WO2018176910A1 - 三维显示面板及其驱动方法以及显示装置 - Google Patents

三维显示面板及其驱动方法以及显示装置 Download PDF

Info

Publication number
WO2018176910A1
WO2018176910A1 PCT/CN2017/115437 CN2017115437W WO2018176910A1 WO 2018176910 A1 WO2018176910 A1 WO 2018176910A1 CN 2017115437 W CN2017115437 W CN 2017115437W WO 2018176910 A1 WO2018176910 A1 WO 2018176910A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
dimensional display
light emitting
light
liquid crystal
Prior art date
Application number
PCT/CN2017/115437
Other languages
English (en)
French (fr)
Inventor
王延峰
王丹
邱云
王志东
徐晓玲
杜渊鑫
吕振华
魏从从
胡伟频
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/067,318 priority Critical patent/US11340473B2/en
Priority to EP17901330.5A priority patent/EP3608704A4/en
Publication of WO2018176910A1 publication Critical patent/WO2018176910A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/18Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 parallel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present disclosure belongs to the field of display technologies, and in particular, to a three-dimensional display panel and a driving method thereof, and a display device including the three-dimensional display panel.
  • Three-dimensional (3D) display technology has become the development trend of the current display field.
  • the 3D display technology is generally implemented by the binocular parallax principle, that is, two parallax images (ie, left and right parallax images) are displayed on a two-dimensional display screen, and then the left and right eyes of the viewer are respectively determined by using certain techniques. Only the left and right parallax images on the display can be seen.
  • the present disclosure provides a three-dimensional display panel and a display device that are substantially free of crosstalk and are excellent in controllability.
  • the present disclosure provides a three-dimensional display panel that is divided into a plurality of pixel regions, the three-dimensional display panel includes a light emitting unit, and the light emitting unit includes an array disposed in the plurality of pixel regions.
  • a plurality of light emitting devices configured to form a light-dark barrier form when the three-dimensional display panel performs display.
  • the three-dimensional display panel further includes a display adjustment unit configured to control an emission direction of the light emitted from the plurality of light emitting devices.
  • the display adjustment unit includes a display adjustment layer and is disposed in the Displaying a control electrode layer on at least one side of the conditioning layer, wherein:
  • the display adjustment layer is a liquid crystal layer
  • the control electrode layer includes a plurality of control electrodes spaced apart from each other, the plurality of control electrodes being configured such that liquid crystals in the liquid crystal layer form a plurality of liquid crystal lenses under the voltage driving of the control electrodes, and are applied by control The voltages of the plurality of control electrodes are adjusted to adjust the size and curvature of the plurality of liquid crystal lenses, thereby controlling the emission direction of the light emitted by the plurality of light emitting devices.
  • the plurality of liquid crystal lenses are in one-to-one correspondence with the plurality of light emitting devices.
  • the plurality of control electrodes are strips, and the plurality of control electrodes are symmetrically disposed on two sides of the display adjustment layer, and the control electrodes and the light emitting device are correspondingly disposed.
  • the plurality of control electrodes are strip-shaped, and the plurality of control electrodes are disposed on the same side of the display adjustment layer, and at least part of the control electrodes and the light-emitting device are correspondingly disposed.
  • the three-dimensional display panel further includes a first controller, the plurality of control electrodes are led to the edge of the panel through the electrode line and connected to the first controller, and the first controller is used to control the application to
  • the voltage on each of the control electrodes is such that liquid crystals in the liquid crystal layer form a plurality of liquid crystal lenses, and the size and curvature of the plurality of liquid crystal lenses are adjusted.
  • the three-dimensional display panel further includes a second controller, the plurality of light emitting devices are led to the edge of the panel through the electrode line and connected to the second controller, and the second controller is configured to control the The plurality of light emitting devices in the plurality of pixel regions form a light-dark phase grating form.
  • the liquid crystal layer forms a twisted alignment liquid crystal display mode or forms a birefringence liquid crystal display mode.
  • the three-dimensional display panel further includes a plurality of gate lines and a plurality of data lines disposed between adjacent ones of the pixel regions, each of the plurality of light emitting devices and the plurality of gates One of the lines is connected to one of the plurality of data lines.
  • the light emitting device is a micro light emitting diode device.
  • the micro light emitting diode device is a monochromatic light emitting diode device of different colors, and the micro light emitting diode devices of different colors are sequentially arranged in a row and a column direction, respectively.
  • the micro light emitting diode device is a white light emitting diode device.
  • the micro light emitting diode device is formed by a transfer method.
  • the micro light emitting diode device is formed over any one of a glass substrate, a Mylar film substrate, or a printed circuit board.
  • the present disclosure provides a driving method of the above three-dimensional display panel, including:
  • the plurality of light emitting devices are driven row by row or column by column such that the plurality of light emitting devices form a light and dark phase grating form.
  • the plurality of light emitting devices are driven row by row or column by column by the controller such that the plurality of light emitting devices form a light and dark grating form.
  • the present disclosure provides a display device including any of the above three-dimensional display panels.
  • FIG. 1 is a schematic cross-sectional structural view of a three-dimensional display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of the three-dimensional display panel of FIG. 1;
  • FIG. 3 is a cross-sectional structural view of the micro-light emitting diode device of FIG. 1;
  • FIG. 4A and FIG. 4B are schematic diagrams showing a manner of viewing a three-dimensional display panel according to an embodiment of the present disclosure
  • FIG. 5A and FIG. 5B are schematic diagrams showing another manner of viewing a three-dimensional display panel according to an embodiment of the present disclosure
  • 6A and 6B are schematic views showing still another manner of viewing a three-dimensional display panel according to an embodiment of the present disclosure
  • FIG. 7A and FIG. 7B are schematic diagrams showing another manner of viewing a three-dimensional display panel according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a connection in a state in which a light-emitting device in a pixel region is adjusted in a grating state in a three-dimensional display panel according to an embodiment of the present disclosure.
  • the inventors have found that the existing LCD (Liquid Crystal Display)-based 3D display device has problems such as crosstalk and poor controllability of the parallax images of the left and right eyes due to limitations of physical devices, which greatly affects the user's 3D viewing. Experience.
  • LCD Liquid Crystal Display
  • the embodiment provides a three-dimensional display panel, which has substantially no crosstalk and excellent controllability, and alleviates or solves the limitation of the existing LCD-based three-dimensional display and display device due to physical devices, and the left and right eyes.
  • the image has at least one of problems such as crosstalk and poor controllability.
  • the three-dimensional display panel is divided into a plurality of pixel regions, including a light-emitting unit, wherein the light-emitting unit includes a plurality of light-emitting devices arranged in an array respectively disposed in the plurality of pixel regions, and the plurality of light-emitting devices are configured to form a light-dark phase when performing display The form of the barrier.
  • the light-emitting devices in the partial rows (columns) are in an open state, and the light-emitting devices in the other partial rows (columns) are in an off state, thereby forming a light-dark barrier form, and at this time, the light in the off state is emitted.
  • the device acts as a black matrix (BM) to achieve 3D display through a parallax barrier.
  • the three-dimensional display panel further includes a display adjustment unit configured to control an outgoing direction of light emitted by each of the plurality of light emitting devices.
  • the light emitting unit (the plurality of light emitting devices) is generally disposed under the display adjusting unit (in other words, the display adjusting unit is located on the light emitting side of the light emitting unit), and the light emitting device generally emits corresponding light according to the display data.
  • the three-dimensional display panel may include a light emitting unit and a display adjustment unit disposed above the substrate 1.
  • the display adjustment unit includes a display adjustment layer and a control electrode layer disposed on at least one side of the display adjustment layer, and the display adjustment layer
  • the liquid crystal layer 3; the control electrode layer includes a plurality of control electrodes 4 spaced apart.
  • the liquid crystal lens can be formed by applying a voltage to the control electrode 4 so that the liquid crystal in the liquid crystal layer 3 is driven by the voltage applied to the control electrode 4, and the size and curvature of the liquid crystal lens can be adjusted by controlling the voltage applied to the control electrode 4. Thereby controlling the direction of emission of light emitted by the light emitting device.
  • the light-emitting devices in the partial rows (columns) are in an on state, and the light-emitting devices in the other partial rows (columns) are in an off state, and accordingly, the liquid crystal layer (liquid crystal lens) corresponding to the light-emitting device in the off state is
  • the liquid crystal layer (liquid crystal lens) corresponding to the light-emitting device in the open state is normally in the open state, and the liquid crystal layer is also in the form of a light-dark phase grating, thereby realizing 3D display.
  • the control electrode layers can be symmetrically disposed on both sides of the display adjustment layer, as shown in FIG.
  • the control electrode 4 may be strip-shaped, and the plurality of control electrodes 4 and the plurality of light-emitting devices 2 are disposed correspondingly such that the liquid crystal lens 31 (the liquid crystal lens 31 is referred to FIG. 4A) is formed in one-to-one correspondence with the light-emitting device 2.
  • the three-dimensional display panel can include a first controller disposed at an edge of the panel, and the control electrode 4 is coupled to the first controller via an electrode line. The first controller is for controlling the driving voltage applied to the electrode 4 to form the liquid crystal lens 31 and adjusting the liquid crystal lens 31 (for example, adjusting its size and curvature).
  • the liquid crystal orientation can be controlled by controlling the voltage applied to the control electrode 4, and the liquid crystal lens 31 can be formed in the liquid crystal layer 3, so that the outgoing direction of the light emitted by the corresponding light emitting device can be performed by the liquid crystal lens 31 formed. control.
  • the liquid crystal layer 3 may be a Twisted Nematic (TN) liquid crystal or an Electrostatically Controlled Birefringence (ECB) liquid crystal.
  • TN Twisted Nematic
  • EBC Electrostatically Controlled Birefringence
  • the type of the liquid crystal layer 3 forming the liquid crystal lens 31 can be flexibly selected as needed, and is not limited herein.
  • the three-dimensional display panel may further include a second controller 7 at the edge of the panel.
  • the light-emitting device 2 located in the pixel region is connected to the controller 7 through the electrode line 8.
  • the second controller 7 is for controlling a plurality of light-emitting devices 2 in the plurality of pixel regions 5 to form a light-dark phase grating form.
  • the light emitting devices 2 located in the same row (or the same column) can be connected to the controller 7 through an electrode line 8 so as to pass
  • the controller 7 controls the opening and closing state of the light-emitting device 2 of one row (or one column). At this time, the opening and closing state of the retroreflective device 2 can be controlled row by row (or column by column).
  • the three-dimensional display panel further includes a gate line and a data line which are disposed between adjacent pixel regions 5, and the light emitting device 2 is respectively connected to the gate line and the data line, and the light emitting device is realized by the gate line and the data line. 2 controls to achieve display. It can be understood that the light-emitting device in the off state does not display, and only the light-emitting device in the on state provides corresponding light output according to the display data.
  • the light emitting device 2 may be a micro light emitting diode device (uLED), and a plurality of micro light emitting diode devices respectively located in a plurality of pixel regions constitute a uLED array.
  • the uLED array is a two-dimensional array of high-density micro-sized two-dimensional arrays integrated on the same light-emitting diode chip that is epitaxially grown, or a high-density integrated arrangement of small-sized high-brightness light-emitting diodes on the same epitaxial substrate material. The thickness is only maintained at a few hundred microns.
  • the micro light-emitting diode has the characteristics of fast response (refresh rate can reach several kHz) and is easy to control, thereby ensuring good controllability of the three-dimensional display panel in this embodiment.
  • the micro light emitting diode device may be a monochrome device, and the micro light emitting diode devices of different colors are sequentially arranged in the row direction and the column direction, respectively.
  • a structure in which red, green, and blue (RGB) are sequentially arranged may be formed in the horizontal direction and the vertical direction, and of course, an arrangement structure in which RGB is the core, such as RGBW and RGBY, may be included, which is not limited herein.
  • the arrangement of RGB may be in the form of a strip, a triangle, a mosaic, etc., and is not limited herein.
  • the light emitting device 2 may also be a white light micro light emitting diode device. At this point, you need to configure the corresponding color film to achieve color display.
  • FIG. 3 is a schematic structural view of a micro-light emitting diode device including a substrate 21, an N-type electrode 22, an N-type radiation composite carrier layer 23, a light-emitting layer 24, a P-type radiation composite carrier layer 25, and an ohmic contact.
