WO2013105615A1 - イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置 - Google Patents

イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2013105615A1
WO2013105615A1 PCT/JP2013/050333 JP2013050333W WO2013105615A1 WO 2013105615 A1 WO2013105615 A1 WO 2013105615A1 JP 2013050333 W JP2013050333 W JP 2013050333W WO 2013105615 A1 WO2013105615 A1 WO 2013105615A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
ring
hetero
compound
Prior art date
Application number
PCT/JP2013/050333
Other languages
English (en)
French (fr)
Inventor
和弘 長山
英司 小松
章 右田
五郎丸 英貴
飯田 宏一朗
敬史 大谷
石橋 孝一
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP13736249.7A priority Critical patent/EP2803671B1/en
Priority to CN201380005274.3A priority patent/CN104053664B/zh
Priority to JP2013530270A priority patent/JP5459447B2/ja
Priority to KR1020147019253A priority patent/KR102069497B1/ko
Publication of WO2013105615A1 publication Critical patent/WO2013105615A1/ja
Priority to US14/330,442 priority patent/US9799837B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to an iridium complex compound, and in particular, an iridium complex compound useful as a material for a light emitting layer of an organic electroluminescent device, a composition containing the compound, an organic electroluminescent device produced using the composition, and the organic electric field
  • the present invention relates to a display device including a light-emitting element and a lighting device.
  • organic electroluminescent elements such as organic electroluminescent lighting (organic EL lighting) and organic electroluminescent displays (organic EL display) have been put into practical use. It is becoming.
  • An organic EL element has a low applied voltage, low power consumption, surface light emission, and can emit three primary colors. Therefore, application to lighting and displays has been actively studied. Therefore, improvement in luminous efficiency is required. In order to improve the light emission efficiency, for example, it has been proposed to use a phosphorescent material for the light emitting layer of the organic EL element.
  • Examples of the phosphorescent material include bis (2-phenylpyridinato-N, C2 ′) iridium acetylacetonate (Irppy 2 (acac)) and tris (2-phenylpyridinato-N, C2 ′) ( Orthometalated iridium complexes such as Ir (ppy) 3 ) iridium are widely known.
  • a vacuum deposition method is mainly used.
  • the device is usually manufactured by laminating a plurality of layers such as a light-emitting layer, a charge injection layer, and a charge transport layer, the vacuum deposition method makes the vapor deposition process complicated, and the productivity is low. There is a problem that it is extremely difficult to increase the size of lighting and display panels.
  • the organic EL element can be formed by a coating method to form a layer. Since the coating method can form a stable layer easily and with a higher yield than the vacuum deposition method, it is expected to be applied to mass production of displays and lighting devices and large devices.
  • the organic material contained in the layer is in a state in which it is easily dissolved in an organic solvent.
  • an organic solvent to be used a solvent having a low boiling point and a low viscosity such as toluene is used. An ink produced using such a solvent can be easily formed into a film by a spin coating method or the like.
  • an organic solvent having a low volatility and a high flash point such as phenylcyclohexane
  • a composition containing an organic material and a solvent is required to maintain a uniform state without re-deposition of the organic material during storage, that is, a pot life is sufficiently long.
  • an iridium complex having Ir (ppy) 2 (acac) as the main skeleton is dissolved in 1,2-dichloroethane, and a device prepared by the coating method (Patent Document 1) is used.
  • An element (Patent Document 2) in which an iridium complex of a biphenylpyridine ligand having a substituent is dissolved in an organic solvent such as toluene and is prepared by a coating method is disclosed.
  • these elements can be produced by a coating method, there is room for improvement in that the drive voltage is high and the light emission efficiency is low.
  • Patent Document 3 an improvement of an iridium complex that lowers the driving voltage has also been proposed.
  • the present invention has been made in view of the above problems, is soluble in an organic solvent such as toluene and phenylcyclohexane, and can be stored for a long time without reprecipitation of solid content in the composition, It is another object of the present invention to provide an iridium complex compound having a low driving voltage and high luminous efficiency of an element manufactured using the same. Another object of the present invention is to provide an organic electroluminescent element having a low driving voltage and high luminous efficiency, and a display device and a lighting device including the organic electric field element.
  • an iridium complex compound having a specific chemical structure has a sufficiently high solubility in an organic solvent such as toluene and phenylcyclohexane, and the compound and the solvent
  • an organic solvent such as toluene and phenylcyclohexane
  • Ring A represents a 6-membered or 5-membered aromatic hydrocarbon ring or a 6-membered or 5-membered aromatic heterocycle containing carbon atoms C 1 and C 2 ;
  • Ring B represents a 6-membered or 5-membered nitrogen-containing aromatic heterocycle containing carbon atom C 3 and nitrogen atom N 1 .
  • L is an organic ligand.
  • a and b each independently represents an integer of 1 to 4.
  • n represents an integer of 1 to 3.
  • R 1 and R 2 each represent a substituent bonded to the carbon atom or nitrogen atom constituting ring A and ring B, and when there are a plurality of R 1 or R 2 s , they are the same or different and each represents a hydrogen atom, Fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, (hetero) aryloxy having 3 to 20 carbon atoms Groups, alkylsilyl groups having 1 to 20 carbon atoms, (hetero) arylsilyl groups having 3 to 20 carbon atoms, alkylcarbonyl groups having 2 to 20 carbon atoms, (hetero) arylcarbonyl groups having 4 to 20 carbon atoms, It represents any of an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • a is 2 or more, and if the adjacent plurality of R 1, Tonaria' in which R 1 each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • b is 2 or more, and if the adjacent plurality of R 2, Tonaria' in which R 2 to each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • R 1 and R 2 are bonded directly or via an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms;
  • a ring may be formed.
  • R 1 each other, the ring formed by the R 2 together or R 1 and R 2 are attached, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, having 7 to 40 carbon atoms (Hetero) aralkyl group, alkoxy group having 1 to 20 carbon atoms, (hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms, (hetero) aryl having 3 to 20 carbon atoms A silyl group, an alkylcarbonyl group having 2 to 20 carbon atoms, a (hetero) arylcarbonyl group having 4 to 20 carbon atoms,
  • R 1 and R 2 are represented by the following formula (2).
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • Z is represented by the following formula (3).
  • c represents an integer of 1 to 3.
  • d represents an integer of 0 to 3.
  • a plurality of R ′ are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 3 to 3 carbon atoms.
  • r represents an integer of 1 to 20.
  • the iridium complex compound according to [1], wherein at least one of the substituents R 1 bonded to the ring A in the formula (1) is represented by the formula (2).
  • R 3 to R 6 are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • R 3 to R 6 are directly bonded to adjacent R 3 to R 6 , or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene having 6 to 12 carbon atoms. It may be bonded through a group to form a ring. These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • An arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • the iridium complex compound represented by the formula (1-1) has at least one group represented by the formula (2) in R 2 to R 6 .
  • the iridium complex compound according to any one of [1] to [14], which is an aryl group.
  • a light-emitting material comprising the iridium complex compound according to any one of [1] to [15].
  • a composition comprising the iridium complex compound according to any one of [1] to [15] and a solvent.
  • An organic electroluminescent device having an anode, a cathode, and at least one organic layer between the anode and the cathode, wherein at least one of the organic layers is the above [1] to [15] Organic electroluminescent element containing the iridium complex compound as described in any one of these.
  • the organic electroluminescence device according to [18], wherein the organic layer further contains a nitrogen-containing aromatic heterocyclic compound as a charge transport material.
  • the iridium complex compound of the present invention is a ligand such as a substituted phenylpyridine or a substituted phenylquinoline skeleton, via an alkyl group having 2 to 20 carbon chains and further having an aromatic ring having 3 to 20 carbon atoms at the terminal.
  • the solubility is high and the organic electroluminescent element material exhibits good performance.
  • the organic electroluminescent element containing the iridium complex compound of this invention shows favorable performance in terms of luminous efficiency, driving voltage, and the like.
  • the iridium complex compound of the present invention is soluble in an organic solvent such as toluene and phenylcyclohexane, and the composition containing the iridium complex compound and the solvent can be stored for a long time without precipitation of a solid content. It is. Moreover, the organic electroluminescent element containing the iridium complex compound has high luminous efficiency, can be driven at a low voltage, and has high driving stability. Therefore, the iridium complex compound of the present invention is useful as a material for an organic electroluminescent element, and an organic electroluminescent element containing the compound can be produced by a coating method. It is useful as a lighting device.
  • FIG. 1 is a chart showing 1 H-NMR chart of Compound D-1.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent element of the present invention.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention.
  • the (hetero) aryl group means both an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence.
  • free valence can form bonds with other free valences as described in Organic Chemistry / Biochemical Nomenclature (above) (Revised 2nd edition, Nankodo, 1992). Say things.
  • a benzene ring having one free valence refers to a phenyl group
  • a benzene ring having two free valences refers to a phenylene group.
  • ppm when “ppm” is simply described, it indicates “weight ppm”.
  • ring A represents a 6-membered or 5-membered aromatic hydrocarbon ring or a 6-membered or 5-membered aromatic heterocycle containing carbon atoms C 1 and C 2
  • B represents a 6-membered or 5-membered nitrogen-containing aromatic heterocycle containing a carbon atom C 3 and a nitrogen atom N 1
  • 6-membered or 5-membered aromatic hydrocarbon ring or 6-membered or 5-membered aromatic heterocycle include benzene ring, pyridine ring, pyrimidine ring, pyrazine ring, imidazole ring, furan ring, thiophene ring, etc.
  • a benzene ring, a pyridine ring, and a pyrimidine ring are preferable, among which a benzene ring and a pyridine ring are more preferable, and a benzene ring is more preferable.
  • the 6-membered or 5-membered nitrogen-containing aromatic heterocycle include pyridine ring, pyrazine ring, pyrimidine ring, 1,3,5-triazine ring, imidazole ring, triazole ring, oxazole ring, oxadiazole ring, thiazole Ring, thiadiazole ring, and the like.
  • a pyridine ring, a pyrazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, and a thiazole ring are preferable, and among them, a pyridine ring, a pyrazine ring, a pyrimidine ring, and an imidazole ring Are preferable, and a pyridine ring, a pyrazine ring, and a pyrimidine ring are more preferable.
  • L is an organic ligand.
  • a and b each independently represents an integer of 1 to 4; n represents an integer of 1 to 3. Note that in the chemical formulas in this specification, a bond indicated by a broken line represents a coordinate bond.
  • R 1 and R 2 each represent a substituent bonded to the carbon atom or nitrogen atom constituting ring A and ring B, and when there are a plurality of R 1 or R 2 s , they are the same or different and each represents a hydrogen atom, Fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, (hetero) aryloxy having 3 to 20 carbon atoms Groups, alkylsilyl groups having 1 to 20 carbon atoms, (hetero) arylsilyl groups having 3 to 20 carbon atoms, alkylcarbonyl groups having 2 to 20 carbon atoms, (hetero) arylcarbonyl groups having 4 to 20 carbon atoms, It represents any of an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • a is 2 or more, and if the adjacent plurality of R 1, Tonaria' in which R 1 each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • fluorene ring naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, tetrahydronaphthalene ring, quinoline ring Quinazoline ring, azaphenanthrene ring, azatriphenylene ring and the like.
  • a fluorene ring, a naphthalene ring, a carbazole ring, a carboline ring, a quinoline ring, a quinazoline ring, a quinoxaline ring, and an azatriphenylene ring are preferable, and a fluorene ring, a naphthalene ring, and a carbazole ring are more preferable.
  • b is 2 or more, and if the adjacent plurality of R 2, Tonaria' in which R 2 to each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • Specific examples of such rings include carboline ring, diazacarbazole ring, azadibenzofuran ring, azadibenzothiophene ring, benzimidazole ring, benzoxazole ring, benzoxadiazole ring, benzthiazole ring, benzthiadiazole ring, quinoline.
  • benzoxazole ring, benzthiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, azaphenanthrene ring, and azatriphenylene ring are preferable, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, azaphenanthrene ring, azatriphenylene A ring is more preferred.
  • R 1 and R 2 are bonded directly or via an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms;
  • a ring may be formed.
  • Specific examples of such a ring include an azaphenanthrene ring, a diazaphenanthrene ring, an azatriphenylene ring, a diazatriphenylene ring, and the like. Of these, an azatriphenylene ring and a diazatriphenylene ring are preferable.
  • R 1 each other, R 2 s or R 1 and R 2 is formed ring is a fluorine atom by bonding, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, 7 to 40 carbon atoms ( Hetero) aralkyl group, alkoxy group having 1 to 20 carbon atoms, (hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms Group, an alkylcarbonyl group having 2 to 20 carbon atoms, a (hetero) arylcarbonyl group having 4 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or carbon It may be substituted with a 3 to 20 (hetero) aryl group.
  • R 1 and R 2 are represented by the following formula (2).
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • Z is represented by the following formula (3).
  • c represents an integer of 1 to 3, 1 or 2 is preferable from the viewpoint of achieving both solubility and performance, and 1 is more preferable.
  • d represents an integer of 0 to 3, and an integer of 1 to 3 is preferable from the viewpoint of durability, and 1 or 2 is particularly preferable.
  • a plurality of R ′ are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 3 to 3 carbon atoms.
  • 20 (hetero) aryloxy groups or (hetero) aryl groups having 3 to 20 carbon atoms From the viewpoint of durability, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms are preferable, and among them, a hydrogen atom is more preferable.
  • r represents an integer of 1 to 20.
  • r is preferably 2 or more and less than 18, more preferably 3 or more and less than 15, and still more preferably 3 or more and less than 10.
  • the iridium complex compound of the present invention represented by the formula (1) is more preferably represented by the following formula (1-1).
  • rings B, R 2 , L, b and n have the same meanings as in the formula (1).
  • R 3 to R 6 are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • R 3 to R 6 are directly bonded to adjacent R 3 to R 6 or are an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene having 6 to 12 carbon atoms.
  • a ring may be formed by bonding via a group.
  • Such rings include fluorene ring, naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, Examples thereof include a tetrahydronaphthalene ring, a quinoline ring, a quinazoline ring, an azaphenanthrene ring, and an azatriphenylene ring.
  • a fluorene ring, naphthalene ring, carbazole ring, carboline ring, quinoline ring, quinazoline ring, quinoxaline ring, or azatriphenylene ring is preferable, and a fluorene ring, naphthalene ring, or carbazole ring is more preferable.
  • These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • An arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • the iridium complex compound represented by the formula (1-1) has at least one group represented by the formula (2) in R 2 to R 6 .
  • the iridium complex compound of the present invention has a substituent represented by the formula (2).
  • the iridium complex compound of the present invention has improved solubility in an organic solvent.
  • at least one of R 2 to R 6 preferably has the substituent, and among these, R 4 or R 5 more preferably has the substituent, and R 4 It is more preferable that has a substituent.
  • R 1 and R 2 each represent a substituent bonded to the carbon atom or nitrogen atom constituting ring A and ring B, and when there are a plurality of R 1 or R 2 s , they are the same or different and each represents a hydrogen atom, Fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, (hetero) aryloxy having 3 to 20 carbon atoms Groups, alkylsilyl groups having 1 to 20 carbon atoms, (hetero) arylsilyl groups having 3 to 20 carbon atoms, alkylcarbonyl groups having 2 to 20 carbon atoms, (hetero) arylcarbonyl groups having 4 to 20 carbon atoms, It represents any of an alkylamino group having 2 to 20 carbon atoms, a (hetero)
  • R 3 to R 6 are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or 1 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms include a linear alkyl group, a branched alkyl group and a cyclic alkyl group. More specifically, a methyl group, an ethyl group, an n- Examples include propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group, isobutyl group, isopentyl group, t-butyl group, cyclohexyl group and the like. Of these, a linear alkyl group such as a methyl group, an ethyl group, an n-butyl group, and an n-hexyl group is preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms include a part of hydrogen atoms constituting a linear alkyl group, a branched alkyl group and a cyclic alkyl group substituted with a (hetero) aryl group More specifically, 1-phenyl-1-ethyl group, cumyl group, 3-pyridyl-1-propyl group, 3-phenyl-1-propyl group, 4-phenyl-1- Butyl group, 5-phenyl-1-pentyl group, 6-pyridyl-1-hexyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, 4-phenyl-1-cyclohexyl group, tetrahydronaphthyl Groups and the like. Of these, a 5-phenyl-1-pentyl group, a 6-phenyl-1-hexyl group, and a 7-phenyl-1-h
  • alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, hexyloxy group, cyclohexyloxy group, octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • Specific examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include a pyridyloxy group, a phenoxy group, and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • alkylsilyl group having 1 to 20 carbon atoms include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylphenyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, etc. Of these, triisopropyl group, t-butyldimethylsilyl group, and t-butyldiphenylsilyl group are preferable.
  • the (hetero) arylsilyl group having 3 to 20 carbon atoms include a diphenylpyridylsilyl group and a triphenylsilyl group, and among them, a triphenylsilyl group is preferable.
  • alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, and a cyclohexylcarbonyl group, and among them, an acetyl group and a pivaloyl group are preferable.
  • Specific examples of the (hetero) arylcarbonyl group having 4 to 20 carbon atoms include an allylcarbonyl group, a benzoyl group, a naphthoyl group, an anthryl group, etc. Among them, a benzoyl group is preferable.
  • alkylamino group having 2 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, and a dicyclohexylamino group.
  • Group, dicyclohexylamino group is preferred.
  • the (hetero) arylamino group having 3 to 20 carbon atoms include (4-pyridylphenyl) phenylamino group, phenylamino group, diphenylamino group, di (4-tolyl) amino group, di (2,6 -Dimethylphenyl) amino group and the like, among which diphenylamino group and di (4-tolyl) amino group are preferable.
  • the (hetero) aryl group having 3 to 20 carbon atoms means both an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence. Specific examples thereof include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, furan ring having one free valence.
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring having one free valence are preferable.
  • a benzene ring and a pyridine ring having a free valence of 2 are more preferable, and a benzene ring having one free valence is more preferable.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, alkylamino group having 2 to 20 carbon atoms, (hetero) arylamino group having 3 to 20 carbon atoms, and (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • Specific examples of the (hetero) arylamino group having 3 to 20 carbon atoms and the (hetero) aryl group having 3 to 20 carbon atoms are the same as those described in the previous section.
  • a is 2 or more, and if the adjacent plurality of R 1, Tonaria' in which R 1 each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • Such rings include fluorene ring, naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, Examples thereof include a tetrahydronaphthalene ring, a quinoline ring, a quinazoline ring, an azaphenanthrene ring, and an azatriphenylene ring.
  • a fluorene ring, a naphthalene ring, a carbazole ring, a carboline ring, a quinoline ring, a quinazoline ring, a quinoxaline ring, and an azatriphenylene ring are preferable, and a fluorene ring, a naphthalene ring, and a carbazole ring are more preferable.
  • b is 2 or more, and if the adjacent plurality of R 2, Tonaria' in which R 2 to each other, directly bonded to, or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms or, A ring may be formed by bonding via an arylene group having 6 to 12 carbon atoms.
  • Specific examples of such rings include carboline ring, diazacarbazole ring, azadibenzofuran ring, azadibenzothiophene ring, benzimidazole ring, benzoxazole ring, benzoxadiazole ring, benzthiazole ring, benzthiadiazole ring, quinoline.
  • benzoxazole ring, benzthiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, azaphenanthrene ring, and azatriphenylene ring are preferable, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, azaphenanthrene ring, azatriphenylene A ring is more preferred.
  • R 1 and R 2 are bonded directly or via an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene group having 6 to 12 carbon atoms;
  • a ring may be formed.
  • Specific examples of such a ring include an azaphenanthrene ring, a diazaphenanthrene ring, an azatriphenylene ring, a diazatriphenylene ring, etc. Among them, an azatriphenylene ring and a diazatriphenylene ring are preferable.
  • These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, (hetero) )
  • An arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted. Specific examples of these substituents are the same as those described in the previous section.
  • R 3 to R 6 are directly bonded to adjacent R 3 to R 6 , or an alkylene group having 3 to 12 carbon atoms, an alkenylene group having 3 to 12 carbon atoms, or an arylene having 6 to 12 carbon atoms. It may be bonded through a group to form a ring.
  • Such rings include fluorene ring, naphthalene ring, phenanthrene ring, triphenylene ring, chrysene ring, benzofuran ring, dibenzofuran ring, benzothiophene ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, Examples thereof include a tetrahydronaphthalene ring, a quinoline ring, a quinazoline ring, an azaphenanthrene ring, and an azatriphenylene ring.
  • a fluorene ring, a naphthalene ring, a carbazole ring, a carboline ring, a quinoline ring, a quinazoline ring, a quinoxaline ring, and an azatriphenylene ring are preferable, and a fluorene ring, a naphthalene ring, and a carbazole ring are more preferable.
  • These rings are further fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, (hetero) )
  • An arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted. Specific examples of these substituents are the same as those described in the previous section.
  • Xs When there are a plurality of Xs, they are the same or different and each represents a (hetero) arylene group having 6 to 20 carbon atoms, and when there are a plurality of Ar 1 s , they are the same or different and each has 3 to 20 carbon atoms ( Represents a hetero) aryl group.
  • a (hetero) arylene group having 6 to 20 carbon atoms means both an aromatic hydrocarbon group and an aromatic heterocyclic group having two free valences.
  • benzene ring examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, furan ring having two free valences.
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring, which have two free valences, are preferred.
  • a benzene ring and a pyridine ring having a free valence of 2 are more preferred, and a benzene ring having 2 free valences is more preferred.
  • a (hetero) aryl group having 3 to 20 carbon atoms means both an aromatic hydrocarbon group and an aromatic heterocyclic group having one free valence. Specific examples thereof include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, furan ring having one free valence.
  • a benzene ring, naphthalene ring, phenanthrene ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring, pyridine ring, pyrimidine ring, and triazine ring having one free valence are preferable.
  • a benzene ring, naphthalene ring, and phenanthrene ring having one free valence are more preferable, and a benzene ring and naphthalene ring having one free valence are more preferable.
  • These groups further include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 to 20 carbon atoms.
  • (Hetero) aryloxy group alkylsilyl group having 1 to 20 carbon atoms, (hetero) arylsilyl group having 3 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, ( Hetero) arylcarbonyl group, an alkylamino group having 2 to 20 carbon atoms, a (hetero) arylamino group having 3 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms may be substituted.
  • substituents are the same as those described in the section ⁇ R 1 to R 6 > above.
  • ⁇ Z> Z is represented by the formula (3).
  • a plurality of R ′ are the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a (hetero) aryl having 3 to 20 carbon atoms.
  • a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and a (hetero) aryl group having 3 to 20 carbon atoms are preferable, and among them, a hydrogen atom is more preferable.
  • r represents an integer of 1 to 20. From the viewpoint of solubility and electrical durability, it is preferably 2 or more and less than 18, more preferably 3 or more and less than 15, and still more preferably 3 or more and less than 10.
  • L is an organic ligand and is not particularly limited, but is preferably a monovalent bidentate ligand, and more preferably selected from the following chemical formulas. Note that a broken line in the chemical formula represents a coordination bond. When two organic ligands L are present, the organic ligands L may have different structures. When n is 3, L does not exist.
  • R 7 to R 9 and R 11 to R 20 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a fluorine atom.
  • R 7 and R 9 are a methyl group or a t-butyl group
  • R 8 and R 11 to R 18 are substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a halogen atom.
  • R 19 and R 20 are alkyl groups having 1 to 20 carbon atoms. Specific examples of the alkyl group having 1 to 20 carbon atoms are the same as those described in the above section ⁇ R 1 to R 6 >.
  • the molecular weight of the iridium complex compound of the present invention is usually 850 or more, preferably 900 or more, and usually 3000 or less, preferably 2000 or less. Within the above range, the stability of the complex is good.
  • ⁇ Structural features> The reason why the iridium complex compound of the present invention has good performance such as sufficiently high solubility in an organic solvent such as toluene and phenylcyclohexane and high luminous efficiency when it is made into an element is as follows. Guessed. In order to increase the solubility in an organic solvent, an alkyl group is usually introduced into the ligand of the iridium complex compound. Since alkyl groups can take many conformations, the energy for rearrangement increases upon crystallization. Therefore, it is expected that the iridium complex compound is difficult to crystallize and the solubility is improved.
  • the alkyl group chain length is too long, solubility will be manifested, but the portion of the molecule that does not contribute to light emission will increase, which may cause a decrease in device performance such as a decrease in light emission efficiency. It is done.
  • the following two points can be cited as disadvantages of introducing an alkyl group.
  • the alkyl group is relatively weak in chemical structure, and the sp 3 carbon-hydrogen bond is more likely to be radically cleaved than the aromatic ring, which tends to cause decomposition. For this reason, the drive life when it is made into an element becomes short.
  • the host compound used in the light-emitting layer is usually an aromatic compound, but if an iridium complex is substituted with an alkyl group, the compatibility with the host material becomes poor. Phase separation is likely to occur, and as a result, dispersibility of the iridium complex compound in the in-layer host material is deteriorated. This causes a decrease in luminous efficiency of the device and an increase in driving voltage.
  • the iridium complex compound of the present invention by replacing an alkyl group having at least one aromatic ring at the terminal, the solubility in an organic solvent is improved, and at the same time, the site of the sp 3 carbon-hydrogen bond of the alkyl group is changed.
  • the dispersibility of the iridium complex compound is improved by improving the compatibility with the aromatic compound host material. Due to these synergistic effects, the iridium complex compound of the present invention has high solubility suitable for the coating method and a sufficiently long pot life, and further, the luminous efficiency of the resulting device is increased, the driving voltage is lowered, and the driving life is reduced. Has the effect of being long.
  • the device performance is improved such as lowering the voltage of the organic electroluminescent device and improving the driving life. Leads to.
  • the organic material of the light emitting layer is once dissolved in an organic solvent, and then applied by a spin coating method or an ink jet method, and then the organic solvent is evaporated by heating, depressurization, or blowing an inert gas.
  • This is a method of forming a film.
  • a crosslinking group such as a C ⁇ C group, a C ⁇ C group or a benzocyclobutene group
  • it can be insolubilized by crosslinking by a known method such as heating or light irradiation.
  • the kind of organic solvent preferably used in such a wet film-forming method is an aliphatic compound which may be substituted such as hexane, heptane, methyl ethyl ketone, ethyl acetate, butyl acetate, toluene, xylene, phenylcyclohexane, benzoic acid.
  • aliphatic compound which may be substituted such as hexane, heptane, methyl ethyl ketone, ethyl acetate, butyl acetate, toluene, xylene, phenylcyclohexane, benzoic acid.
  • examples thereof include an optionally substituted aromatic compound such as ethyl, cyclohexane, cyclohexanone, methylcyclohexanone, or an optionally substituted alicyclic compound such as 3,3,5-trimethylcyclohexanone.
  • the type of organic solvent mainly used is preferably an aromatic compound or an alicyclic compound, and more preferably an aromatic compound.
  • phenylcyclohexane is more preferable because it has a preferable viscosity and boiling point in the wet film forming process.
  • the solubility of the iridium complex compound suitably used in the wet film formation method is usually 0.3% by weight or more, preferably 1.0% by weight or more, more preferably 1% by weight with respect to phenylcyclohexane at 25 ° C. under atmospheric pressure. .5% by weight or more.
  • the iridium complex compound of the present invention can be synthesized from a ligand and an Ir compound using a ligand that can be synthesized by a combination of known methods.
  • a method of synthesizing the iridium complex compound a method of forming a tris complex in one step shown in formula (I), an intermediate such as an Ir binuclear complex shown in formula (II), and a tris isomer
  • Examples of the method for forming the film include, but are not limited to.
  • a typical reaction represented by the formula (I) includes a method of obtaining a metal complex by a reaction of 3 equivalents of a ligand and 1 equivalent of Ir (acac) 3 (iridium acetylacetonate complex).
  • R represents a monovalent substituent.
  • the reaction can be promoted by using an excessive amount of the ligand, or the selectivity may be increased by using a small amount.
  • a mixed ligand complex may be formed by sequentially adding a plurality of types of ligands.
  • a typical reaction represented by the formula (II) for example, a reaction of 2 equivalents of a ligand and 1 equivalent of IrCl 3 ⁇ xH 2 O (iridium chloride ⁇ x hydrate) consists of two Ir atoms.
  • An example is a method of obtaining a metal complex by obtaining an intermediate such as a binuclear metal complex and then further reacting the ligand with 1 equivalent of Ir.
  • R in Formula (II) is synonymous with R in Formula (I).
  • the actual charge ratio of the ligand to the Ir compound can be appropriately adjusted.
  • a mixed ligand complex can be easily formed by using a ligand added at the end different from that of the first ligand.
  • an appropriate Ir compound such as an Ir cyclooctadienyl complex may be used in addition to the above Ir (acac) 3 complex and IrCl 3 .xH 2 O complex.
  • the reaction may be promoted by using a basic compound such as carbonate and a halogen trapping agent such as Ag salt.
  • a reaction temperature of about 50 ° C. to 400 ° C. is preferably used. Generally, a high temperature of 100 ° C. or higher is used.
  • the reaction may be carried out without a solvent, or a known solvent may be used. When performing by a high temperature reaction, a high boiling point solvent such as glycerin is preferred.
  • the iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent element, that is, an organic electroluminescent element material, and can also be suitably used as a luminescent material such as an organic electroluminescent element or other light emitting elements. It is.
  • the composition containing the iridium complex compound of the present invention and a solvent hereinafter, also referred to as “iridium complex compound-containing composition”.
  • the iridium complex compound-containing composition of the present invention contains the above-described iridium complex compound of the present invention and a solvent.
  • the iridium complex compound-containing composition of the present invention is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming an organic layer of an organic electroluminescent element.
  • the organic layer is particularly preferably a light emitting layer. That is, the iridium complex compound-containing composition is preferably an organic electroluminescent element composition, and more preferably used as a light emitting layer forming composition.
  • the content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.01% by weight or more, preferably 0.1% by weight or more, usually 15% by weight or less, preferably 10% by weight or less. .
  • the driving voltage can be reduced.
  • only 1 type may be contained in the iridium complex compound containing composition, and 2 or more types may be combined and contained in the iridium complex compound containing composition.
  • the iridium complex compound-containing composition of the present invention When used for, for example, an organic electroluminescent device, it contains a charge transporting compound used for an organic electroluminescent device, particularly a light emitting layer, in addition to the above-mentioned iridium complex compound and solvent. be able to.
  • a charge transporting compound used for an organic electroluminescent device particularly a light emitting layer
  • the solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used for forming a layer containing an iridium complex compound by wet film formation.
  • the solvent is not particularly limited as long as the charge transporting compound described later dissolves satisfactorily because the iridium complex compound of the present invention as a solute has high solubility.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane; aromatic hydrocarbons such as toluene, xylene, methicylene, phenylcyclohexane, tetralin; chlorobenzene, dichlorobenzene, trichlorobenzene Halogenated aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, Aromatic ethers such as 2,4-dimethylanisole and
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the boiling point is 300 ° C. or lower, preferably 270 ° C. or lower, more preferably 250 ° C. or lower. Below this range, film formation stability may be reduced due to solvent evaporation from the composition during wet film formation.
  • the content of the solvent is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, particularly preferably 80 parts by weight or more, and preferably 99.95 parts by weight or less, based on 100 parts by weight of the composition.
  • the amount is preferably 99.9 parts by weight or less, particularly preferably 99.8 parts by weight or less.
  • the thickness of the light emitting layer is usually about 3 to 200 nm. However, if the solvent content is less than this lower limit, the viscosity of the composition becomes too high, and film forming workability may be lowered. On the other hand, if the upper limit is exceeded, the thickness of the film obtained by removing the solvent after film formation cannot be obtained, so that film formation tends to be difficult.
  • charge transporting compound that can be contained in the iridium complex compound-containing composition of the present invention
  • materials for organic electroluminescent elements can be used.
  • examples thereof include derivatives of benzene, naphthalene, anthracene, biphenyl, phenanthrene, pyridine, pyrimidine, triazine, carbazole, carboline, indolocarbazole, quinoline, phenanthroline, and triphenylamine.
  • the content of the charge transporting compound in the iridium complex compound-containing composition of the present invention is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, and usually 100 parts by weight or more. 50 parts by weight or less, preferably 30 parts by weight or less.
  • the content of the iridium complex compound in the iridium complex compound-containing composition is usually 100% by weight or less, preferably 50% by weight or less, particularly preferably 30% by weight based on the charge transporting compound in the iridium complex compound-containing composition. It is usually not less than 1% by weight, preferably not less than 2% by weight, particularly preferably not less than 5% by weight.
