WO2013099133A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2013099133A1
WO2013099133A1 PCT/JP2012/007975 JP2012007975W WO2013099133A1 WO 2013099133 A1 WO2013099133 A1 WO 2013099133A1 JP 2012007975 W JP2012007975 W JP 2012007975W WO 2013099133 A1 WO2013099133 A1 WO 2013099133A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power supply
frequency power
switching
plasma
Prior art date
Application number
PCT/JP2012/007975
Other languages
English (en)
French (fr)
Inventor
紀和 山田
俊文 立川
幸一 永海
達也 池成
大輔 前原
Original Assignee
東京エレクトロン株式会社
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 株式会社ダイヘン filed Critical 東京エレクトロン株式会社
Priority to CN201280064757.6A priority Critical patent/CN104025266B/zh
Priority to US14/368,865 priority patent/US9355822B2/en
Priority to KR1020147017715A priority patent/KR102038642B1/ko
Publication of WO2013099133A1 publication Critical patent/WO2013099133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Definitions

  • the present invention relates to a technique for performing plasma processing on a substrate to be processed, and more particularly, to a power modulation type capacitively coupled plasma processing apparatus method that modulates high-frequency power into pulses.
  • an upper electrode and a lower electrode are arranged in parallel in a processing vessel, a substrate to be processed (semiconductor wafer, glass substrate, etc.) is placed on the lower electrode, and an upper electrode or a lower electrode is placed.
  • a high frequency having a frequency suitable for plasma generation (usually 13.56 MHz or more) is applied to the electrode. Electrons are accelerated by a high-frequency electric field generated between the electrodes facing each other by the application of the high frequency, and plasma is generated by impact ionization between the electrons and the processing gas.
  • a thin film is deposited on the substrate or a material or thin film on the substrate surface is shaved by a gas phase reaction or surface reaction of radicals and ions contained in the plasma.
  • Patent Document 1 a power modulation system that modulates high-frequency power used for plasma generation into pulses that can be controlled on / off is effective.
  • the plasma generation state and the plasma non-generation state (the state where no plasma is generated) of the processing gas are alternately repeated at a predetermined cycle during the plasma etching.
  • the time during which plasma is continuously generated is shortened. This reduces the amount of charge that flows from the plasma into the substrate to be processed at a time or the amount of accumulated charge on the surface of the substrate to be processed, so that charging damage is less likely to occur and stable plasma Realization of processing and reliability of plasma process are improved.
  • a high frequency of a low frequency (usually 13.56 MHz or less) is applied to the lower electrode on which the substrate is placed, and plasma is generated by a negative bias voltage or sheath voltage generated on the lower electrode.
  • An RF bias method for accelerating ions therein and drawing them into the substrate is often used. By accelerating ions from the plasma and colliding with the substrate surface in this way, surface reaction, anisotropic etching, film modification, or the like can be promoted.
  • Patent Document 2 a power modulation method that performs on / off control of high-frequency power used for ion attraction and modulates in a pulse shape is effective.
  • a high first level (on level) power period suitable for progressing etching of a predetermined film on the substrate to be processed and a high frequency for ion attraction are present on the substrate to be processed.
  • An appropriate polymer layer for a given film is obtained by alternately repeating a period of maintaining a low second level (off-level) power suitable for depositing a polymer on the given film at regular intervals. Since the progress of etching can be suppressed, an undesirable microloading effect can be reduced, and etching with a high selectivity and a high etching rate can be achieved.
  • a capacitively coupled plasma etching apparatus by applying a negative DC voltage to the upper electrode facing the substrate across the plasma generation space, secondary electrons generated by the upper electrode are increased on the surface layer of the substrate.
  • An organic mask having a low etching resistance such as an ArF photoresist is also modified by driving at a speed.
  • the high-frequency power used for plasma generation or ion attraction is controlled on / off at a constant pulse frequency, and the high-frequency power is turned off in synchronization with this.
  • Patent Document 3 A method of applying a DC voltage only during a period of time has been proposed (Patent Document 3). In this way, when the high frequency power is turned off and the plasma sheath is thinned, a DC voltage is applied to the upper electrode, so that secondary electrons from the upper electrode efficiently enter the substrate, and the organic film on the substrate Will be strengthened.
  • the RF power is instantaneously generated on the high frequency power supply line.
  • the signal converges to the zero level (L level) while being attenuated with a constant time constant so as to spread the tail.
  • Such an RF power skirting phenomenon deviates from the original standard of power modulation, so that the intended effect of power modulation is not fully exhibited, and an RF provided on a high-frequency power supply line or in a high-frequency power supply is not limited.
  • the power monitor accuracy is also adversely affected.
  • the present inventor has found that the above-described RF power skirting phenomenon occurs only when a switching type high frequency power supply is used and power modulation is applied to this power supply.
  • the present invention has been made on the basis of the above-described knowledge, and can easily and reliably prevent occurrence of an RF power skirting phenomenon on a high-frequency power supply line when power modulation is applied to a switching-type high-frequency power supply.
  • a plasma processing apparatus is provided.
  • the plasma processing apparatus of the present invention is a plasma processing apparatus that generates plasma of a processing gas in a evacuable processing container that accommodates a substrate to be processed in a removable manner, and performs a desired processing on the substrate under the plasma.
  • a switching-type high-frequency power source having a direct-current power source and a switching element, wherein the switching element is turned on / off at a frequency in a high-frequency band by a switching pulse to convert a direct-current output of the direct-current power source into a high-frequency output;
  • a high-frequency power supply line for supplying the high-frequency power output from the high-frequency power supply to the plasma, and a matching unit for matching the impedance on the high-frequency power supply side and the impedance on the load side on the high-frequency power supply line;
  • the high frequency power is in an on period and an off period in which the high frequency power is off.
  • a high-frequency power modulation unit that controls the high-frequency power supply so as to alternately repeat at the pulse frequency, and for removing the high-frequency remaining on the high-frequency power supply line during the off period in each cycle of the pulse frequency And a residual high frequency removing unit.
  • the plasma processing apparatus of the present invention having the above-described configuration, it is simple and reliable that the RF power skirting phenomenon occurs on the high-frequency power supply line when power modulation is applied to the switching-type high-frequency power supply. Can be prevented.
  • FIG. 1 shows the configuration of a plasma processing apparatus in one embodiment of the present invention.
  • This plasma processing apparatus is configured as a capacitively coupled (parallel plate type) plasma etching apparatus.
  • a cylindrical vacuum chamber (processing vessel) 10 made of aluminum whose surface is anodized (anodized) is provided. Have. The chamber 10 is grounded.
  • a cylindrical susceptor support 14 is disposed at the bottom of the chamber 10 via an insulating plate 12 such as ceramic, and a susceptor 16 made of, for example, aluminum is provided on the susceptor support 14.
  • the susceptor 16 constitutes a lower electrode, on which, for example, a semiconductor wafer W is placed as a substrate to be processed.
  • An electrostatic chuck 18 for holding the semiconductor wafer W is provided on the upper surface of the susceptor 16.
  • This electrostatic chuck 18 is obtained by sandwiching an electrode 20 made of a conductive film between a pair of insulating layers or insulating sheets, and a DC power supply 24 is electrically connected to the electrode 20 via a switch 22.
  • the semiconductor wafer W can be held on the electrostatic chuck 18 by an electrostatic attraction force by a DC voltage from the DC power source 24.
  • a focus ring 26 made of, for example, silicon is disposed on the upper surface of the susceptor 16 around the electrostatic chuck 18 to improve etching uniformity.
  • a cylindrical inner wall member 28 made of, for example, quartz is attached to the side surfaces of the susceptor 16 and the susceptor support base 14.
  • a refrigerant chamber 30 extending in the circumferential direction is provided in the susceptor support base 14.
  • a refrigerant of a predetermined temperature for example, cooling water
  • the processing temperature of the semiconductor wafer W on the susceptor 16 can be controlled by the temperature of the refrigerant.
  • a heat transfer gas such as He gas from a heat transfer gas supply mechanism (not shown) is supplied between the upper surface of the electrostatic chuck 18 and the back surface of the semiconductor wafer W via the gas supply line 34.
  • First and second high-frequency power sources 36 and 38 are electrically connected to the susceptor 16 via matching units 40 and 42 and a common feeding conductor (for example, a feeding rod) 44, respectively.
  • the first high frequency power supply 36 outputs a first high frequency RF1 having a first frequency f 1 (for example, 100 MHz) suitable for plasma generation.
  • the second high frequency power supply 38 outputs a second high frequency RF 2 having a second frequency f 2 (for example, 13.56 MHz) suitable for drawing ions from the plasma into the semiconductor wafer W on the susceptor 16.
  • Matching units 40 and 42 function to match the load impedance on the plasma side generated in the chamber 10 with the impedances of the high-frequency power sources 36 and 38 on the high-frequency power supply lines (high-frequency transmission lines) 43 and 45, respectively.
  • Each matching unit 40, 42 includes a matching circuit including at least two controllable reactance elements, an actuator (for example, a motor) for controlling the reactance value (impedance position) of each reactance element, and the matching circuit. It includes a sensor that measures the load impedance that it includes, and a controller that drives and controls each actuator so that the measured value of the load impedance matches the matching point (usually 50 ⁇ ).
  • This plasma processing apparatus uses a linear amplifier type high frequency power source for the first high frequency power source 36 for plasma generation, and uses a switching type high frequency power source for the second high frequency power source 38 for ion attraction.
  • the residual high frequency removing section 74 is connected to the high frequency power supply line 45 on the second high frequency power supply 38 side. The configuration and operation of the high-frequency power sources 36 and 38 and the residual high-frequency removing unit 74 will be described later in detail.
  • the upper electrode 46 having a ground potential is provided on the ceiling of the chamber 10 so as to face the susceptor 16 in parallel.
  • the upper electrode 46 includes an electrode plate 48 made of a silicon-containing material such as Si or SiC having a large number of gas ejection holes 48a, and a conductive material that detachably supports the electrode plate 48, such as aluminum whose surface is anodized.
  • the electrode support body 50 which consists of is comprised.
  • a plasma generation space or a processing space PA is formed between the upper electrode 46 and the susceptor 16.
  • the electrode support 50 has a gas buffer chamber 52 therein, and a plurality of gas vent holes 50a communicating from the gas buffer chamber 52 to the gas ejection holes 48a of the electrode plate 48 on the lower surface thereof.
  • a processing gas supply source 56 is connected to the gas buffer chamber 52 via a gas supply pipe 54.
  • the gas supply pipe 54 is provided with a mass flow controller (MFC) 58 and an opening / closing valve 60.
  • MFC mass flow controller
  • etching gas etching gas
  • the upper electrode 46 also serves as a shower head for supplying the processing gas to the processing space PA.
  • a passage (not shown) through which a coolant such as cooling water flows is provided inside the electrode support 50, and the entire upper electrode 46, in particular, the electrode plate 48 is kept at a predetermined temperature via the coolant by an external chiller unit. It is supposed to adjust the temperature. Further, in order to further stabilize the temperature control for the upper electrode 46, a configuration in which a heater (not shown) made of a resistance heating element is attached to the inside or the upper surface of the electrode support 50 is also possible.
  • An annular space formed between the susceptor 16 and the susceptor support 14 and the side wall of the chamber 10 is an exhaust space, and an exhaust port 62 of the chamber 10 is provided at the bottom of the exhaust space.
  • An exhaust device 66 is connected to the exhaust port 62 via an exhaust pipe 64.
  • the exhaust device 66 has a vacuum pump such as a turbo molecular pump, and can depressurize the interior of the chamber 10, particularly the processing space PA, to a desired degree of vacuum.
  • a gate valve 70 that opens and closes the loading / unloading port 68 for the semiconductor wafer W is attached to the side wall of the chamber 10.
  • the main control unit 72 includes one or a plurality of microcomputers, and in accordance with software (program) and recipe information stored in an external memory or internal memory, each unit in the apparatus, in particular, the high frequency power supplies 36 and 38, the matching unit 40, and the like. , 42, MFC 58, opening / closing valve 60, exhaust device 66, residual high frequency removing unit 74, and the like, and the overall operation (sequence) of the device.
  • the main control unit 72 stores an operation panel (not shown) for a man-machine interface including an input device such as a keyboard and a display device such as a liquid crystal display, and various data such as various programs, recipes, and setting values. Alternatively, it is also connected to an external storage device (not shown) that accumulates. In this embodiment, the main control unit 72 is shown as one control unit. However, a plurality of control units may share the functions of the main control unit 72 in parallel or hierarchically.
  • a processing gas that is, an etching gas (generally a mixed gas) is introduced into the chamber 10 from the processing gas supply source 56 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 10 is set to a set value by vacuum evacuation by the exhaust device 66. .
  • an etching gas generally a mixed gas
  • first high frequency RF1 (100 MHz) from the first high frequency power supply 36 and the second high frequency RF2 (13.56 MHz) from the high frequency power supply 38 are superimposed (or one of them alone) and applied to the susceptor 16.
  • a DC voltage is applied from the DC power source 24 to the electrode 20 of the electrostatic chuck 18 to fix the semiconductor wafer W on the electrostatic chuck 18.
  • the etching gas discharged from the shower head of the upper electrode 46 is discharged under a high-frequency electric field between the electrodes 46 and 16, and plasma is generated in the processing space PA.
  • the film to be processed on the main surface of the semiconductor wafer W is etched by radicals and ions contained in the plasma.
  • FIG. 2 shows a circuit configuration of the first high-frequency power source 36.
  • the first high-frequency power source 36 is a linear amplifier type high-frequency power source as described above, and a sine wave oscillator 80 that generates a sine wave signal rf 1 having a first frequency f 1 (100 MHz), and a sine output from the oscillator 80.
  • a linear amplifier 82 that outputs the first high-frequency RF1 by controlling the gain or amplification factor of the RF power in a controllable manner while maintaining the sine waveform of the wave signal rf1, and an oscillator 80 and a control signal from the main control unit 72.
  • a power supply controller 84 that directly controls the linear amplifier 82.
  • the main control unit 72 and the power supply control unit 84 form a power modulation unit.
  • an RF power monitor 86 is also provided.
  • the RF power monitor 86 includes a directional coupler, a traveling wave power monitor unit, and a reflected wave power monitor unit.
  • the directional coupler extracts signals corresponding to the RF power (traveling wave) propagating in the forward direction on the high-frequency power supply line 43 and the RF power (reflecting wave) propagating in the reverse direction.
  • the traveling wave power monitor generates a signal representing the power of the fundamental traveling wave (100 MHz) included in the traveling wave on the high-frequency transmission path 43 based on the traveling wave power detection signal extracted by the directional coupler. .
  • This signal that is, the fundamental traveling wave power measurement value signal
  • the reflected wave power monitor unit measures the power of the fundamental wave reflected wave (100 MHz) included in the reflected wave returned from the plasma in the chamber 10 to the first high frequency power source 36, and the first high frequency wave from the plasma in the chamber 10. The total power of all reflected wave spectra included in the reflected wave returning to the power source 36 is measured.
  • the fundamental reflected wave power measurement value obtained by the reflected wave power monitor unit is given to the main control unit 72 for monitor display, and the total reflected wave power measurement value is stored in the first high frequency power supply 36 as a monitor value for power amplifier protection.
  • the power is supplied to the power control unit 84.
  • Output terminals M 1 and N 1 of the linear amplifier 82 are connected to an input terminal of the matching unit 40 via a low-pass filter 88 and a coaxial cable 90.
  • the low pass filter 88 removes a frequency component (distortion component) higher than the first frequency f 1 included in the first high frequency RF 1 from the linear amplifier 82.
  • the illustrated low-pass filter 88 is configured as a ⁇ -type circuit including one coil 92 inserted in series in the high-frequency power supply line 43 and two capacitors 94 and 96 inserted in parallel on both sides of the coil 92. Yes.
  • FIG. 3 shows a circuit configuration of the linear amplifier 82.
  • This linear amplifier 82 has an input transformer 102 for inputting the sine wave signal rf1 from the oscillator 80 to the primary winding via the input terminal 100, and respective control terminals connected to both ends of the secondary winding of the input transformer 102.
  • a pair of amplification transistors for example, P-type MOSFETs 104A and 104B, and an output transformer 106 having a load connected to the secondary side.
  • the secondary winding of the input transformer 102 has one terminal connected to the gate terminal of the first MOSFET 104A, the other terminal connected to the gate terminal of the second MOSFET 104B, and a neutral point grounded.
  • the first MOSFET 104A has a source terminal grounded and a drain terminal connected to one terminal of the primary winding of the output transformer 108.
  • the second MOSFET 104B has a source terminal grounded and a drain terminal connected to the other terminal of the primary winding of the output transformer 106.
  • the neutral point of the primary winding of the output transformer 106 is connected to the power supply voltage (V dd ) terminal 108 of a variable DC power supply (not shown), and the secondary winding has a high frequency via the output terminals M 1 and N 1.
  • the power supply line 43 is connected to a load.
  • the load mainly includes a plasma in the chamber 10 and a matching circuit in the matching unit 40.
  • the negative half cycle of the sine wave signal rf1, the second MOSFET104B controls the first MOSFET104A ON state in the OFF state, the DC power supply voltage (V dd) from the terminal 108 of the output transformer 106 and the first MOSFET104A
  • V dd DC power supply voltage
  • a current I dA having a waveform corresponding to the sine wave signal rf1 flows through the ground (ground potential member).
  • the current of the first high frequency RF1 flows in a positive polarity direction.
  • the first high frequency RF1 output from the secondary winding of the output transformer 106 has a sine waveform similar to the sine wave signal rf1 input to the primary winding of the input transformer 102.
  • V dd DC power supply voltage
  • the output of the DC power source that is, DC power
  • the output of the high frequency power source that is, RF power
  • the power consumption inside the high frequency power source is P c
  • P DC P RF + P c
  • the conversion efficiency is (P RF / P DC ) ⁇ 100%.
  • the DC-RF conversion efficiency is one of the indexes that determine the use value of the high-frequency power source.
  • the linear amplifier type high frequency power supply 36 has a very wide operating frequency as described above, and has a low output sine under the control of the power supply control unit 84 when the power of the first high frequency RF1 is turned on / off by power modulation.
  • the wave oscillator 80 may be controlled on / off. For this reason, when the high frequency power supply 36 is switched from the on state to the off state within each cycle of the pulse frequency, the sine wave oscillator 80 is immediately turned off, so that the power of the first high frequency RF1 on the high frequency power supply line 43 is increased. It disappears instantly and does not cause an RF power skirting phenomenon. However, the power (loss) Pc consumed in the linear amplifier 82 is large, and the DC-RF conversion efficiency is not high.
  • FIG. 4 shows waveforms of the source-drain voltage V dB and the drain current I dB in the second MOSFET 104B.
  • the MOSFET 104B has an effective power of V dB * I dB and is consumed as a drain loss.
  • the waveforms of the source-drain voltage V dA and the drain current I dA in the first MOSFET 104A are opposite in phase to the waveforms of V dB and I dB , respectively.
  • the first MOSFET 104A also has an effective power of V dA * I dA and is consumed as a drain loss.
  • FIG. 5 shows circuit configurations of the second high-frequency power supply 38 and the residual high-frequency removing unit 74.
  • the second high-frequency power supply 38 is a switching-type high-frequency power supply as described above, the switching pulse oscillator 110 for generating the two-phase switching pulses S a and S b having the second frequency f 2 (13.56 MHz), and the oscillator A sine wave inverter 112 that converts the output of the DC power source into a sine wave second high frequency RF 2 in response to two-phase switching pulses S a and S b described later from 110, and an oscillator according to a control signal from the main control unit 72 110 and a power supply control unit 114 that directly controls the sine wave inverter 112.
  • the main control unit 72 and the power supply control unit 114 constitute a power modulation unit.
  • an RF power monitor 116 is also provided.
  • the RF power monitor 116 includes a directional coupler, a traveling wave power monitor unit, and a reflected wave power monitor unit.
  • the directional coupler extracts signals corresponding to the RF power (traveling wave) propagating in the forward direction on the high-frequency power supply line 45 and the RF power (reflecting wave) propagating in the reverse direction.
  • the traveling wave power monitor unit generates a signal representing the power of the fundamental traveling wave (13.56 MHz) included in the traveling wave on the high-frequency transmission path 45 based on the traveling wave power detection signal extracted by the directional coupler. Generate.
  • This signal that is, the fundamental traveling wave power measurement value signal
  • the reflected wave power monitor unit measures the power of the fundamental reflected wave (13.56 MHz) included in the reflected wave returned from the plasma in the chamber 10 to the second high-frequency power source 38, and from the plasma in the chamber 10 (2)
  • the total power of all reflected wave spectra included in the reflected wave returned to the high frequency power supply 38 is measured.
  • the fundamental reflected wave power measurement value obtained by the reflected wave power monitor unit is provided to the main control unit 72 for monitor display, and the total reflected wave power measurement value is stored in the second high frequency power supply 38 as a monitor value for power amplifier protection.
  • the power is supplied to the power control unit 114.
  • the output terminals M 2 and N 2 of the sine wave inverter 112 are connected to the input terminal of the matching unit 42 via the transformer 118, the low-pass filter 120 and the coaxial cable 122.
  • the transformer 118 is used for impedance conversion.
  • the low-pass filter 120 removes a frequency component (distortion component) higher than the second frequency f 2 included in the second high-frequency RF 2 from the sine wave inverter 112.
  • the illustrated low-pass filter 120 is configured as a ⁇ -type circuit including one coil 124 inserted in series in the high-frequency power supply line 45 and two capacitors 126 and 128 inserted in parallel at both ends of the coil 124. ing.
  • FIG. 6 shows a circuit configuration of the sine wave inverter 112.
  • the sine wave inverter 112 includes a first set of switching elements, such as N-type MOSFETs 130A and 132A, a second set of switching elements such as N-type MOSFETs 130B and 132B, and a first set with respect to the load. It has the coil 134 and the capacitor
  • a first set of one MOSFET130A has a drain terminal connected to a DC power supply voltage (V dd) terminal 138, a source terminal connected to the node J 1, switching pulses of the first phase to the gate terminal S a Enter.
  • a second set of one MOSFET130B has a drain terminal connected to a DC power supply voltage (V dd) terminal 138, a source terminal connected to the node J 2, and inputs a switching pulse S b of the second phase to the gate terminal.
  • the first set of the other MOSFET132A has a drain terminal connected to node J 2, the source terminal grounded, and inputs a switching pulse S a of the first phase to the gate terminal.
  • a second set of other MOSFET132B has a drain terminal connected to the node J 1, the source terminal grounded, and inputs a switching pulse S b of the second phase to the gate terminal.
  • a capacitor 136, a coil 134, one output terminal M 2 , a load, and the other output terminal N 2 are connected in series between the node J 1 and the node J 2 .
  • the coil 134 and the capacitor 136 constitute a series resonant circuit with respect to the second high frequency RF2.
  • the load mainly includes the plasma in the chamber 10 and the matching circuit in the matcher 42.
  • the first set of MOSFET130A, the second set of MOSFET130B keeping the 132A off state when turned on by the switching pulse S b of the 132B second phase, MOSFET130B from the DC power supply voltage (V dd) terminal 138, the output terminal N 2, the load, the output terminal M 2, coil 134, flows capacitors 136 and MOSFET132B load current to the ground (ground potential member) through (current of the second high-frequency RF2) I L is negative polarity orientation.
  • the two-phase switching pulses S a and S b generated by the oscillator 110 are converted into a pulse train of PWM (pulse width modulation) under the control of the power supply control unit 114. It is thus possible to shape the load current (first current high frequency RF1) I L to a sine wave.
  • the RF power of the second high-frequency RF 2 can be arbitrarily controlled by varying the ON duration or the duty ratio of the switching pulses S a and S b .
  • the operating frequency is limited by the switching speed of the switching elements (130A, 130B, 132A, 132B) as opposed to the linear amplifier type, but the loss is very small. DC-RF conversion efficiency is high.
  • FIG. 8 shows waveforms of the source-drain voltage V db and the drain current I db in the second MOSFET 132B of the second set.
  • I L of the second high-frequency RF2 flows through the load circuit with a negative polarity orientation, the source-drain conduction in saturation (shorting) the MOSFET132B and a drain current flows I db with.
  • I L of the second high-frequency RF2 flows through the load circuit with positive polarity orientation, MOSFET132B the drain current I db does not flow in the OFF state. Therefore, there is almost no effective power or drain loss of V db * I db .
  • the switching-type second high-frequency power source 38 when the output of the second high-frequency RF2 is stopped, the energy of the second high-frequency RF2 remains in the sine wave inverter 112 or the low-pass filter 120, causing an RF power skirting phenomenon.
  • This tendency is particularly strong when the LC series resonance circuit (134, 136) is provided.
  • the residual high frequency removal unit 74 is connected to the high frequency power supply line 45 to prevent or reduce the occurrence of the RF power skirting phenomenon in the second high frequency power supply 38.
  • the residual high frequency removing unit 74 is provided between the low pass filter 120 and the coaxial cable 122 on the high frequency power supply line 45.
  • the residual high frequency removing unit 74 may be provided on the primary side of the transformer 118, and basically provided anywhere on the high frequency power supply line 45 between the sine wave inverter 112 and the matching unit 42. Also good.
  • the residual high-frequency removing unit 74 includes a resistor 140 and a switch 142 connected in series between the high-frequency power supply line 45 and the ground (ground potential member).
  • the switch 142 is composed of, for example, a MOS transistor, and performs switching operation by the residual high frequency removal signal C RM from the main control unit 72 when power modulation is performed on the second high frequency RF 2, and is turned on when C RM is at H level, It turns off when RM is at L level.
  • the switching control signal CRM is not given from the main controller 72, and the switch 142 is held in the off state.
  • the residual high frequency removal signal CRM is given as a control pulse synchronized with a modulation control pulse PS that defines the pulse frequency and duty ratio of pulse modulation, as will be described later.
  • FIG. 9 shows the waveforms of the main parts when pulse modulation is applied to the second high-frequency RF 2 in this capacitively coupled plasma etching apparatus.
  • the main control unit 72 supplies the modulation control pulse signal PS that defines the pulse frequency f S and the duty D S set for power modulation to the power control unit 114 of the second high frequency power supply 38.
  • the power supply control unit 114 performs on / off control of the switching pulse oscillator 110 in synchronization with the modulation control pulse signal PS, and performs on / off control of the output of the second high frequency RF2.
  • the relational expression / (T on + T off ) is established.
  • the first high-frequency power supply 36 continuously outputs the first high-frequency RF1 without performing on / off control.
  • the main control unit 72 gives the residual high frequency removal signal CRM to the switch 142 of the residual high frequency removal unit 74.
  • the residual high-frequency removing signal C RM is synchronized in phase opposition to the modulation control pulse PS, during the on-time T on in each cycle of the pulse frequency keeps the L level, during the off period T off ( Preferably, it is at the H level (except for transition times Te and Tf immediately after the start of the off period Toff and just before the end).
  • the switch 142 is held in the off state during the on period Ton in each cycle of the pulse frequency, and is turned on during the off period Toff .
  • the second high-frequency RF 2 (more precisely, all traveling waves and reflected waves on the high-frequency power supply line 45) remaining on the high-frequency power supply line 45 passes through the resistor 140 and the switch 142 to the ground ( Flows to the ground potential member).
  • the resistor 140 generates Joule heat and consumes residual RF power while limiting the current of the second high-frequency RF 2 flowing from the high-frequency power supply line 45 to the ground.
  • electromagnetic energy or charge is applied to the coils 124 and 134, the capacitors 126, 128, and 136 in the sine wave inverter 112 or the low-pass filter 120, and the like.
  • the second high-frequency RF 2 (more precisely, all traveling waves and reflected waves on the high-frequency power supply line 45) accumulated as energy is quickly removed from the high-frequency power supply line 45.
  • the inventor applies power modulation with a pulse frequency fs of 20 kHz and a duty ratio of 50% to the second high frequency RF 2 with an output of, for example, 500 W, and a high frequency on the high frequency power supply line 45 with an oscilloscope.
  • the second high-frequency RF2 is shifted from the ON period T on (ON period in the figure) to the OFF period T off (OFF period in the figure) in each cycle of the pulse frequency.
  • the main control unit 72 supplies the modulation control pulse signal PS that defines the pulse frequency f S and the duty D S set for power modulation to the power control unit 84 of the first high frequency power supply 36.
  • the power supply control unit 84 performs on / off control of the sine wave oscillator 80 in synchronization with the modulation control pulse signal PS, and performs on / off control of the output of the first high frequency RF1.
  • the second high frequency power supply 38 continuously outputs the second high frequency RF2 without performing on / off control.
  • the switch 142 of the residual high frequency removing unit 74 is not supplied with the residual high frequency removal signal CRM from the main control unit 72 and maintains the off state.
  • the first high-frequency power source 36 is a linear amplifier system, when power modulation is applied to the first high-frequency RF1, the transition from the on period Ton to the off period Toff is performed in each cycle of the pulse frequency. In addition, since the power of the first high frequency RF1 does not remain on the high frequency power supply line 43, the RF power skirting phenomenon does not occur.
  • a switching type high frequency power supply is used as the second high frequency power supply 38, and the residual high frequency removing portion 74 is provided on the high frequency power supply line 45 in connection with this.
  • a switching-type high-frequency power source for the first high-frequency power source 36, and in this case, another residual high-frequency removing unit 74 may be provided on the high-frequency power supply line 43.
  • a switching type high frequency power supply for both the first high frequency power supply 36 and the second high frequency power supply 38.
  • a residual high-frequency removing unit 74 may be provided on each of the high-frequency power supply lines 43 and 45.
  • the main control unit 72 uses the modulation control pulse signal PS that defines the pulse frequency f S and the duty D S set for power modulation as the power control unit 84 of the first high frequency power supply 36 and the second high frequency power supply 36.
  • the power control unit 114 uses the modulation control pulse signal PS that defines the pulse frequency f S and the duty D S set for power modulation as the power control unit 84 of the first high frequency power supply 36 and the second high frequency power supply 36.
  • the switching-type high-frequency power source in the plasma processing apparatus of the present invention is not limited to the full-bridge type using two pairs (four) of switching elements as in the above-described embodiment.
  • a pair (two) of switching elements is used.
  • It may be a half bridge type. In that case, by one-phase or two-phase switching pulses, in each cycle of high frequency, one switching element is kept off in the first half cycle and the other switching element is turned on, and the other half cycle is in the other half The switching control is performed such that one switching element is turned on while the other switching element is held in the off state.
  • the high frequency RF1 of the first high frequency power supply 36 suitable for plasma generation is applied to the susceptor (lower electrode) 16 in the above embodiment, but can also be applied to the upper electrode 46.
  • the present invention is not limited to a capacitively coupled plasma etching apparatus, but can be applied to a capacitively coupled plasma processing apparatus that performs an arbitrary plasma process such as plasma CVD, plasma ALD, plasma oxidation, plasma nitridation, and sputtering.
  • the substrate to be treated in the present invention is not limited to a semiconductor wafer, and a flat panel display, organic EL, various substrates for solar cells, a photomask, a CD substrate, a printed substrate, and the like are also possible.

Abstract

【課題】スイッチング方式の高周波電源にパワー変調をかける際に高周波給電ライン上でRFパワー裾曳き現象が発生するのを簡便かつ確実に防止する。 【解決手段】この容量結合型のプラズマ処理装置は、真空チャンバ10内にサセプタ(下部電極)16とシャワーヘッドを兼ねる上部電極46とを対向させて配置している。サセプタ16には、第1および第2高周波電源36,38がそれぞれ整合器40,42を介して電気的に接続されている。第1高周波電源36は、リニアアンプ方式の高周波電源からなり、プラズマ生成用の第1高周波RF1を出力する。第2高周波電源38は、スイッチング方式の高周波電源からなり、イオン引き込み用の第2高周波RF2を出力する。第2高周波電源38側の高周波給電ライン43には残留高周波除去部74が接続されている。

Description

プラズマ処理装置
 本発明は、被処理基板にプラズマ処理を施す技術に係り、特に高周波のパワーをパルス状に変調するパワー変調方式の容量結合型プラズマ処理装置法に関する。
 容量結合型のプラズマ処理装置は、処理容器内に上部電極と下部電極とを平行に配置し、下部電極の上に被処理基板(半導体ウエハ、ガラス基板等)を載置し、上部電極もしくは下部電極にプラズマ生成に適した周波数(通常13.56MHz以上)の高周波を印加する。この高周波の印加によって相対向する電極間に生成された高周波電界により電子が加速され、電子と処理ガスとの衝突電離によってプラズマが発生する。そして、このプラズマに含まれるラジカルやイオンの気相反応あるいは表面反応によって、基板上に薄膜が堆積され、あるいは基板表面の素材または薄膜が削られる。
 近年は、半導体デバイス等の製造プロセスにおけるデザインルールが益々微細化し、特にプラズマエッチングでは、より高い寸法精度が求められており、エッチングにおけるマスクまたは下地に対する選択比や面内均一性をより高くすることも求められている。そのため、チャンバ内のプロセス領域の低圧力化、低イオンエネルギー化が指向され、40MHz以上といった高い周波数の高周波が用いられつつある。
 しかしながら、このように低圧力化および低イオンエネルギー化が進んだことにより、従来は問題とならなかったチャージングダメージの影響を無視することができなくなっている。つまり、イオンエネルギーの高い従前のプラズマ処理装置ではプラズマ電位が面内でばらついたとしても大きな問題は生じないが、より低圧でイオンエネルギーが低くなると、プラズマ電位の面内不均一がゲート酸化膜のチャージングダメージを引き起こしやすくなるといった問題が生じる。
 この問題に対しては、プラズマ生成に用いる高周波のパワーをオン/オフ制御可能なパルス状に変調するパワー変調方式が有効とされている(特許文献1)。このパワー変調方式によれば、プラズマエッチング中に処理ガスのプラズマ生成状態とプラズマ非生成状態(プラズマを生成していない状態)とが所定周期で交互に繰り返されるので、プラズマ処理の開始から終了までプラズマを生成し続ける通常のプラズマ処理に比べて、プラズマを連続して生成している時間が短くなる。これによって、プラズマから被処理基板に一度に流入する電荷の量あるいは被処理基板の表面部に電荷が累積的に蓄積する量が減ることになるので、チャージングダメージは生じ難くなり、安定したプラズマ処理の実現およびプラズマプロセスの信頼性が向上する。
 また、容量結合型のプラズマ処理装置においては、基板を載置する下部電極に低い周波数(通常13.56MHz以下)の高周波を印加し、下部電極上に発生する負のバイアス電圧またはシース電圧によりプラズマ中のイオンを加速して基板に引き込むRFバイアス法が多く用いられている。このようにプラズマからイオンを加速して基板表面に衝突させることにより、表面反応、異方性エッチング、あるいは膜の改質等を促進することができる。
 ところが、容量結合型プラズマエッチング装置を用いてビアホールやコンタクトホール等のエッチング加工を行う場合には、ホールサイズの大小によってエッチングレートが異なる、いわゆるマイクロローディング効果が生じる問題があり、エッチング深さのコントロールが困難であるという問題がある。特に、ガードリング(GR)のような大きいエリアではエッチングが速いことが多く、CF系ラジカルが入りにくいスモールビアではエッチレートが遅いことが多い。
 この問題に対しては、イオン引き込みに用いる高周波のパワーのオン/オフ制御を行い、パルス状に変調するパワー変調方式が有効とされている(特許文献2)。このパワー変調方式によれば、被処理基板の所定の膜のエッチングが進行するのに適した高い第1のレベル(オンレベル)のパワーを維持する期間とイオン引き込み用の高周波が被処理基板上の所定の膜にポリマーが堆積されるのに適した低い第2のレベル(オフレベル)のパワーを維持する期間とが一定の周期で交互に繰り返されることにより、所定の膜に適度なポリマー層が堆積された状態とすることができ、エッチングの進行を抑制することができるので、望ましくないマイクロローディング効果を低減し、高選択比および高エッチングレートのエッチングが可能となる。
 また、容量結合型のプラズマエッチング装置においては、プラズマ生成空間を挟んで基板と対向する上部電極に負極性の直流電圧を印加することにより、上部電極で発生する2次電子を基板の表層に高速度で打ち込んで、ArFフォトレジスト等のエッチング耐性の低い有機マスクを改質することも行われている。最近は、この高速電子による有機マスクの改質効果を高めるために、プラズマ生成ないしイオン引き込みに用いる高周波のパワーを一定のパルス周波数でオン/オフ制御するとともに、これに同期して高周波パワーがオフ状態になる期間中のみ直流電圧を印加する方法も提案されている(特許文献3)。このように、高周波パワーをオフ状態にしてプラズマシースが薄くなる期間に直流電圧が上部電極に印加されることで、上部電極からの2次電子が基板に効率よく入射し、基板上の有機膜が強化される。
特開2009-71292号公報 特開2009-33080号公報 特開2010-219491号公報
 上記のようなパワー変調の機能を備えた従来の容量結合プラズマ処理装置においては、パルス周波数の各サイクル内で高周波電源をオン状態からオフ状態に切り換えた時に、高周波給電ライン上でRFパワーが瞬時に消失せずに、裾を曳くように一定の時定数で減衰しながら零レベル(Lレベル)に収束する場合がある。このようなRFパワー裾曳き現象は、パワー変調の本来の規格から外れており、したがってパワー変調の目的とする効果が十分に発揮されなくなるばかりか、高周波給電ライン上または高周波電源内に設けられるRFパワーモニタの精度にも悪い影響を与える。本発明者がこの問題を追究したところ、スイッチング方式の高周波電源を用いて、これにパワー変調をかけるときに限って、上記のようなRFパワー裾曳き現象が発生することが判った。
 本発明は、上記のような知見に基づいてなされたものであり、スイッチング方式の高周波電源にパワー変調をかける際に高周波給電ライン上でRFパワー裾曳き現象が発生するのを簡便かつ確実に防止するプラズマ処理装置を提供する。
 本発明のプラズマ処理装置は、被処理基板を出し入れ可能に収容する真空排気可能な処理容器内で処理ガスのプラズマを生成し、前記プラズマの下で前記基板に所望の処理を施すプラズマ処理装置であって、直流電源とスイッチング素子とを有し、前記スイッチング素子をスイッチングパルスにより高周波帯域の周波数でオン/オフすることにより、前記直流電源の直流出力を高周波出力に変換するスイッチング方式の高周波電源と、前記高周波電源より出力される前記高周波を前記プラズマに供給するための高周波給電ラインと、前記高周波給電ライン上で前記高周波電源側のインピーダンスとその負荷側のインピーダンスとを整合させるための整合器と、前記高周波のパワーがオン状態になるオン期間とオフ状態になるオフ期間とを一定のパルス周波数で交互に繰り返すように、前記高周波電源を制御する高周波パワー変調部と、前記パルス周波数の各サイクルにおいて前記オフ期間中に前記高周波給電ライン上に残留している高周波を除去するための残留高周波除去部とを具備する。
 本発明のプラズマ処理装置によれば、上記のような構成を有することにより、スイッチング方式の高周波電源にパワー変調をかける際に高周波給電ライン上でRFパワー裾曳き現象が発生するのを簡便かつ確実に防止することができる。
本発明の第1の実施形態におけるプラズマ処理装置の構成を示す断面図である。 上記プラズマ処理装置における第1高周波電源の回路構成を示すブロック図である。 上記第1高周波電源に含まれるリニアアンプの回路構成を示す回路図である。 上記リニアアンプを構成するMOSFETにおける電圧および電流の波形を示す図である。 上記プラズマ処理装置における第2高周波電源の回路構成を示すブロック図である。 上記第2高周波電源に含まれる正弦波インバータの回路構成を示す回路図である。 上記正弦波インバータにおいてPWM方式により正弦波の第2高周波を生成する仕組みを示す各部の波形図である。 上記プラズマ処理装置において第2高周波にパワー変調をかける場合の各部の波形を示す図である。 上記実施形態における作用を説明するための各部の波形図である。 上記実施形態において残留高周波除去部を備える実施例で観測された高周波給電ライン上の高周波の波形図である。 上記残留高周波除去部を取り外した比較例で観測された高周波給電ライン上の高周波の波形図である。 上記プラズマ処理装置において第1高周波にパワー変調をかける場合の各部の波形を示す図である。 上記プラズマ処理装置において第1高周波および第2高周波にパワー変調を同時にかける場合の各部の波形を示す図である。
 以下、添付図を参照して本発明の好適な実施の形態を説明する。
 
[プラズマ処理装置の構成]
 図1に、本発明の一実施形態におけるプラズマ処理装置の構成を示す。このプラズマ処理装置は、容量結合型(平行平板型)のプラズマエッチング装置として構成されており、たとえば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる円筒形の真空チャンバ(処理容器)10を有している。チャンバ10は接地されている。
 チャンバ10の底部には、セラミックなどの絶縁板12を介して円柱状のサセプタ支持台14が配置され、このサセプタ支持台14の上にたとえばアルミニウムからなるサセプタ16が設けられている。サセプタ16は下部電極を構成し、この上に被処理基板としてたとえば半導体ウエハWが載置される。
 サセプタ16の上面には半導体ウエハWを保持するための静電チャック18が設けられている。この静電チャック18は導電膜からなる電極20を一対の絶縁層または絶縁シートの間に挟み込んだものであり、電極20にはスイッチ22を介して直流電源24が電気的に接続されている。直流電源24からの直流電圧により、半導体ウエハWを静電吸着力で静電チャック18に保持できるようになっている。静電チャック18の周囲でサセプタ16の上面には、エッチングの均一性を向上させるためのたとえばシリコンからなるフォーカスリング26が配置されている。サセプタ16およびサセプタ支持台14の側面にはたとえば石英からなる円筒状の内壁部材28が貼り付けられている。
 サセプタ支持台14の内部には、たとえば円周方向に延びる冷媒室30が設けられている。この冷媒室30には、外付けのチラーユニット(図示せず)より配管32a,32bを介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によってサセプタ16上の半導体ウエハWの処理温度を制御できるようになっている。さらに、伝熱ガス供給機構(図示せず)からの伝熱ガスたとえばHeガスが、ガス供給ライン34を介して静電チャック18の上面と半導体ウエハWの裏面との間に供給される。
 サセプタ16には、第1および第2高周波電源36,38がそれぞれ整合器40,42および共通の給電導体(たとえば給電棒)44を介して電気的に接続されている。第1高周波電源36は、プラズマの生成に適した第1周波数f1(たとえば100MHz)を有する第1高周波RF1を出力する。第2高周波電源38は、プラズマからサセプタ16上の半導体ウエハWへのイオンの引き込みに適した第2周波数f2(たとえば13.56MHz)を有する第2高周波RF2を出力する。
 整合器40,42は、高周波給電ライン(高周波伝送路)43,45上で、チャンバ10内に生成されるプラズマ側の負荷インピーダンスを高周波電源36,38のインピーダンスにそれぞれ整合させるように機能する。各々の整合器40,42は、少なくとも2つの制御可能なリアクタンス素子を含む整合回路と、各リアクタンス素子のリアクタンス値(インピーダンス・ポジション)を制御するためのアクチエータ(たとえばモータ)と、上記整合回路を含む負荷インピーダンスを測定するセンサと、負荷インピーダンスの測定値を整合ポイント(通常50Ω)に合わせるように各アクチエータを駆動制御するコントローラとを有している。
 このプラズマ処理装置は、プラズマ生成用の第1高周波電源36にはリニアアンプ方式の高周波電源を使用し、イオン引き込み用の第2高周波電源38にはスイッチング方式の高周波電源を使用しており、これに関連して第2高周波電源38側の高周波給電ライン45に残留高周波除去部74を接続している。高周波電源36,38および残留高周波除去部74の構成および作用については後に詳細に説明する。
 チャンバ10の天井には、サセプタ16と平行に向かいあって接地電位の上部電極46が設けられている。この上部電極46は、多数のガス噴出孔48aを有するたとえばSi、SiCなどのシリコン含有材質からなる電極板48と、この電極板48を着脱可能に支持する導電材料たとえば表面がアルマイト処理されたアルミニウムからなる電極支持体50とで構成されている。この上部電極46とサセプタ16との間にプラズマ生成空間または処理空間PAが形成されている。
 電極支持体50は、その内部にガスバッファ室52を有するとともに、その下面にガスバッファ室52から電極板48のガス噴出孔48aに連通する多数のガス通気孔50aを有している。ガスバッファ室52にはガス供給管54を介して処理ガス供給源56が接続されている。ガス供給管54には、マスフローコントローラ(MFC)58および開閉バルブ60が設けられている。処理ガス供給源56より所定の処理ガス(エッチングガス)がガスバッファ室52に導入されると、電極板48のガス噴出孔48aよりサセプタ16上の半導体ウエハWに向けて処理空間PAに処理ガスがシャワー状に噴出されるようになっている。このように、上部電極46は、処理空間PAに処理ガスを供給するためのシャワーヘッドを兼ねている。
 また、電極支持体50の内部には冷媒たとえば冷却水を流す通路(図示せず)も設けられており、外部のチラーユニットにより冷媒を介して上部電極46の全体、特に電極板48を所定温度に温調するようになっている。さらに、上部電極46に対する温度制御をより安定化させるために、電極支持体50の内部または上面にたとえば抵抗発熱素子からなるヒータ(図示せず)を取り付ける構成も可能である。
 サセプタ16およびサセプタ支持台14とチャンバ10の側壁との間に形成される環状の空間は排気空間となっており、この排気空間の底にはチャンバ10の排気口62が設けられている。この排気口62に排気管64を介して排気装置66が接続されている。排気装置66は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10の室内、特に処理空間PAを所望の真空度まで減圧できるようになっている。また、チャンバ10の側壁には半導体ウエハWの搬入出口68を開閉するゲートバルブ70が取り付けられている。
 主制御部72は、1つまたは複数のマイクロコンピュータを含み、外部メモリまたは内部メモリに格納されるソフトウェア(プログラム)およびレシピ情報にしたがって、装置内の各部、特に高周波電源36,38、整合器40,42、MFC58、開閉バルブ60、排気装置66、残留高周波除去部74等の個々の動作および装置全体の動作(シーケンス)を制御する。
 また、主制御部72は、キーボード等の入力装置や液晶ディスプレイ等の表示装置を含むマン・マシン・インタフェース用の操作パネル(図示せず)および各種プログラムやレシピ、設定値等の各種データを格納または蓄積する外部記憶装置(図示せず)等とも接続されている。この実施形態では、主制御部72が1つの制御ユニットとして示されているが、複数の制御ユニットが主制御部72の機能を並列的または階層的に分担する形態を採ってもよい。
 この容量結合型プラズマエッチング装置における枚葉ドライエッチングの基本的な動作は次のようにして行われる。先ず、ゲートバルブ70を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック18の上に載置する。そして、処理ガス供給源56より処理ガスつまりエッチングガス(一般に混合ガス)を所定の流量および流量比でチャンバ10内に導入し、排気装置66による真空排気でチャンバ10内の圧力を設定値にする。さらに、第1高周波電源36からの第1高周波RF1(100MHz)と高周波電源38からの第2高周波RF2(13.56MHz)とを重畳して(あるいは片方を単独で)サセプタ16に印加する。また、直流電源24より直流電圧を静電チャック18の電極20に印加して、半導体ウエハWを静電チャック18上に固定する。上部電極46のシャワーヘッドより吐出されたエッチングガスは両電極46,16間の高周波電界の下で放電し、処理空間PA内にプラズマが生成される。このプラズマに含まれるラジカルやイオンによって半導体ウエハWの主面の被加工膜がエッチングされる。
 
[第1高周波電源の回路構成]
 図2に、第1高周波電源36の回路構成を示す。第1高周波電源36は、上記のようにリニアアンプ方式の高周波電源であり、第1周波数f1(100MHz)の正弦波信号rf1を発生する正弦波発振器80と、この発振器80より出力される正弦波信号rf1の正弦波形を保ったままそのRFパワーの利得または増幅率を制御可能に増幅して第1高周波RF1を出力するリニアアンプ82と、主制御部72からの制御信号にしたがって発振器80およびリニアアンプ82を直接制御する電源制御部84とを備えている。このプラズマエッチング装置において、第1高周波RF1にパルス変調をかけるときは、主制御部72と電源制御部84がパワー変調部を形成する。
 第1高周波電源36のユニット内には、RFパワーモニタ86も備わっている。このRFパワーモニタ86は、図示省略するが、方向性結合器、進行波パワーモニタ部および反射波パワーモニタ部を有している。ここで、方向性結合器は、高周波給電ライン43上を順方向に伝搬するRFパワー(進行波)と逆方向に伝搬するRFパワー(反射波)のそれぞれに対応する信号を取り出す。進行波パワーモニタ部は、方向性結合器により取り出された進行波パワー検出信号を基に、高周波伝送路43上の進行波に含まれる基本波進行波(100MHz)のパワーを表わす信号を生成する。この信号つまり基本波進行波パワー測定値信号は、パワーフィードバック制御用に第1高周波電源36内の電源制御部84に与えられるとともに、モニタ表示用に主制御部72にも与えられる。反射波パワーモニタ部は、チャンバ10内のプラズマから第1高周波電源36に返ってくる反射波に含まれる基本波反射波(100MHz)のパワーを測定するとともに、チャンバ10内のプラズマから第1高周波電源36に返ってくる反射波に含まれる全ての反射波スペクトルのトータルのパワーを測定する。反射波パワーモニタ部により得られる基本波反射波パワー測定値はモニタ表示用に主制御部72に与えられ、トータル反射波パワー測定値はパワーアンプ保護用のモニタ値として第1高周波電源36内の電源制御部84に与えられる。
 リニアアンプ82の出力端子M1,N1は、ローパスフィルタ88および同軸ケーブル90を介して整合器40の入力端子に接続されている。ローパスフィルタ88は、リニアアンプ82からの第1高周波RF1に含まれる第1周波数f1よりも高い周波数成分(歪成分)を除去する。図示のローパスフィルタ88は、高周波給電ライン43に直列に挿入される1つのコイル92と、このコイル92の両側に並列に挿入される2つのコンデンサ94,96とからなるπ形回路として構成されている。
 図3に、リニアアンプ82の回路構成を示す。このリニアアンプ82は、入力端子100を介して発振器80からの正弦波信号rf1を一次巻線に入力する入力トランス102と、この入力トランス102の二次巻線の両端にそれぞれの制御端子が接続されている一対の増幅トランジスタたとえばP型のMOSFET104A,104Bと、二次側に負荷が接続されている出力トランス106とを有する。
 入力トランス102の二次巻線は、一方の端子が第1のMOSFET104Aのゲート端子に接続されるとともに、他方の端子が第2のMOSFET104Bのゲート端子に接続され、中性点が接地されている。第1のMOSFET104Aは、ソース端子が接地され、ドレイン端子が出力トランス108の一次巻線の一方の端子に接続されている。第2のMOSFET104Bは、ソース端子が接地され、ドレイン端子が出力トランス106の一次巻線の他方の端子に接続されている。出力トランス106の一次巻線はその中性点が可変直流電源(図示せず)の電源電圧(Vdd)端子108に接続され、二次巻線は出力端子M1,N1を介して高周波給電ライン43上の負荷に接続されている。負荷は、主としてチャンバ10内のプラズマと整合器40内の整合回路とを含む。
 このリニアアンプ82において、正弦波信号rf1の正極性の半サイクルでは、第1のMOSFET104Aがオフ状態で第2のMOSFET104Bをオン状態に制御し、直流電源電圧(Vdd)端子108から出力トランス106および第2のMOSFET104Bを通ってグランド(接地電位部材)へ正弦波信号rf1に対応した波形の電流IdBが流れる。この時、出力トランス106の二次側の負荷回路では第1高周波RF1の電流が負極性の向きで流れる。正弦波信号rf1の負極性の半サイクルでは、第2のMOSFET104Bがオフ状態で第1のMOSFET104Aをオン状態に制御し、直流電源電圧(Vdd)端子108から出力トランス106および第1のMOSFET104Aを通ってグランド(接地電位部材)へ正弦波信号rf1に対応した波形の電流IdAが流れる。この時、出力トランス106の二次側の負荷回路では第1高周波RF1の電流が正極性の向きで流れる。
 こうして出力トランス106の二次巻線より出力される第1高周波RF1は、入力トランス102の一次巻線に入力される正弦波信号rf1と相似な正弦波形を有する。直流電源電圧(Vdd)を制御することで、増幅率を可変し、百MH以上の周波数帯域でも第1高周波RF1のパワーを任意に調整することができる。
 ここで、直流電源の出力つまりDCパワーをPDC,高周波電源の出力つまりRFパワーをPRF、高周波電源内部の消費電力をPcとすると、PDC=PRF+Pcであり、DC-RF変換効率は(PRF/PDC)×100%である。DC-RF変換効率は、高周波電源の使用価値を左右する指標の一つである。
 リニアアンプ方式の高周波電源36は、このように動作周波数が非常に広いうえ、パワー変調により第1高周波RF1のパワーをオン/オフするときは、電源制御部84の制御の下で低出力の正弦波発振器80をオン/オフ制御すればよい。このため、パルス周波数の各サイクル内で高周波電源36をオン状態からオフ状態に切り換える時は、正弦波発振器80が即時にオフ状態となるので、高周波給電ライン43上で第1高周波RF1のパワーが瞬時に消失し、RFパワー裾曳き現象が発生することはない。ただし、リニアアンプ82内で消費する電力(損失)Pcが多く、DC-RF変換効率は高くない。
 図4に、第2のMOSFET104Bにおけるソース・ドレイン間電圧VdBおよびドレイン電流IdBの波形を示す。この図から理解されるように、MOSFET104BではVdB*IdBの実効電力が存在し、ドレイン損失として消費される。図示省略するが、第1のMOSFET104Aにおけるソース・ドレイン間電圧VdAおよびドレイン電流IdAの波形は、VdBおよびIdBの波形と位相がそれぞれ逆になる。第1のMOSFET104AでもVdA*IdAの実効電力が存在し、ドレイン損失として消費される。
 
[第2高周波電源及び残留高周波除去部の回路構成]
 図5に、第2高周波電源38および残留高周波除去部74の回路構成を示す。第2高周波電源38は、上記のようにスイッチング方式の高周波電源であり、第2周波数f2(13.56MHz)の2相スイッチングパルスSa,Sbを発生するスイッチングパルス発振器110と、この発振器110からの後述する2相スイッチングパルスSa,Sbに応答して直流電源の出力を正弦波の第2高周波RF2に変換する正弦波インバータ112と、主制御部72からの制御信号にしたがって発振器110および正弦波インバータ112を直接制御する電源制御部114とを備えている。このプラズマエッチング装置において、第2高周波RF2にパルス変調をかけるときは、主制御部72と電源制御部114がパワー変調部を構成する。
 第2高周波電源38のユニット内には、RFパワーモニタ116も備わっている。このRFパワーモニタ116は、図示省略するが、方向性結合器、進行波パワーモニタ部および反射波パワーモニタ部を有している。ここで、方向性結合器は、高周波給電ライン45上を順方向に伝搬するRFパワー(進行波)と逆方向に伝搬するRFパワー(反射波)のそれぞれに対応する信号を取り出す。進行波パワーモニタ部は、方向性結合器により取り出された進行波パワー検出信号を基に、高周波伝送路45上の進行波に含まれる基本波進行波(13.56MHz)のパワーを表わす信号を生成する。この信号つまり基本波進行波パワー測定値信号は、パワーフィードバック制御用に第2高周波電源38内の電源制御部114に与えられるとともに、モニタ表示用に主制御部72にも与えられる。反射波パワーモニタ部は、チャンバ10内のプラズマから第2高周波電源38に返ってくる反射波に含まれる基本波反射波(13.56MHz)のパワーを測定するとともに、チャンバ10内のプラズマから第2高周波電源38に返ってくる反射波に含まれる全ての反射波スペクトルのトータルのパワーを測定する。反射波パワーモニタ部により得られる基本波反射波パワー測定値はモニタ表示用に主制御部72に与えられ、トータル反射波パワー測定値はパワーアンプ保護用のモニタ値として第2高周波電源38内の電源制御部114に与えられる。
 正弦波インバータ112の出力端子M2,N2は、トランス118、ローパスフィルタ120および同軸ケーブル122を介して整合器42の入力端子に接続されている。トランス118は、インピーダンス変換に用いられる。ローパスフィルタ120は、正弦波インバータ112からの第2高周波RF2に含まれる第2周波数f2よりも高い周波数成分(歪成分)を除去する。図示のローパスフィルタ120は、高周波給電ライン45に直列に挿入される1つのコイル124と、このコイル124の両端にて並列に挿入される2つのコンデンサ126,128とからなるπ形回路として構成されている。
 図6に、正弦波インバータ112の回路構成を示す。この正弦波インバータ112は、フルブリッジ回路を構成する第1組のスイッチング素子たとえばN型のMOSFET130A,132Aと第2組のスイッチング素子たとえばN型のMOSFET130B,132Bと、負荷に対して第1組のMOSFET130A,132Aまたは第2組のMOSFET130B,132Bと直列に接続されるコイル134およびコンデンサ136とを有する。
 より詳しくは、第1組の一方のMOSFET130Aは、ドレイン端子が直流電源電圧(Vdd)端子138に接続され、ソース端子がノードJ1に接続され、ゲート端子に第1相のスイッチングパルスSaを入力する。第2組の一方のMOSFET130Bは、ドレイン端子が直流電源電圧(Vdd)端子138に接続され、ソース端子がノードJ2に接続され、ゲート端子に第2相のスイッチングパルスSbを入力する。第1組の他方のMOSFET132Aは、ドレイン端子がノードJ2に接続され、ソース端子が接地され、ゲート端子に第1相のスイッチングパルスSaを入力する。第2組の他方のMOSFET132Bは、ドレイン端子がノードJ1に接続され、ソース端子が接地され、ゲート端子に第2相のスイッチングパルスSbを入力する。そして、ノードJ1とノードJ2との間に、コンデンサ136、コイル134、一方の出力端子M2、負荷、他方の出力端子N2が直列に接続される。コイル134とコンデンサ136は、第2高周波RF2に対して直列共振回路を構成する。負荷は、主としてチャンバ10内のプラズマと整合器42内の整合回路とを含む。
 この正弦波インバータ112において、第2組のMOSFET130B,132Bをオフ状態に保って第1組のMOSFET130A,132Aを第1相のスイッチングパルスSaによりオンさせると、直流電源電圧(Vdd)端子138からMOSFET130A、コンデンサ136、コイル134、出力端子M2、負荷、出力端子N2およびMOSFET132Aを通ってグランド(接地電位部材)へ負荷電流(第2高周波RF2の電流)ILが正極性の向きで流れる。反対に,第1組のMOSFET130A,132Aをオフ状態に保って第2組のMOSFET130B,132Bを第2相のスイッチングパルスSbによりオンさせると、直流電源電圧(Vdd)端子138からMOSFET130B、出力端子N2、負荷、出力端子M2、コイル134、コンデンサ136およびMOSFET132Bを通ってグランド(接地電位部材)へ負荷電流(第2高周波RF2の電流)ILが負極性の向きで流れる。
 この正弦波インバータ112においては、図7に示すように、発振器110で生成される2相スイッチングパルスSa,Sbを電源制御部114の制御の下でPWM(パルス幅変調)のパルス列とすることにより、負荷電流(第1高周波RF1の電流)ILを正弦波に成形することができる。スイッチングパルスSa,Sbのオン持続時間ないしデューティ比を可変することで、第2高周波RF2のRFパワーを任意に制御することもできる。
 上記のようなスイッチング方式の高周波電源38は、リニアアンプ方式とは反対に、スイッチング素子(130A,130B,132A,132B)のスイッチング速度によって動作周波数が律速されるが、損失が非常に少なくて、DC-RF変換効率が高い。
 図8に、第2組の他方のMOSFET132Bにおけるソース・ドレイン間電圧Vdbおよびドレイン電流Idbの波形を示す。第2高周波RF2の電流ILが負極性の向きで負荷回路を流れる第1の半サイクルでは、MOSFET132Bのソース・ドレイン間が飽和状態で導通(短絡)してドレイン電流Idbが流れる。第2高周波RF2の電流ILが正極性の向きで負荷回路を流れる第2の半サイクルでは、MOSFET132Bはオフ状態でドレイン電流Idbは流れない。したがって、Vdb*Idbの実効電力またはドレイン損失は殆ど無い。他のMOSFET130A,132A,130Bにおいても同様である。
 もっとも、スイッチング方式の第2高周波電源38においては、第2高周波RF2の出力を止めた時に、第2高周波RF2のエネルギーが正弦波インバータ112ないしローパスフィルタ120に残留してRFパワー裾曳き現象を起こしやすく、特にLC直列共振回路(134,136)を備える場合にその傾向が強く出る。この実施形態では、高周波給電ライン45に残留高周波除去部74を接続することで、第2高周波電源38におけるRFパワー裾曳き現象の発生を防止ないし低減するようにしている。
 再び図5において、残留高周波除去部74は、高周波給電ライン45上で、ローパスフィルタ120と同軸ケーブル122との間に設けられる。あるいは、残留高周波除去部74は、トランス118の一次側に設けられてもよく、基本的には正弦波インバータ112と整合器42との間であれば高周波給電ライン45上の何処に設けられてもよい。
 この残留高周波除去部74は、高周波給電ライン45とグランド(接地電位部材)との間に直列に接続された抵抗140とスイッチ142とを有している。スイッチ142は、たとえばMOSトランジスタからなり、第2高周波RF2にパワー変調をかける場合に主制御部72からの残留高周波除去信号CRMによってスイッチング動作し、CRMがHレベルの時はオンし、CRMがLレベルの時はオフするようになっている。第2高周波RF2にパワー変調をかけないときは、主制御部72からスイッチング制御信号CRMは与えられず、スイッチ142はオフ状態に保持される。残留高周波除去信号CRMは、後述するように、パルス変調のパルス周波数およびデューティ比を規定する変調制御パルスPSに同期した制御パルスとして与えられる。
 
[残留高周波除去部の作用]
 次に、この実施形態における残留高周波除去部74の作用を説明する。図9に、この容量結合型プラズマエッチング装置において、第2高周波RF2にパルス変調をかける場合の主要な各部の波形を示す。
 この場合、主制御部72は、パワー変調用に設定されたパルス周波数fSおよびデューティDSを規定する変調制御パルス信号PSを、第2高周波電源38の電源制御部114に与える。電源制御部114は、変調制御パルス信号PSに同期してスイッチングパルス発振器110をオン・オフ制御し、第2高周波RF2の出力をオン・オフ制御する。ここで、変調制御パルス信号PSの周期、オン期間、オフ期間をそれぞれTC,Ton,Toffとすると、TC=1/fS,TC=Ton+Toff,DS=Ton/(Ton+Toff)の関係式が成立する。一方、第1高周波電源36は、第1高周波RF1をオン・オフ制御することなく連続的に出力する。
 さらに、主制御部72は、残留高周波除去信号CRMを残留高周波除去部74のスイッチ142に与える。図9に示すように、残留高周波除去信号CRMは、変調制御パルスPSに逆位相で同期し、パルス周波数の各サイクルにおいてオン期間Ton中はLレベルを保ち、オフ期間Toff中に(好ましくはオフ期間Toffの開始直後と終了間際の遷移時間Te,Tfを除いて)Hレベルになる。これにより、スイッチ142は、パルス周波数の各サイクルにおいてオン期間Ton中はオフ状態に保持され、オフ期間Toff中にオン状態になる。
 スイッチ142がオンすると、高周波給電ライン45上に残留している第2高周波RF2(より正確には高周波給電ライン45上の全ての進行波および反射波)は抵抗140およびスイッチ142を通ってグランド(接地電位部材)へ流れる。抵抗140は、高周波給電ライン45からグランドへ流れる第2高周波RF2の電流を制限しつつ、ジュール熱を発生して残留RFパワーを消費する。
 こうして、パルス周波数の各サイクルにおいてオン期間Tonからオフ期間Toffに移行する際に、正弦波インバータ112ないしローパスフィルタ120内のコイル124,134やコンデンサ126,128,136等に電磁エネルギーまたは電荷エネルギーとして蓄積されていた第2高周波RF2(より正確には高周波給電ライン45上の全ての全ての進行波および反射波)は、高周波給電ライン45上から速やかに除去される。
 本発明者が、この実施形態のプラズマエッチング装置において、パルス周波数fsを20kHz、デューティ比を50%とするパワー変調をたとえば500Wの出力で第2高周波RF2にかけて、オシロスコープにより高周波給電ライン45上の高周波波形を観測したところ、図10に示すように、パルス周波数の各サイクルにおいてオン期間Ton(図中のON期間)からオフ期間Toff(図中のOFF期間)に移行する時に第2高周波RF2がHレベル(500W)からLレベル(0W)にステップ的に切り換わっており、RFパワー裾曳き現象が発生しないことを確認できた。
 一方で、残留高周波除去部74を取り外し、上記と同一条件のパワー変調を第2高周波RF2にかけて、上記と同様にオシロスコープにより高周波給電ライン45上の高周波波形を観測したところ、図11に示すように、パルス周波数の各サイクルにおいてオン期間Ton(図中のON期間)からオフ期間Toff(図中のOFF期間)に移行する時に第2高周波RF2の振幅が裾を曳くように一定の時定数で減衰しながらLレベル(0W)に収束する現象つまりRFパワー裾曳き現象が発生することが確認された。
 このように、この実施形態においては、第2高周波RF2にパワー変調をかける場合に高周波給電ライン上でRFパワー裾曳き現象が発生するのを簡便かつ確実に防止することができる。これにより、矩形波パルス状の高周波電力供給が可能となる。また、高周波給電ライン45上でRFパワー裾曳き現象が発生しないで、RFパワーモニタ116により取得されるモニタリング情報の精度が向上する。
 なお、この実施形態のプラズマエッチング装置においては、図12に示すように、第1高周波RF1にパワー変調をかけることも可能である。この場合、主制御部72は、パワー変調用に設定されたパルス周波数fSおよびデューティDSを規定する変調制御パルス信号PSを、第1高周波電源36の電源制御部84に与える。電源制御部84は、変調制御パルス信号PSに同期して正弦波発振器80をオン・オフ制御し、第1高周波RF1の出力をオン・オフ制御する。一方、第2高周波電源38は、第2高周波RF2をオン・オフ制御することなく連続的に出力する。残留高周波除去部74のスイッチ142は、主制御部72より残留高周波除去信号CRMを与えられず、オフ状態を保持する。
 上記したように、第1高周波電源36はリニアアンプ方式であるから、第1高周波RF1にパワー変調をかけた場合は、パルス周波数の各サイクルにおいてオン期間Tonからオフ期間Toffに移行する際に高周波給電ライン43上に第1高周波RF1のパワーが残留しないので、RFパワー裾曳き現象が発生することはない。
 
[他の実施形態または変形例]
 以上本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その技術思想の範囲内で種種の変形が可能である。
 上記実施形態では、第2高周波電源38にスイッチング方式の高周波電源を使用し、これに関連して高周波給電ライン45上に残留高周波除去部74を設けた。しかし、第1高周波電源36にスイッチング方式の高周波電源を使用することも可能であり、その場合は高周波給電ライン43上にも別の残留高周波除去部74を設ければよい。
 また、第1高周波電源36および第2高周波電源38の双方にスイッチング方式の高周波電源を用いることも可能である。その場合は、各々の高周波給電ライン43,45上に残留高周波除去部74を設ければよい。
 さらには、図13に示すように、第1高周波RF1および第2高周波RF2の双方にパワー変調をかけることも可能である。この場合、主制御部72は、パワー変調用に設定されたパルス周波数fSおよびデューティDSを規定する変調制御パルス信号PSを、第1高周波電源36の電源制御部84および第2高周波電源36の電源制御部114に与える。
 本発明のプラズマ処理装置におけるスイッチング方式の高周波電源は、上記実施形態のような2対(4個)のスイッチング素子を用いるフルブリッジ型に限定されず、たとえば一対(2個)のスイッチング素子を用いるハーフブリッジ型であってもよい。その場合は、1相または2相のスイッチングパルスにより、高周波の各サイクルにおいて、前の半サイクルでは一方のスイッチング素子をオフ状態に保持して他方のスイッチング素子をオンにし、後の半サイクルでは他方のスイッチング素子をオフ状態に保持して一方のスイッチング素子をオンにするようなスイッチング制御が行われる。
 また、プラズマ生成に好適な第1高周波給電36の高周波RF1は、上記実施形態ではサセプタ(下部電極)16に印加したが、上部電極46に印加することも可能である。
 本発明は、容量結合型プラズマエッチング装置に限定されず、プラズマCVD、プラズマALD、プラズマ酸化、プラズマ窒化、スパッタリングなど任意のプラズマプロセスを行う容量結合型プラズマ処理装置に適用可能である。本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ、有機EL、太陽電池用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。
  10  チャンバ
  16  サセプタ(下部電極)
  36,38  高周波電源
  40,42  整合器
  43,45  高周波給電ライン
  46  上部電極(シャワーヘッド)
  56  処理ガス供給源
  72  主制御部
  74  残留高周波除去部

Claims (7)

  1.  被処理基板を出し入れ可能に収容する真空排気可能な処理容器内で処理ガスのプラズマを生成し、前記プラズマの下で前記基板に所望の処理を施すプラズマ処理装置であって、
     直流電源とスイッチング素子とを有し、前記スイッチング素子をスイッチングパルスにより高周波帯域の周波数でオン/オフすることにより、前記直流電源の直流出力を高周波出力に変換するスイッチング方式の高周波電源と、
     前記高周波電源より出力される前記高周波を前記プラズマに供給するための高周波給電ラインと、
     前記高周波給電ライン上で前記高周波電源側のインピーダンスとその負荷側のインピーダンスとを整合させるための整合器と、
     前記高周波のパワーがオン状態になるオン期間とオフ状態になるオフ期間とを一定のパルス周波数で交互に繰り返すように、前記高周波電源を制御する高周波パワー変調部と、
     前記パルス周波数の各サイクルにおいて前記オフ期間中に前記高周波給電ライン上に残留している高周波を除去するための残留高周波除去部と
     を具備するプラズマ処理装置。
  2.  前記高周波電源は、フルブリッジ回路を構成する第1組のスイッチング素子と第2組のスイッチング素子とを有し、前記スイッチングパルスにより、前記高周波の各サイクルにおいて、前の半サイクルでは前記第2組のスイッチング素子をオフ状態に保持して前記第1組のスイッチング素子をオンにし、後の半サイクルでは前記第1組のスイッチング素子をオフ状態に保持して前記第2組のスイッチング素子をオンにする、請求項1に記載のプラズマ処理装置。
  3.  前記高周波電源は、ハーフブリッジ回路を構成する第1のスイッチング素子と第2のスイッチング素子とを有し、前記スイッチングパルスにより、前記高周波の各サイクルにおいて、前の半サイクルでは前記第2のスイッチング素子をオフ状態に保持して前記第1のスイッチング素子をオンにし、後の半サイクルでは前記第1のスイッチング素子をオフ状態に保持して前記第2のスイッチング素子をオンにする、請求項1に記載のプラズマ処理装置。
  4.  前記高周波電源は、前記パルス周波数の各サイクルにおいてオン時間中は前記スイッチング素子に前記スイッチングパルスを供給し続け、オフ時間中は前記スイッチング素子に対して前記スイッチングパルスの供給を停止する、請求項1に記載のプラズマ処理装置。
  5.  前記高周波電源は、負荷回路に対して前記スイッチング素子と直列に接続される直列共振回路を有する、請求項1に記載のプラズマ処理装置。
  6.  前記残留高周波除去部は、前記高周波給電ラインと接地電位部材との間に直列に接続される抵抗およびスイッチを有し、前記パルス周波数の各サイクルにおいて前記オン期間中は前記スイッチをオフ状態に保持し、前記オフ期間中に前記スイッチをオンにする、請求項1に記載のプラズマ処理装置。
  7.  前記処理容器内に前記基板を載置するための高周波電極が配置され、前記高周波電極に前記高周波給電ラインが電気的に接続される、請求項1に記載のプラズマ処理装置。
PCT/JP2012/007975 2011-12-27 2012-12-13 プラズマ処理装置 WO2013099133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280064757.6A CN104025266B (zh) 2011-12-27 2012-12-13 等离子体处理装置
US14/368,865 US9355822B2 (en) 2011-12-27 2012-12-13 Plasma processing apparatus
KR1020147017715A KR102038642B1 (ko) 2011-12-27 2012-12-13 플라즈마 처리 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011286024A JP5808012B2 (ja) 2011-12-27 2011-12-27 プラズマ処理装置
JP2011-286024 2011-12-27
US201261585734P 2012-01-12 2012-01-12
US61/585,734 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013099133A1 true WO2013099133A1 (ja) 2013-07-04

Family

ID=48696681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007975 WO2013099133A1 (ja) 2011-12-27 2012-12-13 プラズマ処理装置

Country Status (6)

Country Link
US (1) US9355822B2 (ja)
JP (1) JP5808012B2 (ja)
KR (1) KR102038642B1 (ja)
CN (1) CN104025266B (ja)
TW (1) TWI552223B (ja)
WO (1) WO2013099133A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003758A1 (en) * 2014-06-30 2016-01-07 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
WO2017126662A1 (ja) * 2016-01-22 2017-07-27 Sppテクノロジーズ株式会社 プラズマ制御装置
US9748076B1 (en) 2016-04-20 2017-08-29 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator
TWI666677B (zh) * 2014-03-11 2019-07-21 日商東京威力科創股份有限公司 電漿處理裝置及電漿處理方法
US20210066041A1 (en) * 2018-05-17 2021-03-04 Beijing Naura Microelectronics Equipment Co., Ltd. System and method for pulse modulation of radio frequency power supply and reaction chamber thereof
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977509B2 (ja) * 2011-12-09 2016-08-24 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP5935116B2 (ja) * 2011-12-16 2016-06-15 東京エレクトロン株式会社 プラズマ処理装置
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9460894B2 (en) * 2013-06-28 2016-10-04 Lam Research Corporation Controlling ion energy within a plasma chamber
US9401263B2 (en) * 2013-09-19 2016-07-26 Globalfoundries Inc. Feature etching using varying supply of power pulses
US10020800B2 (en) 2013-11-14 2018-07-10 Eagle Harbor Technologies, Inc. High voltage nanosecond pulser with variable pulse width and pulse repetition frequency
CN109873621B (zh) 2013-11-14 2023-06-16 鹰港科技有限公司 高压纳秒脉冲发生器
US10978955B2 (en) 2014-02-28 2021-04-13 Eagle Harbor Technologies, Inc. Nanosecond pulser bias compensation
JP6301112B2 (ja) * 2013-11-15 2018-03-28 株式会社ダイヘン 高周波電源
KR101980281B1 (ko) * 2013-12-27 2019-05-21 주식회사 원익아이피에스 플라즈마처리장치 및 플라즈마처리방법
US9423433B2 (en) * 2014-01-19 2016-08-23 Qorvo Us, Inc. Compact power detection circuit utilizing ground via coupling
JP6295119B2 (ja) * 2014-03-25 2018-03-14 株式会社日立ハイテクノロジーズ プラズマ処理装置
KR20160022458A (ko) * 2014-08-19 2016-03-02 삼성전자주식회사 플라즈마 장비 및 이의 동작 방법
US10192721B2 (en) 2014-12-12 2019-01-29 Daihen Corporation High-frequency power source
JP6410592B2 (ja) * 2014-12-18 2018-10-24 東京エレクトロン株式会社 プラズマエッチング方法
CN105789009B (zh) * 2014-12-26 2018-05-25 北京北方华创微电子装备有限公司 用于等离子刻蚀设备的上盖和等离子刻蚀设备
JP6449674B2 (ja) 2015-02-23 2019-01-09 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
DE102015212152B4 (de) * 2015-06-30 2018-03-15 TRUMPF Hüttinger GmbH + Co. KG Nicht lineare Hochfrequenzverstärkeranordnung
DE102015212220A1 (de) * 2015-06-30 2017-01-05 TRUMPF Hüttinger GmbH + Co. KG Hochfrequenzverstärkeranordnung
DE102015212247A1 (de) 2015-06-30 2017-01-05 TRUMPF Hüttinger GmbH + Co. KG Hochfrequenzverstärkeranordnung
JP6541540B2 (ja) * 2015-10-06 2019-07-10 東京エレクトロン株式会社 プラズマ処理装置のインピーダンス整合のための方法
DE102015220847A1 (de) * 2015-10-26 2017-04-27 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Impedanzanpassung einer Last an die Ausgangsimpedanz eines Leistungsgenerators und Impedanzanpassungsanordnung
JP6603586B2 (ja) * 2016-01-19 2019-11-06 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
KR102092213B1 (ko) * 2016-03-23 2020-03-23 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. 임피던스 매칭 시스템, 임피던스 매칭 방법 및 반도체 공정장비
US10340123B2 (en) * 2016-05-26 2019-07-02 Tokyo Electron Limited Multi-frequency power modulation for etching high aspect ratio features
KR102476353B1 (ko) 2016-07-26 2022-12-09 삼성전자주식회사 반도체 설비의 설정 파형 발생기, 플라즈마 처리 장치, 플라즈마 처리 장치의 제어 방법 및 반도체 장치의 제조 방법
WO2018055776A1 (ja) * 2016-09-26 2018-03-29 富士機械製造株式会社 プラズマ用電源装置、プラズマ装置、およびプラズマ発生方法
JP6770868B2 (ja) * 2016-10-26 2020-10-21 東京エレクトロン株式会社 プラズマ処理装置のインピーダンス整合のための方法
KR101881536B1 (ko) * 2017-02-24 2018-07-24 주식회사 뉴파워 프라즈마 출력전류 제어가 가능한 전력공급장치 및 이를 이용한 전력공급방법
KR101881535B1 (ko) * 2017-02-24 2018-07-24 주식회사 뉴파워 프라즈마 수동소자를 구비한 전력공급장치 및 이를 이용한 플라즈마 점화를 위한 전력제공방법
US10424467B2 (en) * 2017-03-13 2019-09-24 Applied Materials, Inc. Smart RF pulsing tuning using variable frequency generators
KR102012743B1 (ko) * 2017-06-23 2019-08-21 인투코어테크놀로지 주식회사 전원 공급 장치 및 부하에 전원을 공급하는 방법
KR101957575B1 (ko) 2017-06-23 2019-03-13 인투코어테크놀로지 주식회사 전원 공급 장치 및 부하에 전원을 공급하는 방법
WO2019010312A1 (en) * 2017-07-07 2019-01-10 Advanced Energy Industries, Inc. INTER-PERIODIC CONTROL SYSTEM FOR PLASMA POWER SUPPLY SYSTEM AND METHOD OF OPERATION
US11615943B2 (en) * 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US11651939B2 (en) * 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
KR102208429B1 (ko) * 2017-08-25 2021-01-29 이글 하버 테크놀로지스, 인코포레이티드 나노초 펄스를 이용한 임의의 파형 발생
US20190108976A1 (en) * 2017-10-11 2019-04-11 Advanced Energy Industries, Inc. Matched source impedance driving system and method of operating the same
US10264663B1 (en) * 2017-10-18 2019-04-16 Lam Research Corporation Matchless plasma source for semiconductor wafer fabrication
CN111316761A (zh) * 2017-11-22 2020-06-19 株式会社富士 等离子体用电源装置、等离子体装置及等离子体用电源装置的控制方法
JP2018088819A (ja) * 2018-02-28 2018-06-07 株式会社ダイヘン 高周波電源
JP7042124B2 (ja) * 2018-03-20 2022-03-25 株式会社Fuji プラズマ装置用電源装置
JP2019186098A (ja) * 2018-04-12 2019-10-24 東京エレクトロン株式会社 プラズマを生成する方法
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
JP7175239B2 (ja) * 2018-06-22 2022-11-18 東京エレクトロン株式会社 制御方法、プラズマ処理装置、プログラム及び記憶媒体
JP6842443B2 (ja) * 2018-06-22 2021-03-17 東京エレクトロン株式会社 プラズマ処理装置及びプラズマを生成する方法
CN110648888B (zh) * 2018-06-27 2020-10-13 北京北方华创微电子装备有限公司 射频脉冲匹配方法及其装置、脉冲等离子体产生系统
JP7139181B2 (ja) * 2018-07-26 2022-09-20 ワイエイシイテクノロジーズ株式会社 プラズマ処理装置
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
JP7122268B2 (ja) 2019-02-05 2022-08-19 東京エレクトロン株式会社 プラズマ処理装置
JP7158308B2 (ja) * 2019-02-14 2022-10-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US11184961B2 (en) * 2019-06-27 2021-11-23 ERP Power, LLC Dedicated bias supply for radio communications in light drivers
JP6826165B1 (ja) * 2019-08-06 2021-02-03 株式会社京三製作所 パルス化高周波モニタ
KR102645224B1 (ko) * 2019-08-14 2024-03-08 인투코어테크놀로지 주식회사 전원 공급 장치 및 그 제어 방법
US11545341B2 (en) 2019-10-02 2023-01-03 Samsung Electronics Co., Ltd. Plasma etching method and semiconductor device fabrication method including the same
JP7262375B2 (ja) * 2019-11-26 2023-04-21 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP7301012B2 (ja) * 2020-03-10 2023-06-30 株式会社ダイヘン 高周波電源装置
JP7383533B2 (ja) * 2020-03-16 2023-11-20 株式会社京三製作所 高周波電源装置及びその出力制御方法
JP7291091B2 (ja) * 2020-03-16 2023-06-14 株式会社京三製作所 高周波電源装置及びその出力制御方法
JP7450485B2 (ja) 2020-07-22 2024-03-15 東京エレクトロン株式会社 マイクロ波出力装置及びプラズマ処理装置
JP2022048032A (ja) * 2020-09-14 2022-03-25 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2022048811A (ja) * 2020-09-15 2022-03-28 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2022159804A1 (en) * 2021-01-23 2022-07-28 Sheperak Thomas J Plasma gas generator
JP2022117669A (ja) * 2021-02-01 2022-08-12 東京エレクトロン株式会社 フィルタ回路及びプラズマ処理装置
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246091A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801809A2 (en) * 1995-06-19 1997-10-22 The University Of Tennessee Research Corporation Discharge methods and electrodes for generating plasmas at one atmosphere of pressure, and materials treated therewith
US6178919B1 (en) * 1998-12-28 2001-01-30 Lam Research Corporation Perforated plasma confinement ring in plasma reactors
US6242360B1 (en) * 1999-06-29 2001-06-05 Lam Research Corporation Plasma processing system apparatus, and method for delivering RF power to a plasma processing
US20110121735A1 (en) * 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US20040025791A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
US6837966B2 (en) * 2002-09-30 2005-01-04 Tokyo Electron Limeted Method and apparatus for an improved baffle plate in a plasma processing system
JP4388287B2 (ja) * 2003-02-12 2009-12-24 東京エレクトロン株式会社 プラズマ処理装置及び高周波電力供給装置
US7179754B2 (en) * 2003-05-28 2007-02-20 Applied Materials, Inc. Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy
JP4490969B2 (ja) * 2003-09-22 2010-06-30 エム ケー エス インストルメンツ インコーポレーテッド 無線周波数プラズマ処理における不安定性を防止する方法及び装置
WO2006036846A1 (en) * 2004-09-24 2006-04-06 Zond, Inc. Apparatus for generating high-current electrical discharges
US7837825B2 (en) * 2005-06-13 2010-11-23 Lam Research Corporation Confined plasma with adjustable electrode area ratio
US20080179948A1 (en) * 2005-10-31 2008-07-31 Mks Instruments, Inc. Radio frequency power delivery system
JP5064707B2 (ja) * 2006-03-30 2012-10-31 東京エレクトロン株式会社 プラズマ処理装置
US20070227666A1 (en) * 2006-03-30 2007-10-04 Tokyo Electron Limited Plasma processing apparatus
US7722778B2 (en) * 2006-06-28 2010-05-25 Lam Research Corporation Methods and apparatus for sensing unconfinement in a plasma processing chamber
JP5192209B2 (ja) * 2006-10-06 2013-05-08 東京エレクトロン株式会社 プラズマエッチング装置、プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
JP5514413B2 (ja) 2007-08-17 2014-06-04 東京エレクトロン株式会社 プラズマエッチング方法
US8317969B2 (en) * 2008-03-25 2012-11-27 Tokyo Electron Limited Plasma processing apparatus
JP5466480B2 (ja) 2009-02-20 2014-04-09 東京エレクトロン株式会社 プラズマエッチング方法、プラズマエッチング装置および記憶媒体
US9767988B2 (en) * 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US8659335B2 (en) * 2009-06-25 2014-02-25 Mks Instruments, Inc. Method and system for controlling radio frequency power
JP2011238747A (ja) * 2010-05-10 2011-11-24 Shimadzu Corp プラズマcvd成膜装置および高周波電圧の印加方法
KR101147349B1 (ko) * 2010-09-17 2012-05-23 인제대학교 산학협력단 누설 전류형 변압기를 이용한 플라즈마 처리장치
US9111728B2 (en) * 2011-04-11 2015-08-18 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246091A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666677B (zh) * 2014-03-11 2019-07-21 日商東京威力科創股份有限公司 電漿處理裝置及電漿處理方法
US9544987B2 (en) 2014-06-30 2017-01-10 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
US9852890B2 (en) 2014-06-30 2017-12-26 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
WO2016003758A1 (en) * 2014-06-30 2016-01-07 Advanced Energy Industries, Inc. Frequency tuning for pulsed radio frequency plasma processing
WO2017126662A1 (ja) * 2016-01-22 2017-07-27 Sppテクノロジーズ株式会社 プラズマ制御装置
TWI713681B (zh) * 2016-01-22 2020-12-21 日商Spp科技股份有限公司 電漿控制裝置
US11195697B2 (en) 2016-01-22 2021-12-07 Spp Technologies Co., Ltd. Plasma control apparatus
US9748076B1 (en) 2016-04-20 2017-08-29 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator
US10026595B2 (en) 2016-04-20 2018-07-17 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator
US11749502B2 (en) * 2018-05-17 2023-09-05 Beijing Naura Microelectronics Equipment Co., Ltd. System and method for pulse modulation of radio frequency power supply and reaction chamber thereof
US20210066041A1 (en) * 2018-05-17 2021-03-04 Beijing Naura Microelectronics Equipment Co., Ltd. System and method for pulse modulation of radio frequency power supply and reaction chamber thereof
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Also Published As

Publication number Publication date
CN104025266A (zh) 2014-09-03
TWI552223B (zh) 2016-10-01
TW201342467A (zh) 2013-10-16
JP2013135159A (ja) 2013-07-08
JP5808012B2 (ja) 2015-11-10
US9355822B2 (en) 2016-05-31
KR102038642B1 (ko) 2019-10-30
US20140361690A1 (en) 2014-12-11
CN104025266B (zh) 2016-07-20
KR20140114816A (ko) 2014-09-29

Similar Documents

Publication Publication Date Title
JP5808012B2 (ja) プラズマ処理装置
KR102569962B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
KR101993880B1 (ko) 플라즈마 처리 장치
US9053908B2 (en) Method and apparatus for controlling substrate DC-bias and ion energy and angular distribution during substrate etching
KR102265231B1 (ko) 플라즈마 처리 장치
KR102152811B1 (ko) Dc 바이어스 변조에 의한 입자 발생 억제기
JP6162016B2 (ja) プラズマ処理装置
JP5977509B2 (ja) プラズマ処理方法及びプラズマ処理装置
US10264662B2 (en) Plasma processing apparatus
US20080236750A1 (en) Plasma processing apparatus
KR20210065045A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JP6055537B2 (ja) プラズマ処理方法
WO2022271383A1 (en) Pulsed voltage source for plasma processing applications
JP2002184766A (ja) プラズマ処理装置および方法
CN104900472A (zh) 等离子体处理的方法
JP4238050B2 (ja) プラズマ処理装置及び処理方法
JP3599670B2 (ja) プラズマ処理方法および装置
JP2005203491A (ja) プラズマ処理装置およびプラズマ処理方法
JP7302060B2 (ja) クリーニング方法及びプラズマ処理装置
KR20010076954A (ko) 고주파 정합장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147017715

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14368865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861770

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12861770

Country of ref document: EP

Kind code of ref document: A1