WO2013099990A1 - 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池 - Google Patents

二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池 Download PDF

Info

Publication number
WO2013099990A1
WO2013099990A1 PCT/JP2012/083738 JP2012083738W WO2013099990A1 WO 2013099990 A1 WO2013099990 A1 WO 2013099990A1 JP 2012083738 W JP2012083738 W JP 2012083738W WO 2013099990 A1 WO2013099990 A1 WO 2013099990A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
active material
water
electrode active
Prior art date
Application number
PCT/JP2012/083738
Other languages
English (en)
French (fr)
Inventor
真弓 福峯
雄輝 大久保
智一 佐々木
佳 小林
拓己 杉本
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201280065029.7A priority Critical patent/CN104011920B/zh
Priority to JP2013551759A priority patent/JP6149730B2/ja
Priority to KR1020147017225A priority patent/KR101819067B1/ko
Publication of WO2013099990A1 publication Critical patent/WO2013099990A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery and a method for producing the same, a slurry composition for producing the positive electrode for the secondary battery, and a secondary battery including the positive electrode for the secondary battery.
  • portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have become widespread.
  • a secondary battery used as a power source of these portable terminals for example, a nickel hydrogen secondary battery, a lithium ion secondary battery, or the like is used.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher performance. As a result, mobile terminals are used in various places.
  • secondary batteries are also required to be smaller, thinner, lighter, and have higher performance as with mobile terminals.
  • a secondary battery usually includes an electrode, an electrolytic solution, and other battery members.
  • the electrode usually includes a current collector and an electrode active material layer formed on the current collector.
  • the electrode active material layer includes a binder (binder) and an electrode active material.
  • binder binder
  • an electrode active material layer includes a binder (binder) and an electrode active material.
  • JP 2002-56896 A Japanese Patent No. 3601250 JP 2010-177079 A JP 2011-192644 A
  • the electrode active material layer provided on the positive electrode is called a positive electrode active material layer.
  • the positive electrode active material layer is obtained by, for example, mixing a conductive additive such as conductive carbon and a positive electrode active material in a liquid composition in which a polymer serving as a binder is dispersed or dissolved in a solvent such as water or an organic solvent. A slurry composition is obtained, and this slurry composition is applied to a current collector and dried.
  • the conventional positive electrode manufactured using water as the solvent has a tendency to be inferior in the coating property of the slurry composition.
  • the adhesion of the positive electrode active material layer to the current collector tends to be low.
  • the pouring property of the positive electrode active material layer was low, and there was a tendency that the electrolytic solution did not soak. For this reason, the conventional positive electrode was inferior in the storage characteristic in a high temperature environment.
  • the present invention was devised in view of the above-mentioned problems, and is excellent in balance in coating properties of the slurry composition, adhesion of the positive electrode active material layer to the current collector, and liquid injection property of the positive electrode active material layer, Secondary battery positive electrode for obtaining a secondary battery having high storage characteristics in a high temperature environment, a method for producing the secondary battery positive electrode, a slurry composition for producing the secondary battery positive electrode, and the secondary battery It aims at providing the secondary battery provided with the positive electrode.
  • the present inventor has a tendency that the dispersibility of the positive electrode active material or the conductive additive tends to be low in the conventional positive electrode for a secondary battery. It has been found that some or all of coatability, adhesion of the positive electrode active material layer to the current collector, and liquid injection property of the positive electrode active material layer are low.
  • this inventor is a water-soluble polymer which has an acidic functional group containing monomer unit and a (meth) acrylic acid ester monomer unit in a predetermined ratio, a positive electrode active material, a conductive support agent, particles
  • a positive electrode including a combination with a binder the coating property of the slurry composition, the adhesion of the positive electrode active material layer to the current collector, and the liquid injection property of the positive electrode active material layer can be improved in a balanced manner.
  • the present inventors have found that a secondary battery having high storage characteristics in a high temperature environment can be realized, and the present invention has been completed. That is, the present invention is as follows.
  • a positive electrode for a secondary battery comprising a positive electrode active material layer comprising a positive electrode active material, a conductive additive, a particulate binder and a water-soluble polymer,
  • the water-soluble polymer includes a copolymer A having 15 to 60% by weight of acidic functional group-containing monomer units and 30 to 80% by weight of (meth) acrylate monomer units.
  • Positive electrode for secondary battery [2] The positive electrode for a secondary battery according to [1], wherein the copolymer A has a crosslinkable monomer unit. [3] The positive electrode for a secondary battery according to [2], wherein the content ratio of the crosslinkable monomer unit in the copolymer A is 0.1 wt% to 2 wt%.
  • the particulate binder includes a copolymer B having a (meth) acrylonitrile monomer unit and a (meth) acrylic acid ester monomer unit, according to any one of [1] to [7] The positive electrode for secondary batteries as described.
  • the weight ratio of the (meth) acrylonitrile monomer unit to the (meth) acrylic acid ester monomer unit in the copolymer B is “(meth) acrylonitrile monomer unit / (meth) acrylic acid ester”.
  • a slurry composition for producing a positive electrode active material layer constituting a positive electrode for a secondary battery Including a positive electrode active material, a conductive additive, a particulate binder, a water-soluble polymer and water,
  • the water-soluble polymer includes a copolymer A containing 15% to 60% by weight of acidic functional group-containing monomer units and 30% to 80% by weight of (meth) acrylate monomer units.
  • a method for producing a positive electrode for a secondary battery comprising a current collector and a positive electrode active material layer provided on the current collector
  • a method for producing a positive electrode for a secondary battery comprising: applying the slurry composition according to [11] onto the current collector, and then drying the applied material to obtain the positive electrode active material layer.
  • a positive electrode, a negative electrode, an electrolytic solution, and a separator are provided.
  • a secondary battery, wherein the positive electrode is the positive electrode for a secondary battery according to any one of [1] to [10].
  • the secondary composition has excellent balance in coating properties of the slurry composition, adhesion of the positive electrode active material layer to the current collector, and liquid injection property of the positive electrode active material layer, and high storage characteristics in a high temperature environment.
  • (meth) acryl includes both “acryl” and “methacryl”.
  • (Meth) acrylate includes both “acrylate” and “methacrylate”.
  • (meth) acrylonitrile includes both “acrylonitrile” and “methacrylonitrile”.
  • (Meth) acryloyl includes both “acryloyl” and “methacryloyl”.
  • positive electrode active material means an electrode active material for positive electrode
  • negative electrode active material means an electrode active material for negative electrode.
  • the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode
  • the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
  • a compound (including a polymer) is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the compound is dissolved in 100 g of water at 25 ° C. .
  • a compound being water-insoluble means that an insoluble content becomes 90% by weight or more when 0.5 g of the compound is dissolved in 100 g of water at 25 ° C.
  • the positive electrode for a secondary battery of the present invention includes a positive electrode active material, a conductive additive, a particulate binder, and a water-soluble polymer.
  • the positive electrode for secondary batteries of this invention is equipped with a collector and the positive electrode active material layer provided on the said collector.
  • the positive electrode active material layer includes the positive electrode active material, a conductive additive, a particulate binder, and a water-soluble polymer.
  • the positive electrode active material is an electrode active material used in the positive electrode, and is a material that transfers electrons in the positive electrode of the secondary battery.
  • the secondary battery of the present invention is a lithium ion secondary battery
  • a material capable of inserting and extracting lithium ions is usually used as the positive electrode active material.
  • Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 and the like.
  • MnO, V 2 O 5 , V 6 O 13 , and TiO 2 are preferable from the viewpoint of cycle stability and capacity of the secondary battery.
  • transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include a lithium composite oxide of Al, a lithium composite oxide of Ni—Co—Al, and a solid solution of LiMaO 2 and Li 2 MbO 3 .
  • the solid solution of LiMaO 2 and Li 2 MbO 3 include xLiMaO 2. (1-x) Li 2 MbO 3 .
  • x represents a number satisfying 0 ⁇ x ⁇ 1
  • Ma represents one or more transition metals having an average oxidation state of 3+
  • Mb represents one or more transition metals having an average oxidation state of 4+.
  • LiCoO 2 from the viewpoint of improving the cycle characteristics of the secondary battery, and from the viewpoint of improving the energy density of the secondary battery, LiMaO.
  • a solid solution of 2 and Li 2 MbO 3 is preferred.
  • xLiMaO 2 ⁇ (1-x) Li 2 MbO 3 (x represents a number satisfying 0 ⁇ x ⁇ 1, Ma is Ni, Co, Mn Mb represents one or more selected from the group consisting of Mn, Zr and Ti).
  • xLiMaO 2 ⁇ (1-x) Li 2 MnO 3 (x represents a number satisfying 0 ⁇ x ⁇ 1)
  • Ma represents one or more selected from the group consisting of Ni, Co, Mn, Fe, and Ti.
  • Ni, Co, Mn, Fe, and Ti are preferred.
  • Examples of the lithium-containing composite metal oxide having a spinel structure include a compound in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal.
  • LiMn 2 O 4 lithium manganate
  • a specific example is Li s [Mn 2 ⁇ t Md t ] O 4 .
  • Md represents one or more transition metals having an average oxidation state of 4+.
  • Specific examples of Md include Ni, Co, Fe, Cu, and Cr.
  • T represents a number satisfying 0 ⁇ t ⁇ 1
  • s represents a number satisfying 0 ⁇ s ⁇ 1.
  • s represents a number satisfying 0 ⁇ s ⁇ 1
  • t represents a number satisfying 0 ⁇ t ⁇ 1
  • z represents a number satisfying 0 ⁇ z ⁇ 0.1.
  • LiNi 0.5 Mn 1.5 O 4 in which Mn of lithium manganate is substituted with Ni is also preferable.
  • LiNi 0.5 Mn 1.5 O 4 and the like can replace all of Mn 3+ considered to be a factor of structural deterioration.
  • LiNi 0.5 Mn 1.5 O 4 and the like have an electrochemical reaction from Ni 2+ to Ni 4+ , a secondary battery having a high operating voltage and a high capacity can be realized.
  • Examples of the lithium-containing composite metal oxide having an olivine type structure include an olivine type lithium phosphate compound represented by Li y McPO 4 .
  • Mc represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn and Co.
  • Y represents a number satisfying 0 ⁇ y ⁇ 2.
  • Mn or Co may be partially substituted with another metal.
  • the metal that can be substituted include Fe, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
  • examples of the positive electrode active material made of an inorganic compound include a positive electrode active material having a polyanion structure such as Li 2 MeSiO 4 , LiFeF 3 having a perovskite structure, and Li 2 Cu 2 O 4 having an orthorhombic structure.
  • a positive electrode active material having a polyanion structure such as Li 2 MeSiO 4 , LiFeF 3 having a perovskite structure, and Li 2 Cu 2 O 4 having an orthorhombic structure.
  • Me represents Fe or Mn.
  • Examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
  • a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material.
  • Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
  • the positive electrode active material is preferably a lithium-containing composite metal oxide because it has a high energy density.
  • Many lithium-containing composite metal oxides have a hydrophilic group as a surface functional group. Therefore, by using a lithium-containing composite metal oxide, a slurry composition having high dispersion stability can be obtained, and the binding between the positive electrode active materials in the electrode can be kept strong.
  • the surface state of the positive electrode active material can be determined by measuring the contact angle between the positive electrode active material and the solvent. For example, it can be confirmed by pressure-molding only the positive electrode active material to produce pellets and determining the contact angle of the pellets with a polar solvent (for example, N-methylpyrrolidone). A lower contact angle indicates that the positive electrode active material is more hydrophilic.
  • the secondary battery of the present invention is a nickel hydride secondary battery
  • examples of the positive electrode active material include nickel hydroxide particles.
  • the nickel hydroxide particles may be solid-solved with cobalt, zinc, cadmium, or the like, or may be coated with a cobalt compound whose surface has been subjected to alkaline heat treatment.
  • the positive electrode active material may be partially element-substituted.
  • an inorganic compound and an organic compound may be used in combination.
  • one type of positive electrode active material may be used alone, or two or more types may be used in combination at any ratio.
  • the particle size of the positive electrode active material particles is usually selected as appropriate in consideration of other constituent requirements of the secondary battery.
  • the 50% volume cumulative diameter of the positive electrode active material particles is usually 0.1 ⁇ m or more, preferably 0.4 ⁇ m or more, more preferably 1 ⁇ m or more, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics. It is 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. When the 50% volume cumulative diameter is within this range, a secondary battery having excellent output characteristics and a large charge / discharge capacity can be obtained. Moreover, the handling at the time of manufacturing the slurry composition for manufacturing a positive electrode active material layer and manufacturing a positive electrode is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction. That is, in the particle size distribution measured by the laser diffraction method, the particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% is the 50% volume cumulative diameter.
  • Conductive aid As a conductive support agent, the particle
  • the electrical contact between the positive electrode active materials can be improved, and in particular when used in a lithium ion secondary battery, the discharge load characteristics can be improved.
  • the conductive aid include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and carbon nanotube. Further, for example, carbon powder such as graphite, fibers and foils of various metals, and the like are also included.
  • one type of conductive assistant may be used alone, or two or more types may be used in combination at any ratio.
  • the conductive assistant there are many particles that are composed of carbon allotropes, and thus many of them exhibit surface hydrophobicity.
  • the 50% volume cumulative diameter of the conductive additive is preferably smaller than the 50% volume cumulative diameter of the positive electrode active material.
  • the specific range of the 50% volume cumulative diameter of the conductive assistant is usually 0.001 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.01 ⁇ m or more, and usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less. When the 50% volume cumulative diameter of the conductive assistant is within this range, high conductivity can be obtained with a smaller amount of use.
  • the amount of the conductive assistant is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  • the amount of the conductive aid is within this range, the capacity of the secondary battery can be increased and high load characteristics can be exhibited.
  • the particulate binder is usually contained in the positive electrode active material layer and has an effect of binding the positive electrode active material, the conductive additive and the current collector.
  • the positive electrode for the secondary battery can firmly hold the positive electrode active material and the conductive additive, so that the detachment of the positive electrode active material from the positive electrode for the secondary battery can be suppressed.
  • the particulate binder can also bind particles other than the positive electrode active material and the conductive auxiliary agent usually contained in the positive electrode active material layer, and can also serve to maintain the strength of the positive electrode active material layer.
  • the particulate binder has a particulate shape, the binding property is particularly high, and deterioration due to capacity reduction and repeated charge / discharge can be remarkably suppressed.
  • the compound that forms the particulate binder is not particularly limited as long as it is a compound that can bind the positive electrode active material and the conductive additive to each other.
  • a suitable particulate binder is a dispersion type binder having a property of being dispersible in a solvent in the positive electrode slurry composition.
  • Specific examples of the compound that forms the particulate binder include polymers such as diene polymers, acrylic polymers, fluoropolymers, and silicon polymers. Among these, a diene polymer and an acrylic polymer are preferable because they are excellent in binding property with the positive electrode active material and the strength and flexibility of the positive electrode to be obtained. Among them, an acrylic polymer is preferable from the viewpoint of high electrochemical stability.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the ratio of the conjugated diene in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the diene polymer examples include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as styrene-butadiene copolymer (SBR) which may be carboxy-modified; acrylonitrile -Vinyl cyanide * conjugated diene copolymers, such as a butadiene copolymer (NBR); Hydrogenated SBR, hydrogenated NBR, etc. are mentioned.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as styrene-butadiene copolymer (SBR) which may be carboxy-modified
  • SBR styrene-butadiene copolymer
  • NBR butadiene copolymer
  • Hydrogenated SBR, hydrogenated NBR, etc. are mentioned.
  • the acrylic polymer represents a polymer having a (meth) acrylic acid ester monomer unit.
  • a (meth) acrylic acid ester monomer unit represents a structural unit obtained by polymerizing a (meth) acrylic acid ester monomer.
  • Examples of the (meth) acrylic acid ester monomer include a compound represented by the formula (I): CH 2 ⁇ CR 1 —COOR 2 .
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group or a cycloalkyl group.
  • Examples of (meth) acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, acrylic N-amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, acrylic Acrylates such as stearyl acid and benzyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-a
  • acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable because they can improve the strength of the positive electrode for secondary batteries.
  • these monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the particulate binder contains the copolymer B.
  • the (meth) acrylonitrile monomer unit represents a structural unit obtained by polymerizing a (meth) acrylonitrile monomer.
  • the (meth) acrylonitrile monomer and the (meth) acrylonitrile monomer unit one type may be used alone, or two or more types may be used in combination at any ratio.
  • the weight ratio of the (meth) acrylonitrile monomer unit to the (meth) acrylic acid ester monomer unit is “(meth) acrylonitrile monomer unit / (meth) acrylic acid ester monomer unit”, usually 1 / 99 or more, preferably 5/95 or more, more preferably 10/90 or more, usually 30/70 or less, preferably 28/72 or less, more preferably 25/75 or less.
  • the acrylic polymer a polymer having a carboxylic acid group-containing monomer unit can be used. Therefore, for example, the copolymer B can have a carboxylic acid group-containing monomer unit.
  • the carboxylic acid group-containing monomer unit represents a structural unit obtained by polymerizing a monomer containing a carboxylic acid group (—COOH; also referred to as a carboxyl group).
  • the monomer containing a carboxylic acid group include an unsaturated carboxylic acid compound. Specific examples thereof include monomers containing monobasic acids such as acrylic acid and methacrylic acid; monomers containing dibasic acids such as maleic acid, fumaric acid and itaconic acid.
  • a carboxylic acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the carboxylic acid group-containing monomer unit in the copolymer B is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, particularly preferably 1% by weight or more, preferably 50%. % By weight or less, more preferably 20% by weight or less, particularly preferably 10% by weight or less. When the proportion of the carboxylic acid group-containing monomer unit in the copolymer B is within this range, the binding property can be increased and the electrode strength can be improved.
  • the acrylic polymer may have any structural unit other than those described above as long as the effects of the present invention are not significantly impaired. Therefore, the copolymer B may have any structural unit other than those described above as long as the effects of the present invention are not significantly impaired.
  • These arbitrary structural units are structural units obtained by polymerizing a monomer copolymerizable with the above-described monomer. Examples of monomers copolymerizable with the above-described monomers include carboxylic acid esters having two or more carbon-carbon double bonds, such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Styrene monomers such as styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinylbenzene; Amide monomers such as acrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Vinyl chloride and vinylidene chloride Halogen atom-containing monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, etc .; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone,
  • the amount of the arbitrary structural unit is such that the amount of the (meth) acrylic acid ester monomer unit in the acrylic polymer or the copolymer B is usually 50% by weight or more, preferably 70% by weight or more. It is desirable to keep it within the range.
  • the polymer forming the particulate binder may have a crosslinked structure. Therefore, for example, the copolymer B may have a crosslinked structure.
  • the method for introducing a crosslinked structure include a method of incorporating a crosslinkable group into a polymer and a method of using a combination of a polymer and a crosslinking agent.
  • the polymer can be crosslinked by irradiation with heat or energy rays.
  • the degree of crosslinking can be adjusted by the intensity of heating or irradiation with energy rays. Since the degree of swelling decreases as the degree of crosslinking increases, the degree of swelling of the particulate binder can be controlled by adjusting the degree of crosslinking.
  • the particulate binder preferably contains the copolymer B.
  • the amount of the copolymer B is preferably 70 parts by weight or more, more preferably 80 parts by weight or more, and preferably 100 parts by weight or less with respect to 100 parts by weight of the total amount of the particulate binder.
  • the weight average molecular weight of the polymer forming the particulate binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight of the polymer forming the particulate binder can be determined by gel permeation chromatography (GPC) as a value in terms of polystyrene using tetrahydrofuran as a developing solvent.
  • the glass transition temperature (Tg) of the particulate binder is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 45 ° C. or higher, particularly preferably ⁇ 40 ° C. or higher, preferably 25 ° C. or lower, more preferably 15 ° C. or lower. Especially preferably, it is 5 degrees C or less.
  • Tg glass transition temperature
  • the glass transition temperature of the particulate binder can be adjusted by combining various monomers.
  • the polymer forming the particulate binder is insoluble in water. Therefore, the particulate binder is usually in the form of particles in the slurry composition for producing the battery positive electrode, and is included in the secondary battery positive electrode while maintaining the particle shape.
  • the number average particle size of the particulate binder is usually 0.0001 ⁇ m or more, preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, and usually 100 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less. .
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particulate binders randomly selected in a transmission electron micrograph.
  • the shape of the particles may be either spherical or irregular.
  • one type of polymer may be used alone, or two or more types of polymers having different structures may be used in combination at any ratio.
  • the amount of the particulate binder is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, and usually 50 parts by weight with respect to 100 parts by weight of the positive electrode active material.
  • the amount is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and still more preferably 3 parts by weight or less.
  • the particulate binder can be produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent to form polymer particles.
  • the ratio of each monomer in the monomer composition is usually the same as the content ratio of the structural unit in the polymer forming the particulate binder.
  • the aqueous solvent is not particularly limited as long as it can disperse the particulate binder.
  • an aqueous solvent having a boiling point at normal pressure of usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower, preferably 300 ° C. or lower is used. Examples of the aqueous solvent will be given below. In the following examples, the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.
  • aqueous solvents examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
  • Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174) , Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188) Glycol ethers and the like; and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like.
  • water is particularly preferable from the viewpoint that it is not flammable and easily obtains a particulate binder.
  • one type of aqueous solvent may be used alone, or two or more types may be used in combination at any ratio.
  • water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range where the dissolution of the particulate binder can be ensured.
  • any method such as a suspension polymerization method or an emulsion polymerization method may be used.
  • a polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization may be used. Among them, it is easy to obtain a high molecular weight polymer, and since the polymer is obtained in the form of particles dispersed in water, a redispersion treatment is unnecessary, and a slurry for producing a positive electrode for a secondary battery as it is. From the viewpoint of production efficiency, such as being able to be used in a composition, an emulsion polymerization method is particularly preferred.
  • the emulsion polymerization method is usually performed by a conventional method. For example, it can be performed by the method described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition.
  • a method may be used in which the composition is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization. Or after emulsifying the said composition, it can put into an airtight container, and the method of starting reaction similarly can be used.
  • polymerization initiator examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, and 3,3,5-trimethylhexanoyl peroxide.
  • Peroxides examples include azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; potassium persulfate.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the dispersant those used in ordinary synthesis may be used.
  • the dispersant include benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate; alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate; sodium dioctylsulfosuccinate and sodium dihexylsulfosuccinate Sulfosuccinates such as: fatty acid salts such as sodium laurate; ethoxy sulfate salts such as polyoxyethylene lauryl ether sulfate sodium salt, polyoxyethylene nonylphenyl ether sulfate sodium salt; alkane sulfonate; alkyl ether phosphate sodium salt Polyoxyethylene nonylphenyl ether, polyoxyethylene sorbitan lauryl ester, polyoxyethylene Nonionic emuls
  • benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate; alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate are preferable. More preferred are benzene sulfonates such as sodium dodecyl benzene sulfonate and sodium dodecyl phenyl ether sulfonate from the viewpoint of excellent oxidation resistance. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. The amount of the dispersant is usually 0.01 to 10 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • seed polymerization may be performed using seed particles.