  • the iridium complex compound-containing composition of the present invention may further contain other compounds in addition to the above-described compounds as necessary.
  • another solvent may be contained. Examples of such a solvent include amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and dimethyl sulfoxide. One of these may be used alone, or two or more may be used in any combination and ratio.
  • the organic electroluminescent device of the present invention has at least an anode, a cathode and a light emitting layer provided between both electrodes on a substrate, and is formed by a wet film forming method using the composition of the present invention. It has a layer.
  • the layer formed by the wet film formation method is preferably the light emitting layer.
  • FIG. 2 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescence device of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is an anode
  • reference numeral 3 is a hole injection layer
  • reference numeral 4 is a positive electrode.
  • a hole transport layer represents a light emitting layer
  • reference numeral 6 represents a hole blocking layer
  • reference numeral 7 represents an electron transport layer
  • reference numeral 8 represents an electron injection layer
  • reference numeral 9 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film or a sheet is used.
  • a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also one of preferable methods.
  • Anode 2 is provided on the substrate 1.
  • the anode 2 plays a role of injecting holes into a layer on the light emitting layer side (hole injection layer 3, hole transport layer 4, or light emitting layer 5).
  • This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or It is composed of a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode 2 is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode 2 can also be formed by dispersing and coating the substrate 1.
  • a conductive polymer a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett. 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably about 500 nm or less. When it may be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • the anode surface is subjected to ultraviolet (UV) / ozone treatment, oxygen plasma treatment or argon plasma treatment. It is preferable to do.
  • the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 5 and is usually formed on the anode 2.
  • the method for forming the hole injection layer 3 according to the present invention may be a vacuum deposition method or a wet film formation method, and is not particularly limited, but the hole injection layer 3 is formed by a wet film formation method from the viewpoint of reducing dark spots. It is preferable.
  • the thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the material for forming the hole injection layer 3 is usually mixed with an appropriate solvent (hole injection layer solvent) to form a film-forming composition (positive A composition for forming a hole injection layer), and applying the composition for forming a hole injection layer on a layer (usually an anode) corresponding to the lower layer of the hole injection layer 3 by an appropriate technique.
  • the hole injection layer 3 is formed by coating and drying.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • a hole transporting compound is a compound having a hole transporting property, which is usually used in a hole injection layer of an organic electroluminescence device, a monomer or the like may be a polymer compound or the like. However, it is preferably a high molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamines Derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the derivative includes, for example, an aromatic amine derivative and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a mer.
  • the hole transporting compound used as the material for the hole injection layer 3 may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds are used. It is preferable to use the above together.
  • an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included.
  • Preferable examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (IV).
  • Ar 51 and Ar 52 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 53 to Ar 55 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 56 to Ar 66 each independently represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • R 111 and R 112 each independently represents a hydrogen atom or an arbitrary substituent.
  • Ar 51 to Ar 66 in formula (IV) and the above linking group group from the viewpoint of the solubility, heat resistance, hole injection / transport properties of the polymer compound, A benzene ring, naphthalene ring, phenanthrene ring, thiophene ring and pyridine ring having two free valences are preferred, and a benzene ring and a naphthalene ring having two free valences are more preferred.
  • the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 to Ar 66 may further have a substituent.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like are preferable.
  • examples of the substituent include an alkyl group, an alkenyl group, an alkoxy group, a silyl group, a siloxy group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. .
  • a hole transporting compound a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid.
  • PEDOT / PSS a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene (3,4-ethylenedioxythiophene), which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid.
  • the end of this polymer may be capped with methacrylate or the like.
  • a compound having an insolubilizing group described in the section “Hole transporting layer” described later may be used as the hole transporting compound.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by weight or more, preferably in terms of film thickness uniformity. Is 0.1% by weight or more, more preferably 0.5% by weight or more, and usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, unevenness in film thickness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron accepting compound as a constituent material of the hole injection layer.
  • the electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more is preferable, and 5 eV or more. More preferred is a compound that is
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • examples thereof include one or more compounds selected from the group. More specifically, high-valent inorganic compounds such as iron (III) chloride (Japanese Unexamined Patent Publication No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene, tris (pentafluorophenyl) borane (Japanese Unexamined Patent Publication No.
  • These electron accepting compounds can improve the conductivity of the hole injection layer by oxidizing the hole transporting compound.
  • the content of the electron-accepting compound in the hole-injecting layer or the composition for forming a hole-injecting layer with respect to the hole-transporting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.
  • At least one of the solvents of the composition for forming a hole injection layer used in the wet film formation method is preferably a compound that can dissolve the constituent material of the hole injection layer.
  • the boiling point of this solvent is usually 110 ° C. or higher, preferably 140 ° C. or higher, particularly 200 ° C. or higher, usually 400 ° C. or lower, and preferably 300 ° C. or lower. If the boiling point of the solvent is too low, the drying speed is too high and the film quality may be deteriorated. Further, if the boiling point of the solvent is too high, it is necessary to increase the temperature of the drying step, which may adversely affect other layers and the substrate.
  • ether solvents examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole .
  • Aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluen
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent for example, toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene, etc.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the composition After preparing the composition for forming the hole injection layer, the composition is applied on the layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by wet film formation, and dried.
  • the hole injection layer 3 is formed.
  • the temperature in the coating step is preferably 10 ° C. or higher, and preferably 50 ° C. or lower in order to prevent film loss due to the formation of crystals in the composition.
  • coating process is not limited unless the effect of this invention is impaired remarkably, it is 0.01 ppm or more normally, and usually 80% or less.
  • the film of the composition for forming a hole injection layer is usually dried by heating or the like. Examples of the heating means used in the heating step include a clean oven and a hot plate.
  • the heating temperature in the heating step is preferably heated at a temperature equal to or higher than the boiling point of the solvent used in the composition for forming a hole injection layer as long as the effects of the present invention are not significantly impaired.
  • at least one type is preferably heated at a temperature equal to or higher than the boiling point of the solvent.
  • the heating step is preferably performed at 120 ° C or higher, preferably 410 ° C or lower.
  • the heating time is not limited as long as the heating temperature is equal to or higher than the boiling point of the solvent of the hole injection layer forming composition and sufficient insolubilization of the coating film does not occur, but preferably 10 seconds or more, 180 minutes or less. If the heating time is too long, the components of the other layers tend to diffuse, and if it is too short, the hole injection layer tends to be inhomogeneous. Heating may be performed in two steps.
  • the hole injection layer 3 is formed by vacuum deposition, one or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transporting compound, electron accepting compound, etc.) are placed in a vacuum vessel. Put in crucibles installed (in case of using two or more materials, put them in each crucible), evacuate the inside of the vacuum vessel to about 10 -4 Pa with a suitable vacuum pump, then heat the crucible (two types When using the above materials, each crucible is heated), and the amount of evaporation is controlled to evaporate the solvent (when using two or more materials, the amount of evaporation is independently controlled to evaporate).
  • a hole injection layer 3 is formed on the anode 2 of the substrate placed opposite to the substrate.
  • the hole injection layer 3 can also be formed by putting those mixtures into a crucible, heating and evaporating.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more, usually 9.0 ⁇ 10 ⁇ 6 Torr. (12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / second or more and usually 5.0 ⁇ / second or less.
  • the hole transport layer 4 is formed on the hole injection layer 3 when there is a hole injection layer and on the anode 2 when there is no hole injection layer 3. Can do.
  • the organic electroluminescent device of the present invention may have a configuration in which the hole transport layer is omitted.
  • the formation method of the hole transport layer 4 may be a vacuum deposition method or a wet film formation method, and is not particularly limited. However, from the viewpoint of reducing dark spots, the hole transport layer 4 is preferably formed by a wet film formation method.
  • the material forming the hole transport layer 4 is preferably a material having high hole transportability and capable of efficiently transporting injected holes. Therefore, it is preferable that the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is high, and impurities that become traps are not easily generated during manufacturing or use. In many cases, it is preferable not to quench the light emitted from the light emitting layer 5 or to form an exciplex with the light emitting layer 5 to reduce the efficiency because it is in contact with the light emitting layer 5.
  • Such a material for the hole transport layer 4 may be any material conventionally used as a constituent material for the hole transport layer.
  • the hole transport property used for the hole injection layer 3 described above. What was illustrated as a compound is mentioned.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the polyarylamine derivative is preferably a polymer containing a repeating unit represented by the following formula (V).
  • the polymer is preferably composed of a repeating unit represented by the following formula (V).
  • Ar a or Ar b may be different in each repeating unit.
  • Ar a and Ar b each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.
  • aromatic hydrocarbon group which may have a substituent include, for example, a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene having one or two free valences.
  • Ring benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like, a 6-membered monocyclic ring or a 2-5 condensed ring having one or two free valences, or a ring thereof Are groups in which two or more rings are linked by a direct bond.
  • Ar a and Ar b are each independently a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene having 1 or 2 free valences from the viewpoint of solubility and heat resistance in an organic solvent.
  • aromatic hydrocarbon group and aromatic heterocyclic group in Ar a and Ar b may have include an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, and a dialkyl.
  • Examples thereof include an amino group, a diarylamino group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, a cyano group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group.
  • an arylene group such as an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent exemplified as Ar a or Ar b in the formula (V) is used as its repeating unit.
  • the polymer which has is mentioned.
  • R a , R b , R c and R d are each independently an alkyl group, alkoxy group, phenylalkyl group, phenylalkoxy group, phenyl group, phenoxy group, alkylphenyl group, alkoxyphenyl group.
  • v and w each independently represent an integer of 0 to 3. When v or w is 2 or more, a plurality of R a or R b contained in one molecule may be the same or different, and adjacent R a or R b form a ring. Also good. )
  • R e and R f are each independently synonymous with R a , R b , R c or R d in formula (VI) above.
  • x and y each independently represents an integer of 0 to 3.
  • a plurality of R e and R f contained in one molecule may be the same or different, and adjacent R e or R f may form a ring.
  • Q represents an atom or a group of atoms constituting a 5-membered ring or a 6-membered ring.
  • Q examples include —O—, —BR—, —NR—, —SiR 2 —, —PR—, —SR—, —CR 2 — or a group formed by bonding thereof.
  • R here represents a hydrogen atom or arbitrary organic groups.
  • the arbitrary organic group in the present invention may be a group containing at least one carbon atom.
  • the polyarylene derivative preferably has a repeating unit represented by the following formula (VIII) in addition to at least one of the repeating units consisting of the formula (VI) and the formula (VII).
  • Ar c to Ar h and Ar j each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent. Each independently represents 0 or 1.
  • Ar c to Ar h and Ar j are the same as Ar a and Ar b in the formula (V).
  • Specific examples of the above formulas (VI) to (VIII) and polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer 3 and then heated and dried after the wet film formation.
  • the composition for forming a hole transport layer contains a solvent in addition to the above hole transport compound.
  • the solvent used is the same as that used for the composition for forming a hole injection layer.
  • the film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer 3.
  • the film forming conditions are the same as in the case of forming the hole injection layer 3.
  • the hole transport layer 4 may contain various light emitting materials, electron transport compounds, binder resins, coating property improving agents, and the like in addition to the hole transport compound.
  • the hole transport layer 4 is preferably a layer formed by insolubilizing a compound having an insolubilizing group (hereinafter referred to as “insolubilizing compound”) from the viewpoint of heat resistance or film formability.
  • the insolubilizing compound is a compound having an insolubilizing group, and forms an insolubilizing polymer by insolubilization.
  • the insolubilizing group is a group that reacts by irradiation with heat and / or active energy rays, and is a group having an effect of lowering the solubility in an organic solvent or water after the reaction than before the reaction.
  • the insolubilizing group is preferably a leaving group or a crosslinkable group.
  • the leaving group refers to a group that dissociates from a bonded aromatic hydrocarbon ring at 70 ° C. or more and is soluble in a solvent.
  • being soluble in a solvent means that the compound is dissolved in toluene at 0.1% by weight or more at room temperature in a state before reacting by irradiation with heat and / or active energy rays.
  • the solubility in toluene is preferably 0.5% by weight or more, more preferably 1% by weight or more.
  • the leaving group is preferably a group that is thermally dissociated without forming a polar group on the aromatic hydrocarbon ring side, and more preferably a group that is thermally dissociated by a reverse Diels-Alder reaction. Furthermore, it is preferably a group that thermally dissociates at 100 ° C. or higher, and is preferably a group that thermally dissociates at 300 ° C. or lower.
  • crosslinkable group examples include groups derived from cyclic ethers such as oxetane and epoxy; groups derived from unsaturated double bonds such as vinyl group, trifluorovinyl group, styryl group, acrylic group, methacryloyl and cinnamoyl; Examples include groups derived from benzocyclobutane.
  • the insolubilizing compound may be any of a monomer, an oligomer and a polymer.
  • the insolubilizing compound may have only 1 type, and may have 2 or more types by arbitrary combinations and ratios.
  • a hole transporting compound having a crosslinkable group is preferably used as the insolubilizing compound.
  • hole transporting compounds include nitrogen-containing aromatic compound derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives, phthalocyanine derivatives, porphyrin derivatives; triphenylamine derivatives Silole derivatives; oligothiophene derivatives, condensed polycyclic aromatic derivatives, metal complexes and the like.
  • nitrogen-containing aromatic compound derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives, phthalocyanine derivatives, porphyrin derivatives; triphenylamine derivatives Silole derivatives; oligothiophene derivatives, condensed polycyclic aromatic derivatives, metal complexes and the like.
  • nitrogen-containing aromatic derivatives such as pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, carbazole derivatives; triphenylamine derivatives, silole derivatives, condensed polycyclic aromatic derivatives, metal complexes, etc.
  • triphenylamine derivatives particularly preferred are triphenylamine derivatives.
  • a composition for forming a hole transport layer in which the insoluble compound is dissolved or dispersed in a solvent is usually prepared, and the film is formed by a wet film formation method. And insolubilize.
  • the composition for forming a hole transport layer may further contain an application improver such as a leveling agent and an antifoaming agent; an electron accepting compound; a binder resin and the like.
  • the insoluble compound is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, usually 50% by weight or less, preferably 20%. It is contained by weight% or less, more preferably 10% by weight or less.
  • the insoluble compound is formed by heating and / or irradiation with active energy such as light. Insolubilize.
  • the conditions such as temperature and humidity during film formation are the same as those during the wet film formation of the hole injection layer 3.
  • the heating method after film formation is not particularly limited. As heating temperature conditions, it is 120 degreeC or more normally, Preferably it is 400 degrees C or less.
  • the heating time is usually 1 minute or longer, preferably 24 hours or shorter.
  • the heating means is not particularly limited, and means such as placing a laminated body having a deposited layer on a hot plate or heating in an oven is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the light-emitting layer 5 is usually provided on the hole transport layer 4.
  • the light-emitting layer 5 was excited by recombination of holes injected from the anode 2 through the hole injection layer 3 and electrons injected from the cathode 9 through the electron transport layer 7 between the electrodes to which an electric field was applied. , Which is the main light-emitting layer.
  • the light emitting layer 5 preferably contains a light emitting material (dopant) and one or more host materials.
  • the light emitting layer 5 may be formed by a vacuum deposition method, but is particularly preferably a layer produced by a wet film forming method using the composition for organic electroluminescent elements of the present invention.
  • the wet film forming method is, as described above, a composition containing a solvent, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating.
  • This method is a wet film formation method such as a method, an ink jet method, a screen printing method, a gravure printing method, or a flexographic printing method.
  • the light emitting layer 5 may contain other materials and components as long as the performance of the present invention is not impaired.
  • the thinner the film thickness between the electrodes the larger the effective electric field, the more current is injected, so the driving voltage is lowered.
  • the drive voltage of the organic electroluminescence device decreases when the total film thickness between the electrodes is thin, but if it is too thin, a short circuit occurs due to the protrusion caused by the electrode such as ITO, so a certain film thickness is required. It becomes.
  • the light emitting layer 5 and other organic materials such as the hole injection layer 3 and the electron transport layer 7 are used.
  • the total film thickness combined with the layer is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more, usually 1000 nm or less, preferably 500 nm or less, and more preferably 300 nm or less.
  • the conductivity of the hole injection layer 3 other than the light emitting layer 5 and the electron injection layer 8 described later is high, the amount of charge injected into the light emitting layer 5 increases. It is also possible to reduce the drive voltage while increasing the thickness to reduce the thickness of the light emitting layer 5 while maintaining the total thickness to some extent.
  • the film thickness of the light emitting layer 5 is usually 10 nm or more, preferably 20 nm or more, and usually 300 nm or less, preferably 200 nm or less.
  • the thickness of the light emitting layer 5 is usually 30 nm or more, preferably 50 nm or more, usually 500 nm or less, preferably 300 nm or less. is there.
  • the hole blocking layer 6 is laminated on the light emitting layer 5 so as to be in contact with the cathode side interface of the light emitting layer 5.
  • the hole blocking layer 6 has a function of confining holes and electrons in the light emitting layer 5 and improving luminous efficiency. That is, the hole blocking layer 6 is generated by increasing the recombination probability with electrons in the light emitting layer 5 by blocking the holes moving from the light emitting layer 5 from reaching the electron transport layer 7.
  • the physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). Is high.
  • Examples of the hole blocking layer material satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, and the like.
  • Ligand complexes metal complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes, styryl compounds such as distyrylbiphenyl derivatives ( JP-A-11-242996), triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole 7-41759) and phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297). It is.
  • the hole blocking material is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the hole blocking layer 6 can also be formed by the same method as the hole injection layer 3, but usually a vacuum deposition method is used.
  • the electron transport layer 7 is provided between the hole injection layer 6 and the electron injection layer 8 for the purpose of further improving the light emission efficiency of the device.
  • the electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 between electrodes to which an electric field is applied in the direction of the light emitting layer 5.
  • the electron transporting compound used for the electron transport layer 7 the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons can be efficiently transported with high electron mobility. It must be a compound.
  • metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Unexamined Patent Publication No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives , Distyrylbiphenyl derivatives, silole derivatives, 3- or 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • the lower limit of the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 100 nm.
  • the electron transport layer 7 is formed by a wet film formation method or a vacuum vapor deposition method in the same manner as the hole injection layer 3, but a vacuum vapor deposition method is usually used.
  • the electron injection layer 8 serves to efficiently inject electrons injected from the cathode 9 into the light emitting layer 5.
  • the material for forming the electron injection layer 8 is preferably a metal having a low work function, and alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium are used.
  • the film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • inserting an ultra-thin insulating film (0.1-5 nm) such as LiF, MgF 2 , Li 2 O, Cs 2 CO 3 at the interface between the cathode 9 and the electron transport layer 7 also improves the efficiency of the device.
  • an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ( Described in Japanese Laid-Open Patent Publication No. 10-270171, Japanese Laid-Open Patent Publication No. 2002-1000047, Japanese Laid-Open Patent Publication No. 2002-1000048, and the like, thereby improving electron injection / transport properties and achieving excellent film quality. It is preferable because it becomes possible.
  • the film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5.
  • the evaporation source is put into a crucible or metal boat installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa with an appropriate vacuum pump, and then the crucible or metal boat is attached. Evaporate by heating to form an electron injection layer on the substrate placed facing the crucible or metal boat.
  • the alkali metal is deposited using an alkali metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal is evaporated.
  • the organic electron transport material and alkali metal are co-evaporated, the organic electron transport material is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 ⁇ 4 Pa with an appropriate vacuum pump.
  • Each crucible and dispenser are simultaneously heated and evaporated to form an electron injection layer on the substrate placed facing the crucible and dispenser. At this time, co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 8, but there may be a concentration distribution in the film thickness direction.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer side (such as the electron injection layer 8 or the light emitting layer 5).
  • the material used for the cathode 9 can be the material used for the anode 2, but a metal having a low work function is preferable for efficient electron injection, and tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the film thickness of the cathode 9 is usually the same as that of the anode 2.
  • Further laminating a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • the electron blocking layer prevents electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the recombination probability with holes in the light emitting layer 5, There is a role of confining in the light emitting layer 5 and a role of efficiently transporting holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
  • the characteristics required for the electron blocking layer include high hole transportability, a large energy gap (difference between HOMO and LUMO), and a high excited triplet level (T1).
  • the electron blocking layer is also formed by a wet film forming method because the device manufacturing becomes easy. Therefore, it is preferable that the electron blocking layer also has wet film formation compatibility.
  • a material used for such an electron blocking layer a copolymer of dioctylfluorene and triphenylamine typified by F8-TFB (International Publication No. 2004/084260).
  • the organic electroluminescent element of the present invention can be provided between two substrates, at least one of which is highly transparent. Furthermore, a structure in which a plurality of layers shown in FIG. 2 are stacked (a structure in which a plurality of light emitting units are stacked) may be employed. In this case, instead of the interface layer between the steps (between the light emitting units) (two layers when the anode is ITO and the cathode is Al), for example, V 2 O 5 or the like is used as the charge generation layer to form a barrier between the steps. From the viewpoint of luminous efficiency and driving voltage.
  • the present invention can be applied to any of organic electroluminescent elements, a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the display device and the illumination device of the present invention use the organic electroluminescent element of the present invention as described above.
  • the display device and the illumination device of the present invention can be obtained by the method described in “Organic EL display” (Ohm, August 20, 2004, published by Shizushi Tokito, Chiba Adachi, Hideyuki Murata). Can be formed.
  • the present invention will be described in more detail by way of examples.
  • the present invention is not limited to the following examples unless it exceeds the gist.
  • the values of various conditions and evaluation results in the following examples have meanings as preferred values of the upper limit or lower limit in the embodiments of the present invention, and the preferred ranges are the above upper limit or lower limit values and the following values: It may be a range defined by a combination of values of the examples or values between the examples.
  • the obtained Grignard reagent solution was slowly added dropwise to a reaction vessel containing a solution of 3-bromobenzonitrile (45.2 g) in dry tetrahydrofuran (130 mL) under a nitrogen stream at room temperature. Thereafter, the mixture was stirred at 60 ° C. for 1 hour. Thereafter, an aqueous ammonium chloride solution was added to stop the reaction, and after water and dichloromethane were added for separation and washing, the organic phase was dried over magnesium sulfate. Thereafter, the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain compound 4 (20 g).
  • the obtained Grignard reagent solution was slowly added dropwise at room temperature to a reaction vessel containing a solution of 3-bromobenzonitrile (53.1 g) in dry tetrahydrofuran (130 mL) under a nitrogen stream. Thereafter, the mixture was stirred at 60 ° C. for 1 hour. After returning to room temperature, an aqueous ammonium chloride solution was added to stop the reaction, and after water and methylene chloride were added and separated and washed, the organic phase was dried over magnesium sulfate. Thereafter, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography to obtain compound 7 (62.5 g).
  • Example 1 [Production of organic electroluminescence device] An organic electroluminescent element having the structure shown in FIG. 2 was produced by the following method.
  • ITO indium tin oxide
  • a hole injection layer was formed by a wet film formation method as follows.
  • a polymer compound having an aromatic amino group of the following formula (PB-1) weight average molecular weight: 33000, number average molecular weight: 25000) and an aromatic amino group of (PB-2) are used.
  • PB-1 weight average molecular weight: 33000, number average molecular weight: 33000
  • PB-2 aromatic amino group of (PB-2)
  • PB-1 weight average molecular weight: 76000, number average molecular weight: 40000
  • A-1 electron-accepting compound having the following structural formula
  • spin coating is performed under the following conditions, and the film thickness is 40 nm.
  • a uniform thin film was formed.
  • the polymer compounds PB-1 and PB-2 were synthesized with reference to the method disclosed in International Publication No. 2009/102027.
  • the numbers in the structural formula PB-1 shown below represent the ratio of the two types of repeating units represented by [].
  • Ar in the structural formula PB-2 represents an aryl group shown on the right side of the structural formula, and the two kinds of aryl groups exist in a molar ratio represented by x.
  • a composition for organic electroluminescent elements using cyclohexane was prepared, and spin coating was performed using the composition for organic electroluminescent elements under the following conditions to obtain a thin film having a thickness of 11 nm.
  • Ar in the structural formula PB-3 represents two kinds of aryl groups shown on the right side of the structural formula, and the two kinds of aryl groups are present in a molar ratio represented by numerals.
  • the polymer compound PB-3 was synthesized with reference to the method disclosed in International Publication No. 2011/095531.
  • a compound (HB-1) shown below was laminated as a hole blocking layer with a thickness of 10 nm.
  • an aluminum 8-hydroxyquinoline complex (ET-1) shown below was deposited as an electron transport layer on the hole blocking layer in the same manner to a film thickness of 20 nm.
  • the substrate temperature during vacuum deposition of the hole blocking layer and the electron transport layer was kept at room temperature.
  • the element on which the electron transport layer has been deposited is once taken out from the vacuum deposition apparatus into the atmosphere, and a 2 mm wide stripe-shaped shadow mask is orthogonal to the ITO stripe of the anode as a mask for cathode deposition.
  • it was placed in another vacuum vapor deposition apparatus and exhausted until the degree of vacuum in the apparatus was 3.3 ⁇ 10 ⁇ 4 Pa or less in the same manner as the organic layer.
  • lithium fluoride LiF
  • an aluminum layer having a film thickness of 80 nm was formed as a cathode on the electron injection layer to complete the cathode.
  • the substrate temperature at the time of vapor deposition of an electron injection layer and a cathode was kept at room temperature.
  • an organic electroluminescent element having a light emitting area portion having a size of 2 mm ⁇ 2 mm was obtained.
  • the maximum wavelength of the emission spectrum of the device was 520 nm, and it was identified to be derived from the iridium complex compound (D-1).
  • Example 1 In Example 1, an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound D-1 used for forming the light emitting layer was changed to Compound D-4 represented by the following formula. .
  • Comparative Example 2 In Example 1, an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound D-1 used for forming the light emitting layer was changed to Compound D-5 represented by the following formula. .
  • Compound D-5 was obtained by the method described in Japanese Patent Application Laid-Open No. 2010-202644.
  • Example 1 The characteristics of the organic electroluminescence devices fabricated in Example 1 and Comparative Examples 1 and 2 and the initial luminance was set to 10,000 cd / m 2 , a DC driving test was performed, and the time until the luminance decreased to 90% (LT 90 driving) Table 1 summarizes the lifetime.
  • the organic electroluminescent device having a layer containing the iridium complex compound of the present invention has high power efficiency and a long driving life.
  • Example 2 An organic electroluminescent device was produced in the same manner as in Example 1 except that the hole blocking layer in Example 1 was changed to the following compound (HB-2). The maximum wavelength of the emission spectrum of the device was 521 nm, which was identified as being derived from the iridium complex compound (D-1).
  • Example 2 (Examples 3 to 4, Comparative Example 5)
  • an organic electroluminescent element was produced in the same manner as in Example 2 except that the light emitting material used for forming the light emitting layer was changed to the compounds described in Table 2.
  • the characteristics of the organic electroluminescence devices produced in Examples 2 to 4 and Comparative Example 5 and the time until the luminance decreased to 80% (LT 80 driving) were performed by performing a DC driving test with an initial luminance of 10,000 cd / m 2. Table 2 summarizes the lifetime.
  • the organic electroluminescence device having the layer containing the iridium complex compound of the present invention has a low driving voltage and a long driving life.
  • Example 6 In Example 1, a device was produced in the same manner as in Example 1 except that the charge transporting material used for forming the light emitting layer was changed from HO-1 to HO-3 shown below. Table 3 shows the characteristics of the organic electroluminescent device produced in Comparative Example 6 and the DC drive test with an initial luminance of 10,000 cd / m 2 until the luminance is reduced to 90% (LT 90 drive life). Summarized.
  • the organic electroluminescent device having a layer containing the iridium complex compound of the present invention includes a nitrogen-containing aromatic heterocyclic compound as a charge transport material, and thus has high power efficiency and a long driving life. I understand.
  • Example 7 (Comparative Example 7)
  • the charge transport materials HO-1 and HO-2 used in forming the light emitting layer were changed to HO-3 and HO-4 shown below, respectively, and the light emitting material D-1 was shown as D
  • D A device was fabricated in the same manner as in Example 1 except that the value was changed to -8.
  • Comparative Example 8 Examples 5 to 8
  • a device was fabricated in the same manner as in Comparative Example 7, except that the light emitting material and the charge transporting material used for forming the light emitting layer were changed to the combinations of compounds shown in Table 4, respectively.
  • the structures of D-9 to D-11 are shown below.
  • the structures of HO-5 and HO-6 are shown below.
  • the characteristics and initial luminance of the obtained organic electroluminescent element are set to 7000 cd / m 2 , a direct current driving test is performed, and the time until the luminance is reduced to 85% (LT 85 driving life) is summarized in Table 4.
  • the organic electroluminescence device having the layer containing the organometallic complex of the present invention has high power efficiency and a long driving life. Furthermore, it can be seen that the charge transport material used in this case preferably contains a nitrogen-containing aromatic heterocyclic compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明は、有機溶媒に可溶であり、化合物が再析出すること無く長期保存が可能であり、さらには該化合物を用いて作製される有機電界発光素子の駆動電圧が低く発光効率が高いイリジウム錯体化合物、及び該化合物を含む有機電界発光素子、並びに該有機電界発光素子を用いた表示装置及び照明装置を提供することを目的とする。 本発明は、特定の化学構造を有するイリジウム錯体化合物に関する。さらには該化合物を用いて作製される、駆動電圧が低く駆動寿命が長い有機電界発光素子に関する。

Description

イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
 本発明はイリジウム錯体化合物に関し、特に、有機電界発光素子の発光層の材料として有用なイリジウム錯体化合物、該化合物を含有する組成物、該組成物を用いて作製する有機電界発光素子、該有機電界発光素子を含む表示装置及び照明装置に関する。
 近年、有機電界発光照明(有機EL照明)や有機電界発光ディスプレイ(有機ELディスプレイ)など、有機電界発光素子(以下、「有機EL素子」と称すこともある。)を利用する各種電子デバイスが実用化されつつある。有機EL素子は、印加電圧が低く消費電力が小さく、面発光であり、三原色発光も可能であることから、照明やディスプレイへの適用が盛んに検討されている。そのためにも発光効率の改善が求められる。発光効率の改善としては、例えば、有機EL素子の発光層に燐光発光材料を利用することが提案されている。燐光発光材料としては、例えば、ビス(2-フェニルピリジナト-N,C2’)イリジウムアセチルアセトナート(Irppy(acac))や、トリス(2-フェニルピリジナト-N,C2’)(Ir(ppy))イリジウムをはじめとしたオルソメタル化イリジウム錯体が広く知られている。
 このような燐光発光材料を使用して有機EL素子を形成する方法としては、主に真空蒸着法が利用されている。しかし通常、素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される故、真空蒸着法では、蒸着プロセスが煩雑となり、生産性に乏しく、かつ、これら素子からなる照明やディスプレイのパネルの大型化が極めて難しいという問題があった。
 一方、有機EL素子は、塗布法により成膜し、層を形成していくことも可能である。塗布法では、真空蒸着法に比べて、容易にかつ歩留まりよく、安定した層を形成できるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
 ここで塗布法による成膜のためには、層に含まれる有機材料が有機溶媒に溶解しやすい状態であることが必要である。通常、用いられる有機溶媒としては、例えばトルエンのような低沸点で低粘度の溶媒が使用される。このような溶媒を使用して作製したインクは、スピンコート法などにより容易に成膜することができる。また、有機溶媒については、塗布膜の均一性や作業上の安全性の観点から、フェニルシクロヘキサンのような、揮発性が低く、引火点が高い有機溶媒が工業的にはより好ましく使用される。さらに、有機材料と溶媒とを含む組成物は、有機材料が保存中に再び析出することなく均一な状態を保持する、すなわちポットライフが十分長いことが要求される。
 塗布法による有機EL素子の製造については、Ir(ppy)(acac)を主骨格としたイリジウム錯体を1,2-ジクロロエタンに溶解し、塗布法により作製した素子(特許文献1)、特定の置換基を有するビフェニルピリジン配位子のイリジウム錯体をトルエン等の有機溶媒に溶解し、塗布法により作製した素子(特許文献2)が開示されている。
 しかし、これらの素子は、塗布法により作製できるものの、駆動電圧が高く、発光効率が低いという点で改良の余地があった。
 このような背景から、駆動電圧が下がるようなイリジウム錯体の改良も提案されている(特許文献3)。
日本国特開2006-290781号公報 国際公開第2004/026886号 国際公開第2011/032626号
 しかしながら、イリジウム錯体化合物を溶解した組成物のポットライフについては、何ら言及はなく、量産化という観点からはまだまだ検討が不十分であった。
 本発明は、上記課題を鑑みてなされたものであり、トルエンやフェニルシクロヘキサンのような有機溶媒に可溶であり、該組成物中の固形分が再析出すること無く長期保存が可能であり、さらにはそれを用いて作製される素子の駆動電圧が低く発光効率が高いイリジウム錯体化合物を提供することを課題とする。
 また、本発明は駆動電圧が低く、発光効率が高い有機電界発光素子、並びに該有機電界素子を含む表示装置及び照明装置を提供することを課題とする。
 本発明者らは、上記課題に鑑み鋭意検討した結果、ある特定の化学構造を有するイリジウム錯体化合物が、トルエンやフェニルシクロヘキサン等の有機溶媒への溶解性が十分高く、かつ、該化合物と溶媒とを含む組成物は固形分が再析出すること無く長期保存が可能であり、さらにはそれを用いて作製される素子の駆動電圧が低く発光効率が高くなることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記[1]~[22]に存する。
[1] 下記式(1)で表されるイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000005
[式(1)において、環Aは、炭素原子CおよびCを含む、6員環もしくは5員環の芳香族炭化水素環または6員環もしくは5員環の芳香族複素環を表し、環Bは、炭素原子Cおよび窒素原子Nを含む、6員環または5員環の含窒素芳香族複素環を表す。Lは有機配位子である。aおよびbは、それぞれ独立に1から4の整数を表す。nは1から3の整数を表す。
 RおよびRは、それぞれ、環Aおよび環Bを構成する炭素原子または窒素原子に結合する置換基を表し、RまたはRが複数個ある場合は、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 aが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。bが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。また、RおよびRが、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 R同士、R同士またはRとRとが結合することにより形成された環は、さらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 ただし、RおよびRのうち、少なくとも1つは下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000006
 式(2)において、Xは、複数個ある場合は、それぞれ同一または異なり、炭素数6~20の(ヘテロ)アリーレン基を表し、Arは、複数個ある場合は、それぞれ同一または異なり、炭素数3~20の(ヘテロ)アリール基を表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。Zは、下記式(3)で表される。cは1から3の整数を表す。dは0から3の整数を表す。
Figure JPOXMLDOC01-appb-C000007
 式(3)において、複数のR’はそれぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基である。
 rは1から20の整数を示す。]
[2] 前記式(1)において、環Aに結合する置換基Rのうち、少なくとも一つが前記式(2)で表される、前項[1]に記載のイリジウム錯体化合物。
[3] 前記式(1)において、環Bに結合する置換基Rのうち、少なくとも一つが前記式(2)で表される、前項[1]または[2]に記載のイリジウム錯体化合物。
[4] 前記式(1)において、環Aがベンゼン環またはピリジン環である、前項[1]~[3]のいずれか一項に記載のイリジウム錯体化合物。
[5] 下記式(1-1)で表される、前項[1]~[4]のいずれか一項に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000008
[式(1-1)において、環B、R、L、bおよびnは、それぞれ式(1)と同義である。
 R~Rは、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 また、R~Rは、隣り合うR~Rと、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、環を形成してもよい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 なお、式(1-1)で表されるイリジウム錯体化合物は、R~Rにおいて、少なくとも1つの前記式(2)で表される基を有する。]
[6] 前記Rが前記式(2)で表される、前項[5]に記載のイリジウム錯体化合物。
[7] 前記Rが前記式(2)で表される、前記[5]に記載のイリジウム錯体化合物。
[8] 前記環Bが、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、またはチアゾール環である、前項[1]~[7]のいずれか一項に記載のイリジウム錯体化合物。
[9] 前記環Bがピリジン環である、前項[1]~[7]のいずれか一項に記載のイリジウム錯体化合物。
[10] 前記環Bがピラジン環である、前項[1]~[7]のいずれか一項に記載のイリジウム錯体化合物。
[11] 前記環Bがピリミジン環である、前項[1]~[7]のいずれか一項に記載のイリジウム錯体化合物。
[12] 前記環Bがイミダゾール環である、前項[1]~[7]のいずれか一項に記載のイリジウム錯体化合物。
[13] 前記式(2)において、dが1から3の整数である、前項[1]~[12]のいずれか一項に記載のイリジウム錯体化合物。
[14] 前記式(2)において、Arが炭素数6~20の芳香族炭化水素基である、前項[1]~[13]のいずれか一項に記載のイリジウム錯体化合物。
[15] 前記式(2)において、Arに置換していてもよい置換基が、フッ素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数1~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である、前項[1]~[14]のいずれか一項に記載のイリジウム錯体化合物。
[16] 前記[1]~[15]のいずれか一項に記載のイリジウム錯体化合物を含む発光材料。
[17] 前記[1]~[15]のいずれか一項に記載のイリジウム錯体化合物及び溶媒を含む組成物。
[18] 陽極、陰極、及び該陽極と該陰極の間に少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のうち少なくとも1層が、前記[1]~[15]のいずれか一項に記載のイリジウム錯体化合物を含む有機電界発光素子。
[19] 前記有機層が、電荷輸送材料としてさらに含窒素芳香族複素環化合物を含む、前記[18]に記載の有機電界発光素子。
[20] 前記有機層が、前記[17]に記載の組成物を用いて形成された層である、前記[18]または[19]に記載の有機電界発光素子。
[21] 前記[18]~[20]のいずれか一項に記載の有機電界発光素子を用いた表示装置。
[22] 前記[18]~[20]のいずれか一項に記載の有機電界発光素子を用いた照明装置。
 すなわち、本発明のイリジウム錯体化合物は、置換フェニルピリジンや置換フェニルキノリン骨格のような配位子に、炭素鎖が2~20のアルキル基を介してさらにその末端に炭素数3~20の芳香環が置換する構造とすることにより、溶解性が高く、有機電界発光素子用材料として良好な性能を示す。また、本発明のイリジウム錯体化合物を含む有機電界発光素子は、発光効率、駆動電圧等の点で良好な性能を示す。
 本発明のイリジウム錯体化合物は、トルエンやフェニルシクロヘキサンのような有機溶媒に可溶であり、かつ、該イリジウム錯体化合物と溶媒とを含有する組成物は、固形分が析出すること無く長期保存が可能である。また、該イリジウム錯体化合物を含む有機電界発光素子は、発光効率が高く、低い電圧で駆動可能であるとともに駆動安定性が高い。したがって、本発明のイリジウム錯体化合物は有機電界発光素子用材料として有用であり、該化合物を含む有機電界発光素子は塗布法にて作製することが可能であり、該有機電界発光素子は表示装置及び照明装置として有用である。
図1は、化合物D-1のH-NMRのチャートを示す図である。 図2は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 なお、本文中で(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基の両方を意味する。
 ここで、本発明において、遊離原子価とは、有機化学・生化学命名法(上)(改定第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものを言う。すなわち、例えば、「1個の遊離原子価を有するベンゼン環」はフェニル基のことを言い、「2個の遊離原子価を有するベンゼン環」はフェニレン基のことを言う。
 また、単に“ppm”と記載した場合は、“重量ppm”のことを示す。
 <イリジウム錯体化合物>
 本発明のイリジウム錯体化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000009
 式(1)において、環Aは、炭素原子CおよびCを含む、6員環もしくは5員環の芳香族炭化水素環または6員環もしくは5員環の芳香族複素環を表し、環Bは、炭素原子Cおよび窒素原子Nを含む、6員環または5員環の含窒素芳香族複素環を表す。
 6員環もしくは5員環の芳香族炭化水素環または6員環もしくは5員環の芳香族複素環としては、ベンゼン環、ピリジン環、ピリミジン環、ピラジン環、イミダゾール環、フラン環、チオフェン環等が挙げられ、耐久性および合成の観点から、ベンゼン環、ピリジン環、ピリミジン環が好ましく、中でも、ベンゼン環、ピリジン環がより好ましく、ベンゼン環がさらに好ましい。
 6員環または5員環の含窒素芳香族複素環としては、ピリジン環、ピラジン環、ピリミジン環、1,3,5-トリアジン環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環等が挙げられ、耐久性および合成の観点から、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環が好ましく、中でも、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環が好ましく、ピリジン環、ピラジン環、ピリミジン環がより好ましい。
 Lは有機配位子である。aおよびbは、それぞれ独立して1から4の整数を表す。nは1から3の整数を表す。
 なお、本明細書中の化学式において、破線で示す結合は配位結合を表す。
 RおよびRは、それぞれ、環Aおよび環Bを構成する炭素原子または窒素原子に結合する置換基を表し、RまたはRが複数個ある場合は、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 aが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 具体的にはフルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられる。中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環が好ましく、フルオレン環、ナフタレン環、カルバゾール環であることがさらに好ましい。
 bが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 そのような環の具体例としては、カルボリン環、ジアザカルバゾール環、アザジベンゾフラン環、アザジベンゾチオフェン環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズオキサジアゾール環、ベンズチアゾール環、ベンズチアジアゾール環、キノリン環、テトラヒドロキノリン環、イソキノリン環、テトラヒドロイソキノリン環、キノキサリン環、キナゾリン環、ジアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、アザトリフェニレン環、ジアザトリフェニレン環等が挙げられる。中でも、ベンズオキサゾール環、ベンズチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環が好ましく、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環がより好ましい。
 また、RおよびRが、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 そのような環の具体例としては、アザフェナントレン環、ジアザフェナントレン環、アザトリフェニレン環、ジアザトリフェニレン環等が挙げられる。中でも、アザトリフェニレン環、ジアザトリフェニレン環が好ましい。
 R同士、R同士またはRとRとが結合することにより形成された環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 ただし、RおよびRのうち、少なくとも1つは下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(2)において、Xは、複数個ある場合は、それぞれ同一または異なり、炭素数6~20の(ヘテロ)アリーレン基を表し、Arは、複数個ある場合は、それぞれ同一または異なり、炭素数3~20の(ヘテロ)アリール基を表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 Zは、下記式(3)で表される。cは1から3の整数を表し、溶解性と性能を両立させる観点から1または2が好ましく、中でも1がさらに好ましい。dは0から3の整数を表し、耐久性の観点から1から3の整数が好ましく、中でも1または2が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(3)において、複数のR’はそれぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基である。
 耐久性の観点から、水素原子、炭素数1~20のアルキル基、炭素数3~20の(ヘテロ)アリール基が好ましく、中でも、水素原子であることがより好ましい。
 rは1から20の整数を表す。溶解性及び電気的耐久性の観点から、rは2以上18未満が好ましく、中でも3以上15未満がより好ましく、3以上10未満がさらに好ましい。
 前記式(1)で表される本発明のイリジウム錯体化合物は、下記式(1-1)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(1-1)において、環B、R、L、bおよびnは、それぞれ式(1)と同義である。
 R~Rは、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 また、R~Rは、隣り合うR~Rと、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して環を形成してもよい。
 そのような環の具体例としては、フルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられる。中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、またはアザトリフェニレン環が好ましく、フルオレン環、ナフタレン環、またはカルバゾール環であることがさらに好ましい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 なお、式(1-1)で表されるイリジウム錯体化合物は、R~Rにおいて、少なくとも1つの前記式(2)で表される基を有する。
 本発明のイリジウム錯体化合物は、前記式(2)で表される置換基を有する。該置換基を有することで本発明のイリジウム錯体化合物は、有機溶媒に対する溶解性が向上する。駆動電圧ならびに耐久性の観点から、RまたはRのうち少なくとも1つが該置換基を有することが好ましい。また、駆動電圧ならびに耐久性の観点から、R~Rのうち少なくとも1つが該置換基を有することが好ましく、中でも、RまたはRが該置換基を有することがより好ましく、Rが該置換基を有することがさらに好ましい。
 <R~R
 RおよびRは、それぞれ、環Aおよび環Bを構成する炭素原子または窒素原子に結合する置換基を表し、RまたはRが複数個ある場合は、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 R~Rは、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。
 炭素数1~20のアルキル基の具体例としては、直鎖状のアルキル基、分岐状のアルキル基および環状のアルキル基などが挙げられ、より具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基などが挙げられる。中でも、メチル基、エチル基や、n-ブチル基、n-ヘキシル基等の直鎖状アルキル基が好ましい。
 炭素数7~40の(ヘテロ)アラルキル基の具体例としては、直鎖状のアルキル基、分岐状のアルキル基および環状のアルキル基を構成する水素原子の一部が(ヘテロ)アリール基で置換された基のことを指し、より具体的には、1-フェニル-1-エチル基、クミル基、3-ピリジル-1-プロピル基、3-フェニル-1-プロピル基、4-フェニル-1-ブチル基、5-フェニル-1-ペンチル基、6-ピリジル-1-ヘキシル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、4-フェニル-1-シクロヘキシル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。
 炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。
 炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、ピリジルオキシ基、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。
 炭素数1~20であるアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられ、中でもトリイソプロピル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基が好ましい。
 炭素数3~20である(ヘテロ)アリールシリル基の具体例としては、ジフェニルピリジルシリル基、トリフェニルシリル基等が挙げられ、中でもトリフェニルシリル基が好ましい。
 炭素数2~20のアルキルカルボニル基の具体例としては、アセチル基、プロピオニル基、ピバロイル基、カプロイル基、デカノイル基、シクロヘキシルカルボニル基等が挙げられ、中でもアセチル基、ピバロイル基が好ましい。
 炭素数4~20の(ヘテロ)アリールカルボニル基の具体例としては、アリルカルボニル基、ベンゾイル基、ナフトイル基、アントライル基等が挙げられ、中でもベンゾイル基が好ましい。
 炭素数2~20のアルキルアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基等が挙げられ、中でもジメチルアミノ基、ジシクロヘキシルアミノ基が好ましい。
 炭素数3~20の(ヘテロ)アリールアミノ基の具体例としては、(4-ピリジルフェニル)フェニルアミノ基、フェニルアミノ基、ジフェニルアミノ基、ジ(4-トリル)アミノ基、ジ(2,6-ジメチルフェニル)アミノ基等が挙げられ、中でもジフェニルアミノ基、ジ(4-トリル)アミノ基が好ましい。
 炭素数3~20の(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基の両方を意味する。その具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。
 量子収率及び耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましく、中でも、1個の遊離原子価を有する、ベンゼン環、ピリジン環がより好ましく、1個の遊離原子価を有する、ベンゼン環がさらに好ましい。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
 炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、炭素数3~20の(ヘテロ)アリール基の具体例は、前項にて説明したものと同様である。
 aが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 そのような環の具体例としては、フルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられる。中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環が好ましく、フルオレン環、ナフタレン環、カルバゾール環であることがさらに好ましい。
 bが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 そのような環の具体例としては、カルボリン環、ジアザカルバゾール環、アザジベンゾフラン環、アザジベンゾチオフェン環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズオキサジアゾール環、ベンズチアゾール環、ベンズチアジアゾール環、キノリン環、テトラヒドロキノリン環、イソキノリン環、テトラヒドロイソキノリン環、キノキサリン環、キナゾリン環、ジアザアントラセン環、アザフェナントレン環、ジアザフェナントレン環、アザトリフェニレン環、ジアザトリフェニレン環等が挙げられる。中でも、ベンズオキサゾール環、ベンズチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環が好ましく、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環がより好ましい。
 また、RおよびRが、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。
 そのような環の具体例としては、アザフェナントレン環、ジアザフェナントレン環、アザトリフェニレン環、ジアザトリフェニレン環等が挙げられ、中でも、アザトリフェニレン環、ジアザトリフェニレン環が好ましい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。これらの置換基の具体例は、前項にて説明したものと同様である。
 また、R~Rは、隣り合うR~Rと、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、環を形成してもよい。
 そのような環の具体例としては、フルオレン環、ナフタレン環、フェナントレン環、トリフェニレン環、クリセン環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環、テトラヒドロナフタレン環、キノリン環、キナゾリン環、アザフェナントレン環、アザトリフェニレン環等が挙げられる。中でも、フルオレン環、ナフタレン環、カルバゾール環、カルボリン環、キノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環が好ましく、フルオレン環、ナフタレン環、カルバゾール環であることがさらに好ましい。
 これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。これらの置換基の具体例は、前項にて説明したものと同様である。
 <X、Ar
 Xは、複数個ある場合は、それぞれ同一または異なり、炭素数6~20の(ヘテロ)アリーレン基を表し、Arは、複数個ある場合は、それぞれ同一または異なり、炭素数3~20の(ヘテロ)アリール基を表す。
 炭素数6~20の(ヘテロ)アリーレン基は、2個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基の両方を意味する。
 その具体例としては、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。
 量子収率及び耐久性の観点から、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましく、中でも、2個の遊離原子価を有する、ベンゼン環、ピリジン環がより好ましく、2個の遊離原子価を有する、ベンゼン環がさらに好ましい。
 炭素数3~20の(ヘテロ)アリール基は、1個の遊離原子価を有する、芳香族炭化水素基および芳香族複素環基の両方を意味する。
 その具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。
 溶解性及び耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、フェナントレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましく、中でも、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、フェナントレン環がより好ましく、1個の遊離原子価を有する、ベンゼン環、ナフタレン環がさらに好ましい。
 これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。これらの置換基の具体例は、前記<R~R>の項にて説明したものと同様である。
 <Z>
 Zは、前記式(3)にて表される。複数のR’はそれぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基である。
 耐久性の観点から、水素原子、炭素数1~20のアルキル基、炭素数3~20の(ヘテロ)アリール基が好ましく、中でも、水素原子であることがより好ましい。これらの置換基の具体例は、前記<R~R>の項にて説明したものと同様である。
 rは1から20の整数を表す。溶解性及び電気的耐久性の観点から、2以上18未満が好ましく、中でも3以上15未満がより好ましく、3以上10未満がさらに好ましい。
 <L>
 Lは有機配位子であり、特に制限は無いが、好ましくは1価の2座配位子であり、より好ましくは下記化学式の中から選ばれる。なお、化学式中の破線は配位結合を表す。
 2つの有機配位子Lが存在する場合には、有機配位子Lは互いに異なる構造であっても良い。また、nが3のときは、Lは存在しない。
Figure JPOXMLDOC01-appb-C000013
 上記式中、RからR、およびR11からR20はそれぞれ独立に、水素原子、フッ素原子で置換されていても良い炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていても良いフェニル基またはハロゲン原子を示す。より好ましくは、RとRがメチル基またはt-ブチル基であり、RおよびR11~R18は、水素原子、または、炭素数1~20のアルキル基またはハロゲン原子で置換されていても良いフェニル基であり、R19およびR20は炭素数1~20のアルキル基である。炭素数1~20のアルキル基の具体例は、前記<R~R>の項にて説明したものと同様である。
 <分子量>
 本発明のイリジウム錯体化合物の分子量は、通常850以上、好ましくは900以上、通常3000以下、好ましくは2000以下である。上記範囲内であると、錯体の安定性が良好である。
 <具体例>
 以下に、本発明に係るイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。また構造式中のMeはメチル基を表し、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 <構造上の特徴>
 本発明のイリジウム錯体化合物が、トルエンやフェニルシクロヘキサンのような有機溶媒に対して十分高い溶解度を有すること、および、素子化した場合の発光効率が高いなど性能が良好である理由は以下のように推測される。
 有機溶媒への溶解性を高めるには、通常イリジウム錯体化合物の配位子にアルキル基を導入することが行われている。アルキル基は多くのコンフォメーションをとりうるため、結晶化に際しては再配列のためのエネルギーが上昇する。よって、イリジウム錯体化合物は結晶化しにくくなり溶解性が向上するという効果が期待される。しかし、今般、発明者らの検討によれば、単にアルキル基を導入しても、その鎖長がイリジウム錯体化合物の分子サイズに比して短い場合やその置換位置によって、溶解性が改善されないことがあることが判明した。
 また、逆にアルキル基の鎖長が長すぎる場合には溶解性は発現するものの、分子中に占める発光に寄与しない部分が増えるために発光効率の低下等の素子性能の低下を引き起こすことが考えられる。
 加えて、アルキル基導入の不利な点として、以下の2点があげられる。一点目は、アルキル基は化学構造的には比較的弱く、芳香環に比べてsp炭素-水素結合がラジカル的に開裂しやすく、分解を引き起こしやすい。このため、素子化したときの駆動寿命が短くなる。もう一点は、発光層に用いられるホスト化合物は通常芳香族化合物であるが、イリジウム錯体にアルキル基を置換すると、ホスト材料に対する相溶性が悪くなるため、塗布により発光層を形成した際にホストと相分離を起こしやすくなり、結果として層内ホスト材料へのイリジウム錯体化合物の分散性が悪くなる。このことは、素子の発光効率の低下や駆動電圧の上昇の原因となる。
 本発明のイリジウム錯体化合物は、末端に少なくとも一つの芳香環を有するアルキル基を置換させることにより、有機溶媒への溶解性を向上させつつ、同時に、アルキル基のsp炭素―水素結合の部位を立体的に保護することによりラジカル開裂を抑制し、さらに、芳香族化合物ホスト材料との相溶性を改善することにより、イリジウム錯体化合物の分散性を向上させる。これらの相乗効果により、本発明のイリジウム錯体化合物は、塗布法に適した高い溶解性と十分長いポットライフを有し、さらに、得られる素子の発光効率が高まり、駆動電圧が低下し、駆動寿命が長いという効果を奏する。
 以上の様に、本発明のイリジウム錯体化合物を湿式成膜法で形成する有機電界発光素子の有機層に用いることにより、有機電界発光素子の低電圧化ならびに駆動寿命の向上等といった素子性能の向上につながる。
 <溶解性の説明>
 湿式成膜法は、発光層の有機材料を一旦有機溶媒へ溶解したのち、スピンコート法やインクジェット法などにより塗布し、その後有機溶媒を加熱や減圧あるいは不活性ガスを吹き付けるなどによって蒸発気化させることにより成膜する方法である。必要であれば、成膜した有機材料を溶媒不溶性とするために、たとえば有機材料の分子中にC=C基、C≡C基もしくはベンゾシクロブテン基のような架橋基を存在させることにより、または、加熱もしくは光照射など既知の方法により、架橋させて不溶化することもできる。
 このような湿式成膜法において好ましく用いられる有機溶媒の種類は、ヘキサン、ヘプタン、メチルエチルケトン、酢酸エチル、酢酸ブチルのような置換していてもよい脂肪族化合物、トルエン、キシレン、フェニルシクロヘキサン、安息香酸エチルのような置換していてもよい芳香族系化合物、シクロヘキサン、シクロヘキサノン、メチルシクロヘキサノン、または、3,3,5-トリメチルシクロヘキサノンのような置換していてもよい脂環式化合物などがあげられる。これらは単独で用いても良く、塗布のプロセスに好適な塗布液とするために複数種類の溶媒を混合して用いても良い。
 主として用いる有機溶媒の種類として好ましくは、芳香族系化合物または脂環式化合物であり、より好ましくは芳香族系化合物である。特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有しているためより好ましい。
 湿式成膜法に好適に用いられるイリジウム錯体化合物の溶解性は、大気圧下25℃において、フェニルシクロヘキサンに対して通常0.3重量%以上、好ましくは1.0重量%以上、より好ましくは1.5重量%以上である。
 <イリジウム錯体化合物の合成方法>
 本発明のイリジウム錯体化合物は、既知の方法の組み合わせなどにより合成され得る配位子を用い、配位子とIr化合物により合成することができる。
 イリジウム錯体化合物の合成方法については、式(I)に示した一段階でトリス錯体を形成する方法、式(II)に示したIr二核錯体のような中間体を形成させたのちにトリス体を形成させる方法等が例示できるが、これらに限定されるものではない。
 例えば、式(I)で表される典型的な反応としては、配位子3当量とIr(acac)(イリジウムアセチルアセトナート錯体)1当量の反応により金属錯体を得る方法があげられる。
Figure JPOXMLDOC01-appb-C000021
 式(I)において、Rは1価の置換基を表す。
 この際、配位子を過剰量用いて反応を促進することもできるし、少量用いて選択性を高めても良い。また、配位子を複数種類用いて逐次的に添加し、混合配位子錯体を形成してもよい。
 また、式(II)で表される典型的な反応としては、例えば配位子2当量とIrCl・xHO(イリジウムクロライド・x水和物)1当量の反応によりIr原子2個からなる2核金属錯体などの中間体を得たのち、さらに配位子をIrに対し1当量反応させて金属錯体を得る方法が挙げられる。なお、式(II)におけるRは式(I)におけるRと同義である。
Figure JPOXMLDOC01-appb-C000022
 式(I)と同様に反応の効率および選択性を考慮し、実際の配位子とIr化合物の仕込み比は適当に調整することができる。式(II)の場合、最後に添加する配位子を最初の配位子と異なるものを用いることにより、簡便に混合配位子錯体を形成できる。
 Ir化合物としては上記のIr(acac)錯体やIrCl・xHO錯体の他に、Irシクロオクタジエニル錯体など、適当なIr化合物を用いても良い。炭酸塩などの塩基化合物、Ag塩などのハロゲントラップ剤、などを併用して反応を促進させてもよい。反応温度は50℃~400℃程度の温度が好ましく用いられる。一般的に100℃以上の高温が用いられる。反応は無溶媒で行っても良いし、既知の溶媒を用いてもよい。高温反応で行う場合、グリセリン等の高沸点溶媒が好ましい。
 <イリジウム錯体化合物の用途>
 本発明のイリジウム錯体化合物は、有機電界発光素子に用いられる材料、すなわち有機電界発光素子材料として好適に使用可能であり、有機電界発光素子やその他の発光素子等の発光材料としても好適に使用可能である。
 <イリジウム錯体化合物含有組成物>
 本発明のイリジウム錯体化合物は、溶解性に優れることから、溶媒とともに使用されることが好ましい。以下、本発明のイリジウム錯体化合物と溶媒とを含有する組成物(以下、「イリジウム錯体化合物含有組成物」と称することもある。)について説明する。
 本発明のイリジウム錯体化合物含有組成物は、上述の本発明のイリジウム錯体化合物および溶媒を含有する。本発明のイリジウム錯体化合物含有組成物は通常湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であることが好ましい。
 つまり、イリジウム錯体化合物含有組成物は、有機電界発光素子用組成物であることが好ましく、更に発光層形成用組成物として用いられることが特に好ましい。
 該イリジウム錯体化合物含有組成物における本発明のイリジウム錯体化合物の含有量は、通常0.01重量%以上、好ましくは0.1重量%以上、通常15重量%以下、好ましくは10重量%以下である。組成物のイリジウム錯体化合物の含有量をこの範囲とすることにより、隣接する層(例えば、正孔輸送層や正孔阻止層)から発光層へ効率よく、正孔や電子の注入が行われ、駆動電圧を低減することができる。尚、本発明のイリジウム錯体化合物はイリジウム錯体化合物含有組成物中に、1種のみ含まれていてもよく、2種以上が組み合わされて含まれていてもよい。
 本発明のイリジウム錯体化合物含有組成物を例えば有機電界発光素子用に用いる場合には、上述のイリジウム錯体化合物や溶媒の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有することができる。
 本発明のイリジウム錯体化合物含有組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物をドーパント材料とし、電荷輸送性化合物をホスト材料として含むことが好ましい。
 本発明のイリジウム錯体化合物含有組成物に含有される溶媒は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
 該溶媒は、溶質である本発明のイリジウム錯体化合物が高い溶解性を有するために、後述の電荷輸送性化合物が良好に溶解する溶媒であれば特に限定されない。好ましい溶媒としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メチシレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。中でも好ましくは、アルカン類や芳香族炭化水素類であり、さらに好ましくは芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。
 これらの溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 溶媒の沸点は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上である。通常沸点300℃以下、好ましくは270℃以下、より好ましくは250℃以下である。この範囲を下回ると、湿式成膜時において、組成物からの溶媒蒸発により、成膜安定性が低下する可能性がある。
 溶媒の含有量は、組成物100重量部に対して、好ましくは10重量部以上、より好ましくは50重量部以上、特に好ましくは80重量部以上、また、好ましくは99.95重量部以下、より好ましくは99.9重量部以下、特に好ましくは99.8重量部以下である。通常発光層の厚みは3~200nm程度であるが、溶媒の含有量がこの下限を下回ると、組成物の粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、この上限を上回ると、成膜後、溶媒を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。
 本発明のイリジウム錯体化合物含有組成物が含有し得る電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、フェナントレン、ピリジン、ピリミジン、トリアジン、カルバゾール、カルボリン、インドロカルバゾール、キノリン、フェナントロリン、トリフェニルアミンの誘導体が挙げられる。中でも、電荷輸送性に優れているため安定性が高く、三重項エネルギーが高く本発明のイリジウム錯体化合物の発光効率が高いことから、ベンゼン、ナフタレン、ビフェニル、ピリジン、ピリミジン、トリアジン、カルバゾール、カルボリン、キノリン、トリフェニルアミンの誘導体が好ましい。具体的には、国際公開第2012/096263号記載の化合物が挙げられ、中でも国際公開第2012/096263号記載の一般式(A)、一般式(E)で表される化合物が好ましい。発光層に用いる場合は、主に正孔輸送性を担う化合物および主に電子輸送性を担う化合物を含有することが好ましい。
 これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 本発明のイリジウム錯体化合物含有組成物中の電荷輸送性化合物の含有量は、該組成物を100重量部とすると、通常0.1重量部以上、好ましくは0.5重量部以上、また、通常50重量部以下、好ましくは30重量部以下である。
 また、イリジウム錯体化合物含有組成物中のイリジウム錯体化合物の含有量は、イリジウム錯体化合物含有組成物中の電荷輸送性化合物に対して通常100重量%以下、好ましくは50重量%以下、特に好ましくは30重量%以下であり、通常1重量%以上、好ましくは2重量%以上、特に好ましくは5重量%以上である。
 本発明のイリジウム錯体化合物含有組成物には、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶媒の他に、別の溶媒を含有していてもよい。そのような溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。
 [有機電界発光素子]
 本発明の有機電界発光素子は、基板上に少なくとも陽極、陰極及びこれらの両極間に設けられた発光層を有するものであって、本発明の組成物を用いて湿式成膜法により形成された層を有することを特徴とする。該湿式成膜法により形成された層は、該発光層であることが好ましい。
 図2は本発明の有機電界発光素子に好適な構造例を示す断面の模式図であり、図2において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。
 [1]基板
 基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
 [2]陽極
 基板1上には陽極2が設けられる。陽極2は発光層側の層(正孔注入層3、正孔輸送層4又は発光層5など)への正孔注入の役割を果たすものである。
 この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。
 陽極2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより陽極2を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、陽極2は基板1と同一でもよい。また、さらには上記の陽極2の上に異なる導電材料を積層することも可能である。
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理をしたり、酸素プラズマ処理や、アルゴンプラズマ処理をすることが好ましい。
 [3]正孔注入層
 正孔注入層3は、陽極2から発光層5へ正孔を輸送する層であり、通常、陽極2上に形成される。本発明に係る正孔注入層3の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔注入層3を湿式成膜法により形成することが好ましい。正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
 <湿式成膜法による正孔注入層の形成>
 湿式成膜により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、正孔注入層3の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
 (正孔輸送性化合物)
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。正孔輸送性化合物は、通常、有機電界発光素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 尚、本発明において誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 正孔注入層3の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することが好ましい。
 上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(IV)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(式(IV)中、Ar51及びAr52は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar53~Ar55は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Tは、下記の連結基群の中から選ばれる1の連結基を表す。また、Ar51~Ar55のうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000024
(上記各式中、Ar56~Ar66は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。R111及びR112は、各々独立して、水素原子又は任意の置換基を表す。)
 式(IV)および上記連結基群におけるAr51~Ar66の芳香族炭化水素基及び芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環が好ましく、さらに好ましくは、2個の遊離原子価を有する、ベンゼン環、ナフタレン環である。
 Ar51~Ar66の芳香族炭化水素基及び芳香族複素環基は、さらに置換基を有していてもよい。置換基の分子量としては、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
 R111及びR112が任意の置換基である場合、該置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-ethylenedioxythiophene(3,4-エチレンジオキシチオフェン)を高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
 さらに、正孔輸送性化合物としては、後述の「正孔輸送層」の項に記載の不溶化基を有する化合物を用いてもよい。
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が高すぎると膜厚にムラが生じる可能性があり、また、低すぎると成膜された正孔注入層に欠陥が生じる可能性がある。
 (電子受容性化合物)
 正孔注入層形成用組成物は正孔注入層の構成材料として、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上である化合物がさらに好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;有機基の置換したオニウム塩(国際公開第2005/089024号);フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 これらの電子受容性化合物は、正孔輸送性化合物を酸化することにより正孔注入層の導電率を向上させることができる。
 正孔注入層或いは正孔注入層形成用組成物中の電子受容性化合物の正孔輸送性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
 (溶媒)
 湿式成膜法に用いる正孔注入層形成用組成物の溶媒のうち少なくとも1種は、上述の正孔注入層の構成材料を溶解しうる化合物であることが好ましい。また、この溶媒の沸点は通常110℃以上、好ましくは140℃以上、中でも200℃以上、通常400℃以下、中でも300℃以下であることが好ましい。溶媒の沸点が低すぎると、乾燥速度が速すぎ、膜質が悪化する可能性がある。また、溶媒の沸点が高すぎると乾燥工程の温度を高くする必要があり、他の層や基板に悪影響を与える可能性がある。
 溶媒として例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル、等が挙げられる。
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル、等が挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
 (成膜方法)
 正孔注入層形成用組成物を調製後、この組成物を湿式成膜により、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより正孔注入層3を形成する。
 塗布工程における温度は、組成物中に結晶が生じることによる膜の欠損を防ぐため、10℃以上が好ましく、50℃以下が好ましい。
 塗布工程における相対湿度は、本発明の効果を著しく損なわない限り限定されないが、通常0.01ppm以上、通常80%以下である。
 塗布後、通常加熱等により正孔注入層形成用組成物の膜を乾燥させる。加熱工程において使用する加熱手段の例を挙げると、クリーンオーブン、ホットプレートなどが挙げられる。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り、正孔注入層形成用組成物に用いた溶媒の沸点以上の温度で加熱することが好ましい。また、正孔注入層に用いた溶媒が2種類以上含まれている混合溶媒の場合、少なくとも1種類がその溶媒の沸点以上の温度で加熱されるのが好ましい。溶媒の沸点上昇を考慮すると、加熱工程においては、好ましくは120℃以上、好ましくは410℃以下で加熱することが好ましい。
 加熱工程において、加熱温度が正孔注入層形成用組成物の溶媒の沸点以上であり、かつ塗布膜の十分な不溶化が起こらなければ、加熱時間は限定されないが、好ましくは10秒以上で、通常180分以下である。加熱時間が長すぎると他の層の成分が拡散する傾向があり、短すぎると正孔注入層が不均質になる傾向がある。加熱は2回に分けて行ってもよい。
 <真空蒸着法による正孔注入層の形成>
 真空蒸着により正孔注入層3を形成する場合には、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10-4Pa程度まで排気した後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して溶媒を蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板の陽極2上に正孔注入層3を形成する。なお、2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、通常9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、通常5.0Å/秒以下である。
 [4]正孔輸送層
 正孔輸送層4は、正孔注入層がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成することができる。また、本発明の有機電界発光素子は、正孔輸送層を省いた構成であってもよい。
 正孔輸送層4の形成方法は真空蒸着法でも、湿式成膜法でもよく、特に制限はないが、ダークスポット低減の観点から正孔輸送層4を湿式成膜法により形成することが好ましい。
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 このような正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体としては、下記式(V)で表される繰り返し単位を含む重合体であることが好ましい。特に、下記式(V)で表される繰り返し単位からなる重合体であることが好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Figure JPOXMLDOC01-appb-C000025
(式(V)中、Ar及びArは、各々独立して、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。)
 置換基を有していてもよい芳香族炭化水素基としては、例えば、1個または2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、1個または2個の遊離原子価を有する、6員環の単環若しくは2~5縮合環又はこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 置換基を有していてもよい芳香族複素環基としては、例えば1個または2個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、1個または2個の遊離原子価を有する、5もしくは6員環の単環または2~4縮合環あるいはこれらの環が2環以上直接結合で連結してなる基が挙げられる。
 有機溶媒に対して溶解性、耐熱性の点から、Ar及びArは、各々独立に、1個または2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環やベンゼン環が2環以上連結してなる基(例えば、ビフェニル基(ビフェニレン基)やターフェニル基(ターフェニレン基))が好ましい。
 中でも、1個または2個の遊離原子価を有する、ベンゼン、ビフェニル及びフルオレンが好ましい。
 Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素環基、芳香族複素環基などが挙げられる。
 ポリアリーレン誘導体としては、前記式(V)におけるArやArとして例示した置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。ポリアリーレン誘導体としては、下記式(VI)及び下記式(VII)からなる繰り返し単位のうち少なくとも一方を有する重合体が好ましい。
Figure JPOXMLDOC01-appb-C000026
(式(VI)中、R、R、R及びRは、各々独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基、又はカルボキシ基を表す。
 v及びwは、各々独立に、0~3の整数を表す。v又はwが2以上の場合、一分子中に含まれる複数のR又はRはそれぞれ同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000027
(式(VII)中、R及びRは、各々独立に、上記式(VI)におけるR、R、R又はRと同義である。
 x及びyは、各々独立に、0~3の整数を表す。x又はyが2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。Qは、5員環もしくは6員環を構成する原子又は原子群を表す。)
 Qの具体例としては、―O―、―BR―、―NR―、―SiR―、―PR―、―SR―、―CR―又はこれらが結合してなる基などが挙げられる。尚、ここでのRは、水素原子又は任意の有機基を表す。本発明における任意の有機基とは、少なくとも一つの炭素原子を含む基であればよい。
 また、ポリアリーレン誘導体としては、前記式(VI)及び前記式(VII)からなる繰り返し単位のうち少なくとも一方に加えて、さらに下記式(VIII)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000028
(式(VIII)中、Ar~Ar及びArは、各々独立に、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表す。γ及びδは、各々独立に0又は1を表す。)
 Ar~Ar及びArの具体例としては、前記式(V)における、Ar及びArと同様である。
 上記式(VI)~(VIII)の具体例及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥する。
 正孔輸送層形成用組成物には、上述の正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
 正孔輸送層4はまた、不溶化基を有する化合物(以下、「不溶化性化合物」と称する)を不溶化して形成される層が耐熱性、あるいは成膜性の観点から好ましい。不溶化性化合物は、不溶化基を有する化合物であって、不溶化することにより不溶化ポリマーを形成する。
 不溶化基とは、熱及び/又は活性エネルギー線の照射により反応する基であり、反応後は反応前に比べて有機溶媒や水への溶解性を低下させる効果を有する基である。本発明においては、不溶化基は、脱離基又は架橋性基であることが好ましい。
 脱離基とは、結合している芳香族炭化水素環から70℃以上で解離し、さらに溶媒に対して可溶性を示す基をいう。ここで、溶媒に対して可溶性を示すとは、化合物が熱及び/又は活性エネルギー線の照射によって反応する前の状態で、常温でトルエンに0.1重量%以上溶解することをいい、化合物のトルエンへの溶解性は、好ましくは0.5重量%以上、より好ましくは1重量%以上である。
 この脱離基として好ましくは、芳香族炭化水素環側に極性基を形成せずに熱解離する基であり、逆ディールスアルダー反応により熱解離する基であることがより好ましい。またさらに、100℃以上で熱解離する基であることが好ましく、300℃以下で熱解離する基であることが好ましい。
 また、架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブタン由来の基などが挙げられる。
 不溶化性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。不溶化性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。
 不溶化性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物の例を挙げると、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体等の含窒素芳香族化合物誘導体;トリフェニルアミン誘導体;シロール誘導体;オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。その中でも、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、カルバゾール誘導体等の含窒素芳香族誘導体;トリフェニルアミン誘導体、シロール誘導体、縮合多環芳香族誘導体、金属錯体などが好ましく、特に、トリフェニルアミン誘導体がより好ましい。
 不溶化性化合物を不溶化して正孔輸送層4を形成するには、通常、不溶化性化合物を溶媒に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜法により成膜して不溶化させる。
 正孔輸送層形成用組成物には、さらに、レベリング剤、消泡剤等の塗布性改良剤;電子受容性化合物;バインダー樹脂などを含有してもよい。
 正孔輸送層形成用組成物は、不溶化性化合物を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上、通常50重量%以下、好ましくは20重量%以下、さらに好ましくは10重量%以下含有する。
 このような濃度で不溶化性化合物を含む正孔輸送層形成用組成物を下層(通常は正孔注入層3)上に成膜後、加熱及び/又は光などの活性エネルギー照射により、不溶化性化合物を不溶化させる。
 成膜時の温度、湿度などの条件は、前記正孔注入層3の湿式成膜時と同様である。成膜後の加熱の手法は特に限定されない。加熱温度条件としては、通常120℃以上、好ましくは400℃以下である。加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、成膜された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。
 光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ等を用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
 [5]発光層
 正孔輸送層4の上には通常、発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極2から正孔注入層3を通じて注入された正孔と、陰極9から電子輸送層7を通じて注入された電子との再結合により励起された、主たる発光源となる層である。発光層5は発光材料(ドーパント)と1種又は2種以上のホスト材料を含むことが好ましい。発光層5は、真空蒸着法で形成してもよいが、本発明の有機電界発光素子用組成物を用い、湿式成膜法によって作製された層であることが特に好ましい。
 ここで、湿式成膜法とは、前述の如く、溶媒を含む組成物を、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法をいう。
 なお、発光層5は、本発明の性能を損なわない範囲で、他の材料、成分を含んでいてもよい。一般に有機電界発光素子において、同じ材料を用いた場合、電極間の膜厚が薄い方が、実効電界が大きくなる為に注入される電流が多くなるので、駆動電圧は低下する。その為、電極間の総膜厚は薄い方が有機電界発光素子の駆動電圧は低下するが、あまりに薄いと、ITO等の電極に起因する突起により短絡が発生する為、ある程度の膜厚が必要となる。
 本発明においては、発光層5以外に、正孔注入層3及び後述の電子輸送層7等の有機層を有する場合、発光層5と正孔注入層3や電子輸送層7等の他の有機層とを合わせた総膜厚は通常30nm以上、好ましくは50nm以上であり、さらに好ましくは100nm以上で、通常1000nm以下、好ましくは500nm以下であり、さらに好ましくは300nm以下である。また、発光層5以外の正孔注入層3や後述の電子注入層8の導電性が高い場合、発光層5に注入される電荷量が増加する為、例えば正孔注入層3の膜厚を厚くして発光層5の膜厚を薄くし、総膜厚をある程度の膜厚を維持したまま駆動電圧を下げることも可能である。
 よって、発光層5の膜厚は、通常10nm以上、好ましくは20nm以上で、通常300nm以下、好ましくは200nm以下である。なお、本発明の素子が、陽極及び陰極の両極間に、発光層5のみを有する場合の発光層5の膜厚は、通常30nm以上、好ましくは50nm以上、通常500nm以下、好ましくは300nm以下である。
 [6]正孔阻止層
 正孔阻止層6は、発光層5の上に、発光層5の陰極側の界面に接するように積層形成される。特に、発光物質として燐光材料を用いたり、青色発光材料を用いたりする場合、正孔阻止層6を設けることは効果的である。正孔阻止層6は正孔と電子を発光層5内に閉じこめて、発光効率を向上させる機能を有する。即ち、正孔阻止層6は、発光層5から移動してくる正孔が電子輸送層7に到達するのを阻止することで、発光層5内で電子との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、電子輸送層7から注入された電子を効率よく発光層5の方向に輸送する役割がある。
 正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 このような条件を満たす正孔阻止層材料としては、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)が挙げられる。
 さらに、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も正孔阻止材料として好ましい。正孔阻止層6の膜厚は、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。正孔阻止層6も正孔注入層3と同様の方法で形成することができるが、通常は真空蒸着法が用いられる。
 [7]電子輸送層
 電子輸送層7は素子の発光効率をさらに向上させることを目的として、正孔注入層6と電子注入層8との間に設けられる。電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
 このような条件を満たす材料としては、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-又は5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5,645,948号公報)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 電子輸送層7の膜厚は、通常下限は1nm、好ましくは5nm程度であり、上限は通常300nm、好ましくは100nm程度である。
 電子輸送層7は、正孔注入層3と同様にして湿式成膜法、或いは真空蒸着法により形成されるが、通常は、真空蒸着法が用いられる。
 [8]電子注入層
 電子注入層8は陰極9から注入された電子を効率よく発光層5へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましく、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属が用いられる。電子注入層8の膜厚は0.1~5nmが好ましい。
 また、陰極9と電子輸送層7との界面にLiF、MgF、LiO、CsCO等の極薄絶縁膜(0.1~5nm)を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;日本国特開平10-74586号公報;IEEETrans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,154頁)。
 さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下である。
 電子注入層8は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により形成される。真空蒸着法の場合には、真空容器内に設置されたるつぼ又は金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、るつぼ又は金属ボートを加熱して蒸発させ、るつぼ又は金属ボートと向き合って置かれた基板上に電子注入層を形成する。
 アルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアルカリ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱することにより、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。有機電子輸送材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置されたるつぼに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、各々のるつぼ及びディスペンサーを同時に加熱して蒸発させ、るつぼ及びディスペンサーと向き合って置かれた基板上に電子注入層を形成する。
 このとき、電子注入層8の膜厚方向において均一に共蒸着されるが、膜厚方向において濃度分布があっても構わない。
 [9]陰極
 陰極9は、発光層側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9として用いられる材料は、前記陽極2に使用される材料を用いることも可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数合金電極が挙げられる。
 陰極9の膜厚は通常、陽極2と同様である。低仕事関数金属から成る陰極を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
 [10]その他の構成層
 以上、図1に示す層構成の素子を中心に説明してきたが、本発明の有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよく、また発光層5以外の任意の層を省略してもよい。
 正孔阻止層8と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達することを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。また、発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
 なお、図2とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。
 さらには、図2に示す層構成を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その際には段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合はその2層)の代わりに、例えばV等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。
 <表示装置及び照明装置>
 本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を用いたものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限または下限の値と下記実施例の値または実施例同士の値との組合せで規定される範囲であってもよい。
<本発明に係る化合物D-1の合成例>
 (合成例1;化合物1の合成例)
 窒素気流下、200mL容の四つ口フラスコに、2-(3-ブロモフェニル)ピリジン11.72g、ビスピナコラートジボロン15.24g、[PdCl(dppf)]CHCl 1.33g、酢酸カリウム14.14g、脱水ジメチルスルホキシド100mlを入れ、90℃オイルバス中で3時間撹拌した。その後室温まで冷却し、水とジクロロメタンを加え分液洗浄後、油相を硫酸ナトリウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/へキサン=15/85)にて精製することにより、14.70gの白色固体(化合物1および不純物としてピナコラートジボロン原料を含む)を得た。
Figure JPOXMLDOC01-appb-C000029
 (合成例2;化合物2の合成例)
 窒素気流下、1L容のなすフラスコに、合成例1で作製した化合物1 14.70g、3-ブロモ-1-ヨードベンゼン14.81g、[Pd(PPh]1.21g、2M りん酸三カリウム水溶液70ml、トルエン100mlおよびエタノール50mlを入れ、105℃オイルバス中で4.2時間撹拌還流した。その後室温まで冷却し、水とトルエンを加え分液洗浄後、油相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン/へキサン=1/1~2/1、その後酢酸エチル/へキサン=25/75)にて精製することにより、13.50gの黄色油状物(化合物2)を得た。
Figure JPOXMLDOC01-appb-C000030
 (合成例3;化合物3の合成例)
 窒素気流下、100mL容の四つ口フラスコに、マグネシウム(turnings)1.02gを入れ、撹拌しながら乾燥ジエチルエーテル15mLに溶解した6-フェニルー1-ブロモヘキサン5.07gを室温で10分間かけて滴下し、その後1時間室温で撹拌した。得られたグリニャール試薬の溶液を、窒素気流下にて、化合物2 4.35gと[NiCl(dppp)]0.39g及び乾燥ジエチルエーテル40mLの入った100ml容の三口フラスコに室温で10分間かけて滴下した。その後1時間室温で撹拌した。その後塩化アンモニウム水溶液を添加し反応を停止させ、水と酢酸エチルを加え分液洗浄後、油相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/へキサン=1/9)にて精製することにより、4.51gの黄色油状物(化合物3)を得た。
Figure JPOXMLDOC01-appb-C000031
 (合成例4;化合物D-1の合成例)
 窒素気流下、200mL四つ口フラスコに、化合物3 4.51g、[Ir(acac)]1.45gおよびグリセリン56gを入れ、100℃のオイルバス中で1時間窒素バブリングした。その後オイルバスの温度を205℃から230℃まで段階的に上げて計10時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、水とメタノールおよびジクロロメタンを加え分液洗浄後、油相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン/へキサン=3/7)にて精製することにより、1.0gの目的物(254nmUV検出器によるHPLC純度はほぼ100%)を得た。得られた化合物のH-NMRのチャートを図1に示した。
 なお、この化合物をフェニルシクロヘキサンに対して1.5重量%混合したものは120℃に加温すると直ちに溶解して均一溶液となり、その後室温で2ヶ月間保存したところ均一状態を保持していた。
Figure JPOXMLDOC01-appb-C000032
<本発明に係る化合物D-2の合成例>
(合成例5;化合物4の合成例)
 窒素気流下、反応容器にマグネシウム(turnings)(6.6g)と乾燥テトラヒドロフラン(30mL)を入れたのち、撹拌しながら3-フェニル-1-ブロモプロパン(49.8g)の乾燥テトラヒドロフラン(100mL)溶液をゆるやかに還流するように滴下し、その後30分間室温で撹拌した。得られたグリニャール試薬の溶液を、窒素気流下、3-ブロモベンゾニトリル(45.2g)の乾燥テトラヒドロフラン(130mL)溶液の入った反応容器に室温でゆっくりと滴下した。その後1時間60℃にて撹拌した。その後塩化アンモニウム水溶液を添加し反応を停止させ、水とジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物4(20g)を得た。
Figure JPOXMLDOC01-appb-C000033
(合成例6;化合物5の合成例)
 化合物4(20.0g)の2-(2-エトキシエトキシ)エタノール(220mL)溶液に、水酸化ナトリウム(6.62g)を加えたのち、50℃のオイルバスにて加熱しながら窒素バブリングを15分間おこなった。ヒドラジン一水和物(8mL)をゆっくりと滴下した後、110℃オイルバスにて2時間おだやかに還流した。いったん加熱を止め、側管付冷却管に付け替えたのち、オイルバスの温度を段階的に180℃まで上昇させ、蒸発する留分を側管付冷却管の側管から抜きながらさらに撹拌した。1時間後蒸発成分がほぼ見られなくなったのを確認し、加熱を止めた。氷浴にて室温まで冷却したのち、反応溶液を1Lの水に注ぎこんだ。1N塩酸を用いてpH<1としたのち、トルエンにて抽出し、有機相を水、食塩水にて洗浄し、MgSOにて乾燥し、減圧濃縮した。残渣をカラムクロマトグラフィーにて精製し、化合物5(10.9g)を得た。
Figure JPOXMLDOC01-appb-C000034
(合成例7;化合物6の合成例)
 化合物1(11.6g)と化合物5(10.9g)に、窒素バブリングをおこなったトルエン/エタノール混合溶液(3:1、130mL)とりん酸三カリウム水溶液(2.0M、50mL)を加えた。そこにPd(PPh(1.23g)を加えた後、加熱還流させながら、4時間撹拌を行った。室温に戻した後、トルエンにて抽出を行い、有機相を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥し、減圧下、溶媒留去した。残渣をカラムクロマトグラフィーにて精製し、化合物6(12.8g)を得た。
Figure JPOXMLDOC01-appb-C000035
(合成例8;化合物D-2の合成例)
 窒素気流下、化合物6(12.8g)、Ir(acac)(4.20g)およびグリセリン(100g)の懸濁液を150℃のオイルバス中で15分間窒素バブリングした。その後オイルバスの温度を200℃から230℃まで段階的に上げて計9時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、水とジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物D-2(0.7g)を得た。
 この化合物をフェニルシクロヘキサンに対して1.5重量%混合したものは120℃に加温すると直ちに溶解し均一溶液となり、その後室温で1ヶ月間保存したところ均一状態を保持していた。
Figure JPOXMLDOC01-appb-C000036
<本発明に係る化合物D-3の合成例>
(合成例9;化合物7の合成例)
 窒素気流下、反応容器にマグネシウム(turnings)(7.10g)、乾燥テトラヒドロフラン(30mL)を入れ、6-フェニル-1-ブロモヘキサン(64.0g)の乾燥テトラヒドロフラン(100mL)溶液をゆるやかに還流するように滴下し、その後1時間60℃にて撹拌した。得られたグリニャール試薬の溶液を、窒素気流下、3-ブロモベンゾニトリル(53.1g)の乾燥テトラヒドロフラン(130mL)溶液の入った反応容器に室温でゆっくりと滴下した。その後1時間60℃にて撹拌した。室温に戻したのち、塩化アンモニウム水溶液を添加し反応を停止させ、水と塩化メチレンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物7(62.5g)を得た。
Figure JPOXMLDOC01-appb-C000037
(合成例10;化合物8の合成例)
 化合物7(62.5g)の2-(2-エトキシエトキシ)エタノール(420mL)溶液に、水酸化ナトリウム(17.6g)を加えたのち、50℃のオイルバスにて加熱しながら窒素バブリングを15分間おこなった。ヒドラジン一水和物(22.0g)をゆっくりと滴下した後、110℃オイルバスにて2時間おだやかに還流した。いったん加熱を止め、側管付冷却管に付け替えたのち、オイルバスの温度を段階的に180~210℃まで上昇し、蒸発する留分を側管付冷却管の側管から抜きながらさらに撹拌した。1時間後蒸発成分がほぼ見られなくなったのを確認し、加熱を止めた。氷浴にて室温まで冷却したのち、反応溶液を1Lの水に注ぎこんだ。1N塩酸を用いてpH<1としたのち、塩化メチレンにて抽出し、有機相を水、食塩水にて洗浄し、MgSOにて乾燥し、減圧濃縮した。残渣をカラムクロマトグラフィーにて精製し、化合物8(41.2g)を得た。
Figure JPOXMLDOC01-appb-C000038
(合成例11;化合物9の合成例)
 化合物1(12.1g)と化合物8(13.6g)に、トルエン/エタノール混合溶液(3:1、130mL)、りん酸三カリウム水溶液(2.0M、52mL)を加え30分間窒素バブリングを行った。そこにPd(PPh(0.95g)を加えた後、加熱還流させながら、3時間撹拌を行った。室温に戻した後、トルエンにて抽出を行い、有機相を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥し、減圧下、溶媒留去した。残渣をカラムクロマトグラフィーにて精製し、化合物9(16.4g)を得た。
Figure JPOXMLDOC01-appb-C000039
(合成例12;化合物D-3の合成例)
 窒素気流下、化合物9(8.65g)、Ir(acac)(2.61g)およびグリセリン(130g)の懸濁液を120℃オイルバス中で30分間窒素バブリングした。その後オイルバスの温度を220℃から240℃まで段階的に上げて計7時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、水を加え水相を除去したのち、ジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥し、減圧下溶媒留去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物D-3(0.19g)を得た。
 この化合物をフェニルシクロヘキサンに対して1.5重量%混合したものは120℃に加温すると直ちに溶解し均一溶液となり、その後室温で1ヶ月間保存したところ均一状態を保持していた。
Figure JPOXMLDOC01-appb-C000040
<比較化合物D-4の合成例>
(合成例13;化合物10の合成例)
 窒素気流下、四つ口フラスコに、マグネシウム(turnings)(1.34g)を入れ、撹拌しながら乾燥ジエチルエーテル(30mL)に溶解したブロモヘキサン(7.29g)を室温で滴下し、その後1時間室温で撹拌した。得られたグリニャール試薬の溶液を、窒素気流下にて、化合物2(6.15g)と[NiCl(dppp)](0.59g)及び乾燥ジエチルエーテル(40mL)の入った四つ口フラスコに室温で滴下した。その後1時間室温で撹拌した。その後塩化アンモニウム水溶液を添加し反応を停止させ、水と酢酸エチルを加え分液洗浄後、油相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物10(5.97g)を得た。
Figure JPOXMLDOC01-appb-C000041
(合成例14;比較化合物D-4の合成例)
 窒素気流下、化合物10(5.65g)、Ir(acac)(2.17g)およびグリセリン(108g)の懸濁液を110℃オイルバス中で40分間窒素バブリングした。その後オイルバスの温度を205℃から230℃まで段階的に上げて計9時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、水、メタノール、ジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥し、減圧下溶媒留去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物D-4(1.08g)を得た。
Figure JPOXMLDOC01-appb-C000042
<比較化合物D-6の合成例>
(合成例15;化合物11の合成例)
 窒素気流下、2-(3-ブロモフェニル)ピリジン(20.0g)、4-ヘキシルフェニルボロン酸(21.0g)のトルエン/エタノール混合溶液(2:1、160mL)に、炭酸ナトリウム(27.0g)の水溶液(70mL)を加え、30分間窒素バブリングをおこなった。Pd(PPh(1.00g)を加え、さらに10分間窒素バブリングをおこなったのち、105℃オイルバス中で3時間撹拌還流した。その後室温まで冷却し、水とトルエンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより化合物11(27.3g)を得た。
Figure JPOXMLDOC01-appb-C000043
(合成例16;比較化合物D-6の合成例)
 窒素気流下、化合物11(18.3g)、Ir(acac)(7.14g)およびグリセリン(243g)の懸濁液を100℃オイルバス中で30分間窒素バブリングした。その後オイルバスの温度を230℃から250℃まで段階的に上げて計6時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、水およびメタノールを加え水相を除去したのち、ジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥し、減圧下溶媒留去した。得られた残渣をカラムクロマトグラフィーに処し、さらにトルエンから再結晶することにより化合物D-6(0.9g)を得た。
Figure JPOXMLDOC01-appb-C000044
<比較化合物D-7の合成例>
(合成例17;化合物13の合成例)
 2-(3-ブロモフェニル)ピリジン(4.19g)と化合物12(6.34g)に、トルエン/エタノール混合溶液(2:1、150mL)、りん酸三カリウム水溶液(2.0M、25mL)を加え30分間窒素バブリングを行った。そこにPd(PPh(0.68g)を加えた後、加熱還流させながら、3時間撹拌を行った。室温に戻した後、トルエンにて抽出を行い、有機相を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥し、減圧下、溶媒留去した。残渣をカラムクロマトグラフィーにて精製し、化合物13(5.36g)を得た。なお、化合物12は、日本国特開2011-195462号公報に記載の方法にて得た。
Figure JPOXMLDOC01-appb-C000045
(合成例18;比較化合物D-7の合成例)
 窒素気流下、化合物13(5.20g)、Ir(acac)(1.83g)およびグリセリン(95g)の懸濁液を80℃オイルバス中で30分間窒素バブリングした。その後オイルバスの温度を220℃から230℃まで段階的に上げて計8.5時間撹拌した。副生するアセチルアセトンは反応中において側管から除去した。その後室温に冷却し、エタノールを加えグリセリンを除去したのち、ジクロロメタンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥し、減圧下溶媒留去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物D-7(0.38g)を得た。
Figure JPOXMLDOC01-appb-C000046
<比較化合物D-8の合成例>
(合成例19;化合物14の合成例)
 5-クロロ-2-ニトロベンズアルデヒド(50g)、フェニルボロン酸(39.4g)、りん酸三カリウム(85.8g)、S-PHOS(和光純薬工業株式会社より購入、12.2g)、トルエン(500mL)を順に加え、30分間窒素バブリングを行った。そこにPd(OAc)(3.03g)を加えた後、加熱還流させながら、9時間撹拌した。室温に戻した後、水、塩化メチレンを加えたのち、セライト濾過をおこなった。濾液を抽出洗浄し、有機相を無水硫酸マグネシウムにて乾燥し、減圧下、溶媒留去した。残渣をカラムクロマトグラフィーにて精製し、化合物14(37.7g)を得た。
Figure JPOXMLDOC01-appb-C000047
(合成例20;化合物15の合成例)
 化合物14(15g)にエタノール200mLを加え、50℃に加熱することで溶液とした。そこに、鉄粉(9.2g)、0.1N塩酸(33mL)を順に加え、加熱還流させながら3時間撹拌をおこなった。原料が残存していたため1N塩酸(1mL)を加え、さらに1時間加熱還流させた。まだ原料が残存していたため1N塩酸(2mL)を加え、さらに1時間加熱還流させた。室温に戻したのち、3’-ブロモアセトフェノン(10.5g)、粉砕した水酸化カリウム(4.4g)を順に加えた。室温で30分間撹拌したのち、3’-ブロモアセトフェノン(1.31g)を加え、さらに室温で2時間撹拌した。反応液を濾過し、濾取物を塩化メチレンに溶解させ、再度濾過し、濾液を減圧下濃縮した。残渣をカラムクロマトグラフィーに処し、得られた固体をエタノールで洗浄することで化合物15(22.7g)を得た。
Figure JPOXMLDOC01-appb-C000048
(合成例21;化合物16の合成例)
 窒素気流下、化合物15(9.0g)および4-ヘキシルフェニルボロン酸(6.2g)のトルエン/エタノール混合溶液(2:1、150mL)を、30分間窒素バブリングをおこなった。そこに、30分間窒素バブリングをおこなった炭酸ナトリウム(10.6g)水溶液(50mL)、Pd(PPh(1.4g)を順に加え、10時間撹拌還流した。その後室温まで冷却し、水と塩化メチレンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより化合物16(10.4g)を得た。
Figure JPOXMLDOC01-appb-C000049
(合成例22;化合物17の合成例)
 窒素気流下、中間体16(10.4g)、IrCl・n水和物(4.4g)に、2-エトキシエタノール(66mL)、水(22mL)を加え、加熱還流させながら20時間攪拌した。その後、ジクロロメタンで抽出し、有機層を水洗し、減圧濃縮を行い、メタノールに注ぎ再沈殿をおこなうことで、化合物17(12.5g)を得た。
Figure JPOXMLDOC01-appb-C000050
(合成例23;化合物18の合成例)
 窒素気流下、化合物17(12.5g)、ナトリウムアセチルアセトネート(3.4g)、2-エトキシエタノール(150mL)を順に加え、135℃で10時間攪拌した。その後、ジクロロメタンで抽出し、有機相を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、減圧濃縮を行った。残渣をカラムクロマトグラフィーに処し、メタノールで懸洗をおこなうことで、化合物18(8.89g)を20%純度で得た。
Figure JPOXMLDOC01-appb-C000051
(合成例24;比較化合物D-8の合成例)
 窒素気流下、化合物16(2.9g)に、グリセロール(45mL)を加え、90℃オイルバス中で窒素バブリングをおこなった。化合物18(20%純度、8.85g)を加えたのち、240℃~250℃で13.5時間攪拌した。その後、メタノールを添加し、吸引濾過により沈殿物を濾取した。カラムクロマトグラフィーに処し、メタノールから再沈殿させることで化合物D-8(0.2g)を得た。
Figure JPOXMLDOC01-appb-C000052
<比較化合物D-9の合成例>
(合成例25;化合物19の合成例)
 2-アミノベンゾフェノン(15.0g)、3’―ブロモアセトフェノン(18.2g)、酢酸(75mL)、濃硫酸(1.3mL)を順に加え、9.5時間加熱還流をおこなった。反応液を水に注ぎ、酢酸エチルで抽出洗浄をおこない、有機相をMgSOにて乾燥し、減圧濃縮した。カラムクロマトグラフィーにより精製し、化合物19(24.2g)を得た。
Figure JPOXMLDOC01-appb-C000053
(合成例26;化合物20の合成例)
 窒素気流下、化合物19(24.2g)および4-ヘキシルフェニルボロン酸(18.0g)のトルエン/エタノール混合溶液(1:1、400mL)を、30分間窒素バブリングをおこなった。そこに、30分間窒素バブリングをおこなった炭酸ナトリウム(21.4g)水溶液(100mL)、Pd(PPh(2.33g)を順に加え、8時間撹拌還流した。その後室温まで冷却し、4-ヘキシルフェニルボロン酸(5.5g)、Pd(PPh(0.8g)を順に加え、さらに7.5時間加熱還流させた。室温に戻したのち、水とトルエンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより化合物20(24.1g)を得た。
Figure JPOXMLDOC01-appb-C000054
(合成例27;化合物21の合成例)
 窒素気流下、化合物20(12.0g)、IrCl・n水和物(4.7g)に、2-エトキシエタノール(71mL)、水(24mL)を加え、加熱還流させながら11時間攪拌した。その後、ジクロロメタンで抽出し、有機層を水洗し、減圧濃縮を行い、メタノールに注ぎ再沈殿をおこなうことで、化合物21(11.9g)を得た。
Figure JPOXMLDOC01-appb-C000055
(合成例28;化合物22の合成例)
 窒素気流下、化合物21(11.9g)、ナトリウムアセチルアセトネート(3.3g)、2-エトキシエタノール(140mL)を順に加え、135℃で8時間攪拌した。その後、ジクロロメタンで抽出し、有機相を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、減圧濃縮を行った。残渣をカラムクロマトグラフィー、メタノールでの懸洗を繰り返すことで、化合物22(6.9g)を得た。
Figure JPOXMLDOC01-appb-C000056
(合成例29;比較化合物D-9の合成例)
 窒素気流下、化合物20(12.1g)に、グリセロール(172mL)を加え、80℃オイルバス中で窒素バブリングを30分間おこなった。化合物22(6.9g)を加えたのち、200℃で15時間攪拌した。その後、メタノールを添加し、溶液と油状物質を分離した。油状物質を塩化メチレンに溶解し、セライト濾過をおこなった。濾液を濃縮し、残渣をカラムクロマトグラフィーに処し、再沈殿を複数回繰り返すことにより、化合物D-9(0.6g)を得た。
Figure JPOXMLDOC01-appb-C000057
<本発明に係る化合物D-10の合成例>
(合成例30;化合物23の合成例)
 化合物14(42.5g)にエタノール420mLを加え、50℃に加熱することで溶液とした。そこに、鉄粉(41.8g)、0.1N塩酸(94mL)を順に加え、加熱還流させながら80分間撹拌をおこなった。室温に戻したのち、3’-(3-ブロモフェニル)アセトフェノン(51.5g)、粉砕した水酸化カリウム(12.6g)を順に加え、加熱還流させながら4時間撹拌した。反応液をセライト濾過し、残渣を塩化メチレンにて数回抽出し、溶けないものは再度セライト濾過にて分離した。得られた濾液はまとめて減圧下濃縮したのち、塩化メチレンにて抽出洗浄し、有機相を飽和食塩水にて洗浄し、MgSOにて乾燥し、減圧下濃縮した。残渣をカラムクロマトグラフィーに処し、得られた固体を塩化メチレン/ヘキサンで再沈殿することで化合物23(101g)を得た。
Figure JPOXMLDOC01-appb-C000058
(合成例31;化合物24の合成例)
 窒素気流下、反応容器に、マグネシウム(turnings)(14g)を入れ、撹拌しながら乾燥ジエチルエーテル(210mL)に溶解した6-フェニル-1-ブロモヘキサン(83.3g)をゆっくりと滴下し、その後1時間室温で撹拌した。得られたグリニャール試薬の溶液を、窒素気流下にて、化合物23(101g)と[NiCl(dppp)](6.3g)及び乾燥ジエチルエーテル(750mL)の入った反応容器に室温で滴下し、そのまま室温で2時間撹拌した。その後塩化アンモニウム水溶液を添加し反応を停止させ、水と塩化メチレンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物24(54.4g)を得た。
Figure JPOXMLDOC01-appb-C000059
(合成例32;化合物25の合成例)
 窒素気流下、化合物24(20g)、IrCl・n水和物(6.33g)に、窒素バブリングをおこなった2-エトキシエタノール(200mL)、水(20mL)を加え、内温を100~136℃まで段階的に上昇させながら累計13.5時間攪拌した。その後、ジクロロメタンで抽出し、有機層を水洗し、減圧濃縮を行い、化合物25を粗精製物として得た。
Figure JPOXMLDOC01-appb-C000060
(合成例33;化合物26の合成例)
 窒素気流下、化合物25の粗精製物、ナトリウムアセチルアセトネート(4.5g)、2-エトキシエタノール(200mL)を順に加え、135℃で40分間攪拌した。その後、ジクロロメタンで抽出し、有機相を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧濃縮を行った。残渣をカラムクロマトグラフィー、メタノールでの懸洗を繰り返すことで、化合物26(22.8g)を得た。
Figure JPOXMLDOC01-appb-C000061
(合成例34;化合物D-10の合成例)
 窒素気流下、化合物26(22.8g)、化合物24(63.5g)を、260℃オイルバスにて24時間攪拌した。残渣をカラムクロマトグラフィー、再沈殿にて精製することで、化合物D-10(3.48g)を得た。
 この化合物をフェニルシクロヘキサンに対して1.5重量%混合したものは120℃に加温すると直ちに溶解し均一溶液となり、その後室温で2ヶ月間保存したところ均一状態を保持していた。
Figure JPOXMLDOC01-appb-C000062
<本発明に係る化合物D-11の合成例>
(合成例35;化合物27の合成例)
 窒素気流下、化合物19(120g)、ビスピナコラートジボロン(102g)、酢酸カリウム(167g)、脱水ジメチルスルホキシド(600mL)を順に加え、50℃にて30分間窒素バブリングをおこなった。[PdCl(dppf)]CHCl(8.16g)を加えたのち、内温80~85℃にて4.5時間撹拌した。その後室温まで冷却し、水2.1L中へ注ぎ、析出物をろ別後、得られた固体をジクロロメタンにて抽出洗浄し、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物27(129g)を得た。
Figure JPOXMLDOC01-appb-C000063
(合成例36;化合物28の合成例)
 化合物27(122g)、3-ブロモヨードベンゼン(127g)、トルエン/エタノール混合溶液(2:1、1140mL)を順に加え、30分間窒素バブリングを行った。りん酸三カリウム水溶液(2.0M、346mL)を加え、さらに15分間窒素バブリングを行った。そこにPd(PPh(10.4g)を加えた後、加熱還流させながら、4.5時間撹拌を行った。室温に戻した後、トルエンにて抽出を行い、有機相を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥し、減圧下、溶媒留去した。残渣をカラムクロマトグラフィーにて精製し、化合物28(97g)を得た。
Figure JPOXMLDOC01-appb-C000064
(合成例37;化合物29の合成例)
 窒素気流下、反応容器に、マグネシウム(turnings)(9.4g)を入れ、撹拌しながら乾燥ジエチルエーテル(200mL)に溶解した6-フェニル-1-ブロモヘキサン(74.5g)をゆっくりと滴下し、その後1時間室温で撹拌した。得られたグリニャール試薬の溶液を、窒素気流下にて、化合物28(67.4g)と[NiCl(dppp)](4.2g)及び乾燥ジエチルエーテル(440mL)の入った反応容器に室温で滴下し、そのまま室温で1時間撹拌した。その後塩化アンモニウム水溶液を添加し反応を停止させ、水と塩化メチレンを加え分液洗浄後、有機相を硫酸マグネシウムで乾燥した。その後溶媒を減圧下除去した。得られた残渣をカラムクロマトグラフィーにて精製することにより、化合物29(64.5g)を得た。
Figure JPOXMLDOC01-appb-C000065
(合成例38;化合物30の合成例)
 窒素気流下、化合物29(11.4g)、IrCl・n水和物(3.59g)に、窒素バブリングをおこなった2-エトキシエタノール(115mL)、水(15mL)を加え、内温を100~135℃まで段階的に上昇させながら累計11時間攪拌した。その後、ジクロロメタンで抽出し、有機相を水洗し、減圧濃縮を行い、化合物30を粗精製物として得た。
Figure JPOXMLDOC01-appb-C000066
(合成例39;化合物31の合成例)
 窒素気流下、化合物30の粗精製物、ナトリウムアセチルアセトネート(2.43g)、2-エトキシエタノール(130mL)を順に加え、内温135℃で1時間攪拌した。その後、ジクロロメタンで抽出し、有機相を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧濃縮を行った。残渣をカラムクロマトグラフィー、メタノールでの懸洗を繰り返すことで、化合物31(7.64g)を得た。
Figure JPOXMLDOC01-appb-C000067
(合成例40;化合物D-11の合成例)
 窒素気流下、化合物31(7.6g)、化合物29(29.7g)を、260~270℃オイルバスにて18時間攪拌した。残渣をカラムクロマトグラフィー、再沈殿にて精製することで、化合物D-11(0.4g)を得た。
 この化合物をフェニルシクロヘキサンに対して1.5重量%混合したものは120℃に加温すると直ちに溶解し均一溶液となり、その後室温で2ヶ月間保存したところ均一状態を保持していた。
Figure JPOXMLDOC01-appb-C000068
 (実施例1)
 [有機電界発光素子の作製]
 図2に示す構造を有する有機電界発光素子を以下の方法で作製した。
 ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜を70nm堆積したもの(スパッター成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、中性洗剤による超音波洗浄、純水による水洗の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 次いで、正孔注入層を以下のように湿式成膜法によって形成した。正孔注入層の材料として、下記式(PB-1)の芳香族アミノ基を有する高分子化合物(重量平均分子量:33000,数平均分子量:25000)と(PB-2)の芳香族アミノ基を有する高分子化合物(重量平均分子量:76000,数平均分子量:40000)、および下記に示す構造式の電子受容性化合物(A-1)とを用い、下記の条件でスピンコートをおこない、膜厚40nmの均一な薄膜を形成した。
 高分子化合物PB-1およびPB-2は、国際公開第2009/102027号にて開示されている方法を参考にして合成した。
 なお、下記に示す構造式PB-1内の数字は、[ ]で表される2種類の繰返し単位数の比を表す。また、構造式PB-2内のArとは、構造式右側に示されるアリール基を表し、該2種類のアリール基は、xで表されるモル比で存在する。
Figure JPOXMLDOC01-appb-C000069
<正孔注入層様組成物>
   (溶媒)   安息香酸エチル
   (塗布液濃度)PB-1:0.875重量%
          PB-2:2.625重量%
          A-1 :0.525重量%
<成膜条件>
   (スピンコート雰囲気)大気下 23℃
   (乾燥条件)230℃×60分
 続いて、正孔輸送層を以下のように湿式製膜法によって形成した。正孔輸送層の材料として、下記に示す構造式の電荷輸送材料(PB-3)の芳香族アミノ基を有する高分子化合物(重量平均分子量:79000,数平均分子量:54000)を、溶媒としてフェニルシクロヘキサンを用いた有機電界発光素子用組成物を調製し、この有機電界発光素子用組成物を用いて下記の条件でスピンコートをおこない膜厚11nmの薄膜を得た。
 構造式PB-3内のArとは、構造式右側に示される2種類のアリール基を表し、該2種類のアリール基は、数字で表されるモル比で存在する。なお、高分子化合物PB-3は、国際公開第2011/099531号にて開示されている方法を参考にして合成した。
Figure JPOXMLDOC01-appb-C000070
<正孔輸送層用組成物>
   (溶媒)   フェニルシクロヘキサン
   (塗布液濃度)PB-3:1.0重量%
<成膜条件>
   (スピンコート雰囲気)乾燥窒素中 32℃
   (乾燥条件)230℃×60分(乾燥窒素下)
 次に、発光層を形成するにあたり、電荷輸送材料として、以下に示す、有機化合物(HO-1)及び、有機化合物(HO-2)並びに、発光材料として、以下に示すイリジウム錯体化合物(D-1)を用いて下記に示すイリジウム錯体化合物含有組成物を調製し、以下に示す条件で正孔輸送層上にスピンコートして膜厚50nmで発光層を得た。
Figure JPOXMLDOC01-appb-C000071
<発光層用組成物>
   (溶媒)    フェニルシクロヘキサン
   (塗布液濃度) HO-1:1.2重量%
           HO-2:3.6重量%
           D-1 :0.48重量%
<スピンコート条件>
   (スピンコート雰囲気)乾燥窒素中 35℃
   (乾燥条件)120℃×20分(乾燥窒素下)
 この基板を一旦大気中に取り出し、速やかに真空蒸着装置のチャンバー内に設置した。チャンバーはロータリーポンプで粗引きした後、クライオポンプにて減圧した。基板には、所定の領域に、蒸着用マスクを配置し、チャンバーにはあらかじめ必要な蒸着材料をそれぞれ別の磁器製坩堝に入れて配置しておいた。
 次に、正孔阻止層として下記に示す化合物(HB-1)を10nmの膜厚で積層した。
Figure JPOXMLDOC01-appb-C000072
 次に、正孔阻止層の上に、電子輸送層として下記に示すアルミニウムの8-ヒドロキシキノリン錯体(ET-1)を同様にして蒸着し、膜厚は20nmとした。
Figure JPOXMLDOC01-appb-C000073
 上記の正孔阻止層及び電子輸送層を真空蒸着する時の基板温度は室温に保持した。
 ここで、電子輸送層までの蒸着を行った素子を一度前記真空蒸着装置内より大気中に取り出して、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が3.3×10-4Pa以下になるまで排気した。
 次に、電子輸送層の上に、電子注入層として、フッ化リチウム(LiF)を、0.5nmの膜厚となるように電子輸送層の上に成膜した。
 次に、電子注入層の上に、陰極として膜厚80nmのアルミニウム層を形成して陰極を完成させた。なお、電子注入層、陰極の蒸着時の基板温度は室温に保持した。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
 素子の発光スペクトルの極大波長は520nmであり、イリジウム錯体化合物(D-1)由来のものと同定された。
(比較例1)
 実施例1において、発光層を形成する際に用いた化合物D-1を、下記式で表される化合物D-4に変更した以外は、実施例1と同様にして有機電界発光素子を作製した。
(比較例2)
 実施例1において、発光層を形成する際に用いた化合物D-1を、下記式で表される化合物D-5に変更した以外は、実施例1と同様にして有機電界発光素子を作製した。なお、化合物D-5は、日本国特開2010-202644号公報に記載の方法にて得た。
Figure JPOXMLDOC01-appb-C000074
 実施例1及び比較例1、2において作製した有機電界発光素子の特性、及び初期輝度を10,000cd/mとして直流駆動試験を行い、輝度が90%まで減少するまでの時間(LT90駆動寿命)を表1にまとめる。
Figure JPOXMLDOC01-appb-T000075
 表1に示すが如く、本発明のイリジウム錯体化合物を含む層を有する有機電界発光素子は、電力効率が高く、駆動寿命が長いことが分かる。
(比較例3)
 下記構造式で表される化合物(D-6)の、フェニルシクロヘキサンに対する、室温(25℃)での溶解性試験を行ったところ、0.2重量%未満であった。このため、湿式成膜法での層の形成ができず、素子特性等の試験ができなかった。
Figure JPOXMLDOC01-appb-C000076
(比較例4)
 下記構造式で表される化合物(D-7)の、フェニルシクロヘキサンに対する、室温(25℃)での溶解性試験を行ったところ、0.85重量%溶解したが、翌日結晶化が認められた。このため、湿式成膜法での層の形成ができず、素子特性等の試験ができなかった。
Figure JPOXMLDOC01-appb-C000077
(実施例2)
 実施例1において、正孔阻止層を下記化合物(HB-2)に変更したほかは実施例1と同様にして有機電界発光素子を作製した。素子の発光スペクトルの極大波長は521nmであり、イリジウム錯体化合物(D-1)由来のものと同定された。
Figure JPOXMLDOC01-appb-C000078
(実施例3~4、比較例5)
 実施例2において、発光層を形成する際に用いた発光材料を表2に記載した化合物に変更した以外は、実施例2と同様にして有機電界発光素子を作製した。
 実施例2~4および比較例5において作製した有機電界発光素子の特性、及び初期輝度を10,000cd/mとして直流駆動試験を行い、輝度が80%まで減少するまでの時間(LT80駆動寿命)を表2にまとめた。
Figure JPOXMLDOC01-appb-T000079
 表2に示すが如く、本発明のイリジウム錯体化合物を含む層を有する有機電界発光素子は、駆動電圧が低く、駆動寿命が長いことが分かる。
(比較例6)
 実施例1において、発光層を形成する際に用いた電荷輸送材料をHO-1から以下に示すHO-3に変更した以外は、実施例1と同様にして素子を作製した。
 比較例6において作製した有機電界発光素子の特性、及び初期輝度を10,000cd/mとして直流駆動試験を行い、輝度が90%まで減少するまでの時間(LT90駆動寿命)を表3にまとめた。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-T000081
 
 表3に示すが如く、本発明のイリジウム錯体化合物を含む層を有する有機電界発光素子は、電荷輸送材料として含窒素芳香族複素環化合物を含むことで、電力効率が高く、駆動寿命が長いことが分かる。
(比較例7)
 実施例1において、発光層を形成する際に用いた電荷輸送材料HO-1及びHO-2を以下に示すHO-3及びHO-4にそれぞれ変更し、発光材料D-1を以下に示すD-8に変更した以外は、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000082
<発光層用組成物>
   (溶媒)     フェニルシクロヘキサン
   (塗布液濃度)  HO-3:1.2重量%
            HO-4:3.6重量%
            D-8 :0.336重量%
(比較例8、実施例5~8)
 比較例7において、発光層を形成する際に用いた発光材料、電荷輸送材料を、それぞれ、表4に示す化合物の組み合わせに変更した以外は、比較例7と同様にして素子を作製した。表4における発光材料の欄に記載されている化合物のうち、D-9~D-11の構造を下記に示す。また表4における電荷輸送材料の欄に記載されている化合物のうち、HO-5とHO-6の構造を下記に示す。
Figure JPOXMLDOC01-appb-C000083
 得られた有機電界発光素子の特性及び初期輝度を7000cd/mとして直流駆動試験を行い、輝度が85%まで減少するまでの時間(LT85駆動寿命)を表4にまとめる。
Figure JPOXMLDOC01-appb-T000084
 表4に示すが如く、本発明の有機金属錯体を含む層を有する有機電界発光素子は、電力効率が高く、駆動寿命が長いことが分かる。さらに、その際に用いる電荷輸送材料としては、含窒素芳香族複素環化合物を含むことが好ましいことが分かる。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年1月13日出願の日本特許出願(特願2012-005118)および2012年9月14日出願の日本特許出願(特願2012-202908)に基づくものであり、その内容はここに参照として取り込まれる。
  1  基板
  2  陽極
  3  正孔注入層
  4  正孔輸送層
  5  発光層
  6  正孔阻止層
  7  電子輸送層
  8  電子注入層
  9  陰極

Claims (22)

  1.  下記式(1)で表されるイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000001
    {式(1)において、環Aは、炭素原子CおよびCを含む、6員環もしくは5員環の芳香族炭化水素環または6員環もしくは5員環の芳香族複素環を表し、環Bは、炭素原子Cおよび窒素原子Nを含む、6員環または5員環の含窒素芳香族複素環を表す。Lは有機配位子である。aおよびbは、それぞれ独立に1から4の整数を表す。nは1から3の整数を表す。
     RおよびRは、それぞれ、環Aおよび環Bを構成する炭素原子または窒素原子に結合する置換基を表し、RまたはRが複数個ある場合は、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
     aが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。bが2以上で、かつ複数のRが隣合う場合、隣合っているR同士が、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。また、RおよびRが、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、さらに環を形成してもよい。R同士、R同士またはRとRとが結合することにより形成された環は、さらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
     ただし、RおよびRのうち、少なくとも1つは下記式(2)で表される。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)において、Xは、複数個ある場合は、それぞれ同一または異なり、炭素数6~20の(ヘテロ)アリーレン基を表し、Arは、複数個ある場合は、それぞれ同一または異なり、炭素数3~20の(ヘテロ)アリール基を表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。Zは、下記式(3)で表される。cは1から3の整数を表す。dは0から3の整数を表す。]
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)において、複数のR’はそれぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、または炭素数3~20の(ヘテロ)アリール基である。rは1から20の整数を示す。〕}
  2.  前記式(1)において、環Aに結合する置換基Rのうち、少なくとも一つが前記式(2)で表される、請求項1に記載のイリジウム錯体化合物。
  3.  前記式(1)において、環Bに結合する置換基Rのうち、少なくとも一つが前記式(2)で表される、請求項1または2に記載のイリジウム錯体化合物。
  4.  前記式(1)において、環Aがベンゼン環またはピリジン環である、請求項1~3のいずれか一項に記載のイリジウム錯体化合物。
  5.  下記式(1-1)で表される、請求項1~4のいずれか一項に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式(1-1)において、環B、R、L、bおよびnは、それぞれ式(1)と同義である。
     R~Rは、それぞれ同一または異なり、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基、のいずれかを表す。これらの基はさらに、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
     また、R~Rは、隣り合うR~Rと、直接結合して、または炭素数3~12のアルキレン基、炭素数3~12のアルケニレン基、もしくは炭素数6~12のアリーレン基を介して結合して、環を形成してもよい。これらの環はさらにフッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数3~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基で置換されていてもよい。
     なお、式(1-1)で表されるイリジウム錯体化合物は、R~Rにおいて、少なくとも1つの前記式(2)で表される基を有する。]
  6.  前記Rが前記式(2)で表される、請求項5に記載のイリジウム錯体化合物。
  7.  前記Rが前記式(2)で表される、請求項5に記載のイリジウム錯体化合物。
  8.  前記環Bが、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、またはチアゾール環である、請求項1~7のいずれか一項に記載のイリジウム錯体化合物。
  9.  前記環Bがピリジン環である、請求項1~7のいずれか一項に記載のイリジウム錯体化合物。
  10.  前記環Bがピラジン環である、請求項1~7のいずれか一項に記載のイリジウム錯体化合物。
  11.  前記環Bがピリミジン環である、請求項1~7のいずれか一項に記載のイリジウム錯体化合物。
  12.  前記環Bがイミダゾール環である、請求項1~7のいずれか一項に記載のイリジウム錯体化合物。
  13.  前記式(2)において、dが1から3の整数である、請求項1~12のいずれか一項に記載のイリジウム錯体化合物。
  14.  前記式(2)において、Arが炭素数6~20の芳香族炭化水素基である、請求項1~13のいずれか一項に記載のイリジウム錯体化合物。
  15.  前記式(2)において、Arに置換していてもよい置換基が、フッ素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20であるアルキルシリル基、炭素数1~20である(ヘテロ)アリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数4~20の(ヘテロ)アリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数3~20の(ヘテロ)アリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である、請求項1~14のいずれか一項に記載のイリジウム錯体化合物。
  16.  請求項1~15のいずれか一項に記載のイリジウム錯体化合物を含む発光材料。
  17.  請求項1~15のいずれか一項に記載のイリジウム錯体化合物及び溶媒を含む組成物。
  18.  陽極、陰極、及び該陽極と該陰極の間に少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のうち少なくとも1層が、請求項1~15のいずれか一項に記載のイリジウム錯体化合物を含む有機電界発光素子。
  19.  前記有機層が、電荷輸送材料としてさらに含窒素芳香族複素環化合物を含む、請求項18に記載の有機電界発光素子。
  20.  前記有機層が、請求項17に記載の組成物を用いて形成された層である、請求項18または19に記載の有機電界発光素子。
  21.  請求項18~20のいずれか一項に記載の有機電界発光素子を用いた表示装置。
  22.  請求項18~20のいずれか一項に記載の有機電界発光素子を用いた照明装置。
PCT/JP2013/050333 2012-01-13 2013-01-10 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置 WO2013105615A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13736249.7A EP2803671B1 (en) 2012-01-13 2013-01-10 Iridium complex compound, solution composition containing iridium complex compound, organic electroluminescent element, display device, and lighting device
CN201380005274.3A CN104053664B (zh) 2012-01-13 2013-01-10 铱络合化合物以及包含该化合物的溶液组合物、有机电致发光元件、显示装置和照明装置
JP2013530270A JP5459447B2 (ja) 2012-01-13 2013-01-10 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
KR1020147019253A KR102069497B1 (ko) 2012-01-13 2013-01-10 이리듐 착물 화합물 그리고 그 화합물을 함유하는 용액 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
US14/330,442 US9799837B2 (en) 2012-01-13 2014-07-14 Iridium complex compound, solution composition containing the compound, organic electroluminescent element, display, and lighting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012005118 2012-01-13
JP2012-005118 2012-01-13
JP2012202908 2012-09-14
JP2012-202908 2012-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/330,442 Continuation US9799837B2 (en) 2012-01-13 2014-07-14 Iridium complex compound, solution composition containing the compound, organic electroluminescent element, display, and lighting

Publications (1)

Publication Number Publication Date
WO2013105615A1 true WO2013105615A1 (ja) 2013-07-18

Family

ID=48781557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050333 WO2013105615A1 (ja) 2012-01-13 2013-01-10 イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置

Country Status (7)

Country Link
US (1) US9799837B2 (ja)
EP (1) EP2803671B1 (ja)
JP (2) JP5459447B2 (ja)
KR (1) KR102069497B1 (ja)
CN (1) CN104053664B (ja)
TW (1) TWI593693B (ja)
WO (1) WO2013105615A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087961A1 (ja) 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2015189687A (ja) * 2014-03-27 2015-11-02 三菱化学株式会社 イリジウム錯体化合物の製造方法、及びその製造方法で得られたイリジウム錯体化合物
JP2016036054A (ja) * 2013-10-01 2016-03-17 住友化学株式会社 発光素子
WO2016170671A1 (ja) * 2015-04-24 2016-10-27 住友化学株式会社 発光素子および該発光素子に用いる組成物
JP2017048184A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
KR20180013895A (ko) 2015-05-29 2018-02-07 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP2018078295A (ja) * 2017-11-21 2018-05-17 住友化学株式会社 発光素子および該発光素子に用いる組成物
WO2018135656A1 (ja) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
JP2018150345A (ja) * 2018-05-18 2018-09-27 三菱ケミカル株式会社 イリジウム錯体化合物の製造方法、及びその製造方法で得られたイリジウム錯体化合物
JP2019038775A (ja) * 2017-08-25 2019-03-14 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US20190157599A1 (en) * 2016-01-08 2019-05-23 Konica Minolta, Inc. Thin film and organic electroluminescent element
WO2019107467A1 (ja) 2017-11-29 2019-06-06 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
WO2020230811A1 (ja) 2019-05-15 2020-11-19 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540841A (zh) * 2012-08-08 2015-04-22 三菱化学株式会社 铱配位化合物以及含有该化合物的组合物、有机场致发光元件、显示装置和照明装置
JP5911419B2 (ja) * 2012-12-27 2016-04-27 キヤノン株式会社 有機発光素子及び表示装置
US20160164012A1 (en) 2014-11-28 2016-06-09 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
KR102455432B1 (ko) * 2014-11-28 2022-10-18 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
CN106543231A (zh) * 2015-09-21 2017-03-29 上海和辉光电有限公司 伯啶配合物及采用该伯啶配合物的有机电致发光器件
WO2017168293A1 (en) * 2016-04-01 2017-10-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2020145294A1 (ja) * 2019-01-10 2020-07-16 三菱ケミカル株式会社 イリジウム錯体化合物
KR20220024000A (ko) * 2019-06-13 2022-03-03 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
CN112409243A (zh) 2019-08-23 2021-02-26 支志明 四齿配体、金(iii)配合物及其制备方法和应用
US20210135130A1 (en) * 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
DE102020214076A1 (de) * 2020-11-10 2022-05-12 Heraeus Deutschland GmbH & Co. KG Herstellungsverfahren für Edelmetall-Elektroden

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003231692A (ja) * 2001-12-04 2003-08-19 Nippon Hoso Kyokai <Nhk> 有機化合物、有機el素子およびディスプレイ
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
JP2004292436A (ja) * 2003-03-07 2004-10-21 Dainippon Printing Co Ltd 有機化合物、及び有機エレクトロルミネッセンス素子
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2005537320A (ja) * 2002-08-29 2005-12-08 イシス イノベイション リミテッド 反応性デンドリマー
WO2006001150A1 (en) * 2004-05-21 2006-01-05 Showa Denko K.K. Polymer light-emitting material and organic light emitting element
JP2006290781A (ja) 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2009022594A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. 青色発光性高分子化合物、有機エレクトロルミネッセンス素子およびその用途
WO2009034987A1 (ja) * 2007-09-14 2009-03-19 Showa Denko K.K. 燐光発光性高分子化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2009176963A (ja) * 2008-01-24 2009-08-06 Showa Denko Kk 有機エレクトロルミネッセンス素子およびその製造方法
WO2009102027A1 (ja) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
JP2010202644A (ja) 2009-02-03 2010-09-16 Mitsubishi Chemicals Corp 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2011195462A (ja) 2010-03-17 2011-10-06 Mitsubishi Chemicals Corp 有機化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2012038028A1 (de) * 2010-09-23 2012-03-29 Merck Patent Gmbh Metall-ligand koordinationsverbindungen
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424996B2 (ja) 2002-03-18 2010-03-03 イシス イノベイション リミテッド リン光デンドリマー
US8471248B2 (en) * 2008-02-12 2013-06-25 Basf Se Electroluminiscent metal complexes with dibenzo[f,h] quinoxalines
WO2010031738A1 (en) * 2008-09-22 2010-03-25 Basf Se Electroluminescent metal complexes with azapyrenes
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053644B4 (de) 2009-11-17 2019-07-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2011032686A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulierungen zur herstellung von elektronischen vorrichtungen
DE102009053645A1 (de) 2009-11-17 2011-05-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtung
CN102869672B (zh) 2010-05-03 2016-05-11 默克专利有限公司 制剂和电子器件
JP6054290B2 (ja) 2010-06-15 2016-12-27 メルク パテント ゲーエムベーハー 金属錯体
JP2012006878A (ja) * 2010-06-25 2012-01-12 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
CN104540841A (zh) * 2012-08-08 2015-04-22 三菱化学株式会社 铱配位化合物以及含有该化合物的组合物、有机场致发光元件、显示装置和照明装置
JP2014058457A (ja) * 2012-09-14 2014-04-03 Mitsubishi Chemicals Corp イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPH05331459A (ja) 1992-04-03 1993-12-14 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207169A (ja) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0741759A (ja) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンス素子
JPH1079297A (ja) 1996-07-09 1998-03-24 Sony Corp 電界発光素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11242996A (ja) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp 有機電界発光素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2002100478A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2002100482A (ja) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp 有機電界発光素子
JP2003031365A (ja) 2001-05-02 2003-01-31 Junji Kido 有機電界発光素子
JP2003231692A (ja) * 2001-12-04 2003-08-19 Nippon Hoso Kyokai <Nhk> 有機化合物、有機el素子およびディスプレイ
WO2004026886A2 (de) 2002-08-24 2004-04-01 Covion Organic Semiconductors Gmbh Rhodium-und iridium-komplexe
JP2005537320A (ja) * 2002-08-29 2005-12-08 イシス イノベイション リミテッド 反応性デンドリマー
JP2004292436A (ja) * 2003-03-07 2004-10-21 Dainippon Printing Co Ltd 有機化合物、及び有機エレクトロルミネッセンス素子
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005022962A1 (ja) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation 化合物、電荷輸送材料および有機電界発光素子
WO2005089024A1 (ja) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
WO2006001150A1 (en) * 2004-05-21 2006-01-05 Showa Denko K.K. Polymer light-emitting material and organic light emitting element
JP2006290781A (ja) 2005-04-08 2006-10-26 Takasago Internatl Corp 良溶解性イリジウム錯体
JP2008098619A (ja) 2006-09-14 2008-04-24 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2009022594A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. 青色発光性高分子化合物、有機エレクトロルミネッセンス素子およびその用途
WO2009034987A1 (ja) * 2007-09-14 2009-03-19 Showa Denko K.K. 燐光発光性高分子化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2009176963A (ja) * 2008-01-24 2009-08-06 Showa Denko Kk 有機エレクトロルミネッセンス素子およびその製造方法
WO2009102027A1 (ja) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
JP2010202644A (ja) 2009-02-03 2010-09-16 Mitsubishi Chemicals Corp 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2011195462A (ja) 2010-03-17 2011-10-06 Mitsubishi Chemicals Corp 有機化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2012038028A1 (de) * 2010-09-23 2012-03-29 Merck Patent Gmbh Metall-ligand koordinationsverbindungen
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Organic Chemistry/Biochemistry Nomenclature(Revised 2nd Ed.,)", 1992, NANKO-DO
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
APPL. PHYS. LETT., vol. 70, 1997, pages 152
HYUN-SHIN LEE ET AL.: "Synthesis and luminescence studies of hydrocarbon-branched tris-cyclometallated iridium(III) complexes", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 520, 2010, pages 336 - 343, XP008171480 *
IEEE TRANS. ELECTRON. DEVICES, vol. 44, 1997, pages 1245
M. LEPELTIER ET AL.: "Synthesis and photophysical properties of bis-cyclometalated iridium(III)-styryl complexes and their saturated analogues", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 18, 2007, pages 2734 - 2747, XP055011024 *
M.LEPELTIER ET AL.: "Tris-Cyclometalated Iridium (III) Styryl Complexes and Their Saturated Analogues: Direct Functionalization of Ir (4-Me-ppy)3 and Hydrogen Transfer Process", ORGANOMETALLICS, vol. 24, no. 24, 2005, pages 6069 - 6072, XP055011019 *
See also references of EP2803671A4
SHIZUO TOKITO; CHIHAYA ADACHI; HIDEYUKI MURATA: "Organic EL Display", 20 August 2004, OHM
SID 04 DIGEST, pages 154
T.TSUZUKI ET AL.: "Organic light-emitting diodes using multifunctional phosphorescent dendrimers with iridium-complex core and charge- transporting dendrons", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 1: REGULAR PAPERS, BRIEF COMMUNICATIONS & REVIEW PAPERS, vol. 44, no. 6A, 2005, pages 4151 - 4154, XP001502348 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036054A (ja) * 2013-10-01 2016-03-17 住友化学株式会社 発光素子
WO2015087961A1 (ja) 2013-12-12 2015-06-18 三菱化学株式会社 イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2015189687A (ja) * 2014-03-27 2015-11-02 三菱化学株式会社 イリジウム錯体化合物の製造方法、及びその製造方法で得られたイリジウム錯体化合物
CN107534089B (zh) * 2015-04-24 2019-06-14 住友化学株式会社 发光元件和该发光元件中使用的组合物
WO2016170671A1 (ja) * 2015-04-24 2016-10-27 住友化学株式会社 発光素子および該発光素子に用いる組成物
US10497885B2 (en) 2015-04-24 2019-12-03 Sumitomo Chemical Company, Limited Light emitting device and composition used for this light emitting device
JPWO2016170671A1 (ja) * 2015-04-24 2017-04-27 住友化学株式会社 発光素子および該発光素子に用いる組成物
CN107534089A (zh) * 2015-04-24 2018-01-02 住友化学株式会社 发光元件和该发光元件中使用的组合物
JP2021138735A (ja) * 2015-05-29 2021-09-16 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
JP7420116B2 (ja) 2015-05-29 2024-01-23 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR20180013895A (ko) 2015-05-29 2018-02-07 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP7370400B2 (ja) 2015-09-03 2023-10-27 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2022068208A (ja) * 2015-09-03 2022-05-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2017048184A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2017048390A (ja) * 2015-09-03 2017-03-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20190157599A1 (en) * 2016-01-08 2019-05-23 Konica Minolta, Inc. Thin film and organic electroluminescent element
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US11711968B2 (en) 2016-10-07 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
KR102544020B1 (ko) 2017-01-23 2023-06-16 미쯔비시 케미컬 주식회사 발광층 형성용 조성물 및 해당 발광층 형성용 조성물을 함유하는 유기 전계 발광 소자
KR20190111919A (ko) * 2017-01-23 2019-10-02 미쯔비시 케미컬 주식회사 발광층 형성용 조성물 및 해당 발광층 형성용 조성물을 함유하는 유기 전계 발광 소자
WO2018135656A1 (ja) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
JP2019038775A (ja) * 2017-08-25 2019-03-14 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2018078295A (ja) * 2017-11-21 2018-05-17 住友化学株式会社 発光素子および該発光素子に用いる組成物
WO2019107467A1 (ja) 2017-11-29 2019-06-06 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
EP4383238A2 (en) 2017-11-29 2024-06-12 Mitsubishi Chemical Corporation Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
JP2018150345A (ja) * 2018-05-18 2018-09-27 三菱ケミカル株式会社 イリジウム錯体化合物の製造方法、及びその製造方法で得られたイリジウム錯体化合物
WO2020230811A1 (ja) 2019-05-15 2020-11-19 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置
KR20220008818A (ko) 2019-05-15 2022-01-21 미쯔비시 케미컬 주식회사 이리듐 착물 화합물, 그 화합물 및 용제를 함유하는 조성물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP7544040B2 (ja) 2019-05-15 2024-09-03 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置

Also Published As

Publication number Publication date
EP2803671A1 (en) 2014-11-19
CN104053664B (zh) 2016-07-06
CN104053664A (zh) 2014-09-17
JP2014111613A (ja) 2014-06-19
US9799837B2 (en) 2017-10-24
JPWO2013105615A1 (ja) 2015-05-11
KR102069497B1 (ko) 2020-01-23
KR20140117401A (ko) 2014-10-07
EP2803671A4 (en) 2014-12-03
US20140319505A1 (en) 2014-10-30
TWI593693B (zh) 2017-08-01
TW201336853A (zh) 2013-09-16
EP2803671B1 (en) 2019-05-01
JP5459447B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5459447B2 (ja) イリジウム錯体化合物並びに該化合物を含む溶液組成物、有機電界発光素子、表示装置及び照明装置
JP5810417B2 (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
WO2015087961A1 (ja) イリジウム錯体化合物、該化合物の製造方法、該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
KR102609664B1 (ko) 이리듐 착물 화합물, 그 화합물을 함유하는 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP6540771B2 (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JPWO2012096263A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP5707704B2 (ja) 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機elディスプレイおよび有機el照明
WO2020235562A1 (ja) 有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置
JP2011105676A (ja) 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP6286872B2 (ja) イリジウム錯体化合物、有機電界発光素子、表示装置および照明装置
JP5621482B2 (ja) 有機金属錯体、有機金属錯体含有組成物、発光材料、有機電界発光素子材料、有機電界発光素子、有機電界発光表示装置および有機電界発光照明装置
JP6119171B2 (ja) イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置
KR20220024000A (ko) 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP2014058457A (ja) イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP2018058797A (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JP2021127325A (ja) 芳香族ジアミン誘導体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530270

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013736249

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE