WO2014132935A1 - リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法 - Google Patents

リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法 Download PDF

Info

Publication number
WO2014132935A1
WO2014132935A1 PCT/JP2014/054383 JP2014054383W WO2014132935A1 WO 2014132935 A1 WO2014132935 A1 WO 2014132935A1 JP 2014054383 W JP2014054383 W JP 2014054383W WO 2014132935 A1 WO2014132935 A1 WO 2014132935A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
particulate binder
lithium ion
ion secondary
slurry composition
Prior art date
Application number
PCT/JP2014/054383
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
奈都子 戸来
木所 広人
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2014132935A1 publication Critical patent/WO2014132935A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for a positive electrode of a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing a positive electrode for a lithium ion secondary battery.
  • Lithium ion secondary batteries are frequently used as secondary batteries used as power sources for these portable terminals.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher performance. As a result, mobile terminals are used in various places.
  • secondary batteries are also required to be smaller, thinner, lighter, and have higher performance as with mobile terminals.
  • the positive electrode is usually a slurry composition obtained by mixing a positive electrode active material with a liquid composition in which a polymer serving as a binder is dispersed or dissolved in a solvent, and this slurry composition is applied to a current collector. And dried.
  • the positive electrode manufactured by such a method it has hitherto been attempted to improve the performance of the secondary battery by devising the binder.
  • Patent Document 1 attempts to improve cycle characteristics of a lithium ion secondary battery by using a block copolymer having a predetermined structural unit as a binder.
  • an object of the present invention is to provide a slurry composition for a positive electrode of a lithium ion secondary battery from which a lithium ion secondary battery excellent in cycle characteristics and output characteristics can be obtained, a method for producing the same, and a lithium ion secondary excellent in cycle characteristics and output characteristics. To provide a battery.
  • the present inventor is a slurry composition for a positive electrode containing a positive electrode active material, a conductive material, a water-soluble polymer, and a particulate binder, and a 1% aqueous solution viscosity of the water-soluble polymer.
  • the present invention was completed by finding that a lithium ion secondary battery having excellent cycle characteristics and output characteristics can be realized by using a particulate binder having a predetermined surface acid amount in a predetermined range. I let you. That is, according to the present invention, the following is provided.
  • a positive electrode active material, a conductive material, a water-soluble polymer and a particulate binder, 1% aqueous solution viscosity of the water-soluble polymer is 10 mPa ⁇ s or more and 4,000 mPa ⁇ s or less
  • the particulate binder includes a particulate binder A containing an ethylenically unsaturated monocarboxylic acid monomer unit and a particulate binder B containing an ethylenically unsaturated dicarboxylic acid monomer unit.
  • a lithium ion secondary battery comprising a positive electrode, a negative electrode, and an electrolyte solution, For a lithium ion secondary battery obtained by applying the slurry composition for a lithium ion secondary battery positive electrode according to any one of [1] to [6] on a current collector and drying the positive electrode A lithium ion secondary battery which is a positive electrode.
  • the lithium ion secondary battery of the present invention can be a lithium ion secondary battery excellent in cycle characteristics and output characteristics.
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • (meth) acrylate means an acrylate or a methacrylate.
  • (meth) acrylonitrile means acrylonitrile or methacrylonitrile.
  • a certain substance is water-soluble means that an insoluble content is less than 0.5% by weight when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. Further, that a certain substance is water-insoluble means that an insoluble content is 90% by weight or more when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • the slurry composition for a positive electrode of a lithium ion secondary battery of the present invention (hereinafter sometimes referred to as “positive electrode slurry composition”) is a fluid containing a positive electrode active material, a conductive material, a water-soluble polymer, and a particulate binder. Of the composition. Moreover, the positive electrode slurry composition of the present invention usually contains a solvent.
  • the positive electrode active material is an electrode active material used in the positive electrode, and is a material that transfers electrons in the positive electrode of the secondary battery.
  • a material capable of inserting and extracting lithium ions is usually used as the positive electrode active material.
  • Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds. Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and the like.
  • Lithium-containing composite metal oxides such as TiS 2 , TiS 3 , amorphous MoS 2 ; Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 Examples thereof include transition metal oxides such as O 5 and V 6 O 13 . These compounds may be partially element-substituted.
  • a positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to coexist during reduction firing.
  • These compounds may be partially element-substituted.
  • a lithium-containing composite metal oxide is preferable because it has a high energy density, and among these, LiCoO 2 is more preferable.
  • the positive electrode active material may be partially element-substituted.
  • an inorganic compound and an organic compound may be used in combination.
  • one type of positive electrode active material may be used alone, or two or more types may be used in combination at any ratio.
  • the particle size of the positive electrode active material particles is usually selected as appropriate in consideration of other constituent requirements of the secondary battery.
  • the 50% volume cumulative diameter of the positive electrode active material particles is usually 0.1 ⁇ m or more, preferably 0.4 ⁇ m or more, more preferably 1 ⁇ m or more, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics. It is 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. When the 50% volume cumulative diameter is within this range, a secondary battery having excellent output characteristics and a large charge / discharge capacity can be obtained. Moreover, the handling at the time of manufacturing the slurry composition for manufacturing a positive electrode active material layer and manufacturing a positive electrode is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction. That is, in the particle size distribution measured by the laser diffraction method, the particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% is the 50% volume cumulative diameter.
  • Examples of the conductive material include particles made of carbon allotrope having conductivity. By using a conductive material, electrical contact between the positive electrode active materials can be improved, and discharge load characteristics can be improved particularly when used in a lithium ion secondary battery.
  • the conductive material examples include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube. Further, for example, carbon powder such as graphite, fibers and foils of various metals, and the like are also included.
  • a conductive material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the conductive material there are many particles composed of carbon allotropes, and therefore many of them exhibit surface hydrophobicity.
  • the 50% volume cumulative diameter of the conductive material is preferably smaller than the 50% volume cumulative diameter of the positive electrode active material.
  • the specific range of the 50% volume cumulative diameter of the conductive material is usually 0.001 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.01 ⁇ m or more, and usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1 ⁇ m. It is as follows. When the 50% volume cumulative diameter of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use.
  • the amount of the conductive material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. When the amount of the conductive material is within this range, the capacity of the secondary battery can be increased and high load characteristics can be exhibited.
  • the 1% aqueous solution viscosity of the water-soluble polymer contained in the positive electrode slurry composition of the present invention is 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, and 4000 mPa ⁇ s or less, preferably Is 2500 mPa ⁇ s or less, more preferably 2000 mPa ⁇ s or less.
  • the 1% aqueous solution viscosity of the water-soluble polymer means the viscosity of an aqueous solution containing the water-soluble polymer at a concentration of 1% by weight.
  • the binding property of the positive electrode active material layer to the current collector can be improved.
  • the water-soluble polymer in which the 1% aqueous solution viscosity falls within the above range reduces the surface tension of the positive electrode slurry composition and improves the wettability of the positive electrode slurry composition to the current collector. Therefore, when the positive electrode slurry composition is applied to the current collector, the positive electrode slurry composition film and the current collector can be in close contact with each other. Therefore, the positive electrode active material obtained from the positive electrode slurry composition film It is presumed that the binding property between the layer and the current collector can be improved.
  • the dispersibility of particles such as a positive electrode active material and a conductive material can be improved in the positive electrode slurry composition.
  • the water-soluble polymer in which the 1% aqueous solution viscosity falls within the above range is dissolved in the solvent in the positive electrode slurry composition. At this time, a part of the water-soluble polymer is liberated in the solvent, but another part is adsorbed on the surface of the particles. Since the surface of the particles is covered with a stable layer by the adsorbed water-soluble polymer, it is presumed that the dispersibility of the particles in water is improved.
  • a water-soluble polymer having a 1% aqueous solution viscosity within the above range that is, in general, a positive electrode slurry composition containing a conductive material has thixotropic properties.
  • a water-soluble polymer having a 1% aqueous solution viscosity within the above range is used, its thixotropy can usually be suppressed. Therefore, the applicability
  • a positive electrode active material layer is formed by drying a positive electrode slurry composition containing a conductive material
  • the conductive material easily moves to the surface of the slurry composition by convection generated in the slurry composition at the time of drying.
  • the conductive material tends to be biased near the surface.
  • a water-soluble polymer whose 1% aqueous solution viscosity falls within the above range is used, the movement of the conductive material during drying of the positive electrode slurry composition is usually suppressed, so that the conductive material is dispersed in the positive electrode active material layer. Can increase the sex.
  • water-soluble polymers examples include water-soluble polysaccharides, sodium polyacrylate, polyethyleneimine, polyvinyl alcohol, and polyvinyl pyrrolidone. Of these, water-soluble polysaccharides are preferable, and carboxymethyl cellulose is particularly preferable. Here, carboxymethylcellulose may be used in the form of a salt such as a sodium salt or an ammonium salt.
  • the water-soluble polymer can be appropriately adjusted depending on the polymerization degree, composition ratio, etc., or a commercially available water-soluble polymer can also be used.
  • Examples of commercially available carboxymethyl cellulose include Serogen PL15 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 1% aqueous solution viscosity 10 mPa ⁇ s), Serogen WS-C (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 1% aqueous solution viscosity 150 mPa ⁇ s), serogen WS-D (Daiichi Kogyo Seiyaku Co., Ltd., 1% aqueous solution viscosity 250 mPa ⁇ s), Serogen BS (Daiichi Kogyo Seiyaku Co., Ltd., 1% aqueous solution viscosity 350 mPa ⁇ s), Serogen HH-T (Daiichi Kogyo Seiyaku Co., Ltd.) 1% aqueous solution viscosity 500 mPa ⁇ s), Ser
  • a water-soluble polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. When two or more types of water-soluble polymers are used, as long as the 1% aqueous solution of the water-soluble polymer mixture is within a predetermined range, it can be used as a component of the positive electrode slurry composition of the present invention. Specifically, when the 1% aqueous solution of the water-soluble polymer mixture in the same proportion as the proportion added to the positive electrode slurry of the present invention is within a predetermined range, the mixture is used as the positive electrode slurry composition of the present invention. It can be used as a component of products.
  • the amount of the water-soluble polymer is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 5 parts by weight or less, more preferably 3 parts by weight with respect to 100 parts by weight of the positive electrode active material. Less than parts by weight.
  • the particulate binder is a particulate polymer, and the surface acid amount thereof is 0.01 meq / g or more and 0.5 meq / g or less.
  • the surface acid amount of the particulate binder is preferably 0.1 meq / g or more, more preferably 0.2 meq / g or more, and preferably 0.4 meq / g or less. By having a surface acid amount in this range, good dispersibility of the conductive material can be realized.
  • the particulate binder can bind the positive electrode active materials, bind the positive electrode active material and the conductive material, or bind the conductive materials.
  • the particulate binder can also bind the current collector and the positive electrode active material layer in the positive electrode.
  • the slurry composition for positive electrode of the present invention contains the water-soluble polymer having the specific viscosity described above and the particulate binder having the specific surface acid amount, the resulting positive electrode has an adhesive property. The cycle characteristics and other characteristics are improved.
  • the positive electrode slurry composition of the present invention includes a particulate binder A containing an ethylenically unsaturated monocarboxylic acid monomer unit and an ethylenically unsaturated dicarboxylic acid monomer unit as a particulate binder. And a particulate binder B.
  • the particulate binder A can be a binder having a relatively small amount of surface acid.
  • the particulate binder B can be a binder having a relatively large surface acid amount.
  • the particulate binder A having a small amount of surface acid it is possible to enhance the dispersibility of the conductive material and promote the formation of a network of conductive paths in the positive electrode active material layer.
  • the reason why such an advantage can be obtained is not clear, but according to the study by the present inventor, the following reason can be considered.
  • the conductive material easily moves to the surface of the slurry composition due to convection generated in the slurry composition during drying.
  • the conductive material in the positive electrode active material layer containing a conductive material, conventionally, the conductive material is biased in the thickness direction, and it is difficult to form a conductive path in a part of the thickness direction.
  • the particulate binder A since the particulate binder A tends to aggregate together with the conductive material when the positive electrode slurry composition is dried, movement of the conductive material due to convection is hindered. Therefore, good dispersibility of the conductive material in the positive electrode slurry composition is maintained even in the positive electrode active material layer after drying. Accordingly, the dispersibility of the conductive material in the positive electrode active material layer is improved, so that a conductive path is easily formed in the entire thickness direction of the positive electrode active material layer, and it is presumed that formation of a network of conductive paths is promoted.
  • the particulate binder B having a large amount of surface acid by using the particulate binder B having a large amount of surface acid, the dispersion stability of particles such as the positive electrode active material and the conductive material in the positive electrode slurry composition can be enhanced.
  • the reason why such an advantage can be obtained is not clear, but according to the study by the present inventor, the following reason can be considered. Since the particulate binder B has a large amount of surface acid, it has a high affinity for the positive electrode active material and the conductive material. Therefore, it is considered that the particulate binder B easily enters between the particles of the positive electrode active material and the conductive material, and has an effect of enhancing the dispersibility of the positive electrode active material and the conductive material in the positive electrode slurry composition.
  • the particulate binder B that has entered between the particles prevents the particles from aggregating, the dispersibility of the particles is maintained over time. Therefore, since the change with time of the viscosity of the positive electrode slurry composition is suppressed, it is presumed that the dispersion stability is increased.
  • the measurement of the surface acid amount of the particulate binder (the surface acid amount of the particulate binder A, the particulate binder B, or the entire particulate binder contained in the slurry composition) is as in the method performed in the examples of the present application. Can be done.
  • the surface acid amount of the particulate binder A is preferably 0.01 meq / g or more, more preferably 0.02 meq / g or more, still more preferably 0.03 meq / g or more, preferably 0.15 meq / g or less. , More preferably 0.12 meq / g or less, even more preferably 0.1 meq / g or less.
  • the surface acid amount of the particulate binder A as described above can be controlled by, for example, the type of structural unit of the particulate binder A and the ratio thereof.
  • the particulate binder A is formed of a polymer containing an ethylenically unsaturated monocarboxylic acid monomer unit. It is preferable.
  • the ethylenically unsaturated monocarboxylic acid monomer unit is a structural unit having a structure formed by polymerizing an ethylenically unsaturated monocarboxylic acid monomer.
  • This ethylenically unsaturated monocarboxylic acid monomer unit has a carboxyl group (—COOH group). Further, since the ethylenically unsaturated monocarboxylic acid monomer is hydrophilic, when the particulate binder A is produced by emulsion polymerization using water as a reaction medium, the ethylenically unsaturated monocarboxylic acid monomer unit is: Usually, a large amount is collected on the surface portion of the particulate binder A. Therefore, the particulate binder A can have an acid on the surface by using an ethylenically unsaturated monocarboxylic acid monomer unit. At this time, since the ethylenically unsaturated monocarboxylic acid monomer unit has one carboxyl group per structural unit, the surface acid amount of the particulate binder A can be relatively reduced.
  • the ethylenically unsaturated monocarboxylic acid monomer unit has an effect of increasing the binding property of the particulate binder A to the positive electrode active material, the conductive material and the current collector. Moreover, since the ethylenically unsaturated monocarboxylic acid monomer unit is a structural unit having high strength, the strength of the particulate binder A can be increased. Therefore, the binding property of the positive electrode active material layer to the current collector can be improved.
  • ethylenically unsaturated monocarboxylic acid monomer examples include acrylic acid, methacrylic acid, and crotonic acid. Of these, acrylic acid and methacrylic acid are preferable. Moreover, ethylenically unsaturated monocarboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the ethylenically unsaturated monocarboxylic acid monomer unit in the particulate binder A is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and even more preferably 0.3% by weight or more. Preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 3% by weight or less.
  • the ratio of the ethylenically unsaturated monocarboxylic acid monomer unit in the particulate binder A is usually the ratio of the ethylenically unsaturated monocarboxylic acid monomer in all monomers used for the production of the particulate binder A. It matches (preparation ratio).
  • the particulate binder A may contain a structural unit other than the ethylenically unsaturated monocarboxylic acid monomer unit.
  • the particulate binder A can include a nitrile group-containing monomer unit.
  • the nitrile group-containing monomer unit represents a structural unit having a structure formed by polymerizing a nitrile group-containing monomer. Since the nitrile group-containing monomer unit contains a nitrile group (—CN), the nitrile group interacts with the polar group on the surface of the current collector, the positive electrode active material, and the conductive material, thereby providing high binding properties. Can be played. For this reason, the binding property of the positive electrode active material layer to the current collector can be increased.
  • nitrile group-containing monomer examples include unsaturated nitrile monomers, with ⁇ , ⁇ -ethylenically unsaturated nitrile monomers being preferred.
  • the number of carbon atoms in the nitrile group-containing monomer is preferably 3 or more and 18 or less.
  • Specific examples of the nitrile group-containing monomer include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile and the like, and among them, acrylonitrile is preferable.
  • a nitrile group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the nitrile group-containing monomer unit in the particulate binder A is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably 10% by weight or less, more preferably 5% by weight. It is as follows. By setting the ratio of the nitrile group-containing monomer unit to be equal to or higher than the lower limit of the above range, the binding property of the positive electrode active material layer to the current collector can be enhanced. Moreover, since it can raise the tolerance with respect to the electrolyte solution of the particulate binder A by setting it as an upper limit or less, it prevents the excessive swelling by the electrolyte solution of the particulate binder A, and suppresses a binding fall. Can do.
  • the ratio of the nitrile group-containing monomer unit in the particulate binder A usually coincides with the ratio (preparation ratio) of the nitrile group-containing monomer in all the monomers used for the production of the particulate binder A.
  • the particulate binder A can contain a crosslinkable monomer unit.
  • the crosslinkable monomer unit is a structural unit having a structure formed by polymerizing a crosslinkable monomer.
  • the crosslinkable monomer is a monomer capable of forming a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • the particulate binder A can be cross-linked and the rigidity can be increased. Therefore, even if the positive electrode active material repeatedly expands and contracts due to charge / discharge, the swelling of the positive electrode can be suppressed. it can. Further, the degree of swelling of the particulate binder A with respect to the electrolytic solution can be prevented from becoming excessively high.
  • crosslinkable monomer usually include a monomer having thermal crosslinkability. More specifically, a monofunctional monomer having a thermally crosslinkable crosslinkable group and one olefinic double bond per molecule; a multifunctional having two or more olefinic double bonds per molecule Monomer.
  • thermally crosslinkable groups examples include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate, Glycidyl crotonate, glycy Unsaturated carboxylic acids such as ru-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidy
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and And 2-isopropenyl-5-ethyl-2-oxazoline.
  • multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl
  • Examples include ethers, allyl or vinyl ethers of polyfunctional alcohols other than those described above, triallylamine, methylenebisacrylamide, and divinylbenzene.
  • the crosslinkable monomer has an epoxy group as a heat crosslinkable crosslinkable group, and has a crosslinkable monomer having an olefinic double bond, and two or more olefinic double bonds.
  • Polyfunctional monomers are preferred, and allyl methacrylate, ethylene dimethacrylate, allyl glycidyl ether, and glycidyl methacrylate are particularly preferred.
  • crosslinked monomer unit may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the crosslinkable monomer unit is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably 2% by weight or less, more preferably 1.5%. % By weight or less.
  • the ratio of the crosslinkable monomer unit in the particulate binder A usually coincides with the ratio (charge ratio) of the crosslinkable monomer in all monomers used for the production of the particulate binder A.
  • the particulate binder A can contain (meth) acrylic acid ester monomer units.
  • the (meth) acrylic acid ester monomer unit is a (meth) acrylic acid ester monomer (particularly a (meth) acrylic acid ester monomer that does not correspond to the monomers listed above).
  • Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl
  • acrylic acid alkyl esters are preferable, and ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are more preferable.
  • a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the (meth) acrylic acid ester monomer unit is preferably 80% by weight or more, more preferably 85% by weight or more, and preferably 99% by weight or less, more preferably 98%. % By weight or less.
  • the ratio of the (meth) acrylic acid ester monomer unit in the particulate binder A is usually the ratio of the (meth) acrylic acid ester monomer in all the monomers used for the production of the particulate binder A (preparation). Ratio).
  • the particulate binder A may contain an arbitrary structural unit in addition to the structural unit described above.
  • arbitrary structural units include structural units having a structure obtained by polymerizing the following monomers.
  • arbitrary monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the optional monomer include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene.
  • Styrene monomers such as vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfoethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate and other sulfonic acid group-containing monomers and alkali metal salts thereof; ) -Containing fluorine-containing (meth) acrylic acid ester monomers.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
  • the number of fluorine atoms contained in R 2 may be one or two or more.
  • the proportion of arbitrary structural units in the particulate binder A is preferably 0% by weight to 30% by weight, and more preferably 0% by weight to 25% by weight.
  • the ratio of the arbitrary structural unit in the particulate binder A usually corresponds to the ratio (preparation ratio) of the arbitrary monomer in all monomers used for the production of the particulate binder A.
  • the surface acid amount of the particulate binder B is preferably 0.15 meq / g or more, more preferably 0.22 meq / g or more, still more preferably 0.25 meq / g or more, preferably 0.5 meq / g or less. , More preferably 0.45 meq / g or less, even more preferably 0.4 meq / g or less.
  • the above-described surface acid amount of the particulate binder B can be controlled by, for example, the type of structural units of the particulate binder B and the ratio thereof.
  • the particulate binder B is formed of a polymer containing an ethylenically unsaturated dicarboxylic acid monomer unit. Is preferred.
  • An ethylenically unsaturated dicarboxylic acid monomer unit is a structural unit having a structure formed by polymerizing an ethylenically unsaturated dicarboxylic acid monomer.
  • the ethylenically unsaturated dicarboxylic acid monomer unit has a carboxyl group.
  • the ethylenically unsaturated dicarboxylic acid monomer is hydrophilic, when the particulate binder B is produced by emulsion polymerization using water as a reaction medium, the ethylenically unsaturated dicarboxylic acid monomer unit is a particle. Many gathers on the surface portion of the binder B. Therefore, the particulate binder B can have an acid on the surface by using an ethylenically unsaturated dicarboxylic acid monomer unit. At this time, since the ethylenically unsaturated dicarboxylic acid monomer unit has two carboxyl groups per structural unit, the surface acid amount of the particulate binder B can be relatively increased.
  • the ethylenically unsaturated dicarboxylic acid monomer unit has an effect of increasing the binding property of the particulate binder B to the positive electrode active material, the conductive material and the current collector. Further, since the ethylenically unsaturated dicarboxylic acid monomer unit is a structural unit having high strength, the strength of the particulate binder B can be increased. Therefore, the binding property of the positive electrode active material layer to the current collector can be improved. Furthermore, the polarity of the carboxyl group greatly improves the affinity of the particulate binder B with respect to the polar solvent, so that the wettability of the particulate binder B with respect to the electrolytic solution can be improved.
  • ethylenically unsaturated dicarboxylic acid monomer makes it easier for the ethylenically unsaturated dicarboxylic acid monomer to copolymerize on the surface of the particulate binder B.
  • Suitable ethylenically unsaturated dicarboxylic acid monomers include, for example, maleic acid, phthalic acid, itaconic acid and the like. These anhydrides can also be used. Of these, itaconic acid is preferred.
  • itaconic acid has a slow reaction rate in the synthesis reaction of the particulate binder B.
  • an ethylenically unsaturated dicarboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the ethylenically unsaturated dicarboxylic acid monomer unit in the particulate binder B is preferably 1% by weight, more preferably 2% by weight or more, still more preferably 3% by weight or more, preferably 10% by weight. Hereinafter, it is more preferably 8% by weight or less, and still more preferably 5% by weight or less.
  • the ratio of the ethylenically unsaturated dicarboxylic acid monomer unit in the particulate binder B is usually the ratio of the ethylenically unsaturated dicarboxylic acid monomer in all the monomers used for the production of the particulate binder B (preparation). Ratio).
  • the particulate binder B may contain a structural unit other than the ethylenically unsaturated dicarboxylic acid monomer unit.
  • the particulate binder B may contain a nitrile group-containing monomer unit.
  • the nitrile group-containing monomer unit represents a structural unit having a structure formed by polymerizing a nitrile group-containing monomer. Since the nitrile group-containing monomer unit contains a nitrile group (—CN), the nitrile group interacts with the polar group on the surface of the current collector, the positive electrode active material, and the conductive material, thereby providing high binding properties. Can be played. For this reason, the binding property of the positive electrode active material layer to the current collector can be increased.
  • nitrile group-containing monomer examples include unsaturated nitrile monomers, with ⁇ , ⁇ -ethylenically unsaturated nitrile monomers being preferred.
  • the number of carbon atoms in the nitrile group-containing monomer is preferably 3 or more and 18 or less.
  • Specific examples of the nitrile group-containing monomer include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile and the like, and among them, acrylonitrile is preferable.
  • a nitrile group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the nitrile group-containing monomer unit in the particulate binder B is preferably 5% by weight or more, and preferably 35% by weight or less.
  • the ratio of the nitrile group-containing monomer unit in the particulate binder B usually corresponds to the ratio (preparation ratio) of the nitrile group-containing monomer in all monomers used for the production of the particulate binder B.
  • the particulate binder B may contain a hydroxyl group-containing monomer unit.
  • the hydroxyl group-containing monomer unit is a structural unit having a structure formed by polymerizing a hydroxyl group-containing monomer.
  • the hydroxyl group (—OH group) of the hydroxyl group-containing monomer unit has a high polarity and has an effect of enhancing the binding property of the particulate binder B to the positive electrode active material and the current collector. For this reason, the binding property of the positive electrode active material layer with respect to a collector can further be improved by including a hydroxyl group-containing monomer unit.
  • the affinity with respect to the water of the particulate binder B can be improved with the polarity which a hydroxyl group has.
  • the particulate binder B when the hydroxyl group-containing monomer unit is used, the particulate binder B can be more stably dispersed in water, and the stability of the positive electrode slurry composition can be improved.
  • the copolymerizability of the ethylenically unsaturated dicarboxylic acid monomer is enhanced and the control of the surface acid amount is further facilitated. Can be done.
  • the affinity of the particulate binder B with respect to the polar solvent is improved by the polarity of the hydroxyl group, so that the wettability of the particulate binder B with respect to the electrolytic solution can be further improved.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl acrylate, 2-hydroxy methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate.
  • Hydroxyalkyl acrylates such as di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethylmethyl fumarate; Examples include alcohols and monoallyl ethers of polyhydric alcohols.
  • hydroxyalkyl acrylate is preferable, and 2-hydroxyethyl acrylate is particularly preferable.
  • a hydroxyl-containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the hydroxyl group-containing monomer unit in the particulate binder B is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, preferably 5% by weight or less, more preferably 3% by weight or less. It is.
  • the ratio of the hydroxyl group-containing monomer unit is at least the lower limit of the above range, the wettability of the particulate binder B with respect to the electrolytic solution can be improved.
  • the stability at the time of manufacture of the particulate binder B and the wettability with respect to electrolyte solution can be made compatible by being below an upper limit.
  • the ratio of the hydroxyl group-containing monomer unit in the particulate binder B usually corresponds to the ratio (preparation ratio) of the hydroxyl group-containing monomer in all monomers used for the production of the particulate binder B.
  • the particulate binder B may contain a (meth) acrylic acid ester monomer unit.
  • the (meth) acrylic acid ester monomer unit is a (meth) acrylic acid ester monomer (particularly a (meth) acrylic acid ester monomer that does not correspond to the monomers listed above).
  • Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; and methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl
  • acrylic acid alkyl esters are preferable, and ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are more preferable.
  • a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the (meth) acrylic acid ester monomer unit is preferably 50% by weight or more, and preferably 99% by weight or less.
  • the amount of the (meth) acrylic acid ester monomer unit is set to or higher than the lower limit of the above range, the binding property of the positive electrode active material layer to the current collector can be increased.
  • flexibility of a positive electrode can be improved by setting it as an upper limit or less.
  • the ratio of the (meth) acrylic acid ester monomer unit in the particulate binder A is usually the ratio of the (meth) acrylic acid ester monomer in all the monomers used for the production of the particulate binder A (preparation). Ratio).
  • the particulate binder B may contain an arbitrary structural unit in addition to the structural unit described above.
  • arbitrary structural units include structural units having a structure obtained by polymerizing the following monomers.
  • arbitrary monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the optional monomer include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene.
  • Styrene monomers such as vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, sulfoethyl methacrylate, sulfopropyl methacrylate, sulfobutyl methacrylate and other sulfonic acid group-containing monomers and alkali metal salts thereof; ) Fluorine-containing (meth) acrylic acid ester monomer, 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1 , 3-butadiene, substituted linear conjugated pentadienes, Aliphatic diene monomers such as substituted and side chain conjugated hexadiene acids and the like.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrocarbon group containing a fluorine atom.
  • the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
  • the number of fluorine atoms contained in R 2 may be one or two or more.
  • the ratio of the arbitrary structural unit in the particulate binder B is preferably 0% by weight to 30% by weight, more preferably 0% by weight to 25% by weight.
  • the ratio of the arbitrary structural unit in the particulate binder B usually corresponds to the ratio (preparation ratio) of an arbitrary monomer in all monomers used for the production of the particulate binder B.
  • the weight ratio “particulate binder A / particulate binder B” between the particulate binder A and the particulate binder B is preferably 1/99 or more, more preferably 10/90 or more, particularly preferably 15/85 or more, Preferably it is 50/50 or less, More preferably, it is 30/70 or less, Most preferably, it is 25/75 or less.
  • the weight ratio of the particle binder A and the particulate binder B is equal to or higher than the lower limit of the above range, the dispersibility of the conductive material in the positive electrode active material layer can be effectively increased.
  • the binding property of a collector and a positive electrode active material layer can be improved by becoming below an upper limit.
  • the glass transition temperature of the particulate binder containing the particulate binder A and the particulate binder B is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 35 ° C. or higher, preferably 20 ° C. or lower. More preferably, it is 15 degrees C or less.
  • the glass transition temperature of the particulate binder is within the above range, the binding property between the positive electrode active material and the particulate binder, the flexibility and winding property of the positive electrode, and the binding property between the positive electrode active material layer and the current collector. Such characteristics are highly balanced and suitable.
  • the particulate binder is in the form of particles in the positive electrode slurry composition, and is usually contained in the positive electrode while maintaining the particle shape.
  • the number average particle size of the particulate binder is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
  • the number average particle diameter of the particulate binder is in the above range, the strength and flexibility of the obtained positive electrode can be improved.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particulate binders randomly selected in a transmission electron micrograph.
  • the shape of the particles may be either spherical or other shapes.
  • the amount of the particulate binder including the particulate binder A and the particulate binder B is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 100 parts by weight of the positive electrode active material. Is 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the manufacturing method of the particulate binder A and the particulate binder B described above is arbitrary as long as the particulate binder having a desired surface acid amount is obtained.
  • the monomer composition containing the monomer of the particulate binder A or B described above is polymerized in an aqueous solvent to obtain polymer particles.
  • the method of obtaining the particulate binder A or B is mentioned.
  • the ratio of each monomer in the monomer composition is usually the same as the ratio of the structural units in the particulate binder A or B.
  • the aqueous solvent is not particularly limited as long as the particulate binder A or B can be dispersed.
  • the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 It is selected from aqueous solvents having a temperature of not higher than ° C, preferably not higher than 300 ° C. Examples of the aqueous solvent will be given below.
  • the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is a value rounded off or rounded down.
  • aqueous solvents examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
  • Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174) ), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl ether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (188) Glycol ethers and the like; and 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66) and the like.
  • water is particularly preferable from the viewpoint that it is not flammable and a dispersion of the particulate binder A or B is easily obtained.
  • water may be used as the main solvent, and an aqueous solvent other than water described above may be mixed and used within a range in which the dispersed state of the particulate binder A or B can be ensured.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ion polymerization, radical polymerization, and living radical polymerization can be used. It is easy to obtain a high molecular weight body, and since the binder is obtained in the form of particles dispersed in water as it is, redispersion treatment is unnecessary, and it can be used for the production of a positive electrode slurry composition. From the viewpoint of efficiency, the emulsion polymerization method is particularly preferable.
  • the emulsion polymerization method is usually performed by a conventional method.
  • the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, in the emulsion polymerization, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition.
  • the composition in the container can be stirred to emulsify the monomer and the like in water, and the temperature can be raised while stirring to start the polymerization.
  • Emulsion polymerization can also be performed by a method in which the composition is emulsified and then placed in a closed container to similarly initiate the reaction.
  • polymerization initiators examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like. Peroxides; azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; and potassium persulfate.
  • a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
  • the polymerization usually proceeds in one stage, but it may be carried out in two or more stages, such as seed polymerization employing seed particles.
  • the polymerization temperature and polymerization time can be arbitrarily selected depending on the polymerization method and the type of polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is 0.5 hours or more and 30 hours or less. Further, additives such as amines may be used as a polymerization aid.
  • an aqueous dispersion of the particulate binder A or B obtained by these methods is used, for example, hydroxide of alkali metal (for example, Li, Na, K, Rb, Cs), ammonia, inorganic ammonium compound (for example, NH 4). Cl, etc.) and a basic aqueous solution containing an organic amine compound (for example, ethanolamine, diethylamine, etc.) and the like, and the pH is usually adjusted to 5 or more and 10 or less, preferably 5 or more and 9 or less. Good.
  • pH adjustment with an alkali metal hydroxide is preferable because the binding between the current collector and the positive electrode active material layer can be improved.
  • the slurry composition for positive electrodes usually contains a solvent.
  • a solvent water is usually used.
  • the solvent can disperse the positive electrode active material, disperse the particulate binder, or dissolve the water-soluble polymer.
  • a solvent other than water may be used in combination with water.
  • a solvent other than water
  • the dispersion of the positive electrode active material is further stabilized by adsorbing the particulate binder and the water-soluble polymer to the surface of the positive electrode active material. Therefore, it is preferable.
  • the type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment.
  • Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, Esters such as ⁇ -caprolactone; Nitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N-methyl Examples include pyrrolidone and amides such as N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. One of these
  • the amount of the solvent is preferably adjusted so that the viscosity of the positive electrode slurry composition is suitable for application.
  • the solid content concentration of the positive electrode slurry composition is preferably 40% by weight or more, more preferably 45% by weight or more, preferably 85% by weight or less, more preferably 75% by weight or less. Used by adjusting the amount.
  • the solid content of the composition means a component that remains without being evaporated when the composition is dried to remove the liquid.
  • the positive electrode slurry composition may contain an optional component other than the positive electrode active material, the conductive material, the water-soluble polymer, the particulate binder, and the solvent described above. Examples thereof include a reinforcing material, a leveling agent, nanoparticles, an electrolyte solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the reinforcing material for example, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • a reinforcing material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the positive electrode active material. By setting the amount of the reinforcing material in the above range, the lithium ion secondary battery can exhibit high capacity and high load characteristics.
  • the leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • a leveling agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. By using a leveling agent, it is possible to prevent the repelling that occurs during the application of the positive electrode slurry composition or to improve the smoothness of the positive electrode.
  • the amount of the leveling agent is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. When the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the positive electrode are excellent. Further, by containing a surfactant, the dispersibility of the particles such as the positive electrode active material in the positive electrode slurry composition can be improved, and the smoothness of the positive electrode obtained thereby can be improved.
  • the nanoparticles include particles such as fumed silica and fumed alumina.
  • One kind of nanoparticles may be used alone, or two or more kinds of nanoparticles may be used in combination at any ratio.
  • the thixotropy of the positive electrode slurry composition can be adjusted, so that the leveling property of the positive electrode obtained thereby can be improved.