  • an aqueous dispersion of the particulate binder obtained by the above-described method may be obtained by, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
  • the pH may be adjusted to a range of usually 5 to 10, preferably 5 to 9, by mixing with a basic aqueous solution containing an organic amine compound (eg, ethanolamine, diethylamine, etc.).
  • pH adjustment with an alkali metal hydroxide is preferable because it improves the binding between the current collector and the positive electrode active material.
  • the particulate binder may be a composite polymer particle composed of two or more kinds of polymers.
  • the composite polymer particles are obtained, for example, by polymerizing at least one monomer component by a conventional method, then polymerizing at least one other monomer component and polymerizing by a conventional method (two-stage polymerization method). ) Or the like. In this way, by polymerizing the monomer stepwise, it is possible to obtain core-shell structured particles having a core layer present inside the particle and a shell layer covering the core layer.
  • the water-soluble polymer is a water-soluble copolymer having an acidic functional group-containing monomer unit and a (meth) acrylate monomer unit in a predetermined content ratio (hereinafter referred to as “copolymer A” as appropriate). May be included.)
  • the water-soluble polymer includes not only an embodiment containing only the copolymer A but also an embodiment containing the copolymer A and a polymer other than the copolymer A.
  • the copolymer A contained in the water-soluble polymer one type of polymer may be used alone, or two or more types of polymers having different structures may be used in combination at any ratio.
  • the water-soluble polymer does not include a water-soluble polymer compound (water-soluble natural polymer) derived from natural products such as carboxymethyl cellulose.
  • the water-soluble polymer according to the present invention contains the copolymer A is not as clear as described above, but according to the study of the present inventors, it is presumed as follows.
  • the positive electrode active material is generally hydrophilic, but the conductive additive is generally hydrophobic.
  • the slurry composition containing the positive electrode active material and the conductive additive it is difficult to disperse both the positive electrode active material and the conductive additive well.
  • the water-soluble polymer according to the present invention it is possible to favorably disperse both the positive electrode active material and the conductive additive.
  • coating a slurry composition since it can apply
  • the copolymer A contained in the water-soluble polymer has an acidic functional group
  • the copolymer A contained in the water-soluble polymer is dissolved in water by electrostatic interaction due to the acidic functional group.
  • the viscosity can be increased. For this reason, since the viscosity of the slurry composition containing a water-soluble polymer increases, coatability can also be improved by this.
  • the dispersibility of the slurry composition is good, in the positive electrode active material layer, the bias and aggregation of the positive electrode active material, the conductive additive and the particulate binder are suppressed. Therefore, since it is difficult for a portion having a small amount of particulate binder to be locally generated in the positive electrode active material layer, the adhesion strength of the positive electrode active material layer to the current collector does not locally increase or decrease. For this reason, the adhesiveness of the positive electrode active material layer with respect to a collector can be improved.
  • the positive electrode active material and the conductive additive are well dispersed in the positive electrode active material layer, the constituent components are not easily biased in the positive electrode active material layer, and the structure uniformity of the positive electrode active material layer is improved. ing. For this reason, the distribution of the pores formed in the positive electrode active material layer is made uniform, and the electrolyte solution is easily soaked, so that the liquid injection property is improved. Furthermore, since the uniformity of the composition of the positive electrode active material layer is also improved, the internal resistance of the positive electrode can be lowered.
  • the storage characteristic in the high temperature environment of the secondary battery of this invention can be improved according to the synergistic effect by the effect mentioned above.
  • the copolymer A contained in the water-soluble polymer according to the present invention can improve the dispersibility of both the positive electrode active material and the conductive additive.
  • the copolymer contained in the water-soluble polymer Interaction between the acidic functional group in the polymer A and the polar group on the surface of the positive electrode active material, electrostatic repulsion by the acidic functional groups in the copolymer A contained in the water-soluble polymer, etc. Can be considered. That is, the copolymer A contained in the water-soluble polymer is appropriately adsorbed on the surface of the positive electrode active material by the interaction between the polar group on the surface of the positive electrode active material and the polar functional group of the copolymer A.
  • the positive electrode active materials are less likely to aggregate due to the electrostatic repulsion effect of the adsorbed copolymer A. For this reason, it is considered that the conductive auxiliary agent can easily enter between the positive electrode active materials and the dispersibility is improved.
  • the acidic functional group-containing monomer unit represents a structural unit obtained by polymerizing a monomer containing an acidic functional group.
  • the acidic functional group include a carboxylic acid group (—COOH), a sulfonic acid group (—SO 3 H), a phosphoric acid group (—PO 3 H 2 ), and the like.
  • a carboxylic acid group is preferable.
  • an acidic functional group may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the number of acidic functional groups which the monomer containing an acidic functional group has may be one, and may be two or more.
  • the monomer containing a carboxylic acid group a monomer having a carboxylic acid group and a polymerizable group is usually used.
  • the monomer containing a carboxylic acid group include an unsaturated carboxylic acid monomer.
  • the unsaturated carboxylic acid monomer is a monomer having a carbon-carbon unsaturated bond and having a carboxylic acid group.
  • Examples of the unsaturated carboxylic acid monomer include unsaturated monocarboxylic acid and derivatives thereof; unsaturated dicarboxylic acid and acid anhydrides and derivatives thereof; and the like.
  • unsaturated monocarboxylic acids include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid.
  • unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, and ⁇ -Derivatives of ethylenically unsaturated monocarboxylic acids, such as diaminoacrylic acid.
  • unsaturated dicarboxylic acids include ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid.
  • unsaturated dicarboxylic acid anhydrides include ethylenically unsaturated dicarboxylic acid anhydrides such as maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of derivatives of unsaturated dicarboxylic acids include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate; and diphenyl maleate, nonyl maleate, maleate Examples thereof include maleate esters such as decyl acid, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
  • unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to the water of the copolymer A can be improved more. Therefore, an unsaturated monocarboxylic acid monomer unit is preferable as the acidic functional group-containing monomer unit.
  • the monomer containing an acidic functional group, and an acidic functional group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content ratio of the acidic functional group-containing monomer unit in the copolymer A contained in the water-soluble polymer is usually 15% by weight or more, preferably 25% by weight or more, more preferably 30% by weight or more. It is 60 wt% or less, preferably 55 wt% or less, more preferably 40 wt% or less.
  • the adsorptivity of the copolymer A with respect to the positive electrode active material can be prevented from becoming excessively high and the positive electrode active material can be prevented from forming a pseudo-crosslinked structure, the positive electrode active material via the copolymer A can be prevented. Aggregation of substances can be prevented.
  • the content ratio of the acidic functional group-containing monomer unit in the copolymer A contained in the water-soluble polymer is usually a charging ratio of the monomer containing the acidic functional group used when the copolymer A is produced. Matches.
  • a (meth) acrylic acid ester monomer unit represents a structural unit obtained by polymerizing a (meth) acrylic acid ester monomer.
  • Examples of the (meth) acrylic acid ester monomer include compounds represented by the formula (I) as described in the section of the particulate binder.
  • Examples of preferred (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, hep Methacryl
  • the (meth) acrylic acid ester monomer and the (meth) acrylic acid ester monomer unit may be used alone or in combination of two or more at any ratio.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the copolymer A contained in the water-soluble polymer is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40% by weight or more. Also, it is usually 80% by weight or less, preferably 70% by weight or less.
  • the flexibility of the positive electrode active material layer can be increased by setting the amount of the (meth) acrylic acid ester monomer unit to be not less than the lower limit value of the above range, and for secondary batteries by being not more than the upper limit value of the above range.
  • the adhesion of the positive electrode can be improved.
  • the content ratio of the (meth) acrylate monomer unit in the copolymer A contained in the water-soluble polymer is usually that of the (meth) acrylate monomer used when the copolymer A is produced. It matches the preparation ratio.
  • the water-soluble polymer preferably includes a polymer having a crosslinkable monomer unit. Accordingly, the copolymer A contained in the water-soluble polymer preferably has a crosslinkable monomer unit.
  • a crosslinkable monomer unit By having a crosslinkable monomer unit, it is possible to increase the molecular weight of the water-soluble polymer within a range that does not impair the water-solubility of the water-soluble polymer, and to prevent the degree of swelling of the water-soluble polymer with respect to the electrolyte from becoming excessively high.
  • the crosslinkable monomer unit represents a structural unit obtained by polymerizing the crosslinkable monomer.
  • a crosslinkable monomer represents the monomer which can form a crosslinked structure during superposition
  • a monomer having heat crosslinkability is usually mentioned. More specifically, for example, a monofunctional monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a polyfunctional monomer having two or more olefinic double bonds per molecule; A functional monomer is mentioned.
  • thermally crosslinkable groups examples include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl este
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • crosslinkable monomers having two or more olefinic double bonds per molecule examples include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di (meth).
  • crosslinkable monomer ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferable as the crosslinkable monomer.
  • crosslinked monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content ratio of the crosslinkable monomer unit in the copolymer A contained in the water-soluble polymer is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.5% by weight or more. It is usually 2% by weight or less, preferably 1.5% by weight or less, more preferably 1% by weight or less.
  • the content ratio of the crosslinkable monomer unit is equal to or less than the upper limit of the above range, the water solubility of the copolymer A contained in the water-soluble polymer can be increased and the dispersibility can be improved. it can. Therefore, by setting the content ratio of the crosslinkable monomer unit within the above range, both the degree of swelling and the dispersibility can be improved.
  • the content ratio of the crosslinkable monomer unit in the copolymer A contained in the water-soluble polymer usually coincides with the charge ratio of the crosslinkable monomer used when the copolymer A is produced.
  • the water-soluble polymer preferably includes a polymer having a reactive surfactant unit. Accordingly, the copolymer A contained in the water-soluble polymer preferably has a reactive surfactant unit.
  • the reactive surfactant unit represents a structural unit obtained by polymerizing a reactive surfactant monomer.
  • the reactive surfactant monomer is a monomer having a polymerizable group that can be copolymerized with other monomers and having a surfactant group (that is, a hydrophilic group and a hydrophobic group). Represents a mer.
  • the reactive surfactant unit obtained by polymerization of the reactive surfactant monomer constitutes a part of the molecule of a water-soluble polymer such as copolymer A, and can function as a surfactant.
  • the reactive surfactant monomer has a polymerizable unsaturated group, and this polymerizable unsaturated group also acts as a hydrophobic group after polymerization.
  • the polymerizable unsaturated group include a vinyl group, an allyl group, a vinylidene group, a propenyl group, an isopropenyl group, and an isobutylidene group.
  • the type of the polymerizable unsaturated group may be one type or two or more types.
  • the reactive surfactant monomer usually has a hydrophilic group as a portion that exhibits hydrophilicity.
  • Reactive surfactant monomers are classified into anionic, cationic and nonionic surfactants depending on the type of hydrophilic group.
  • Examples of the anionic hydrophilic group include —SO 3 M, —COOM, and —PO (OH) 2 .
  • M represents a hydrogen atom or a cation.
  • Examples of cations include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as calcium and magnesium; ammonium ions; ammonium ions of alkylamines such as monomethylamine, dimethylamine, monoethylamine and triethylamine; and Examples include ammonium ions of alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • Examples of the cationic hydrophilic group include —Cl, —Br, —I, and —SO 3 OR X.
  • R X represents an alkyl group.
  • R X is methyl group, an ethyl group, a propyl group, and isopropyl group, and the like.
  • An example of a nonionic hydrophilic group is —OH.
  • Suitable reactive surfactant monomers include compounds represented by the following formula (II).
  • R represents a divalent linking group. Examples of R include —Si—O— group, methylene group and phenylene group.
  • R 3 represents a hydrophilic group. An example of R 3 includes —SO 3 NH 4 .
  • n represents an integer of 1 or more and 100 or less.
  • a suitable reactive surfactant monomer has a structural unit having a structure formed by polymerizing ethylene oxide and a structural unit having a structure formed by polymerizing butylene oxide, and examples thereof include compounds having an alkenyl group having a terminal double bond and —SO 3 NH 4 at the terminal (for example, trade names “Latemul PD-104” and “Latemul PD-105”, manufactured by Kao Corporation).
  • a reactive surfactant monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the content of the reactive surfactant unit in the copolymer A contained in the water-soluble polymer is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.5% by weight or more. It is usually 15% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less.
  • the content ratio of the cross-reactive surfactant unit in the copolymer A contained in the water-soluble polymer is usually the same as the charging ratio of the reactive surfactant monomer used when the copolymer A is produced. To do.
  • the water-soluble polymer preferably includes a polymer having a fluorine-containing (meth) acrylic acid ester monomer unit. Therefore, it is preferable that the copolymer A contained in the water-soluble polymer has a fluorine-containing (meth) acrylate monomer unit.
  • the fluorine-containing (meth) acrylic acid ester monomer unit represents a structural unit obtained by polymerizing a fluorine-containing (meth) acrylic acid ester monomer.
  • these fluorine-containing (meth) acrylic acid ester monomers and fluorine-containing (meth) acrylic acid ester monomer units containing fluorine are (meth) acrylic acid ester monomers not containing fluorine. And (meth) acrylic acid ester monomer units.
  • fluorine-containing (meth) acrylic acid ester monomer examples include a monomer represented by the following formula (III).
  • R 4 represents a hydrogen atom or a methyl group.
  • R 5 represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less, and the hydrocarbon group may be either linear or branched.
  • the number of fluorine atoms contained in R 5 may be one or two or more.
  • fluorine-containing (meth) acrylic acid ester monomers represented by the formula (III) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluoride.
  • Aralkyl is mentioned. Of these, alkyl fluoride (meth) acrylate is preferable.
  • Such monomers include 2,2,2-trifluoroethyl (meth) acrylate, ⁇ - (perfluorooctyl) ethyl (meth) acrylate, 2,2, (meth) acrylic acid. 3,3-tetrafluoropropyl, (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl, (meth) acrylic acid 1H, 1H, 9H-perfluoro-1-nonyl, (meth) 1H, 1H, 11H-perfluoroundecyl acrylate, perfluorooctyl (meth) acrylate, 3 [4 [1-trifluoromethyl-2,2-bis [bis (trifluoromethyl) fluoro (meth) acrylate] (Meth) acrylic acid perfluoroalkyl esters such as methyl] ethynyloxy] benzooxy] 2-hydroxypropyl.
  • fluorine-containing (meth) acrylic acid ester monomer and fluorine-containing (meth) acrylic acid ester monomer unit may be used alone, or two or more types may be used in combination at any ratio. .
  • the content ratio of the fluorine-containing (meth) acrylate monomer unit in the copolymer A contained in the water-soluble polymer is usually 1% by weight or more, preferably 2% by weight or more, more preferably 5% by weight or more. It is usually 20% by weight or less, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the copolymer A contained in the water-soluble polymer is given wettability to the electrolytic solution. And the low temperature output characteristics of the secondary battery can be improved.
  • the content ratio of the fluorine-containing (meth) acrylic acid ester monomer unit in the copolymer A contained in the water-soluble polymer is usually a fluorine-containing (meth) acrylic acid ester used when the copolymer A is produced. This is consistent with the monomer charge ratio.
  • the water-soluble polymer includes the above-mentioned acidic functional group-containing monomer unit, (meth) acrylate monomer unit, crosslinkable monomer unit, reactive surfactant unit, and fluorine-containing (meth) acrylate ester.
  • any structural unit may be included as long as the effects of the present invention are not significantly impaired. Therefore, the copolymer A may also have an arbitrary structural unit as long as the effects of the present invention are not significantly impaired.
  • Examples of arbitrary structural units include structural units obtained by polymerizing the following arbitrary monomers.
  • Examples of the optional monomer include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene.
  • Styrene monomers such as acrylamide; amide monomers such as acrylamide and acrylamide-2-methylpropane sulfonic acid; ⁇ , ⁇ -unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; ethylene, propylene, etc.
  • Olefin monomers halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether Vinyl etc.
  • Ether monomers vinyl ketone monomers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic rings such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole Vinyl compound monomers; and the like.
  • vinyl ketone monomers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone
  • heterocyclic rings such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole Vinyl compound monomers; and the like.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the content of the arbitrary structural unit in the copolymer A contained in the water-soluble polymer is preferably 0% by weight to 10% by weight, more preferably 0% by weight to 5% by weight.
  • the water-soluble polymer one type of polymer may be used alone, or two or more types of polymers having different structures may be used in combination at any ratio.
  • one type of copolymer A may be used alone.
  • two or more types of copolymers A having different structures may be used in combination at an arbitrary ratio.
  • the copolymer A and the copolymer A may be used in combination with any water-soluble polymer having a different structure.
  • the amount of the copolymer A is preferably 70 parts by weight or more, more preferably 100 parts by weight relative to the total amount of the water-soluble polymer. It is 80 parts by weight or more, preferably 100 parts by weight or less.
  • the weight average molecular weight of the copolymer A contained in the water-soluble polymer is usually smaller than the polymer that forms a particulate binder such as the copolymer B, for example, preferably 100 or more, more preferably 500 or more. Particularly preferably, it is 1,000 or more, preferably 500,000 or less, more preferably 250,000 or less, and particularly preferably 100,000 or less.
  • the dispersibility of the positive electrode active material and the high-temperature storage characteristics of the secondary battery can be improved.
  • the copolymer A can be softened by setting it to not more than the upper limit of the above range. For this reason, for example, suppression of the swelling of the positive electrode and improvement of the adhesion of the positive electrode active material layer to the current collector can be achieved.
  • the weight average molecular weight of the copolymer A contained in the water-soluble polymer is polyethylene using a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of acetonitrile by GPC. It can be obtained as a value in terms of oxide.
  • the glass transition temperature of the water-soluble polymer is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower.
  • the glass transition temperature of the copolymer A is preferably within the above range.
  • the glass transition temperature of the water-soluble polymer and copolymer A can be adjusted by combining various monomers.
  • the ionic conductivity of the copolymer A contained in the water-soluble polymer is usually 1 ⁇ 10 ⁇ 5 S / cm or more, preferably 2 ⁇ 10 ⁇ 5 S / cm or more, more preferably 5 ⁇ 10 ⁇ 5 S. / Cm or more, usually 1 ⁇ 10 ⁇ 3 S / cm or less, preferably 1 ⁇ 10 ⁇ 3 S / cm or less, more preferably 1 ⁇ 10 ⁇ 3 S / cm or less.
  • the “ionic conductivity of the copolymer A contained in the water-soluble polymer” refers to the ionic conductivity measured under the following predetermined conditions.
  • the aqueous solution of the copolymer A contained in the water-soluble polymer is poured into a silicon container so that the thickness after drying is 1 mm, and dried at room temperature for 72 hours to produce a 1 cm ⁇ 1 cm square film.
  • This film is immersed in a 1.0 mol / L LiPF 6 solution (solvent: a mixture of ethylene carbonate / diethyl carbonate in a 1/2 volume ratio) at 60 ° C. for 72 hours.
  • the thickness d of the film after immersion is measured.
  • the swelling ratio between the degree of swelling V1 of the water-soluble polymer measured under predetermined conditions and the degree of swelling V0 of the particulate binder measured under the same conditions is preferably 1.0 to 2.0. Is more preferably 1.5, and particularly preferably 1.0 to 1.2. Further, the swelling ratio between the degree of swelling of the copolymer A and the degree of swelling V0 of the particulate polymer, the degree of swelling V1 of the water-soluble polymer, and the degree of swelling of the copolymer B, measured under the predetermined conditions. It is preferable that the swelling ratio and the swelling ratio of the copolymer A and the swelling ratio of the copolymer B are also within the above ranges.
  • the swelling ratio is not less than the lower limit of the above range, the low-temperature output characteristics of the secondary battery can be improved. Moreover, by being below an upper limit, the distance between positive electrode active materials can be made into an appropriate narrow range, and favorable durability can be obtained.
  • the degree of swelling is the degree of swelling for a liquid having a solubility parameter of 8 to 13 (cal / cm 3 ) 1/2 .
  • a specific method for measuring the degree of swelling is as follows. An aqueous dispersion of a particulate binder and an aqueous solution of a water-soluble polymer are each poured into a silicon container so that the thickness after drying is 1 mm, and dried at room temperature for 72 hours to form a 1 cm ⁇ 1 cm square film. Prepare and measure the weight M0. Thereafter, the film is immersed in a predetermined liquid at 60 ° C. for 72 hours, the weight M1 of the film after immersion is measured, and the degree of swelling is calculated from the formula (M1-M0) / M0.
  • the ratio V1 / V0 is calculated from the swelling degree V0 of the particulate binder and the swelling degree V1 of the water-soluble polymer, and this value is defined as the swelling degree ratio.
  • liquid having a predetermined solubility parameter for measuring the degree of swelling examples include a 1.0 mol / L LiPF 6 solution (solvent: a mixture of ethylene carbonate / diethyl carbonate in a 1/2 volume ratio, solubility parameter 10. 8 (cal / cm 3 ) 1/2 ).
  • solvent a mixture of ethylene carbonate / diethyl carbonate in a 1/2 volume ratio
  • solubility parameter 10. 8 cal / cm 3 ) 1/2
  • the values of the swelling degree V0 of the particulate binder and the swelling degree V1 of the water-soluble polymer are not particularly limited, but are preferably in the following ranges, respectively. That is, the degree of swelling V0 of the particulate binder is preferably 1.0 to 3.0 times, and more preferably 1.0 to 2.0 times.
  • the degree of swelling V1 of the water-soluble polymer is preferably 1.0 times to 5.0 times, more preferably 1.0 times to 4.0 times.
  • the amount of the water-soluble polymer is such that the weight ratio of the particulate binder to the water-soluble polymer is usually within the range of 99.5 / 0.5 to 95/5 for “particulate binder / water-soluble polymer”.
  • the weight ratio represented by “particulate binder / water-soluble polymer” is usually 95/5 or more, preferably 96/4 or more, more preferably 97/3 or more, and usually 99.5 / 0.5 or less, preferably 99/1 or less, more preferably 98.5 / 1.5 or less.
  • the weight ratio of the particulate binder to the copolymer A “particulate binder / copolymer A” is usually 95/5 or more, preferably 96/4 or more, more preferably 97/3 or more, and usually It is 99.5 / 0.5 or less, preferably 99/1 or less, more preferably 98.5 / 1.5 or less.
  • the polymer A contained in the water-soluble polymer includes, for example, a monomer containing an acidic functional group and a (meth) acrylate monomer, and a crosslinkable monomer, a reactive interface as necessary.
  • a monomer composition containing an activator monomer, a fluorine-containing (meth) acrylic acid ester monomer, and an optional monomer can be produced by polymerizing in an aqueous solvent. At this time, the ratio of each monomer in the monomer composition is usually the same as the content ratio of the structural unit in the copolymer A.
  • the same solvent as in the production of the particulate binder may be used.
  • the polymerization method any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used.
  • a polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization may be used.
  • the polymerization temperature and the polymerization time can be arbitrarily selected depending on the polymerization method and the kind of the polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours. Further, for example, additives such as amines may be used as a polymerization aid.
  • aqueous solution in which the copolymer A is usually dissolved in an aqueous solvent is obtained.
  • Copolymer A may be taken out from the aqueous solution thus obtained.
  • a slurry composition for a positive electrode is produced using the copolymer A in a state dissolved in an aqueous solvent, and a positive electrode can be produced using the slurry composition.
  • the aqueous solution containing the copolymer A in an aqueous solvent is usually acidic. Therefore, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry composition for manufacturing the positive electrode for secondary batteries can be improved.
  • Examples of the method for alkalinizing to pH 7 to pH 13 include alkali metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned.
  • One kind of the alkaline aqueous solution may be used alone, or two or more kinds may be used in combination at any ratio.
  • the positive electrode for a secondary battery of the present invention may contain any component other than the above-described positive electrode active material, conductive additive, particulate binder and water-soluble polymer as long as the effects of the present invention are not significantly impaired.
  • the positive electrode for a secondary battery of the present invention may contain additives such as a reinforcing material, a dispersant, a leveling agent, and an antioxidant.
  • these optional components are contained in the positive electrode active material layer.
  • arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the additive includes a water-soluble polymer compound derived from a natural product such as carboxymethylcellulose (CMC), and this CMC can be used as a binder, for example.
  • CMC carboxymethylcellulose
  • the reinforcing material examples include various inorganic and organic spherical, plate-like, rod-like, or fibrous fillers.
  • the amount of the reinforcing material used is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the positive electrode active material. By keeping the amount of the reinforcing material in the above range, a high capacity and a high load characteristic can be realized.
  • the dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • a specific dispersing agent is selected according to the positive electrode active material and conductive support agent to be used. By using the dispersant, the stability of the slurry composition for the positive electrode is improved and a smooth positive electrode is obtained, so that the battery capacity of the secondary battery can be increased.
  • the amount of the dispersant is usually 0.1 parts by weight or more, preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, and usually 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. The amount is preferably 5 parts by weight or less, more preferably 2 parts by weight or less.
  • the leveling agent examples include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants.
  • surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants.
  • the antioxidant examples include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of usually 200 or more, preferably 600 or more and usually 1000 or less, preferably 700 or less is used.
  • the amount of the antioxidant is usually 0.01 parts by weight or more, preferably 0.02 parts by weight or more, and usually 10 parts by weight or less, preferably 5 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. .
  • the positive electrode active material, the conductive additive, the particulate binder, the water-soluble polymer, and any components included as necessary are usually contained in the positive electrode active material layer.
  • the positive electrode active material layer is usually provided on the surface of the current collector. Under the present circumstances, the positive electrode active material layer may be provided in the single side
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of heat resistance, the current collector is preferably made of metal, such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum. Among these, aluminum is particularly preferable for the positive electrode.
  • One type of current collector material may be used alone, or two or more types may be used in combination at any ratio.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
  • the current collector is preferably used after being subjected to a roughening treatment on the surface in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method for example, an abrasive cloth paper, a grindstone, an emery buff, a wire brush provided with a steel wire or the like to which abrasive particles are fixed is usually used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the positive electrode active material layer.
  • the thickness of the positive electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the positive electrode active material layer is in the above range, both load characteristics and energy density are high.
  • the water content in the positive electrode active material layer is preferably 1000 ppm or less, and more preferably 500 ppm or less.
  • the water content can be measured by a known method such as the Karl Fischer method.
  • Such a low water content can be achieved, for example, by appropriately adjusting the composition of the structural unit in the water-soluble polymer such as the copolymer A.
  • the water content can be reduced by including the fluorine-containing (meth) acrylic acid ester monomer unit in the water-soluble polymer in the above-described ratio.
  • the positive electrode for a secondary battery of the present invention is prepared, for example, by preparing a slurry composition for producing a positive electrode active material layer constituting the positive electrode for a secondary battery and applying the slurry composition on a current collector. It can be manufactured by a manufacturing method including a step of drying the coated material to obtain the positive electrode active material layer.
  • the slurry composition is a liquid composition containing a positive electrode active material, a conductive aid, a particulate binder, a water-soluble polymer and water, and optional components as necessary.
  • the ratio of the positive electrode active material, conductive additive, particulate binder, water-soluble polymer, and optional components in the slurry composition is usually the same as the ratio of each component contained in the positive electrode active material layer.
  • the slurry composition contains water as a solvent. Moreover, you may use the mixed solvent which combined water and the organic solvent as needed.
  • the positive electrode active material, the conductive additive and the particulate binder are dispersed in a solvent, and the water-soluble polymer is dissolved in the solvent.
  • the amount of the solvent such as water is such that the content ratio of the positive electrode active material contained in the slurry composition is preferably 50% by weight or more, more preferably 60% by weight or more, and preferably 95% by weight or less, more preferably 90%. It is the range which becomes weight% or less.
  • the viscosity of the slurry composition is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, preferably 100,000 mPa ⁇ s or less, more preferably from the viewpoint of the temporal stability and coating properties of the slurry composition. Is 50,000 mPa ⁇ s or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the pH of the slurry composition is usually 7 or more, preferably 8 or more, and usually 12 or less, preferably 11.5 or less.
  • a method of adjusting the pH of the slurry composition for example, a method of adjusting the pH of the slurry composition by washing the positive electrode active material before preparing the slurry composition, bubbling carbon dioxide gas to the prepared slurry composition
  • a method for adjusting pH for example, a method of adjusting the pH of the slurry composition by washing the positive electrode active material before preparing the slurry composition, bubbling carbon dioxide gas to the prepared slurry composition
  • Examples thereof include a method for adjusting pH and a method for adjusting using a pH adjusting agent.
  • it is preferable to use a pH adjuster it is preferable to use a pH adjuster.
  • the kind of pH adjuster is not specifically limited, It is preferable that it is a water-soluble substance which shows acidity. Either a strong acid or a weak acid may be used.
  • water-soluble substances that exhibit weak acidity include organic compounds having acid groups such as carboxylic acid groups, phosphoric acid groups, and sulfonic acid groups.
  • an organic compound having a carboxylic acid group is particularly preferably used.
  • Specific examples of the compound having a carboxylic acid group include succinic acid, phthalic acid, maleic acid, succinic anhydride, phthalic anhydride, maleic anhydride and the like. These compounds can be made into acid anhydrides having little influence in the secondary battery by drying.
  • water-soluble substances that exhibit strong acidity include hydrochloric acid, nitric acid, sulfuric acid, and acetic acid.
  • the agent is decomposed or volatilized in the drying step of the slurry composition.
  • no pH adjuster remains in the obtained positive electrode.
  • examples of such a pH adjuster include acetic acid and hydrochloric acid.
  • a pH adjuster may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the pH adjusting agent is preferably 0.1 parts by weight or more and more preferably 0.5 parts by weight or less with respect to 100 parts by weight of the positive electrode mixture.
  • the positive electrode mixture is the total amount of materials constituting the positive electrode active material layer including the positive electrode active material, the conductive additive, the particulate binder, the water-soluble polymer, and optional components.
  • the slurry composition is obtained by mixing a positive electrode active material, a conductive aid, a particulate binder, a water-soluble polymer and water, and optional components used as necessary.
  • the mixing method and the mixing order are not limited. Since the slurry composition of the present invention uses a water-soluble polymer, it is possible to highly disperse the positive electrode active material, the conductive auxiliary agent and the particulate binder in any mixing method and mixing order. is there.
  • a bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix, etc. may be used.
  • a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
  • the pH of the slurry composition may be adjusted at any time as long as it is during the production process of the slurry composition. Especially, after adjusting a slurry composition to desired solid content concentration, it is preferable to adjust pH with a pH adjuster. By adjusting the pH after adjusting the slurry composition to a predetermined solid content concentration, it is possible to easily adjust the pH while preventing dissolution of the positive electrode active material.
  • the slurry composition is applied on the current collector.
  • the slurry composition may be applied to only one side of the current collector or may be applied to both sides. Since the slurry composition of the present invention is excellent in dispersibility, uniform application is easy.
  • Application method is not limited, and examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • a film of the slurry composition is formed on the surface of the current collector.
  • the thickness of the slurry composition film can be appropriately set according to the target thickness of the positive electrode active material layer.
  • the positive electrode active material layer containing a positive electrode active material, a conductive support agent, a particulate-form binder, and a water-soluble polymer is formed in the surface of an electrical power collector, and the positive electrode for secondary batteries of this invention is obtained.
  • Drying temperature and drying time are not particularly limited. For example, you may heat-process at 120 degreeC or more for 1 hour or more.
  • drying method include drying with warm air, hot air, and low-humidity air; vacuum drying; drying by irradiation with infrared rays, far infrared rays, electron beams, and the like.
  • the porosity of the positive electrode can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, preferably 15% or less, more preferably 13% or less.
  • the polymer may be cured after the positive electrode active material layer is formed.
  • the powder molding method is the following method. That is, the slurry composition for manufacturing the positive electrode for secondary batteries is prepared. Thereafter, composite particles containing a positive electrode active material, a conductive additive, a particulate binder, and a water-soluble polymer are prepared from the slurry composition. Furthermore, the composite particles are supplied onto a current collector, and if desired, are further roll-pressed and formed to form a positive electrode active material layer to obtain a battery positive electrode. At this time, as the slurry composition, the same slurry composition as described above may be used.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator. Moreover, in the secondary battery of this invention, a positive electrode is a positive electrode for secondary batteries of this invention. Since the secondary battery of the present invention uses the positive electrode containing the water-soluble polymer according to the present invention, the secondary battery is excellent in storage characteristics in a high temperature environment, and is usually excellent in output characteristics and cycle characteristics in a high temperature environment.
  • the secondary battery of the present invention may be, for example, a lithium ion secondary battery or a nickel hydride secondary battery.
  • lithium ion secondary batteries are preferable because performance improvement effects such as improvement of long-term cycle characteristics and output characteristics are particularly remarkable.
  • the secondary battery of the present invention is a lithium ion secondary battery will be described.
  • Electrolyte As an electrolytic solution for a lithium ion secondary battery, for example, a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used.
  • a lithium salt is usually used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the concentration of the supporting electrolyte in the electrolytic solution is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less. Depending on the type of supporting electrolyte, it may be used usually at a concentration of 0.5 mol / L to 2.5 mol / L. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity may decrease.
  • the non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte.
  • non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); and esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • a non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • additives to the electrolyte.
  • examples of the additive include carbonate compounds such as vinylene carbonate (VC).
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • electrolytes other than the above for example, polymer electrolytes such as polyethylene oxide and polyacrylonitrile; gel polymer electrolytes in which the polymer electrolyte is impregnated with an electrolyte; inorganic solid electrolytes such as LiI and Li 3 N; Also good.
  • Negative electrode As the negative electrode, one having a current collector and a negative electrode active material layer formed on the surface of the current collector is usually used.
  • the negative electrode current collector for example, the same as the positive electrode current collector may be used. Among these, copper is preferable as the current collector for the negative electrode.
  • the negative electrode active material layer is a layer containing a negative electrode active material and a binder.
  • the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; conductive polymers such as polyacene; silicon, tin, zinc, manganese, iron, nickel Metals such as these or oxides or sulfates of the above metals or alloys; lithium metal; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitrides; silicon, etc. Is mentioned.
  • a material obtained by attaching a conductive additive to the surface of the negative electrode active material particles by, for example, a mechanical modification method may be used.
  • a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the particle size of the particles of the negative electrode active material is usually selected as appropriate in consideration of other components of the secondary battery of the present invention.
  • the 50% volume cumulative diameter of the negative electrode active material particles is preferably 1 ⁇ m or more, more preferably 15 ⁇ m or more, and preferably 50 ⁇ m or less. More preferably, it is 30 ⁇ m or less.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less.
  • binder used in the negative electrode active material layer for example, the same binder as the particulate binder used in the positive electrode active material layer may be used.
  • polymers such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives; acrylics
  • a soft polymer such as a soft polymer, a diene-based soft polymer, an olefin-based soft polymer, or a vinyl-based soft polymer may be used. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the negative electrode active material layer may contain components other than the negative electrode active material and the binder as necessary.
  • the arbitrary components etc. which may be contained in the positive electrode active material layer of the positive electrode for secondary batteries of this invention are mentioned.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the total thickness of the current collector and the negative electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • the thickness of the negative electrode is in the above range, both load characteristics and energy density can be improved.
  • the negative electrode for example, similarly to the positive electrode for secondary batteries of the present invention, prepare a slurry composition for the negative electrode containing a negative electrode active material, a binder and water, and form a layer of the slurry composition on a current collector, The layer may be produced by drying.
  • a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder;
  • specific examples include microporous membranes made of polyolefin resins (polyethylene, polypropylene, polybutene, polyvinyl chloride), and resins such as mixtures or copolymers thereof; polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, Examples thereof include a microporous film made of a resin such as polyimide, polyimide amide, polyaramid, nylon, and polytetrafluoroethylene; a polyolefin fiber woven or non-woven fabric thereof; and an aggregate of insulating substance particles.
  • a microporous film made of a polyolefin-based resin is preferable because the entire separator can be thinned
  • the thickness of the separator is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and is usually 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less. Within this range, the resistance due to the separator in the secondary battery becomes small, and the workability when manufacturing the secondary battery is excellent.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery.
  • the method of injecting and sealing is mentioned.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the positive electrode slurry composition produced in Examples and Comparative Examples was applied on a 20 ⁇ m thick aluminum foil as a current collector so that the film thickness after drying was about 200 ⁇ m, and then dried. I let you. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode.
  • the obtained positive electrode was cut out with a size of 10 cm ⁇ 10 cm, and the number of pinholes having a diameter of 0.1 mm or more was visually measured. The smaller the number of pinholes, the better the coatability.
  • Moisture content of the electrode plate The moisture content in the positive electrode was measured by the Karl Fischer coulometric titration method for the positive electrode for lithium ion secondary batteries produced in Examples and Comparative Examples. The measurement was performed with a moisture measuring device (manufactured by Kyoto Electronics Co., Ltd., anolyte: Aquamicron AX, catholyte: Aquamicron CXU). Thereby, the moisture content of the electrode plate (weight per unit weight of the electrode active material layer, unit “ppm”) was measured.
  • Example 1 (1-1. Production of water-soluble polymer) In a 5 MPa pressure vessel equipped with a stirrer, 31 parts of methacrylic acid (acidic functional group-containing monomer), 0.8 part of ethylene dimethacrylate (crosslinkable monomer), 2,2,2-trifluoroethyl methacrylate (fluorine-containing ( (Meth) acrylic acid ester monomer) 7.5 parts, butyl acrylate ((meth) acrylic acid ester monomer) 59.2 parts, polyoxyalkylene alkenyl ether ammonium sulfate (reactive surfactant monomer, manufactured by Kao) , 1.5 parts of trade name “Latemul PD-104”), 150 parts of ion exchange water, and 0.5 part of potassium persulfate (polymerization initiator), and after sufficiently stirring, warm to 60 ° C.
  • methacrylic acid acidic functional group-containing monomer
  • crosslinkable monomer 2,2,2-trifluoroethyl methacrylate (
  • the resulting particulate binder A had a glass transition temperature of ⁇ 32 ° C. and a number average particle size of 0.15 ⁇ m.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the particulate binder A is 77.6%, the structural unit of the vinyl monomer having an acid component is 2.0%, and the (meth) acrylonitrile monomer The content ratio of the units was 20.2%, and the content ratio of the structural units of allyl methacrylate was 0.2%.
  • a 5% aqueous sodium hydroxide solution was added to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion containing a desired particulate binder.
  • the slurry composition for positive electrode was applied onto a 20 ⁇ m thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 200 ⁇ m and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, heat processing were performed at 120 degreeC for 2 minute (s), and the positive electrode which has a positive electrode active material was obtained. With respect to the positive electrode thus obtained, adhesion strength, coatability, moisture content of the electrode plate and electrolyte solution pouring property were measured.
  • a 40% aqueous dispersion containing a styrene-butadiene copolymer (with a glass transition temperature of ⁇ 15 ° C.), 1.0 part in terms of solid content, and ion-exchanged water are added to the above mixed solution, and the final solid content concentration is The mixture was adjusted to 50% and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a negative electrode having good fluidity.
  • the slurry composition for negative electrode obtained in the above (1-4. Production of slurry composition for negative electrode) is dried on a 20 ⁇ m-thick copper foil as a current collector with a comma coater. It was applied to a thickness of about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer having a thickness of 80 ⁇ m.
  • LiPF 6 solution having a concentration of 1.0 M.
  • EMC ethyl methyl carbonate
  • Example 2 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 20 parts and the amount of butyl acrylate was changed to 70.2 parts in (1-1. Production of water-soluble polymer). A lithium ion secondary battery was manufactured and evaluated.
  • Example 3 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 25 parts and the amount of butyl acrylate was changed to 65.2 parts in (1-1. Production of water-soluble polymer). A lithium ion secondary battery was manufactured and evaluated.
  • Example 4 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 40 parts and the amount of butyl acrylate was changed to 50.2 parts in (1-1. Production of water-soluble polymer). A lithium ion secondary battery was manufactured and evaluated.
  • Example 5 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 45 parts and the amount of butyl acrylate was changed to 45.2 parts in (1-1. Production of water-soluble polymer). A lithium ion secondary battery was manufactured and evaluated.
  • Example 6 The same as in Example 1 except that in (1-1. Production of water-soluble polymer), the amount of ethylene dimethacrylate was changed to 0.1 part and the amount of butyl acrylate was changed to 59.9 parts. A positive electrode and a lithium ion secondary battery were manufactured and evaluated.
  • Example 7 The same as in Example 1 except that in (1-1. Production of water-soluble polymer), the amount of ethylene dimethacrylate was changed to 1.2 parts and the amount of butyl acrylate was changed to 58.8 parts. A positive electrode and a lithium ion secondary battery were manufactured and evaluated.
  • Example 8 The same as in Example 1 except that in (1-1. Production of water-soluble polymer), the amount of ethylene dimethacrylate was changed to 1.8 parts and the amount of butyl acrylate was changed to 58.2 parts. A positive electrode and a lithium ion secondary battery were manufactured and evaluated.
  • Example 9 In the above (1-1. Production of water-soluble polymer), a positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that glycidyl methacrylate was used instead of ethylene dimethacrylate. .
  • Example 10 A positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that allyl glycidyl ether was used instead of ethylene dimethacrylate in (1-1. Production of water-soluble polymer). did.
  • Example 11 Example 1 except that the amount of polyoxyalkylene alkenyl ether ammonium sulfate was changed to 0.4 parts and the amount of butyl acrylate was changed to 60.3 parts in (1-1. Production of water-soluble polymer). In the same manner as above, a positive electrode and a lithium ion secondary battery were produced and evaluated.
  • Example 12 Example 1 except that in (1-1. Production of water-soluble polymer), the amount of ammonium polyoxyalkylene alkenyl ether sulfate was changed to 2.5 parts and the amount of butyl acrylate was changed to 58.2 parts. In the same manner as above, a positive electrode and a lithium ion secondary battery were produced and evaluated.
  • Example 13 A positive electrode and a lithium ion secondary battery in the same manner as in Example 1 except that sodium dodecylbenzenesulfonate was used instead of polyoxyalkylene alkenyl ether ammonium sulfate in (1-1. Production of water-soluble polymer). Were manufactured and evaluated.
  • Example 14 In Examples (1-1. Production of water-soluble polymer), except that 2,2,2-trifluoroethyl methacrylate was not used and the amount of butyl acrylate was changed to 66.7 parts. In the same manner as in Example 1, a positive electrode and a lithium ion secondary battery were manufactured and evaluated.
  • Example 15 In the above (1-1. Production of water-soluble polymer), except that the amount of 2,2,2-trifluoroethyl methacrylate was changed to 17 parts and the amount of butyl acrylate was changed to 49.7 parts. In the same manner as in Example 1, positive electrodes and lithium ion secondary batteries were produced and evaluated.
  • Example 16 In the same manner as in Example 1 except that trifluoromethyl methacrylate was used instead of 2,2,2-trifluoroethyl methacrylate in (1-1. Production of water-soluble polymer), the positive electrode and lithium ion Secondary batteries were manufactured and evaluated.
  • Example 19 To polymerization can A, 11 parts of 2-ethylhexyl acrylate, 1 part of acrylonitrile, 0.12 part of sodium lauryl sulfate and 79 parts of ion-exchanged water were added. To this polymerization can A, 0.2 parts of ammonium persulfate and 10 parts of ion-exchanged water were further added as a polymerization initiator, heated to 60 ° C., and stirred for 90 minutes.
  • the obtained particulate binder B had a glass transition temperature of ⁇ 32 ° C. and a number average particle size of 0.18 ⁇ m.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the particulate binder B is 78%, the structural unit of the monomer having an acid component is 2.0%, and the content of the (meth) acrylonitrile monomer unit The percentage was 20%.
  • a 5% aqueous sodium hydroxide solution was added to the composition containing the particulate binder B to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion containing a desired particulate binder.
  • Example 19 The aqueous dispersion containing the particulate binder thus produced in Example 19 was used in place of the aqueous dispersion containing the particulate binder produced in Example 1-2 (1-2. Production of binder composition for positive electrode). A positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except for that.
  • Example 20 To polymerization can A, 10 parts of 2-ethylhexyl acrylate, 1 part of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 79 parts of ion-exchanged water were added. To this polymerization can A, 0.2 parts of ammonium persulfate and 10 parts of ion-exchanged water were further added as a polymerization initiator, heated to 60 ° C., and stirred for 90 minutes.
  • the obtained particulate binder C had a glass transition temperature of ⁇ 33 ° C. and a number average particle size of 0.18 ⁇ m.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the particulate binder C is 77%, the structural unit of the monomer having an acid component is 2%, and the content ratio of the (meth) acrylonitrile monomer unit is The content rate of the structural unit of 19% and hydroxyalkyl acrylate was 2%.
  • a 5% aqueous sodium hydroxide solution was added to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing a desired particulate binder.
  • Example 20 the aqueous dispersion containing the particulate binder produced in Example 20 was used in place of the aqueous dispersion containing the particulate binder produced in Example 1-2 (1-2. Production of binder composition for positive electrode).
  • a positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except for that.
  • the aqueous solution containing the water-soluble polymer thus obtained was used in place of the (1) of Example 1 except that the aqueous solution containing the water-soluble polymer obtained in (1-1. Preparation of water-soluble polymer) was used. -2. Production of Binder Composition for Positive Electrode) to (1-7. Lithium Ion Secondary Battery) were produced and evaluated for the positive electrode and the lithium ion secondary battery.
  • the aqueous solution containing the water-soluble polymer thus obtained was used in place of the (1) of Example 1 except that the aqueous solution containing the water-soluble polymer obtained in (1-1. Preparation of water-soluble polymer) was used. -2. Production of Binder Composition for Positive Electrode) to (1-7. Lithium Ion Secondary Battery) were produced and evaluated for the positive electrode and the lithium ion secondary battery.
  • the number of pinholes generated tends to be smaller than in the comparative example. From this, in the Example, since the slurry composition for positive electrodes is excellent in a dispersibility, it turns out that coating property is favorable. Further, from this, it is considered that the obtained positive electrode active material layer has little coating unevenness and the pores are uniformly distributed.
  • the peel strength tends to be higher than that of the comparative example. From this, in the Example, since the slurry composition for positive electrodes is excellent in a dispersibility, it turns out that there is no bias
  • some of the comparative examples give better results than some of the examples. However, in any of the examples, good results with a better balance than those of the comparative examples are obtained in terms of coating properties, adhesion strength, and liquid injection properties as a whole. Thus, since the coating property, the adhesion strength, and the liquid injection property have good properties in a well-balanced manner, it is considered that excellent high-temperature storage characteristics are exhibited in any of the examples. In general, when the coating property, the adhesion strength and the liquid injection property are good, not only the high-temperature storage property but also the output property and the high-temperature cycle property are obtained. It is presumed that the battery also has excellent output characteristics and high temperature cycle characteristics.

Abstract

 正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む正極活物質層を備える二次電池用正極であって、前記水溶性重合体は、酸性官能基含有単量体単位15重量%~60重量%、及び、(メタ)アクリル酸エステル単量体単位30重量%~80重量%を有する共重合体Aを含む、二次電池用正極。

Description

二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
 本発明は、二次電池用正極及びその製造方法、その二次電池用正極を製造するためのスラリー組成物、並びにその二次電池用正極を備えた二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、例えばニッケル水素二次電池、リチウムイオン二次電池などが用いられている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
 二次電池は、通常、電極、電解液及びその他の電池部材を備える。また、電極は、通常、集電体と、この集電体上に形成された電極活物質層とを備える。さらに、電極活物質層は、バインダー(結着剤)及び電極活物質を含む。従来、二次電池の高性能化のために、電極活物質層に含まれる各成分の検討が行われている(特許文献1~4参照)。
特開2002-56896号公報 特許第3601250号公報 特開2010-177079号公報 特開2011-192644号公報
 電極活物質層のうち正極に設けられるものは、正極活物質層と呼ばれる。正極活物質層は、例えば、水や有機溶媒等の溶媒にバインダーとなる重合体を分散又は溶解させた液状の組成物に、導電性カーボン等の導電助剤と正極活物質とを混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。
 前記の溶媒として、従来は、有機溶媒を使用することが多かった。しかし、有機溶媒を使用することには、有機溶媒のリサイクルに費用を要したり、有機溶媒を使用することにより安全性確保を要したりすることがある。そのため、近年では、溶媒として水を用いて正極を製造することが検討されている(特許文献3及び4参照)。
 しかしながら、溶媒として水を用いて製造した従来の正極においては、スラリー組成物の塗工性に劣る傾向があった。また、集電体に対する正極活物質層の密着性が低くなる傾向があった。さらに、正極活物質層の注液性が低く、電解液が染み込み難い傾向があった。このため、従来の正極は、高温環境における保存特性に劣っていた。
 本発明は上記の課題に鑑みて創案されたもので、スラリー組成物の塗工性、集電体に対する正極活物質層の密着性、及び、正極活物質層の注液性にバランスよく優れ、高温環境における保存特性が高い二次電池が得られる二次電池用正極、その二次電池用正極の製造方法、その二次電池用正極を製造するためのスラリー組成物、並びにその二次電池用正極を備えた二次電池を提供することを目的とする。
 本発明者は上記の課題を解決するべく鋭意検討した結果、従来の二次電池用正極においては、正極活物質又は導電助剤の分散性が低くなる傾向があり、このため、スラリー組成物の塗工性、集電体に対する正極活物質層の密着性、及び、正極活物質層の注液性のうちの一部又は全部が低くなっていることを見出した。そして、本発明者は、酸性官能基含有単量体単位と(メタ)アクリル酸エステル単量体単位とを所定の割合で有する水溶性重合体と、正極活物質と、導電助剤と、粒子状バインダーとを組み合わせて含む正極を構成することにより、スラリー組成物の塗工性、集電体に対する正極活物質層の密着性、及び、正極活物質層の注液性をバランスよく改善でき、高温環境における保存特性が高い二次電池を実現しうることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
 〔1〕 正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む正極活物質層を備える二次電池用正極であって、
 前記水溶性重合体は、酸性官能基含有単量体単位15重量%~60重量%、及び、(メタ)アクリル酸エステル単量体単位30重量%~80重量%を有する共重合体Aを含む、二次電池用正極。
 〔2〕 前記共重合体Aは、架橋性単量体単位を有する、〔1〕に記載の二次電池用正極。
 〔3〕 前記共重合体Aにおける前記架橋性単量体単位の含有割合が、0.1重量%~2重量%である、〔2〕記載の二次電池用正極。
 〔4〕 前記共重合体Aは、反応性界面活性剤単位を有する、〔1〕~〔3〕のいずれか一項に記載の二次電池用正極。
 〔5〕 前記共重合体Aにおける前記反応性界面活性剤単位の含有割合が、0.1重量%~15重量%である、〔4〕記載の二次電池用正極。
 〔6〕 前記共重合体Aは、フッ素含有(メタ)アクリル酸エステル単量体単位を有する、〔1〕~〔5〕のいずれか一項に記載の二次電池用正極。
 〔7〕 前記共重合体Aにおける前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が、1重量%~15重量%である、〔6〕記載の二次電池用正極。
 〔8〕 前記粒子状バインダーは、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を有する共重合体Bを含む、〔1〕~〔7〕のいずれか一項に記載の二次電池用正極。
 〔9〕 前記共重合体Bにおける(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との重量比が、「(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位」で1/99~30/70である、〔8〕記載の二次電池用正極。
 〔10〕 前記粒子状バインダーと前記水溶性重合体との重量比が、「粒子状バインダー/水溶性重合体」で99.5/0.5~95/5である、〔1〕~〔9〕のいずれか一項に記載の二次電池用正極。
 〔11〕 二次電池用正極を構成する正極活物質層を製造するためのスラリー組成物であって、
 正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び水を含み、
 前記水溶性重合体が、酸性官能基含有単量体単位15重量%~60重量%、及び、(メタ)アクリル酸エステル単量体単位30重量%~80重量%を含む共重合体Aを含む、スラリー組成物。
 〔12〕 集電体と、この集電体上に設けられた正極活物質層とを備える二次電池用正極の製造方法であって、
 〔11〕記載のスラリー組成物を前記集電体上に塗布した後、この塗布物を乾燥させて前記正極活物質層を得る工程を含む、二次電池用正極の製造方法。
 〔13〕 正極、負極、電解液及びセパレーターを備え、
 前記正極が、〔1〕~〔10〕のいずれか一項に記載の二次電池用正極である、二次電池。
 本発明によれば、スラリー組成物の塗工性、集電体に対する正極活物質層の密着性、及び、正極活物質層の注液性にバランスよく優れ、高温環境における保存特性が高い二次電池が得られる二次電池用正極、その二次電池用正極の製造方法、その二次電池用正極を製造するためのスラリー組成物、並びにその二次電池用正極を備えた二次電池を実現できる。
 以下、本発明について実施形態及び例示物などを示して詳細に説明する。ただし、本発明は以下に挙げる実施形態及び例示物などに限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 本明細書において、「(メタ)アクリル」には、「アクリル」および「メタクリル」の両者が含まれる。また、「(メタ)アクリレート」には、「アクリレート」および「メタクリレート」の両者が含まれる。さらに、「(メタ)アクリロニトリル」には、「アクリロニトリル」および「メタクリロニトリル」の両者が含まれる。また、「(メタ)アクリロイル」には、「アクリロイル」および「メタクリロイル」の両者が含まれる。さらに、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。また、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
 また、化合物(重合体も含む)が水溶性であるとは、25℃において、その化合物0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。他方、化合物が非水溶性であるとは、25℃において、その化合物0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。
[1.二次電池用正極]
 本発明の二次電池用正極は、正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む。通常、本発明の二次電池用正極は、集電体と、当該集電体上に設けられた正極活物質層とを備える。この正極活物質層は、前記の正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む。
 [1.1.正極活物質]
 正極活物質は、正極において用いられる電極活物質であり、二次電池の正極において電子の受け渡しをする物質である。例えば、本発明の二次電池がリチウムイオン二次電池である場合、正極活物質としては、通常、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO等が挙げられ、中でも二次電池のサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物、LiMaOとLiMbOとの固溶体、などが挙げられる。また、LiMaOとLiMbOとの固溶体としては、例えば、xLiMaO・(1-x)LiMbOなどが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。
 層状構造を有するリチウム含有複合金属酸化物の中でも、二次電池のサイクル特性を向上させるという観点からは、LiCoOを用いることが好ましく、二次電池のエネルギー密度を向上させるという観点からは、LiMaOとLiMbOとの固溶体が好ましい。また、LiMaOとLiMbOとの固溶体としては、特に、xLiMaO・(1-x)LiMbO(xは0<x<1を満たす数を表し、MaはNi、Co、Mn、Fe及びTiからなる群より選ばれる1種類以上を表し、MbはMn、Zr及びTiからなる群より選ばれる1種類以上を表す。)が好ましい。中でも、特にxLiMaO・(1-x)LiMnO(xは0<x<1を満たす数を表し、MaはNi、Co、Mn、Fe及びTiからなる群より選ばれる1種類以上を表す。)が好ましい。
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、Li[Mn2-tMd]Oが挙げられる。ここで、Mdは平均酸化状態が4+である1種類以上の遷移金属を表す。Mdの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。
 中でも、マンガン酸リチウムのMnをFeで置換したLiFeMn2-t4-zは、コストが安価であることから好ましい。ここで、sは0≦s≦1を満たす数を表し、tは0<t<1を満たす数を表し、zは0≦z≦0.1を満たす数を表す。
 また、例えばマンガン酸リチウムのMnをNiで置換したLiNi0.5Mn1.5なども、好ましい。LiNi0.5Mn1.5などは、構造劣化の因子と考えられているMn3+を全て置換することができる。さらに、LiNi0.5Mn1.5などは、Ni2+からNi4+への電気化学反応をすることから、高い作動電圧で、かつ、高い容量を有する二次電池を実現できる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMcPOで表されるオリビン型燐酸リチウム化合物が挙げられる。ここで、Mcは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn及びCo等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiMcPOで表されるオリビン型燐酸リチウム化合物は、MnまたはCoは他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Fe、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoなどが挙げられる。
 さらに、無機化合物からなる正極活物質としては、例えば、LiMeSiO等のポリアニオン構造を有する正極活物質、ペロブスカイト構造を有するLiFeF、斜方晶構造を有するLiCuなど、が挙げられる。ここでMeは、Fe又はMnを表す。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子が挙げられる。
 また、例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
 上述した中でも、正極活物質は、高いエネルギー密度を有することから、リチウム含有複合金属酸化物が好ましい。リチウム含有複合金属酸化物は、表面官能基として親水性基を有するものが多い。そのため、リチウム含有複合金属酸化物を用いることで、分散安定性の高いスラリー組成物を得ることができ、また、電極内での正極活物質間の結着も強固に保つことができる。
 ここで、正極活物質の表面状態は、正極活物質と溶媒との接触角を測ることにより求めることができる。例えば、正極活物質のみを加圧成型してペレットを作製し、極性溶媒(例えば、N-メチルピロリドン)に対する前記ペレットの接触角を求めることで、確認できる。接触角が低いほど、その正極活物質は親水性であることを示す。
 また、本発明の二次電池がニッケル水素二次電池である場合、正極活物質としては、例えば、水酸化ニッケル粒子が挙げられる。水酸化ニッケル粒子は、例えば、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。
 正極活物質は、部分的に元素置換したものであってもよい。また、正極活物質としては、無機化合物と有機化合物とを組み合わせて用いてもよい。さらに、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質の粒子の粒子径は、通常、二次電池の他の構成要件との兼ね合いで適宜選択される。正極活物質の粒子の50%体積累積径は、負荷特性及びサイクル特性などの電池特性の向上の観点から、通常0.1μm以上、好ましくは0.4μm以上、更に好ましくは1μm以上であり、通常50μm以下、好ましくは30μm以下、より好ましくは20μm以下である。50%体積累積径がこの範囲であると、出力特性に優れ、充放電容量が大きい二次電池を得ることができる。また、正極活物質層を製造するためのスラリー組成物を製造する際及び正極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。すなわち、レーザー回折法で測定された粒度分布において、小径側から計算した累積体積が50%となる粒子径が、50%体積累積径である。
 [1.2.導電助剤]
 導電助剤としては、例えば、導電性を有する、炭素の同素体からなる粒子が挙げられる。導電助剤を用いることにより、正極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電負荷特性を改善することができる。
 導電助剤の具体例を挙げると、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンが挙げられる。また、例えば、黒鉛等の炭素粉末、各種金属のファイバー及び箔なども挙げられる。ここで、導電助剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 導電助剤としては、炭素の同素体からなる粒子が多いことから、表面疎水性を示すものが多い。
 導電助剤の50%体積累積径は、正極活物質の50%体積累積径よりも小さいことが好ましい。導電助剤の50%体積累積径の具体的範囲は、通常0.001μm以上、好ましくは0.05μm以上、より好ましくは0.01μm以上であり、通常10μm以下、好ましくは5μm以下、より好ましくは1μm以下である。導電助剤の50%体積累積径がこの範囲にあると、より少ない使用量で高い導電性が得られる。
 導電助剤の量は、正極活物質100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。導電助剤の量がこの範囲にあることにより、二次電池の容量を高くでき、また、高い負荷特性を示すことができる。
 [1.3.粒子状バインダー]
 粒子状バインダーは、通常は正極活物質層に含まれて、正極活物質、導電助剤及び集電体を結着させる作用を奏する。粒子状バインダーを含むことにより、二次電池用正極では、正極活物質及び導電助剤を強固に保持できるので、二次電池用正極からの正極活物質の脱離を抑制できる。また、粒子状バインダーは通常は正極活物質層に含まれる正極活物質及び導電助剤以外の粒子をも結着し、正極活物質層の強度を維持する役割も果たしうる。特に、粒子状バインダーは、その形状が粒子形状であることにより、結着性が特に高く、容量低下及び充放電の繰り返しによる劣化を顕著に抑えることができる。
 粒子状バインダーを形成する化合物は、正極活物質及び導電助剤を相互に結着させることができる化合物であれば、特に制限はない。好適な粒子状バインダーは、正極用のスラリー組成物において溶媒に分散しうる性質を有する分散型のバインダーである。粒子状バインダーを形成する化合物の具体例を挙げると、ジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などの重合体が挙げられる。中でも、正極活物質との結着性および得られる正極の強度や柔軟性に優れるため、ジエン重合体及びアクリル重合体が好ましい。更にその中でも電気化学安定性が高いという観点からアクリル重合体が好ましい。
 ジエン重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は、通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。ジエン重合体の具体例としては、ポリブタジエン、ポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
 アクリル重合体とは、(メタ)アクリル酸エステル単量体単位を有する重合体を表す。また、(メタ)アクリル酸エステル単量体単位とは、(メタ)アクリル酸エステル単量体を重合して得られる構造単位を表す。
 (メタ)アクリル酸エステル単量体としては、例えば、式(I):CH=CR-COORで表される化合物が挙げられる。式(I)において、Rは水素原子またはメチル基を表し、Rはアルキル基またはシクロアルキル基を表す。
 (メタ)アクリル酸エステル単量体の例を挙げると、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチル、アクリル酸ヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、ベンジルアクリレートなどのアクリレート;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、二次電池用正極の強度を向上できる点で、特に好ましい。また、これらの単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、アクリル重合体の中でも、特に(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を有する共重合体(以下、適宜「共重合体B」ということがある。)が好ましい。したがって、粒子状バインダーは、前記の共重合体Bを含むことが好ましい。共重合体Bにより、結着性を高めて正極の強度を向上させることができるからである。ここで、(メタ)アクリロニトリル単量体単位とは、(メタ)アクリロニトリル単量体を重合して得られる構造単位を表す。(メタ)アクリロニトリル単量体及び(メタ)アクリロニトリル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 (メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との重量比は、「(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位」で、通常1/99以上、好ましくは5/95以上、より好ましくは10/90以上であり、通常30/70以下、好ましくは28/72以下、より好ましくは25/75以下である。(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との重量比を前記の範囲に収めることにより、粒子状バインダーの結着力を高めて正極の強度を顕著に向上させることができる。
 また、アクリル重合体には、カルボン酸基含有単量体単位を有する重合体を用いることができる。したがって、たとえば前記共重合体Bがカルボン酸基含有単量体単位を有することができる。カルボン酸基含有単量体単位とは、カルボン酸基(-COOH;カルボキシル基ともいう。)を含有する単量体を重合させて得られる構造単位を表す。カルボン酸基を含有する単量体としては、例えば不飽和カルボン酸化合物が挙げられる。その具体例としては、アクリル酸、メタクリル酸等の一塩基酸を含有する単量体;マレイン酸、フマル酸、イタコン酸等の二塩基酸を含有する単量体;などが挙げられる。ここで、カルボン酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 前記共重合体Bにおけるカルボン酸基含有単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、特に好ましくは1重量%以上であり、好ましくは50重量%以下、より好ましくは20重量%以下、特に好ましくは10重量%以下である。前記共重合体Bにおけるカルボン酸基含有単量体単位の割合がこの範囲であると、結着性を高めて電極強度を向上させることができる。
 さらに、アクリル重合体は、本発明の効果を著しく損なわない限り、上述したもの以外に任意の構造単位を有していてもよい。したがって、前記共重合体Bは、本発明の効果を著しく損なわない限り、上述したもの以外に任意の構造単位を有していてもよい。これらの任意の構造単位は、上述した単量体と共重合可能な単量体が重合して得られる構造単位である。上述した単量体と共重合可能な単量体の例を挙げると、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ただし、前記の任意の構造単位の量は、アクリル重合体又は前記共重合体B中の(メタ)アクリル酸エステル単量体単位の量が、通常50重量%以上、好ましくは70重量%以上となる範囲に抑えることが望ましい。
 粒子状バインダーを形成する重合体は、架橋構造を有していてもよい。したがって、例えば前記共重合体Bが架橋構造を有していてもよい。架橋構造を導入する方法としては、例えば、重合体に架橋性基を含有させる方法、重合体と架橋剤とを組み合わせて用いる方法が挙げられる。この場合、加熱又はエネルギー線を照射することにより、重合体を架橋させることができる。架橋度は、加熱又はエネルギー線の照射の強度により調節しうる。架橋度が高いほど膨潤度が小さくなるので、架橋度を調整することにより、粒子状バインダーの膨潤度を制御することが可能である。
 上述したように、粒子状バインダーは、共重合体Bを含むことが好ましい。この際、粒子状バインダーの総量100重量部に対して、共重合体Bの量は、好ましくは70重量部以上、より好ましくは80重量部以上であり、好ましくは100重量部以下である。
 粒子状バインダーを形成する重合体の重量平均分子量は、好ましくは10000以上、より好ましくは20000以上であり、好ましくは1000000以下、より好ましくは500000以下である。粒子状バインダーを形成する重合体の重量平均分子量が上記範囲にあることにより、二次電池用正極の強度及び正極活物質の分散性を良好にし易い。粒子状バインダーを形成する重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めうる。
 粒子状バインダーのガラス転移温度(Tg)は、好ましくは-50℃以上、より好ましくは-45℃以上、特に好ましくは-40℃以上であり、好ましくは25℃以下、より好ましくは15℃以下、特に好ましくは5℃以下である。粒子状バインダーのガラス転移温度が上記範囲にあることにより、優れた強度と柔軟性を有し、高い出力特性の二次電池用正極を得ることができる。なお、粒子状バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 通常、粒子状バインダーを形成する重合体は、非水溶性である。したがって、通常、粒子状バインダーは、電池用正極を製造するためのスラリー組成物において粒子状となっており、その粒子形状を維持したまま二次電池用正極に含まれる。
 粒子状バインダーの数平均粒子径は、通常は0.0001μm以上、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、通常100μm以下、好ましくは10μm以下、より好ましくは1μm以下である。粒子状バインダーの数平均粒子径がこの範囲であることにより、少量の使用でも優れた結着力を発現しうる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ粒子状バインダー100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は、球形及び異形のどちらでもかまわない。
 また、粒子状バインダーは、1種類の重合体を単独で用いてもよいし、構造の異なる2種類以上の重合体を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーの量は、正極活物質100重量部に対して、通常0.1重量部以上、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、通常50重量部以下、好ましくは20重量部以下、より好ましくは10重量部以下、さらに好ましくは3重量部以下である。粒子状バインダーの量をこの範囲にすることにより、密着性を充分に確保でき、二次電池の容量を高くでき、且つ、二次電池用正極の内部抵抗を低くすることができる。
 粒子状バインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合し、重合体の粒子とすることにより製造しうる。単量体組成物中の各単量体の比率は、通常、粒子状バインダーを形成する重合体における構造単位の含有割合と同様にする。
 水系溶媒としては、粒子状バインダーを分散させうるものであれば格別限定されることはない。通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒を用いる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
 水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ-ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3-メトキシ-3メチル-1-ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3-ジオキソラン(75)、1,4-ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は可燃性がなく、粒子状バインダーを容易に得やすいという観点から特に好ましい。
 また、水系溶媒は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、主溶媒として水を使用して、粒子状バインダーの溶解が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
 重合方法としては、例えば懸濁重合法、乳化重合法等のいずれの方法を用いてもよい。また、重合方法として、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法を用いてもよい。中でも、高分子量の重合体が得やすいこと、並びに、重合体が水に分散した粒子の状態で得られるので再分散化の処理が不要であり、そのまま二次電池用正極を製造するためのスラリー組成物に供することができることなど、製造効率の観点から、乳化重合法が特に好ましい。
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行いうる。すなわち、攪拌機及び加熱装置付きの密閉容器に、水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法を用いうる。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法を用いうる。
 重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;過硫酸カリウムなどが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 分散剤は、通常の合成で使用されるものを用いてもよい。分散剤の具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸-スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子;などが挙げられる。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩である。更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。分散剤の量は、単量体の総量100重量部に対して、通常0.01重量部~10重量部である。
 さらに、重合に際しては、シード粒子を採用してシード重合を行ってもよい。
 また、上述した方法によって得られる粒子状バインダーの水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを通常5~10、好ましくは5~9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と正極活物質との結着性を向上させるので、好ましい。
 さらに、粒子状バインダーは、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、例えば、少なくとも1種類の単量体成分を常法により重合し、引き続き、他の少なくとも1種の単量体成分を重合し、常法により重合させる方法(二段重合法)などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。
 〔1.4.水溶性重合体〕
 水溶性重合体は、酸性官能基含有単量体単位と(メタ)アクリル酸エステル単量体単位とを、所定の含有割合で有する水溶性の共重合体(以下、適宜「共重合体A」ということがある。)を含む。このような共重合体Aを含む水溶性重合体を用いることにより、二次電池用正極を製造するためのスラリー組成物の塗工性、集電体に対する正極活物質層の密着性、及び、正極活物質層の注液性をバランスよく改善することができ、これにより、高温環境における保存特性が高い二次電池を実現できる。ここで、水溶性重合体としては、前記共重合体Aのみを含有する態様に加えて、前記共重合体Aと前記共重合体A以外の他の重合体とを含有する態様も含む。また、水溶性重合体に含まれる共重合体Aとしては、1種類の重合体を単独で用いてもよいし、構造の異なる2種類以上の重合体を任意の比率で組み合わせて用いてもよい。なお、前記水溶性重合体には、カルボキシメチルセルロース等の天然物由来の水溶性高分子化合物(水溶性天然高分子)は含まれない。
 本発明に係る水溶性重合体が前記共重合体Aを含むことにより前記のような優れた効果が得られる理由は定かではないが、本発明者の検討によれば、以下の通りと推察される。
 二次電池用正極に含まれる成分のうち、正極活物質は一般に親水性であるが、導電助剤は一般に疎水性である。このため、正極活物質と導電助剤とを含むスラリー組成物においては、正極活物質と導電助剤とを両方とも良好に分散させることが困難であった。ところが、本発明に係る水溶性重合体を用いることにより、正極活物質及び導電助剤の両方を良好に分散させることが可能である。これにより、スラリー組成物を塗布する際、正極活物質及び導電助剤の凝集を抑制しながら塗布できるので、塗工性を改善できる。
 また、水溶性重合体に含まれる前記共重合体Aが酸性官能基を有するので、当該酸性官能基による静電的な相互作用により、水溶性重合体に含まれる共重合体Aが水に溶けた場合の粘度を高めることができる。このため、水溶性重合体を含むスラリー組成物の粘度が高まるので、これによっても、塗工性を改善できる。
 さらに、スラリー組成物の分散性が良好であるので、正極活物質層では、正極活物質、導電助剤及び粒子状バインダーの偏り及び凝集が抑制される。したがって、正極活物質層には粒子状バインダーが局所的に少ない部位が生じ難くなるので、集電体に対する正極活物質層の密着強度が局所的に強くなったり弱くなったりすることが無い。このため、集電体に対する正極活物質層の密着性を向上させることができる。
 また、正極活物質層において正極活物質及び導電助剤が良好に分散することにより、正極活物質層において構成成分が部分的に偏り難くなって、正極活物質層の構造の均一性が向上している。このため、正極活物質層に形成された細孔の分布が均一化し、電解液が染み込み易くなるので、注液性が向上している。
 さらに、正極活物質層の組成の均一性も向上するので、正極の内部抵抗を低くすることができる。
 そして、上述した効果による相乗効果によって、本発明の二次電池の高温環境における保存特性を改善することができる。また、同様の仕組みにより、通常は、本発明の二次電池のサイクル特性及び出力特性も改善することが可能である。
 本発明に係る水溶性重合体に含まれる前記共重合体Aが、正極活物質及び導電助剤の両方の分散性を向上させることができた理由は、水溶性重合体に含まれる前記共重合体A中の酸性官能基と正極活物質の表面にある極性基との相互作用、及び、水溶性重合体に含まれる前記共重合体A中の酸性官能基同士による静電的な反発作用などが考えられる。すなわち、正極活物質の表面の極性基と共重合体Aの極性官能基との相互作用によって、正極活物質の表面に水溶性重合体に含まれる前記共重合体Aが適度に吸着する。そして、吸着した前記共重合体Aによる静電的な反発作用によって、正極活物質同士が凝集し難くなる。このため、導電助剤が正極活物質同士の間に容易に進入できるようになり、分散性が向上すると考えられる。
 〔1.4.1.酸性官能基含有単量体単位〕
 酸性官能基含有単量体単位とは、酸性官能基を含有する単量体を重合して得られる構造単位を表す。酸性官能基としては、例えば、カルボン酸基(-COOH)、スルホン酸基(-SOH)、リン酸基(-PO)などが挙げられる。中でも、カルボン酸基が好ましい。ただし、酸性官能基は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。また、酸性官能基を含有する単量体が有する酸性官能基の数は、1つでもよく、2つ以上でもよい。
 カルボン酸基を含有する単量体としては、通常、カルボン酸基及び重合可能な基を有する単量体を用いる。カルボン酸基を含有する単量体の例としては、不飽和カルボン酸単量体を挙げることができる。不飽和カルボン酸単量体は、炭素-炭素不飽和結合を有し、且つ、カルボン酸基を有する単量体である。
 不飽和カルボン酸単量体の例としては、不飽和モノカルボン酸及びその誘導体;不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体;などが挙げられる。
 不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、及びクロトン酸等の、エチレン性不飽和モノカルボン酸が挙げられる。
 不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、及びβ-ジアミノアクリル酸等の、エチレン性不飽和モノカルボン酸の誘導体が挙げられる。
 不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、及びイタコン酸等の、エチレン性不飽和ジカルボン酸が挙げられる。
 不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸等の、エチレン性不飽和ジカルボン酸の無水物が挙げられる。
 不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。
 これらの中でも、アクリル酸、メタクリル酸等の不飽和モノカルボン酸が好ましい。共重合体Aの水に対する分散性をより高めることができるからである。したがって、酸性官能基含有単量体単位としては、不飽和モノカルボン酸単量体単位が好ましい。
 また、酸性官能基を含有する単量体、及び酸性官能基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおける酸性官能基含有単量体単位の含有割合は、通常15重量%以上、好ましくは25重量%以上、より好ましくは30重量%以上であり、通常60重量%以下、好ましくは55重量%以下、より好ましくは40重量%以下である。酸性官能基含有単量体単位の含有割合を前記範囲の下限値以上とすることにより、静電反発力を発揮して良好な分散性を得ることができる。一方、酸性官能基含有単量体単位の含有割合を前記範囲の上限値以下とすることにより、官能基と電解液との過度の接触を避けることができ、耐久性を向上させることができる。また、正極活物質に対する共重合体Aの吸着性が過度に高くなることを防止して、正極活物質が擬似的な架橋構造を生じることを防止できるので、共重合体Aを介した正極活物質の凝集を防止できる。
 水溶性重合体に含まれる前記共重合体Aにおける酸性官能基含有単量体単位の含有割合は、通常、共重合体Aを製造する際に用いる酸性官能基を含有する単量体の仕込み比と一致する。
 〔1.4.2.(メタ)アクリル酸エステル単量体単位〕
 (メタ)アクリル酸エステル単量体単位とは、(メタ)アクリル酸エステル単量体を重合して得られる構造単位を表す。(メタ)アクリル酸エステル単量体としては、粒子状バインダーの項で説明したのと同様に、例えば、式(I)で表される化合物が挙げられる。
 好ましい(メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステル;ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレートなどのアクリル酸(ヒドロキシ)アルキルアクリレート;並びに、ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレートなどのアクリル酸(ヒドロキシ)アルキルメタリレートが挙げられる。
 (メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおける(メタ)アクリル酸エステル単量体単位の含有割合は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上であり、また、通常80重量%以下、好ましくは70重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより正極活物質層の柔軟性を高めることができ、上記範囲の上限値以下とすることにより二次電池用正極の密着性を向上させることができる。
 水溶性重合体に含まれる前記共重合体Aにおける(メタ)アクリル酸エステル単量体単位の含有割合は、通常、共重合体Aを製造する際に用いる(メタ)アクリル酸エステル単量体の仕込み比と一致する。
 〔1.4.3.架橋性単量体単位〕
 水溶性重合体は、架橋性単量体単位を有する重合体を含むことが好ましい。したがって、水溶性重合体に含まれる前記共重合体Aは、架橋性単量体単位を有することが好ましい。架橋性単量体単位を有することにより、水溶性重合体の水溶性を損なわない範囲で水溶性重合体の分子量を高め、電解液に対する水溶性重合体の膨潤度が過度に高くならないようにできる。ここで、架橋性単量体単位とは、架橋性単量体を重合して得られる構造単位を表す。また、架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体を表す。架橋性単量体の例としては、通常、熱架橋性を有する単量体が挙げられる。より具体的には、例えば、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体;1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
 熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。
 1分子あたり2つ以上のオレフィン性二重結合を有する架橋性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。
 これらの例示物の中でも、架橋性単量体としては、特に、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが好ましい。
 また、架橋性単量体及び架橋性単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおける架橋性単量体単位の含有割合は、通常0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、通常2重量%以下、好ましくは1.5重量%以下、より好ましくは1重量%以下である。架橋性単量体単位の含有割合を前記範囲の下限値以上とすることにより、水溶性重合体に含まれる前記共重合体Aの分子量を高め、水溶性重合体の電解液による膨潤を抑制し、二次電池用正極の膨らみを抑制できる。一方、架橋性単量体単位の含有割合を前記範囲の上限値以下とすることにより、水溶性重合体に含まれる前記共重合体Aの水に対する可溶性を高め、分散性を良好にすることができる。したがって、架橋性単量体単位の含有割合を前記範囲内とすることにより、膨潤度及び分散性の両方を良好なものとすることができる。
 水溶性重合体に含まれる前記共重合体Aにおける架橋性単量体単位の含有割合は、通常、共重合体Aを製造する際に用いる架橋性単量体の仕込み比と一致する。
 〔1.4.4.反応性界面活性剤単位〕
 水溶性重合体は、反応性界面活性剤単位を有する重合体を含むことが好ましい。したがって、水溶性重合体に含まれる前記共重合体Aは、反応性界面活性剤単位を有することが好ましい。反応性界面活性剤単位を有することにより、水溶性重合体の水に対する溶解性及びスラリー組成物の分散性を高めることができる。ここで、反応性界面活性剤単位とは、反応性界面活性剤単量体を重合して得られる構造単位を表す。また、反応性界面活性剤単量体とは、他の単量体と共重合しうる重合性の基を有し、且つ、界面活性基(即ち、親水性基及び疎水性基)を有する単量体を表す。反応性界面活性剤単量体の重合により得られる反応性界面活性剤単位は、例えば共重合体A等の水溶性重合体の分子の一部を構成し、且つ界面活性剤として機能しうる。
 通常、反応性界面活性剤単量体は重合性不飽和基を有し、この重合性不飽和基が重合後に疎水性基としても作用する。重合性不飽和基の例としては、ビニル基、アリル基、ビニリデン基、プロペニル基、イソプロペニル基、及びイソブチリデン基が挙げられる。かかる重合性不飽和基の種類は、1種類でもよく、2種類以上でもよい。
 また、反応性界面活性剤単量体は、親水性を発現する部分として、通常は親水性基を有する。反応性界面活性剤単量体は、親水性基の種類により、アニオン系、カチオン系、ノニオン系の界面活性剤に分類される。
 アニオン系の親水性基の例としては、-SOM、-COOM、及び-PO(OH)が挙げられる。ここでMは、水素原子又はカチオンを示す。カチオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;カルシウム、マグネシウム等のアルカリ土類金属イオン;アンモニウムイオン;モノメチルアミン、ジメチルアミン、モノエチルアミン、トリエチルアミン等のアルキルアミンのアンモニウムイオン;並びにモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンのアンモニウムイオンが挙げられる。
 カチオン系の親水基の例としては、-Cl、-Br、-I、及び-SOORが挙げられる。ここでRは、アルキル基を示す。Rの例としては、メチル基、エチル基、プロピル基、及びイソプロピル基等が挙げられる。
 ノニオン系の親水基の例としては、-OHが挙げられる。
 好適な反応性界面活性剤単量体の例としては、下記の式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(II)において、Rは2価の結合基を表す。Rの例としては、-Si-O-基、メチレン基及びフェニレン基等が挙げられる。また、式(II)において、Rは親水性基を表す。Rの例としては、-SONHが挙げられる。さらに、式(II)において、nは1以上100以下の整数を表す。
 好適な反応性界面活性剤単量体の別の例としては、エチレンオキシドを重合して形成される構造を有する構造単位及びブチレンオキシドを重合して形成される構造を有する構造単位を有し、さらに末端に、末端二重結合を有するアルケニル基及び-SONHを有する化合物(例えば、商品名「ラテムルPD-104」及び「ラテムルPD-105」、花王株式会社製)を挙げることができる。
 反応性界面活性剤単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおける反応性界面活性剤単位の含有割合は、通常0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、通常15重量%以下、好ましくは10重量%以下、より好ましくは5重量%以下である。反応性界面活性剤単位の含有割合を前記範囲の下限値以上とすることにより、スラリー組成物の分散性を向上させることができ、均一な電極を得ることができる。一方、反応性界面活性剤単位の含有割合を前記範囲の上限値以下とすることにより、極板中の水分量を低く抑えられる為、正極の耐久性を向上させることができる。
 水溶性重合体に含まれる前記共重合体Aにおける架反応性界面活性剤単位の含有割合は、通常、共重合体Aを製造する際に用いる反応性界面活性剤単量体の仕込み比と一致する。
 〔1.4.5.フッ素含有(メタ)アクリル酸エステル単量体単位〕
 水溶性重合体は、フッ素含有(メタ)アクリル酸エステル単量体単位を有する重合体を含むことが好ましい。したがって、水溶性重合体に含まれる前記共重合体Aは、フッ素含有(メタ)アクリル酸エステル単量体単位を有することが好ましい。フッ素含有(メタ)アクリル酸エステル単量体単位を有することにより、水溶性重合体の電解液に対する濡れ性を調整して、正極活物質層の膨潤性の抑制と注液性の向上とを両方とも実現できる。ここで、フッ素含有(メタ)アクリル酸エステル単量体単位とは、フッ素含有(メタ)アクリル酸エステル単量体を重合して得られる構造単位を表す。本明細書において、フッ素を含有するこれらのフッ素含有(メタ)アクリル酸エステル単量体及びフッ素含有(メタ)アクリル酸エステル単量体単位は、フッ素を含有しない(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸エステル単量体単位と区別する。
 フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(III)で表される単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 前記の式(III)において、Rは、水素原子またはメチル基を表す。
 前記の式(III)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下であり、炭化水素基は直鎖型及び分岐型のいずれでもよい。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
 式(III)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルが挙げられる。なかでも(メタ)アクリル酸フッ化アルキルが好ましい。
 このような単量体の具体例としては、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル、(メタ)アクリル酸2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸3[4〔1-トリフルオロメチル-2,2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
 フッ素含有(メタ)アクリル酸エステル単量体及びフッ素含有(メタ)アクリル酸エステル単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおけるフッ素含有(メタ)アクリル酸エステル単量体単位の含有割合は、通常1重量%以上、好ましくは2重量%以上、より好ましくは5重量%以上であり、通常20重量%以下、好ましくは15重量%以下、より好ましくは10重量%以下である。フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合を前記範囲の下限値以上とすることにより、水溶性重合体に含まれる前記共重合体Aに、電解液に対する反発力を与えることができ、膨潤性を適切な範囲内に抑制できる。一方、フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合を前記範囲の上限値以下とすることにより、水溶性重合体に含まれる前記共重合体Aに、電解液に対する濡れ性を与えることができ、二次電池の低温出力特性を向上させることができる。
 水溶性重合体に含まれる前記共重合体Aにおけるフッ素含有(メタ)アクリル酸エステル単量体単位の含有割合は、通常、共重合体Aを製造する際に用いるフッ素含有(メタ)アクリル酸エステル単量体の仕込み比と一致する。
 〔1.4.6.その他の構造単位〕
 水溶性重合体は、上述した酸性官能基含有単量体単位、(メタ)アクリル酸エステル単量体単位、架橋性単量体単位、反応性界面活性剤単位及びフッ素含有(メタ)アクリル酸エステル単量体単位以外にも、本発明の効果を著しく損なわない限り、任意の構造単位を有していてもよい。したがって、前記共重合体Aも、本発明の効果を著しく損なわない限り、任意の構造単位を有していてもよい。
 任意の構造単位の例としては、下記の任意の単量体を重合して得られる構造単位が挙げられる。任意の単量体としては、例えば、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;並びにN-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体;などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性重合体に含まれる前記共重合体Aにおける任意の構造単位の含有割合は、好ましくは0重量%~10重量%、より好ましくは0重量%~5重量%である。
 〔1.4.7.任意の重合体〕
 水溶性重合体としては、1種類の重合体を単独で用いてもよいし、構造の異なる2種類以上の重合体を任意の比率で組み合わせて用いてもよい。例えば、1種類の共重合体Aを単独で用いてもよい。また、例えば、構造の異なる2種類以上の共重合体Aを任意の比率で組み合わせて用いてもよい。さらに、例えば、共重合体Aと、共重合体Aとは構造の異なる任意の水溶性の重合体とを組み合わせて用いてもよい。
 ただし、共重合体Aを用いた利点を効果的に発揮する観点から、水溶性重合体の総量100重量部に対して、共重合体Aの量は、好ましくは70重量部以上、より好ましくは80重量部以上であり、好ましくは100重量部以下である。
 〔1.4.8.水溶性重合体の物性及び量〕
 水溶性重合体に含まれる前記共重合体Aの重量平均分子量は、通常は、例えば共重合体B等の粒子状バインダーを形成する重合体よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。水溶性重合体に含まれる前記共重合体Aの重量平均分子量を上記範囲の下限値以上とすることにより、前記共重合体Aの強度を高くして、正極活物質を覆う安定な保護層を形成できる。このため、例えば正極活物質の分散性及び二次電池の高温保存特性などを改善できる。一方、上記範囲の上限値以下とすることにより、前記共重合体Aを柔らかくできる。このため、例えば正極の膨らみの抑制、正極活物質層の集電体への密着性の改善などが可能となる。
 ここで、水溶性重合体に含まれる前記共重合体Aの重量平均分子量は、GPCによって、アセトニトリルの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリエチレンオキサイド換算の値として求めうる。
 水溶性重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性重合体のガラス転移温度が上記範囲であることにより、正極の密着性と柔軟性とを両立させることができる。また、同様の観点から、共重合体Aのガラス転移温度も、前記の範囲に収まることが好ましい。水溶性重合体及び共重合体Aのガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 水溶性重合体に含まれる前記共重合体Aのイオン伝導度は、通常1×10-5S/cm以上、好ましくは2×10-5S/cm以上、より好ましくは5×10-5S/cm以上であり、通常1×10-3S/cm以下、好ましくは1×10-3S/cm以下、より好ましくは1×10-3S/cm以下である。水溶性重合体に含まれる前記共重合体Aのイオン伝導度を前記範囲の下限値以上にすることにより、二次電池の低温出力特性を向上させることができる。また、上限値以下にすることにより、正極活物質層の集電体に対する密着性を向上させ、ひいては正極の耐久性を向上させることができる。
 ここで、「水溶性重合体に含まれる前記共重合体Aのイオン伝導度」とは、下記所定の条件において測定したイオン伝導度をいう。
 水溶性重合体に含まれる前記共重合体Aの水溶液を乾燥後の厚みが1mmとなるようにシリコン容器に流入し、室温で、72時間乾燥し、1cm×1cmの正方形のフィルムを作製する。このフィルムを、1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物)に60℃で72時間浸漬する。浸漬後のフィルムの厚みdを測定する。その後、フィルムを2枚の銅箔に挟み、0.001Hz~1000000Hzにおける交流インピーダンスから抵抗Rを測定し、イオン伝導度=R×1/dを算出する。この値を、「水溶性重合体に含まれる前記共重合体Aのイオン伝導度」とする。
 所定条件で測定した水溶性重合体の膨潤度V1と、同条件で測定した粒子状バインダーの膨潤度V0との膨潤度比は、1.0~2.0であることが好ましく、1.0~1.5であることがより好ましく、1.0~1.2であることが特に好ましい。また、前記の所定条件で測定した、共重合体Aの膨潤度と粒子状重合体の膨潤度V0との膨潤度比、水溶性重合体の膨潤度V1と共重合体Bの膨潤度との膨潤度比、並びに、共重合体Aの膨潤度と共重合体Bとの膨潤度比も、前記の範囲に収まることが好ましい。膨潤度比が前記範囲の下限値以上であることにより、二次電池の低温出力特性を向上させることができる。また、上限値以下であることにより、正極活物質間の距離を適切な狭い範囲とすることができ、良好な耐久性を得ることができる。
 ここで、膨潤度は、8~13(cal/cm1/2の溶解度パラメーターを有する液体に対する膨潤度である。具体的な膨潤度の測定方法は、以下の通りである。
 粒子状バインダーの水分散液及び水溶性重合体の水溶液を、それぞれ、乾燥後の厚みが1mmとなるようにシリコン容器に流入し、室温で、72時間乾燥し、1cm×1cmの正方形のフィルムを作製し、重量M0を測定する。その後、フィルムを所定の液体に60℃で72時間浸漬し、浸漬後のフィルムの重量M1を測定し、膨潤度を式(M1-M0)/M0より算出する。粒子状バインダーの膨潤度V0、及び水溶性重合体の膨潤度V1から、これらの比V1/V0を算出し、この値を膨潤度比とする。また同様の要領で、共重合体Aの膨潤度と粒子状重合体の膨潤度V0との膨潤度比、水溶性重合体の膨潤度V1と共重合体Bの膨潤度との膨潤度比、並びに、共重合体Aの膨潤度と共重合体Bとの膨潤度比も測定しうる。
 膨潤度を測定するための、所定の溶解度パラメーターを有する液体としては、例えば、1.0mol/LのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネートの1/2体積比の混合物、溶解度パラメーター10.8(cal/cm1/2)が挙げられる。また、本発明の二次電池の電解液が前記の範囲の溶解度パラメーターを有する場合、当該電解液を用いて膨潤度を測定してもよい。
 粒子状バインダーの膨潤度V0及び水溶性重合体の膨潤度V1の値は、特に限定されるものではないが、それぞれ下記の範囲であることが好ましい。即ち、粒子状バインダーの膨潤度V0は1.0倍~3.0倍であることが好ましく、1.0倍~2.0倍であることがより好ましい。水溶性重合体の膨潤度V1は、1.0倍~5.0倍であることが好ましく、1.0倍~4.0倍であることがより好ましい。
 水溶性重合体の量は、粒子状バインダーと水溶性重合体との重量比が、「粒子状バインダー/水溶性重合体」で通常99.5/0.5~95/5の範囲に収まるようにする。詳細には、「粒子状バインダー/水溶性重合体」で表される重量比を、通常95/5以上、好ましくは96/4以上、より好ましくは97/3以上、また、通常99.5/0.5以下、好ましくは99/1以下、より好ましくは98.5/1.5以下にする。「粒子状バインダー/水溶性重合体」で表される重量比を前記範囲の下限値以上とすることにより、集電体に対する正極活物質層の密着性を高めることができる。また、上限値以下とすることにより、耐久性を向上させることができる。
 また、粒子状バインダーと共重合体Aとの重量比「粒子状バインダー/共重合体A」は、通常95/5以上、好ましくは96/4以上、より好ましくは97/3以上、また、通常99.5/0.5以下、好ましくは99/1以下、より好ましくは98.5/1.5以下である。この重量比を前記範囲の下限値以上とすることにより、集電体に対する正極活物質層の密着性を高めることができる。また、上限値以下とすることにより、耐久性を向上させることができる。
 〔1.4.9.共重合体Aの製造方法〕
 水溶性重合体に含まれる前記重合体Aは、例えば、酸性官能基を含有する単量体及び(メタ)アクリル酸エステル単量体を含み、必要に応じて架橋性単量体、反応性界面活性剤単量体、フッ素含有(メタ)アクリル酸エステル単量体及び任意の単量体を含む単量体組成物を、水系溶媒中で重合して、製造しうる。この際、単量体組成物中の各単量体の比率は、通常、共重合体Aにおける構造単位の含有割合と同様にする。
 水系溶媒は、例えば、粒子状バインダーの製造と同様のものを用いてもよい。
 また、重合方法は、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。さらに、重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いてもよい。
 重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択でき、通常、重合温度は約30℃以上、重合時間は0.5時間~30時間程度である。
 また、例えばアミン類などの添加剤を重合助剤として用いてもよい。
 これにより、通常は水系溶媒に共重合体Aが溶解した水溶液が得られる。こうして得られた水溶液から共重合体Aを取り出してもよい。しかし、通常は、水系溶媒に溶解した状態の共重合体Aを用いて正極用のスラリー組成物を製造し、そのスラリー組成物を用いて正極を製造しうる。
 共重合体Aを水系溶媒中に含む前記の水溶液は、通常は酸性である。そこで、必要に応じて、pH7~pH13にアルカリ化してもよい。これにより、水溶液の取り扱い性を向上させることができ、また、二次電池用正極を製造するためのスラリー組成物の塗工性を改善することができる。pH7~pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 〔1.5.任意の成分〕
 本発明の二次電池用正極は、上述した正極活物質、導電助剤、粒子状バインダー及び水溶性重合体以外にも、本発明の効果を著しく損なわない限り任意の成分を含んでいてもよい。例えば、本発明の二次電池用正極は、補強材、分散剤、レベリング剤、酸化防止剤、などの添加物を含んでいてもよい。通常、これらの任意の成分は正極活物質層に含まれる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。なお、添加物には、例えばカルボキシメチルセルロース(CMC)等の天然物由来の水溶性高分子化合物も含まれ、このCMCは例えばバインダーとして用いることができる。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが挙げられる。補強材を用いることにより、強靭で柔軟な正極を得ることができ、二次電池において優れた長期サイクル特性を示すことができる。
 補強材の使用量は、正極活物質100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強材の量を前記範囲に収めることにより、高い容量及び高い負荷特性を実現できる。
 分散剤としては、例えば、アニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物などが例示される。具体的な分散剤は、用いる正極活物質及び導電助剤に応じて選択される。分散剤を用いることにより、正極用のスラリー組成物の安定性が向上し、平滑な正極が得られるので、二次電池の電池容量を高めることができる。
 分散剤の量は、正極活物質100重量部に対して、通常は0.1重量部以上、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、通常10重量部以下、好ましくは5重量部以下、より好ましくは2重量部以下である。
 レベリング剤としては、例えば、アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、スラリー組成物を集電体に塗工する時に発生するはじきを防止したり、正極の平滑性を向上させたりできる。
 レベリング剤の量は、正極活物質100重量部に対して、好ましくは0.01重量部~10重量部である。レベリング剤が上記範囲であることにより正極作製時の生産性、平滑性及び電池特性に優れる。
 酸化防止剤としては、例えば、フェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が通常200以上、好ましくは600以上であり、通常1000以下、好ましくは700以下のポリマー型フェノール化合物が用いられる。
 酸化防止剤の量は、正極活物質100重量部に対して、通常0.01重量部以上、好ましくは0.02重量部以上であり、通常10重量部以下、好ましくは5重量部以下である。
 [1.6.集電体及び電極活物質層]
 正極活物質、導電助剤、粒子状バインダー及び水溶性重合体、並びに必要に応じて含まれる任意の成分は、上述したように、通常、正極活物質層に含まれる。正極活物質層は、通常、集電体の表面に設けられる。この際、正極活物質層は、集電体の片面に設けられていてもよく、両面に設けられていてもよい。
 集電体は、電気導電性を有し且つ電気化学的に耐久性のある材料であれば特に制限されない。耐熱性を有するとの観点から、集電体の材料としては金属が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが好ましい。中でも、正極用としてはアルミニウムが特に好ましい。集電体の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 集電体の形状は特に制限されないが、厚さ0.001mm~0.5mm程度のシート状のものが好ましい。
 集電体は、正極活物質層の接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、例えば研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
 正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが前記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
 正極活物質層における水分量は、1000ppm以下であることが好ましく、500ppm以下であることがより好ましい。正極活物質層の水分量を上記範囲内とすることにより、耐久性に優れる二次電池用正極を実現できる。水分量は、例えばカールフィッシャー法等の既知の方法により測定しうる。
 このような低い水分量は、例えば共重合体A等の水溶性重合体中の構造単位の組成を適宜調整することにより達成しうる。特に、フッ素含有(メタ)アクリル酸エステル単量体単位を上述した比率で水溶性重合体に含ませることにより、水分量を低減することができる。
[2.二次電池用正極の製造方法]
 本発明の二次電池用正極は、例えば、二次電池用正極を構成する正極活物質層を製造するためのスラリー組成物を用意し、このスラリー組成物を、集電体上に塗布した後、この塗布物を乾燥させて前記正極活物質層を得る工程を含む製造方法により、製造しうる。
 スラリー組成物は、正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び水、並びに、必要に応じて任意の成分を含む液状の組成物である。スラリー組成物における正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び任意の成分の比率は、通常、正極活物質層に含まれる各成分の比率と同様にする。
 スラリー組成物は、溶媒として水を含む。また、必要に応じて、水と有機溶媒とを組み合わせた混合溶媒を用いてもよい。スラリー組成物において、通常は、正極活物質、導電助剤及び粒子状バインダーは溶媒に分散した状態となり、また、水溶性重合体は溶媒に溶解した状態となる。
 水等の溶媒の量は、スラリー組成物に含まれる正極活物質の含有割合が、好ましくは50重量%以上、より好ましくは60重量%以上、また、好ましくは95重量%以下、より好ましくは90重量%以下となる範囲である。スラリー組成物における正極活物質の含有割合を上記範囲とすることにより、良好なスラリー組成物及び正極を作製することができる。
 スラリー組成物の粘度は、スラリー組成物の経時安定性及び塗工性の観点から、好ましくは10mPa・s以上、より好ましくは100mPa・s以上であり、好ましくは100,000mPa・s以下、より好ましくは50,000mPa・s以下である。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 スラリー組成物のpHは、通常7以上、好ましくは8以上であり、通常12以下、好ましくは11.5以下である。スラリー組成物のpHを上記範囲とすることにより、スラリー組成物の安定性を高めることができ、また、集電体の腐食抑制効果を奏することができる。
 スラリー組成物のpHを調整する方法としては、例えば、スラリー組成物の調製前に正極活物質を洗浄してスラリー組成物のpHを調整する方法、作製したスラリー組成物に炭酸ガスをバブリングしてpHを調整する方法、pH調整剤を使って調整する方法などが挙げられる。中でも、pH調整剤を用いることが好ましい。
 pH調整剤の種類は特に限定されないが、酸性を示す水溶性物質であることが好ましい。強酸及び弱酸のいずれを使用してもよい。
 弱酸性を示す水溶性物質の例としては、カルボン酸基、燐酸基、スルホン酸基など酸基を有する有機化合物が挙げられる。これらの中でも、特にカルボン酸基を有する有機化合物が好ましく用いられる。カルボン酸基を有する化合物の具体例としては、琥珀酸、フタル酸、マレイン酸、無水琥珀酸、無水フタル酸、無水マレイン酸などが挙げられる。これらの化合物は、乾燥することにより二次電池内において影響が少ない酸無水物にすることができる。
 また、強酸性を示す水溶性物質の例としては、塩酸、硝酸、硫酸、酢酸などが挙げられる。
 前記のpH調整剤の中でも、スラリー組成物の乾燥工程において分解または揮発するものであることが好ましい。この場合、得られた正極にpH調整剤が残留しない。このようなpH調整剤としては、例えば、酢酸、塩酸などが挙げられる。
 また、pH調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 pH調整剤の量は、正極合剤100重量部に対して、0.1重量部以上が好ましく、0.5重量部以下が好ましい。ここで正極合剤とは、正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び任意の成分を含めた、正極活物質層を構成する材料の合計量である。pH調整剤の量を前記範囲の下限値以上とすることにより、スラリー組成物のpHを安定して向上させることができる。ここでpHが向上するとは、pH調整剤に酸を用いた際はpHの酸性が強くなることを意味する。また、pH調整剤は、前記範囲の上限以下で十分である。
 スラリー組成物は、正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び水、並びに必要に応じて用いられる任意の成分を混合して得られる。この際、混合方法、混合順序に制限は無い。本発明のスラリー組成物は、水溶性重合体を用いているので、いずれの混合方法及び混合順序であっても、正極活物質、導電助剤及び粒子状バインダーを高度に分散させることが可能である。
 混合装置としては、例えば、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを使用してもよい。中でも高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。
 また、スラリー組成物のpHの調整は、スラリー組成物の製造工程中であれば、何時行っても構わない。中でも、スラリー組成物を所望の固形分濃度まで調整した後に、pH調整剤によりpHを調整することが好ましい。スラリー組成物を所定の固形分濃度まで調整した後にpHの調整を行うことにより、正極活物質の溶解を防止しながらpHの調整を容易に行うことができる。
 スラリー組成物を用意してから、そのスラリー組成物を、集電体上に塗布する。この際、スラリー組成物は、集電体の片面だけに塗布してもよく、両面に塗布してもよい。本発明のスラリー組成物は分散性に優れるので、均一な塗布が容易である。
 塗布方法に制限は無く、例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。スラリー組成物を塗布することにより、集電体の表面に、スラリー組成物の膜が形成される。この際、スラリー組成物の膜の厚みは、目的とする正極活物質層の厚みに応じて適宜に設定しうる。
 その後、乾燥により、スラリー組成物の膜から水等の液体を除去する。これにより、正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む正極活物質層が集電体の表面に形成され、本発明の二次電池用正極が得られる。
 乾燥温度及び乾燥時間は、特に制限されない。例えば、120℃以上で1時間以上加熱処理してもよい。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射による乾燥法が挙げられる。
 集電体の表面に正極活物質層を形成した後で、金型プレス又はロールプレスなどを用い、正極活物質層に加圧処理を施すことが好ましい。加圧処理により、正極の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは15%以下、より好ましくは13%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、正極活物質層を集電体から剥がれ難くすることができる。また、上限値以下とすることにより、高い充電効率及び放電効率が得られる。
 さらに、正極活物質層が硬化性の重合体を含む場合は、正極活物質層の形成後にこの重合体を硬化させてもよい。
 また、本発明の正極の別の製造方法の例としては、粉体成型法が挙げられる。粉体成型法とは、次のような方法である。すなわち、二次電池用正極を製造するためのスラリー組成物を用意する。その後、そのスラリー組成物から正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む複合粒子を調製する。さらに、その複合粒子を集電体上に供給し、所望により更にロールプレスして成形することにより正極活物質層を形成して、電池用正極を得る製造方法である。この際、スラリー組成物としては、上述したものと同様のスラリー組成物を用いてもよい。
[3.二次電池]
 本発明の二次電池は、正極、負極、電解液及びセパレーターを備える。また、本発明の二次電池においては、正極が、本発明の二次電池用正極である。本発明の二次電池は、本発明に係る水溶性重合体を含む正極を用いているので、高温環境における保存特性に優れ、また通常は、出力特性及び高温環境におけるサイクル特性にも優れる。
 本発明の二次電池は、例えばリチウムイオン二次電池、ニッケル水素二次電池等のいずれであってもよい。中でも、長期サイクル特性の向上、出力特性の向上などの性能向上効果が特に顕著であることから、リチウムイオン二次電池が好ましい。以下、本発明の二次電池がリチウムイオン二次電池である場合について、説明する。
 〔3.1.電解液〕
 リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液における支持電解質の濃度は、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。また、支持電解質の種類に応じて、通常0.5モル/L~2.5モル/Lの濃度で用いてもよい。支持電解質の濃度が低すぎても高すぎても、イオン導電度が低下する可能性がある。
 非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;などが挙げられる。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。非水溶媒の粘度が低いほど、リチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 また、電解液には添加剤を含有させてもより。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上記以外の電解液として、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質;前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質;LiI、LiNなどの無機固体電解質;などを用いてもよい。
 〔3.2.負極〕
 負極としては、通常、集電体と、集電体の表面に形成された負極活物質層とを備えるものを用いる。
 負極の集電体としては、例えば、正極の集電体と同様のものを用いてもよい。中でも、負極用の集電体としては、銅が好ましい。
 負極活物質層は、負極活物質及びバインダーを含む層である。
 負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属又はこれらの合金;前記金属又は合金の酸化物又は硫酸塩;金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等が挙げられる。また、負極活物質として、当該負極活物質の粒子の表面に、例えば機械的改質法によって導電助剤を付着させたものを用いてもよい。また、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質の粒子の粒径は、通常、本発明の二次電池の他の構成要素との兼ね合いで適宜選択される。中でも、初期効率、負荷特性、サイクル特性等の電池特性の向上の観点から、負極活物質の粒子の50%体積累積径は、好ましくは1μm以上、より好ましくは15μm以上であり、好ましくは50μm以下、より好ましくは30μm以下である。
 負極活物質層における負極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。負極活物質の含有量を上記範囲とすることにより、本発明の二次電池の容量を大きくでき、また、負極の柔軟性、及び、集電体と負極活物質層との結着性を向上させることができる。
 負極活物質層に用いられるバインダーとしては、例えば、正極活物質層において用いた粒子状バインダーと同様のものを用いてもよい。また、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体等の重合体;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体などを用いてもよい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、負極活物質層には、必要に応じて、負極活物質及びバインダー以外の成分が含まれていてもよい。その例を挙げると、本発明の二次電池用正極の正極活物質層に含まれていてもよい任意の成分などが挙げられる。また、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極の厚みは、集電体と負極活物質層との合計で、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。負極の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方を良好にできる。
 負極は、例えば、本発明の二次電池用正極と同様に、負極活物質、バインダー及び水を含む負極用のスラリー組成物を用意し、そのスラリー組成物の層を集電体に形成し、その層を乾燥させて製造してもよい。
 〔3.3.セパレーター〕
 セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いてもよい。具体例を挙げると、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜;ポリオレフィン系の繊維を織ったもの又はその不織布;絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くし二次電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
 セパレーターの厚さは、通常0.5μm以上、好ましくは1μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは10μm以下である。この範囲であると、二次電池内でのセパレーターによる抵抗が小さくなり、また二次電池を製造する時の作業性に優れる。
 〔3.4.二次電池の製造方法〕
 二次電池の具体的な製造方法としては、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例を示して具体的に説明する。ただし、本発明は以下に挙げる実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
〔評価方法〕
 1.密着強度
 実施例及び比較例で製造したリチウムイオン二次電池用正極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、正極活物質層の表面を下にして、正極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、正極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 2.塗工性
 実施例及び比較例で製造した正極用のスラリー組成物を、集電体である厚さ20μmのアルミニウム箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して正極を得た。得られた正極を10cm×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。
 3.極板の水分量
 実施例及び比較例で製造したリチウムイオン二次電池用正極について、カールフィッシャー電量滴定法で、正極中の水分量の測定を行なった。測定は、水分測定装置(京都電子工業社製、陽極液:アクアミクロンAX、陰極液:アクアミクロンCXU)で行った。これにより、極板の水分量(電極活物質層の単位重量当たりの重量、単位「ppm」)を測定した。
 4.電解液注液性
 実施例及び比較例で製造したリチウムイオン二次電池用正極を、直径12mmに打ち抜き、ドライルーム内にて電解液溶媒(プロピレンカーボネート)10ml中に5分間浸漬させ、浸漬前後の重量変化から吸液量を算出した。
 浸漬前の重量=A(mg)
 浸漬後の重量=B(mg)
 吸液量=B-A
 5.高温保存特性
 ラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、3V~4.2V、0.1Cの充放電レートにて充放電の操作を2サイクル行い、2サイクル目の放電容量を初期放電容量C0とした。さらに、4.2Vに充電し、60℃で4週間保存した後、3Vまで放電し、高温保存後の放電容量C1を測定した。高温保存特性は、ΔCS=C1/C0×100(%)で示す容量変化率ΔCSにて評価した。この容量変化率ΔCSの値が高いほど、高温保存特性に優れることを示す。
〔実施例1〕
 (1-1.水溶性重合体の製造)
 攪拌機付き5MPa耐圧容器に、メタクリル酸(酸性官能基含有単量体)31部、エチレンジメタクリレート(架橋性単量体)0.8部、2,2,2-トリフルオロエチルメタクリレート(フッ素含有(メタ)アクリル酸エステル単量体)7.5部、ブチルアクリレート((メタ)アクリル酸エステル単量体)59.2部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(反応性界面活性剤単量体、花王製、商品名「ラテムルPD-104」)1.5部、イオン交換水150部、及び過硫酸カリウム(重合開始剤)0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体(共重合体A)を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
 (1-2.正極用のバインダー組成物の製造)
 重合缶Aに、2-エチルヘキシルアクリレート10.65部、アクリロニトリル1.15部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加えた。この重合缶Aに、さらに重合開始剤として過硫酸アンモニウム0.2部及びイオン交換水10部を加え、60℃に加温し、90分攪拌した。
 また、別の重合缶Bに、2-エチルヘキシルアクリレート67部、アクリロニトリル19部、メタクリル酸2.0部、アリルメタクリレート0.2部、ラウリル硫酸ナトリウム0.7部及びイオン交換水46部を加えて攪拌して、エマルジョンを作製した。このエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌して、モノマー消費量が95%になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpH調整し、粒子状バインダーA(共重合体B)を含む組成物を得た。
 得られた粒子状バインダーAの、ガラス転移温度は-32℃、数平均粒子径は0.15μmであった。粒子状バインダーA中の、(メタ)アクリル酸エステル単量体単位の含有割合は77.6%、酸成分を有するビニル単量体の構造単位は2.0%、(メタ)アクリロニトリル単量体単位の含有割合は20.2%、アリルメタクリレートの構造単位の含有割合は0.2%であった。
 上記粒子状バインダーAを含む組成物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
 上記(1-1.水溶性重合体の製造)で得られた水溶性重合体を含む水溶液を、イオン交換水で希釈して、濃度を5%に調整した。これを、上記で得られた粒子状バインダーを含む水分散液に、固形分相当で粒子状バインダー/水溶性重合体=95/5(重量比)となるように混合して、正極用のバインダー組成物を得た。
 (1-3.正極の製造)
 正極活物質として体積平均粒子径20μmで層状構造を有するLiCoOを100部と、導電助剤としてアセチレンブラックを2部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-6」)を固形分相当で1部と、粒子状バインダー及び水溶性重合体として上記(1-2.正極用のバインダー組成物の製造)で得られたバインダー組成物を固形分相当で1部と、イオン交換水とを混合した。ここで、バインダー組成物の固形分とは、粒子状バインダー及び水溶性重合体のことを意味する。これらをプラネタリーミキサーにより混合し、正極用のスラリー組成物を調製した。この際、イオン交換水の量は、スラリー組成物の全固形分濃度が40%となる量とした。
 上記の正極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極活物質を有する正極を得た。こうして得られた正極について、密着強度、塗工性、極板の水分量及び電解液注液性を測定した。
 (1-4.負極用のスラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
 上記混合液に、スチレン-ブタジエン共重合体(ガラス転移温度が-15℃)を含む40%水分散液を固形分相当量で1.0部、及びイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリー組成物を得た。
 (1-5.負極の製造)
 上記(1-4.負極用のスラリー組成物の製造)で得られた負極用のスラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極活物質層を有する負極を得た。
 (1-6.セパレーターの用意)
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
 (1-7.リチウムイオン二次電池)
 電池の外装として、アルミニウム包材外装を用意した。上記(1-3.正極の製造)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1-6.セパレーターの用意)で得られた正方形のセパレーターを配置した。さらに、上記(1-5.負極の製造)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF溶液を充填した。このLiPF溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、高温保存特性を評価した。
〔実施例2〕
 前記(1-1.水溶性重合体の製造)において、メタクリル酸の量を20部に変更し、ブチルアクリレートの量を70.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例3〕
 前記(1-1.水溶性重合体の製造)において、メタクリル酸の量を25部に変更し、ブチルアクリレートの量を65.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例4〕
 前記(1-1.水溶性重合体の製造)において、メタクリル酸の量を40部に変更し、ブチルアクリレートの量を50.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例5〕
 前記(1-1.水溶性重合体の製造)において、メタクリル酸の量を45部に変更し、ブチルアクリレートの量を45.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例6〕
 前記(1-1.水溶性重合体の製造)において、エチレンジメタクリレートの量を0.1部に変更し、ブチルアクリレートの量を59.9部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例7〕
 前記(1-1.水溶性重合体の製造)において、エチレンジメタクリレートの量を1.2部に変更し、ブチルアクリレートの量を58.8部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例8〕
 前記(1-1.水溶性重合体の製造)において、エチレンジメタクリレートの量を1.8部に変更し、ブチルアクリレートの量を58.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例9〕
 前記(1-1.水溶性重合体の製造)において、エチレンジメタクリレートの代わりにグリシジルメタクリレートを用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例10〕
 前記(1-1.水溶性重合体の製造)において、エチレンジメタクリレートの代わりにアリルグリシジルエーテルを用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例11〕
 前記(1-1.水溶性重合体の製造)において、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムの量を0.4部に変更し、ブチルアクリレートの量を60.3部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例12〕
 前記(1-1.水溶性重合体の製造)において、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムの量を2.5部に変更し、ブチルアクリレートの量を58.2部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例13〕
 前記(1-1.水溶性重合体の製造)において、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウムの代わりにドデシルベンゼンスルホン酸ナトリウムを用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例14〕
 前記(1-1.水溶性重合体の製造)において、2,2,2-トリフルオロエチルメタクリレートを用いなかったこと、及び、ブチルアクリレートの量を66.7部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例15〕
 前記(1-1.水溶性重合体の製造)において、2,2,2-トリフルオロエチルメタクリレートの量を17部に変更し、ブチルアクリレートの量を49.7部に変更したこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例16〕
 前記(1-1.水溶性重合体の製造)において、2,2,2-トリフルオロエチルメタクリレートの代わりにトリフルオロメチルメタクリレートを用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例17〕
 前記(1-2.正極用のバインダー組成物の製造)において、正極用のバインダー組成物における水溶性重合体と粒子状バインダーとの重量比が粒子状バインダー/水溶性重合体=99.5/0.5となるようにしたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例18〕
 前記(1-2.正極用のバインダー組成物の製造)において、正極用のバインダー組成物における水溶性重合体と粒子状バインダーとの重量比が粒子状バインダー/水溶性重合体=90.0/10.0となるようにしたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例19〕
 重合缶Aに、2-エチルヘキシルアクリレート11部、アクリロニトリル1部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加えた。この重合缶Aに、さらに重合開始剤として過硫酸アンモニウム0.2部及びイオン交換水10部を加え、60℃に加温し、90分攪拌した。
 また、別の重合缶Bに、2-エチルヘキシルアクリレート67部、アクリロニトリル19部、イタコン酸2.0部、ラウリル硫酸ナトリウム0.7部及びイオン交換水46部を加えて攪拌して、エマルジョンを作製した。このエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌して、モノマー消費量が95%になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpH調整し、粒子状バインダーB(共重合体B)を含む組成物を得た。
 得られた粒子状バインダーBの、ガラス転移温度は-32℃、数平均粒子径は0.18μmであった。粒子状バインダーB中の、(メタ)アクリル酸エステル単量体単位の含有割合は78%、酸成分を有する単量体の構造単位は2.0%、(メタ)アクリロニトリル単量体単位の含有割合は20%であった。
 上記粒子状バインダーBを含む組成物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た。
 こうして実施例19で製造した粒子状バインダーを含む水分散液を、実施例1の(1-2.正極用のバインダー組成物の製造)で製造した粒子状バインダーを含む水分散液の代わりに用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔実施例20〕
 重合缶Aに、2-エチルヘキシルアクリレート10部、アクリロニトリル1部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加えた。この重合缶Aに、さらに重合開始剤として過硫酸アンモニウム0.2部及びイオン交換水10部を加え、60℃に加温し、90分攪拌した。
 また、別の重合缶Bに、2-エチルヘキシルアクリレート67部、アクリロニトリル18部、イタコン酸2.0部、ヒドロキシエチルアクリレート2部、ラウリル硫酸ナトリウム0.7部及びイオン交換水46部を加えて攪拌して、エマルジョンを作製した。このエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌して、モノマー消費量が95%になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpH調整し、粒子状バインダーC(共重合体B)を含む組成物を得た。
 得られた粒子状バインダーCの、ガラス転移温度は-33℃、数平均粒子径は0.18μmであった。粒子状バインダーC中の、(メタ)アクリル酸エステル単量体単位の含有割合は77%、酸成分を有する単量体の構造単位は2%、(メタ)アクリロニトリル単量体単位の含有割合は19%、ヒドロキシアルキルアクリレートの構造単位の含有割合は2%であった。
 上記粒子状バインダーCを含む組成物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状バインダーを含む水分散液を得た
 こうして実施例20で製造した粒子状バインダーを含む水分散液を、実施例1の(1-2.正極用のバインダー組成物の製造)で製造した粒子状バインダーを含む水分散液の代わりに用いたこと以外は実施例1と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔比較例1〕
 前記(1-2.正極用のバインダー組成物の製造)において、前記(1-1.水溶性重合体の製造)で得られた水溶性重合体を含む水溶液と粒子状バインダーを含む水分散液とを混合しないで、粒子状バインダーを含む水分散液をそのまま正極用のバインダー組成物とした。その後、正極用のバインダー組成物として水溶性重合体を含まない前記のバインダー組成物を用いたこと以外は前記(1-3.正極の製造)~(1-7.リチウムイオン二次電池)と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔比較例2〕
 ポリアクリル酸水溶液を、前記(1-1.水溶性重合体の製造)で得た水溶性重合体を含む水溶液の代わりに用いたこと以外は実施例1の前記(1-2.正極用のバインダー組成物の製造)~(1-7.リチウムイオン二次電池)と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔比較例3〕
 攪拌機付き5MPa耐圧容器に、メタクリル酸80部、ドデシルベンゼンスルホン酸ナトリウム1.5部、ブチルアクリレート20.0部、イオン交換水150部、及び過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
 こうして得た水溶性重合体を含む水溶液を、前記(1-1.水溶性重合体の製造)で得た水溶性重合体を含む水溶液の代わりに用いたこと以外は実施例1の前記(1-2.正極用のバインダー組成物の製造)~(1-7.リチウムイオン二次電池)と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔比較例4〕
 攪拌機付き5MPa耐圧容器に、メタクリル酸10部、ドデシルベンゼンスルホン酸ナトリウム1.5部、トリフルオロメチルメタクリレート2.5部、ブチルアクリレート87.5部、イオン交換水150部、及び過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。上記水溶性重合体を含む混合物に、10%アンモニア水を添加して、pH8に調整し、所望の水溶性重合体を含む水溶液を得た。
 こうして得た水溶性重合体を含む水溶液を、前記(1-1.水溶性重合体の製造)で得た水溶性重合体を含む水溶液の代わりに用いたこと以外は実施例1の前記(1-2.正極用のバインダー組成物の製造)~(1-7.リチウムイオン二次電池)と同様にして、正極及びリチウムイオン二次電池を製造し、評価した。
〔結果〕
 前記の実施例及び比較例の結果を、下記の表1~表6に示す。
 ここで、表における略称は、それぞれ以下の通りのものを表す。
 2EHA:2-エチルヘキシルアクリレート
 AN:アクリロニトリル
 MAA:メタクリル酸
 EDMA:エチレンジメタクリレート
 POAAE:ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム
 TFEMA:2,2,2-トリフルオロエチルメタクリレート
 BA:ブチルアクリレート
 SDBS:ドデシルベンゼンスルホン酸ナトリウム
 TFMMA:トリフルオロメチルメタクリレート
 GMA:グリシジルメタクリレート
 AGE:アリルグリシジルエーテル
 AMA:アリルメタクリレート
 β-HEA:ヒドロキシエチルアクリレート
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
〔検討〕
 実施例においては、比較例に比べ、ピンホール発生個数が少ない傾向がある。このことから、実施例においては、正極用のスラリー組成物が分散性に優れるために、塗工性が良好であることが分かる。また、このことから、得られた正極活物質層において塗りムラが少なく、また細孔が均一に分布していると考えられる。
 また、実施例においては、比較例に比べ、ピール強度が高い傾向がある。このことから、実施例においては、正極用のスラリー組成物が分散性に優れるために、正極活物質及び導電助剤の偏りが無く、高い密着強度を有していることが分かる。
 さらに、実施例においては、比較例に比べて、電解液の吸液量が多い傾向がある。このことから、実施例においては、正極が優れた注液性を有し、このため、正極における内部抵抗が小さくなっていると考えられる。
 前記の塗工性、密着強度及び注液性のそれぞれを見ると、一部の実施例よりも比較例の方が良好な結果が得られているものもある。しかし、いずれの実施例においても、塗工性、密着強度及び注液性の全体としては、比較例よりもバランス良く良好な結果が得られている。このように、塗工性、密着強度及び注液性の全体にバランス良く良好な性質を有するため、いずれの実施例においても、優れた高温保存特性が発現しているものと考えられる。また、一般に、塗工性、密着強度及び注液性が良好である場合には高温保存特性だけでなく、出力特性及び高温サイクル特性においても良好な結果が得られることから、本発明の二次電池も、優れた出力特性及び高温サイクル特性を有するものと推認される。

Claims (13)

  1.  正極活物質、導電助剤、粒子状バインダー及び水溶性重合体を含む正極活物質層を備える二次電池用正極であって、
     前記水溶性重合体は、酸性官能基含有単量体単位15重量%~60重量%、及び、(メタ)アクリル酸エステル単量体単位30重量%~80重量%を有する共重合体Aを含む、二次電池用正極。
  2.  前記共重合体Aは、架橋性単量体単位を有する、請求項1に記載の二次電池用正極。
  3.  前記共重合体Aにおける前記架橋性単量体単位の含有割合が、0.1重量%~2重量%である、請求項2記載の二次電池用正極。
  4.  前記共重合体Aは、反応性界面活性剤単位を有する、請求項1~3のいずれか一項に記載の二次電池用正極。
  5.  前記共重合体Aにおける前記反応性界面活性剤単位の含有割合が、0.1重量%~15重量%である、請求項4記載の二次電池用正極。
  6.  前記共重合体Aは、フッ素含有(メタ)アクリル酸エステル単量体単位を有する、請求項1~5のいずれか一項に記載の二次電池用正極。
  7.  前記共重合体Aにおける前記フッ素含有(メタ)アクリル酸エステル単量体単位の含有割合が、1重量%~15重量%である、請求項6記載の二次電池用正極。
  8.  前記粒子状バインダーは、(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を有する共重合体Bを含む、請求項1~7のいずれか一項に記載の二次電池用正極。
  9.  前記共重合体Bにおける(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との重量比が、「(メタ)アクリロニトリル単量体単位/(メタ)アクリル酸エステル単量体単位」で1/99~30/70である、請求項8記載の二次電池用正極。
  10.  前記粒子状バインダーと前記水溶性重合体との重量比が、「粒子状バインダー/水溶性重合体」で99.5/0.5~95/5である、請求項1~9のいずれか一項に記載の二次電池用正極。
  11.  二次電池用正極を構成する正極活物質層を製造するためのスラリー組成物であって、
     正極活物質、導電助剤、粒子状バインダー、水溶性重合体及び水を含み、
     前記水溶性重合体が、酸性官能基含有単量体単位15重量%~60重量%、及び、(メタ)アクリル酸エステル単量体単位30重量%~80重量%を含む共重合体Aを含む、スラリー組成物。
  12.  集電体と、この集電体上に設けられた正極活物質層とを備える二次電池用正極の製造方法であって、
     請求項11記載のスラリー組成物を前記集電体上に塗布した後、この塗布物を乾燥させて前記正極活物質層を得る工程を含む、二次電池用正極の製造方法。
  13.  正極、負極、電解液及びセパレーターを備え、
     前記正極が、請求項1~10のいずれか一項に記載の二次電池用正極である、二次電池。
PCT/JP2012/083738 2011-12-27 2012-12-26 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池 WO2013099990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280065029.7A CN104011920B (zh) 2011-12-27 2012-12-26 二次电池用正极及其制造方法、浆液组合物以及二次电池
JP2013551759A JP6149730B2 (ja) 2011-12-27 2012-12-26 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
KR1020147017225A KR101819067B1 (ko) 2011-12-27 2012-12-26 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286389 2011-12-27
JP2011-286389 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099990A1 true WO2013099990A1 (ja) 2013-07-04

Family

ID=48697470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083738 WO2013099990A1 (ja) 2011-12-27 2012-12-26 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池

Country Status (4)

Country Link
JP (1) JP6149730B2 (ja)
KR (1) KR101819067B1 (ja)
CN (1) CN104011920B (ja)
WO (1) WO2013099990A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
WO2014021401A1 (ja) * 2012-07-31 2014-02-06 日本ゼオン株式会社 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014185381A1 (ja) * 2013-05-14 2014-11-20 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
WO2015198530A1 (ja) * 2014-06-26 2015-12-30 日本ゼオン株式会社 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
WO2016035286A1 (ja) * 2014-09-05 2016-03-10 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
CN105960721A (zh) * 2014-02-27 2016-09-21 日本瑞翁株式会社 二次电池多孔膜用粘合剂组合物、二次电池多孔膜用浆料、二次电池用多孔膜及二次电池
WO2017047639A1 (ja) * 2015-09-14 2017-03-23 株式会社大阪ソーダ 非水電解質二次電池用の正極材料
EP3154113A4 (en) * 2014-06-04 2017-11-08 Zeon Corporation Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
WO2017212937A1 (ja) * 2016-06-07 2017-12-14 株式会社田中化学研究所 無機粒子を得るための反応装置及び無機粒子の製造方法
WO2018043484A1 (ja) * 2016-08-31 2018-03-08 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
JP2020102421A (ja) * 2018-12-25 2020-07-02 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
CN112838208A (zh) * 2021-01-09 2021-05-25 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料的制备方法及应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180301744A1 (en) * 2015-06-24 2018-10-18 Zeon Corporation Composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing composition for electrochemical device electrode
KR102335861B1 (ko) * 2016-04-19 2021-12-03 니폰 제온 가부시키가이샤 비수계 2차 전지 기능층용 바인더 조성물, 비수계 2차 전지 기능층용 조성물, 비수계 2차 전지용 기능층, 비수계 2차 전지용 전지부재 및 비수계 2차 전지
KR102535630B1 (ko) * 2017-03-31 2023-05-22 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
CN107181009B (zh) * 2017-06-12 2019-07-05 高新峰 一种铁镍蓄电池及其制备方法
EP3790026A4 (en) * 2018-05-02 2022-01-19 NGK Spark Plug Co., Ltd. ION CONDUCTOR AND ELECTRICITY STORAGE DEVICE
JP7364359B2 (ja) * 2019-05-28 2023-10-18 トヨタ自動車株式会社 全固体電池及びその製造方法
US20220190341A1 (en) * 2019-05-31 2022-06-16 Zeon Corporation Binder composition for secondary battery positive electrode, conductive material paste composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode for secondary battery and method of producing same, and secondary battery
KR20220042235A (ko) * 2020-06-05 2022-04-04 닝더 엠프렉스 테크놀로지 리미티드 전기화학 디바이스 및 전자 디바이스
WO2024053986A1 (ko) * 2022-09-08 2024-03-14 연세대학교 산학협력단 양극용 수계 슬러리 조성물, 이로부터 제조되는 양극 및 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011040562A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134113A (ja) 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd 非水系二次電池
WO2008120786A1 (ja) * 2007-03-30 2008-10-09 Zeon Corporation 二次電池電極用バインダー、二次電池電極および二次電池
JP5991321B2 (ja) * 2011-08-30 2016-09-14 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029917A1 (en) * 1999-10-18 2001-04-26 Zeon Corporation Binder composition for electrodes of lithium ion secondary batteries and use thereof
WO2011002057A1 (ja) * 2009-07-01 2011-01-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2011040562A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
WO2011078212A1 (ja) * 2009-12-25 2011-06-30 日本ゼオン株式会社 二次電池用正極及び二次電池

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131368A (ja) * 2011-12-21 2013-07-04 Toyo Kagaku Kk 電極用バインダー
WO2014021401A1 (ja) * 2012-07-31 2014-02-06 日本ゼオン株式会社 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014185381A1 (ja) * 2013-05-14 2014-11-20 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
CN105960721B (zh) * 2014-02-27 2018-09-25 日本瑞翁株式会社 二次电池多孔膜用粘合剂组合物、二次电池多孔膜用浆料、二次电池用多孔膜及二次电池
CN105960721A (zh) * 2014-02-27 2016-09-21 日本瑞翁株式会社 二次电池多孔膜用粘合剂组合物、二次电池多孔膜用浆料、二次电池用多孔膜及二次电池
EP3154113A4 (en) * 2014-06-04 2017-11-08 Zeon Corporation Binder composition for lithium ion secondary cell electrode, slurry composition for lithium ion secondary cell electrode, lithium ion secondary cell electrode, and lithium ion secondary cell
US11552297B2 (en) 2014-06-04 2023-01-10 Zeon Corporation Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary battery electrode-use, electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JPWO2015198530A1 (ja) * 2014-06-26 2017-04-20 日本ゼオン株式会社 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
WO2015198530A1 (ja) * 2014-06-26 2015-12-30 日本ゼオン株式会社 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
US10388930B2 (en) 2014-06-26 2019-08-20 Zeon Corporation Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
CN106663813A (zh) * 2014-09-05 2017-05-10 日本瑞翁株式会社 二次电池电极用粘结剂组合物、二次电池电极用浆料组合物、二次电池用电极和二次电池
CN106663813B (zh) * 2014-09-05 2020-12-08 日本瑞翁株式会社 二次电池电极用粘结剂组合物、二次电池电极用浆料组合物、二次电池用电极和二次电池
WO2016035286A1 (ja) * 2014-09-05 2016-03-10 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US10290873B2 (en) 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2017047639A1 (ja) * 2015-09-14 2017-03-23 株式会社大阪ソーダ 非水電解質二次電池用の正極材料
WO2017212937A1 (ja) * 2016-06-07 2017-12-14 株式会社田中化学研究所 無機粒子を得るための反応装置及び無機粒子の製造方法
JPWO2017212937A1 (ja) * 2016-06-07 2019-03-28 株式会社田中化学研究所 無機粒子を得るための反応装置及び無機粒子の製造方法
JP7025324B2 (ja) 2016-06-07 2022-02-24 株式会社田中化学研究所 無機粒子を得るための反応装置及び無機粒子の製造方法
WO2018043484A1 (ja) * 2016-08-31 2018-03-08 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
US11177478B2 (en) 2016-08-31 2021-11-16 Toagosei Co. Ltd. Crosslinked polymer binder from crosslinkable monomer for nonaqueous electrolyte secondary battery and use thereof
JP6354929B1 (ja) * 2016-08-31 2018-07-11 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
JP2020102421A (ja) * 2018-12-25 2020-07-02 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
JP7136682B2 (ja) 2018-12-25 2022-09-13 関西ペイント株式会社 全固体二次電池電極用導電性ペースト及び全固体二次電池
CN112838208A (zh) * 2021-01-09 2021-05-25 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料的制备方法及应用
CN112838208B (zh) * 2021-01-09 2023-09-12 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料的制备方法及应用

Also Published As

Publication number Publication date
KR101819067B1 (ko) 2018-01-16
JPWO2013099990A1 (ja) 2015-05-11
JP6149730B2 (ja) 2017-06-21
KR20140116075A (ko) 2014-10-01
CN104011920B (zh) 2016-06-29
CN104011920A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6361655B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6237622B2 (ja) リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6048070B2 (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP6327251B2 (ja) リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2017094252A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP5499951B2 (ja) 二次電池用バインダー、製造方法、二次電池負極用組成物、及び二次電池
WO2013151144A1 (ja) 二次電池用セパレータ
JP6737182B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP2011076981A (ja) 二次電池用正極の製造方法、二次電池正極用スラリー及び二次電池
WO2015064099A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5978837B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2015111663A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2019065130A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US11411220B2 (en) Binder composition for electrochemical device, slurry composition for electrochemical device functional layer, slurry composition for electrochemical device adhesive layer, and composite membrane
WO2014132935A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法
WO2014112436A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6337900B2 (ja) 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池
JP2014203805A (ja) リチウムイオン二次電池負極用粒子状バインダー、リチウムイオン二次電池負極用スラリー組成物およびリチウムイオン二次電池
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551759

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147017225

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862627

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862627

Country of ref document: EP

Kind code of ref document: A1