WO2013115368A1 - 二次電池電極形成用組成物、二次電池電極、及び二次電池 - Google Patents

二次電池電極形成用組成物、二次電池電極、及び二次電池 Download PDF

Info

Publication number
WO2013115368A1
WO2013115368A1 PCT/JP2013/052360 JP2013052360W WO2013115368A1 WO 2013115368 A1 WO2013115368 A1 WO 2013115368A1 JP 2013052360 W JP2013052360 W JP 2013052360W WO 2013115368 A1 WO2013115368 A1 WO 2013115368A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode
secondary battery
substituted
water
Prior art date
Application number
PCT/JP2013/052360
Other languages
English (en)
French (fr)
Inventor
順幸 諸石
一成 春田
彰彦 八手又
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to US14/376,017 priority Critical patent/US20150004486A1/en
Priority to ES13743209.2T priority patent/ES2665503T3/es
Priority to JP2013556517A priority patent/JP6183216B2/ja
Priority to EP13743209.2A priority patent/EP2811550B1/en
Priority to KR1020147023323A priority patent/KR20140125394A/ko
Priority to KR1020167017523A priority patent/KR20160079937A/ko
Priority to CN201380007205.6A priority patent/CN104115311A/zh
Publication of WO2013115368A1 publication Critical patent/WO2013115368A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for forming a secondary battery electrode, an electrode obtained using the composition, and a secondary battery obtained using the electrode.
  • the important properties required for the composite ink used for forming the electrode and the composition for forming the undercoat layer include uniformity in which the active material and the conductive auxiliary agent are appropriately dispersed, and for forming the composite ink and the undercoat layer. Examples include the flexibility and adhesion of the electrode formed after the composition is dried.
  • the dispersion state of the active material and conductive additive in the mixture ink and the dispersion state of the conductive aid in the composition for forming the underlayer are determined by the distribution state of the active material and conductive additive in the mixture layer and in the underlayer. It is related to the distribution state of the conductive auxiliary agent, which affects the electrode physical properties and consequently the battery performance.
  • the dispersion of the active material and the conductive aid is an important issue.
  • carbon materials with excellent electrical conductivity have a strong cohesive force due to their large structure and specific surface area, and should be uniformly mixed and dispersed, whether in the composite ink or in the composition for forming the underlayer. Is difficult.
  • the active material is not sufficiently dispersed in the composite ink as well as the conductive auxiliary agent, partial aggregation occurs in the composite layer formed from such a composite ink.
  • resistance distribution occurs on the electrode due to partial aggregation, current concentration occurs when used as a battery, and problems such as partial heat generation and deterioration may occur.
  • the composite ink and the underlayer forming composition are required to have appropriate fluidity so as to be coated on the surface of the metal foil functioning as a current collector. Furthermore, in order to form a composite material layer or a base layer having a surface that is as flat as possible and having a uniform thickness, the composite ink or the base layer forming composition is required to have an appropriate viscosity.
  • the composite layer formed from the composite ink and the base layer formed from the composition for forming the base layer after being formed, can be cut into pieces of the desired size and shape together with the metal foil as the base material. Or punched. Therefore, the composite material layer and the base layer are required to have hardness that does not damage and flexibility and adhesion that does not crack or peel off by cutting or punching.
  • the flexibility and adhesion of the electrode is important because it greatly affects the battery performance.
  • the uniform conductive network of the electrode will collapse, and the electrode layer will be destroyed. This causes a decrease in conductivity, leading to a deterioration in battery life.
  • poor electrode adhesion may cause electrode structure collapse or electrode peeling from the current collector due to active material expansion / contraction associated with lithium ion intercalation / deintercalation during charge / discharge. This leads to deterioration of battery life.
  • Patent Documents 1 to 4 an active material and a conductive material are mixed, this mixture is kneaded with a cellulose-based thickener aqueous solution, an aqueous binder such as tetrafluoropolyethylene and latex is further added, and further kneaded. It is disclosed that a composite ink is obtained. However, these composite inks have a problem that the dispersed state is insufficient, the flexibility and adhesion of the electrode are poor, and a desired electrode cannot be produced, so that good battery performance cannot be obtained.
  • Patent Documents 5 to 7 the following studies have been made on the issue of adhesion.
  • a lithium ion battery negative electrode is produced by using a polar solvent such as N-methyl-2-pyropidone, alcohol, acetone, and water together with a nonpolar solvent such as cyclohexane, n-hexane, and benzene.
  • a polar solvent such as N-methyl-2-pyropidone, alcohol, acetone, and water together with a nonpolar solvent such as cyclohexane, n-hexane, and benzene.
  • Patent Document 6 discloses that an active material is dispersed using a water-soluble organic solvent such as alcohol, N-methylpyrrolidone, or acetone, water is added, and a styrene / butadiene copolymer or the like is further bonded.
  • a method for producing a battery electrode obtained from a dispersion prepared by adding an adhesive is disclosed.
  • Patent Document 7 discloses that in a slurry for a negative electrode of a lithium ion battery, water is added to the slurry containing an electrode active material obtained by coating a graphite powder with an amorphous carbon material, a binder and water. Discloses a method in which N-methylpyrrolidone, which is an organic compound, is added.
  • Japanese Patent Laid-Open No. 2-158055 Japanese Patent Laid-Open No. 9-082364 JP 2003-142102 A JP 2010-165493 A JP-A-9-293498 JP 2003-142082 A JP 2006-54096 A
  • An object of the present invention is an electrode forming composition for forming a secondary battery having excellent charge / discharge cycle characteristics, and is an electrode forming having excellent dispersibility of an active material and a conductive additive and flexibility and adhesion of an electrode. It is to provide a composition for use.
  • the present invention provides a water-soluble additive comprising a carbon atom, an oxygen atom, and a hydrogen atom, and an electrode active material by utilizing a water-soluble additive (C) having 2 to 20 oxygen atoms in one molecule.
  • the flexibility and adhesion of the electrode can be improved without impairing the dispersibility of (A) or the carbon material (B) that is the conductive additive.
  • the present invention is a water-soluble additive comprising at least one of an electrode active material (A) or a carbon material (B) as a conductive additive, and a carbon atom, an oxygen atom, or a hydrogen atom
  • the present invention relates to a composition for forming a secondary battery electrode, which contains a water-soluble additive (C) having 2 to 20 oxygen atoms in the molecule and water (D).
  • the water-soluble additive (C) is preferably the composition for forming a secondary battery electrode represented by the following general formula (1).
  • XYZ Formula (1) (X is a hydrogen atom, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted acyl group, or a substituted or unsubstituted alkoxycarbonyl group, Y is a direct bond, a substituted or unsubstituted alkylene group, or a substituted or unsubstituted alkoxylene group; Z is a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted alkoxycarbonyl group, or a substituted or unsubstituted acyloxy group; X and Z may be integrated to form a ring. )
  • X is a hydrogen atom, a carboxyl group, a substituted or unsubstituted alkyl group, or an acyl group
  • Y is a group represented by — (O—R—) n—
  • R is preferably a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms
  • n is an integer of 1 to 19, preferably the secondary battery electrode forming composition.
  • the present invention also provides the secondary battery electrode, wherein the content of the water-soluble additive (C) is 0.1 to 30% by weight with respect to the composition for forming a secondary battery electrode. It relates to a forming composition.
  • the present invention also relates to a secondary battery electrode comprising a current collector and at least one layer of a composite material layer or an electrode base layer formed from the composition for forming a secondary battery electrode.
  • the present invention also relates to a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the positive electrode or the negative electrode is the secondary battery electrode.
  • a water-soluble additive having a specific structure it is excellent in flexibility and adhesion to a current collector without impairing the dispersibility of the active material in the electrode-forming composition and the carbon material that is a conductive additive.
  • a composite layer and a base layer can be formed, and a secondary battery excellent in charge / discharge cycle characteristics can be provided.
  • the electrode for a secondary battery can be obtained by various methods. For example, on the surface of a current collector such as a metal foil, (1) an ink-like composition containing an active material and water (hereinafter referred to as a composite ink), (2) a mixed ink containing an active material, a conductive additive and water, (3) a mixed ink containing an active material, a binder and water; (4) A mixed ink containing an active material, a conductive additive, a binder and water, It can be used to form a composite layer and obtain an electrode.
  • a composite ink an ink-like composition containing an active material and water
  • an underlayer is formed on the surface of the current collector of the metal foil using a composition for forming an underlayer containing a conductive additive and a liquid medium, and the above composite ink (1 ) To (4) and other composite inks to form a composite layer and obtain an electrode.
  • the composition for forming a secondary battery electrode of the present invention can be used as a composite ink that requires an active material or a composition for forming an underlayer that does not require an active material.
  • Water-soluble additive (C) having 2 to 20 oxygen atoms in one molecule, which is a water-soluble additive composed of carbon atoms, oxygen atoms and hydrogen atoms in the present invention will be described ( Hereinafter, abbreviated as water-soluble additive (C)).
  • the water-soluble additive (C) of the present invention is a mixture of 1 g of water-soluble additive (C) in 99 g of water at 25 ° C. and stirred for 24 hours at 25 ° C. It can be compatible.
  • Addition of the water-soluble additive (C) can reduce curing shrinkage during drying of the composition for forming a secondary battery electrode. If cracks are likely to occur in the composite layer and the underlayer due to curing shrinkage during drying, not only the handling of the electrode becomes difficult, but also the uniform conductive network when used as an electrode collapses. Deterioration of the battery life and battery life deterioration. Moreover, it is guessed that the adhesiveness with the electrical power collector was also improved by reducing the cure shrinkage at the time of drying.
  • the water-soluble additive (C) not only affects the surface tension, but does not deteriorate the dispersibility of the active material or the conductive aid.
  • the dispersibility of the carbon material that is the active material or the conductive auxiliary agent is insufficient, not only the flexibility and adhesion of the electrode deteriorate, but also the charge / discharge characteristics are adversely affected.
  • the water-soluble additive C
  • the compatibility with water is poor, and the dispersibility of the carbon material, which is an active material or a conductive additive, in the composition for forming a secondary battery electrode may be reduced.
  • the compatibility with the carbon material that is the active material in water or the conductive auxiliary agent is poor, and the dispersibility of the composite ink is reduced.
  • the water-soluble additive having 2 to 20 oxygen atoms is more preferable.
  • a water-soluble additive comprising carbon atoms, oxygen atoms and hydrogen atoms and a water-soluble additive (C) having 2 to 20 oxygen atoms in one molecule is used, preferably It is a water-soluble additive (C) represented by the above general formula (1).
  • X is a hydrogen atom, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted acyl group, or a substituted or unsubstituted alkoxycarbonyl group.
  • Preferred are a hydrogen atom, a carboxyl group, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted acyl group, and more preferred are a hydrogen atom and a substituted or unsubstituted alkyl group.
  • the unsubstituted alkyl group in X is a linear, branched, monocyclic or condensed polycyclic alkyl group having 1 to 20 carbon atoms, or 2 to 60 carbon atoms and optionally one or more.
  • Examples include a linear, branched, monocyclic or condensed polycyclic alkyl group interrupted by —O—.
  • linear, branched, monocyclic or condensed polycyclic alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group.
  • a linear or branched alkyl group having 1 to 8 carbon atoms is preferable, and a methyl group, ethyl group, propyl group, or butyl group is more preferable.
  • linear or branched alkyl group having 2 to 60 carbon atoms and optionally interrupted by one or more of —O— include —CH 2 —O—CH 3 , —CH 2. —CH 2 —O—CH 2 —CH 3 , —CH 2 —CH 2 —CH 2 —O—CH 2 —CH 3 , — (CH 2 —CH 2 —O) n1 —CH 3 (where n1 is 1) ), — (CH 2 —CH 2 —O) n2 —H (where n2 is an integer of 1 to 19), — (CH 2 —CH 2 —CH 2 —O) m1 — CH 3 (where m1 is an integer from 1 to 19), — (CH 2 —CH 2 —CH 2 —O) m2 —H (where m2 is an integer from 1 to 19), —CH 2 — CH (CH 3 ) —O—CH 2 —CH 3 , —CH 2 —CH 2
  • monocyclic or condensed polycyclic alkyl group having 2 to 60 carbon atoms and optionally interrupted by one or more of —O— include, but are not limited to: Is not to be done.
  • the unsubstituted alkoxyl group in X is a linear, branched, monocyclic or condensed polycyclic alkoxyl group having 1 to 20 carbon atoms, or 2 to 60 carbon atoms and optionally one or more —O. And linear, branched, monocyclic or condensed polycyclic alkoxyl groups interrupted by-.
  • linear, branched, monocyclic or condensed polycyclic alkoxyl group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyl Oxy, octyloxy, nonyloxy, decyloxy, dodecyloxy, octadecyloxy, isopropoxy, isobutoxy, isopentyloxy, sec-butoxy, tert-butoxy, sec-pentyloxy, tert -Pentyloxy, tert-octyloxy, neopentyloxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, adamantyloxy, norbornyloxy, boronyloxy, 4-decyl Cyclohex It can be exemplified aryl
  • linear or branched alkoxyl group having 2 to 60 carbon atoms and optionally interrupted by one or more —O— include —O—CH 2 —O—CH 3 , — O—CH 2 —CH 2 —O—CH 2 —CH 3 , —O—CH 2 —CH 2 —CH 2 —O—CH 2 —CH 3 , — (O—CH 2 —CH 2 ) n5 —O— CH 2 —CH 3 (where n5 is an integer from 1 to 18), — (O—CH 2 —CH 2 ) n6 —OH (where n6 is an integer from 1 to 18), — (O— CH 2 —CH 2 —CH 2 ) m5 —O—CH 2 —CH 2 —CH 3 (where m5 is an integer from 1 to 18), — (O—CH 2 —CH 2 —CH 2 ) m6 —OH (where m6 is an integer of 1 ⁇ 18), -
  • monocyclic or condensed polycyclic alkoxyl group having 2 to 18 carbon atoms and optionally interrupted by one or more of —O— include, but are not limited to: Is not to be done.
  • Examples of the unsubstituted acyl group in X include a carbonyl group to which a hydrogen atom or a linear, branched, monocyclic or condensed polycyclic aliphatic group having 1 to 18 carbon atoms is bonded. Specific examples include , Formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, acryloyl group, methacryloyl group, cyclopentylcarbonyl group, cyclohexylcarbonyl group However, it is not limited to these.
  • Examples of the substituted or unsubstituted alkoxycarbonyl group in X include an alkoxycarbonyl group having 2 to 20 carbon atoms, and specific examples include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, and a hexyloxycarbonyl group.
  • Y represents a direct bond, a substituted or unsubstituted alkylene group, and Y represents a substituted or unsubstituted alkoxylene group.
  • Examples of the substituted or unsubstituted alkylene group for Y include a divalent group formed by removing one hydrogen atom from the same substituent as the substituted or unsubstituted alkyl group described for X in formula (1). However, it is not limited to these.