  • the layer 26 and the P-type electrode 27, the N-type radiation composite carrier layer 23 and the P-type radiation composite carrier layer 25 provide radiation composite carriers mainly radiated in the luminescent layer 24, and the illuminating wavelength and intensity of the uLED are
  • the luminescent layer 24 is determined to have a large impact on the performance of the product.
  • a transfer method can be used to form a glass substrate, a polyester film substrate or a printed circuit Any one of the top of the board.
  • the uLED chip After the uLED chip is grown, it is transferred to a substrate such as a glass substrate, a PET substrate, or a PCB by a transfer method, and a wiring and a control circuit are provided on the substrate.
  • a substrate such as a glass substrate, a PET substrate, or a PCB by a transfer method, and a wiring and a control circuit are provided on the substrate.
  • the substrate here is generally referred to, and may be any type of substrate depending on the choice of technology.
  • the size and curvature of the liquid crystal lens 31 mainly depend on the liquid crystal layer 3 and the control electrode 4, and the process and design of the liquid crystal lens 31 (including the control electrode 4) are micron process precision, and can correspond to the micro light emitting diode device uLED.
  • the precision of the light-emitting direction can be easily controlled by controlling the voltage applied to the control electrode 4 to form a different refractive index of the liquid crystal to obtain a suitable size and curvature of the liquid crystal lens 31.
  • the liquid crystal lens 31 is fabricated based on the single optical axis birefringence property of the liquid crystal.
  • the liquid crystal is selected such that the larger the refractive index difference ⁇ n is, the better.
  • the voltage fitting refractive index difference ⁇ n is provided by the plurality of control electrodes 4 as an ideal parabola, thereby realizing adjustment of the refractive index of the liquid crystal when the polarized light is coplanar with the long-axis direction of the liquid crystal molecules, thereby realizing the adjustment of the size and curvature of the liquid crystal lens 31.
  • each of the light-emitting devices 2 corresponds to one liquid crystal lens 31 when the 3D display is realized, and the size of the micro-light-emitting diode device ranges from several tens of ⁇ m, and the process and design of the liquid crystal lens 31 are also micron process precision.
  • the display is realized based on the micro-light-emitting diode device uLED, and the micro-level control is realized by the liquid crystal lens 31, so that the 3D effect is greatly improved, and a better 3D experience is realized.
  • the principle of realizing 3D display of the three-dimensional display panel provided by the embodiment is described by taking the RGB three-color uLED in the three-dimensional display panel as an example.
  • the uLED array is driven column by column, and the micro uLEDs in the partial columns are on.
  • the uLEDs in the other columns are in an off state, thereby forming a light-dark grating (ie, forming a parallax barrier).
  • the uLED 6 in the off state in the figure is shown in dashed boxes and is shown in black.
  • the uLED 6 in the off state acts as a black matrix BM to block the light, and cooperates with the uLED in the open state to form a barrier (Barrier) to realize 3D display.
  • a barrier Barrier
  • the uLED array is driven line by line, and the micro lines in the line are microscopically
  • the uLED is in the on state, and the uLEDs in the other rows are in the off state, thereby forming a light and dark grating. (ie, a parallax barrier is formed).
  • the uLED 6 in the off state acts as a black matrix BM to block the light, and cooperates with the uLED in the open state to form a barrier (Barrier) to realize 3D display.
  • BM black matrix
  • Barrier barrier
  • the left eye and the right eye of the person respectively receive different pictures, and then are superimposed and regenerated by the brain to form an image having a front-back, an up-down, a left-right, a far-near, and the like.
  • the micro-light-emitting diode device uLED has a high refresh rate (can reach several kHz), and the actual 3D display usually has a refresh rate of 120 Hz or more, and the 3D image of the left and right eyes can be well Separated in time, therefore, combined with the rapid response of the uLED and the excellent controllability of the liquid crystal lens, mutual crosstalk between the left and right eye images can be eliminated, and the controllability is good, so that the 3D effect is greatly improved.
  • the control electrode is disposed on the same side of the display adjustment layer.
  • the control electrode 4 is strip-shaped, and the two sets of control electrodes 4 in the control electrode layer are disposed apart from each other on the same side of the display adjustment layer (may be disposed on the same layer), and at least part of the control electrode 4 and the light-emitting device 2 are correspondingly disposed.
  • the liquid crystal lens 31 is formed by a driving voltage applied to the control electrode 4 and the liquid crystal lens 31 is adjusted. In short, the liquid crystal orientation is controlled by the electrodes, and different refractive indices are formed in the liquid crystal, thereby forming a liquid crystal lens.
  • the control electrode layer may be located only on the lower glass substrate, and an electric field is formed between the adjacent control electrodes 4 in the same layer, so that the corresponding liquid crystal material is deflected.
  • the imaging principle can be specifically referred to FIG. 4A, FIG. 4B and FIG. 6A and FIG. 6B; the vertical screen can be viewed horizontally or vertically.
  • the imaging principle can be specifically referred to FIG. 5A, FIG. 5B, and FIG. 7A and FIG. 7B.
  • the micro-light-emitting diode device uLED has a high refresh rate (can reach several kHz), and the actual 3D display usually has a refresh frequency of 120 Hz or more, and the left-right eye 3D is good.
  • the images are separated in time. Therefore, in combination with the fast response of the uLED and the excellent controllability of the liquid crystal lens, crosstalk between the left and right eye images can be eliminated, and the controllability is good, so that the 3D effect is greatly improved.
  • the present disclosure provides a driving method of the above three-dimensional display panel, comprising the steps of driving the plurality of light emitting devices row by row or column by column such that the plurality of illuminators The pieces form a light and dark grating form.
  • the plurality of light emitting devices may be driven row by row or column by column by a controller such that the plurality of light emitting devices form a light and dark inter-wavelength form.
  • the controller 7 can be disposed at the edge of the three-dimensional display panel, and the light-emitting device 2 in the pixel region can be connected to the controller 7 through the electrode line 8, as shown in FIG.
  • the light-emitting devices in the partial rows (columns) are in an on state
  • the light-emitting devices in the other partial rows (columns) are in an off state, thereby forming a light-dark-side barrier form, in which case the light-emitting device in the off state plays
  • the role of the black matrix (BM) enables 3D display through the parallax barrier.
  • the present disclosure also provides a display device including any of the three-dimensional display panels provided by the present disclosure.
  • the display device can be any product or component having a display function such as an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device can achieve a better 3D experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

一种三维显示面板及其驱动方法,以及一种显示装置。三维显示面板划分为多个像素区(5),三维显示面板包括发光单元,发光单元包括设置于多个像素区(5)内的多个发光器件(2),其中,多个发光器件(2)配置为在三维显示面板进行显示时形成明暗相间的光栅形式。

Description

三维显示面板及其驱动方法以及显示装置
相关申请的交叉引用
本申请要求于2017年4月1日提交的中国专利申请No.201720342386.3的优先权。该申请的全部内容以引用的方式合并于此。
技术领域
本公开属于显示技术领域,具体涉及一种三维显示面板及其驱动方法,以及包括该三维显示面板的显示装置。
背景技术
三维(3D)显示技术已成为目前显示领域的发展趋势。目前,3D显示技术一般是采用双目视差原理来实现,即将两幅视差图像(即左、右视差图像)显示在二维显示屏上,然后利用一定的技术使观看者的左、右眼分别只能看到显示屏上的左、右视差图像。
发明内容
本公开提供一种三维显示面板和显示装置,该三维显示面板基本无串扰、且可控性优异。
一方面,本公开提供了一种三维显示面板,划分为多个像素区,该所述三维显示面板包括发光单元,所述发光单元包括分别设置于所述多个像素区内的呈阵列布置的多个发光器件,所述多个发光器件配置为在所述三维显示面板进行显示时形成明暗相间的光栅(barrier)形式。
可选的是,所述三维显示面板还包括显示调节单元,其用于对所述多个发光器件中发出的光的出射方向进行控制。
可选的是,所述显示调节单元包括显示调节层和设置于所述 显示调节层至少一侧的控制电极层,其中:
所述显示调节层为液晶层;
所述控制电极层包括间隔分布的多个控制电极,所述多个控制电极配置为使得所述液晶层中的液晶在所述控制电极的电压驱动作用下形成多个液晶透镜,并通过控制施加到所述多个控制电极的电压来调节所述多个液晶透镜的大小及曲率,从而控制所述多个发光器件发出的光的出射方向。
可选的是,所述多个液晶透镜与所述多个发光器件一一对应。
可选的是,所述多个控制电极均为条状,所述多个控制电极对称设置于所述显示调节层两侧,所述控制电极和所述发光器件对应设置。
可选的是,所述多个控制电极均为条状,所述多个控制电极间隔设置于所述显示调节层同侧,至少部分所述控制电极和所述发光器件对应设置。
可选的是,所述三维显示面板还包括第一控制器,所述多个控制电极通过电极线引到面板边缘并与所述第一控制器相连,所述第一控制器用于控制施加至各控制电极上的电压以使得所述液晶层中的液晶形成多个液晶透镜,并调节所述多个液晶透镜的大小及曲率。
可选的是,所述三维显示面板还包括第二控制器,所述多个发光器件通过电极线引到面板边缘并与所述第二控制器相连,所述第二控制器用于控制所述多个像素区内的所述多个发光器件形成明暗相间的光栅形式。
可选的是,所述液晶层形成扭曲排列型液晶显示模式,或者形成双折射型液晶显示模式。
可选的是,所述三维显示面板还包括在相邻所述像素区之间交叉设置的多条栅线和多条数据线,所述多个发光器件中的每一个与所述多条栅线中的一条和所述多条数据线中的一条分别连接。
可选的是,所述发光器件为微发光二极管器件。
可选的是,所述微发光二极管器件为不同颜色的单色发光二极管器件,不同颜色的所述微发光二极管器件在行方向和列方向上分别依次循环排列。
可选的是,所述微发光二极管器件为白光发光二极管器件。
可选的是,所述微发光二极管器件采用转印方式形成。
可选的是,所述微发光二极管器件形成在玻璃基板、聚酯薄膜基板或印刷电路板任一种的上方。
另一方面,本公开提供了上述三维显示面板的驱动方法,包括:
逐行或逐列驱动所述多个发光器件,使得所述多个发光器件形成明暗相间的光栅形式。
可选的是,通过控制器逐行或逐列驱动所述多个发光器件,使得所述多个发光器件形成明暗相间的光栅形式。
又一方面,本公开提供了一种显示装置,包括上述的任意一种三维显示面板。
附图说明
图1为本公开实施例中三维显示面板的剖面结构示意图;
图2为图1中三维显示面板的平面示意图;
图3为图1中微发光二极管器件的剖面结构示意图;
图4A和图4B为本公开实施例中三维显示面板一种观看方式示意图;
图5A和图5B为本公开实施例中三维显示面板另一种观看方式示意图;
图6A和图6B为本公开实施例中三维显示面板又一种观看方式示意图;
图7A和图7B为本公开实施例中三维显示面板另一种观看方式示意图;以及
图8为本公开实施例中三维显示面板中调节像素区中的发光器件呈光栅状态的连接示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开三维显示面板和显示装置作进一步详细描述。
发明人发现,现有的基于LCD(Liquid Crystal Display,液晶显示)的3D显示器件由于物理器件的局限,左、右眼的视差图像存在串扰、可控性差等问题,大大影响了用户的3D观看体验。
实施例1:
本实施例提供一种三维显示面板,该三维显示面板基本无串扰、且可控性优异,缓解或解决了现有的基于LCD的三维显示显示器件由于物理器件的局限,左、右眼的视差图像存在串扰、可控性差等问题中的至少一个问题。
该三维显示面板划分为多个像素区,包括发光单元,其中发光单元包括分别设置于多个像素区内的呈阵列布置的多个发光器件,多个发光器件配置为在进行显示时形成明暗相间的光栅(barrier)形式。
进行显示时,部分行(列)中的发光器件处于开态,另一部分行(列)中的发光器件处于关态,从而形成明暗相间的光栅(barrier)形式,此时,处于关态的发光器件起到黑矩阵(BM)的作用,从而通过视差屏障方式实现3D显示。
可选的是,所述三维显示面板还包括显示调节单元,其用于对所述多个发光器件中的每一个发出的光的出射方向进行控制。
可以理解,发光单元(多个发光器件)一般设置于显示调节单元的下方(换言之,显示调节单元位于发光单元的出光侧),并且发光器件一般根据显示数据发出相应的光。
在一些实施例中,三维显示面板可包括设置于基板1上方的发光单元和显示调节单元。如图1所示,显示调节单元包括显示调节层和设置于显示调节层至少一侧的控制电极层,显示调节层 为液晶层3;控制电极层包括间隔分布的多个控制电极4。通过对控制电极4施加电压可使得液晶层3中的液晶在施加至控制电极4的电压的驱动作用下形成液晶透镜,并可通过控制施加至控制电极4的电压来调节液晶透镜的大小及曲率,从而对所述发光器件发出的光的出射方向进行控制。
进行显示时,部分行(列)中的发光器件处于开态,另一部分行(列)中的发光器件处于关态,相应地,与处于关态的发光器件对应的液晶层(液晶透镜)由于没有光透过也处于暗态,而与处于开态的发光器件对应的液晶层(液晶透镜)正常工作,处于开态,故液晶层也呈现为明暗相间的光栅形式,从而实现3D显示。
控制电极层可以对称设置于显示调节层的两侧,如图2所示。此时,控制电极4可为条状,多个控制电极4和多个发光器件2对应设置,以使得形成的液晶透镜31(液晶透镜31请参考图4A)与发光器件2一一对应设置。一些实施例中,三维显示面板可包括设置在面板边缘的第一控制器,控制电极4通过电极线与第一控制器连接。第一控制器用于控制加载到电极4的驱动电压以形成液晶透镜31并调节液晶透镜31(例如,调节其大小及曲率)。简言之,可通过控制控制电极4上加载的电压来控制液晶取向,在液晶层3中可以形成液晶透镜31,从而通过形成的液晶透镜31来对对应的发光器件发出的光的出射方向进行控制。
液晶层3可采用扭曲排列型(Twisted Nematic,简称TN)液晶,或者双折射型(Electrically Controlled Birefringence,简称ECB)液晶。形成液晶透镜31的液晶层3的类型可根据需要灵活选择,这里不做限定。
三维显示面板还可包括位于面板边缘的第二控制器7,如图8所示,位于像素区中的发光器件2通过电极线8与控制器7相连。第二控制器7用于控制多个像素区5内的多个发光器件2形成明暗相间的光栅形式。在一个实施例中,位于同一行(或同一列)的发光器件2可通过一条电极线8与控制器7连接,从而可通过 控制器7控制一行(或一列)的发光器件2的开闭状态。此时,可逐行(或逐列)对反光器件2的开闭状态进行控制。
容易理解的是,该三维显示面板还包括在相邻像素区5之间交叉设置的栅线和数据线,发光器件2与栅线和数据线分别连接,通过栅线和数据线实现对发光器件2的控制,实现显示。可以理解,处于关态的发光器件不进行显示,只有处于开态的发光器件才根据显示数据提供相应的出光。
本公开中,发光器件2可为微发光二极管器件(uLED),分别位于多个像素区中的多个微发光二极管器件组成uLED阵列。uLED阵列是在外延生长的同一发光二极管芯片上集成高密度微小尺寸的二维阵列,或者在同一外延基片材料上进行高密度集成排列的微小尺寸的高亮度发光二极管管芯的二维阵列,厚度仅维持在几百微米。微发光二极管具有响应快(刷新率可达到几kHz),且易控制的特点,从而保证了本实施例中三维显示面板良好的可控性能。
如图2所示,微发光二极管器件可为单色器件,不同颜色的微发光二极管器件在行方向和列方向上分别依次循环排列。例如,三维显示面板中可横向和纵向分别形成红、绿、蓝(RGB)依次排列的结构,当然也可以包括RGBW、RGBY等以RGB为核心的排列结构,这里不做限定。此外,RGB的排列方式可以为条形、三角形、马赛克形等形式,这里不做限制。
另外,发光器件2也可以为白光微发光二极管器件。此时,需要配置相应的彩膜以实现彩色显示。
图3所示为微发光二极管器件的结构示意图,其包括衬底21、N型电极22、N型辐射复合载流子层23、发光层24、P型辐射复合载流子层25、欧姆接触层26和P型电极27,N型辐射复合载流子层23和P型辐射复合载流子层25提供的辐射复合载流子主要在发光层24辐射复合发光,uLED的发光波长和强度由发光层24来决定,对产品的各项性能都有较大影响。对于微发光二极管器件,可采用转印方式形成在玻璃基板、聚酯薄膜基板或印刷电路 板任一种的上方。uLED芯片生长成之后,利用转印方法转印到玻璃基板、PET基板或者PCB板等基板,基板上有布线及控制电路。这里的基板为泛指,根据技术的选择,可以为任意一种基板。
由上述内容可知,液晶透镜31的大小及曲率主要取决于液晶层3以及控制电极4,而液晶透镜31(含控制电极4)的工艺和设计是微米工艺精度,可以对应到微发光二极管器件uLED的精度,因此可方便的通过控制施加到控制电极4的控制电压来使液晶形成不同的折射率,获得合适的液晶透镜31的大小及曲率,实现对出光方向的控制。液晶透镜31是基于液晶单光轴双折射性质制作的,在确定可视角焦距和视角数的条件下,选择液晶使得折射率差Δn越大越好。通过多个控制电极4提供电压拟合折射率差Δn为理想抛物线,从而实现根据偏振光线与液晶分子长轴方向共面时液晶的折射率的调节,从而实现液晶透镜31的大小及曲率的调节。
三维显示面板中,实现3D显示时每个发光器件2对应一个液晶透镜31,微发光二极管器件的尺寸范围为几十μm级别,且液晶透镜31的工艺和设计也是微米工艺精度。基于微发光二极管器件uLED来实现显示,通过液晶透镜31实现微量级控制,使得3D效果大为改善,实现更好的3D体验。
以下,以三维显示面板中采用RGB三色uLED为例来说明本实施例提供的三维显示面板实现3D显示的原理。在横屏观看时,例如如图4A、4B所示的横屏横看形式和如图6A、6B所示的竖屏横看形式,对uLED阵列逐列驱动,部分列中的微uLED处于开态,其他列中的uLED处于关态,从而形成明暗相间的光栅(即,形成视差挡板)。图中处于关态的uLED 6以虚线方框示出,并以黑色示出。处于关态的uLED 6起到黑矩阵BM遮光的作用,配合处于开态的uLED,形成光栅(Barrier),实现3D显示。类似地,在竖屏观看时,包括如图5A、5B所示的横屏竖看形式和如图7A、7B所示的竖屏竖看形式,对uLED阵列逐行驱动,部分行中的微uLED处于开态,其他行中的uLED处于关态,从而形成明暗相间的光栅 (即,形成视差挡板)。处于关态的uLED 6起到黑矩阵BM遮光的作用,配合处于开态的uLED,形成光栅(Barrier),实现3D显示。此时,人左眼和右眼分别接收不同画面,然后经大脑进行叠加重生,构成一个具有前-后、上-下、左-右、远-近等立体方向效果的影像。
在本实施例的三维显示面板中,微发光二极管器件uLED具有很高的刷新率(可以达到几kHz),实际的3D显示通常刷新频率在120Hz以上即可很好的将左右眼的3D图像在时间上隔开,因此,结合uLED的快速响应以及液晶透镜的优异可控性,可以消除左右眼图像的相互串扰,而且可控性好,使得3D效果大大改善。
在一些实施例中,控制电极设置在显示调节层同侧。例如,控制电极4为条状,控制电极层中的两组控制电极4互相相离间隔设置于显示调节层同侧(可设置于同一层),且至少部分控制电极4和发光器件2对应设置。通过施加到控制电极4上的驱动电压来形成液晶透镜31并调节液晶透镜31,简言之,即通过电极控制液晶取向,在液晶中形成不同折射率,从而形成液晶透镜。此时,控制电极层可仅位于下玻璃基板上,同层中相邻控制电极4之间形成电场,使得相对应的液晶材料发生偏转。
当观看方向改变后,驱动方式并不需变化,观看者可以横屏横看或者横屏竖看,成像原理具体可参考图4A、图4B和图6A、图6B;可以竖屏横看或者竖屏竖看,成像原理具体可参考图5A、图5B和图7A、图7B。
在本实施例的三维显示面板中,其中的微发光二极管器件uLED具有很高的刷新率(可以达到几kHz),实际的3D显示通常刷新频率在120Hz以上即可很好的将左右眼的3D图像在时间上隔开,因此,结合uLED的快速响应以及液晶透镜的优异可控性,可以消除左右眼图像的相互串扰,而且可控性好,使得3D效果大大改善。
另一方面,本公开提供了上述三维显示面板的驱动方法,包括步骤:逐行或逐列驱动所述多个发光器件,使得所述多个发光器 件形成明暗相间的光栅形式。
在一些实施例中,可通过控制器逐行或逐列驱动所述多个发光器件,使得所述多个发光器件形成明暗相间的光栅形式。如上所述,该控制器7可设置在三维显示面板的边缘,像素区中的发光器件2可通过电极线8与控制器7相连,如图8所示。
由于部分行(列)中的发光器件处于开态,另一部分行(列)中的发光器件处于关态,从而形成明暗相间的光栅(barrier)形式,此时,处于关态的发光器件起到黑矩阵(BM)的作用,从而能通过视差屏障方式实现3D显示。
对三维显示面板的描述可参照上述描述,此处不再赘述。
又一方面,本公开还提供了一种显示装置,该显示装置包括本公开提供的任一种三维显示面板。
对三维显示面板的描述可参照上述描述,此处不再赘述。
该显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置能实现更好的3D体验。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (18)

  1. 一种三维显示面板,划分为多个像素区,包括发光单元,所述发光单元包括设置于所述多个像素区内的呈阵列布置的多个发光器件,其中,所述多个发光器件配置为在三维显示面板进行显示时形成明暗相间的光栅形式。
  2. 根据权利要求1所述的三维显示面板,还包括显示调节单元,其用于对所述多个发光器件发出的光的出射方向进行控制。
  3. 根据权利要求2所述的三维显示面板,其中所述显示调节单元包括显示调节层和设置于所述显示调节层至少一侧的控制电极层,其中:
    所述显示调节层为液晶层;
    所述控制电极层包括间隔分布的多个控制电极,所述控制电极使得所述液晶层中的液晶在所述控制电极的电压驱动作用下形成多个液晶透镜,并通过控制施加至所述多个控制电极的电压来调节所述多个液晶透镜的大小及曲率,从而控制所述多个发光器件发出的光的出射方向。
  4. 根据权利要求3所述的三维显示面板,其中多个液晶透镜与所述多个发光器件一一对应。
  5. 根据权利要求3或4所述的三维显示面板,其中所述多个控制电极均为条状,所述多个控制电极对称设置于所述显示调节层两侧,所述控制电极和所述发光器件对应设置。
  6. 根据权利要求3或4所述的三维显示面板,其中所述多个控制电极均为条状,所述多个控制电极间隔设置于所述显示调节层同侧,至少部分所述控制电极和所述发光器件对应设置。
  7. 根据权利要求3-6中任一项所述的三维显示面板,其中,所述液晶层为扭曲排列型液晶,或者为双折射型液晶。
  8. 根据权利要求3-6中任一项所述的三维显示面板,其中,所述三维显示面板还包括位于所述三维显示面板边缘的第一控制器,所述多个控制电极通过电极线与所述第一控制器相连,所述第一控制器用于控制施加至各控制电极上的电压以使得所述液晶层中的液晶形成多个液晶透镜,并调节所述多个液晶透镜的大小及曲率。
  9. 根据权利要求1-8中任一项所述的三维显示面板,还包括位于所述三维显示面板边缘的第二控制器,所述多个发光器件通过电极线与所述第二控制器相连,所述第二控制器用于控制所述多个像素区内的所述多个发光器件形成明暗相间的光栅形式。
  10. 根据权利要求1-9中任一项所述的三维显示面板,还包括在相邻所述像素区之间交叉设置的多条栅线和多条数据线,所述多个发光器件中的每一个与所述多条栅线中的一条和所述多条数据线中的一条分别连接。
  11. 根据权利要求1-10中任一项所述的三维显示面板,其中,所述发光器件为微发光二极管器件。
  12. 根据权利要求11所述的三维显示面板,其中,所述微发光二极管器件为单色微发光二极管器件,不同颜色的所述微发光二极管器件在行方向和列方向上分别依次循环排列。
  13. 根据权利要求11所述的三维显示面板,其中,所述发光器件为白光微发光二极管器件。
  14. 根据权利要求11所述的三维显示面板,其中,所述微发光二极管器件采用转印方式形成。
  15. 根据权利要求14所述的三维显示面板,其中,所述微发光二极管器件形成在玻璃基板、聚酯薄膜基板或印刷电路板中任一种的上方。
  16. 一种三维显示面板的驱动方法,其中所述三维显示面板为权利要求1-15中任一项所述的三维显示面板,所述驱动方法包括:
    逐行或逐列驱动所述多个发光器件,使得所述多个发光器件形成明暗相间的光栅形式。
  17. 根据权利要求16所述的三维显示面板的驱动方法,其中通过控制器逐行或逐列驱动所述多个发光器件,使得所述多个发光器件形成明暗相间的光栅形式。
  18. 一种显示装置,包括权利要求1-15中任一项所述的三维显示面板。
PCT/CN2017/115437 2017-04-01 2017-12-11 三维显示面板及其驱动方法以及显示装置 WO2018176910A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/067,318 US11340473B2 (en) 2017-04-01 2017-12-11 3D display panel, ME1HOD for driving same, and display apparatus
EP17901330.5A EP3608704A4 (en) 2017-04-01 2017-12-11 THREE-DIMENSIONAL DISPLAY BOARD AND CONTROL PROCESS FOR IT, AS WELL AS DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720342386.3 2017-04-01
CN201720342386.3U CN206757205U (zh) 2017-04-01 2017-04-01 一种三维显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2018176910A1 true WO2018176910A1 (zh) 2018-10-04

Family

ID=60612187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115437 WO2018176910A1 (zh) 2017-04-01 2017-12-11 三维显示面板及其驱动方法以及显示装置

Country Status (4)

Country Link
US (1) US11340473B2 (zh)
EP (1) EP3608704A4 (zh)
CN (1) CN206757205U (zh)
WO (1) WO2018176910A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935790B2 (en) * 2019-02-07 2021-03-02 Facebook Technologies, Llc Active flexible liquid crystal optical devices
TWI754462B (zh) 2020-11-20 2022-02-01 錼創顯示科技股份有限公司 微型發光二極體透明顯示器
CN112419909B (zh) * 2020-11-20 2023-10-20 錼创显示科技股份有限公司 微型发光二极管透明显示器
WO2023086633A1 (en) * 2021-11-15 2023-05-19 Lumileds Llc Multiple led arrays with non-overlapping segmentation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231840A (zh) * 2011-06-03 2011-11-02 深圳创维-Rgb电子有限公司 一种基于oled屏幕的裸眼3d显示方法、装置及显示装置
CN102256147A (zh) * 2011-07-04 2011-11-23 天马微电子股份有限公司 一种立体显示系统及其显示方法
CN102722022A (zh) * 2011-01-28 2012-10-10 台达电子工业股份有限公司 电切换调光单元、影像显示元件与影像显示系统
CN102736335A (zh) * 2012-07-05 2012-10-17 信利半导体有限公司 立体图像显示系统及其液晶视差光栅
CN103278969A (zh) * 2013-05-31 2013-09-04 京东方科技集团股份有限公司 三维液晶显示装置和显示系统及三维图像显示的驱动方法
JP2016012071A (ja) * 2014-06-30 2016-01-21 株式会社ジャパンディスプレイ 3次元表示装置
CN106125323A (zh) * 2016-09-05 2016-11-16 上海理工大学 一种二维/三维转换的显示面板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200741287A (en) * 2006-04-21 2007-11-01 Wintek Corp 2D/3D image display
US9523858B2 (en) * 2010-10-15 2016-12-20 Superd Co. Ltd. Autostereoscopic display system and method
KR20120132912A (ko) * 2011-05-30 2012-12-10 삼성전자주식회사 다중 표시 모드를 지원하는 단말기 및 이의 구동 방법
TWI456308B (zh) * 2011-06-01 2014-10-11 Wintek Corp 顯示裝置及其背光模組
KR20150142891A (ko) * 2014-06-12 2015-12-23 삼성디스플레이 주식회사 입체영상 표시장치
US20160139422A1 (en) * 2014-11-13 2016-05-19 Innolux Corporation Three-dimensional image display apparatus
KR20160068110A (ko) * 2014-12-04 2016-06-15 삼성디스플레이 주식회사 입체 영상 표시 장치
CN105093547B (zh) * 2015-08-20 2019-06-07 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN105319775B (zh) 2015-12-03 2018-11-30 京东方科技集团股份有限公司 一种三维显示装置及其驱动方法
US10586886B2 (en) * 2016-01-20 2020-03-10 Goertek, Inc. Micro-LED transfer method and manufacturing method
US20170213934A1 (en) * 2016-01-25 2017-07-27 Google Inc. High-efficiency light emitting diode
US9977152B2 (en) * 2016-02-24 2018-05-22 Hong Kong Beida Jade Bird Display Limited Display panels with integrated micro lens array
US10424670B2 (en) * 2016-12-30 2019-09-24 Intel Corporation Display panel with reduced power consumption

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722022A (zh) * 2011-01-28 2012-10-10 台达电子工业股份有限公司 电切换调光单元、影像显示元件与影像显示系统
CN102231840A (zh) * 2011-06-03 2011-11-02 深圳创维-Rgb电子有限公司 一种基于oled屏幕的裸眼3d显示方法、装置及显示装置
CN102256147A (zh) * 2011-07-04 2011-11-23 天马微电子股份有限公司 一种立体显示系统及其显示方法
CN102736335A (zh) * 2012-07-05 2012-10-17 信利半导体有限公司 立体图像显示系统及其液晶视差光栅
CN103278969A (zh) * 2013-05-31 2013-09-04 京东方科技集团股份有限公司 三维液晶显示装置和显示系统及三维图像显示的驱动方法
JP2016012071A (ja) * 2014-06-30 2016-01-21 株式会社ジャパンディスプレイ 3次元表示装置
CN106125323A (zh) * 2016-09-05 2016-11-16 上海理工大学 一种二维/三维转换的显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608704A4 *

Also Published As

Publication number Publication date
EP3608704A1 (en) 2020-02-12
US11340473B2 (en) 2022-05-24
EP3608704A4 (en) 2021-01-06
US20210211639A1 (en) 2021-07-08
CN206757205U (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN102830559B (zh) 显示设备
WO2018176910A1 (zh) 三维显示面板及其驱动方法以及显示装置
US9240146B2 (en) Liquid crystal display device and driving method therefore as well as electronic apparatus
CN102279469B (zh) 视差系统、面板、装置、显示方法及计算机可读介质
JP6700407B2 (ja) 表示デバイス及び表示制御方法
TWI471665B (zh) 可切換二維與三維顯示模式之顯示裝置
US9612443B2 (en) Display device
US20120268704A1 (en) Display device
US7359013B2 (en) Display capable of selectively displaying two-dimensional and three-dimensional images
US20110285953A1 (en) Display Apparatus with Display Switching Modes
US8743302B2 (en) Display device
TW201307899A (zh) 顯示方法,顯示器裝置,電子系統,及照明單元
CN105607271B (zh) 一种显示模组、显示装置及其驱动方法
EP1705927B1 (en) Autostereoscopic display using time-sequential method
CN202693951U (zh) 立体显示装置
US20160274373A1 (en) Display device and method for controlling the same
CN108370439B (zh) 显示设备和显示控制方法
US20140160378A1 (en) Display apparatus
US11137619B2 (en) Display device for virtual reality, viewing device for virtual reality and head-mounted display apparatus
CN109212832B (zh) 一种液晶显示面板及其制作方法、液晶显示装置
CN102478730B (zh) 偏光式3d显示装置及系统
KR20140141877A (ko) 3차원 표시 장치 및 3차원 표시 장치용 전환부
KR20070045533A (ko) 액정 표시 장치
CN105572890A (zh) 一种显示装置及其驱动方法
JP2004302315A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901330

Country of ref document: EP

Effective date: 20191104