  • the amount of the nanoparticles is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. When the nanoparticles are in the above range, the stability and productivity of the positive electrode slurry composition can be improved, and high battery characteristics can be realized.
  • Examples of the electrolytic solution additive include vinylene carbonate.
  • One electrolyte solution additive may be used alone, or two or more electrolyte solution additives may be used in combination at any ratio.
  • the amount of the electrolytic solution additive is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.
  • the slurry composition for positive electrode is a fluid composition, and has good dispersibility of particles such as a positive electrode active material, a conductive material, and a particulate binder.
  • the particulate binder B is included, the dispersibility of the particles in the positive electrode slurry composition can be stabilized by its action. Therefore, since the slurry composition for positive electrodes has high dispersion stability, the magnitude
  • the viscosity of the positive electrode slurry composition is preferably 2000 mPa ⁇ s or more, more preferably 3000 mPa ⁇ s or more, preferably 10000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the positive electrode slurry composition can be produced by mixing the positive electrode active material, the conductive material, the water-soluble polymer, the particulate binder, the solvent used as necessary, and optional components. The specific procedure at this time is arbitrary.
  • the apparatus used for mixing may be any apparatus that can uniformly mix the above components. Examples include bead mill, ball mill, roll mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, fill mix and the like. Among these, it is particularly preferable to use a ball mill, a roll mill, a pigment disperser, a crusher, or a planetary mixer because dispersion at a high concentration is possible.
  • Positive electrode for lithium ion secondary battery By using the positive electrode slurry composition of the present invention described above, a positive electrode can be produced.
  • This positive electrode usually includes a current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer may include a positive electrode active material, a conductive material, a water-soluble polymer, and a particulate binder included in the positive electrode slurry composition.
  • a method for producing a positive electrode using the positive electrode slurry composition for example, a production method including applying the positive electrode slurry composition on a current collector and drying it may be mentioned. Hereinafter, this manufacturing method will be described.
  • a current collector made of a material having electrical conductivity and electrochemical durability is used.
  • a metal material is preferable since it has heat resistance.
  • iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, and the like can be given.
  • aluminum is preferable as the current collector for the positive electrode.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the shape of the current collector is not particularly limited, and a sheet-like one having a thickness of about 0.001 mm to about 0.5 mm is preferable.
  • the positive electrode active material layer (or the intermediate layer when an intermediate layer is present between the current collector and the positive electrode active material layer) is used as the current collector. It is preferable that the surface is subjected to a roughening treatment prior to the formation thereof.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method for example, abrasive cloth paper, abrasive wheels, emery buffs, wire brushes equipped with steel wires, etc., to which abrasive particles are fixed are used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength between the current collector and the positive electrode active material layer or increase the conductivity.
  • the positive electrode slurry composition When the positive electrode slurry composition is applied on the current collector, it may be applied to only one surface of the current collector, or may be applied to both surfaces.
  • the method for applying the positive electrode slurry composition to the surface of the current collector is not particularly limited. Examples of the coating method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • a film of the positive electrode slurry composition is formed on the surface of the current collector.
  • the positive electrode active material layer is formed on the surface of the current collector by drying the film of the positive electrode slurry composition and removing a liquid such as a solvent.
  • the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 minutes or more and 30 minutes or less, and the drying temperature is usually 40 ° C. or more and 180 ° C. or less.
  • a press machine such as a metal mold press or a roll press, is used, and a positive electrode active material layer is pressurized. It is preferable.
  • the porosity of the positive electrode active material layer can be lowered.
  • the porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less.
  • the positive electrode active material layer contains a polymer that can be cured by a curing reaction such as a crosslinking reaction
  • the polymer is cured at an appropriate time after the positive electrode slurry composition is applied on the current collector. May be.
  • the heat treatment may be performed at 120 ° C. or higher for 1 hour or longer.
  • a positive electrode for a lithium ion secondary battery including a current collector and a positive electrode active material layer formed on the current collector can be obtained.
  • the positive electrode active material layer contains the positive electrode active material, the conductive material, the water-soluble polymer, and the particulate binder contained in the positive electrode slurry composition while maintaining good dispersibility in the positive electrode slurry composition. Therefore, in the formed positive electrode active material layer, each component is highly dispersed.
  • the distribution of the conductive material is biased in the thickness direction. There was a trend.
  • the high dispersibility of the conductive material in the positive electrode slurry composition of the present invention can be maintained in the positive electrode active material layer as well, from the viewpoint of improving the performance of the positive electrode and the productivity of the positive electrode. From the viewpoint, it is advantageous.
  • the conductive material has good dispersibility in the positive electrode active material layer as described above, the following advantages are usually obtained. Since the dispersibility of not only the positive electrode active material but also the conductive material is good, it is difficult for the particle diameter to increase due to aggregation, so the gap between the positive electrode active material and the conductive material particles can be reduced in the positive electrode active material layer. . Therefore, since the area where these particles bind to the current collector is widened, the binding property between the positive electrode active material layer and the current collector is increased.
  • the conductive material since the conductive material has good dispersibility in the positive electrode active material layer, the conductive material is uniformly distributed in the positive electrode active material layer. Therefore, in the positive electrode active material layer, a network of conductive material is uniformly formed over the entire layer. The network forms a conductive path for transferring electrons to the positive electrode active material. Therefore, since the dispersibility of the conductive material is good, a network of many conductive paths can be formed in the entire positive electrode active material layer, so that the resistance of the positive electrode can be reduced.
  • the network of the conductive material formed as described above acts to suppress swelling of the positive electrode active material layer due to expansion and contraction of the positive electrode active material. That is, when the positive electrode active material expands and contracts due to charge and discharge, the distance between the positive electrode active materials tends to increase due to the expansion and contraction, but the network of conductive materials connected to each other is caused by expansion and contraction. Since it works to prevent a change in the position of the positive electrode active material, an increase in the distance between the positive electrode active materials due to expansion and contraction is suppressed. Therefore, swelling of the positive electrode active material layer due to an increase in the distance between the positive electrode active materials can be suppressed.
  • the binding force between the current collector and the positive electrode active material layer is strong.
  • the reason why such a strong binding force can be obtained is not necessarily clear, but the dispersibility of each component in the positive electrode active material layer is high, and the binding force to the positive electrode active material and the current collector by the particulate binder is high. It is assumed that That is, since the high dispersibility of each component in the positive electrode active material layer makes it difficult to produce large secondary particles in which a plurality of particles are aggregated, it is difficult to form large voids in the positive electrode active material layer.
  • the decrease in the binding area of the positive electrode active material layer with respect to the current collector due to voids is less likely to occur, and the area where the positive electrode active material layer binds to the current collector becomes wider, so the positive electrode active material layer and the current collector It is presumed that the binding property will be higher.
  • the particulate binder since the particulate binder has an acid group on the surface, the binding force of the particulate binder to the positive electrode active material and the current collector is increased. This also increases the binding property between the positive electrode active material layer and the current collector. This is probably one of the reasons why it was high.
  • the amount of the positive electrode active material layer per unit area on the surface of the current collector is preferably 10 mg / cm 2 or more, more preferably 12 mg / cm 2 or more, and particularly preferably 14 mg / cm 2 or more. Yes, preferably 20 mg / cm 2 or less, more preferably 18 mg / cm 2 or less, particularly preferably 16 mg / cm 2 or less.
  • the amount of the positive electrode active material layer usually coincides with the solid content of the positive electrode slurry composition applied to the surface of the current collector. Therefore, in the positive electrode slurry composition, the solid content on the current collector after the positive electrode slurry composition is applied to the current collector and dried falls within the above range per unit area of the current collector. Thus, it is preferable to adjust the coating amount.
  • the thickness of the positive electrode active material layer is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 300 ⁇ m or less. Preferably it is 250 micrometers or less, More preferably, it is 200 micrometers or less, Most preferably, it is 100 micrometers or less.
  • the conductive material can be dispersed throughout the thickness direction of the positive electrode active material layer. Therefore, since the conductive path by the conductive material can be formed in the thickness direction of the positive electrode active material layer, the resistance in the thickness direction of the positive electrode active material layer can be effectively reduced.
  • the volume resistivity of the positive electrode penetration type of the present invention is preferably 1 ⁇ 10 + 1 ⁇ ⁇ cm or less, more preferably 5 ⁇ ⁇ cm or less, and particularly preferably 1 ⁇ ⁇ cm or less.
  • the lower limit is not particularly limited, but is preferably 1 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or more from the viewpoint of increasing the capacity of the lithium ion secondary battery.
  • the lithium ion secondary battery of this invention is equipped with the positive electrode for lithium ion secondary batteries mentioned above, a negative electrode, and electrolyte solution, and also is normally equipped with a separator. Since this lithium ion secondary battery is excellent in cycle characteristics, it has a long life. The reason why such excellent cycle characteristics are obtained is not necessarily clear, but according to the study of the present inventor, it is presumed as follows. In the positive electrode of the present invention, since the dispersibility of the conductive material is improved as described above, swelling of the positive electrode active material layer due to charge / discharge can be suppressed. Furthermore, in the positive electrode of the present invention, the binding property between the current collector and the positive electrode active material layer is high.
  • the conductive path is hardly cut by the swelling of the positive electrode active material layer and the peeling of the positive electrode active material layer from the current collector. Therefore, it is speculated that cycle characteristics can be improved because an increase in resistance due to charge / discharge can be suppressed.
  • the lithium ion secondary battery of the present invention is excellent in output characteristics, and particularly excellent in output characteristics.
  • the reason why such excellent output characteristics can be obtained is not necessarily clear, but according to the study of the present inventor, it is presumed as follows.
  • each component is dispersed with high dispersibility.
  • the conductive material can be dispersed throughout the positive electrode active material layer to form a good conductive path, so that the electron conductivity in the positive electrode active material layer can be improved. it can.
  • the wettability of the positive electrode active material layer with respect to the electrolytic solution can be increased by the action of the particulate binder B, so that the lithium ion conductivity in the positive electrode active material layer can be improved. Therefore, it is possible to improve both the conductivity of lithium ions and electrons and to balance these conductivity, so that the output characteristics can be improved.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer includes a negative electrode active material and a binder.
  • the current collector As the current collector, the same current collector as the positive electrode current collector can be used. Among these, the current collector for the negative electrode is preferably one formed of copper.
  • the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, artificial graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitride; silicon and the like may be used.
  • a negative electrode active material having a conductive material attached to the surface by a mechanical modification method may be used. These negative electrode active materials may be used alone or in combination of two or more at any ratio.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the secondary battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, the volume average particle diameter of the negative electrode active material is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the binder for the negative electrode active material layer various polymer components can be used.
  • the adhesion of the negative electrode active material layer is improved, and the strength against the mechanical force is increased in the process of winding the negative electrode.
  • the negative electrode active material layer is difficult to be detached, the possibility of a short circuit due to the desorbed material is reduced.
  • binder for the negative electrode active material layer examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • a derivative or a diene copolymer such as a styrene-butadiene copolymer can be used.
  • the binder may be used alone or in combination of two or more at any ratio.
  • the amount of the binder in the negative electrode active material layer is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, and particularly preferably 0.5 parts by weight or more with respect to 100 parts by weight of the negative electrode active material.
  • the amount is preferably 5 parts by weight or less, more preferably 4 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the binder is usually prepared in a state where it is contained in a solution or dispersion to produce a negative electrode active material layer.
  • the viscosity of the solution or dispersion at that time is usually 1 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and usually 300,000 mPa ⁇ s or less, preferably 10,000 mPa ⁇ s or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the negative electrode active material layer may contain an optional component in addition to the negative electrode active material and the binder.
  • the component which may be contained in a positive electrode active material layer such as a electrically conductive material and a reinforcing agent, is mentioned.
  • the thickness of the negative electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • Electrolyte As the electrolytic solution, for example, a solution containing a solvent and a supporting electrolyte dissolved in the solvent can be used. As the electrolyte, a lithium salt is usually used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferably used because they are particularly soluble in a solvent and exhibit a high degree of dissociation.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the higher the dissociation of the supporting electrolyte the higher the lithium ion conductivity. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the concentration of the supporting electrolyte in the electrolytic solution is preferably 1% by weight or more, more preferably 5% by weight or more, and preferably 30% by weight or less, more preferably 20% by weight or less.
  • a solvent capable of dissolving the supporting electrolyte can be used.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the electrolytic solution may contain an additive as necessary.
  • an additive for example, carbonate compounds such as vinylene carbonate (VC) are preferable.
  • VC vinylene carbonate
  • an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • separator As the separator, a porous substrate having a pore portion is usually used.
  • separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon.
  • these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
  • the manufacturing method of a lithium ion secondary battery is not specifically limited.
  • the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed.
  • expanded metal an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square shape, and a flat type.
  • the capacity retention rate ⁇ C thus determined was evaluated according to the following evaluation criteria. It shows that the larger the value of the capacity retention ratio ⁇ C, the better the cycle characteristics, and the better the life characteristics. (Evaluation criteria) A: 70% or more B: 60% or more and less than 70% C: 50% or more and less than 60% D: 40% or more and less than 50% E: Less than 40%
  • the lithium ion secondary battery of the laminate type cell manufactured by the Example and the comparative example was charged to 4.2V by the constant current method of 0.1C at 25 degreeC, and then at 0.1C It discharged to 3.0V and calculated
  • the capacity retention rate thus determined was evaluated according to the following evaluation criteria. The higher this value, the better the output characteristics. (Evaluation criteria) A: 80% or more B: 70% or more and less than 80% C: 60% or more and less than 70% D: 50% or more and less than 60% E: Less than 50%
  • aqueous dispersion containing a particulate binder was prepared.
  • the solid content concentration of the aqueous dispersion (that is, the concentration of the particulate binder) was 2%.
  • a 2% dispersion of only the particulate binder is used. Prepared.
  • a 2% dispersion containing various particulate binders was prepared at the same ratio as the proportion of the particulate binder in the slurry composition.
  • the surface acid amount of the whole particulate binder of the slurry composition in which the ratio of particulate binder A / particulate binder B is 20/80 is 0.4% particulate binder A and particulate binder B 1.6.
  • 50% of the aqueous dispersion containing the particulate binder was placed in a 150 ml glass container washed with distilled water, and a solution conductivity meter (“CM-117 manufactured by Kyoto Electronics Industry Co., Ltd.”) was measured. ”, Used cell type: K-121) and stirred. Thereafter, stirring was continued until the addition of hydrochloric acid was completed.
  • Sodium hydroxide of 0.1 N (made by Wako Pure Chemical Industries, Ltd .: reagent grade) is used so that the electrical conductivity of the aqueous dispersion containing the particulate binder is 2.5 mS or more and 3.0 mS or less. Added to the aqueous dispersion containing. Thereafter, after 6 minutes, the electrical conductivity was measured. This value was taken as the electrical conductivity at the start of measurement.
  • the obtained electrical conductivity data is plotted on a graph with the electrical conductivity (unit “mS”) as the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) as the horizontal axis (X coordinate axis). Plotted.
  • a hydrochloric acid amount-electric conductivity curve having three inflection points was obtained.
  • the inflection point means a point where the measured hydrochloric acid amount-electric conductivity curve is bent.
  • the X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid were P1, P2, P3, and P4 in order from the smallest value.
  • X-coordinates are approximate straight lines by the least squares method for the data in the four sections, from zero to coordinate P1, from coordinate P1 to coordinate P2, from coordinate P2 to coordinate P3, and from coordinate P3 to coordinate P4.
  • L1, L2, L3 and L4 were determined.
  • the X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmole)
  • the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol)
  • the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinate was A3 (mmol).
  • the surface acid amount per 1 g of the particulate binder and the acid amount in the aqueous phase per 1 g of the particulate binder were determined as milliequivalents in terms of hydrochloric acid from the following formulas (a) and (b), respectively. Further, the total acid group amount per 1 g of the particulate binder dispersed in water was determined as the sum of the formulas (a) and (b) as represented by the formula (c).
  • A) Surface acid group amount per gram of particulate binder A2-A1
  • volume resistivity ⁇ thus determined was evaluated according to the following evaluation criteria. It shows that it is excellent in the dispersibility of a electrically conductive material, so that volume resistivity (rho) is small.
  • Example 1 (1-1. Production of particulate binder A) In a 5 MPa pressure vessel with a stirrer, 95 parts of n-butyl acrylate as a (meth) acrylic acid ester monomer, 2 parts of acrylonitrile as a nitrile group-containing monomer, 1 part of allyl methacrylate as a crosslinkable monomer, ethylenically unsaturated After adding 2 parts of methacrylic acid as a monocarboxylic acid monomer, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, and after sufficiently stirring The polymerization was started by heating to 50 ° C.
  • the reaction was stopped by cooling to obtain a mixture containing the particulate binder A.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder A to adjust the pH to 8.
  • the unreacted monomer was removed by heating under reduced pressure.
  • it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing the desired particulate binder A.
  • the surface acid amount of the particulate binder A was measured by the method described above.
  • the number average particle diameter of the particulate binder A was 250 nm, and the glass transition temperature was ⁇ 30 ° C.
  • a polymerization vessel B different from the above, 64 parts of 2-ethylhexyl acrylate, 18.8 parts of acrylonitrile, 2 parts of 2-hydroxyethyl acrylate, 3.0 parts of itaconic acid, 0.7 part of sodium lauryl sulfate and ion exchange 46 parts of water was added and stirred to prepare an emulsion.
  • the prepared emulsion was sequentially added from the polymerization can B to the polymerization can A over about 180 minutes. Thereafter, the mixture was stirred for about 120 minutes, and when the monomer consumption reached 95% or more, the reaction was terminated by cooling.
  • the obtained particulate binder B had a glass transition temperature of ⁇ 37 ° C. and a number average particle size of 0.18 ⁇ m.