  • the substituted or unsubstituted alkoxylene group in Y is a divalent group formed by removing one hydrogen atom from the same substituent as the substituted or unsubstituted alkoxyl group described in X of the general formula (1). It can be mentioned, but is not limited to these.
  • Y is preferably a group represented by — (O—R—) n—, R is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, and n is an integer of 1 to 19 More preferably, n is an integer of 1 to 10.
  • Examples of the substituted or unsubstituted alkylene group having 1 to 5 carbon atoms in R include those exemplified as the aforementioned alkylene group, and the same groups as the alkylene group having 1 to 5 carbon atoms can be exemplified, but are not limited thereto. It is not something.
  • the water-soluble additive (C) can be used in the form of a mixture of a plurality of compounds having a molecular weight distribution.
  • Z is a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted alkoxycarbonyl group, or a substituted or unsubstituted acyloxy group.
  • a hydroxyl group, a substituted or unsubstituted alkoxyl group, or a substituted or unsubstituted acyloxy group is preferable, and a hydroxyl group, a substituted or unsubstituted alkoxyl group is more preferable.
  • Examples of the unsubstituted alkoxyl group in Z include, but are not limited to, the same substituents as those exemplified as the aforementioned alkoxyl group.
  • Examples of the unsubstituted alkoxycarbonyl group in Z include, but are not limited to, the same substituents as exemplified as the aforementioned alkoxycarbonyl group.
  • Examples of the substituted or unsubstituted acyloxy group in Z include a carbonyloxy group to which a hydrogen atom or a linear, branched, monocyclic or condensed polycyclic aliphatic group having 1 to 18 carbon atoms is bonded.
  • a carbonyloxy group to which a hydrogen atom or a linear, branched, monocyclic or condensed polycyclic aliphatic group having 1 to 18 carbon atoms is bonded.
  • an acetoxy group propionyloxy group, butyryloxy group, isobutyryloxy group, valeryloxy group, isovaleryloxy group, pivaloyloxy group, lauroyloxy group, myristoyloxy group, palmitoyloxy group, stearoyloxy group, cyclopentylcarbonyloxy Group, cyclohexylcarbonyloxy group and the like.
  • X and Z may be combined to form a ring.
  • examples of the formed site include a direct bond, —CO—, or —CO—O—, —O—CO—O—.
  • Preferred is a direct bond or —CO—, and more preferred is —CO—.
  • X, Y, and Z described above may be further substituted with other substituents.
  • substituents include a hydroxyl group, a carboxyl group, an alkyl group having 1 to 20 carbon atoms, and an alkoxyl group.
  • acyl group, acyloxy group, alkoxycarbonyl group and the like are examples of such other substituents.
  • water-soluble additive (C) described above examples include glycols, diols, esters and carbonates exemplified below.
  • glycols ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monopentyl ether, diethylene glycol monohexyl ether, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, Propylene glycol monomethyl ether, dipropylene glycol dimethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, triethylene glycol dimethyl ether
  • Diols include 2-methyl-2,4-pentanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butylene glycol, 1,2-pentanediol. 1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, polyethylene glycol (having 2 to 20 oxygen atoms), (oxygen) Examples thereof include, but are not limited to, polypropylene glycol having 2 to 20 atoms.
  • esters examples include ethyl lactate, succinic acid, methyl succinic acid, levulinic acid, glutaric acid, dioxane, ⁇ -butyrolactone, ⁇ -valerolactone, 1,5-dioxepan-2-one, cyclopentanecarboxylic acid and the like. However, it is not limited to them.
  • carbonates include, but are not limited to, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, and the like.
  • water-soluble additives (C) may be used alone or in combination.
  • the molecular weight of the water-soluble additive (C) is preferably 50 to 1500 from the viewpoint of compatibility with water, or an active material or a conductive additive. More preferably, it is 50 to 1000.
  • the content of the water-soluble additive (C) is preferably 0.1 to 30% by weight, more preferably 0.1 to 15% by weight, in 100% by weight of the composition for forming a secondary battery electrode. . It is because the balance of the influence which it has on the dispersion
  • composition for forming a secondary battery electrode of the present invention can be used as a mixture ink or a composition for forming an underlayer.
  • a composite ink that essentially includes an active material, which is one of the preferred embodiments of the composition for forming a secondary battery electrode of the present invention.
  • positive electrode mixture ink and negative electrode mixture ink as the mixture ink, and as described above, there are various modes as shown in the following (1) to (4).
  • the composite ink further containing the conductive additive (B) and a binder in (1).
  • the positive electrode active material for the lithium ion secondary battery is not particularly limited, but metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, and conductive polymers are used. be able to.
  • transition metal oxides such as Fe, Co, Ni, and Mn
  • composite oxides with lithium and inorganic compounds such as transition metal sulfides.
  • transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered structure lithium nickelate, lithium cobaltate, lithium manganate, spinel structure lithium manganate, etc.
  • composite oxide powders of lithium and transition metals lithium iron phosphate materials that are phosphate compounds having an olivine structure, transition metal sulfide powders such as TiS 2 and FeS, and the like.
  • conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can be used. Moreover, you may mix and use said inorganic compound and organic compound.
  • the negative electrode active material for the lithium ion secondary battery is not particularly limited as long as it can be doped or intercalated with lithium ions.
  • metal Li alloys thereof such as tin alloys, silicon alloys, lead alloys, etc., Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadate, silicon Metal oxides such as lithium oxide, conductive polymer such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers. These negative electrode active materials can be used alone or in combination.
  • the positive electrode active material is a nickel compound such as nickel hydroxide, nickel oxyhydroxide, or nickel oxide.
  • the hydrogen storage alloy used as the active material of the negative electrode include AB5 type (rare earth type) such as LaNi5, AB / A2B type (titanium type) such as Tini and Ti2Ni, ZrNi type, MgNi type, and the like.
  • LaNi of LaNi5 is replaced with Mish metal Mm, MnNi2Co3, MmNi4Co, etc. in which a part of Ni is replaced with Mn or Co, and alloy composition Mm (Ni, Mn, Co, etc.) m with Al added thereto. N, etc.).
  • the electrode active material (A) is the above-described positive electrode active material or negative electrode active material.
  • the size of these electrode active materials (A) is preferably in the range of 0.05 to 100 ⁇ m, more preferably in the range of 0.1 to 50 ⁇ m.
  • the dispersed particle diameter of the electrode active material (A) in the composite ink is preferably 0.5 to 20 ⁇ m.
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • Carbon material (B) which is conductive aid Next, the carbon material (B) which is a conductive support agent will be described.
  • the carbon material (B), which is a conductive aid in the present invention, is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber) , Carbon fiber), fullerene and the like can be used alone or in combination of two or more. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.
  • Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material.
  • Ordinarily oxidized carbon black, hollow carbon and the like can also be used.
  • the oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group.
  • This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon.
  • it since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.
  • the specific surface area (BET) determined from the adsorption amount of nitrogen is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more and 1500 m 2 / g or less are desirable.
  • BET specific surface area
  • the particle size of the carbon black to be used is preferably 0.005 to 1 ⁇ m, particularly preferably 0.01 to 0.2 ⁇ m in terms of primary particle size.
  • the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.
  • the dispersed particle size in the composite ink of the carbon material (B), which is a conductive additive be refined to 0.03 ⁇ m or more and 5 ⁇ m or less. It may be difficult to produce a composition having a dispersed particle size of the carbon material as the conductive aid of less than 0.03 ⁇ m. Further, when a composition in which the dispersed particle diameter of the carbon material as the conductive auxiliary agent exceeds 5 ⁇ m is used, problems such as variations in the material distribution of the composite coating film and variations in the resistance distribution of the electrode may occur. .
  • the dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution.
  • a particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).
  • Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 205 etc. (Furnace Black, manufactured by Colombian), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3030B, # 3030B # 3350B, # 3400B, # 5400B, etc.
  • conductive carbon fibers those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used.
  • VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.
  • the composite ink may further contain a binder.
  • the binder in the present invention is used to bind particles such as a conductive additive and other active materials, and has a small effect of dispersing these particles in a solvent.
  • binders include acrylic resins, polyurethane resins, polyester resins, phenol resins, epoxy resins, phenoxy resins, urea resins, melamine resins, alkyd resins, formaldehyde resins, silicone resins, fluororesins, carboxymethylcellulose and other cellulose resins, styrene -Synthetic rubbers such as butadiene rubber and fluororubber, conductive resins such as polyaniline and polyacetylene, and polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene. Further, a modified product, a mixture, or a copolymer of these resins may be used. These binders can be used alone or in combination.
  • the binder is preferably an aqueous medium, and examples of the form of the aqueous medium binder include a water-soluble type, an emulsion type, and a hydrosol type, and can be appropriately selected.
  • a film forming aid an antifoaming agent, a leveling agent, a preservative, a pH adjuster, a viscosity adjuster, and the like can be blended in the composite ink as necessary.
  • the viscosity of the composite ink is preferably 100 mPa ⁇ s or more and 30,000 mPa ⁇ s or less in the range of solid content of 30 to 90% by weight.
  • the active material (A) is contained as much as possible within the viscosity range that can be applied.
  • the proportion of the active material (A) in the solid ink solid content is 80 wt% or more and 99 wt% or less. Is preferred.
  • the proportion of the conductive auxiliary agent (B) in the solid ink solid content is preferably 0.1 to 15% by weight.
  • the ratio of the binder in the solid ink solid content is preferably 0.1 to 15% by weight.
  • Such a composite ink can be obtained by various methods as shown below, for example.
  • the case of the mixed ink (4) containing an active material (A), a conductive additive (B), a water-soluble additive (C), a binder and water (D) will be described as an example.
  • An aqueous dispersion of an active material containing an active material (A), a water-soluble additive (C), and water (D) is obtained, and a conductive auxiliary agent (B) and a binder are added to the aqueous dispersion. Is added to obtain a composite ink.
  • the conductive auxiliary agent (B) and the binder can be added simultaneously, or after the conductive auxiliary agent (B) is added, the binder may be added, or vice versa.
  • the active material (A), the conductive additive (B), the water-soluble additive (C), the binder, and water (D) can be mixed almost simultaneously to obtain a mixed ink.
  • ⁇ Disperser / Mixer> As an apparatus used for obtaining the composite ink, a disperser or a mixer which is usually used for pigment dispersion or the like can be used.
  • mixers such as disperser, homomixer, or planetary mixer; homogenizers such as “Clearmix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill”, etc.), Attritor, Pearl Mill (Eirich “DCP Mill”, etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, “Genus PY”, Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc. Can be mentioned But it is not limited thereto.
  • the disperser it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.
  • a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating is preferably used.
  • the media it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads.
  • a roll mill it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.
  • a medialess disperser such as a roll mill or a homogenizer is preferable to a media type disperser.
  • the composition for forming a secondary battery electrode of the present invention can be used not only as a mixture ink but also as a composition for forming an underlayer.
  • the composition for forming the underlayer contains a conductive additive (B), a water-soluble additive (C), and water (D). Furthermore, a binder can also be contained. About each component, it is the same as that of the case of compound ink.
  • the proportion of the carbon material (B) as a conductive additive in the total solid content of the composition used for the electrode underlayer is preferably 5% by weight or more and 95% by weight or less, and more preferably 10% by weight or more and 90% by weight or less. preferable. If the carbon material (B) as a conductive auxiliary agent is small, the conductivity of the underlayer may not be maintained. On the other hand, if the carbon material (B) as a conductive auxiliary agent is too much, the resistance of the coating film decreases. There is a case.
  • the appropriate viscosity of electrode base layer ink is based on the coating method of electrode base layer ink, generally it is preferable to set it as 10 mPa * s or more and 30,000 mPa * s or less.
  • the composite ink can be applied and dried on a current collector to form a composite layer to obtain a secondary battery electrode.
  • the composition for forming an underlayer of the composition for forming a secondary battery electrode of the present invention is formed by forming an underlayer on the current collector, and providing a composite layer on the underlayer, for a secondary battery.
  • An electrode can also be obtained.
  • the composite layer provided on the underlayer may be formed using the above-described composite inks (1) to (4) of the present invention, or may be formed using other composite inks.
  • the material and shape of the current collector used for the electrode are not particularly limited, and those suitable for various secondary batteries can be appropriately selected.
  • examples of the material for the current collector include metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • aluminum is particularly preferable as the positive electrode material
  • copper is preferable as the negative electrode material.
  • a flat plate foil is generally used, but a roughened surface, a perforated foil shape, or a mesh current collector can also be used.
  • die coating method dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method or electrostatic coating method, etc.
  • methods that can be used include standing drying, blower dryers, hot air dryers, infrared heaters, and far-infrared heaters, but are not particularly limited thereto.
  • the thickness of the electrode mixture layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the total thickness of the underlayer and the composite layer is generally 1 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • a secondary battery can be obtained by using the above electrode for at least one of a positive electrode and a negative electrode.
  • Secondary batteries include alkaline secondary batteries, lead-acid batteries, sodium-sulfur secondary batteries, lithium-air secondary batteries, etc., as well as lithium ion secondary batteries, which are conventionally known for each secondary battery. Electrolytic solutions, separators, and the like can be used as appropriate.
  • Electrode> A case of a lithium ion secondary battery will be described as an example.
