部分与所述第二梳状结构 的分支部分相互交叉。
16、根据权利要求 14所述的制造方法, 其中, 所述第一像素电极、 第二 像素电极的宽度为 1-20μπι。
17、 根据权利要求 14所述的制造方法, 其中, 所述第一子 TFT电路的 栅极和所述第二子 TFT电路的栅极与同一条栅线连接; 所述第一子 TFT电 路的源极和所述第二子 TFT电路的源极分别与不同的两条数据线连接;所述 第一子 TFT电路的漏极与所述第一像素电极连接, 所述第二子 TFT电路的 漏极与所述第二像素电极连接。
18、 根据权利要求 14所述的制造方法, 其中, 所述上基板为彩膜基板, 所述双视挡板位于所述上基板的彩膜的上方或下方, 且与所述彩膜的距离为 1-100μπι。
19、 根据权利要求 14-18任一所述的制造方法, 其中, 所述双视挡板的 中心线与所述显示装置的显示区域的中心线重合。
20、 一种双视场 OLED显示装置制造方法, 包括:
在下基板上通过构图工艺处理得到控制电路;
在形成有控制电路的所述下基板上形成 EL层,其中,所述 EL层包括金 属阴极、 像素电极和位于所述金属阴极和像素电极之间的有机发光材料, 每 个像素单元的像素电极包括相互间隔的至少两个第一像素电极和至少两个第 二像素电极; 每个像素单元的控制电路包括与所述第一像素电极连接的第一 子控制电路和与所述第二像素电极连接的第二子控制电路;
在上基板上通过构图工艺处理得到双视挡板;
将所述上基板覆盖在所述下基板上。
21、根据权利要求 20所述的制造方法, 其中, 在每个像素单元中, 所有 的所述第一像素电极整体上构成第一梳状结构, 所有的所述第二像素电极整 体上构成第二梳状结构, 所述第一梳状结构的分支部分与所述第二梳状结构 的分支部分相互交叉。
22、根据权利要求 20所述的制造方法, 其中, 所述第一像素电极、 第二 像素电极的宽度为 1-20μπι。
23、根据权利要求 20所述的制造方法, 其中, 所述第一子控制电路开关 管的栅极和所述第二子控制电路开关管的栅极与同一条栅线连接; 所述第一 子控制电路开关管的源极和所述第二子控制电路开关管的源极分别与一个像 素单元两端的数据线连接; 所述第一子控制电路驱动管的漏极与所述第一像 素电极连接, 所述第二子控制电路驱动管的漏极与所述第二像素电极连接。
24、根据权利要求 20所述的制造方法, 其中, 所述双视挡板位于所述封 装层的上方或下方, 且与所述 EL层的距离为 1-100μπι。
25、 根据权利要求 20-24任一所述的制造方法, 其中, 所述双视挡板的 中心线与所述显示装置的显示区域的中心线重合。
PCT/CN2012/087238 2012-02-09 2012-12-23 阵列基板和双视场显示装置及其制造方法 WO2013117109A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/994,740 US9293481B2 (en) 2012-02-09 2012-12-23 Array substrate, and dual view field display device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210029090 2012-02-09
CN201210029090.8 2012-02-09
CN201210063694.4A CN102629607B (zh) 2012-02-09 2012-03-12 阵列基板和双视场显示装置及其制造方法
CN201210063694.4 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013117109A1 true WO2013117109A1 (zh) 2013-08-15

Family

ID=46587830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087238 WO2013117109A1 (zh) 2012-02-09 2012-12-23 阵列基板和双视场显示装置及其制造方法

Country Status (3)

Country Link
US (1) US9293481B2 (zh)
CN (2) CN102629607B (zh)
WO (1) WO2013117109A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629041B (zh) 2012-02-09 2014-04-16 京东方科技集团股份有限公司 一种3d显示装置及其制造方法
CN102629607B (zh) 2012-02-09 2016-02-10 京东方科技集团股份有限公司 阵列基板和双视场显示装置及其制造方法
CN102832212A (zh) * 2012-08-20 2012-12-19 京东方科技集团股份有限公司 一种阵列基板、显示装置及显示装置的驱动方法
CN103197480B (zh) * 2013-03-22 2015-07-01 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板
US10141378B2 (en) * 2013-10-30 2018-11-27 Industrial Technology Research Institute Light emitting device free of TFT and chiplet
CN104102043B (zh) * 2014-07-08 2017-03-22 京东方科技集团股份有限公司 一种双视场显示器及其驱动方法
CN104111560B (zh) * 2014-07-09 2017-08-29 京东方科技集团股份有限公司 一种液晶面板及双视液晶显示装置
CN104317060B (zh) * 2014-11-11 2016-08-24 京东方科技集团股份有限公司 一种双视场显示面板和双视场显示器
CN204314581U (zh) * 2015-01-08 2015-05-06 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
JP6508817B2 (ja) * 2015-01-16 2019-05-08 シャープ株式会社 液晶表示装置
CN104570536A (zh) 2015-02-06 2015-04-29 京东方科技集团股份有限公司 一种电致变色光栅、显示面板及显示装置
CN104810321A (zh) * 2015-04-30 2015-07-29 京东方科技集团股份有限公司 一种tft阵列基板及显示装置的制备方法
CN106292084B (zh) * 2016-08-26 2019-07-02 深圳市华星光电技术有限公司 像素结构及其制作方法
CN106773162A (zh) * 2016-12-20 2017-05-31 北京小米移动软件有限公司 视差屏障、显示装置及其显示状态控制方法
CN106802520B (zh) * 2017-01-22 2018-03-27 京东方科技集团股份有限公司 显示面板及显示装置
CN207396936U (zh) * 2017-10-24 2018-05-22 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN107817926B (zh) * 2017-10-27 2021-03-23 北京京东方显示技术有限公司 一种阵列基板、液晶显示面板及显示装置
CN107634087A (zh) 2017-10-27 2018-01-26 京东方科技集团股份有限公司 一种显示面板及显示装置
CN108169980A (zh) * 2017-12-28 2018-06-15 武汉华星光电技术有限公司 显示装置
CN108646478B (zh) * 2018-03-28 2022-05-03 厦门天马微电子有限公司 阵列基板、液晶显示面板及像素充电方法
CN109669305B (zh) * 2019-02-21 2022-11-04 昆山龙腾光电股份有限公司 阵列基板和液晶显示面板
CN109799659B (zh) * 2019-03-13 2022-04-22 昆山龙腾光电股份有限公司 阵列基板和液晶显示面板
CN111752052B (zh) * 2020-07-29 2022-07-12 京东方科技集团股份有限公司 一种显示面板、显示装置及其驱动方法
CN114267776A (zh) * 2021-12-16 2022-04-01 惠州华星光电显示有限公司 一种显示面板及制作方法、移动终端
CN115513273B (zh) * 2022-11-22 2023-04-07 京东方科技集团股份有限公司 显示基板以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134663A (ja) * 2003-10-30 2005-05-26 Asahi Glass Co Ltd 多機能表示装置および同装置に用いられるスリットマスク形成用のスイッチング液晶パネル
CN101547375A (zh) * 2008-03-27 2009-09-30 爱普生映像元器件有限公司 电光装置以及电子设备
CN101604101A (zh) * 2008-06-13 2009-12-16 乐金显示有限公司 用于面内切换模式液晶显示器装置的阵列基板
CN101957527A (zh) * 2009-07-20 2011-01-26 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板及其制造方法
CN101988998A (zh) * 2009-07-30 2011-03-23 奇美电子股份有限公司 液晶显示装置
CN102292666A (zh) * 2009-05-29 2011-12-21 夏普株式会社 液晶显示元件、液晶显示装置和液晶显示元件的显示方法
CN102629607A (zh) * 2012-02-09 2012-08-08 京东方科技集团股份有限公司 阵列基板和双视场显示装置及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572095B2 (ja) 2004-07-15 2010-10-27 Nec液晶テクノロジー株式会社 液晶表示装置、携帯機器及び液晶表示装置の駆動方法
WO2006109498A1 (ja) * 2005-04-08 2006-10-19 Sharp Kabushiki Kaisha 表示装置
KR100932977B1 (ko) * 2005-07-05 2009-12-21 삼성모바일디스플레이주식회사 입체 영상 표시 장치
US7847904B2 (en) * 2006-06-02 2010-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
KR100914785B1 (ko) * 2007-12-26 2009-08-31 엘지디스플레이 주식회사 액정표시장치
KR101494205B1 (ko) * 2008-05-08 2015-03-02 삼성디스플레이 주식회사 표시기판, 이의 제조방법 및 이를 갖는 표시장치
JP2009300815A (ja) 2008-06-16 2009-12-24 Seiko Epson Corp 表示装置
JP5178831B2 (ja) * 2008-06-27 2013-04-10 シャープ株式会社 液晶表示装置
TWI427383B (zh) * 2009-03-24 2014-02-21 Au Optronics Corp 主動陣列基板、液晶顯示面板及其驅動方法
KR101286498B1 (ko) * 2009-12-11 2013-07-16 엘지디스플레이 주식회사 블루상 액정표시장치
KR101324436B1 (ko) 2010-04-02 2013-10-31 엘지디스플레이 주식회사 입체영상 표시장치, 입체영상 표시장치용 모기판 및 그 모기판의 제조방법
US8937699B2 (en) * 2010-08-12 2015-01-20 Samsung Display Co., Ltd. Liquid crystal display
CN202443185U (zh) 2012-02-09 2012-09-19 京东方科技集团股份有限公司 一种3d显示装置
CN102629041B (zh) 2012-02-09 2014-04-16 京东方科技集团股份有限公司 一种3d显示装置及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134663A (ja) * 2003-10-30 2005-05-26 Asahi Glass Co Ltd 多機能表示装置および同装置に用いられるスリットマスク形成用のスイッチング液晶パネル
CN101547375A (zh) * 2008-03-27 2009-09-30 爱普生映像元器件有限公司 电光装置以及电子设备
CN101604101A (zh) * 2008-06-13 2009-12-16 乐金显示有限公司 用于面内切换模式液晶显示器装置的阵列基板
CN102292666A (zh) * 2009-05-29 2011-12-21 夏普株式会社 液晶显示元件、液晶显示装置和液晶显示元件的显示方法
CN101957527A (zh) * 2009-07-20 2011-01-26 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板及其制造方法
CN101988998A (zh) * 2009-07-30 2011-03-23 奇美电子股份有限公司 液晶显示装置
CN102629607A (zh) * 2012-02-09 2012-08-08 京东方科技集团股份有限公司 阵列基板和双视场显示装置及其制造方法

Also Published As

Publication number Publication date
CN202487576U (zh) 2012-10-10
US9293481B2 (en) 2016-03-22
CN102629607B (zh) 2016-02-10
US20140146261A1 (en) 2014-05-29
CN102629607A (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2013117109A1 (zh) 阵列基板和双视场显示装置及其制造方法
WO2013117098A1 (zh) 3d显示装置及其制造方法
WO2020258649A1 (zh) 一种显示装置
US8970798B2 (en) Display device and method of manufacturing the same
TWI414846B (zh) 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
WO2018133145A1 (zh) 透明oled显示面板
EP3351998B1 (en) 3d display apparatus and driving method therefor
US9874770B2 (en) Display device
US8692945B2 (en) Light barrier device and display unit
KR101837325B1 (ko) 피사계 심도 효과를 구비한 3d 디스플레이 패널 및 그 디스플레이 방법
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
US20140104545A1 (en) Display device
CN104656329B (zh) 显示元件
WO2015070585A1 (zh) 液晶棱镜及其制作方法、显示装置
WO2015143870A1 (zh) 液晶光栅基板、液晶光栅和立体显示装置
WO2016141711A1 (zh) 显示装置及光栅控制方法
US9881574B2 (en) Display device switchable between normal display and dual-view display, method for manufacturing the same
WO2018176910A1 (zh) 三维显示面板及其驱动方法以及显示装置
WO2013037236A1 (zh) 阵列基板及液晶显示面板
WO2016107027A1 (zh) 液晶光栅及其制作方法和驱动方法、拼接屏
CN109164655A (zh) 阵列基板、显示装置及其制备与驱动方法、基板制备方法
CN105679232A (zh) 触控式立体有机电致发光显示装置
JP2015082115A (ja) 表示装置
CN103018981B (zh) 液晶光栅、立体显示装置及其驱动方法
WO2014136610A1 (ja) 立体表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13994740

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-02-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12868043

Country of ref document: EP

Kind code of ref document: A1