  • the composition of the obtained particulate binder B was 75% by weight of 2-ethylhexyl acrylate units, 20% by weight of acrylonitrile units, 3% by weight of itaconic acid units, and 2% by weight of 2-hydroxyethyl acrylate units. It was.
  • the positive electrode slurry composition obtained in the above step (1-3) was applied onto a 20 ⁇ m thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m. , Dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode. Further, the positive electrode before pressing was rolled with a roll press to obtain a positive electrode after pressing with an electrode layer density of 3.7 g / cm 3 . A test piece was cut out from the positive electrode after pressing, and the peel strength of the positive electrode after pressing and the volumetric low efficiency of the penetration method were measured.
  • the negative electrode slurry composition obtained in the above step (1-5) was applied onto a copper foil having a thickness of 20 ⁇ m as a current collector with a comma coater and dried.
  • the application quantity of the slurry composition for negative electrodes was set so that the quantity of the solid content on the electrical power collector after apply
  • drying was performed by conveying copper foil in the oven of 60 degreeC over 2 minutes at the speed
  • the negative electrode before pressing was rolled by a roll press to obtain a negative electrode after pressing with a negative electrode active material layer having a thickness of 80 ⁇ m.
  • Example 2 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of n-butyl acrylate added was changed from 95 parts to 93 parts.
  • the amount of methacrylic acid added was changed from 2 parts to 4 parts.
  • the particle size of the particulate binder A was 250 nm.
  • the amount of itaconic acid added was changed from 3.0 parts to 4.0 parts.
  • the amount of 2-ethylhexyl acrylate added to the polymerization vessel B was changed from 64 parts to 63 parts.
  • the particle diameter of the particulate binder B was 180 nm.
  • Example 3 (3-1. Production of particulate binder) To polymerization can A, 18.5 parts of 2-ethylhexyl acrylate, 3.0 parts of acrylonitrile, 0.12 part of sodium lauryl sulfate, and 74 parts of ion-exchanged water were added. Further, 0.3 part of ammonium persulfate as a polymerization initiator and 10 parts of ion-exchanged water were added, heated to 60 ° C. and stirred for 90 minutes.
  • a polymerization vessel B different from the above, 40 parts of 2-ethylhexyl acrylate, 32 parts of acrylonitrile, 2 parts of 2-hydroxyethyl acrylate, 4.5 parts of itaconic acid, 0.7 part of sodium lauryl sulfate and 46 parts of ion-exchanged water Part was added and stirred to prepare an emulsion.
  • the prepared emulsion was sequentially added from the polymerization can B to the polymerization can A over about 180 minutes. Thereafter, the mixture was stirred for about 120 minutes, and when the monomer consumption reached 95% or more, the reaction was terminated by cooling. Thereafter, the pH was adjusted to 8.0 with a 4% NaOH aqueous solution to obtain an aqueous dispersion containing a particulate binder.
  • the particle size of the particulate binder was 200 nm.
  • Example 4 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the positive electrode slurry composition of (1-3) instead of “Sunrose MAC-200HC” manufactured by Nippon Paper Chemical Co., Ltd., “Serogen BS-H” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 4 Viscosity of 1% by weight aqueous solution of 800 mPa ⁇ s) “Sanrose MAC350HC” manufactured by Nippon Paper Chemicals Co., Ltd.
  • Example 5 Viscosity of 1% by weight aqueous solution of 3500 mPa ⁇ s
  • Daiichi Kogyo Seiyaku “Serogen” WS-C Example 6; viscosity of a 1 wt% aqueous solution of 150 mPa ⁇ s
  • Example 6 viscosity of a 1 wt% aqueous solution of 150 mPa ⁇ s
  • Example 7 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of n-butyl acrylate was changed from 95 parts to 96.7 parts.
  • the amount of methacrylic acid added was changed from 2 parts to 0.3 parts.
  • Example 8 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of n-butyl acrylate added was changed from 95 parts to 93 parts.
  • the amount of methacrylic acid added was changed from 2 parts to 4 parts.
  • Example 9 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the addition amount of the aqueous dispersion containing the particulate binder A was changed from 0.4 part to 0.2 part in the amount of the particulate binder A.
  • the amount of the aqueous dispersion containing the particulate binder B was changed from 1.6 parts to 1.8 parts in terms of the amount of the particulate binder B.
  • Example 10 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the addition amount of the aqueous dispersion containing the particulate binder A was changed from 0.4 part to 0.6 part in the amount of the particulate binder A.
  • the addition amount of the aqueous dispersion containing the particulate binder B was changed from 1.6 parts to 1.4 parts in terms of the amount of the particulate binder B.
  • Example 11 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of itaconic acid was changed from 3.0 parts to 1.5 parts.
  • the amount of 2-ethylhexyl acrylate added to the polymerization vessel B was changed from 64 parts to 65.5 parts.
  • Example 12 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of itaconic acid added was changed from 3.0 parts to 5.0 parts.
  • the amount of 2-ethylhexyl acrylate added to the polymerization vessel B was changed from 64 parts to 62 parts.
  • Example 13 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the amount of itaconic acid added was changed from 3.0 parts to 4.0 parts.
  • the amount of 2-ethylhexyl acrylate added to the polymerization vessel B was changed from 64 parts to 63 parts.
  • Example 14 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the slurry composition for positive electrode of (1-3) LiNi 0.33 Co 0.33 Mn 0.33 O 2 (volume average particle instead of LiCoO 2 having a volume average particle diameter of 12 ⁇ m as the positive electrode active material) 11 ⁇ m in diameter) was used.
  • a polymerization vessel B different from the above, 61 parts of 2-ethylhexyl acrylate, 18.8 parts of acrylonitrile, 2 parts of 2-hydroxyethyl acrylate, 7 parts of itaconic acid, 0.7 part of sodium lauryl sulfate and 46 parts of ion-exchanged water Part was added and stirred to prepare an emulsion.
  • the prepared emulsion was sequentially added from the polymerization can B to the polymerization can A over about 180 minutes. Thereafter, the mixture was stirred for about 120 minutes, and when the monomer consumption reached 95% or more, the reaction was terminated by cooling. Thereafter, the pH was adjusted to 8.0 with a 4% NaOH aqueous solution to obtain an aqueous dispersion containing a particulate binder.
  • Example 2 (C2-1. Production of particulate binder) An aqueous dispersion containing a particulate binder was prepared in the same manner as in Example 1-1 (1-1) except that allyl methacrylate and methacrylic acid were not used, and 97 parts of n-butyl acrylate and 3 parts of acrylonitrile were used. Obtained.
  • Example 3 Except for the following changes, the same operation as in Example 1 was carried out, and the components of the lithium ion secondary battery and the lithium ion secondary battery were produced and evaluated.
  • the positive electrode slurry composition of (1-3) instead of “Sunrose MAC-200HC” manufactured by Nippon Paper Chemical Co., Ltd., “Serogen BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. A 1 wt% aqueous solution viscosity of 6000 mPa ⁇ s) was used. As in Example 1, the amount used was 1 part corresponding to the solid content.
  • Tables 1 to 3 show the results of the above-described examples and comparative examples.
  • the meanings of the abbreviations are as follows.
  • LCO LiCoO 2 NMC: LiNi 0.33 Co 0.33 Mn 0.33 O 2 1%
  • Viscosity Viscosity of 1% by weight aqueous solution of water-soluble polymer A +
  • Surface acid amount Surface acid amount of particulate binder A and particulate binder B as a whole
  • a Surface acid amount Surface acid amount of particulate binder A
  • MAA amount methacrylic acid amount (parts) used in the production of particulate binder A
  • A—Others Type and amount (parts) of monomers other than methacrylic acid used in the production of the particulate binder
  • BA n-butyl acrylate AN: Acrylonitrile AMA: Allyl methacrylate B
  • Surface acid amount Surface acid amount of particulate binder B (a binder used alone in Example 3, Compar
  • B—Others Type and amount (parts) of monomers other than itaconic acid used in the production of particulate binder B (a binder used alone in Example 3, Comparative Example 1 and Comparative Example 2)
  • 2-EHA 2-ethylhexyl acrylate AN: acrylonitrile
  • Slurry concentration solid content concentration in slurry composition for positive electrode ( %)
  • Slurry viscosity Viscosity of slurry composition for positive electrode (immediately after preparation, mPa ⁇ s)
  • Viscosity change rate with time Evaluation result of change rate of slurry with time ⁇ after storage at room temperature for 1 day Peel after press: Evaluation result of peel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の目的は、サイクル特性及び出力特性に優れるリチウムイオン二次電池が得られるリチウムイオン二次電池正極用スラリー組成物及びその製造方法、並びにサイクル特性及び出力特性に優れるリチウムイオン二次電池を提供することにある。 本発明は、正極活物質、導電材、水溶性重合体及び粒子状バインダーを含み、前記水溶性重合体の1%水溶液粘度が、10mPa・s以上4,000mPa・s以下であり、前記粒子状バインダーが、表面酸量が0.01meq/g以上0.5meq/g以下の粒子状バインダーである、リチウムイオン二次電池正極用スラリー組成物;並びにそれを用いたリチウムイオン二次電池用正極の製造方法及びそれを含むリチウムイオン二次電池に関する。

Description

リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法
 本発明は、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。
 二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、正極は、通常、溶媒にバインダーとなる重合体を分散または溶解させた液状の組成物に正極活物質を混合してスラリー組成物を得て、このスラリー組成物を集電体に塗布し、乾燥して製造される。このような方法で製造される正極において、バインダーを工夫することにより二次電池の高性能化を実現することが、従来から試みられてきた。
 例えば、特許文献1では、所定の構造単位を有するブロックコポリマーをバインダーとして用いることにより、リチウムイオン二次電池のサイクル特性を改善することが試みられている。
特開2012-204303号公報
 しかしながら、リチウムイオン二次電池の性能に対する要求は、最近では益々高度になっており、中でもサイクル特性及び出力特性の改善が特に求められている。
 従って、本発明の目的は、サイクル特性及び出力特性に優れるリチウムイオン二次電池が得られるリチウムイオン二次電池正極用スラリー組成物及びその製造方法、並びにサイクル特性及び出力特性に優れるリチウムイオン二次電池を提供することにある。
 本発明者は前記の課題を解決するべく検討した結果、正極活物質、導電材、水溶性重合体及び粒子状バインダーを含む正極用スラリー組成物であって、水溶性重合体の1%水溶液粘度が所定の範囲にあり、且つ、粒子状バインダーが、所定の表面酸量を有するものを用いることにより、サイクル特性及び出力特性に優れたリチウムイオン二次電池を実現できることを見出し、本発明を完成させた。
 すなわち、本発明によれば、下記のものが提供される。
〔1〕 正極活物質、導電材、水溶性重合体及び粒子状バインダーを含み、
 前記水溶性重合体の1%水溶液粘度が、10mPa・s以上4,000mPa・s以下であり、
 前記粒子状バインダーが、表面酸量が0.01meq/g以上0.5meq/g以下の粒子状バインダーである、リチウムイオン二次電池正極用スラリー組成物。
〔2〕 前記粒子状バインダーが、エチレン性不飽和モノカルボン酸単量体単位を含む粒子状バインダーAと、エチレン性不飽和ジカルボン酸単量体単位を含む粒子状バインダーBとを含む、〔1〕に記載のリチウムイオン二次電池正極用スラリー組成物。
〔3〕 前記粒子状バインダーA中の前記エチレン性不飽和モノカルボン酸単量体単位の割合が0.1重量%以上10重量%以下である、〔2〕に記載のリチウムイオン二次電池正極用スラリー組成物。
〔4〕 前記粒子状バインダーB中の前記エチレン性不飽和ジカルボン酸単量体単位の割合が1重量%以上10重量%以下である、〔2〕又は〔3〕に記載のリチウムイオン二次電池正極用スラリー組成物。
〔5〕 前記粒子バインダーAと前記粒子状バインダーBとの重量比が、粒子状バインダーA/粒子状バインダーB=1/99以上50/50以下である、〔2〕~〔4〕のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物。
〔6〕 前記水溶性重合体が、カルボキシメチルセルロースを含む、〔1〕~〔5〕のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物。
〔7〕 正極、負極及び電解液を備えるリチウムイオン二次電池であって、