  • the electrolytic solution an electrolyte containing lithium dissolved in a non-aqueous solvent is used.
  • the non-aqueous solvent is not particularly limited, and examples thereof include the following carbonates, lactones, glymes, esters, sulfoxides, and nitriles.
  • carbonates examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • lactones examples include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -octanoic lactone.
  • Glymes include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2-dibutoxyethane. Etc.
  • esters examples include methyl formate, methyl acetate, and methyl propionate.
  • sulfoxides include dimethyl sulfoxide and sulfolane.
  • nitriles examples include acetonitrile.
  • solvents may be used alone or in combination of two or more.
  • the electrolyte solution can be a polymer electrolyte that is held in a polymer matrix and made into a gel.
  • the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.
  • ⁇ Separator> examples of the separator include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric and those obtained by subjecting them to a hydrophilic treatment.
  • the structure of the lithium ion secondary battery using the composition of the present invention is not particularly limited, but is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary, a paper type, a cylindrical type, a button type, It can be made into various shapes according to the purpose of use, such as a laminated type.
  • Example 1 45 parts of LiFePO 4 as a positive electrode active material, 2.5 parts of acetylene black (DENKA BLACK HS-100) as a carbon material as a conductive additive, and 50 parts of a 2% by weight aqueous solution of carboxymethylcellulose (1 part as a solid content) are put in a mixer. 2 parts of water-soluble additive MTG (triethylene glycol monomethyl ether) and 2.5 parts of binder (polytetrafluoroethylene 30-J: 60% aqueous dispersion manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) are mixed. Then, adjustment was made so that the final solid content was about 50% by weight, and a mixture ink for a positive electrode secondary battery electrode was obtained. The dispersity as a composite ink for positive electrode secondary battery electrodes was determined by the following method.
  • the obtained positive electrode was punched into a diameter of 16 mm, a working electrode, a metallic lithium foil counter electrode, a separator (porous polypropylene film) inserted between the working electrode and the counter electrode, and an electrolytic solution (ethylene carbonate and diethyl carbonate).
  • an electrolytic solution ethylene carbonate and diethyl carbonate.
  • the coin-type battery was performed in a glove box substituted with argon gas, and after the coin-type battery was produced, battery characteristics evaluation (charge / discharge cycle characteristics) described later was performed.
  • Examples 2 to 9 [Comparative Examples 1 to 10] Using the active material shown in Table 1, the carbon material which is a conductive additive, and a water-soluble additive, a positive electrode secondary battery electrode mixture ink and a positive electrode were obtained in the same procedure as in Example 1, and evaluated in the same manner. . At this time, the mixture ink for positive electrode secondary battery electrode using LCO, LMO or NMC as the active material was also adjusted so that the final solid content was about 50% by weight.
  • Example 19 45 parts of LiFePO 4 as a positive electrode active material, 2.5 parts of acetylene black (DENKA BLACK HS-100) as a carbon material as a conductive additive, and 50 parts of a 2% by weight aqueous solution of carboxymethyl cellulose (1 part as a solid content) are used as a mixer. In addition, 0.25 part of water-soluble additive MTG and 2.5 parts of binder (polytetrafluoroethylene 30-J: manufactured by Mitsui DuPont Fluorochemicals Co., Ltd., 60% aqueous dispersion) are mixed to obtain a final solid content. Was adjusted to about 50% by weight to obtain a mixed ink for positive electrode secondary battery electrodes.
  • binder polytetrafluoroethylene 30-J: manufactured by Mitsui DuPont Fluorochemicals Co., Ltd., 60% aqueous dispersion
  • the obtained positive electrode was punched into a diameter of 16 mm, a working electrode, a metallic lithium foil counter electrode, a separator (porous polypropylene film) inserted between the working electrode and the counter electrode, and an electrolytic solution (ethylene carbonate and diethyl carbonate).
  • an electrolytic solution ethylene carbonate and diethyl carbonate.
  • the coin-type battery was performed in a glove box substituted with argon gas, and after the coin-type battery was produced, battery characteristics evaluation (charge / discharge cycle characteristics) described later was performed.
  • Example 20 A mixture ink for positive electrode secondary battery electrode was obtained in the same procedure as in Example 19 except that PEO2000 (polyethylene glycol 2000: manufactured by Wako Pure Chemical Industries, Ltd.) was used as the water-soluble additive. Further, a positive electrode was obtained in the same manner as in Example 19 and evaluated in the same manner.
  • PEO2000 polyethylene glycol 2000: manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 20 45 parts of LiMn 2 O 4 as a positive electrode active material, 2 parts of acetylene black (DENKA BLACK HS-100) and 0.5 parts of carbon nanotubes (VGCF-H: manufactured by Showa Denko) as a carbon material as a conductive additive, carboxy 50 parts of a methylcellulose 2 wt% aqueous solution (1 part as a solid content) is put in a mixer and mixed.
  • a positive electrode was obtained in the same manner as in Example 19, except that 2.5 parts of DuPont Fluorochemical Co., Ltd., 60% aqueous dispersion) was mixed to obtain a mixture ink for a positive electrode of a secondary battery, and evaluated in the same manner. did.
  • Example 21 A mixture ink for positive electrode secondary battery electrode was obtained in the same procedure as in Example 20 except that ethanol was used as the water-soluble additive. Further, a positive electrode was obtained in the same manner as in Example 19 and evaluated in the same manner.
  • Example 21 45 parts of LiFePO 4 as a positive electrode active material, 2.5 parts of acetylene black (DENKA BLACK HS-100) as a carbon material as a conductive additive, and 50 parts of a 2% by weight aqueous solution of carboxymethyl cellulose (1 part as a solid content) are used as a mixer. Then, mix 30 parts of water-soluble additive MTG and 2.5 parts of binder (polytetrafluoroethylene 30-J: Mitsui DuPont Fluorochemicals Co., 60% aqueous dispersion) to mix the positive electrode secondary battery electrode A positive electrode was obtained in the same manner as in Example 19 except that the composite ink was obtained, and evaluated in the same manner.
  • binder polytetrafluoroethylene 30-J: Mitsui DuPont Fluorochemicals Co., 60% aqueous dispersion
  • Example 22 A mixture ink for positive electrode secondary battery electrode was obtained in the same procedure as in Example 21 except that PEO2000 was used as the water-soluble additive. Further, a positive electrode was obtained in the same manner as in Example 19 and evaluated in the same manner.
  • LCO LiCoO 2 LFP: LiFePO 4 LMO: LiMn 2 O 4
  • NMC LiNi1 / 3Mn1 / 3Co1 / 3O 2
  • A Acetylene black, Denka black HS-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • F Furnace Black, Super-P Li (manufactured by TIMCAL)
  • C Carbon nanotube, VGCF-H (made by Showa Denko)
  • MTG triethylene glycol monomethyl ether
  • SDE diethanol succinate
  • PD 1,3-propanediol
  • BL ⁇ -butyrolactone
  • CBA diethylene glycol monoethyl ether acetate
  • NMP N-methylpyrrolidone
  • PEO2000 Polyethylene glycol 2000 (equivalent to 40 oxygen atoms, manufactured by Wako Pure Chemical Industries, Ltd.)
  • PEO1500 Polyethylene glycol 1500 (equivalent to 30
  • Example 10 As a negative electrode active material, 48 parts of artificial graphite, 25 parts of a 2% by weight hydroxyethyl cellulose aqueous solution (0.5 parts as a solid content) were mixed in a mixer, and further 5 parts of a water-soluble additive CBA (diethylene glycol monoethyl ether acetate), Mix 18.2 parts of water and 3.75 parts of binder (SBR: 40% aqueous dispersion of styrene butadiene latex) to adjust the final solid content to 50% by weight. A material ink was obtained.
  • CBA diethylene glycol monoethyl ether acetate
  • this mixture ink for negative electrode secondary battery electrodes was applied on a copper foil having a thickness of 20 ⁇ m as a current collector using a doctor blade, it was dried by heating under reduced pressure to adjust the thickness of the electrode to 80 ⁇ m. Furthermore, the rolling process by roll press was performed, the negative electrode from which thickness becomes 70 micrometers was produced, and the same evaluation as the above-mentioned was performed.
  • Example 11 to 13 [Comparative Examples 11 to 14] Except having used the active material shown in Table 2, the carbon material which is a conductive support agent, and the additive, it carried out similarly to Example 10, and obtained the mixed-material ink for negative electrode secondary battery electrodes, and the negative electrode, and evaluated similarly.
  • Example 14 90 parts of Li 4 Ti 5 O 12 as the negative electrode active material, 5 parts of acetylene black (DENKA BLACK HS-100) as the carbon material as the conductive additive, and 100 parts of 2% by weight aqueous solution of carboxymethylcellulose (2 parts as solids)
  • 20 parts of a water-soluble additive 1,3-propanediol 100 parts of water
  • 5 parts of a binder polytetrafluoroethylene 30-J: manufactured by Mitsui DuPont Fluorochemicals Co., Ltd., 60% aqueous dispersion
  • Example 22 47 parts of artificial graphite as a negative electrode active material, 1 part of carbon nanotube (VGCF-H) as a carbon material as a conductive aid, and 25 parts of a 2% by weight hydroxyethyl cellulose aqueous solution (0.5 parts as solid content) are put in a mixer. Furthermore, 18 parts of water-soluble additive PD, 5.25 parts of water, and 3.75 parts of binder (SBR: 40% aqueous dispersion of styrene butadiene latex) are mixed to obtain a mixture ink for negative electrode secondary battery electrode. It was. Further, a negative electrode was obtained in the same manner as in Example 10 and evaluated in the same manner.
  • VGCF-H carbon nanotube
  • SBR 40% aqueous dispersion of styrene butadiene latex
  • Example 23 A mixed ink for negative electrode secondary battery electrode was obtained in the same procedure as in Example 22 except that ethanol was used as the additive. Further, a negative electrode was obtained in the same manner as in Example 10 and evaluated in the same manner.
  • LTO Li 4 Ti 5 O 12
  • A Acetylene black, Denka black HS-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • F Furnace Black
  • Super-P Li manufactured by TIMCAL
  • C Carbon nanotube
  • VGCF-H made by Showa Denko
  • MTG triethylene glycol monomethyl ether
  • PD 1,3-propanediol
  • CBA diethylene glycol monoethyl ether acetate
  • NMP N-methylpyrrolidone
  • DMTG triethylene glycol dimethyl ether
  • PEO 800 Polyethylene glycol 800 (equivalent to 16 oxygen atoms, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the degree of dispersion of the composite ink for the secondary battery electrode and the carbon material dispersion for the secondary battery electrode was determined by judgment using a grind gauge (according to JIS K5600-2-5). The evaluation results are shown in Tables 1 and 2. The numbers in the table indicate the size of the coarse particles. The smaller the value, the better the dispersibility, and the more uniform the ink mixture for secondary battery electrodes and the carbon material dispersion for secondary battery electrodes.
  • the active material to be used is LiCoO 2 , except that the charging current is 1.6 mA (equivalent to 0.2 C), the charging end voltage is 4.3 V, the discharging current is 4.0 mA, and the discharging end voltage is 2.8 V,
  • the charge / discharge cycle characteristics can be measured as in the case of LiFePO 4 .
  • the active material to be used in the case of LiNi1 / 3Mn1 / 3Co1 / 3O 2 , charging current 1.9 mA (0.2 C equivalent), charge voltage 4.3 V, the discharge current 4.8 mA, end-of-discharge voltage 3. Except for setting to 0 V, the charge / discharge cycle characteristics can be measured in the same manner as in LiFePO 4 .
  • the charging current is 1.0 mA (equivalent to 0.2 C)
  • the charging end voltage is 4.3 V
  • the discharging current is 2.5 mA
  • the discharging end voltage is 3.0 V.
  • the charging current is 1.8 mA (equivalent to 0.2 C)
  • the charging end voltage is 0.1 V
  • the discharging current is 1.8 mA
  • the discharging end voltage is 2.0 V.
  • charge / discharge cycle characteristics can be measured in the same manner as LiFePO 4 .
  • the charging current is 1.0 mA (corresponding to 0.2C)
  • the charging end voltage is 1.0 V
  • the discharging current is 2.5 mA
  • the discharging end voltage is 2.0 V.
  • charge / discharge cycle characteristics can be measured in the same manner as LiFePO 4 .
  • the flexibility and adhesion of the electrode were good due to the following two points.
  • the first point is not clear in detail, but it is probably because the water-soluble additive of the present invention was able to reduce the surface tension of the composite ink and reduce the shrinkage on curing when the composite ink was dried. I think. If cracks occur due to curing shrinkage when drying the composite ink, the uniform conductive network when used as an electrode collapses, and it is assumed that this may cause a decrease in conductivity. Moreover, since the cure shrinkage at the time of drying is thought to deteriorate the adhesiveness with the current collector, it can be inferred that the adhesiveness has been improved by using the water-soluble additive of the present invention.
  • the second point is that the dispersibility of the carbon material, which is the active material or the conductive auxiliary agent, in the composite ink is not lowered.
  • the dispersion control of the carbon material or the active material that is the conductive additive is insufficient, the charge / discharge cycle characteristics tend to deteriorate.
  • the dispersion control of the mixture ink is insufficient, a uniform conductive network is not formed when the electrode is used as a charge / discharge characteristic electrode, resulting in a resistance distribution due to partial aggregation in the electrode, which is used as a battery. It is considered that the deterioration of current may be caused by current concentration at the time.
  • the water-soluble additive of the present invention can satisfy the above-mentioned two points, and the flexibility and adhesion of the electrode obtained from the composite ink and the charge / discharge cycle characteristics of the battery are good. I think that became.
  • Example 15 10 parts of acetylene black (Denka Black HS-100) and 50 parts of a 2% by weight aqueous solution of carboxymethyl cellulose (1 part as a solid content) are mixed in a mixer as a carbon material as a conductive additive, and further 7 parts of a water-soluble additive MTG. , 40 parts of water and 3 parts of binder (polytetrafluoroethylene 30-J: manufactured by Mitsui DuPont Fluorochemicals Co., Ltd., 60% aqueous dispersion) are mixed to adjust the viscosity, and a composition for forming a base layer for a secondary battery electrode I got a thing.
  • binder polytetrafluoroethylene 30-J: manufactured by Mitsui DuPont Fluorochemicals Co., Ltd., 60% aqueous dispersion
  • this underlayer-forming composition was applied onto a 20 ⁇ m-thick aluminum foil serving as a current collector using a doctor blade, and then dried by heating to form an underlayer so as to have a thickness of 5 ⁇ m.
  • Example 16 [Comparative Examples 16 and 17] A composition for forming a base layer for a secondary battery electrode was obtained and evaluated in the same manner as in Example 15 except that the carbon material and the water-soluble additive as the conductive assistant shown in Table 3 were used.
  • Example 17 After applying the mixture ink for positive electrode secondary battery electrode of Example 3 on the base layer produced in Example 15, it was dried by heating under reduced pressure to obtain a positive electrode and evaluated.
  • Example 18, Comparative Examples 18 and 19 The mixture ink for secondary battery electrodes shown in Table 4 was applied, and then dried under reduced pressure, and a positive electrode or a negative electrode was obtained in the same manner as in Example 17 and evaluated in the same manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極活物質(A)、もしくは導電助剤である炭素材料(B)の少なくとも一方と、炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)と、水(D)とを含有する、二次電池電極形成用組成物により、充放電サイクル特性に優れる二次電池を形成することができ、また、活物質や導電助剤の分散性や電極の柔軟性および密着性を向上させることができる。

Description

二次電池電極形成用組成物、二次電池電極、及び二次電池
 本発明は、二次電池電極形成用組成物、及びその組成物を用いて得られる電極、並びにその電極を用いて得られる二次電池に関する。
 近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の大型二次電池においても、従来の鉛蓄電池に代えて、大型二次電池の実現が望まれている。
 そのような要求に応えるため、リチウムイオン二次電池、アルカリ二次電池などの二次電池の開発、例えば、電極の形成に使用される合材インキの開発が活発に行われている。また、合材層の下地層の形成に使用される下地層形成用組成物にも関心が集まりつつある。
 電極の形成に使用される合材インキや下地層形成用組成物に求められる重要特性としては、活物質や導電助剤が適度に分散されてなる均一性と、合材インキや下地層形成用組成物乾燥後に形成される電極の柔軟性および密着性が挙げられる。
 合材インキ中の活物質や導電助剤の分散状態や下地層形成用組成物中の導電助剤の分散状態が、合材層中の活物質や導電助剤の分布状態や下地層中の導電助剤の分布状態に関連しており、電極物性に影響し、ひいては電池性能に影響する。
 そのため、活物質や導電助剤の分散は重要な課題である。とりわけ導電性に優れた炭素材料(導電助剤)は、ストラクチャーや比表面積が大きいため凝集力が強く、合材インキ中であれ、下地層形成用組成物中であれ、均一混合・分散することが困難である。
 そして、導電助剤である炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成されないために電極の内部抵抗の低減が図れず、その結果、電極材料の性能を十分に引き出せないという問題が生じている。
 また、導電助剤だけでなく、合材インキ中の活物質の分散が不十分であると、そのような合材インキから形成される合材層中に部分的凝集が生じる。そして、部分的凝集に起因して電極上に抵抗分布が生じ、電池として使用した際の電流集中が生じ、部分的な発熱および劣化が促進される等の不具合が生じることがある。
 また、合材インキや下地層形成用組成物には、集電体として機能する金属箔表面に塗工可能とするための適度な流動性が求められる。さらに、表面ができるだけ平坦で厚みが均一な合材層や下地層を形成するために、合材インキや下地層形成用組成物には、適度な粘性も求められる。
 一方、合材インキから形成された合材層や下地層形成用組成物から形成された下地層は、形成された後、基材たる金属箔ごと所望の大きさ・形状の切片に切り分けられたり、打ち抜かれたりする。そこで、切り分け加工や打ち抜き加工によって、傷つかない堅さと割れたり剥がれたりしない柔軟性と密着性が、合材層や下地層には要求される。
 また、電極の柔軟性および密着性は電池性能に大きく影響を与えるため重要である。
 合材インキから形成された合材層や下地層形成用組成物から形成された下地層は、柔軟性が悪くてひび割れが起こると、電極の均一な導電ネットワークが崩壊してしまうため、電極の導電性低下を引き起こして電池寿命劣化に繋がってしまう。
 また、電極の密着性が悪いと、充放電時のリチウムイオンのインターカレーション・デインターカレーションに伴う活物質の膨張・収縮による電極構造の崩壊や集電体からの電極剥離を引き起こしてしまい、電池寿命劣化に繋がってしまう。
 その中でも、水を媒体とした合材インキや下地層形成用組成物から形成される電極の柔軟性の発現は非常に困難である。
 特許文献1~4には、活物質と導電材を混合し、この混合物をセルロース系増粘剤水溶液とともに混練した後、さらに4フッ化ポリエチレン、ラテックス系などの水性バインダーを加え、さらに混練して合材インキを得る旨開示されている。しかし、これらの合材インキは、分散状態が不十分であり電極の柔軟性や密着性に乏しく、所望の電極が作製できないため、良好な電池性能が得られないなどの問題があった。
 また、特許文献5~7には、密着性を課題として下記のような検討がなされている。
 特許文献5には、リチウムイオン電池負極において、N-メチル-2-ピロピドン、アルコール、アセトン、水などの極性溶媒と、シクロヘキサン、n-へキサン、ベンゼンなどの非極性溶媒を併用して製造される負極用活物質スラリーおよび該製造方法が開示されている。
 また、特許文献6には、アルコール、N-メチルピロリドンまたはアセトンなどの水溶性有機溶媒を使用して活物質を分散させた後、水を添加して、更にスチレン・ブタジエン共重合体等の結着剤を添加して調製された分散液から得られる電池用電極の製造方法が開示されている。
 また、特許文献7には、リチウムイオン電池負極用スラリーにおいて、黒鉛質粉末を非晶質炭素材料で被覆してなる電極活物質と、結着剤と水とを含有する該スラリー中へ、水溶性有機化合物であるN-メチルピロリドンを添加した方法が開示されている。
 しかし、これらの方法では密着性の改善は十分ではなく、さらなる向上が求められている。また、電極の柔軟性についても改善不十分である。
特開平2-158055号公報 特開平9-082364号公報 特開2003-142102号公報 特開2010-165493号公報 特開平9-293498号公報 特開2003-142082号公報 特開2006-54096号公報
 本発明の目的は、充放電サイクル特性に優れる二次電池を形成するための電極形成用組成物であって、活物質や導電助剤の分散性や電極の柔軟性および密着性に優れる電極形成用組成物を提供することである。
 本発明は、炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)の利用により、電極活物質(A)や導電助剤である炭素材料(B)の分散性を損なうことなく電極の柔軟性および密着性を向上できたものである。
 即ち、本発明は、電極活物質(A)、もしくは導電助剤である炭素材料(B)の少なくとも一方と、炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)と、水(D)とを含有する、二次電池電極形成用組成物に関する。
 更に、前記水溶性添加剤(C)が、下記一般式(1)で表されることを特徴とする前記二次電池電極形成用組成物であることが好ましい。
 X-Y-Z   一般式(1)
(Xは、水素原子、カルボキシル基、置換または無置換のアルキル基、置換または無置換のアルコキシル基、置換または無置換のアシル基、または置換もしくは無置換のアルコキシカルボニル基であり、
 Yは、直接結合、置換または無置換のアルキレン基、または置換または無置換のアルコキシレン基であり、
 Zは、水酸基、カルボキシル基、置換または無置換のアルコキシル基、置換もしくは無置換のアルコキシカルボニル基、または置換または無置換のアシルオキシ基であり、
 XとZとが一体となって環を形成してもよい。)
 更に、前記一般式(1)において、
 Xは、水素原子、カルボキシル基、置換または無置換のアルキル基、または、アシル基であり、
 Yは、-(O-R-)n-で表される基であり、
 Rは置換または無置換の炭素数1~5のアルキレン基であり、nは1~19の整数であることを特徴とする前記二次電池電極形成用組成物であることが好ましい。
 また、本発明は、前記水溶性添加剤(C)の含有量が、前記二次電池電極形成用組成物に対して0.1~30重量%であることを特徴とする前記二次電池電極形成用組成物に関する。
 また、本発明は、集電体と、前記二次電池電極形成用組成物から形成される合材層もしくは電極下地層の少なくも一層とを具備する二次電池用電極に関する。
 また、本発明は、正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が、前記二次電池用電極である、二次電池に関する。
 特定の構造を有する水溶性添加剤の利用により、電極形成用組成物中の活物質や導電助剤である炭素材料の分散性を損ねることなく、柔軟性及び集電体への密着性に優れる合材層や下地層を形成でき、充放電サイクル特性に優れる二次電池を提供できる。
<二次電池用の電極>
 二次電池用の電極は、種々の方法で得ることができる。
 例えば、金属箔等の集電体の表面に、
(1)活物質と水とを含有するインキ状組成物(以下、合材インキという)や、
(2)活物質と導電助剤と水とを含有する合材インキや、
(3)活物質とバインダーと水とを含有する合材インキや、
(4)活物質と導電助剤とバインダーと水とを含有する合材インキを、
 用いて合材層を形成し、電極を得ることができる。
 あるいは、金属箔の集電体の表面に、導電助剤と液状媒体とを含有する下地層形成用組成物を用い、下地層を形成し、該下地層上に、上記の合材インキ(1)~(4)やその他の合材インキ用いて合材層を形成し、電極を得ることもできる。
 いずれの場合であっても、活物質や導電助剤の分散状態や、電極の柔軟性や密着性が電池性能を左右することは背景技術の項で詳述した。
 従って、本発明の二次電池電極形成用組成物は、活物質を必須とする合材インキとしても、活物質を必須とはしない下地層形成用組成物としても活用できる。
<水溶性添加剤(C)>
 そこで、まず本発明における、炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)について説明する(以下、水溶性添加剤(C)と略記する)。
 本発明の水溶性添加剤(C)とは、25℃の水99g中に水溶性添加剤(C)1g入れて撹拌し、25℃で24時間放置した後、分離・析出せずに水中で相溶することが可能なものである。
 水溶性添加剤(C)の添加により、二次電池電極形成用組成物の乾燥時の硬化収縮を低減させることができる。乾燥時の硬化収縮により合材層や下地層にひび割れが起こりやすいと、電極の取り扱いが難しくなるだけでなく、ひいては電極とした時の均一な導電ネットワークが崩壊してしまうために、電極の導電性低下を引き起こしてしまい、電池寿命劣化を招く。また、乾燥時の硬化収縮を低減させることで集電体との密着性も改善されたと推察している。
 また、水溶性添加剤(C)は、表面張力に影響を及ぼすだけでなく、活物質または導電助剤の分散性を悪化させないことが重要である。活物質または導電助剤である炭素材料の分散性が不十分な場合、電極の柔軟性や密着性が悪化してしまうだけでなく、充放電特性にも悪影響を及ぼす。
 そのためには、水溶性添加剤(C)1分子中に酸素原子を2~20個有することが重要である。1分子中に酸素原子を1個有する場合は、水との相溶性が悪くて二次電池電極形成用組成物中の活物質または導電助剤である炭素材料の分散性を低下させてしまう恐れがある。また、1分子中に酸素原子を21個以上有する場合は、水と相溶性はあるが、水中の活物質または導電助剤である炭素材料との相溶性が悪くて合材インキの分散性を低下させてしまう恐れがある。上記の観点から、さらに好ましくは酸素原子の数が2~20個の水溶性添加剤である。
 従って、本発明では炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)が使用され、好ましくは上述の一般式(1)で表される水溶性添加剤(C)である。
 次に、本発明の一般式(1)で表される水溶性添加剤(C)の構造について詳細に説明する。
 Xは、水素原子、カルボキシル基、置換または無置換のアルキル基、置換または無置換のアルコキシル基、置換または無置換のアシル基、または置換もしくは無置換のアルコキシカルボニル基である。好ましくは水素原子、カルボキシル基、置換または無置換のアルキル基、置換または無置換のアシル基、であり、さらに好ましくは水素原子、置換または無置換のアルキル基である。
 ここで、Xにおける無置換のアルキル基としては、炭素数1~20の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基、または炭素数2~60であり場合により1個以上の-O-で中断されている直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が挙げられる。
 炭素数1~20の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec-ブチル基、tert-ブチル基、sec-ペンチル基、tert-ペンチル基、tert-オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4-デシルシクロヘキシル基等を挙げることができるが、これらに限定されるものではない。好ましくは炭素数1~8の直鎖状、分岐鎖状アルキル基であり、さらに好ましくはメチル基、エチル基、プロピル基、またはブチル基である。
 また、炭素数2~60であり場合により-O-の1個以上により中断されている直鎖状、分岐鎖状アルキル基の具体例としては、-CH-O-CH、-CH-CH-O-CH-CH、-CH-CH-CH-O-CH-CH、-(CH-CH-O)n1-CH(ここでn1は1~19の整数である)、-(CH-CH-O)n2-H(ここでn2は1~19の整数である)、-(CH-CH-CH-O)m1-CH(ここでm1は1~19の整数である)、-(CH-CH-CH-O)m2-H(ここでm2は1~19の整数である)、-CH-CH(CH)-O-CH-CH、-CH-CH-(OCH等を挙げることができるが、これらに限定されるものではない。好ましくは炭素数1~28であり場合により-O-の1個以上により中断されている直鎖状、分岐鎖状アルキル基であり、さらに好ましくは-CH-O-CH、-CH-CH-O-CH-CH、-(CH-CH-O)n3-CH(ここでn3は1~9の整数である)、-(CH-CH-O)n4-H(ここでn4は1~9の整数である)、-(CH-CH-CH-O)m3-CH(ここでm1は1~9の整数である)、-(CH-CH-CH-O)m4-H(ここでm2は1~9の整数である)である。
 炭素数2~60であり場合により-O-の1個以上により中断されている単環状または縮合多環状アルキル基の具体例としては、以下のようなものを挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
 Xにおける無置換のアルコキシル基としては、炭素原子数1~20の直鎖状、分岐鎖状、単環状または縮合多環状アルコキシル基、または炭素数2~60であり場合により1個以上の-O-で中断されている直鎖状、分岐鎖状、単環状または縮合多環状アルコキシル基が挙げられる。
 炭素原子数1~20の直鎖状、分岐鎖状、単環状または縮合多環状アルコキシル基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、イソプロポキシ基、イソブトキシ基、イソペンチルオキシ基、sec-ブトキシ基、tert-ブトキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、tert-オクチルオキシ基、ネオペンチルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、アダマンチルオキシ基、ノルボルニルオキシ基、ボロニルオキシ基、4-デシルシクロヘキシルオキシ基等を挙げることができるが、これらに限定されるものではない。好ましくは炭素数1~8の直鎖状、分岐鎖状アルコキシル基であり、さらに好ましくはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基である。
 また、炭素数2~60であり場合により1個以上の-O-で中断されている直鎖状、分岐鎖状アルコキシル基の具体例としては、-O-CH-O-CH、-O-CH-CH-O-CH-CH、-O-CH-CH-CH-O-CH-CH、-(O-CH-CHn5-O-CH-CH(ここでn5は1~18の整数である)、-(O-CH-CHn6-OH(ここでn6は1~18の整数である)、-(O-CH-CH-CHm5-O-CH-CH-CH(ここでm5は1~18の整数である)、-(O-CH-CH-CHm6-OH(ここでm6は1~18の整数である)、-(O-CHCH-CH-O-CHCH-CH(ここでtは1~18の整数である)、-O-CH-CH(CH)-O-CH-CH、-O-CH-CH-(OCH等を挙げることができるが、これらに限定されるものではない。好ましくは炭素数2~28あり場合により1個以上の-O-で中断されている直鎖状、分岐鎖状アルコキシル基である。
 炭素数2から18であり場合により-O-の1個以上により中断されている単環状または縮合多環状アルコキシル基の具体例としては、以下のようなものを挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
 Xにおける無置換のアシル基としては、水素原子または炭素数1~18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族基が結合したカルボニル基が挙げられ、具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、アクリロイル基、メタクロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基等を挙げることができるが、これらに限定されるものではない。
 Xにおける置換もしくは未置換のアルコキシカルボニル基としては、炭素数2~20のアルコキシカルボニル基が挙げられ、具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ヘキシルオキシカルボニル基、オクチルオキシカルボニル基、デシルオキシカルボニル基、オクタデシルオキシカルボニル基等を挙げることができるが、これらに限定されるものではない。
 Yは、直接結合、置換または無置換のアルキレン基、Yは、置換または無置換のアルコキシレン基を表す。
 Yにおける置換もしくは無置換のアルキレン基としては、一般式(1)のXで説明した置換もしくは未置換のアルキル基と同一の置換基から1個の水素原子を除いてできる二価の基を挙げることができるが、これらに限定されるものではない。
 Yにおける置換もしくは未置換のアルコキシレン基としては、一般式(1)のXで説明した置換もしくは未置換のアルコキシル基と同一の置換基から1個の水素原子を除いてできる二価の基を挙げることができるが、これらに限定されるものではない。
 また、Yは好ましくは、-(O-R-)n-で表される基であり、Rは置換または無置換の炭素数1~5のアルキレン基であり、nは1~19の整数であり、さらに好ましくは、nは1~10の整数である。
 Rにおける置換もしくは未置換の炭素数1~5のアルキレン基としては、前述のアルキレン基として例示したもので炭素数1~5のアルキレン基と同一の基を挙げることができるが、これらに限定されるものではない。
 また、Yが-(O-R-)n-の場合は、水溶性添加剤(C)は分子量分布を有する複数の化合物の混合物の形態でも使用することができる。
 Zは、水酸基、カルボキシル基、置換または無置換のアルコキシル基、置換もしくは無置換のアルコキシカルボニル基、または置換または無置換のアシルオキシ基である。好ましくは水酸基、置換または無置換のアルコキシル基、または置換または無置換のアシルオキシ基であり、さらに好ましくは水酸基、置換または無置換のアルコキシル基である。
 Zにおける未置換のアルコキシル基としては、前述のアルコキシル基として例示したものと同一の置換基を挙げることができるが、これらに限定されるものではない。
 Zにおける未置換のアルコキシカルボニル基としては、前述のアルコキシカルボニル基として例示したものと同一の置換基を挙げることができるが、これらに限定されるものではない。
 Zにおける置換もしくは未置換のアシルオキシ基としては、水素原子または炭素数1から18の直鎖状、分岐鎖状、単環状または縮合多環状の脂肪族が結合したカルボニルオキシ基が挙げられ、具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ラウロイルオキシ基、ミリストイルオキシ基、パルミトイルオキシ基、ステアロイルオキシ基、シクロペンチルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等が挙げられる。好ましくは炭素数1~10の直鎖状、分岐鎖状アシルオキシ基を有するものであり、さらに好ましくはアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、である。
 XとZとが一体となって環を形成してもよい。XとZとが一体となって環を形成する場合、形成される部位としては、直接結合、-CO-、または-CO-O-、-O-CO-O-が挙げられる。好ましくは、直接結合、または-CO-であり、さらに好ましくは-CO-である。
 上述したX、Y、Zは、さらに他の置換基で置換されていてもよく、そのような他の置換基としては、ヒドロキシル基、カルボキシル基、炭素数が1~20であるアルキル基、アルコキシル基、アシル基、アシルオキシ基、アルコキシカルボニル基等が挙げられる。
 以上述べた水溶性添加剤(C)の特に好ましい具体例としては、以下に例示するグリコール類、ジオール類、エステル類、カーボネート類が挙げられる。
 グリコール類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノペンチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールブチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、エチレングリコールジアセタート、ジエチレングリコールジアセタート、トリエチレングリコールジアセタート、プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、トリアセチン、エチレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチル等が挙げられるが、それらに限定されるものではない。
 ジオール類としては、2-メチル-2,4-ペンタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブチレングリコール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、(酸素原子数2~20の)ポリエチレングリコール、(酸素原子数2~20の)ポリプロピレングリコール等が挙げられるが、それらに限定されるものではない。
 エステル類としては、乳酸エチル、コハク酸、メチルコハク酸、レブリン酸、グルタル酸、ジオキサン、γ-ブチロラクトン、δ-バレロラクトン、1,5-ジオキセパン-2-オン、シクロペンタンカルボン酸等が挙げられるが、それらに限定されるものではない。
 カーボネート類としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、等が挙げられるが、それらに限定されるものではない。
 これらの水溶性添加剤(C)は単独で使用しても良く、複数を混合して使用することもできる。
 水、あるいは活物質や導電助剤と相溶性の観点から、水溶性添加剤(C)の分子量は50~1500が好ましい。より好ましくは50~1000である。
 水溶性添加剤(C)の含有量は、二次電池電極形成用組成物100重量%中、0.1~30重量%であることが好ましく、さらに好ましくは0.1~15重量%である。上記範囲であると、活物質や導電助剤の分散に与える影響と、柔軟性や密着性に与える効果のバランスが最適となるからである。0.1重量%より少ないと、柔軟性や密着性の改善効果が見られない場合がある。また、30重量%より多いと、活物質や導電助剤の分散に悪影響を与える恐れがある。
<合材インキ>
 前記したように、本発明の二次電池電極形成用組成物は、合材インキとしても使用できるし、下地層形成用組成物としても使用できる。
 そこで、本発明の二次電池電極形成用組成物の好適な態様の1つである活物質を必須とする合材インキについて説明する。合材インキは、正極合材インキまたは負極合材インキがあり、既に説明したように、それぞれ下記(1)~(4)に示すような種々の態様がある。
(1)活物質(A)と水溶性添加剤(C)と水(D)とを含有する合材インキ。
(2)前記(1)に導電助剤(B)をさらに含有する合材インキ。
(3)前記(1)にバインダーをさらに含有する合材インキ。
(4)前記(1)に導電助剤(B)とバインダーとをさらに含有する合材インキ。
<リチウムイオン二次電池用の正極活物質>
 リチウムイオン二次電池用の正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。
 例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。
 また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
<リチウムイオン二次電池用の負極活物質>
 リチウムイオン二次電池用の負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
<アルカリ二次電池用の正極活物質や負極活物質>
 また、ニッケル水素二次電池などのアルカリ二次電池用の正極活物質や負極活物質としては、従来から公知のものを適宜選択することができる。
 ニッケル水素二次電池用の正極活物質や負極活物質としては、従来から公知のものを適宜選択することができる。例えば、正極活物質としては水酸化ニッケル、オキシ水酸化ニッケル、酸化ニッケル等のニッケル化合物である。負極の活物質として用いられる水素吸蔵合金は、例えば、LaNi5等のAB5型(希土類系)、Tini、Ti2Ni等のAB/A2B型(チタン系)やZrNi系、MgNi系等がある。その他、LaNi5のLaをミッシュメタルMmに代えて、Niの一部をMnやCoで置換したMnNi2Co3、MmNi4Co等や、これにさらにAlを追加した合金組成Mm(Ni、Mn、Co等)m(Al、Cr等)n等が挙げられる。
<電極活物質(A)>
 電極活物質(A)は上述した正極活物質や負極活物質のことである。これら電極活物質(A)の大きさは、0.05~100μmの範囲内であることが好ましく、さらに好ましくは、0.1~50μmの範囲内である。そして、合材インキ中の電極活物質(A)の分散粒径は、0.5~20μmであることが好ましい。ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
<導電助剤である炭素材料(B)>
 次に、導電助剤である炭素材料(B)について説明する。
 本発明における導電助剤である炭素材料(B)としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
 カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。
 カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
 用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上、1500m/g以下、好ましくは50m/g以上、1500m/g以下、更に好ましくは100m/g以上、1500m/g以下のものを使用することが望ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
 また、用いるカーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、特に、0.01~0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
 導電助剤である炭素材料(B)の合材インキ中の分散粒径は、0.03μm以上、5μm以下に微細化することが望ましい。導電助剤としての炭素材料の分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。また、導電助剤としての炭素材料の分散粒径が5μmを超える組成物を用いた場合には、合材塗膜の材料分布のバラつき、電極の抵抗分布のバラつき等の不具合が生じる場合がある。
 ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
 市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。
 導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。
<バインダー>
 合材インキは、バインダーをさらに含有することもできる。
 本発明の中のバインダーとは、導電助剤やその他活物質などの粒子を結着させるために使用されるものであり、それら粒子を溶媒中へ分散させる効果は小さいものである。
 バインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等のセルロース樹脂、スチレン-ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。また、これらの樹脂の変性物、混合物、又は共重合体でも良い。これらバインダーは、1種または複数を組み合わせて使用することもできる。
 また、バインダーとしては水媒体のものが好ましく、水媒体のバインダーの形態としては、水溶性型、エマルション型、ハイドロゾル型等が挙げられ、適宜選択することができる。
<合材インキの調製>
 さらに、合材インキには、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
 塗工方法によるが、固形分30~90重量%の範囲で、合材インキの粘度は、100mPa・s以上、30,000mPa・s以下とするのが好ましい。
 塗工可能な粘度範囲内において、活物質(A)はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質(A)の割合は、80重量%以上、99重量%以下が好ましい。
 導電助剤(B)を含む場合、合材インキ固形分に占める導電助剤(B)の割合は、0.1~15重量%であることが好ましい。
 バインダーを含む場合、合材インキ固形分に占めるバインダーの割合は、0.1~15重量%であることが好ましい。
 このような合材インキは、例えば以下に示すように、種々の方法で得ることができる。
 活物質(A)と導電助剤(B)と水溶性添加剤(C)とバインダーと水(D)とを含有する、(4)の合材インキの場合を例にとって説明する。
(4-1) 活物質(A)と水溶性添加剤(C)と水(D)とを含有する活物質の水性分散体を得、該水性分散体に導電助剤(B)とバインダーとを加え、合材インキを得ることができる。導電助剤(B)とバインダーは、同時に加えることもできるし、導電助剤(B)を加えた後、バインダーを加えてもよいし、その逆であってもよい。
(4-2) 導電助剤(B)と水溶性添加剤(C)と水(D)と含有する導電助剤の水性分散体を得、該水性分散体に活物質(A)とバインダーとを加え、合材インキを得ることができる。活物質(A)とバインダー同時に加えることもできるし、活物質(A)を加えた後、バインダーを加えてもよいし、その逆であってもよい。
(4-3) 活物質(A)と水溶性添加剤(C)とバインダーと水(D)と含有する活物質の水性分散体を得、該水性分散体に導電助剤(B)を加え、合材インキを得ることができる。
(4-4) 導電助剤(B)と水溶性添加剤(C)バインダーと水(D)と含有する導電助剤の水性分散体を得、該水性分散体に活物質(A)を加え、合材インキを得ることができる。
(4-5) 活物質(A)と導電助剤(B)と水(D)と含有する水性分散体を得、該水溶性添加剤(C)とバインダーを加え、合材インキを得ることができる。
(4-6) 活物質(A)と導電助剤(B)と水溶性添加剤(C)とバインダーと水(D)をほとんど同時に混合し、合材インキを得ることができる。
<分散機・混合機>
 合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
 例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
 例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。また、強い衝撃で粒子が割れたり、潰れたりしやすい正または負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。
<下地層形成用組成物>
 前記したように、本発明の二次電池電極形成用組成物は、合材インキとしても使用できる他、下地層形成用組成物としても使用できる。
 下地層形成用組成物は、導電助剤(B)と水溶性添加剤(C)と水(D)とを含有する。さらにバインダーを含有することもできる。各成分については、合材インキの場合と同様である。
 電極下地層に用いる組成物の総固形分に占める導電助剤としての炭素材料(B)の割合は、5重量%以上、95重量%以下が好ましく、10重量%以上、90重量%以下が更に好ましい。導電助剤である炭素材料(B)が少ないと、下地層の導電性が保てない場合があり、一方、導電助剤である炭素材料(B)が多すぎると、塗膜の耐性が低下する場合がある。また、電極下地層インキの適正粘度は、電極下地層インキの塗工方法によるが、一般には、10mPa・s以上、30,000mPa・s以下とするのが好ましい。
<電極>
 本発明の二次電池電極形成用組成物のうち合材インキを、集電体上に塗工・乾燥し、合材層を形成し、二次電池用電極を得ることができる。
 あるいは、本発明の二次電池電極形成用組成物のうち下地層形成用組成物を、集電体上に下地層を形成し、該下地層上に、合材層を設け、二次電池用電極を得ることもできる。下地層上に設ける合材層は、上記した本発明の合材インキ(1)~(4)を用いて形成してもよいし、他の合材インキを用いて形成することもできる。
<集電体>
 電極に使用する集電体の材質や形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。
 例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。
 また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
 集電体上に合材インキや下地層形成用組成物を塗工する方法としては、特に制限はなく公知の方法を用いることができる。
 具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げることができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではない。
 また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。電極合材層の厚みは、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。また、下地層を具備する場合には下地層と合材層との厚みの合計は、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。
<二次電池>
 正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池を得ることができる。
 二次電池としては、リチウムイオン二次電池の他、アルカリ二次電池、鉛蓄電池、ナトリウム硫黄二次電池、リチウム空気二次電池等が挙げられ、それぞれの二次電池で従来から知られている、電解液やセパレーター等を適宜用いることができる。
<電解液>
 リチウムイオン二次電池の場合を例にとって説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。
 電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh等が挙げられるがこれらに限定されない。
 非水系の溶剤としては特に限定はされないが、例えば、以下に示すカーボネート類、ラクトン類、グライム類、エステル類、スルホキシド類、ニトリル類等が挙げられる。
 カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等が挙げられる。
 ラクトン類としては、γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等が挙げられる。
 グライム類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等が挙げられる。
 エステル類としては、メチルフォルメート、メチルアセテート、及びメチルプロピオネート等が挙げられる。
 スルホキシド類としては、ジメチルスルホキシド、及びスルホラン等が挙げられる。
 ニトリル類としては、アセトニトリル等が挙げられる。
 また、これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
 さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。
<セパレーター>
 セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<電池構造・構成>
 本発明の組成物を用いたリチウムイオン二次電池の構造については特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
 以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。尚、実施例および比較例における「部」は「重量部」を表す。
[実施例1]
 正極活物質としてLiFePO 45部、導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)2.5部、カルボキシメチルセルロース2重量%水溶液50部(固形分として1部)をミキサーに入れて混合し、さらに水溶性添加剤MTG(トリエチレングリコールモノメチルエーテル)2部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)2.5部を混合して最終固形分が約50重量%となるように調整を行い、正極二次電池電極用合材インキを得た。以下の方法にて、正極二次電池電極用合材インキとしての分散度を求めた。
 さらに、この正極二次電池電極用合材インキを集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが100μmとなるよう調整し、電極の柔軟性を後述する方法にて評価した。
 さらに、ロールプレスによる圧延処理を行い、厚みが85μmとなる正極を作製し、電極の密着性を後述する方法にて評価した。
 次に、得られた正極を、直径16mmに打ち抜き作用極と、金属リチウム箔対極と、作用極及び対極の間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるコイン型電池を作製した。コイン型電池はアルゴンガス置換したグローブボックス内で行い、コイン型電池作製後、後述する電池特性評価(充放電サイクル特性)を行った。
[実施例2~9]、[比較例1~10]
 表1に示す活物質、導電助剤である炭素材料、水溶性添加剤を用いて、実施例1と同様の手順で正極二次電池電極用合材インキ、および正極を得、同様に評価した。この際、活物質にLCO、LMO又はNMCを用いた正極二次電池電極用合材インキについても、最終固形分が約50重量%となるように調整した。
[実施例19]
 正極活物質であるLiFePO 45部、導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)2.5部、カルボキシメチルセルロース2重量%水溶液50部(固形分として1部)をミキサーに入れて混合し、さらに水溶性添加剤MTG0.25部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)2.5部を混合して最終固形分が約50重量%となるように調整を行い、正極二次電池電極用合材インキを得た。
 さらに、この正極二次電池電極用合材インキを集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが100μmとなるよう調整し、電極の柔軟性を後述する方法にて評価した。
 さらに、ロールプレスによる圧延処理を行い、厚みが85μmとなる正極を作製し、電極の密着性を後述する方法にて評価した。
 次に、得られた正極を、直径16mmに打ち抜き作用極と、金属リチウム箔対極と、作用極及び対極の間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるコイン型電池を作製した。コイン型電池はアルゴンガス置換したグローブボックス内で行い、コイン型電池作製後、後述する電池特性評価(充放電サイクル特性)を行った。
[比較例20]
 水溶性添加剤にPEO2000(ポリエチレングリコール2000:和光純薬社製)を用いた以外は実施例19と同様の手順で正極二次電池電極用合材インキを得た。また、実施例19と同様にして正極を得、同様に評価した。
[実施例20]
 正極活物質であるLiMn 45部、導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)2部およびカーボンナノチューブ(VGCF-H:昭和電工社製)0.5部、カルボキシメチルセルロース2重量%水溶液50部(固形分として1部)をミキサーに入れて混合し、さらに水溶性添加剤PD(1,3-プロパンジオール)10部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)2.5部を混合して正極二次電池電極用合材インキを得た以外は、実施例19と同様にして正極を得、同様に評価した。
[比較例21]
 水溶性添加剤にエタノールを用いた以外は実施例20と同様の手順で正極二次電池電極用合材インキを得た。また、実施例19と同様にして正極を得、同様に評価した。
[実施例21]
 正極活物質であるLiFePO 45部、導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)2.5部、カルボキシメチルセルロース2重量%水溶液50部(固形分として1部)をミキサーに入れて混合し、さらに水溶性添加剤MTG30部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)2.5部を混合して正極二次電池電極用合材インキを得た以外は、実施例19と同様にして正極を得、同様に評価した。
[比較例22]
 水溶性添加剤にPEO2000を用いた以外は実施例21と同様の手順で正極二次電池電極用合材インキを得た。また、実施例19と同様にして正極を得、同様に評価した。
Figure JPOXMLDOC01-appb-T000003
LCO:LiCoO
LFP:LiFePO
LMO:LiMn
NMC:LiNi1/3Mn1/3Co1/3O
A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
F:ファーネスブラック、Super-P Li(TIMCAL社製)
C:カーボンナノチューブ、VGCF-H(昭和電工社製)
MTG:トリエチレングリコールモノメチルエーテル
SDE:コハク酸ジエタノール
PD:1,3-プロパンジオール
BL:γ-ブチロラクトン
CBA:ジエチレングリコールモノエチルエーテルアセテート
NMP:N-メチルピロリドン
PEO2000:ポリエチレングリコール2000(酸素原子40個相当、和光純薬社製)
PEO1500:ポリエチレングリコール1500(酸素原子30個相当、和光純薬社製)
[実施例10]
 負極活物質として人造黒鉛48部、ヒドロキシエチルセルロース2重量%水溶液25部(固形分として0.5部)をミキサーに入れて混合し、さらに水溶性添加剤CBA(ジエチレングリコールモノエチルエーテルアセテート)5部、水18.2部、バインダー(SBR:スチレンブタジエン系ラテックス40%水系分散体)3.75部を混合して最終固形分が50重量%となるように調整を行い、負極二次電池電極用合材インキを得た。さらに、この負極二次電池電極用合材インキを集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚みが80μmとなるよう調整し、さらに、ロールプレスによる圧延処理を行い、厚みが70μmとなる負極を作製して、先述と同様の評価を行った。
[実施例11~13]、[比較例11~14]
 表2に示す活物質、導電助剤である炭素材料、添加剤を用いた以外は実施例10と同様にして、負極二次電池電極用合材インキ、および負極を得、同様に評価した。
[実施例14]
 負極活物質としてLiTi1290部、導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)5部、カルボキシルメチルセルロース2重量%水溶液100部(固形分として2部)をミキサーに入れて混合し、さらに水溶性添加剤1,3-プロパンジオール20部、水100部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)5部を混合して最終固形分が31重量%となるように調整を行い、負極二次電池電極用合材インキ、および負極を得、同様に評価した。
[比較例15]
 表2に示すように水溶性添加剤を用いなかった以外は実施例14と同様にして、負極二次電池電極用合材インキ、および負極を得、同様に評価した。
[実施例22]
 負極活物質である人造黒鉛47部、導電助剤である炭素材料としてカーボンナノチューブ(VGCF-H)1部、ヒドロキシエチルセルロース2重量%水溶液25部(固形分として0.5部)をミキサーに入れて混合し、さらに水溶性添加剤PD18部、水5.25部、バインダー(SBR:スチレンブタジエン系ラテックス40%水系分散体)3.75部を混合して負極二次電池電極用合材インキを得た。また、実施例10と同様にして負極を得、同様に評価した。
[比較例23]
 添加剤にエタノールを用いた以外は実施例22と同様の手順で負極二次電池電極用合材インキを得た。また、実施例10と同様にして負極を得、同様に評価した。
Figure JPOXMLDOC01-appb-T000004
LTO:LiTi12
A:アセチレンブラック、デンカブラックHS-100(電気化学工業社製)
F:ファーネスブラック、Super-P Li(TIMCAL社製)
C:カーボンナノチューブ、VGCF-H(昭和電工社製)
MTG:トリエチレングリコールモノメチルエーテル
PD:1,3-プロパンジオール
CBA:ジエチレングリコールモノエチルエーテルアセテート
NMP:N-メチルピロリドン
DMTG:トリエチレングリコールジメチルエーテル
PEO 800:ポリエチレングリコール800(酸素原子16個相当、東京化成社製)
(二次電池電極用合材インキ及び二次電池電極用炭素材料分散体の分散度の判定)
 二次電池電極用合材インキ及び二次電池電極用炭素材料分散体の分散度は、グラインドゲージによる判定(JIS K5600-2-5に準ず)より求めた。評価結果を表1及び表2に示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一な二次電池電極用合材インキ及び二次電池電極用炭素材料分散体であることを示している。
(電極の柔軟性)
 上記で作製した電極表面のひび割れ状態を目視観察により判定した。評価結果を表1及び表2に示す。ひび割れが起こらないものほど、柔軟性が良い。電極の柔軟性が悪くひび割れが起こり易いと電池作製時の取り扱いが困難となり、取り扱い時の合材層欠落を招いたり、電池充放電中の活物質の膨張・収縮に伴い合材層崩壊や欠落を招いてしまうため、柔軟性が高い方が良い。
  ○ :「ひび割れなし(実用上問題のないレベル)」
  ○△:「ごくまれにひび割れが見られる(問題があるが、使用可能レベル)」
  △ :「部分的にひび割れが見られる」
  × :「全体的にひび割れが見られる」
(電極の密着性)
 上記で作製した電極に、ナイフを用いて電極表面から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で判定した。評価結果を表1及び表2に示し、評価基準を下記に示す。
  ○ :「剥離なし(実用上問題のないレベル)」
  ○△:「わずかに剥離(問題はあるが使用可能レベル)」
  △ :「半分程度剥離」
  × :「ほとんどの部分で剥離」
(充放電サイクル特性)
 得られたコイン型電池について、充放電装置(北斗電工社製SM-8)を用い、充放電測定を行った。充放電サイクル特性が良好なものほど、電池の寿命が良好である。
 使用する活物質がLiFePOの場合は、充電電流1.0mA(0.2C相当)にて充電終止電圧4.2Vまで定電流充電を続けた。電池の電圧が4.2Vに達した後、放電電流2.5mAで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。3サイクル目の放電容量を初回放電容量(初回放電容量を放電容量維持率100%とする)とし、100サイクル後の放電容量維持率を算出した。(100%に近いほど良好)。評価結果を表1及び表2に示す。
  ○ :「変化率が95%以上。特に優れている。」
  ○△:「変化率が90%以上、95%未満。優れている。」
  △ :「変化率が85%以上、90%未満。問題はあるが使用可能なレベル。」
  × :「変化率が85%未満。実用上問題あり、使用不可。」
 また、使用する活物質が、LiCoOの場合は、充電電流1.6mA(0.2C相当)、充電終止電圧4.3V、放電電流4.0mA、放電終止電圧2.8Vとした以外は、LiFePOの場合と同様に充放電サイクル特性を測定できる。
 また、使用する活物質が、LiNi1/3Mn1/3Co1/3Oの場合は、充電電流1.9mA(0.2C相当)、充電終止電圧4.3V、放電電流4.8mA、放電終止電圧3.0Vとした以外は、LiFePOの場合と同様に充放電サイクル特性を測定できる。
 また、使用する活物質が、LiMnの場合は、充電電流1.0mA(0.2C相当)、充電終止電圧4.3V、放電電流2.5mA、放電終止電圧3.0Vとした以外は、LiFePOの場合と同様に充放電サイクル特性を測定できる。
 さらに、負極電極用の活物質として人造黒鉛を使用する場合は、充電電流1.8mA(0.2C相当)、充電終止電圧0.1V、放電電流1.8mA、放電終止電圧2.0Vとした以外は、LiFePOの場合と同様に充放電サイクル特性を測定できる。
 また、使用する活物質が、LiTi12の場合は、充電電流1.0mA(0.2C相当)、充電終止電圧1.0V、放電電流2.5mA、放電終止電圧2.0Vとした以外は、LiFePOの場合と同様に充放電サイクル特性を測定できる。
 表1及び表2に示すように、本発明の二次電池電極用合材インキを用いた場合、電極の柔軟性、密着性が良好なため、電池特性においても充放電時の電極剥離や、リチウムイオンのインターカレーション・デインターカレーションに伴う活物質の膨張・収縮時の電極構造の崩壊を防ぐことが可能となり、充放電100サイクル後の放電容量低下が抑制されたと考えられる。
 電極の柔軟性、密着性が良好であったことについては、下記の2点によるものと推察している。1点目は、詳細は明らかになっていないが、おそらく本発明の水溶性添加剤により合材インキの表面張力を低下させ、合材インキ乾燥時の硬化収縮を低減させることができたからではないかと考えている。合材インキ乾燥時の硬化収縮によりにひび割れが起こると、電極とした時の均一な導電ネットワークが崩壊してしまうために、導電性低下を引き起こしているのではないかと推察している。また、乾燥時の硬化収縮は集電体との密着性も悪化させると考えられるため、本発明の水溶性添加剤を使用することによって、密着性が改善されたと推察できる。
 2点目は、活物質または導電助剤である炭素材料の合材インキ中での分散性を低下させない点である。実施例、比較例の通り、導電助剤である炭素材料または活物質の分散制御が不十分な場合、充放電サイクル特性が悪化する傾向にある。合材インキの分散制御が不十分な場合、充放電特性電極とした時の均一な導電ネットワークが形成されないために、電極中で部分的凝集に起因する抵抗分布が生じてしまい、電池として使用した際の電流集中が起こるために劣化促進を引き起こしているのではないかと考察している。1分子中に酸素原子を1個有するアルコールを使用した場合は、水との相溶性が悪くて合材インキの分散性を低下させてしまったのではないかと思われる。一方、1分子中に酸素原子を21個以上有するポリエチレングリコール類では、水とは相溶するが活物質または導電助剤である炭素材料との相溶性が悪くて合材インキの分散性を低下させてしまったのではないかと思われる。
 以上のことから、本発明の水溶性添加剤が上記の2点を満足させることが可能であり、合材インキから得られた電極の柔軟性や密着性、および電池の充放電サイクル特性が良好になったと考えている。
[実施例15]
 導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS-100)10部、カルボキシメチルセルロース2重量%水溶液50部(固形分として1部)をミキサーに入れて混合し、さらに水溶性添加剤MTG7部、水40部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)3部を混合して粘度調整を行い、二次電池電極用下地層形成用組成物を得た。
 そして、この下地層形成用組成物を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、加熱乾燥し、厚みが5μmとなるように下地層を形成した。
[実施例16]、[比較例16、17]
 表3に示す導電助剤である炭素材料、水溶性添加剤を用いた以外は実施例15と同様にして、二次電池電極用下地層形成用組成物を得、同様に評価した。
Figure JPOXMLDOC01-appb-T000005
[実施例17]
 実施例15で作製した下地層上に実施例3の正極二次電池電極用合材インキを塗布した後、減圧加熱乾燥して正極を得、評価した。
[実施例18、比較例18、19]
 表4に示す二次電池電極用合材インキを塗布した後、減圧加熱乾燥して、以下実施例17と同様にして正極あるいは負極を得、同様に評価した。
Figure JPOXMLDOC01-appb-T000006
 本発明の二次電池電極形成用組成物を下地層へ用いた場合、下地層を使用しない実施例3、および比較例12の評価結果と比較して、さらに良好となっていることが分かる。このことは、本発明の二次電池電極形成用組成物が、集電体と合材層との密着部分をより均一、かつ強固にしたためと考えられる。しかしながら、比較例18、19では下地層用の二次電池電極形成用組成物を使用した電極とした場合においても、実施例3、比較例12の評価結果と比較して劣る結果であった。このことは、集電体と合材層との密着状態がかえって不十分な状態となってしまったため、下地層を使用しない場合よりも電極として不均一な状態になってしまったためと考えられる。

Claims (6)

  1.  電極活物質(A)、もしくは導電助剤である炭素材料(B)の少なくとも一方と、炭素原子、酸素原子、水素原子からなる水溶性添加剤であって、且つ、1分子中に酸素原子を2~20個有する水溶性添加剤(C)と、水(D)とを含有する、二次電池電極形成用組成物。
  2.  前記水溶性添加剤(C)が、下記一般式(1)で表されることを特徴とする、請求項1に記載の二次電池電極形成用組成物。
     
     X-Y-Z   一般式(1)
     
    (Xは、水素原子、カルボキシル基、置換または無置換のアルキル基、置換または無置換のアルコキシル基、置換または無置換のアシル基、または置換もしくは無置換のアルコキシカルボニル基であり、
     Yは、直接結合、置換または無置換のアルキレン基、または置換または無置換のアルコキシレン基であり、
     Zは、水酸基、カルボキシル基、置換または無置換のアルコキシル基、置換もしくは無置換のアルコキシカルボニル基、または置換または無置換のアシルオキシ基であり、
     XとZとが一体となって環を形成してもよい。)
  3.  前記一般式(1)において、
     Xは、水素原子、カルボキシル基、置換または無置換のアルキル基、または、アシル基であり、
     Yは、-(O-R-)n-で表される基であり、
     Rは置換または無置換の炭素数1~5のアルキレン基であり、nは1~19の整数であることを特徴とする、請求項2に記載の二次電池電極形成用組成物。
  4.  前記水溶性添加剤(C)の含有量が、前記二次電池電極形成用組成物に対して0.1~30重量%であることを特徴とする、請求項1~3いずれか1項に記載の二次電池電極形成用組成物。
  5.  集電体と、請求項1~4いずれか1項に記載の二次電池電極形成用組成物から形成される合材層もしくは電極下地層の少なくも一層とを具備する、二次電池用電極。
  6.  正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が請求項5に記載の二次電池用電極である、二次電池。
PCT/JP2013/052360 2012-02-02 2013-02-01 二次電池電極形成用組成物、二次電池電極、及び二次電池 WO2013115368A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/376,017 US20150004486A1 (en) 2012-02-02 2013-02-01 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
ES13743209.2T ES2665503T3 (es) 2012-02-02 2013-02-01 Composición para formar un electrodo de una pila secundaria, electrodo de pila secundaria, y pila secundaria
JP2013556517A JP6183216B2 (ja) 2012-02-02 2013-02-01 二次電池電極形成用組成物、二次電池電極、及び二次電池
EP13743209.2A EP2811550B1 (en) 2012-02-02 2013-02-01 Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
KR1020147023323A KR20140125394A (ko) 2012-02-02 2013-02-01 이차 전지 전극 형성용 조성물, 이차 전지 전극 및 이차 전지
KR1020167017523A KR20160079937A (ko) 2012-02-02 2013-02-01 이차 전지 전극 형성용 조성물, 이차 전지 전극 및 이차 전지
CN201380007205.6A CN104115311A (zh) 2012-02-02 2013-02-01 二次电池电极形成用组合物、二次电池电极以及二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012020475 2012-02-02
JP2012-020475 2012-02-02

Publications (1)

Publication Number Publication Date
WO2013115368A1 true WO2013115368A1 (ja) 2013-08-08

Family

ID=48905395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052360 WO2013115368A1 (ja) 2012-02-02 2013-02-01 二次電池電極形成用組成物、二次電池電極、及び二次電池

Country Status (7)

Country Link
US (1) US20150004486A1 (ja)
EP (1) EP2811550B1 (ja)
JP (1) JP6183216B2 (ja)
KR (2) KR20140125394A (ja)
CN (1) CN104115311A (ja)
ES (1) ES2665503T3 (ja)
WO (1) WO2013115368A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093272A (ja) * 2012-11-06 2014-05-19 Kaneka Corp 電極活物質混合物、それを用いて作成した電極及び非水電解質二次電池
JP2015084320A (ja) * 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222664B4 (de) * 2014-11-06 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung der Kathode und/oder der Anode einer Lithium-Ionen-Zelle und Verwendung einer Lithium-lonen-Zelle
JP7347218B2 (ja) * 2018-02-09 2023-09-20 株式会社レゾナック 非水系電池電極用スラリー、並びに非水系電池電極及び非水系電池の製造方法
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP7337049B2 (ja) * 2018-05-08 2023-09-01 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN113140720A (zh) * 2021-04-16 2021-07-20 广州鹏辉能源科技股份有限公司 锂离子电池的正极材料、正极浆料、正极及其制备方法和锂离子电池
CN115911352A (zh) * 2021-08-16 2023-04-04 北京大学 一种可用于高性能锂离子电池电极的TiNC1超导材料及其制备方法
CN115036463A (zh) * 2022-06-23 2022-09-09 多氟多新能源科技有限公司 一种钠离子电池负极电极

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158055A (ja) 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd リチウム二次電池用の正極合剤の製造法
JPH0982364A (ja) 1995-09-07 1997-03-28 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH09293498A (ja) 1996-04-26 1997-11-11 Sanyo Electric Co Ltd リチウムイオン電池用負極及びその製造方法
JPH11283630A (ja) * 1998-03-30 1999-10-15 Nippon Zeon Co Ltd リチウムイオン二次電池の電極用スラリー、バインダー組成物、電極、及び電池
JP2003142102A (ja) 2001-11-05 2003-05-16 Denso Corp 電極及び電池
JP2003142082A (ja) 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd 電池用電極の製造方法とリチウム電池
JP2006054096A (ja) 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp リチウム二次電池電極用スラリー及びリチウム二次電池電極の製造方法
JP2010165493A (ja) 2009-01-14 2010-07-29 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2010529608A (ja) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ 電極の作製のための新しい組成物、ならびにその組成物から得られる電極および電池
JP2011071047A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法、並びに非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2012033364A (ja) * 2010-07-30 2012-02-16 Furukawa Battery Co Ltd:The リチウムイオン二次電池の電極製造方法及びリチウムイオン二次電池の製造方法
JP2012089411A (ja) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856074B2 (ja) * 1999-03-31 2006-12-13 ライオン株式会社 導電性ペースト及びその製造方法並びに二次電池用導電助剤
KR100445434B1 (ko) * 2002-07-10 2004-08-21 삼성에스디아이 주식회사 리튬-황 전지용 양극 활물질 조성물 및 이를 사용하여제조된 리튬-황 전지
KR101875954B1 (ko) * 2008-07-15 2018-07-06 다우 글로벌 테크놀로지스 엘엘씨 전지 전극용 무기 결합제 및 이의 수계 공정
CN102089907A (zh) * 2008-07-17 2011-06-08 旭硝子株式会社 非水电解质电池用负极复合材料
JP2010097843A (ja) * 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
JP5509918B2 (ja) * 2009-03-27 2014-06-04 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
WO2010123137A1 (ja) * 2009-04-24 2010-10-28 ライオン株式会社 カーボンブラックの極性分散液組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158055A (ja) 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd リチウム二次電池用の正極合剤の製造法
JPH0982364A (ja) 1995-09-07 1997-03-28 Japan Storage Battery Co Ltd 非水電解液二次電池
JPH09293498A (ja) 1996-04-26 1997-11-11 Sanyo Electric Co Ltd リチウムイオン電池用負極及びその製造方法
JPH11283630A (ja) * 1998-03-30 1999-10-15 Nippon Zeon Co Ltd リチウムイオン二次電池の電極用スラリー、バインダー組成物、電極、及び電池
JP2003142082A (ja) 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd 電池用電極の製造方法とリチウム電池
JP2003142102A (ja) 2001-11-05 2003-05-16 Denso Corp 電極及び電池
JP2006054096A (ja) 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp リチウム二次電池電極用スラリー及びリチウム二次電池電極の製造方法
JP2010529608A (ja) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ 電極の作製のための新しい組成物、ならびにその組成物から得られる電極および電池
JP2010165493A (ja) 2009-01-14 2010-07-29 Sanyo Electric Co Ltd 非水電解質二次電池用負極、非水電解質二次電池及び非水電解質二次電池用負極の製造方法
JP2011071047A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池用正極の製造方法、並びに非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2012033364A (ja) * 2010-07-30 2012-02-16 Furukawa Battery Co Ltd:The リチウムイオン二次電池の電極製造方法及びリチウムイオン二次電池の製造方法
JP2012089411A (ja) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811550A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093272A (ja) * 2012-11-06 2014-05-19 Kaneka Corp 電極活物質混合物、それを用いて作成した電極及び非水電解質二次電池
JP2015084320A (ja) * 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same

Also Published As

Publication number Publication date
EP2811550A4 (en) 2015-09-16
KR20160079937A (ko) 2016-07-06
US20150004486A1 (en) 2015-01-01
ES2665503T3 (es) 2018-04-26
EP2811550B1 (en) 2018-01-17
CN104115311A (zh) 2014-10-22
JPWO2013115368A1 (ja) 2015-05-11
EP2811550A1 (en) 2014-12-10
JP6183216B2 (ja) 2017-08-23
KR20140125394A (ko) 2014-10-28

Similar Documents

Publication Publication Date Title
JP6183216B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6028286B2 (ja) 二次電池電極形成用エマルションバインダー、二次電池電極形成用合材インキ、二次電池電極、及び二次電池
JP5954322B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP5640987B2 (ja) リチウム二次電池用正極活物質材料、その製造方法、及びそれを用いたリチウム二次電池
JP5900111B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6269013B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
WO2013168785A1 (ja) リチウム二次電池正極用造粒粒子とその製造方法、合材インキ及びリチウム二次電池
JP6036261B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6274343B1 (ja) 分散剤、分散組成物、電池用分散組成物、電極、電池
JP5589338B2 (ja) リチウム二次電池用正極活物質材料の製造方法、及びそれを用いたリチウム二次電池
JP2016192398A (ja) 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP6314491B2 (ja) 二次電池電極形成用組成物、二次電池用電極および二次電池
JP6044300B2 (ja) 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP6036260B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6740566B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2017224562A (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2012195157A (ja) リチウム二次電池用正極活物質材料の製造方法、及びそれを用いたリチウム二次電池
CN114902446A (zh) 含低氧型纳米硅粒子的浆料、负极活性物质、负极及锂离子二次电池
JP6874283B2 (ja) 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP6740564B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2017224463A (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP6760034B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2017224407A (ja) 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2023092639A (ja) 非水電解質二次電池用カーボン材料樹脂複合物、それを用いた非水電解質二次電池用分散液、非水電解質二次電池用電極、及び非水電解質二次電池
JP5900068B2 (ja) 電池用組成物、電池用正極、及び電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013743209

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147023323

Country of ref document: KR

Kind code of ref document: A