WO2015143870A1 - 液晶光栅基板、液晶光栅和立体显示装置 - Google Patents

液晶光栅基板、液晶光栅和立体显示装置 Download PDF

Info

Publication number
WO2015143870A1
WO2015143870A1 PCT/CN2014/089660 CN2014089660W WO2015143870A1 WO 2015143870 A1 WO2015143870 A1 WO 2015143870A1 CN 2014089660 W CN2014089660 W CN 2014089660W WO 2015143870 A1 WO2015143870 A1 WO 2015143870A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal grating
substrate
electrode
driving
Prior art date
Application number
PCT/CN2014/089660
Other languages
English (en)
French (fr)
Inventor
谷耀辉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/437,068 priority Critical patent/US9664914B2/en
Publication of WO2015143870A1 publication Critical patent/WO2015143870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection

Definitions

  • the invention belongs to the technical field of display, and in particular relates to a liquid crystal grating substrate, a liquid crystal grating and a stereoscopic display device.
  • the liquid crystal grating is an active grating that not only realizes three-dimensional stereoscopic display, but also enables switching between three-dimensional/two-dimensional (3D/2D) displays.
  • the liquid crystal grating LR with the light-transmitting area interval distribution is disposed in front of the display panel DP, and the liquid crystal grating LR is a “parallax barrier”, and the image displayed by the display panel DP includes left-eye image screen information (L) and right-eye image screen information (R). ) two kinds of signals.
  • the left eye image screen information and the right eye image screen information of the display panel DP are separated by the liquid crystal grating LR, so that the left eye of the user can only receive the left eye image screen information, and the right eye can only receive the image.
  • the right eye image screen information so as to achieve the effect of 3D display.
  • the structure of the liquid crystal grating is as shown in FIG. 2, and includes a second polarizing plate 21, a second substrate 22, a second electrode structure 23, a second alignment layer 24, a liquid crystal layer 25, and a first alignment layer 27 in this order from top to bottom.
  • the second substrate 22 and the first substrate 28 are opposite and arranged in parallel.
  • the second electrode structure 23 is disposed inside the second substrate 22 (ie, the side of the second substrate 22 facing the liquid crystal layer 25), and the first electrode structure 26 is disposed inside the first substrate 28 (ie, the orientation of the first substrate 28)
  • the liquid crystal layer 25 is disposed between the second electrode structure 23 and the first electrode structure 26, and the second alignment layer 24 is disposed on the liquid crystal layer 25.
  • the first alignment layer 27 is disposed between the liquid crystal layer 25 and the first electrode structure 26 between the second electrode structure 23.
  • the second alignment layer 24 is perpendicular to the alignment direction of the first alignment layer 27, so that the liquid crystal molecules 251 in the liquid crystal layer 25 can be aligned.
  • the second electrode structure 23 is a surface electrode
  • the first electrode structure 26 includes a plurality of electrode strips 30 arranged at equal intervals.
  • the polarization direction is gradually changed when passing through the liquid crystal molecules 251 which are not deflected, and when the first polarizing plate 29 reaches the vibration direction of the polarized light and is parallel to the absorption axis of the first polarizing plate 29,
  • the light passes through to form a light-transmitting region of the liquid crystal grating; and the light does not change the polarization direction when passing through the deflected liquid crystal molecules 251, and the vibration direction of the polarized light reaches the absorption axis of the first polarizing plate 29 when reaching the first polarizing plate 29.
  • the light cannot pass, and the non-transparent area of the liquid crystal grating is formed, thereby separating the left and right eye image screen information, thereby realizing a three-dimensional display effect.
  • the driving circuit structure of the conventional liquid crystal grating is as shown in FIGS. 3 and 4. 3 and 4 respectively show two different implementations of the electrode strip 30 and the control line 31.
  • the two types of drive circuit structures have in common that all of the electrode strips 30 of the liquid crystal grating are connected by a control line 31. In the operating state, the drive circuit provides the same drive voltage for each of the electrode strips 30.
  • the structural design is easy to drive and control, the width of the light-transmitting region or the non-transmissive region of the liquid crystal grating is not easily adjusted, which easily causes crosstalk.
  • FIG. 5 and FIG. 6 There is also a liquid crystal grating which solves the above crosstalk problem in the prior art, and a schematic diagram of its driving structure is shown in FIG. 5 and FIG. 6.
  • FIG. 3 and FIG. 4 By comparing FIG. 3 and FIG. 4 with FIG. 5 and FIG. 6, it is found that the biggest difference is that the control lines 31 in FIG. 5 and FIG. 6 are no longer only one, but each electrode strip 30 passes through different control lines. 31 is connected to the driving circuit of the liquid crystal grating to realize the adjustment of the size of each transparent region of the liquid crystal grating, that is, the width of the transparent region or the non-transmissive region of the liquid crystal grating can be controlled by the driving circuit.
  • each electrode strip 30 needs to be provided with an independent control line 31 connected to the driving circuit, which not only increases the manufacturing process difficulty, Moreover, the drive circuit is made more complicated.
  • the structure of the liquid crystal grating driving circuit which is easy to drive and control cannot adjust the size of the transparent region of the grating; and the structure of the liquid crystal grating driving circuit capable of adjusting the size of the transparent region of the liquid crystal grating is very complicated.
  • the object of the present invention is to solve the problem that the liquid crystal grating is difficult to drive or the size of the light-transmitting region of the liquid crystal grating cannot be adjusted in the prior art, and a liquid crystal grating which is easy to drive and can adjust the size of the transparent region thereof is provided.
  • the technical solution adopted to solve the technical problem of the present invention is a liquid crystal grating substrate including a driving region for forming a grating, and the liquid crystal grating substrate is provided with a first electrode structure, and the first electrode structure includes at least one electrode strip.
  • Each electrode strip includes:
  • each of the two adjacent connecting portions is provided with a protruding portion passing through the driving region, and each protruding portion has two mutually parallel driving portions disposed in the driving region;
  • the driving portions of all the protruding portions are also parallel to each other; one end of each of the two driving portions is connected to one end of the adjacent connecting portion;
  • one end of each electrode strip is a connection end, and the connection end is used for connecting a driving circuit for supplying a driving voltage to the electrode strip.
  • the first electrode structure includes a plurality of electrode strips, and the protruding portions of the plurality of electrode strips are arranged in a protruding direction of the protruding portions in order of increasing distance between the two driving portions of the respective protruding portions.
  • the spacing between the protrusions of each of the two adjacent electrode strips is equal.
  • the spacing between the centerlines of adjacent protrusions of the plurality of electrode strips is equal.
  • connection portion of all the electrode strips is disposed on one side of the driving region, or
  • a connecting portion of the electrode strip is disposed on one side of the driving region, and a connecting portion of the remaining electrode strip is disposed on the other side of the driving region opposite to the one side.
  • the driving circuit independently configures the voltage of each electrode strip.
  • Another object of the present invention is to provide a liquid crystal grating including a first substrate and a second substrate disposed opposite to each other and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first substrate is the liquid crystal grating substrate, and the second substrate comprises a second electrode structure, the second electrode An electric field is generated between the structure and the first electrode structure of the first substrate to drive deflection of liquid crystal molecules in the liquid crystal layer.
  • Another object of the present invention is to provide a stereoscopic display device including a display panel, and the liquid crystal grating described above is disposed outside the light-emitting surface of the display panel.
  • the liquid crystal grating substrate, the liquid crystal grating and the stereoscopic display device of the invention can independently control the voltage of each electrode strip, not only improve the control precision of the liquid crystal grating, but also diversify the control form, and can satisfy the transparent region of the liquid crystal grating or the non-transparent Various adjustment requirements of the width of the light region; at the same time, the easy drive and the size of the light transmission area can be controlled, which reduces the circuit design difficulty and the production cost, and can be used to solve the 3D crosstalk problem.
  • FIG. 1 is a schematic diagram of a light path of a 3D display of a stereoscopic display device having a liquid crystal grating in the prior art.
  • FIG. 2 is a schematic structural view of a liquid crystal grating.
  • FIG. 3 is a schematic view showing the structure of a driving circuit of a liquid crystal grating in the prior art.
  • FIG. 4 is a schematic structural view of another driving circuit of a liquid crystal grating in the prior art.
  • FIG. 5 is a schematic structural diagram of a driving circuit of a controllable liquid crystal grating in the prior art.
  • FIG. 6 is a schematic structural diagram of another driving circuit of a controllable liquid crystal grating in the prior art.
  • Fig. 7 is a view showing the shape of a single electrode strip of a liquid crystal grating according to Embodiment 1 of the present invention.
  • Fig. 8 is a schematic view showing the distribution of a plurality of electrode strips of a liquid crystal grating according to Embodiment 1 of the present invention.
  • Figure 9 is a schematic view showing the distribution of a plurality of electrode strips of a liquid crystal grating in Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a light path when a stereoscopic display device having a liquid crystal grating generates crosstalk between left and right eyes according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of a light path when a stereoscopic display device having a liquid crystal grating according to Embodiment 3 of the present invention eliminates crosstalk between left and right eyes.
  • FIG. 12 is a schematic diagram of a light path of a stereoscopic display device having a liquid crystal grating switched to a 2D display according to Embodiment 3 of the present invention.
  • DP. display panel LR. liquid crystal grating; 21. second polarizing plate; 22. second substrate; 23. second electrode structure; 24. second alignment layer; 25. liquid crystal layer; 251. liquid crystal molecule;
  • the present embodiment provides a liquid crystal grating substrate including a driving region DR for forming a grating.
  • the liquid crystal grating substrate is provided with a first electrode structure 26, and the first electrode structure 26 includes a plurality of electrode strips 30, each of which comprises:
  • a plurality of connecting portions 302 disposed outside the driving area DR are provided with a protruding portion 304 passing through the driving region DR between each adjacent two connecting portions 302, and each protruding portion 304 has two disposed in the driving region DR
  • the mutually parallel driving portions 301; one ends of the two driving portions 301 of each of the protruding portions 304 are respectively connected to one end of the adjacent connecting portion 302; the driving portions 301 of all the protruding portions 304 are also parallel to each other;
  • each electrode strip 30 is a connection end 303 for connecting a driving circuit for supplying a driving voltage to the electrode strip 30.
  • the first electrode structure 26 includes n electrode strips 30, where n is a positive integer.
  • the plane in which the first electrode structure 26 is located includes a light-transmitting region (also referred to as a grating unit) formed by the parallel distribution of the protrusions 304 of the electrode strips 30. And the non-transmissive regions of the electrode strips 30 are not distributed.
  • the above-mentioned light transmitting region and non-light transmitting region constitute the driving region DR.
  • the protruding portions 304 of the n electrode strips 30 are arranged in the protruding direction of the protruding portions 304 in order of increasing distance between the two driving portions 301 of the respective protruding portions 304.
  • the electrode strips 30 in Fig. 8 are sequentially from the first strip.
  • the lower sides are arranged. That is, the distance between the two driving portions 301 of the protruding portion 304 of each two electrode strips 30 is not equal.
  • the width of the grating unit (the region where the electrode strip is provided) is a, and the width of the non-grating unit (the region where the electrode strip is not provided) is b.
  • the distance between the two driving portions 301 of the protruding portion 304 of the electrode strip 30 is sequentially increased, and the n-th strip is the largest, and the n-th electrode strip 30 is driven.
  • the spacing of 301 is a.
  • the spacing between the protrusions 304 of the two adjacent electrode strips 30 is equal.
  • the spacing between the center lines of the adjacent protruding portions 304 of the electrode strips 30 is equal, such that the number of the protruding portions 304 of the electrode strips 30 is equal and the positions are corresponding, and the electrode strips 30 are aligned in the driving region DR. .
  • connection portion 302 of all the electrode strips 30 is disposed on the upper side of the drive region DR and is connected to the drive line.
  • the electrode strip 30 of a specific region (for example, a grating unit) of the driving region DR may be energized, and the protruding portion 304 of the energized electrode strip 30 forms a light transmitting region, and the electrode strip that is not energized
  • the protruding portion 304 of 30 forms a non-transmissive region, so that a light-transmitting region and a non-transmissive region which are spaced apart from each other can be formed.
  • the light-transmitting region or the light-transmitting region can be enlarged by sequentially energizing or sequentially de-energizing the electrode strips 30 on both sides of the light-transmitting region, thereby reducing the crosstalk phenomenon.
  • the protruding portion 304 of the unenergized electrode strip 30 may also form a light transmitting region, and the protruding portion 304 of the energized electrode strip 30 may form a non-light transmitting region.
  • the width a of the grating unit and the width b of the non-grating unit may also be adjusted by adjusting the shape of the electrode strip 30 according to a specific application scenario, for example, adjusting the pitch of the center line of the adjacent protrusions 304.
  • the driving circuit independently configures the voltage of each electrode strip 30. That is to say, the width of the light-transmitting region can be freely adjusted within the width a by the driving circuit.
  • the driving circuit only needs to include n control lines 31. If a conventional equally spaced electrode strip 30 is used to construct the same driving circuit structure as that of FIG. 5 or FIG. 6, for a grating unit having the same width a, the driving circuit needs to include 2 ⁇ n control lines 31; Assuming that the entire liquid crystal grating substrate has a total of m grating elements of width a, the driving circuit of the conventional technology requires a total number of control lines 31 of 2 ⁇ n ⁇ m, and the total number of control lines 31 is the liquid crystal grating substrate control line of the embodiment. The total number of 31 is 2m.
  • each electrode strip in the present embodiment adopts the following structure: includes a plurality of protrusions (for example, m), and Each projection includes two drive portions that pass through the drive zone. Based on this, the driving circuit of the liquid crystal grating substrate of the present embodiment is simplified, and the difficulty of processing the control line 31 is also reduced.
  • the embodiment further provides a liquid crystal grating comprising a first substrate and a second substrate disposed opposite to each other and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first substrate is the liquid crystal grating substrate and the second substrate A second electrode structure is included, and an electric field is generated between the second electrode structure and the first electrode structure of the first substrate to drive deflection of liquid crystal molecules in the liquid crystal layer.
  • the specific structure is similar to the structure shown in FIG. 2, and may also include structural elements such as an alignment layer and a polarizing plate as shown in FIG. 2, and details are not described herein again.
  • the liquid crystal grating substrate and the liquid crystal grating of the embodiment can independently control the voltage of each electrode strip 30, not only improve the control precision of the liquid crystal grating, but also make the control form diversified, and can satisfy the transparent or non-transparent area of the liquid crystal grating.
  • Various adjustment requirements of the width; at the same time, easy to drive, the size of the light transmission area can be controlled, reducing the circuit design difficulty and production cost, and can be used to solve the 3D crosstalk problem.
  • this embodiment provides a liquid crystal grating substrate.
  • the liquid crystal grating substrate is different from the liquid crystal grating substrate in the first embodiment in the liquid crystal in the first embodiment.
  • p electrode strips 30 (including the n+1th, n+2, n+3, ..., n+p strips) are disposed, and the p electrode strips 30 are arranged in the embodiment 1.
  • the protruding portions 304 of the p electrode strips 30 are arranged in the protruding direction of the protruding portion 304 in order of increasing distance between the two driving portions 301 of the respective protruding portions 304.
  • each of the electrode strips 30 is arranged in order from the n+pth strip to the upper side (the protruding direction of the protruding portion 304). That is, the distance between the two driving portions 301 of the protruding portion 304 of each two electrode strips 30 is not equal.
  • connection ends 303 of the p electrode strips 30 are all located on the lower side of the drive region DR. From the entirety of the liquid crystal grating substrate shown in FIG. 9, the connection end 303 of the n electrode strips 30 is located on the upper side of the driving area DR, and the connection end 303 of the p electrode strips 30 is located on the lower side of the driving area DR, all n+ The connection ends 303 of the p electrode strips 30 are all connected to the drive line.
  • the electrode strip 30 of a specific region (for example, a grating unit) of the driving region DR can be energized, and the protruding portion 304 of the energized electrode strip 30 forms a light transmitting region, and the electrode strip is not energized.
  • the protruding portion 304 of 30 forms a non-transmissive region, so that a light-transmitting region and a non-transmissive region which are spaced apart from each other can be formed.
  • the light-transmitting region or the light-transmitting region can be enlarged by sequentially energizing or sequentially de-energizing the electrode strips 30 on both sides of the light-transmitting region, thereby suppressing the crosstalk phenomenon.
  • the protruding portion 304 of the unenergized electrode strip 30 may also form a light transmitting region, and the protruding portion 304 of the energized electrode strip 30 may form a non-light transmitting region.
  • the liquid crystal grating of the present embodiment is a full-area adjustable liquid crystal grating, and can be more flexible in adjusting the liquid crystal with respect to the liquid crystal grating having the fixed non-grating unit (that is, as an intrinsic non-transmissive region) in Embodiment 1.
  • the grating is adapted to various adjustment requirements of the width of the light-transmitting region or the non-light-transmitting region of the liquid crystal grating.
  • the driving circuit only needs to include n + p control lines 31. If the conventional equally spaced electrode strips 30 are used to construct the same driving circuit structure as that of FIG. 5 or FIG. 6, for a grating unit having the same width (a+b), the driving circuit needs to include 2 ⁇ (n). +p) strip control line 31; assuming that the entire liquid crystal grating substrate has a total of m grating elements of width a+b, the conventional technology drive The total number of control lines 31 required for the dynamic circuit is 2 ⁇ (n + p) ⁇ m, and the total number of control lines 31 is 2 m times the total number of the liquid crystal grating substrate control lines 31 of the present embodiment.
  • each electrode strip in the present embodiment adopts the following structure: includes a plurality of protrusions (for example, m), and Each projection includes two drive portions that pass through the drive zone. Based on this, the driving circuit of the liquid crystal grating substrate of the present embodiment is simplified, and the difficulty of processing the control line 31 is also reduced.
  • the embodiment further provides a liquid crystal grating comprising a first substrate and a second substrate disposed opposite to each other and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first substrate is the liquid crystal grating substrate and the second substrate A second electrode structure is included, and an electric field is generated between the second electrode structure and the first electrode structure of the first substrate to drive deflection of liquid crystal molecules in the liquid crystal layer.
  • the specific structure is similar to the structure shown in FIG. 2, and may also include structural elements such as an alignment layer and a polarizing plate as shown in FIG. 2, and details are not described herein again.
  • the liquid crystal grating substrate and the liquid crystal grating of the embodiment can independently control the voltage of each electrode strip 30, which not only improves the control precision of the liquid crystal grating, but also makes the control form diversified, and can satisfy the transparent region or the non-transmissive region of the liquid crystal grating.
  • This embodiment provides a stereoscopic display device including the above-described liquid crystal grating.
  • liquid crystal grating LR having the controllable light-transmitting area of the present invention reduces the problem of left and right eye crosstalk.
  • the crosstalk problem of the above-mentioned left and right eye image picture information can be solved by the liquid crystal grating LR having the controllable light transmission area of the present invention.
  • the crosstalk phenomenon in the 3D display mode is suppressed by adjusting the width of the light-transmitting region or the non-light-transmitting region of the liquid crystal grating LR.
  • the relative widths of the light-transmitting regions A1, A2, A3 and the non-transmissive regions B1, B2, B3 of the liquid crystal grating LR are changed by sequentially energizing or sequentially de-energizing the plurality of electrode strips 30, so that the left-eye image screen information is blocked. It is impossible to enter the right eye, thereby improving the ability of the liquid crystal grating LR to separate the image information of the left and right eye images, and suppressing the crosstalk phenomenon.
  • the stereoscopic display device described above can also switch between 2D/3D displays.
  • the liquid crystal grating LR is in the normally bright mode when the liquid crystal grating LR is energized or not energized.
  • the display panel DP is in the 2D display mode.
  • the stereoscopic display device of the embodiment can solve the problem of crosstalk between left and right eyes in 3D display, and can switch between 2D/3D displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了液晶光栅基板、液晶光栅和立体显示装置,可解决现有的液晶光栅不易驱动或液晶光栅透光区域不能调节的问题,提供一种既易驱动,又可调节光栅透光区域大小的液晶光栅。液晶光栅基板、液晶光栅、立体显示装置能独立控制各电极条(30)的电压,不仅会使液晶光栅的控制精度得以提高,而且使控制形式多样化,可满足液晶光栅的透光区域或非透光区域的宽度的各种调节的要求;同时,易驱动、透光区域大小可控制,降低了电路设计难度和生产成本,能够用于解决3D串扰问题。

Description

液晶光栅基板、液晶光栅和立体显示装置 技术领域
本发明属于显示技术领域,具体涉及一种液晶光栅基板、一种液晶光栅和一种立体显示装置。
背景技术
随着立体显示技术的快速发展,目前主流的裸眼三维(Three Dimension,3D)显示技术之一是基于视差的立体显示技术,主要包括两种方式:光栅式和透镜阵列式。随着液晶技术的发展,液晶材料广泛应用于各种领域。液晶光栅是一种主动式光栅,不仅能够实现三维立体显示,还能够实现三维/二维(3D/2D)显示之间的切换。
下面参照图1首先介绍一下利用液晶光栅LR进行3D显示的原理。透光区域间隔分布的液晶光栅LR被安置于显示面板DP前,液晶光栅LR即为“视差障壁”,显示面板DP显示的图像包含左眼图像画面信息(L)和右眼图像画面信息(R)两种信号。
在3D显示模式下,通过液晶光栅LR将显示面板DP的左眼图像画面信息和右眼图像画面信息进行分离,使用户的左眼只能接收到左眼图像画面信息,右眼只能接收到右眼图像画面信息,从而达到3D显示的效果。
液晶光栅的结构如图2所示,从上到下的顺序依次包括第二偏振片21、第二基板22、第二电极结构23、第二配向层24、液晶层25、第一配向层27、第一电极结构26、第一基板28以及第一偏振片29。
第二基板22和第一基板28相对且平行设置。第二电极结构23设置于第二基板22内侧(即,第二基板22的朝向液晶层25的一侧),第一电极结构26设置于第一基板28内侧(即,第一基板28的朝向液晶层25的一侧),液晶层25设置于第二电极结构23和第一电极结构26之间,第二配向层24设置于液晶层25 与第二电极结构23之间,第一配向层27设置于液晶层25与第一电极结构26之间。第二配向层24与第一配向层27的配向方向垂直,从而可以对液晶层25内的液晶分子251进行配向作用。
其中,第二电极结构23为面电极,而第一电极结构26包括多个等间距排列的电极条30。在液晶光栅的电极条30通电时,与每个电极条30对应的液晶分子251发生偏转,其他液晶分子251不发生偏转。此时,光线进入液晶层以后,在通过没有发生偏转的液晶分子251时会逐步改变偏振方向,到达第一偏振片29时偏振光的振动方向刚好和第一偏振片29的吸收轴平行,则光线通过,形成该液晶光栅的透光区域;而光线通过发生偏转的液晶分子251时不会改变偏振方向,到达第一偏振片29时偏振光的振动方向和第一偏振片29的吸收轴垂直,则光线无法通过,形成该液晶光栅的非透光区域,从而将左、右眼图像画面信息分开,实现三维显示效果。
现有的液晶光栅的驱动电路结构如图3和图4所示。图3和图4分别表示两种不同实现形式的电极条30和控制线31,两种形式的驱动电路结构的共同之处在于都是通过一根控制线31连接液晶光栅的所有电极条30。工作状态下,驱动电路为每一个电极条30提供相同的驱动电压。此结构设计虽然易于驱动控制,但是液晶光栅的透光区域或非透光区域的宽度不易调整,容易导致串扰现象。
现有技术中也有解决上述串扰问题的液晶光栅,其驱动结构示意图如图5与图6所示。通过将图3和图4与图5和图6进行对比,发现最大的区别是:图5、图6中控制线31不再是只有一条,而是每个电极条30均通过不同的控制线31与液晶光栅的驱动电路连接,实现对液晶光栅的各个透光区域大小的调整,即液晶光栅的透光区域或非透光区域的宽度是可由驱动电路控制的。
图5、图6所示的液晶光栅虽然实现了光栅透光区域的调节,但是每个电极条30均需设有一条独立的控制线31与驱动电路连接,这不仅会加大制造工艺难度,而且使得驱动电路更加复杂。
综上所述,现有液晶光栅技术中,易于驱动控制的液晶光栅驱动电路结构不能调节光栅的透光区域大小;而能调节液晶光栅透光区域大小的液晶光栅驱动电路结构又非常复杂。
发明内容
本发明的目的是解决现有技术中液晶光栅不易驱动或液晶光栅透光区域的大小不能调节的问题,提供一种既易驱动,又可调节其透光区域大小的液晶光栅。
解决本发明技术问题所采用的技术方案是一种液晶光栅基板,包括用于形成光栅的驱动区,并且该液晶光栅基板设有第一电极结构,所述第一电极结构包括至少一个电极条,每个电极条包括:
设于驱动区一侧外的多个连接部,每两个相邻连接部间设有穿过驱动区的突出部,每个突出部具有两个设于驱动区中的相互平行的驱动部;全部突出部的驱动部也相互平行;每个突出部中的两个驱动部的一端都分别与其相邻的连接部的一端连接;
其中,每个电极条的一端为连接端,该连接端用于连接驱动电路,该驱动电路用于为该电极条提供驱动电压。
优选的是,所述第一电极结构包括多个电极条,所述多个电极条的突出部按各突出部的两驱动部之间距离依次增大的顺序向突出部的突出方向排列。
优选的是,所述多个电极条中每相邻的两个电极条的突出部之间的间距相等。
优选的是,所述多个电极条的相邻突出部的中心线之间的间距相等。
优选的是,全部电极条的连接部设置于驱动区的一侧,或者
一部分电极条的连接部设置于驱动区的一侧,而其余电极条的连接部设置于驱动区的与所述一侧相对的另一侧。
优选的是,所述驱动电路独立配置各电极条的电压。
本发明的另一个目的是提供一种液晶光栅,该液晶光栅包括 相对设置的第一基板和第二基板以及设置在第一基板和第二基板之间的液晶层,第一基板为上述的液晶光栅基板,第二基板包括第二电极结构,所述第二电极结构与第一基板的第一电极结构之间产生电场来驱动所述液晶层中的液晶分子偏转。
本发明的另一个目的是提供一种立体显示装置,该立体显示装置包括显示面板,所述显示面板的出光面外设有上述的液晶光栅。
本发明的液晶光栅基板、液晶光栅和立体显示装置能独立控制各电极条的电压,不仅使液晶光栅的控制精度得以提高,而且使控制形式多样化,可满足液晶光栅的透光区域或非透光区域的宽度的各种调节的要求;同时,易驱动、透光区域大小可控制,降低了电路设计难度和生产成本,能够用于解决3D串扰问题。
附图说明
图1为现有技术中具有液晶光栅的立体显示装置进行3D显示的光线路径示意图。
图2为液晶光栅的结构示意图。
图3为现有技术中液晶光栅的驱动电路结构示意图。
图4为现有技术中液晶光栅的另一种驱动电路结构示意图。
图5为现有技术中可控液晶光栅的驱动电路结构示意图。
图6为现有技术中可控液晶光栅的另一种驱动电路结构示意图。
图7为本发明实施例1中液晶光栅的单根电极条的形状示意图。
图8为本发明实施例1中液晶光栅的多个电极条的分布示意图。
图9为本发明实施例2中液晶光栅的多个电极条的分布示意图。
图10为本发明实施例3中具有液晶光栅的立体显示装置产生左右眼串扰时的光线路径示意图。
图11为本发明实施例3中具有液晶光栅的立体显示装置消除左右眼串扰时的光线路径示意图。
图12为本发明实施例3中具有液晶光栅的立体显示装置切换为2D显示的光线路径示意图。
其中:
DP.显示面板;LR.液晶光栅;21.第二偏振片;22.第二基板;23.第二电极结构;24.第二配向层;25.液晶层;251.液晶分子;26.第一电极结构;27.第一配向层;28.第一基板;29.第一偏振片;30.电极条;301.驱动部;302.连接部;303.连接端;304.突出部;31.控制线;DR.驱动区。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
实施例1
如图2、7-9所示,本实施例提供一种液晶光栅基板,其包括用于形成光栅的驱动区DR。该液晶光栅基板设有第一电极结构26,所述第一电极结构26包括多个电极条30,每个电极条30包括:
设于驱动区DR一侧外的多个连接部302,每相邻的两个连接部302间设有穿过驱动区DR的突出部304,每个突出部304具有两个设于驱动区DR中的相互平行的驱动部301;每个突出部304中的两个驱动部301的一端都分别与其相邻的连接部302的一端连接;全部突出部304的驱动部301也相互平行;
其中,每个电极条30的一端为连接端303,其用于连接驱动电路,驱动电路用于为该电极条30提供驱动电压。
具体地,如图8所示,第一电极结构26包括n个电极条30,其中,n为正整数。第一电极结构26所在平面包括由各电极条30的突出部304平行间隔分布形成的透光区域(也可称为光栅单元) 和没有分布电极条30的非透光区域。上述的透光区域和非透光区域组成驱动区DR。
该n个电极条30的突出部304按各突出部304的两驱动部301之间距离依次增大的顺序向突出部304的突出方向排列,图8中各电极条30从第1条开始依次向下侧(突出部304的突出方向)排列。也就是说,每两个电极条30的突出部304的两驱动部301之间的距离不相等。
如图8所示,光栅单元(设置有电极条的区域)的宽度为a,非光栅单元(未设置电极条的区域)的宽度为b。按第1,2,……n条的次序,电极条30的突出部304的两驱动部301之间距离依次增大,间距最大的是第n条,该第n条电极条30两驱动部301的间距为a。
优选的,两相邻电极条30的突出部304之间的间距相等。
更优选的,各电极条30的相邻突出部304的中心线之间的间距相等,这样各电极条30的突出部304的数量相等、位置相对应,各电极条30在驱动区DR整齐排列。
如图8所示,全部电极条30的连接部302设置于驱动区DR的上侧,并且与驱动线路连接。
本实施例中,液晶光栅基板使用时,可以对驱动区DR的特定区域(例如,光栅单元)的电极条30通电,通电的电极条30的突出部304形成透光区域,未通电的电极条30的突出部304形成非透光区域,从而可以形成间隔分布的透光区域和非透光区域。当监测到串扰现象时,可以通过对透光区域两侧的电极条30依次通电或依次断电来扩大透光区域或减小透光区域,从而减少串扰现象。应当理解的是,也可以使未通电的电极条30的突出部304形成透光区域,而使通电的电极条30的突出部304形成非透光区域。
应当理解的是,根据具体的应用情景,上述光栅单元的宽度a和非光栅单元的宽度b还可以通过调整电极条30的形状进行调整,例如,调整相邻突出部304中心线的间距。
优选的,驱动电路独立配置各电极条30的电压。也就是说,能通过驱动电路在宽度a范围内自由调节透光区域的宽度。
在本实施例的液晶光栅基板中,驱动电路只需要包括n条控制线31。若采用传统的等间隔分布的电极条30来构造与图5或图6相同的驱动电路结构时,对于宽度同样为a的光栅单元而言,驱动电路即需要包括2×n条控制线31;假设整个液晶光栅基板总共有m个宽度为a的光栅单元,则传统技术的驱动电路需要控制线31的总数为2×n×m条,其控制线31总数为本实施例液晶光栅基板控制线31总数的2m倍。与现有技术相比,本发明中的驱动电路的控制线31的数量显著减少,这是因为本实施例中的每个电极条采用以下结构:包括多个突出部(例如m个),而每个突出部均包括穿过驱动区的两个驱动部。基于此,本实施例的液晶光栅基板的驱动电路得到了简化,同时也降低了控制线31加工的难度。
本实施例还提供一种液晶光栅,包括相对设置的第一基板和第二基板以及设置在第一基板和第二基板之间的液晶层,第一基板为上述的液晶光栅基板,第二基板包括第二电极结构,所述第二电极结构与第一基板的第一电极结构之间产生电场以驱动所述液晶层中的液晶分子偏转。其具体结构与图2所示的结构类似,还可以包括如图2所示的配向层、偏振片等结构单元,在此不再赘述。
本实施例的液晶光栅基板及液晶光栅能独立控制各电极条30的电压,不仅使得液晶光栅的控制精度提高,而且使得控制形式多样化,可满足液晶光栅的透光区域或非透光区域的宽度的各种调节的要求;同时,易驱动、透光区域大小可控制,降低了电路设计难度和生产成本,能够用于解决3D串扰问题。
实施例2
如图9所示,本实施例提供一种液晶光栅基板。该液晶光栅基板与实施例1中的液晶光栅基板不同的是在实施例1中的液晶 光栅基板的基础上又设置了p个电极条30(包括第n+1,n+2,n+3,……,n+p条),该p个电极条30布置在实施例1中的宽度为b的非光栅单元中。该p个电极条30的突出部304按各突出部304的两驱动部301之间距离依次增大的顺序向突出部304的突出方向排列。图9中各电极条30从第n+p条开始依次向上侧(突出部304的突出方向)排列。也就是说,每两个电极条30的突出部304的两驱动部301之间的距离不相等。
如图9所示,这p个电极条30的连接端303均位于驱动区DR下侧。从图9所示的液晶光栅基板的整体来看,n个电极条30的连接端303位于驱动区DR上侧,p个电极条30的连接端303位于驱动区DR下侧,全部的n+p个电极条30的连接端303均与驱动线路连接。
在本实施例中,液晶光栅使用时,可以对驱动区DR的特定区域(例如,光栅单元)的电极条30通电,通电的电极条30的突出部304形成透光区域,未通电的电极条30的突出部304形成非透光区域,从而可以形成间隔分布的透光区域和非透光区域。当监测到串扰现象时,可以通过对透光区域两侧的电极条30依次通电或依次断电来扩大透光区域或减小透光区域,从而抑制串扰现象。应当理解的是,也可以使未通电的电极条30的突出部304形成透光区域,而使通电的电极条30的突出部304形成非透光区域。
本实施例的液晶光栅为全区域可调节的液晶光栅,相对于实施例1中的具有固定的非光栅单元(即,作为固有的非透光区域)的液晶光栅而言能够更加灵活的调节液晶光栅,以适应液晶光栅的透光区域或非透光区域的宽度的各种调节的要求。
在本实施例的液晶光栅基板中,驱动电路只需要包括n+p条控制线31。若采用传统的等间隔分布的电极条30来构造与图5或图6相同的驱动电路结构时,对于宽度同样为(a+b)的光栅单元而言,则驱动电路需要包括2×(n+p)条控制线31;假设整个液晶光栅基板总共有m个宽度为a+b的光栅单元,则传统技术的驱 动电路需要控制线31的总数为2×(n+p)×m条,其控制线31总数为本实施例液晶光栅基板控制线31总数的2m倍。与现有技术相比,本发明中的驱动电路的控制线31的数量显著减少,这是因为本实施例中的每个电极条采用以下结构:包括多个突出部(例如m个),而每个突出部均包括穿过驱动区的两个驱动部。基于此,本实施例的液晶光栅基板的驱动电路得到了简化,同时也降低了控制线31加工的难度。
本实施例还提供一种液晶光栅,包括相对设置的第一基板和第二基板以及设置在第一基板和第二基板之间的液晶层,第一基板为上述的液晶光栅基板,第二基板包括第二电极结构,所述第二电极结构与第一基板的第一电极结构之间产生电场以驱动所述液晶层中的液晶分子偏转。其具体结构与图2所示的结构类似,还可以包括如图2所示的配向层、偏振片等结构单元,在此不再赘述。
本实施例的液晶光栅基板及液晶光栅能独立控制各电极条30的电压,不仅会使得液晶光栅的控制精度提高,而且使得控制形式多样化,可满足液晶光栅的透光区域或非透光区域的宽度的各种调节的要求;同时,易驱动、透光区域大小可控制,降低了电路设计难度和生产成本,能够用于解决3D串扰问题。
实施例3
本实施例提供一种立体显示装置,该立体显示装置包括上述的液晶光栅。
利用液晶光栅LR进行3D显示过程中,产生串扰的原理如图10所示。由于液晶光栅LR的透光区域的宽度不合理,理想光线传输路径和实际光线传输路径之间产生了较大的偏差,导致造成左眼图像画面信息(L)进入观看者的右眼,造成画面的混乱,即串扰现象。
下面介绍本发明的具有可控透光区域的液晶光栅LR是如何减少左右眼串扰问题的。
通过本发明的具有可控透光区域的液晶光栅LR即可解决上述的左右眼图像画面信息的串扰问题。如图11所示,通过调节液晶光栅LR的透光区域或非透光区域的宽度来抑制3D显示模式下的串扰现象。通过对多个电极条30依次通电或依次断电来改变液晶光栅LR的透光区域A1、A2、A3和非透光区域B1、B2、B3的相对宽度,使得左眼图像画面信息被阻挡而无法进入右眼,从而提高液晶光栅LR分离左右眼图像画面信息的能力,抑制串扰现象。
应当理解的是,上述的立体显示装置也可以在2D/3D显示之间进行切换。如图12所示,通过将液晶的偏转角度和第二偏振片、第一偏振片的透光方向结合起来进行调控,使得液晶光栅LR在通电的情况下或未通电的情况下处于常亮模式,此时显示面板DP为2D显示模式。
本实施例的立体显示装置不但能解决3D显示中左右眼串扰的问题,同时能在2D/3D显示之间进行切换。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (8)

  1. 一种液晶光栅基板,包括用于形成光栅的驱动区,并且该液晶光栅基板设有第一电极结构,所述第一电极结构包括至少一个电极条,每个电极条包括:
    设于驱动区一侧外的多个连接部,每两个相邻连接部间设有穿过驱动区的突出部,每个突出部具有两个设于驱动区中的相互平行的驱动部;全部突出部的驱动部也相互平行;每个突出部中的两个驱动部的一端都分别与其相邻的连接部的一端连接;
    其中,每个电极条的一端为连接端,该连接端用于连接驱动电路,该驱动电路用于为该电极条提供驱动电压。
  2. 如权利要求1所述的液晶光栅基板,其中,所述第一电极结构包括多个电极条,所述多个电极条的突出部按各突出部的两驱动部之间距离依次增大的顺序向突出部的突出方向排列。
  3. 如权利要求2所述的液晶光栅基板,其中,所述多个电极条中每相邻的两个电极条的突出部之间的间距相等。
  4. 如权利要求2所述的液晶光栅基板,其中,所述多个电极条的相邻突出部的中心线之间的间距相等。
  5. 如权利要求1所述的液晶光栅基板,其中,全部电极条的连接部设置于驱动区的一侧,或者,
    一部分电极条的连接部设置于驱动区的一侧,其余电极条的连接部设置于驱动区的与所述一侧相对的另一侧。
  6. 如权利要求1所述的液晶光栅基板,其中,所述驱动电路独立配置各电极条的电压。
  7. 一种液晶光栅,包括相对设置的第一基板和第二基板以及设置在第一基板和第二基板之间的液晶层,其中,第一基板为根据权利要求1-6中任意一项所述的液晶光栅基板,第二基板包括第二电极结构,所述第二电极结构与第一基板的第一电极结构之间产生电场来驱动所述液晶层中的液晶分子偏转。
  8. 一种立体显示装置,包括显示面板,所述显示面板的出光面外设有如权利要求7所述的液晶光栅。
PCT/CN2014/089660 2014-03-28 2014-10-28 液晶光栅基板、液晶光栅和立体显示装置 WO2015143870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/437,068 US9664914B2 (en) 2014-03-28 2014-10-28 Liquid crystal grating substrate, liquid crystal grating and stereoscopic display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410122772.2A CN103941492A (zh) 2014-03-28 2014-03-28 液晶光栅基板、液晶光栅、立体显示装置
CN201410122772.2 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015143870A1 true WO2015143870A1 (zh) 2015-10-01

Family

ID=51189222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089660 WO2015143870A1 (zh) 2014-03-28 2014-10-28 液晶光栅基板、液晶光栅和立体显示装置

Country Status (3)

Country Link
US (1) US9664914B2 (zh)
CN (1) CN103941492A (zh)
WO (1) WO2015143870A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941492A (zh) * 2014-03-28 2014-07-23 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅、立体显示装置
CN104155824B (zh) 2014-08-08 2018-03-30 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法
CN109427303B (zh) 2017-08-21 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、显示方法、显示装置
CN110223644B (zh) * 2018-03-02 2020-08-04 京东方科技集团股份有限公司 显示装置、虚拟现实设备及驱动方法
CN109387984B (zh) * 2018-11-20 2024-07-23 深圳惠牛科技有限公司 一种液晶光栅、光波导组件以及显示器
WO2020210361A1 (en) 2019-04-12 2020-10-15 Pcms Holdings, Inc. Optical method and system for light field displays having light-steering layers and periodic optical layer
CN110189627B (zh) * 2019-05-30 2021-12-24 武汉天马微电子有限公司 一种显示面板及显示装置
EP3980820B1 (en) 2019-06-07 2024-07-31 InterDigital Madison Patent Holdings, SAS Optical method and system for light field displays based on distributed apertures
US11917121B2 (en) 2019-06-28 2024-02-27 Interdigital Madison Patent Holdings, Sas Optical method and system for light field (LF) displays based on tunable liquid crystal (LC) diffusers
CN114365026B (zh) 2019-07-01 2024-08-13 Pcms控股公司 用于基于光束转向对3d显示器进行连续校准的方法和系统
CN110989254B (zh) * 2019-12-31 2022-04-01 上海天马微电子有限公司 液晶光栅以及全息3d显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN202583648U (zh) * 2012-04-20 2012-12-05 深圳市中显微电子有限公司 一种可动态选择开口率的裸眼3d显示模块及液晶显示装置
US20130257840A1 (en) * 2012-04-02 2013-10-03 Beom-Shik Kim Dual liquid crystal barrier, and stereoscopic image display device having the same
US20130257855A1 (en) * 2012-04-03 2013-10-03 Beom-Shik Kim Time-division liquid crystal barrier and stereoscopic image display device having the same
CN103941492A (zh) * 2014-03-28 2014-07-23 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅、立体显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952548B2 (en) * 2007-03-09 2011-05-31 Samsung Mobile Display Co., Ltd. Electronic display device
JP5705420B2 (ja) * 2009-07-03 2015-04-22 株式会社ジャパンディスプレイ 液晶パララックスバリア、表示装置及び液晶表示装置
JP5667752B2 (ja) * 2009-08-20 2015-02-12 株式会社ジャパンディスプレイ 立体映像表示装置
CN201796217U (zh) * 2010-07-21 2011-04-13 天马微电子股份有限公司 液晶光栅及立体显示装置
WO2012044130A2 (ko) * 2010-10-01 2012-04-05 삼성전자 주식회사 배리어를 이용하는 3d 디스플레이 장치 및 그 구동 방법
TWI467235B (zh) * 2012-02-06 2015-01-01 Innocom Tech Shenzhen Co Ltd 三維(3d)顯示器及其之顯示方法
CN102621737B (zh) * 2012-04-20 2015-03-11 深圳市中显微电子有限公司 一种可动态选择开口率的裸眼3d显示模块及液晶显示装置
US9116358B2 (en) * 2012-05-17 2015-08-25 Innocom Technology(Shenzhen) Co., Ltd. 2D/3D switchable parallax barrier display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
US20130257840A1 (en) * 2012-04-02 2013-10-03 Beom-Shik Kim Dual liquid crystal barrier, and stereoscopic image display device having the same
US20130257855A1 (en) * 2012-04-03 2013-10-03 Beom-Shik Kim Time-division liquid crystal barrier and stereoscopic image display device having the same
CN202583648U (zh) * 2012-04-20 2012-12-05 深圳市中显微电子有限公司 一种可动态选择开口率的裸眼3d显示模块及液晶显示装置
CN103941492A (zh) * 2014-03-28 2014-07-23 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅、立体显示装置

Also Published As

Publication number Publication date
US20160291334A1 (en) 2016-10-06
CN103941492A (zh) 2014-07-23
US9664914B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
WO2015143870A1 (zh) 液晶光栅基板、液晶光栅和立体显示装置
JP5022964B2 (ja) 立体映像表示装置及び立体映像表示方法
JP5248062B2 (ja) 指向性バックライト、表示装置及び立体画像表示装置
US8866980B2 (en) Display device having a barrier section including a spacer arrangement
CN100449353C (zh) 高分辨率自动立体显示器
KR100839414B1 (ko) 전자 영상 기기
TWI391738B (zh) A device for multifunctional liquid crystal parallax gratings
TWI414846B (zh) 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
US9057909B2 (en) Liquid crystal lens and 3D display device
US9213203B2 (en) Three-dimensional image display
US20150269893A1 (en) Display device and switching method of its display modes
JP6150787B2 (ja) 立体映像表示装置
TWI471665B (zh) 可切換二維與三維顯示模式之顯示裝置
WO2016086483A1 (zh) 可在2d和3d模式之间切换的显示器及其控制方法
WO2016015435A1 (zh) 三维显示装置
TWI474048B (zh) 顯示裝置
KR20130064325A (ko) 입체 영상 표시용 패럴랙스 배리어 및 이를 이용한 표시 장치
JP6665291B2 (ja) ディスプレイデバイス及びディスプレイ制御方法
TWI457885B (zh) 顯示裝置
US9575326B2 (en) Stereoscopic image display apparatus
US9606367B2 (en) Stereoscopic display device
TW201416708A (zh) 裸眼式立體顯示裝置及其液晶透鏡
CN202794716U (zh) 一种3d显示装置
JP5318014B2 (ja) 立体表示装置
KR102156344B1 (ko) 표시장치 및 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14437068

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887156

Country of ref document: EP

Kind code of ref document: A1