 前記正極が、〔1〕~〔6〕のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物を、集電体上に塗布し、乾燥して得られるリチウムイオン二次電池用正極である、リチウムイオン二次電池。
〔8〕 〔1〕~〔6〕のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物を、集電体上に塗布し、乾燥することを含む、リチウムイオン二次電池用正極の製造方法。
 本発明のリチウムイオン二次電池正極用スラリー組成物及びその製造方法によれば、サイクル特性及び出力特性に優れるリチウムイオン二次電池が得られる。また、本発明のリチウムイオン二次電池は、サイクル特性及び出力特性に優れるリチウムイオン二次電池としうる。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のことを意味する。また、(メタ)アクリレートとは、アクリレート又はメタクリレートのことを意味する。さらに、(メタ)アクリロニトリルとは、アクリロニトリル又はメタクリロニトリルのことを意味する。
 さらに、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90重量%以上であることをいう。
 また、表面酸量の単位に含まれる「meq」とは、ミリ当量を意味する。
 [1.リチウムイオン二次電池正極用スラリー組成物]
 本発明のリチウムイオン二次電池正極用スラリー組成物(以下において「正極用スラリー組成物」ということがある。)は、正極活物質、導電材、水溶性重合体及び粒子状バインダーを含む流体状の組成物である。また、本発明の正極用スラリー組成物は、通常、溶媒を含む。
 [1.1.正極活物質]
 正極活物質は、正極において用いられる電極活物質であり、二次電池の正極において電子の受け渡しをする物質である。例えば、本発明の二次電池がリチウムイオン二次電池である場合、正極活物質としては、通常、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiNi0.33Co0.33Mn0.33、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を共存させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
 これらの中でも、高いエネルギー密度を有することから、リチウム含有複合金属酸化物が好ましく、その中でも、LiCoOがより好ましい。
 正極活物質は、部分的に元素置換したものであってもよい。また、正極活物質としては、無機化合物と有機化合物とを組み合わせて用いてもよい。さらに、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 正極活物質の粒子の粒子径は、通常、二次電池の他の構成要件との兼ね合いで適宜選択される。正極活物質の粒子の50%体積累積径は、負荷特性及びサイクル特性などの電池特性の向上の観点から、通常0.1μm以上、好ましくは0.4μm以上、更に好ましくは1μm以上であり、通常50μm以下、好ましくは30μm以下、より好ましくは20μm以下である。50%体積累積径がこの範囲であると、出力特性に優れ、充放電容量が大きい二次電池を得ることができる。また、正極活物質層を製造するためのスラリー組成物を製造する際及び正極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。すなわち、レーザー回折法で測定された粒度分布において、小径側から計算した累積体積が50%となる粒子径が、50%体積累積径である。
 [1.2.導電材]
 導電材としては、例えば、導電性を有する、炭素の同素体からなる粒子が挙げられる。導電材を用いることにより、正極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電負荷特性を改善することができる。
 導電材の具体例を挙げると、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンが挙げられる。また、例えば、黒鉛等の炭素粉末、各種金属のファイバー及び箔なども挙げられる。ここで、導電材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 導電材としては、炭素の同素体からなる粒子が多いことから、表面疎水性を示すものが多い。
 導電材の50%体積累積径は、正極活物質の50%体積累積径よりも小さいことが好ましい。導電材の50%体積累積径の具体的範囲は、通常0.001μm以上、好ましくは0.05μm以上、より好ましくは0.01μm以上であり、通常10μm以下、好ましくは5μm以下、より好ましくは1μm以下である。導電材の50%体積累積径がこの範囲にあると、より少ない使用量で高い導電性が得られる。
 導電材の量は、正極活物質100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。導電材の量がこの範囲にあることにより、二次電池の容量を高くでき、また、高い負荷特性を示すことができる。
 [1.3.水溶性重合体]
 本発明の正極用スラリー組成物が含む水溶性重合体の1%水溶液粘度は、10mPa・s以上、好ましくは50mPa・s以上、より好ましくは100mPa・s以上であり、且つ4000mPa・s以下、好ましくは2500mPa・s以下、より好ましくは2000mPa・s以下である。ここで、水溶性重合体の1%水溶液粘度とは、水溶性重合体を濃度1重量%で含む水溶液の粘度を意味する。
 1%水溶液粘度が前記範囲の下限値以上である水溶性重合体を用いることにより、正極活物質層の集電体に対する結着性を向上させることができる。このような利点が得られる理由は定かでは無いが、本発明者の検討によれば、以下の理由が考えられる。すなわち、1%水溶液粘度が前記範囲に収まる水溶性重合体は、正極用スラリー組成物の表面張力を低下させて、正極用スラリー組成物の集電体に対する濡れ性を改善する。したがって、正極用スラリー組成物を集電体に塗布した場合に、正極用スラリー組成物の膜と集電体とが高度に密着できるので、その正極用スラリー組成物の膜から得られる正極活物質層と集電体との結着性を高めることができると推察される。
 また、1%水溶液粘度が前記範囲の上限値以下である水溶性重合体を用いることにより、正極用スラリー組成物において、正極活物質及び導電材等の粒子の分散性を高めることができる。このような利点が得られる理由は定かでは無いが、本発明者の検討によれば、以下の理由が考えられる。すなわち、1%水溶液粘度が前記範囲に収まる水溶性重合体は、正極用スラリー組成物において溶媒に溶解する。この際、水溶性重合体の一部は溶媒中に遊離しているが、別の一部は粒子の表面に吸着する。このように吸着した水溶性重合体により、粒子の表面は安定な層で覆われるので、粒子の水中での分散性が向上しているものと推察される。
 さらに、1%水溶液粘度が前記範囲に収まる水溶性重合体により、通常は、以下のような利点を得ることができる。
 すなわち、一般に、導電材を含む正極用スラリー組成物はチキソ性を有する。これに対し、1%水溶液粘度が前記範囲に収まる水溶性重合体を用いれば、通常、そのチキソ性を抑えることができる。したがって、正極用スラリー組成物の塗布性及びハンドリング性を高めることができる。
 また、一般に、導電材を含む正極用スラリー組成物を乾燥させて正極活物質層を形成する時には、乾燥時にスラリー組成物中で生じる対流により導電材がスラリー組成物の表面に移動し易いので、正極活物質層において導電材が表面近傍に偏る傾向がある。これに対し、1%水溶液粘度が前記範囲に収まる水溶性重合体を用いれば、通常、正極用スラリー組成物の乾燥時における導電材の移動が抑えられるので、正極活物質層における導電材の分散性を高めることができる。
 水溶性重合体の例としては、水溶性多糖類、ポリアクリル酸ナトリウム、ポリエチレンイミン、ポリビニルアルコール、及びポリビニルピロリドンが挙げられる。中でも水溶性多糖類が好ましく、カルボキシメチルセルロースが特に好ましい。ここでカルボキシメチルセルロースは、ナトリウム塩やアンモニウム塩などの塩の状態で用いてもよい。
 水溶性重合体の1%水溶液粘度を前記範囲とするには、前記水溶性重合体の重合度、組成比などで適宜調整できるし、市販の水溶性重合体を使用することもできる。
 市販のカルボキシメチルセルロースの例としては、セロゲン PL15(第一工業製薬社製、1%水溶液粘度10mPa・s)、セロゲン WS-C(第一工業製薬社製、1%水溶液粘度150mPa・s)、セロゲン WS-D(第一工業製薬社製、1%水溶液粘度250mPa・s)、セロゲン BS(第一工業製薬社製、1%水溶液粘度350mPa・s)、セロゲン HH-T(第一工業製薬社製、1%水溶液粘度500mPa・s)、セロゲン 3H(第一工業製薬社製、1%水溶液粘度1000mPa・s)、セロゲン 4H(第一工業製薬社製、1%水溶液粘度1400mPa・s)、セロゲン BSH-6(第一工業製薬社製、1%水溶液粘度3000mPa・s)、セロゲン BSH-12(第一工業製薬社製、1%水溶液粘度6000mPa・s)、サンローズ MAC-200HC(日本製紙ケミカル社製、1%水溶液粘度1880mPa・s)、及びサンローズ MAC-350HC(日本製紙ケミカル社製、1%水溶液粘度3500mPa・s)等を挙げることができる。
 水溶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。2種類以上の水溶性重合体を用いる場合は、当該水溶性重合体の混合物の1%水溶液が所定の範囲であれば、本発明の正極用スラリー組成物の成分として用いうる。具体的には、本発明の正極用スラリーに添加する割合と同じ割合の、水溶性重合体の混合物の1%水溶液が、所定の範囲である場合、かかる混合物を、本発明の正極用スラリー組成物の成分として用いうる。
 水溶性重合体の量は、正極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは3重量部以下である。水溶性重合体の量を前記範囲の下限値以上にすることにより、正極用スラリー組成物において、正極活物質及び導電材等の粒子の分散性を高めることができる。また、上限値以下にすることにより、リチウムイオン二次電池の出力特性を改善できる。
 [1.4.粒子状バインダー]
 粒子状バインダーは、粒子状の重合体であり、その表面酸量が0.01meq/g以上0.5meq/g以下である。粒子状バインダーの表面酸量は、好ましくは0.1meq/g以上、より好ましくは0.2meq/g以上であり、好ましくは0.4meq/g以下である。当該範囲の表面酸量を有することにより、良好な導電材の分散性を実現しうる。粒子状バインダーは、正極活物質層において、正極活物質同士を結着させたり、正極活物質と導電材とを結着させたり、導電材同士を結着させたりしうる。粒子状バインダーはまた、正極において集電体と正極活物質層とを結着させうる。本発明の正極用スラリー組成物が、上に述べた特定の粘度を有する水溶性重合体と、当該特定の表面酸量を有する粒子状バインダーとを含有することにより、得られる正極の密着性が向上し、サイクル特性等の特性が向上する。
 好ましい態様において、本発明の正極用スラリー組成物は、粒子状バインダーとして、エチレン性不飽和モノカルボン酸単量体単位を含む粒子状バインダーAと、エチレン性不飽和ジカルボン酸単量体単位を含む粒子状バインダーBとを含む。
 粒子状バインダーA及び粒子状バインダーBのうち、粒子状バインダーAは、比較的表面酸量が少ないバインダーとなり得る。一方、粒子状バインダーBは、比較的表面酸量が多いバインダーとなり得る。
 表面酸量が少ない粒子状バインダーAを用いることにより、導電材の分散性を高めて、正極活物質層における導電パスのネットワークの形成を促進することができる。このような利点が得られる理由は定かでは無いが、本発明者の検討によれば、以下のような理由が考えられる。一般に、導電材を含む正極用スラリー組成物を乾燥させて正極活物質層を形成する時には、乾燥時にスラリー組成物中で生じる対流により導電材がスラリー組成物の表面に移動し易い。そのため、導電材を含む正極活物質層では、従来、厚み方向において導電材の偏りが生じ、厚み方向の一部では導電パスが形成され難くなっていた。これに対し、粒子状バインダーAを用いれば、正極用スラリー組成物の乾燥時に粒子状バインダーAが導電材と一緒に凝集しようとするので、対流による導電材の移動が妨げられる。そのため、正極用スラリー組成物における導電材の良好な分散性が乾燥後の正極活物質層でも維持される。したがって、正極活物質層における導電材の分散性が良好となるので、正極活物質層の厚み方向全体に導電パスが形成され易くなり、導電パスのネットワークの形成が促進されると推察される。
 また、表面酸量が多い粒子状バインダーBを用いることにより、正極用スラリー組成物における正極活物質及び導電材等の粒子の分散安定性を高めることができる。このような利点が得られる理由は定かでは無いが、本発明者の検討によれば、以下のような理由が考えられる。粒子状バインダーBは表面酸量が多いので、正極活物質及び導電材に対して高い親和性を有する。そのため、粒子状バインダーBは正極活物質及び導電材等の粒子の間に容易に進入し、正極用スラリー組成物における正極活物質及び導電材の分散性を高める作用を奏すると考えられる。さらに、粒子の間に進入した粒子状バインダーBが粒子の凝集を妨げるので、粒子の分散性が経時的に維持される。したがって、正極用スラリー組成物の粘度の経時的な変化が抑制されるので、分散安定性が高くなると推察される。
 ここで、粒子状バインダーの表面酸量(粒子状バインダーA、粒子状バインダーB、又はスラリー組成物が含有する粒子状バインダー全体の表面酸量)の測定は、本願実施例において行った方法の通りに行いうる。
 粒子状バインダーAの表面酸量は、好ましくは0.01meq/g以上、より好ましくは0.02meq/g以上、さらにより好ましくは0.03meq/g以上であり、好ましくは0.15meq/g以下、より好ましくは0.12meq/g以下、さらにより好ましくは0.1meq/g以下である。粒子状バインダーAの表面酸量を、前記下限以上とすることにより、良好な導電材の分散性を実現しうる。粒子状バインダーAの表面酸量を、前記上限以下とすることにより、良好な寿命特性を実現しうる。
 粒子状バインダーAの上記のような表面酸量は、例えば、粒子状バインダーAの構造単位の種類及びその割合により制御しうる。具体例を挙げると、粒子状バインダーAの上記のような表面酸量を実現する観点から、粒子状バインダーAは、エチレン性不飽和モノカルボン酸単量体単位を含む重合体で形成されていることが好ましい。エチレン性不飽和モノカルボン酸単量体単位とは、エチレン性不飽和モノカルボン酸単量体を重合して形成される構造を有する構造単位である。このエチレン性不飽和モノカルボン酸単量体単位は、カルボキシル基(-COOH基)を有する。また、エチレン性不飽和モノカルボン酸単量体は親水性であるので、水を反応媒とした乳化重合で粒子状バインダーAを製造した場合、エチレン性不飽和モノカルボン酸単量体単位は、通常、粒子状バインダーAの表面部分に多く集まる。したがって、エチレン性不飽和モノカルボン酸単量体単位を用いることにより、粒子状バインダーAは表面に酸を有することができる。この際、エチレン性不飽和モノカルボン酸単量体単位は構造単位1個当たりのカルボキシル基の数が1個であるので、粒子状バインダーAの表面酸量を相対的に少なくできる。
 カルボキシル基が高い極性を有するので、エチレン性不飽和モノカルボン酸単量体単位は、正極活物質、導電材及び集電体への粒子状バインダーAの結着性を高める作用を有する。また、エチレン性不飽和モノカルボン酸単量体単位は強度が高い構造単位であるので、粒子状バインダーAの強度を強くできる。そのため、集電体に対する正極活物質層の結着性を高めることができる。
 エチレン性不飽和モノカルボン酸単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。中でも、アクリル酸及びメタクリル酸が好ましい。また、エチレン性不飽和モノカルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーA中のエチレン性不飽和モノカルボン酸単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、さらにより好ましくは0.3重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下、さらにより好ましくは3重量%以下である。エチレン性不飽和モノカルボン酸単量体単位の割合を、前記下限以上とすることにより、良好な導電材の分散性を実現しうる。エチレン性不飽和モノカルボン酸単量体単位の割合を、前記上限以下とすることにより、良好な寿命特性を実現しうる。ここで、粒子状バインダーAにおけるエチレン性不飽和モノカルボン酸単量体単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体におけるエチレン性不飽和モノカルボン酸単量体の比率(仕込み比)に一致する。
 粒子状バインダーAは、前記のエチレン性不飽和モノカルボン酸単量体単位以外の構造単位を含んでいてもよい。
 例えば、粒子状バインダーAは、ニトリル基含有単量体単位を含みうる。ニトリル基含有単量体単位は、ニトリル基含有単量体を重合して形成される構造を有する構造単位を表す。ニトリル基含有単量体単位は、ニトリル基(-CN)を含有するので、当該ニトリル基が集電体、正極活物質及び導電材の表面の極性基と相互作用することにより、高い結着性を奏することができる。このため、集電体に対する正極活物質層の結着性を高くできる。
 ニトリル基含有単量体としては、例えば不飽和ニトリル単量体が挙げられ、中でもα,β-エチレン性不飽和ニトリル単量体が好ましい。また、ニトリル基含有単量体の炭素原子数は、3以上18以下が好ましい。ニトリル基含有単量体の具体例を挙げると、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル等が挙げられ、中でもアクリロニトリルが好ましい。ニトリル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーAにおけるニトリル基含有単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。ニトリル基含有単量体単位の割合を前記範囲の下限値以上にすることにより、集電体に対する正極活物質層の結着性を高めることができる。また、上限値以下とすることにより、粒子状バインダーAの電解液に対する耐性を高めることができるので、粒子状バインダーAの電解液による過度の膨潤を防止し、結着性の低下を抑制することができる。ここで、粒子状バインダーAにおけるニトリル基含有単量体単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体におけるニトリル基含有単量体の比率(仕込み比)に一致する。
 また、例えば、粒子状バインダーAは、架橋性単量体単位を含みうる。架橋性単量体単位は、架橋性単量体を重合して形成される構造を有する構造単位である。また、架橋性単量体は、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。架橋性単量体単位を含むことにより、粒子状バインダーAを架橋させて剛性を高めることができるので、充放電により正極活物質が膨張及び収縮を繰り返しても、正極の膨らみを抑制することができる。また、電解液に対する粒子状バインダーAの膨潤度が過度に高くならないようにできる。
 架橋性単量体の例としては、通常、熱架橋性を有する単量体が挙げられる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体;1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
 熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテル等の不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエン等のジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセン等のアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステル等の不飽和カルボン酸のグリシジルエステル類;などが挙げられる。
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミド等のメチロール基を有する(メタ)アクリルアミド類などが挙げられる。
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンなどが挙げられる。
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンなどが挙げられる。
 2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンなどが挙げられる。
 中でも特に、架橋性単量体としては、熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体、2つ以上のオレフィン性二重結合を有する多官能性単量体が好ましく、アリルメタクリレート、エチレンジメタクリレート、アリルグリシジルエーテル、及びグリシジルメタクリレートが特に好ましい。
 また、架橋性単量体及び架橋性単量体単位は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーAにおいて、架橋性単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは2重量%以下、より好ましくは1.5重量%以下である。架橋性単量体単位の割合を前記範囲に収めることにより、粒子状バインダーAの電解液による膨潤を抑制し、正極の膨らみを抑制できる。ここで、粒子状バインダーAにおける架橋性単量体単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体における架橋性単量体の比率(仕込み比)に一致する。
 また例えば、粒子状バインダーAは、(メタ)アクリル酸エステル単量体単位を含みうる。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体(特に、(メタ)アクリル酸エステル単量体であって、上に挙げた単量体に該当しないもの)を重合して形成される構造を有する構造単位である。
 (メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。これらの中でも、アクリル酸アルキルエステルが好ましく、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレートがより好ましい。(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーAにおいて、(メタ)アクリル酸エステル単量体単位の割合は、好ましくは80重量%以上、より好ましくは85重量%以上であり、また、好ましくは99重量%以下、より好ましくは98重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより、正極活物質層の集電体への結着性を高くすることができる。また、上限値以下とすることにより、正極の柔軟性を高めることができる。ここで、粒子状バインダーAにおける(メタ)アクリル酸エステル単量体単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体における(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。
 粒子状バインダーAにおいて、上述した構造単位の他に、任意の構造単位を含んでいてもよい。任意の構造単位の例としては、下記の単量体を重合して得られる構造を有する構造単位が挙げられる。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 任意の単量体としては、例えば、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどのスルホン酸基含有単量体及びそのアルカリ金属塩;下記式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 前記の式(I)において、Rは、水素原子またはメチル基を表す。
 前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
 粒子状バインダーAにおける任意の構造単位の割合は、好ましくは0重量%以上30重量%以下、より好ましくは0重量%以上25重量%以下である。ここで、粒子状バインダーAにおける任意の構造単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体における任意の単量体の比率(仕込み比)に一致する。
 粒子状バインダーBの表面酸量は、好ましくは0.15meq/g以上、より好ましくは0.22meq/g以上、さらにより好ましくは0.25meq/g以上であり、好ましくは0.5meq/g以下、より好ましくは0.45meq/g以下、さらにより好ましくは0.4meq/g以下である。粒子状バインダーBの表面酸量を、前記下限以上とすることにより、良好な活物質の分散性を実現しうる。粒子状バインダーBの表面酸量を、前記上限以下とすることにより、良好な寿命特性を実現しうる。
 粒子状バインダーBの上記のような表面酸量は、例えば、粒子状バインダーBの構造単位の種類及びその割合により制御しうる。具体例を挙げると、粒子状バインダーBの上記のような表面酸量を実現する観点から、粒子状バインダーBは、エチレン性不飽和ジカルボン酸単量体単位を含む重合体で形成されていることが好ましい。エチレン性不飽和ジカルボン酸単量体単位とは、エチレン性不飽和ジカルボン酸単量体を重合して形成される構造を有する構造単位である。上述したエチレン性不飽和モノカルボン酸単量体単位と同様に、エチレン性不飽和ジカルボン酸単量体単位は、カルボキシル基を有する。また一般に、エチレン性不飽和ジカルボン酸単量体は親水性であるので、水を反応媒とした乳化重合で粒子状バインダーBを製造した場合、エチレン性不飽和ジカルボン酸単量体単位は、粒子状バインダーBの表面部分に多く集まる。したがって、エチレン性不飽和ジカルボン酸単量体単位を用いることにより、粒子状バインダーBは表面に酸を有することができる。この際、エチレン性不飽和ジカルボン酸単量体単位は構造単位1個当たりのカルボキシル基の数が2個であるので、粒子状バインダーBの表面酸量を相対的に多くできる。
 カルボキシル基が高い極性を有するので、エチレン性不飽和ジカルボン酸単量体単位は、正極活物質、導電材及び集電体への粒子状バインダーBの結着性を高める作用を有する。また、エチレン性不飽和ジカルボン酸単量体単位は強度が高い構造単位であるので、粒子状バインダーBの強度を強くできる。そのため、集電体に対する正極活物質層の結着性を高めることができる。さらに、カルボキシル基が有する極性により、粒子状バインダーBの極性溶媒に対する親和性が大きく向上するので、粒子状バインダーBの電解液に対する濡れ性を改善することができる。
 通常は、エチレン性不飽和ジカルボン酸単量体のうちでも親水性が大きいものを用いると、エチレン性不飽和ジカルボン酸単量体が粒子状バインダーBの表面で共重合しやすくなるので、表面酸量を制御し易い傾向がある。好適なエチレン性不飽和ジカルボン酸単量体としては、例えば、マレイン酸、フタル酸、イタコン酸等が挙げられる。また、これらの無水物も用いうる。中でも、イタコン酸が好ましい。エチレン性不飽和ジカルボン酸単量体の中でもイタコン酸は、粒子状バインダーBの合成反応における反応速度が遅い。そのため、イタコン酸を用いた場合には、イタコン酸を重合して形成される構造単位は粒子状バインダーBの表面に特に多く集まる。これにより、粒子状バインダーBの表面酸量を効果的に増やすことができる。また、エチレン性不飽和ジカルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーB中のエチレン性不飽和ジカルボン酸単量体単位の割合は、好ましくは1重量%、より好ましくは2重量%以上、さらにより好ましくは3重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下、さらにより好ましくは5重量%以下である。エチレン性不飽和ジカルボン酸単量体単位の割合を、前記下限以上とすることにより、良好な活物質の分散性を実現しうる。エチレン性不飽和ジカルボン酸単量体単位の割合を、前記上限以下とすることにより、良好な寿命特性を実現しうる。ここで、粒子状バインダーBにおけるエチレン性不飽和ジカルボン酸単量体単位の割合は、通常、粒子状バインダーBの製造に用いる全単量体におけるエチレン性不飽和ジカルボン酸単量体の比率(仕込み比)に一致する。
 粒子状バインダーBは、前記のエチレン性不飽和ジカルボン酸単量体単位以外の構造単位を含んでいてもよい。
 例えば、粒子状バインダーBは、ニトリル基含有単量体単位を含みうる。ニトリル基含有単量体単位は、ニトリル基含有単量体を重合して形成される構造を有する構造単位を表す。ニトリル基含有単量体単位は、ニトリル基(-CN)を含有するので、当該ニトリル基が集電体、正極活物質及び導電材の表面の極性基と相互作用することにより、高い結着性を奏することができる。このため、集電体に対する正極活物質層の結着性を高くできる。
 ニトリル基含有単量体としては、例えば不飽和ニトリル単量体が挙げられ、中でもα,β-エチレン性不飽和ニトリル単量体が好ましい。また、ニトリル基含有単量体の炭素原子数は、3以上18以下が好ましい。ニトリル基含有単量体の具体例を挙げると、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル等が挙げられ、中でもアクリロニトリルが好ましい。ニトリル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーBにおけるニトリル基含有単量体単位の割合は、好ましくは5重量%以上であり、好ましくは35重量%以下である。ニトリル基含有単量体単位の割合を前記範囲の下限値以上にすることにより、集電体に対する正極活物質層の結着性を高めることができる。また、上限値以下とすることにより、粒子状バインダーBの電解液に対する耐性を高めることができるので、粒子状バインダーBの電解液による過度の膨潤を防止し、結着性の低下を抑制することができる。ここで、粒子状バインダーBにおけるニトリル基含有単量体単位の割合は、通常、粒子状バインダーBの製造に用いる全単量体におけるニトリル基含有単量体の比率(仕込み比)に一致する。
 また例えば、粒子状バインダーBは、水酸基含有単量体単位を含みうる。水酸基含有単量体単位は、水酸基含有単量体を重合して形成される構造を有する構造単位である。水酸基含有単量体単位が有する水酸基(-OH基)は高い極性を有し、正極活物質及び集電体への粒子状バインダーBの結着性を高める作用を有する。このため、水酸基含有単量体単位を含むことにより、集電体に対する正極活物質層の結着性を更に高めることができる。また、水酸基が有する極性により、粒子状バインダーBの水に対する親和性を高めることができる。したがって、水酸基含有単量体単位を用いれば、水中において粒子状バインダーBを更に安定に分散させて、正極用スラリー組成物の安定性を向上させることができる。また、水酸基含有単量体単位をエチレン性不飽和ジカルボン酸単量体と組み合わせて用いることにより、エチレン性不飽和ジカルボン酸単量体の共重合性を高めて、表面酸量の制御を更に容易に行うことが可能である。さらに、水酸基が有する極性により、粒子状バインダーBの極性溶媒に対する親和性が向上するので、粒子状バインダーBの電解液に対する濡れ性を更に改善することができる。
 水酸基含有単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート、及び2-ヒドロキシエチルメチルフマレート等のヒロドキシアルキルアクリレート;アリルアルコール、多価アルコールのモノアリルエーテルなどが挙げられる。中でも、ヒドロキシアルキルアクリレートが好ましく、2-ヒドロキシエチルアクリレートが特に好ましい。また、水酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーBにおける水酸基含有単量体単位の割合は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは5重量%以下、より好ましくは3重量%以下である。水酸基含有単量体単位の割合が前記範囲の下限値以上であることにより、粒子状バインダーBの電解液に対する濡れ性を向上させることができる。また、上限値以下であることにより、粒子状バインダーBの製造時の安定性と、電解液に対する濡れ性とを両立させることができる。ここで、粒子状バインダーBにおける水酸基含有単量体単位の割合は、通常、粒子状バインダーBの製造に用いる全単量体における水酸基含有単量体の比率(仕込み比)に一致する。
 また例えば、粒子状バインダーBは、(メタ)アクリル酸エステル単量体単位を含みうる。(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体(特に、(メタ)アクリル酸エステル単量体であって、上に挙げた単量体に該当しないもの)を重合して形成される構造を有する構造単位である。
 (メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;並びにメチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。これらの中でも、アクリル酸アルキルエステルが好ましく、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレートがより好ましい。(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 粒子状バインダーBにおいて、(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50重量%以上であり、また、好ましくは99重量%以下である。(メタ)アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより、正極活物質層の集電体への結着性を高くすることができる。また、上限値以下とすることにより、正極の柔軟性を高めることができる。ここで、粒子状バインダーAにおける(メタ)アクリル酸エステル単量体単位の割合は、通常、粒子状バインダーAの製造に用いる全単量体における(メタ)アクリル酸エステル単量体の比率(仕込み比)に一致する。
 粒子状バインダーBにおいて、上述した構造単位の他に、任意の構造単位を含んでいてもよい。任意の構造単位の例としては、下記の単量体を重合して得られる構造を有する構造単位が挙げられる。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 任意の単量体としては、例えば、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどのスルホン酸基含有単量体及びそのアルカリ金属塩;下記式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、並びに置換および側鎖共役ヘキサジエン類などの脂肪族ジエン単量体が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 前記の式(I)において、Rは、水素原子またはメチル基を表す。
 前記の式(I)において、Rは、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、Rが含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
 粒子状バインダーBにおける任意の構造単位の割合は、好ましくは0重量%以上30重量%以下、より好ましくは0重量%以上25重量%以下である。ここで、粒子状バインダーBにおける任意の構造単位の割合は、通常、粒子状バインダーBの製造に用いる全単量体における任意の単量体の比率(仕込み比)に一致する。
 粒子バインダーAと粒子状バインダーBとの重量比「粒子状バインダーA/粒子状バインダーB」は、好ましくは1/99以上、より好ましくは10/90以上、特に好ましくは15/85以上であり、好ましくは50/50以下、より好ましくは30/70以下、特に好ましくは25/75以下である。粒子バインダーAと粒子状バインダーBとの重量比が前記範囲の下限値以上になることにより、正極活物質層における導電材の分散性を効果的に高めることができる。また、上限値以下になることにより、集電体と正極活物質層との結着性を高めることができる。
 粒子状バインダーA及び粒子状バインダーBを含む粒子状バインダーのガラス転移温度は、好ましくは-75℃以上、より好ましくは-55℃以上、特に好ましくは-35℃以上であり、好ましくは20℃以下、より好ましくは15℃以下である。粒子状バインダーのガラス転移温度が上記範囲であることにより、正極活物質と粒子状バインダーとの結着性、正極の柔軟性及び捲回性、正極活物質層と集電体との結着性などの特性が高度にバランスされ好適である。
 粒子状バインダーは、正極用スラリー組成物において粒子状となっており、通常はその粒子形状を維持したまま正極に含まれる。粒子状バインダーの数平均粒子径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。粒子状バインダーの数平均粒子径が上記範囲にあることで、得られる正極の強度および柔軟性を良好にできる。
 ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ粒子状バインダー100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は、球形及びそれ以外の形状のいずれであってもよい。
 粒子状バインダーA及び粒子状バインダーBを含む粒子状バインダーの量は、正極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。粒子状バインダーの量を前記範囲の下限値以上にすることにより、正極活物質層と集電体との結着性を向上させることができる。また、上限値以下にすることにより、リチウムイオン二次電池の出力特性を改善することができる。
 上述した粒子状バインダーA及び粒子状バインダーBの製造方法は、所望の表面酸量を有する粒子状のバインダーが得られる限り、任意である。粒子状バインダーA及び粒子状バインダーBの製造方法の例を挙げると、上述した粒子状バインダーA又はBの単量体を含む単量体組成物を水系溶媒中で重合し、重合体の粒子として粒子状バインダーA又はBを得る方法が挙げられる。
 単量体組成物中の各単量体の比率は、通常、粒子状バインダーA又はBにおける構造単位の比率と同様にする。
 水系溶媒としては、粒子状バインダーA又はBの分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。
 水系溶媒の例としては、水(100);ダイアセトンアルコール(169)、γ-ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3-メトキシ-3-メチル-1-ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;並びに1,3-ジオキソラン(75)、1,4-ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類が挙げられる。中でも水は、可燃性がなく、粒子状バインダーA又はBの分散体が容易に得られやすいという観点から特に好ましい。また、主溶媒として水を使用して、粒子状バインダーA又はBの分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。
 重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いうる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いうる。高分子量体が得やすいこと、並びに、バインダーがそのまま水に分散した粒子の状態で得られるので再分散化の処理が不要であり、そのまま正極用スラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。
 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、乳化重合は、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法により行いうる。乳化重合はまた、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法によっても行いうる。
 重合開始剤の例としては、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’-アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;並びに過硫酸カリウムが挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合は、通常は1段階で進行させるが、例えばシード粒子を採用したシード重合等のように、2段階以上に分けて行ってもよい。
 重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択しうる。通常、重合温度は約30℃以上、重合時間は0.5時間以上30時間以下である。
 また、アミン類などの添加剤を重合助剤として用いてもよい。
 さらに、これらの方法によって得られる粒子状バインダーA又はBの水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを通常5以上10以下、好ましくは5以上9以下の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と正極活物質層との結着性を向上させられるので、好ましい。
 [1.5.溶媒]
 正極用スラリー組成物は、通常、溶媒を含む。この溶媒としては、通常は水を用いる。溶媒は、正極用スラリー組成物において、正極活物質を分散させたり、粒子状バインダーを分散させたり、水溶性重合体を溶解させたりしうる。
 また、溶媒としては、水以外の溶媒を水とを組み合わせて用いてもよい。例えば、粒子状バインダー及び水溶性重合体を溶解しうる液体を水と組み合わせると、粒子状バインダー及び水溶性重合体が正極活物質の表面に吸着することにより、正極活物質の分散が更に安定化するので、好ましい。
 水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 溶媒の量は、正極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、正極用スラリー組成物の固形分の濃度が、好ましくは40重量%以上、より好ましくは45重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下となる量に調整して用いられる。ここで組成物の固形分とは、その組成物を乾燥させて液体を除去した場合に、蒸発せずに残る成分のことをいう。
 [1.6.任意の成分]
 正極用スラリー組成物は、上述した正極活物質、導電材、水溶性重合体、粒子状バインダー及び溶媒以外に任意の成分を含みうる。その例を挙げると、補強材、レベリング剤、ナノ粒子及び電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーを使用しうる。補強材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。補強材を用いることにより、強靭で柔軟な正極を得ることができ、優れた長期サイクル特性を示すリチウムイオン二次電池を実現できる。
 補強材の量は、正極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強材の量を上記範囲とすることにより、リチウムイオン二次電池は高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。レベリング剤を用いることにより、正極用スラリー組成物の塗布時に発生するはじきを防止したり、正極の平滑性を向上させたりすることができる。
 レベリング剤の量は、正極活物質の量100重量部に対して、好ましくは0.01重量部以上10重量部以下である。レベリング剤が上記範囲であることにより正極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより正極用スラリー組成物において正極活物質等の粒子の分散性を向上することができ、さらにそれにより得られる正極の平滑性を向上させることができる。
 ナノ粒子としては、例えば、フュームドシリカ及びフュームドアルミナなどの粒子が挙げられる。ナノ粒子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ナノ粒子を含む場合には正極用スラリー組成物のチキソ性を調整することができるので、それにより得られる正極のレベリング性を向上させることができる。
 ナノ粒子の量は、正極活物質の量100重量部に対して、好ましくは0.01重量部以上10重量部以下である。ナノ粒子が上記範囲であることにより、正極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
 電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
 電解液添加剤の量は、正極活物質の量100重量部に対して、好ましくは0.01重量部以上10重量部以下である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
 [1.7.正極用スラリー組成物の物性]
 正極用スラリー組成物は、流体状の組成物であり、正極活物質、導電材及び粒子状バインダー等の粒子の分散性が良好である。特に、粒子状バインダーBを含む場合、その作用によって正極用スラリー組成物における粒子の分散性が安定したものとなりうる。そのため、正極用スラリー組成物は分散安定性が高いので、例えば正極用スラリー組成物を所定期間保存する前後での粘度変化の大きさを小さくできる。
 正極用スラリー組成物の粘度は、好ましくは2000mPa・s以上、より好ましくは3000mPa・s以上であり、好ましくは10000mPa・s以下、より好ましくは5000mPa・s以下である。正極用スラリー組成物の粘度をこのような範囲に収めることにより、正極用スラリー組成物の塗布性及び経時安定性を良好にできる。ここで、粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 [1.8.正極用スラリー組成物の製造方法]
 正極用スラリー組成物は、上述した正極活物質、導電材、水溶性重合体及び粒子状バインダー、並びに必要に応じて用いられる溶媒及び任意の成分を混合して製造しうる。この際の具体的な手順は任意である。例えば、溶媒に正極活物質、導電材、水溶性重合体及び粒子状バインダーを同時に混合する方法;溶媒に水溶性重合体を溶解した後、溶媒に分散させた粒子状バインダーを混合し、その後で正極活物質及び導電材を混合する方法;溶媒に分散させた粒子状バインダーに正極活物質及び導電材を混合し、この混合物に溶媒に溶解させた水溶性重合体を混合する方法;などが挙げられる。
 混合のために用いる装置は、上記成分を均一に混合しうる任意の装置を使用しうる。例を挙げると、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどが挙げられる。中でも、高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。
 [2.リチウムイオン二次電池用正極]
 上述した本発明の正極用スラリー組成物を用いることにより、正極を製造できる。この正極は、通常、集電体と、集電体上に形成された正極活物質層とを備える。前記の正極活物質層は、正極用スラリー組成物が含む正極活物質、導電材、水溶性重合体及び粒子状バインダーを含みうる。
 正極用スラリー組成物を用いて正極を製造する方法としては、例えば、正極用スラリー組成物を、集電体上に塗布し、乾燥することを含む製造方法が挙げられる。以下、この製造方法について説明する。
 集電体としては、通常、電気導電性を有しかつ電気化学的に耐久性のある材料で形成されたものを用いる。集電体の材料としては、耐熱性を有するため、金属材料が好ましい。例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、正極用の集電体としては、アルミニウムが好ましい。また、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 集電体の形状は特に制限されず、厚さ0.001mm以上0.5mm以下程度のシート状のものが好ましい。
 集電体は、正極活物質層との接着強度を高めるため、正極活物質層(又は集電体と正極活物質層との間に介在する中間層が存在する場合はその中間層)をその上に形成するのに先立ち、粗面化処理を施されたものが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、例えば、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線を備えたワイヤーブラシ等が使用される。
 また、集電体と正極活物質層との接着強度を高めたり、導電性を高めたりするために、集電体の表面に中間層を形成してもよい。
 正極用スラリー組成物を集電体上に塗布する場合、集電体の片面だけに塗布してもよく、両面に塗布してもよい。正極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。塗布方法としては、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 正極用スラリー組成物を塗布することにより、集電体の表面に、正極用スラリー組成物の膜が形成される。この正極用スラリー組成物の膜を乾燥させて、溶媒等の液体を除去することにより、集電体の表面に正極活物質層が形成される。
 乾燥方法の例としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常5分以上30分以下であり、乾燥温度は通常40℃以上180℃以下である。
 また、集電体の表面に正極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレス等のプレス機を用い、正極活物質層に加圧処理を施すことが好ましい。加圧処理により、正極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、また、正極活物質層を集電体から剥がれ難くすることができる。また、上限値以下とすることにより、高い充電効率及び放電効率が得られる。
 さらに、正極活物質層が架橋反応等の硬化反応により硬化しうる重合体を含む場合は、正極用スラリー組成物を集電体上に塗布した後の適切な時期に、前記重合体を硬化させてもよい。例えば、正極活物質層が熱架橋性を有する重合体を含む場合、120℃以上で1時間以上、加熱処理を施してもよい。
 上述した方法により、集電体と、その集電体上に形成された正極活物質層とを備えるリチウムイオン二次電池用正極を得ることができる。正極活物質層は、正極用スラリー組成物に含まれていた正極活物質、導電材、水溶性重合体及び粒子状バインダーを、正極用スラリー組成物における良好な分散性を維持したままで含む。したがって、形成された正極活物質層においては、各成分は高度に分散している。
 一般に、従来の正極用スラリー組成物において導電材の分散性が良好であっても、その正極用スラリー組成物を用いて製造された正極活物質層においては、導電材の分布が厚み方向において偏る傾向があった。このような従来の課題に鑑みると、本発明の正極用スラリー組成物での導電材の高い分散性が正極活物質層においても維持できることは、正極の性能を向上させる観点及び正極の生産性の観点で、有利である。
 前記のように正極活物質層において導電材の分散性が良好であることから、通常は、以下のような利点が得られる。
 正極活物質だけでなく導電材の分散性も良好であるので、凝集による粒子径の増大が生じにくいため、正極活物質層において正極活物質及び導電材等の粒子同士の間の空隙を小さくできる。そのため、それらの粒子が集電体に結着する面積が広くなるので、正極活物質層と集電体との結着性が高くなる。
 また、正極活物質層において導電材の分散性が良好であるので、正極活物質層においては導電材が均一に分布する。そのため、正極活物質層では導電材のネットワークが層の全体にわたって均一に形成される。前記のネットワークは、正極活物質に対する電子の受け渡しをするための導電パスを形成する。したがって、導電材の分散性が良好であることにより、正極活物質層の全体に多くの導電パスのネットワークを形成することができるので、正極の抵抗を小さくすることが可能となっている。
 さらに、前記のように形成された導電材のネットワークは、正極活物質の膨張及び収縮による正極活物質層の膨らみを抑制するように作用する。すなわち、充放電によって正極活物質が膨張及び収縮をしたとき、従来はその膨張及び収縮により正極活物質間の距離が大きくなる傾向があるが、互いに接続された導電材のネットワークが膨張及び収縮による正極活物質の位置の変化を妨げるように働くので、膨張及び収縮による正極活物質間の距離の増大は抑制される。そのため、正極活物質間の距離の増大による正極活物質層の膨らみを抑制することが可能である。
 また、得られた正極において、集電体と正極活物質層との結着力は強くなっている。このように強い結着力が得られる理由は必ずしも定かでは無いが、正極活物質層における各成分の分散性が高いこと、及び、粒子状バインダーによる正極活物質及び集電体に対する結着力が高いことによるものと推察される。すなわち、正極活物質層において各成分の分散性が高いことにより、複数の粒子が凝集した大きな二次粒子が生じ難くなっているので、正極活物質層に大きな空隙が生じ難くなっている。そのため、集電体に対する正極活物質層の結着面積の空隙による減少が生じ難くなって、正極活物質層が集電体に結着する面積が広くなるので、正極活物質層と集電体との結着性が高くなると推察される。また、粒子状バインダーが表面に酸基を有するので、粒子状バインダーの正極活物質及び集電体に対する結着力が大きくなっていることも、正極活物質層と集電体との結着性を高くできた理由の一つと推察される。
 得られた正極において、集電体の表面の単位面積当たりの正極活物質層の量は、好ましくは10mg/cm以上、より好ましくは12mg/cm以上、特に好ましくは14mg/cm以上であり、好ましくは20mg/cm以下、より好ましくは18mg/cm以下、特に好ましくは16mg/cm以下である。集電体の表面の単位面積当たりの正極活物質層の量を前記範囲の下限値以上にすることにより、リチウムイオン二次電池の容量を大きくできる。また、上限値以下にすることにより、リチウムイオン二次電池の寿命特性を良好にできる。ここで、正極活物質層の量は、通常、集電体の表面に塗布された正極用スラリー組成物の固形分の量と一致する。したがって、正極用スラリー組成物は、その正極用スラリー組成物を集電体に塗布し乾燥した後の集電体上の固形分の量が、集電体の単位面積当たりで前記の範囲に収まるように、その塗布量を調整することが好ましい。
 また、単位面積当たりの正極活物質層の量を前記の範囲にする観点では、正極活物質層の厚みは、通常1μm以上、好ましくは5μm以上、より好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下、より好ましくは200μm以下、特に好ましくは100μm以下である。
 本発明の正極においては、上述したように、正極活物質層の厚み方向の全体に導電材を分散させることができる。したがって、正極活物質層の厚み方向において導電材による導電パスを形成することができるので、正極活物質層の厚み方向の抵抗を効果的に下げることができる。具体的には、本発明の正極の貫通方式の体積抵抗率は、好ましくは1×10+1Ω・cm以下、より好ましくは5Ω・cm以下、特に好ましくは1Ω・cm以下である。このように貫通方式の体積抵抗率を低くすることにより、リチウムイオン二次電池の寿命特性を良好にできる。また、下限に特に制限は無いが、リチウムイオン二次電池の容量を大きくする観点からは、好ましくは1×10-5Ω・cm以上である。
 [3.リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、上述したリチウムイオン二次電池用正極、負極、及び電解液を備え、更に通常はセパレーターを備える。このリチウムイオン二次電池は、サイクル特性に優れるので、長寿命である。このように優れたサイクル特性が得られる理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。
 本発明の正極では、上述したように導電材の分散性が向上しているため、充放電による正極活物質層の膨らみを抑制することができる。さらに、本発明の正極においては、集電体と正極活物質層との結着性が高い。そのため、正極活物質層の膨らみ及び集電体からの正極活物質層の剥離による導電パスの切断が生じ難い。したがって、充放電に伴う抵抗の上昇を抑制できるので、サイクル特性を改善できると推察される。
 また、本発明のリチウムイオン二次電池は、出力特性に優れ、特に出力特性に優れる。このように優れた出力特性が得られる理由は必ずしも定かでは無いが、本発明者の検討によれば、以下のように推察される。
 正極活物質層においては、各成分が高い分散性で分散している。特に、粒子状バインダーAの作用により、導電材を正極活物質層の全体に分散させて、良好な導電パスを形成させることができるので、正極活物質層における電子の伝導性を向上させることができる。さらに、粒子状バインダーBの作用により、正極活物質層の電解液に対する濡れ性を高くできるので、正極活物質層におけるリチウムイオンの伝導性を向上させることができる。したがって、リチウムイオン及び電子の伝導性の両方を向上させて、これらの伝導性のバランスをとることが可能になるので、出力特性を改善できると推察される。
 [3.1.負極]
 負極は、集電体と、集電体上に形成された負極活物質層とを備える。また、負極活物質層は、負極活物質及びバインダーを含む。
 [3.1.1.集電体]
 集電体としては、正極の集電体と同様のものを用いうる。中でも、負極用の集電体としては、銅により形成されたものが好ましい。
 [3.1.2.負極活物質層]
 負極活物質層は、負極活物質を含む。負極活物質の例を挙げると、アモルファスカーボン、グラファイト、人造黒鉛、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属又は合金の酸化物;前記金属又は合金の硫酸塩;なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等を使用してもよい。さらに、負極活物質は、機械的改質法により表面に導電材を付着させたものも使用してもよい。これらの負極活物質は、1種類だけを用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質の粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択される。初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、負極活物質の体積平均粒子径は、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。
 負極活物質層用のバインダーとしては、様々な重合体成分を用いうる。バインダーを含むことにより、負極活物質層の接着性が向上し、負極の巻回時等の工程上においてかかる機械的な力に対する強度が上がる。また、負極活物質層が脱離しにくくなることから、脱離物による短絡等の可能性が低くなる。
 負極活物質層用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体、スチレンブタジエン共重合体などのジエン系共重合体などを用いうる。
 バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 負極活物質層におけるバインダーの量は、負極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは5重量部以下、より好ましくは4重量部以下、特に好ましくは3重量部以下である。バインダーの量が前記範囲であることにより、電池反応を阻害せずに、負極活物質層から負極活物質が脱落するのを防ぐことができる。
 バインダーは、通常、負極活物質層を作製するために溶液もしくは分散液に含まれた状態で用意される。その時の溶液もしくは分散液の粘度は、通常1mPa・s以上、好ましくは50mPa・s以上であり、通常300,000mPa・s以下、好ましくは10,000mPa・s以下である。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 さらに、負極活物質層は、負極活物質及びバインダー以外に、任意の成分を含んでいてもよい。その例を挙げると、導電材、補強剤などの、正極活物質層に含まれうる成分が挙げられる。
 負極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。
 [3.2.電解液]
 電解液としては、例えば、溶媒と、その溶媒に溶解した支持電解質とを含むものを使用しうる。
 電解質としては、通常、リチウム塩を用いる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、特に溶媒に溶けやすく高い解離度を示すことから、LiPF、LiClO、CFSOLiは好適に用いられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一般に、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液における支持電解質の濃度は、好ましくは1重量%以上、より好ましくは5重量%以上であり、また、好ましくは30重量%以下、より好ましくは20重量%以下である。支持電解質の量を前記の範囲に収めることにより、イオン導電度を高くして、リチウムイオン二次電池の充電特性及び放電特性を良好にできる。
 電解液に使用する溶媒としては、支持電解質を溶解させられるものを用いうる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類により、リチウムイオン伝導度を調節することができる。
 また、電解液は、必要に応じて添加剤を含んでいてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上述した電解液の代わりに、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを用いてもよい。
 [3.3.セパレーター]
 セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
 [3.4.リチウムイオン二次電池の製造方法]
 リチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じて、例えばエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 [評価方法]
 (1)スラリー粘度の経時変化率の測定方法
 実施例及び比較例で製造した正極用スラリー組成物について、B型粘度計により60rpmでの粘度η0を測定した。その後、その正極用スラリー組成物を室温で1日間で保管し、保管後の60rpmでの粘度η1を測定した。スラリー粘度の経時変化率Δη(%)をΔη=η1/η0×100により算出し、下記の評価基準に従って評価した。ここで、正極用スラリー組成物の粘度測定温度は25℃とした。このΔηの値が小さいほど、正極用スラリー組成物が分散安定性に優れることを示す。
 (評価基準)
 A:10%未満
 B:10%以上20%未満
 C:20%以上30%未満
 D:30%以上
 (2)プレス後の正極のピール強度の測定方法
 実施例及び比較例で製造したプレス後の電極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、正極活物質層の表面を下にして、電極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に粘着面を上にして固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、測定された応力の平均値を求めて、当該平均値をピール強度とした。このように求めたプレス後のピール強度を、下記の評価基準に従って評価した。プレス後の正極のピール強度が大きいほど、正極活物質層の集電体への結着力が大きいこと、即ち、密着強度が大きいことを示す。
 (評価基準)
 A:15N/m以上
 B:10N/m以上15N/m未満
 C:5.0N/m以上10N/m未満
 D:5.0N/m未満
 (3)サイクル特性の評価方法
 実施例及び比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、1Cの定電流で4.2Vまで充電し3.0Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、60℃環境下で、前記の充放電と同様の条件で充放電を繰り返し、200サイクル後の容量C2を測定した。高温サイクル特性の指標として、ΔC=C2/C0×100(%)で示す容量維持率ΔCを求めた。このようにして求めた容量維持率ΔCを、下記の評価基準に従って評価した。この容量維持率ΔCの値が大きいほど、サイクル特性に優れ、ひいては寿命特性に優れることを示す。
 (評価基準)
 A:70%以上
 B:60%以上70%未満
 C:50%以上60%未満
 D:40%以上50%未満
 E:40%未満
 (4)出力特性の評価方法
 実施例及び比較例で製造したラミネート型セルのリチウムイオン二次電池を、25℃で0.1Cの定電流法によって4.2Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量を求めた。その後、0.1Cにて4.2Vまで充電しその後20Cにて3.0Vまで放電し、20C放電容量を求めた。これらの測定をラミネート型セル10セルについて行なった。10セルの0.1C放電容量の平均値、及び10セルの5C放電容量の平均値を求めそれぞれa及びbとした。5C放電容量bと0.1C放電容量aの電気容量の比((b/a)×100(単位:%))で表される容量保持率を求め、出力特性の指標とした。このようにして求めた容量保持率を、下記の評価基準に従って評価した。この値が高いほど出力特性に優れている。
 (評価基準)
 A:80%以上
 B:70%以上80%未満
 C:60%以上70%未満
 D:50%以上60%未満
 E:50%未満
 (5)粒子状バインダーの表面酸量の測定方法
 粒子状バインダーを含む水分散液を調製した。水分散液の固形分濃度(即ち粒子状バインダーの濃度)は2%とした。粒子状バインダーの単独の表面酸量(例えば、粒子状バインダーA単独の表面酸量、又は粒子状バインダーB単独の表面酸量)を測定する場合は、かかる粒子状バインダーのみの2%分散液を調製した。スラリー組成物が含有する粒子状バインダー全体の表面酸量を測定する場合は、スラリー組成物中の粒子状バインダーの比率と同じ比率で、各種の粒子状バインダーを含む、2%分散液を調製した(例えば、粒子状バインダーA/粒子状バインダーBの比が20/80であるスラリー組成物の粒子状バインダー全体の表面酸量は、粒子状バインダーA 0.4%及び粒子状バインダーB 1.6%を含む分散液を試料として測定した。)蒸留水で洗浄した容量150mlのガラス容器に、粒子状バインダーを含む水分散液を50g入れ、溶液電導率計(京都電子工業社製「CM-117」、使用セルタイプ:K-121)にセットして攪拌した。以後、攪拌は塩酸の添加が終了するまで継続した。
 粒子状バインダーを含む水分散液の電気伝導度が2.5mS以上3.0mS以下になるように、0.1規定の水酸化ナトリウム(和光純薬社製:試薬特級)を、粒子状バインダーを含む水分散液に添加した。その後、6分経過してから、電気伝導度を測定した。この値を、測定開始時の電気伝導度とした。
 さらに、この粒子状バインダーを含む水分散液に0.1規定の塩酸(和光純薬社製:試薬特級)を0.5ml添加して、30秒後に電気伝導度を測定した。その後、再び0.1規定の塩酸を0.5ml添加して、30秒後に電気伝導度を測定した。この操作を、30秒間隔で、粒子状バインダーを含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで、繰り返し行った。
 得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「ミリモル」)を横軸(X座標軸)としたグラフ上にプロットした。これにより、3つの変曲点を有する塩酸量-電気伝導度曲線が得られた。ここで、変曲点とは、測定された塩酸量-電気伝導度曲線が曲がっている点をいう。3つの変曲点のX座標及び塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3及びP4とした。X座標が、零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、及び、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3及びL4を求めた。近似直線L1と近似直線L2との交点のX座標をA1(ミリモル)、近似直線L2と近似直線L3との交点のX座標をA2(ミリモル)、近似直線L3と近似直線L4との交点のX座標をA3(ミリモル)とした。
 粒子状バインダー1g当りの表面酸量、及び粒子状バインダー1g当りの水相中の酸量を、それぞれ、下記の式(a)及び式(b)から、塩酸換算したミリ当量として求めた。また、水中に分散した粒子状バインダー1g当りの総酸基量を、式(c)に表す様に、それらの式(a)及び式(b)の合計として求めた。
 (a)粒子状バインダー1g当りの表面の酸基量=A2-A1
 (b)粒子状バインダー1g当りの水相中の酸基量=A3-A2
 (c)水中に分散した粒子状バインダー1g当りの総酸基量=A3-A1
 (6)正極の貫通方式の体積抵抗率の測定方法
 実施例及び比較例で製造したリチウムイオン二次電池用正極を直径12mmの円形に打ち抜き、打ち抜かれた試験片の厚みd(μm)及び負極活物質層の面積Sを測定した。試験片を引張圧縮試験機(今田製作所社製「SV-301NA」)の治具に挟み込み、圧力20MPaに加圧した。治具に二端子型クリップを接続し、測定ケーブルをオートマチック ポラリゼーションシステム(北斗電工社製「HSV-110」)に接続した。クロノポテンショメトリーモードを使用して、治具に一定電流I=10mAを10分間流し、そのときの電圧V(V)を計測した。オームの法則より、抵抗R(Ω)=V/Iを算出し、さらに体積抵抗率ρ(Ω・cm)=R×S/dを算出し、貫通方式の体積抵抗率ρを求めた。このようにして求めた体積抵抗率ρを、下記の評価基準に従って評価した。体積抵抗率ρが小さいほど、導電材の分散性に優れていることを示す。
 (評価基準)
 A:15Ω・cm未満
 B:15Ω・cm以上30Ω・cm未満
 C:30Ω・cm以上45Ω・cm未満
 D:45Ω・cm以上
 [実施例1]
 (1-1.粒子状バインダーAの製造)
 攪拌機付き5MPa耐圧容器に、(メタ)アクリル酸エステル単量体としてn-ブチルアクリレート95部、ニトリル基含有単量体としてアクリロニトリル2部、架橋性単量体としてアリルメタクリレート1部、エチレン性不飽和モノカルボン酸単量体としてメタクリル酸2部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダーAを含む混合物を得た。この粒子状バインダーAを含む混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の粒子状バインダーAを含む水分散液を得た。この水分散液を用いて、上述した方法によって粒子状バインダーAの表面酸量を測定した。粒子状バインダーAの数平均粒子径は250nm、ガラス転移温度は-30℃であった。
 (1-2.粒子状バインダーBの製造)
 重合缶Aに、2-エチルヘキシルアクリレート11部、アクリロニトリル1.2部、ラウリル硫酸ナトリウム0.12部、イオン交換水74部を加えた。さらに重合開始剤としての過硫酸アンモニウム0.3部およびイオン交換水10部を加え、60℃に加温し90分攪拌した。
 次いで、上記とは別の重合缶Bに、2-エチルヘキシルアクリレート64部、アクリロニトリル18.8部、2-ヒドロキシエチルアクリレート2部、イタコン酸3.0部、ラウリル硫酸ナトリウム0.7部およびイオン交換水46部を加えて攪拌し、エマルジョンを作製した。作製したエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌し、モノマー消費量が95%以上になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpHを8.0に調整し、粒子状バインダーBを含む水分散液を得た。
 得られた粒子状バインダーBの、ガラス転移温度は-37℃、数平均粒子径が0.18μmであった。また、得られた粒子状バインダーBの組成は、2-エチルヘキシルアクリレート単位が75重量%、アクリロニトリル単位が20重量%、イタコン酸単位が3重量%、2-ヒドロキシエチルアクリレート単位が2重量%であった。
 (1-3.正極用スラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、正極活物質として体積平均粒子径(50%体積累積径)12μmのLiCoOを100部、導電材としてアセチレンブラック(電気化学工業社製「HS-100」)を2部、水溶性重合体としてカルボキシメチルセルロース(日本製紙ケミカル社製「サンローズ MAC-200HC」;1重量%水溶液の粘度1880mPa・s)の2%水溶液を固形分相当で1部を加え、さらに、上記工程(1-1)で得た粒子状バインダーAを含む水分散液を粒子状バインダーAの量で0.4部、及び、上記工程(1-2)で得た粒子状バインダーBを含む水分散液を粒子状バインダーの量で1.6部加え、水を加えて固形分濃度70%に調整した後、25℃にて15分混合し、混合液を得た。これを減圧下で脱泡処理してリチウムイオン二次電池正極用スラリー組成物とした。
 この正極用スラリー組成物について、上述した方法によってスラリー粘度の経時変化率Δηを測定した。
 (1-4.正極の製造)
 上記工程(1-3)で得た正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。
 また、このプレス前の正極をロールプレスで圧延して、電極層密度が3.7g/cmの、プレス後の正極を得た。このプレス後の正極から試験片を切り出し、プレス後の正極のピール強度及び貫通方式の体積低効率を測定した。
 (1-5.負極用スラリー組成物の製造)
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(体積平均粒子径:24.5μm)を100部、粘度調整剤としてエーテル化度が0.8のカルボキシメチルセルロース水溶液を50部(固形分濃度2%)投入し、適量のイオン交換水を加えて、25℃にて60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し、混合液を得た。上記混合液に、粒子状バインダーとしてスチレンブタジエン共重合体(粒径:140nm、Tg:10℃)を2部(固形分濃度40%)およびイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理してリチウムイオン二次電池負極用スラリー組成物を得た。
 (1-6.負極の製造)
 上記工程(1-5)で得た負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に塗布し、乾燥させた。この際、負極用スラリー組成物の塗布量は、その負極用スラリー組成物を塗布し乾燥した後の集電体上の固形分の量が16mg/cmとなるように設定した。また、乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極を得た。このプレス前の負極をロールプレスで圧延して、負極活物質層の厚みが80μmのプレス後の負極を得た。
 (1-7.セパレーターの用意)
 単層のポリプロピレン製セパレーター(セルガード社製「セルガード2500」)を、5×5cmの正方形に切り抜いて、セパレーターを用意した。
 (1-8.リチウムイオン二次電池)
 電池の外装として、アルミニウム包材外装を用意した。上記工程(1-4)で得た正極を、4×4cmの正方形に切り出し、正方形の正極を得た。正方形の正極を、集電体側の表面がアルミニウム包材外装に接するように、外装の中に配置した。正方形の正極の正極活物質層側の面上に、上記工程(1-7)で得た正方形のセパレーターを配置した。さらに、上記工程(1-6)で得たプレス後の負極を、4.2×4.2cmの正方形に切り出し、正方形の負極を得た。正方形の負極を、セパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。アルミニウム包材内に電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5体積比、電解質:濃度1MのLiPF)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをして、アルミニウム包材外装を閉口し、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池について、上述した方法で、サイクル特性及び出力特性を測定した。
 [実施例2]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-1)の粒子状バインダーAの製造において、n-ブチルアクリレートの添加量を95部から93部に変更した。
 ・(1-1)の粒子状バインダーAの製造において、メタクリル酸の添加量を2部から4部に変更した。粒子状バインダーAの粒子径は250nmであった。
 ・(1-2)の粒子状バインダーBの製造において、イタコン酸の添加量を3.0部から4.0部に変更した。
 ・(1-2)の粒子状バインダーBの製造において、重合缶Bに入れる2-エチルヘキシルアクリレートの添加量を64部から63部に変更した。粒子状バインダーBの粒子径は180nmであった。
 [実施例3]
 (3-1.粒子状バインダーの製造)
 重合缶Aに、2-エチルヘキシルアクリレート18.5部、アクリロニトリル3.0部、ラウリル硫酸ナトリウム0.12部、イオン交換水74部を加えた。さらに重合開始剤としての過硫酸アンモニウム0.3部およびイオン交換水10部を加え、60℃に加温し90分攪拌した。
 次いで、上記とは別の重合缶Bに、2-エチルヘキシルアクリレート40部、アクリロニトリル32部、2-ヒドロキシエチルアクリレート2部、イタコン酸4.5部、ラウリル硫酸ナトリウム0.7部およびイオン交換水46部を加えて攪拌し、エマルジョンを作製した。作製したエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌し、モノマー消費量が95%以上になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpHを8.0に調整し、粒子状バインダーを含む水分散液を得た。粒子状バインダーの粒子径は200nmであった。
 (3-2.リチウムイオン二次電池の構成要素及びリチウムイオン二次電池の製造及び評価)
 下記の変更を行った他は、実施例1の(1-3)~(1-8)と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、(1-1)で得た粒子状バインダーAを含む水分散液及び(1-2)で得た粒子状バインダーBを含む水分散体を添加せず、代わりに、(3-1)で得た粒子状バインダーを含む水分散液を、粒子状バインダーの量で2.0部加えた。
 [実施例4~6]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、カルボキシメチルセルロース水溶液として、日本製紙ケミカル社製「サンローズ MAC-200HC」に代えて、第一工業製薬社製「セロゲン BS-H」(実施例4;1重量%水溶液の粘度800mPa・s)、日本製紙ケミカル社製「サンローズ MAC350HC」(実施例5;1重量%水溶液の粘度3500mPa・s)、又は第一工業製薬社製「セロゲン WS-C」(実施例6;1重量%水溶液の粘度150mPa・s)を用いた。使用量は、実施例1と同様、固形分相当で1部とした。
 [実施例7]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-1)の粒子状バインダーAの製造において、n-ブチルアクリレートの添加量を95部から96.7部に変更した。
 ・(1-1)の粒子状バインダーAの製造において、メタクリル酸の添加量を2部から0.3部に変更した。
 [実施例8]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-1)の粒子状バインダーAの製造において、n-ブチルアクリレートの添加量を95部から93部に変更した。
 ・(1-1)の粒子状バインダーAの製造において、メタクリル酸の添加量を2部から4部に変更した。
 [実施例9]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、粒子状バインダーAを含む水分散液の添加量を、粒子状バインダーAの量で0.4部から0.2部に変更した。
 ・(1-3)の正極用スラリー組成物の製造において、粒子状バインダーBを含む水分散液の添加量を、粒子状バインダーBの量で1.6部から1.8部に変更した。
 [実施例10]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、粒子状バインダーAを含む水分散液の添加量を、粒子状バインダーAの量で0.4部から0.6部に変更した。
 ・(1-3)の正極用スラリー組成物の製造において、粒子状バインダーBを含む水分散液の添加量を、粒子状バインダーBの量で1.6部から1.4部に変更した。
 [実施例11]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-2)の粒子状バインダーBの製造において、イタコン酸の添加量を3.0部から1.5部に変更した。
 ・(1-2)の粒子状バインダーBの製造において、重合缶Bに入れる2-エチルヘキシルアクリレートの添加量を64部から65.5部に変更した。
 [実施例12]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-2)の粒子状バインダーBの製造において、イタコン酸の添加量を3.0部から5.0部に変更した。
 ・(1-2)の粒子状バインダーBの製造において、重合缶Bに入れる2-エチルヘキシルアクリレートの添加量を64部から62部に変更した。
 [実施例13]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-2)の粒子状バインダーBの製造において、イタコン酸の添加量を3.0部から4.0部に変更した。
 ・(1-2)の粒子状バインダーBの製造において、重合缶Bに入れる2-エチルヘキシルアクリレートの添加量を64部から63部に変更した。
 [実施例14]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、正極活物質として体積平均粒子径12μmのLiCoOに代えて、LiNi0.33Co0.33Mn0.33(体積平均粒子径11μm)を用いた。
 [比較例1]
 (C1-1.粒子状バインダーの製造)
 重合缶Aに、2-エチルヘキシルアクリレート10部、アクリロニトリル1.2部、ラウリル硫酸ナトリウム0.12部、イオン交換水74部を加えた。さらに重合開始剤としての過硫酸アンモニウム0.3部およびイオン交換水10部を加え、60℃に加温し90分攪拌した。
 次いで、上記とは別の重合缶Bに、2-エチルヘキシルアクリレート61部、アクリロニトリル18.8部、2-ヒドロキシエチルアクリレート2部、イタコン酸7部、ラウリル硫酸ナトリウム0.7部およびイオン交換水46部を加えて攪拌し、エマルジョンを作製した。作製したエマルジョンを、約180分かけて重合缶Bから重合缶Aに逐次添加した。その後、約120分攪拌し、モノマー消費量が95%以上になったところで冷却して反応を終了した。その後、4%NaOH水溶液でpHを8.0に調整し、粒子状バインダーを含む水分散液を得た。
 (C1-2.リチウムイオン二次電池の構成要素及びリチウムイオン二次電池の製造及び評価)
 下記の変更を行った他は、実施例1の(1-3)~(1-8)と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、(1-1)で得た粒子状バインダーAを含む水分散液及び(1-2)で得た粒子状バインダーBを含む水分散体を添加せず、代わりに、(C1-1)で得た粒子状バインダーを含む水分散液を、粒子状バインダーの量で2.0部加えた。
 [比較例2]
 (C2-1.粒子状バインダーの製造)
 アリルメタクリレートおよびメタクリル酸を使用せず、n-ブチルアクリレートを97部、アクリロニトリルを3部とした以外は、実施例1の(1-1)と同様にして、粒子状バインダーを含む水分散液を得た。
 (C2-2.リチウムイオン二次電池の構成要素及びリチウムイオン二次電池の製造及び評価)
 下記の変更を行った他は、実施例1の(1-3)~(1-8)と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、(1-1)で得た粒子状バインダーAを含む水分散液及び(1-2)で得た粒子状バインダーBを含む水分散体を添加せず、代わりに、(C2-1)で得た粒子状バインダーを含む水分散液を、粒子状バインダーの量で2.0部加えた。
 [比較例3]
 下記の変更を行った他は、実施例1と同様に操作し、リチウムイオン二次電池の構成要素及びリチウムイオン二次電池を製造し、評価した。
 ・(1-3)の正極用スラリー組成物の製造において、カルボキシメチルセルロース水溶液として、日本製紙ケミカル社製「サンローズ MAC-200HC」に代えて、第一工業製薬社製「セロゲン BSH-12」(1重量%水溶液の粘度6000mPa・s)を用いた。使用量は、実施例1と同様、固形分相当で1部とした。
 [結果]
 上述した実施例及び比較例の結果を表1~表3に示す。また、表1~表3において、略称の意味は以下の通りである。
 LCO:LiCoO
 NMC:LiNi0.33Co0.33Mn0.33
 1%粘度:水溶性重合体の1重量%水溶液の粘度
 A+B表面酸量:粒子状バインダーA及び粒子状バインダーB全体としての表面酸量
 A表面酸量:粒子状バインダーAの表面酸量
 A-MAA量:粒子状バインダーAの製造に用いたメタクリル酸量(部)
 A-その他:粒子状バインダーAの製造に用いた、メタクリル酸以外の単量体の種別及びその量(部)
 BA:n-ブチルアクリレート
 AN:アクリロニトリル
 AMA:アリルメタクリレート
 B表面酸量:粒子状バインダーB(実施例3、比較例1及び比較例2においては単独で用いたバインダー)の表面酸量
 N.D.:検出できず
 B-IA量:粒子状バインダーB(実施例3、比較例1及び比較例2においては単独で用いたバインダー)の製造に用いたイタコン酸量(部)
 B-その他:粒子状バインダーB(実施例3、比較例1及び比較例2においては単独で用いたバインダー)の製造に用いた、イタコン酸以外の単量体の種別及びその量(部)
 2-EHA:2-エチルヘキシルアクリレート
 AN:アクリロニトリル
 β-HEA:2-ヒドロキシエチルアクリレート
 A/B:粒子状バインダーA/粒子状バインダーBの重量比
 スラリ濃度:正極用スラリー組成物中の固形分濃度(%)
 スラリ粘度:正極用スラリー組成物の粘度(調製直後、mPa・s)
 粘度経時変化率:室温で1日間保管後のスラリー粘度の経時変化率Δηの評価結果
 プレス後ピール:プレス後の正極のピール強度の評価結果
 貫通抵抗:正極の貫通方式の体積抵抗率の評価結果
 サイクル特性:リチウムイオン二次電池のサイクル特性(容量維持率)の評価結果
 出力特性:リチウムイオン二次電池の出力特性(容量保持率)の評価結果
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 [検討]
 以上の結果から明らかな通り、いずれの実施例においても、粒子状バインダーの表面酸量の要件を満たさない比較例1及び2、並び水溶性重合体の粘度の要件を満たさない比較例3に比べて、サイクル特性、出力特性及びその他の評価においてバランス良く優れた結果が得られた。したがって、前記の実施例及び比較例から、本発明によりサイクル特性及び出力特性に優れるリチウムイオン二次電池を実現できることが確認された。

Claims (8)

  1.  正極活物質、導電材、水溶性重合体及び粒子状バインダーを含み、
     前記水溶性重合体の1%水溶液粘度が、10mPa・s以上4,000mPa・s以下であり、
     前記粒子状バインダーが、表面酸量が0.01meq/g以上0.5meq/g以下の粒子状バインダーである、リチウムイオン二次電池正極用スラリー組成物。
  2.  前記粒子状バインダーが、エチレン性不飽和モノカルボン酸単量体単位を含む粒子状バインダーAと、エチレン性不飽和ジカルボン酸単量体単位を含む粒子状バインダーBとを含む、請求項1に記載のリチウムイオン二次電池正極用スラリー組成物。
  3.  前記粒子状バインダーA中の前記エチレン性不飽和モノカルボン酸単量体単位の割合が0.1重量%以上10重量%以下である、請求項2に記載のリチウムイオン二次電池正極用スラリー組成物。
  4.  前記粒子状バインダーB中の前記エチレン性不飽和ジカルボン酸単量体単位の割合が1重量%以上10重量%以下である、請求項2又は3に記載のリチウムイオン二次電池正極用スラリー組成物。
  5.  前記粒子バインダーAと前記粒子状バインダーBとの重量比が、粒子状バインダーA/粒子状バインダーB=1/99以上50/50以下である、請求項2~4のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物。
  6.  前記水溶性重合体が、カルボキシメチルセルロースを含む、請求項1~5のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物。
  7.  正極、負極及び電解液を備えるリチウムイオン二次電池であって、
     前記正極が、請求項1~6のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物を、集電体上に塗布し、乾燥して得られるリチウムイオン二次電池用正極である、リチウムイオン二次電池。
  8.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池正極用スラリー組成物を、集電体上に塗布し、乾燥することを含む、リチウムイオン二次電池用正極の製造方法。
PCT/JP2014/054383 2013-02-27 2014-02-24 リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法 WO2014132935A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013037991 2013-02-27
JP2013-037991 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132935A1 true WO2014132935A1 (ja) 2014-09-04

Family

ID=51428199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054383 WO2014132935A1 (ja) 2013-02-27 2014-02-24 リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法

Country Status (1)

Country Link
WO (1) WO2014132935A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174036A1 (ja) * 2014-05-14 2015-11-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池
US20160172679A1 (en) * 2014-12-12 2016-06-16 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2020100315A1 (ja) * 2018-11-13 2020-05-22 住友精化株式会社 高分子組成物
CN115020815A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283017A (ja) * 1995-02-13 1996-10-29 Daicel Amiboshi Sangyo Kk 水酸化マグネシウムおよびその水懸濁液の製造方法
JP2006348138A (ja) * 2005-06-15 2006-12-28 Dai Ichi Kogyo Seiyaku Co Ltd カルボキシメチルセルロースナトリウムの製造方法
JP2010282979A (ja) * 2010-09-15 2010-12-16 Nippon Zeon Co Ltd 非水電解質二次電池正極用スラリー組成物
WO2012014818A1 (ja) * 2010-07-30 2012-02-02 日本ゼオン株式会社 エーテル化合物、非水系電池用電解液組成物、非水系電池電極用バインダー組成物、非水系電池電極用スラリー組成物、非水系電池用電極及び非水系電池
JP2013030449A (ja) * 2011-06-24 2013-02-07 Jsr Corp 正極用スラリー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283017A (ja) * 1995-02-13 1996-10-29 Daicel Amiboshi Sangyo Kk 水酸化マグネシウムおよびその水懸濁液の製造方法
JP2006348138A (ja) * 2005-06-15 2006-12-28 Dai Ichi Kogyo Seiyaku Co Ltd カルボキシメチルセルロースナトリウムの製造方法
WO2012014818A1 (ja) * 2010-07-30 2012-02-02 日本ゼオン株式会社 エーテル化合物、非水系電池用電解液組成物、非水系電池電極用バインダー組成物、非水系電池電極用スラリー組成物、非水系電池用電極及び非水系電池
JP2010282979A (ja) * 2010-09-15 2010-12-16 Nippon Zeon Co Ltd 非水電解質二次電池正極用スラリー組成物
JP2013030449A (ja) * 2011-06-24 2013-02-07 Jsr Corp 正極用スラリー

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174036A1 (ja) * 2014-05-14 2015-11-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池
US20160172679A1 (en) * 2014-12-12 2016-06-16 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20160071740A (ko) * 2014-12-12 2016-06-22 삼성에스디아이 주식회사 리튬 이차 전지용 양극 조성물, 그리고 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
US10439222B2 (en) * 2014-12-12 2019-10-08 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR102311509B1 (ko) 2014-12-12 2021-10-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 조성물, 그리고 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
WO2020100315A1 (ja) * 2018-11-13 2020-05-22 住友精化株式会社 高分子組成物
JP2020079379A (ja) * 2018-11-13 2020-05-28 住友精化株式会社 高分子組成物
CN113039242A (zh) * 2018-11-13 2021-06-25 住友精化株式会社 高分子组合物
US11920024B2 (en) 2018-11-13 2024-03-05 Sumitomo Seika Chemicals Co., Ltd. Polymer composition
CN115020815A (zh) * 2022-08-09 2022-09-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020815B (zh) * 2022-08-09 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池
WO2024032174A1 (zh) * 2022-08-09 2024-02-15 深圳新宙邦科技股份有限公司 一种锂离子电池

Similar Documents

Publication Publication Date Title
JP6222102B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
JP6361655B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6451732B2 (ja) 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
JP6237622B2 (ja) リチウムイオン二次電池負極用スラリー、リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
JP6048070B2 (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6327251B2 (ja) リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR102067562B1 (ko) 2 차 전지용 부극, 2 차 전지, 슬러리 조성물, 및 제조 방법
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP2020205257A (ja) リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池負極用熱架橋性スラリー、リチウムイオン電池用負極、リチウムイオン電池負極用材料、並びにリチウムイオン電池及びその製造方法
JP5978837B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6111895B2 (ja) リチウムイオン二次電池負極用スラリー組成物、二次電池用負極および二次電池
JP2014222649A (ja) 二次電池用多孔膜組成物、二次電池用電極、二次電池用セパレータ及び二次電池
JP6233131B2 (ja) 二次電池多孔膜用組成物、二次電池用多孔膜及び二次電池
JP6236964B2 (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JPWO2015174036A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池
WO2014132935A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP