WO2013080827A1 - ポリエステルフィルム、太陽電池バックシート、太陽電池 - Google Patents

ポリエステルフィルム、太陽電池バックシート、太陽電池 Download PDF

Info

Publication number
WO2013080827A1
WO2013080827A1 PCT/JP2012/079972 JP2012079972W WO2013080827A1 WO 2013080827 A1 WO2013080827 A1 WO 2013080827A1 JP 2012079972 W JP2012079972 W JP 2012079972W WO 2013080827 A1 WO2013080827 A1 WO 2013080827A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
polyester film
solar cell
particles
Prior art date
Application number
PCT/JP2012/079972
Other languages
English (en)
French (fr)
Inventor
堀江将人
鈴木維允
増田友秀
高橋弘造
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to IN4731CHN2014 priority Critical patent/IN2014CN04731A/en
Priority to JP2013506035A priority patent/JP5331266B1/ja
Priority to KR1020147013773A priority patent/KR102017514B1/ko
Priority to EP12852635.7A priority patent/EP2787027A4/en
Priority to CN201280058014.8A priority patent/CN103946285B/zh
Priority to US14/360,484 priority patent/US9530917B2/en
Priority to SG11201402189RA priority patent/SG11201402189RA/en
Publication of WO2013080827A1 publication Critical patent/WO2013080827A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • Y10T428/2443Sand, clay, or crushed rock or slate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a polyester film having excellent durability. Moreover, it is related with the solar cell backsheet and solar cell which use it.
  • Polyester film is used for magnetic recording media, for electrical insulation, for solar cells, for capacitors, for packaging, and for various industrial applications, utilizing its excellent properties such as mechanical properties, thermal properties, electrical properties, surface properties and heat resistance. It is used for various applications such as materials.
  • demand for solar cells, which are clean energy is growing as a next-generation energy source that is semi-permanent and non-polluting in recent years, and polyester films are also used as one component of back sheets for solar cells (patent document) 1, 2).
  • Patent Documents 1 and 2 As a life extension of the solar cell, there is an increasing demand for improvement of the moisture heat resistance and partial discharge voltage of the solar cell backsheet and the polyester film used therefor.
  • Patent Documents 3 and 4 a film in which the height and number of protrusions (peaks) present on the film surface are controlled has been proposed.
  • Patent Document 1 proposes a polyester film excellent in moisture and heat resistance, but even when such a polyester film is used, the life of the solar battery back sheet or solar battery is not so long. When the present inventors investigated the cause of this, it was found that when the polyester film was incorporated into a solar battery back sheet or solar battery, the moisture resistance of the polyester film was greatly reduced.
  • Patent Documents 3 and 4 are used for release applications.
  • the techniques of Patent Documents 3 and 4 specify the number of protrusions present on the film surface by paying attention to protrusions having a very low height. Therefore, even if the films described in Patent Documents 3 and 4 are incorporated in the solar battery back sheet, the moisture and heat resistance is very poor.
  • an object of the present invention is to provide a polyester film whose wet heat resistance does not deteriorate even when incorporated in a solar battery back sheet or a solar battery.
  • the present invention for solving the above-described problems is characterized by the following (1) to (7).
  • the outermost layer includes a layer containing particles having a particle size of 2 ⁇ m or more, and the content of the particles is a layer containing particles having a particle size of 2 ⁇ m or more.
  • the polyester film according to (2), wherein the particles are aluminosilicate particles.
  • the polyester used in the present invention is obtained by polycondensation of a dicarboxylic acid component and a diol component.
  • a structural component shows the minimum unit which can be obtained by hydrolyzing polyester.
  • dicarboxylic acid component constituting the polyester examples include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalon.
  • Aliphatic dicarboxylic acids such as acid, ethylmalonic acid and the like, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4 -Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenylether dicarboxylic acid, 5-sodium Sulfoy Phthalic acid, phenyl ene boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) dicarboxylic acids such as
  • diol component constituting the polyester examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Aliphatic diols such as cyclohexanedimethanol, spiroglycol and isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9′-bis (4 Examples include aromatic diols such as -hydroxyphenyl) fluorene, and a series of a plurality of the above-mentioned diols.
  • the polyester may be copolymerized with a monofunctional compound such as lauryl alcohol or phenyl isocyanate, or a trifunctional compound such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol and 2,4-dioxybenzoic acid. May be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking.
  • a monofunctional compound such as lauryl alcohol or phenyl isocyanate
  • a trifunctional compound such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol and 2,4-dioxybenzoic acid. May be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking.
  • polyethylene terephthalate and polyethylene naphthalate are preferably used as the polyester.
  • the polyester may be a copolymer or a modified product thereof. From the viewpoint of crystallinity, polyethylene terephthalate and / or polyethylene naphthalate is preferably the main component.
  • polyethylene terephthalate and / or polyethylene naphthalate being a main component means that ethylene terephthalate and / or ethylene naphthalate is 85 mol% or more of all repeating units of the polyester. In particular, 90% by mole or more of all the repeating units of the polyester is preferably ethylene terephthalate and / or ethylene naphthalate.
  • the polyester film of the present invention needs to have a peak count SPc_L (400 nm) of at least one surface of 100 or more and 10 or less SPc_H (4000 nm).
  • the polyester film comes into contact with other members many times when the polyester film is incorporated into the solar cell backsheet and when the solar cell is transported or constructed.
  • the polyester film comes into contact with other members in this manner, the surface of the polyester film is scratched, and moisture enters the film from the scratch. Therefore, it is considered that hydrolysis of the polyester film is promoted and the heat and humidity resistance of the polyester film is lowered.
  • a metal is used for a frame thereof, and the metal is generally harder than polyester. Therefore, when using a polyester film for a solar cell use, it is estimated that the surface of a polyester film is very easily damaged.
  • the SPc_L 400 nm
  • the surface of the polyester film is hardly scratched because the contact area with other members is reduced.
  • the surface is likely to be scratched during the manufacturing process of the back sheet and the transportation / construction of the solar cell, and water is more likely to enter from the scratch, resulting in deterioration of moisture and heat resistance, resulting in lower durability. There is a problem to do. More preferably, it is 150 or more, more preferably 250 or more. If SPc_H (4000 nm) is more than 10, the durability can be prevented from being lowered due to scratches. However, since the surface area is increased, there is a problem that water can easily enter the polyester film and the heat and humidity resistance deteriorates. More preferably, it is 5 or less, more preferably 2 or less, and particularly preferably 1 or less.
  • SPc_L (400 nm) is preferably 500 or less because durability is improved.
  • SPc_L (400 nm) and SPc_H (4000 nm) can be controlled by the particle diameter and particle concentration to be added and the dispersion diameter and addition concentration of the resin contained.
  • the polyester film of the present invention must have a carboxyl end amount of 0 to 25 equivalent / t. If the carboxyl terminal amount is larger than 25 equivalents / t, there is a problem that hydrolysis tends to occur due to autocatalysis by the carboxyl terminal and the heat and moisture resistance decreases. A more preferred upper limit is 20 equivalent / t, and a still more preferred upper limit is 16 equivalent / t. A more preferable range is 0 to 20 equivalent / t, and a further preferable range is 0 to 16 equivalent / t.
  • the carboxyl end amount can be controlled by the raw materials used, the melt kneading method, and the like.
  • the polyester film of the present invention preferably contains a layer having a particle content of 0.1 to 5% by mass with a particle size of 2 ⁇ m or more in the outermost layer. If the particle size is smaller than 2 ⁇ m, surface protrusions are difficult to be formed and scratches may be easily formed. If the particle content is less than 0.1% by mass, surface protrusions are hardly formed and scratches are easily formed, and durability may be lowered. When the particle content is larger than 5% by mass, surface protrusions are excessively formed, the surface area is increased, and durability may be deteriorated. A more preferable lower limit is 0.2% by mass, and a still more preferable lower limit is 0.4% by mass. A more preferable upper limit is 4% by mass, and a further preferable upper limit is 2% by mass.
  • Examples of particle types include inorganic particles and organic particles.
  • the inorganic particles include clay, mica, titanium oxide, calcium carbonate, carion, talc, wet silica, dry silica, colloidal silica, calcium phosphate, barium sulfate, alumina and zirconia, and aluminosilicate particles.
  • the organic particles include particles containing acrylic acid, styrene resin, thermosetting resin, silicone, imide compound, and the like as constituent components. Particles (so-called internal particles) that are precipitated by a catalyst or the like added during the polyester polymerization reaction are also preferably used.
  • aluminosilicate particles are preferable because of their low hygroscopicity. Since particles having low hygroscopicity retain less moisture, even when particles are added to polyester to form a film, deterioration of the polyester due to moisture is suppressed, and thus the durability of the film is likely to be improved.
  • the surface roughness of the polyester film can be controlled by using such particles.
  • the film of the present invention is a film using polyester as described above.
  • the film of the present invention may contain a resin different from the polyester constituting the film.
  • the polyester constituting the film may contain an incompatible resin (hereinafter referred to as “incompatible resin”).
  • incompatible resin is preferably dispersed in the polyester in the film. This is because protrusions can be formed on the surface of the film.
  • the dispersion diameter of the incompatible resin in the film is preferably 500 to 3000 nm. If the thickness is smaller than 500 nm, surface protrusions are difficult to be formed and scratches are easily formed, and durability may be reduced. If it is larger than 3000 nm, surface protrusions are excessively formed and durability may be lowered.
  • the type of the incompatible resin is not particularly limited as long as it is different from the polyester constituting the film, but is not limited to polyester resin (however, the polyester resin must be different from the polyester constituting the film), styrene resin And polyimide resin, and polyester resin is particularly preferable.
  • the layer containing this incompatible resin is arrange
  • the dispersion diameter is controlled by the type and viscosity of the resin.
  • the thickness of the polyester film can be appropriately determined according to the application, but is preferably 25 to 250 ⁇ m for the solar battery backsheet application.
  • this thickness is smaller than 25 ⁇ m, there is a problem that the film is not elastic and is difficult to convey.
  • this thickness is larger than 250 ⁇ m, the film may be too thick to be excellent in workability.
  • the lower limit of the thickness is more preferably 30 ⁇ m, still more preferably 40 ⁇ m.
  • the upper limit value of the thickness is more preferably 220 ⁇ m, still more preferably 200 ⁇ m.
  • a more preferable range of the thickness is 30 to 220 ⁇ m, and a more preferable range is 40 to 200 ⁇ m.
  • polyester film of the present invention as described above is produced, for example, as follows.
  • polyester pellets are melted using an extruder, discharged from a die, and then cooled and solidified to form a sheet.
  • the polymer may be filtered with a fiber sintered stainless metal filter.
  • additives such as compatibilizers, plasticizers, weathering agents, antioxidants, thermal stabilizers, lubricants, antistatic agents, whitening agents, coloring, as long as the effects of the present invention are not impaired.
  • Agents, conductive agents, ultraviolet absorbers, flame retardants, flame retardant aids, pigments and dyes may be added.
  • the sheet-like material obtained as described above is stretched biaxially in the longitudinal direction and the width direction, and then heat-treated.
  • a sequential biaxial stretching method such as stretching in the width direction after stretching in the longitudinal direction, a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are simultaneously stretched using a simultaneous biaxial tenter, etc.
  • a method combining a sequential biaxial stretching method and a simultaneous biaxial stretching method is included.
  • PET polyethylene terephthalate
  • the present invention is not limited to a polyester film using a PET film, and may be one using another polymer.
  • a polyester film is formed using polyethylene-2,6-naphthalenedicarboxylate having a high glass transition temperature or a high melting point, extrusion or stretching may be performed at a temperature higher than the following temperature.
  • Polyethylene terephthalate is manufactured by one of the following processes. (1) A process of obtaining terephthalic acid and ethylene glycol as raw materials, obtaining a low molecular weight polyethylene terephthalate or oligomer by direct esterification, and then obtaining a polymer by polycondensation reaction using antimony trioxide or the like as a catalyst. And (2) A process in which dimethyl terephthalate and ethylene glycol are used as raw materials, a low molecular weight product is obtained by a transesterification reaction, and then a polymer is obtained by a polycondensation reaction using antimony trioxide or the like as a catalyst.
  • the obtained PET pellet is preferably heat-treated for 8 hours or more at a temperature of 220 ° C. under a reduced pressure of 1 mmHg using a rotary vacuum polymerization apparatus to increase the intrinsic viscosity.
  • the polyester constituting the film contains particles or resin
  • the particles or resin are directly mixed with PET pellets and heated to a temperature of 270 to 295 ° C. using a vented twin-screw kneading extruder.
  • a method of kneading PET into PET and producing PET pellets (master batch) containing particles and resin at a high concentration is effective.
  • the PET pellets obtained (and, if necessary, the master batch) are dried under reduced pressure at a temperature of 180 ° C. for 3 hours or more, under a nitrogen stream or under reduced pressure so that the intrinsic viscosity does not decrease, It is fed to an extruder heated to a temperature of 265 to 280 ° C., extruded from a slit-shaped T die, and cooled on a casting roll to obtain an unstretched film.
  • an extruder heated to a temperature of 265 to 280 ° C., extruded from a slit-shaped T die, and cooled on a casting roll to obtain an unstretched film.
  • a plurality of different polymers are melt laminated using two or more extruders and manifolds or merging blocks.
  • the unstretched film thus obtained is biaxially stretched.
  • Biaxial stretching method using a longitudinal stretching machine in which several rolls are arranged, stretching in the longitudinal direction using the difference in peripheral speed of the rolls (MD stretching), followed by transverse stretching with a stenter (TD stretching) Will be described.
  • the unstretched film is MD stretched.
  • the longitudinal stretching machine comprises a preheating roll, a stretching roll, and a cooling roll, and further comprises a nip roll that cuts the tension and suppresses slipping of the film.
  • MD stretching the film running on the stretching roll is pressed with a stretching nip roll at a constant pressure (nip pressure) to sandwich the film, cut the tension, and the next cooling roll of the stretching roll rotates with a difference in peripheral speed. Stretched.
  • the stretching roll and the stretching nip roll are rolls for pressing and sandwiching the film.
  • the stretching roll and the stretching nip roll are both silicon rolls having a surface hardness of 30 to 70 ° as measured by a durometer (type A) conforming to JIS-K6253 (2006). It is preferable. If the surface hardness is greater than 70 °, the protrusions may be crushed and the film surface may be easily scratched. The surface hardness is more preferably 30 to 45 °. If the surface hardness is greater than 45 °, the protrusions may be crushed and the film surface may be easily scratched. If the surface hardness is less than 30 °, the roll cannot cut the tension sufficiently, and stretching unevenness may occur, which may be undesirable.
  • the nip pressure is preferably 0.05 to 0.2 Pa. If the nip pressure is greater than 0.2 MPa, the protrusions may be crushed and the film surface may be easily scratched.
  • the nip pressure is more preferably 0.05 to 0.15 MPa. If the nip pressure is greater than 0.15 MPa, the protrusions may be crushed and the film surface may be more easily scratched.
  • the MD stretching temperature is (glass transition temperature (hereinafter referred to as Tg) +10) to (Tg + 50) ° C., and the stretching ratio of MD stretching is 1.2 to 5.0 times. After stretching, the film is cooled by a cooling roll group having a temperature of 20 to 50 ° C.
  • the stenter is a device that stretches the film between the clips at both ends while holding the both ends of the film with clips, and is stretched into a preheating zone, a stretching zone, a heat treatment zone, and a cooling zone.
  • the wind speed in the preheating zone is preferably 1 to 20 m / s.
  • the wind speed in the preheating zone is more preferably 1 to 5 m / s.
  • the wind speed is higher than 5 m / s, the protrusions on the surface are rapidly heated, and the protrusions may be smaller. As a result, the number of protrusions on the surface of the film may decrease, and the film surface may be easily scratched.
  • the wind speed is slower than 1 m / s, the film temperature is likely to be uneven, and stretching breakage is likely to occur, which is not preferable.
  • the wind speed is measured at the nozzle outlet, and the gap between the nozzle and the film is preferably 120 mm.
  • the stretching ratio of TD stretching is 2.0 to 6.0 times, and the stretching temperature is in the range of (Tg) to (Tg + 50) ° C.
  • heat setting is performed.
  • the film is heat-treated in a temperature range of 150 to 240 ° C. while relaxing the film under tension or in the width direction.
  • the heat treatment time is in the range of 0.5 to 10 seconds.
  • the wind speed in the cooling zone is preferably 3 to 30 m / s. When the wind speed in the cooling zone is slower than 3 m / s, there is a problem that cooling takes time and surface protrusions tend to be small, and the film surface is easily scratched.
  • the wind speed in the cooling zone is more preferably 15 to 30 m / s. If it is slower than 15 m / s, it takes time for cooling, and the surface protrusions are likely to be small, and the film surface may be easily scratched. If it is faster than 30 m / s, it is locally cooled and uneven cooling becomes undesirably uneven. Then, a film edge is removed and the polyester film of this invention can be obtained.
  • ⁇ Analytical instrument Three-dimensional surface roughness analysis system (model TDA-31) -Stylus: tip radius 0.5 ⁇ m R, diameter 2 ⁇ m, made of diamond ⁇ Measurement direction: film longitudinal direction and film width direction average after each measurement ⁇ X measurement length: 1.0 mm -X feed speed: 0.1 mm / s (measurement speed) ⁇ Y feed pitch: 5 ⁇ m (measurement interval) -Number of Y lines: 81 (measured number) ⁇ Z magnification: 20 times (vertical magnification) ⁇ Low frequency cut-off: 0.20mm (swell cut-off value) High frequency cut-off: R + Wmm (roughness cut-off value) R + W means not cut off.
  • -Filter method Gaussian space type-Leveling: Available (tilt correction) - reference area: 1mm 2.
  • SPc_L 400 nm
  • SPc_H 4000 nm
  • SPc_L 400 nm
  • SPc_H 4000 nm
  • SPc_L 400 nm
  • SPc_H 4000 nm
  • the dispersion diameter of resin in the film is an average ellipse major axis of dispersion diameters obtained on a plurality of observation surfaces, and can be obtained by the following measurement method. .
  • the cut surface of the film was observed using a transmission electron microscope under the condition of an acceleration voltage of 100 kV, and a photograph taken at 20,000 times was taken as an image into an image analyzer, and any 100 dispersed phases were captured. (Island portion) is selected, and image processing is performed as necessary, thereby obtaining a dispersion diameter and calculating the number average. Specifically, it is as follows.
  • the sample was cut by an ultrathin section method. In order to clarify the contrast of the dispersed phase, it may be stained with osmic acid or ruthenic acid.
  • the cut surface is observed with a transmission electron microscope (Hitachi H-7100FA type) under the condition of an acceleration voltage of 100 kV, and a photograph is taken at 20,000 times.
  • the obtained photograph was taken into an image analyzer as an image, 100 arbitrary dispersed phases were selected, and image processing was performed as necessary, whereby the size of the dispersed phase was determined as follows.
  • the maximum length (Lc) was determined.
  • the average dispersion diameter of the dispersed phase was (La + Lb + Lc) / 3.
  • the maximum length of each of the 100 arbitrary dispersed phases observed on the cut surface of (a) is obtained, and the number average value of the 100 values is observed on the cut surface of (a).
  • the maximum length of each of the arbitrary 100 dispersed phases is obtained, the number average value of the 100 values is Lb, and the maximum length of each of the arbitrary 100 dispersed phases observed on the cut surface of (c)
  • the number average value of the 100 values is obtained as Lc.
  • (La + Lb + Lc) / 3 was defined as the average dispersion diameter of the dispersed phase.
  • the above image processing method is performed according to the following procedure. That is, a transmission electron micrograph of each sample was taken into a computer with a scanner. After that, image analysis was performed using dedicated software (“Image Pro Pro Plus Ver. 4.0” manufactured by Planetron). The brightness and contrast were adjusted by manipulating the tone curve, and then an image was obtained using a Gaussian filter.
  • image Pro Pro Plus Ver. 4.0 manufactured by Planetron
  • the brightness and contrast were adjusted by manipulating the tone curve, and then an image was obtained using a Gaussian filter.
  • ⁇ ⁇ Leafscan 45 Plug-In manufactured by Nippon Cytex Co., Ltd. Seiko Epson's GT-7600S is used, and any of them can obtain an equivalent value.
  • the durability of the film was determined as follows.
  • elongation half-life is 65 hours or more: A When the elongation half-life is 55 hours or more and less than 65 hours: B When elongation half life is 45 hours or more and less than 55 hours: C When the elongation half-life is 35 hours or more and less than 45 hours: D When elongation half-life is less than 35 hours: E A to C are good, and among them, A is the best.
  • the film is unwound from a film roll and conveyed by a metal roll, and a commercially available polyester adhesive main agent LX703VL and a polyisocyanate curing agent KR90 (both manufactured by Dainippon Ink & Chemicals, Inc.) are used in weight.
  • An adhesive dry weight 4 g / m 2
  • this and this gas-barrier transparent alumina vapor-deposited film are dry-laminated to form a back sheet for solar cells, and the sheet is rolled with a metal roll.
  • EVA ethylene-vinyl acetate copolymer resin
  • solar cell and light-transmitting glass plate
  • EVA ethylene-vinyl acetate copolymer resin
  • solar cell solar cell
  • light-transmitting glass plate are placed on the back sheet for solar cell obtained in (8). They are laminated and integrated by heating and compression in a lamination process to form a solar cell module. Further, the solar cell module is taken out and supplied to the panel loading step of the solar cell panel line.
  • the primer coating step the primer is coated on the adhesive surface with the aluminum frame. Subsequently, the primer is left for about 1 minute as the drying time of the primer in the drying process, and then is carried out from the carry-out process to the frame line side. On the other hand, on the frame line side, an assembled aluminum frame will be introduced.
  • the aluminum frame has a projecting piece for supporting the light receiving surface of the solar cell module on which the solar cells are arranged and the surface side to be installed on the back, and can be provided over the entire periphery of the end of the solar cell module, And it has the structure which made the light-receiving surface side of the solar cell module the open state.
  • the primer-coated solar cell module is transported, and the aluminum frame and the solar cell module coated with the primer in the panel bonding step are placed (solar cell panel bonding step).
  • a molding is attached as necessary to produce a solar cell panel.
  • the solar cell panel was treated for 3000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85% RH, and the appearance of the back surface and the output decreased ( JIS-C8913 (1998)) was evaluated as follows.
  • Polyester chip ⁇ -1 was produced by the following method.
  • the reaction system was gradually heated from 230 ° C. to 290 ° C. and the pressure was reduced to 0.1 kPa.
  • the time to reach a final temperature of 290 ° C. and a final pressure of 0.1 kPa was both 60 minutes.
  • the reaction was carried out for 2 hours (3 hours after the start of polymerization).
  • the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain a polyester chip ⁇ .
  • the obtained polyester chip ⁇ had a glass transition temperature of 80 ° C., a cold crystallization temperature of 157 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.52, and a carboxyl terminal amount of 15.0 equivalents / t.
  • the polyester chip ⁇ was placed under vacuum at 160 ° C. for 6 hours to dry and crystallize the polyester chip ⁇ . Thereafter, this was placed under vacuum at 220 ° C. for 8 hours for solid phase polymerization to obtain a polyester chip ⁇ -1.
  • the obtained polyester chip ⁇ -1 had a glass transition temperature of 82 ° C., a cold crystallization temperature of 165 ° C., a melting point of 255 ° C., an intrinsic viscosity of 0.85, and a carboxyl terminal amount of 10 equivalent / t.
  • Example 1 A polyester chip ⁇ -1 and silica having a particle size shown in Table 1 were mixed, and the mixture was melt-kneaded to prepare a master pellet.
  • the concentration of silica in the master pellet is 10% by mass.
  • this master pellet and polyester chip ⁇ -1 were mixed, and these mixtures were dried under reduced pressure at 180 ° C. for 3 hours, supplied to an extruder E heated to 280 ° C., and introduced into a T die die.
  • the mixture of the master pellet and the polyester chip ⁇ -1 was mixed and introduced so that the silica concentration was as shown in Table 1.
  • the melt of the polyester chip ⁇ -1 and the master batch is extruded into a sheet shape to form a molten single layer sheet, and the molten single layer sheet is applied with an electrostatic charge on a cast drum having a surface temperature of 25 ° C. Then, it was allowed to cool and solidify while making an unstretched film. Subsequently, after the obtained unstretched film was preheated with a heated roll group, a nip pressure was set to 0. 0 using a stretch roll of a silicon roll (surface hardness 40 °) and a nip roll of a silicon roll (surface hardness 40 °).
  • the pressure was set to 1 MPa, and the MD was stretched 3.5 times in the longitudinal direction at a temperature of 90 ° C., and then cooled by a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with a clip, the tenter is led to a preheating zone (nozzle air velocity 3 m / s, nozzle-to-film 120 mm) at a temperature of 80 ° C. In the heating zone, the film was stretched 3.7 times in the width direction (TD direction) perpendicular to the longitudinal direction. Subsequently, a heat treatment was performed for 10 seconds at a temperature of 210 ° C.
  • the film was gradually and uniformly cooled in a cooling zone (nozzle air velocity 15 m / s, nozzle-film distance 120 mm) and wound up to obtain a biaxially stretched film (roll) having a thickness of 50 ⁇ m. Properties and the like of the obtained polyester film are shown in Table 1-1.
  • Examples 2 to 18, 28 to 41, Comparative Examples 1 to 18, 28 to 30 A polyester film was obtained in the same manner as in Example 1 except that the composition of the polyester film was changed as shown in Tables 1-1, 1-2, 1-3, and 2. Tables 1-1, 1-2, 1-3, and 2 show properties of the obtained polyester film. However, a master batch in which the type and concentration of the additive were changed was used as a raw material.
  • Example 19 to 27 Comparative Examples 19 to 27 Except that only the polyester chip ⁇ -1 obtained in Reference Example 1 was dried under reduced pressure at 180 ° C. for 3 hours and then introduced into the T-die die to the extruder E heated to 280 ° C. A polyester film obtained by the same method was obtained and molded by an imprint apparatus using a mold having the surface shapes shown in Tables 1-1, 1-2 and 1-3. The properties of the obtained polyester film are shown in Tables 1-1, 1-2, and 1-3.
  • Example 42 to 49 Comparative Examples 31 to 32
  • a polyester film was obtained in the same manner as in Example 5 except that the conditions for forming the polyester film were changed to the conditions shown in Table 3.
  • Table 3 shows the properties and the like of the obtained polyester film.
  • Example 50 to 57 Comparative Examples 33 to 34
  • a polyester film was obtained in the same manner as in Example 14 except that the film forming conditions of the polyester film were changed to the conditions shown in Table 3.
  • Table 3 shows the properties and the like of the obtained polyester film.
  • Example 58 Polyester chip ⁇ -1 and silica having a particle size shown in Table 4 were mixed, and the mixture was melt-kneaded to prepare a master pellet.
  • the concentration of silica in the master pellet is 10% by mass.
  • this master pellet and polyester chip ⁇ -1 were mixed, and these mixtures were dried under reduced pressure at 180 ° C. for 3 hours, supplied to an extruder E heated to 280 ° C., and introduced into a T die die.
  • the mixture was introduced so that the concentration of silica in the mixture of the master pellet and the polyester chip ⁇ -1 was as shown in Table 1.
  • the polyester chip ⁇ -1 obtained in Reference Example 1 was dried under reduced pressure at 180 ° C. for 3 hours, and then supplied to the extruder F heated to 280 ° C. and introduced into the T die die.
  • the melt of the raw material supplied to the extruder E and the melt of the raw material supplied to the extruder F are merged in the T die die, and the melt of the raw material supplied to the extruder E and the extruder F
  • the raw material melt supplied to the substrate is laminated and extruded into a sheet from the T die die to form a molten laminated sheet, and the molten laminated sheet is closely cooled while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C. Solidified to produce an unstretched film (laminated film).
  • a biaxially stretched film was obtained in the same manner as in Example 1 (Note that the surface on the side where the A layer is provided is the surface A, and the B layer is provided. The side surface is referred to as surface B). Properties and the like of the obtained polyester film are shown in Table 4-1.
  • Example 59 to 75 Comparative Examples 35 to 52
  • a polyester film was obtained in the same manner as in Example 58 except that the composition of the polyester film was changed as shown in Tables 4-1 and 4-2. Properties and the like of the obtained polyester film are shown in Tables 4-1 and 4-2.
  • the raw material used was a polyester chip ⁇ -1 and a master batch in which additives were changed.
  • Example 76 to 77 Comparative Examples 53 to 55
  • a polyester film was obtained in the same manner as in Example 5 except that the conditions for forming the polyester film were changed to those shown in Table 5.
  • Table 5 shows the characteristics and the like of the obtained polyester film.
  • Example 78 to 79 Comparative Examples 56 to 58
  • a polyester film was obtained in the same manner as in Example 14 except that the film forming conditions of the polyester film were changed to the conditions described in Table 5.
  • Table 5 shows the characteristics and the like of the obtained polyester film.
  • Example 80 to 88 A polyester film was obtained in the same manner as in Example 1 except that the composition of the polyester film was changed as shown in Table 6. Table 6 shows the properties and the like of the obtained polyester film. However, the raw material used was a polyester chip ⁇ -1 and a master batch in which additives were changed.
  • the present invention it is possible to provide a polyester film having excellent resistance to moisture and heat, and the film can be suitably used as a back sheet film for solar cells by taking advantage of its features.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、太陽電池バックシートや太陽電池に組み込んでも耐湿熱性が低下しないポリエステルフィルムを提供することを課題とし、少なくとも一方の表面のピークカウントSPc(400nm)が100個以上であり、SPc(4000nm)が10個以下であるポリエステルフィルムであって、カルボキシル末端量が0~25当量/tであるポリエステルフィルムにより、上記課題を解決するものである。

Description

ポリエステルフィルム、太陽電池バックシート、太陽電池
 本発明は耐久性に優れるポリエステルフィルムに関する。また、それを用いてなる太陽電池バックシートおよび太陽電池に関する。
 ポリエステルフィルムは、優れた機械特性、熱特性、電気特性、表面特性および耐熱性などの性質を利用して、磁気記録媒体用、電気絶縁用、太陽電池用、コンデンサー用、包装用および各種工業用材料など種々の用途に用いられている。近年、この中でも半永久的で無公害の次世代のエネルギー源としてクリーンエネルギーである太陽電池の需要が伸びており、ポリエステルフィルムも太陽電池用バックシートを構成する一部材として用いられている(特許文献1,2)。そして、太陽電池の高寿命化として太陽電池用バックシートおよびそれに用いられるポリエステルフィルムの耐湿熱性や部分放電電圧向上の要求が高まっている(特許文献1,2)。また、離型用途に供せられるフィルムとして、フィルム表面に存在する突起(ピーク)の高さや個数を制御せしめたフィルムが提案されている。(特許文献3,4)
国際公開第2011/52290号 特開2008-305822号公報 特開2010-169869号公報 特開2010-175620号公報
 特許文献1では、耐湿熱性に優れるポリエステルフィルムが提案されているが、かかるポリエステルフィルムを用いても、太陽電池バックシートや太陽電池の寿命は、それほど長くならない。本発明者らが、この原因について調査したところ、ポリエステルフィルムを太陽電池バックシートや太陽電池に組み込むと、そのポリエステルフィルムの耐湿性が何故か大きく低下することが判明した。
 また、特許文献3,4にて提案されているフィルムは離型用途に供せられるものである。また、特許文献3,4の技術は、フィルム表面に存在する突起の中でも、その高さが非常に低い突起に着目し、その個数を特定するものである。そのため、特許文献3,4に記載のフィルムを太陽電池バックシートに組み込んでも、耐湿熱性は非常に悪い。
 そこで、本発明の課題は、太陽電池バックシートや太陽電池に組み込んでも耐湿熱性が低下しないポリエステルフィルムを提供することにある。
 上記課題を解決するための本発明は、次の(1)~(7)を特徴とするものである。(1)少なくとも一方の表面のピークカウントSPc_L(400nm)が100個以上であり、SPc_H(4000nm)が10個以下であるポリエステルフィルムであって、カルボキシル末端量が0~25当量/tであるポリエステルフィルム。
(2)粒径2μm以上の粒子を含有する層を最外層に含む上記(1)に記載のポリエステルフィルムであって、当該粒子の含有量が、粒径が2μm以上の粒子を含有する層のポリエステルに対して、0.1~5質量%である、ポリエステルフィルム。
(3)前記粒子がアルミノケイ酸塩粒子である上記(2)に記載のポリエステルフィルム。
(4)分散径500~3000nmである樹脂を含有する層を最外層に含む、上記(1)~(3)のいずれかに記載のポリエステルフィルム
(5)太陽電池バックシートに用いられる上記(1)~(4)のいずれかに記載のポリエステルフィルム。
(6)上記(1)~(5)のいずれかに記載のフィルムを用いた太陽電池バックシート。
(7)上記(6)に記載の太陽電池バックシートを用いた太陽電池
 本発明によれば、耐湿熱性に優れるポリエステルフィルムを提供することができる。
 本発明にて用いられるポリエステルは、ジカルボン酸構成成分とジオール構成成分を重縮合してなるものである。なお、本明細書内において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。
 かかるポリエステルを構成するジカルボン酸構成成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等芳香族ジカルボン酸などのジカルボン酸、もしくはそのエステル誘導体が挙げられる。
 また、かかるポリエステルを構成するジオール構成成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオール類や、上述のジオールが複数個連なったものなどが例としてあげられる。
 ポリエステルには、ラウリルアルコールやイソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトールおよび2,4-ジオキシ安息香酸等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分とジオール成分以外に、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸および2,6-ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸、およびp-アミノフェノールやp-アミノ安息香酸などを、本発明の効果が損なわれない程度の少量であればさらに共重合させることができる。本発明において、ポリエステルとしては、ポリエチレンテレフタレートとポリエチレンナフタレートが好ましく用いられる。また、ポリエステルはこれらの共重合体、変性体でもよい。結晶性の観点からポリエチレンテレフタレートおよび/またはポリエチレンナフタレートが主成分であることが好ましい。ここで、ポリエチレンテレフタレートおよび/またはポリエチレンナフタレートが主成分であるとは、エチレンテレフタレートおよび/またはエチレンナフタレートがポリエステルの全繰り返し単位のうち85モル%以上であることを表す。特にポリエステルの全繰り返し単位のうち90モル%以上がエチレンテレフタレートおよび/またはエチレンナフタレートであることが好ましい。
 本発明のポリエステルフィルムは、少なくとも一方の表面のピークカウントSPc_L(400nm)が100個以上であり、SPc_H(4000nm)10個以下である必要がある。
 ポリエステルフィルム表面のSPc_L(400nm)およびSPc_H(4000nm)を上記の数値範囲内にすることによって、当該ポリエステルフィルムを太陽電池バックシートや太陽電池に組み込んだ後の耐湿熱性の低下を抑制することができる。かかる効果が奏される理由として、発明者らは以下のように推測している。
 ポリエステルフィルムを太陽電池バックシートに組み込む時、および、太陽電池の搬送・施工時などにおいて、ポリエステルフィルムは他の部材と何度も接触する。このようにポリエステルフィルムが他の部材と接触すると、ポリエステルフィルムの表面にキズが付き、そのキズからフィルム内部に水分が浸入する。そのため、ポリエステルフィルムの加水分解が促進され、ポリエステルフィルムの耐湿熱性が低下するものと考えられる。特に太陽電池には、その枠などに金属が用いられており、一般に金属はポリエステルよりも硬い。そのため、ポリエステルフィルムを太陽電池用途に用いるときは、ポリエステルフィルムの表面にキズが非常に付きやすいものと推測される。ここで、SPc_L(400nm)が100個以上であると、他部材との接触面積が低下するという理由で、ポリエステルフィルムの表面にキズが付きづらくなる。
 SPc_L(400nm)が100個より少ないとバックシートの製造工程や太陽電池の搬送・施工時に表面にキズが付きやすく、さらにキズから水が浸入しやすくなり耐湿熱性が悪化し結果として耐久性が低下する問題がある。より好ましくは150個以上、さらに好ましくは250個以上である。SPc_H(4000nm)が10個より多いとキズによる耐久性低下を抑制できるものの、表面積が増えるためポリエステルフィルム内への水の浸入がしやすく耐湿熱性が悪化する問題がある。より好ましくは5個以下、さらに好ましくは2個以下、特に好ましくは1個以下である。また、SPc_L(400nm)は500個以下であると、耐久性が良好となるため好ましい。
SPc_L(400nm),SPc_H(4000nm)は添加する粒径や粒子濃度、含まれる樹脂の分散径や添加濃度によって制御することができる。
 本発明のポリエステルフィルムはカルボキシル末端量が0~25当量/tである必要がある。カルボキシル末端量が25当量/tより大きいとカルボキシル末端による自己触媒作用により加水分解が起こりやすく耐湿熱性が低下する問題がある。より好ましい上限は20当量/t、さらに好ましい上限は16当量/tである。より好ましい範囲は0~20当量/t、さらに好ましい範囲は0~16当量/tである。カルボキシル末端量は使用する原料や溶融混練方法などにより制御することができる。
 本発明のポリエステルフィルムは、粒径2μm以上の粒子含有量が0.1~5質量%である層を最外層に含むことが好ましい。粒径が2μmより小さいと表面突起が形成されにくくキズが付きやすくなる場合がある。粒子含有量が0.1質量%より小さいと表面突起が形成されにくくキズが付きやすくなり、耐久性が低下する場合がある。粒子含有量が5質量%より大きいと表面突起が過剰に形成され、表面積が大きくなり耐久性が悪化する場合がある。より好ましい下限は0.2質量%であり、さらに好ましい下限は0.4質量%である。より好ましい上限は4質量%であり、さらに好ましい上限は2質量%である。
 粒子の種類としては、無機粒子や有機粒子などが挙げられる。無機粒子としては、例えば、クレー、マイカ、酸化チタン、炭酸カルシウム、カリオン、タルク、湿式シリカ、乾式シリカ、コロイド状シリカ、リン酸カルシウム、硫酸バリウム、アルミナおよびジルコニア、アルミノケイ酸塩粒子等が挙げられる。また、有機粒子としては、アクリル酸類、スチレン樹脂、熱硬化樹脂、シリコーンおよびイミド化合物等を構成成分とする粒子が挙げられる。ポリエステル重合反応時に添加する触媒等によって析出する粒子(いわゆる内部粒子)も好ましく用いられる。中でも、アルミノケイ酸塩粒子が、吸湿性が低く好ましい。吸湿性が低い粒子は保持する水分が少ないので、ポリエステルに粒子を添加してフィルムを形成しても、水分によるポリエステルの劣化が抑制されるため、フィルムの耐久性が向上しやすい。
 このような粒子を用いることによって、ポリエステルフィルムの表面粗さを制御することができる。
 本発明のフィルムは、上述したとおり、ポリエステルを用いてなるフィルムである。本発明のフィルムは、フィルムを構成するポリエステルとは異なる樹脂を含んでも良い。特に、フィルムを構成するポリエステルとは非相溶の樹脂(以下、「非相溶樹脂」と称する。)を含んでいても良い。本発明では、フィルム中において、このような非相溶樹脂がポリエステル中に分散していることが好ましい。これによって、フィルムの表面に突起を形成せしめることができるためである。フィルム中での非相溶樹脂の分散径は500~3000nmであることが好ましい。500nmより小さいとより小さいと表面突起が形成されにくくキズが付きやすくなり、耐久性が低下する場合がある。3000nmより大きいと表面突起が過剰に形成され耐久性が低下するという場合がある。
 非相溶樹脂の種類は、フィルムを構成するポリエステルと異なっていれば、特に限定されないが、ポリエステル樹脂(ただし、フィルムを構成するポリエステルとは異なる種類のポリエステル樹脂である必要がある)、スチレン樹脂、ポリイミド樹脂などが挙げられ、特にポリエステル樹脂が好ましい。
 なお、フィルムが積層構造を採る場合は、かかる非相溶樹脂を含有する層が最外層に配置されることが好ましい。非相溶樹脂を含有する層が最外層に配置されることによって、表面突起を効率的に形成せしめることができるためである。なお、分散径は樹脂の種類や粘度によって制御される。
 本発明において、ポリエステルフィルムとしての厚みは、用途に応じて適宜決定できるが、太陽電池バックシート用途では25~250μmが好ましい。この厚みが25μmより小さい場合、フィルムの腰がなくなり搬送が難しいなどの問題がある。一方、この厚みが250μmより大きい場合は、フィルムが厚すぎて加工性に優れないことがある。厚みの下限値はより好ましくは30μmであり、さらに好ましくは40μmである。また、厚みの上限値はより好ましくは220μmであり、さらに好ましくは200μmである。厚みのより好ましい範囲は30~220μmであり、より好ましい範囲は40~200μmである。
 上記したような本発明のポリエステルフィルムは、例えば、次のようにして製造される。ポリエステルフィルムを製造するには、例えば、ポリエステルのペレットを、押出機を用いて溶融し、口金から吐出した後、冷却固化してシート状に成形する。このとき、ポリマー中の未溶融物を除去するために、繊維焼結ステンレス金属フィルターによりポリマーを濾過してもよい。
 さらに、本発明の効果を阻害しない範囲内であれば、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、紫外線吸収剤、難燃剤、難燃助剤、顔料および染料などが添加されてもよい。
 続いて、上記のようにして得られたシート状物を、長手方向と幅方向の二軸に延伸した後、熱処理する。延伸形式としては、長手方向に延伸した後に幅方向に延伸を行うなどの逐次二軸延伸法、同時二軸テンター等を用いて長手方向と幅方向を同時に延伸する同時二軸延伸法、さらに、逐次二軸延伸法と同時二軸延伸法を組み合わせた方法などが包含される。
 次に、本発明のポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。もちろん、本発明は、PETフィルムを用いたポリエステルフィルムに限定されるものではなく、他のポリマーを用いたものものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン-2,6-ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。
 まず、ポリエチレンテレフタレートを準備する。ポリエチレンテレフタレートは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のポリエチレンテレフタレートまたはオリゴマーを得て、さらにその後の三酸化アンチモンなどを触媒に用いた重縮合反応によってポリマーを得るプロセス、および(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得て、さらにその後の三酸化アンチモンなどを触媒に用いた重縮合反応によってポリマーを得るプロセスである。得られたPETペレットは回転型真空重合装置を用いて1mmHgの減圧下、220℃の温度で8時間以上加熱処理し、固有粘度を高めることが好ましい。
 フィルムを構成するポリエステルに粒子や樹脂を含有させる場合には、粒子や樹脂を直接PETペレットと混合し、270~295℃の温度に加熱したベント式二軸混練押出機を用いて、粒子や樹脂をPETに練り込み、粒子や樹脂が高い濃度で含まれるPETペレット(マスターバッチ)を作成する方法が有効である。
 次に、得られたPETのペレット(および、必要に応じて、マスターバッチ)を、180℃の温度で3時間以上減圧乾燥した後、固有粘度が低下しないように窒素気流下あるいは減圧下で、265~280℃の温度に加熱された押出機に供給し、スリット状のTダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。フィルムを積層する場合には、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層する。
 次に、このようにして得られた未延伸フィルムを、二軸延伸する。数本のロールが配置された縦延伸機を用いて、ロールの周速差を利用して縦方向に延伸し(MD延伸)、続いてステンターにより横延伸を行う(TD延伸)二軸延伸方法について説明する。
 まず、未延伸フィルムをMD延伸する。縦延伸機は予熱ロール、延伸ロール、冷却ロールからなり、さらに張力をカットしフィルムの滑りを抑えるニップロールからなる。MD延伸では延伸ロール上に走行するフィルムを延伸ニップロールで一定の圧力(ニップ圧)で押さえつけてフィルムを挟み張力をカットし、延伸ロールの次の冷却ロールが周速差をつけて回転することで延伸される。上述のとおり、延伸ロールと延伸ニップロールは、フィルムを押さえつけて挟むためのロールである。そのため、フィルムの表面突起をつぶさないためには、延伸ロールと延伸ニップロールは、ともにJIS-K6253(2006)準拠のデュロメータ(タイプA)で測定される表面硬度が30~70°のシリコンロールであることが好ましい。表面硬度が70°より大きいと突起がつぶれ、フィルム表面にキズが付きやすくなる場合がある。表面硬度は30~45°であることがより好ましい。表面硬度が45°より大きいと、突起がつぶれ、フィルム表面にキズが付きやすくなる場合がある。表面硬度が30°より小さいと、ロールが張力を十分にカットできず、延伸ムラが発生し好ましくないことがある。また、ニップ圧は0.05~0.2Paであることが好ましい。ニップ圧が0.2MPaよりも大きいと突起がつぶれ、フィルム表面にキズが付きやすくなる場合がある。ニップ圧は、0.05~0.15MPaであることがより好ましい。ニップ圧が0.15MPaよりも大きいと突起がつぶれ、フィルム表面にキズがより付きやすくなる場合がある。ニップ圧が0.05MPaよりも小さいと、ロールが張力を十分にカットできず、延伸ムラが発生し好ましくない場合がある。MD延伸温度は(ガラス転移温度(以下Tgと記載)+10)~(Tg+50)℃で行い、MD延伸の延伸倍率は1.2~5.0倍である。延伸後、20~50℃の温度の冷却ロール群で冷却する。
 次に、ステンターを用いて、幅方向の延伸(TD延伸)を行う。ステンターはフィルムの両端をクリップで把持しながら両端のクリップ間を広げてフィルムを横延伸する装置であり、予熱ゾーン、延伸ゾーン、熱処理ゾーン、冷却ゾーンに分かれる。予熱ゾーンの風速は1~20m/sであることが好ましい。予熱ゾーンの風速が20m/sより速いと、表面の突起部分が急激に加熱され、突起が小さくなることがある。そして、その結果として、フィルム表面の突起数が減少し、フィルム表面にキズが付きやすくなる問題がある。予熱ゾーンの風速は、1~5m/sであることがより好ましい。風速が5m/sより速いと、表面の突起部分が急激に加熱されるため、突起がより小さくなることがある。そして、その結果として、フィルムの表面の突起数が減少し、フィルム表面にキズが付きやすくなる場合がある。風速が1m/sより遅いとフィルム温度にムラができやすく、延伸破れが発生しやすく好ましくない。風速はノズル出口で計測し、ノズルとフィルムの間隙は120mmであることが好ましい。TD延伸の延伸倍率は2.0~6.0倍で、延伸温度は(Tg)~(Tg+50)℃の範囲で行う。TD延伸後、熱固定処理を行う。熱固定処理はフィルムを緊張下または幅方向に弛緩しながら、150~240℃の温度範囲で熱処理する。熱処理時間は0.5~10秒の範囲で行う。その後、冷却ゾーンで25℃に冷却される。冷却ゾーンの風速は3~30m/sであることが好ましい。冷却ゾーンの風速が3m/sよりも遅いと冷却に時間がかかり表面突起が小さくなりやすく、フィルム表面にキズが付きやすくなる問題がある。冷却ゾーンの風速は、15~30m/sであることがより好ましい。15m/sよりも遅いと冷却に時間がかかり表面突起が小さくなりやすく、フィルム表面にキズが付きやすくなる場合がある。30m/sより速いと局所的に冷却され冷却ムラが物性ムラになり好ましくない。その後、フィルムエッジを除去し、本発明のポリエステルフィルムを得ることができる。
 [特性の評価方法]
 (1)ピークカウントSPc_L(400nm),SPc_H(4000nm)
 触針法の高精細微細形状測定器(3次元表面粗さ計)を用いてJIS-B0601(1994年)に準拠して、下記条件にてポリエステルフィルムの表面形態を測定する。
・測定装置 :3次元微細形状測定器(型式ET-4000A)(株)小坂研究所製
・解析機器 :3次元表面粗さ解析システム(型式TDA-31)
・触針   :先端半径0.5μmR、径2μm、ダイヤモンド製
・針圧   :100μN
・測定方向 :フィルム長手方向、フィルム幅方向を各1回測定後平均
・X測定長さ:1.0mm
・X送り速さ:0.1mm/s(測定速度)
・Y送りピッチ:5μm(測定間隔)
・Yライン数:81本(測定本数)
・Z倍率  :20倍(縦倍率)
・低域カットオフ:0.20mm(うねりカットオフ値)
・高域カットオフ:R+Wmm(粗さカットオフ値)R+Wとはカットオフしないことを意味する。
・フィルタ方式:ガウシアン空間型
・レベリング:あり(傾斜補正)
・基準面積 :1mm
 SPc_L(400nm)とは基準面積あたりの400nm以上の突起数を、SPc_H(4000nm)は4000nm以上の突起数を示しており、解析システムにて下記設定で解析することで算出される。
・スライスレベル条件設定;上下間隔固定
・中心ピッチレベル0.05μm
・上下レベル間隔0.025μm
SPc_L(400nm);下限375nm、中心レベル400nm、上限425nmのSPc値
SPc_H(4000nm);下限3975nm、中心レベル4000nm、上限4025nmのSPc値。
 (2)カルボキシル末端基量
 Mauliceの方法によってフィルム全体を測定する(文献M.J. Maulice, F. Huizinga,  Anal.Chim.Acta,22 363(1960))。
 (3)粒径測定
 フィルム表面を1N-KOHメタノール溶液を用いてエッチングし、粒子を露出させ、走査型電子顕微鏡(SEM)を用いて測定倍率1万倍で100視野写真撮影する。イメージアナライザーによって写真上の個々の粒子の面積を測定し、該面積と等しい面積を有する円の直径を算出してこれを等価円直径とした。各粒子について、等価円直径を算出し、それらの粒子の粒径とした。
 (4)粒子の含有量
 ポリマーペレットまたはフィルム1gを1N-KOHメタノール溶液200mlに投入して加熱還流し、ポリマーを溶解した。溶解が終了した該溶液に200mlの水を加え、次いで該液体を遠心分離器にかけて不活性粒子を沈降させ、上澄み液を取り除いた。粒子にはさらに水を加えて洗浄、遠心分離を2回繰り返した。このようにして得られた粒子を2μmより小さい粒子が通過する濾紙(フィルター)で濾過し乾燥させ、その質量を量ることで粒子の含有量を算出した。
 (5)フィルム中の樹脂の分散径
 本発明において、フィルム中の樹脂の分散径とは、複数の観察面において得られる分散径の平均の楕円長径であり、次の測定法により得ることができる。
 まず、フィルムの切断面を透過型電子顕微鏡を用いて、加速電圧100kVの条件下で観察し、2万倍で撮影した写真をイメ-ジアナライザ-に画像として取り込み、任意の100個の分散相(島部分)を選択し、必要に応じて画像処理を行うことにより、分散径を求め、その数平均として算出する。具体的には次のとおりである。
 フィルムを(ア)長手方向に平行かつフィルム面に垂直な方向、(イ)幅方向に平行かつフィルム面に垂直な方向、(ウ)フィルム面に対して平行な方向(つまり、フィルム厚み方向に垂直な方向)に切断し、サンプルを超薄切片法で作製した。分散相のコントラストを明確にするために、オスミウム酸やルテニウム酸などで染色してもよい。切断面を透過型電子顕微鏡(日立製H-7100FA型)を用いて、加速電圧100kVの条件下で観察し、2万倍で写真を撮影する。得られた写真をイメージアナライザーに画像として取り込み、任意の100個の分散相を選択し、必要に応じて画像処理を行うことにより、次に示すようにして分散相の大きさを求めた。(ア)の切断面に現れる各分散相の最大長さ(La)、(イ)の切断面に現れる各分散相の最大長さ(Lb)、(ウ)の切断面に現れる各分散相の最大長さ(Lc)を求めた。分散相の平均分散径を(La+Lb+Lc)/3とした。すなわち、(ア)の切断面に観測される任意の100個の分散相のそれぞれの最大長さを求め、その100個の値の数平均値をLa、(イ)の切断面に観測される任意の100個の分散相のそれぞれの最大長さを求め、その100個の値の数平均値をLb、(ウ)の切断面に観測される任意の100個の分散相のそれぞれの最大長さを求め、その100個の値の数平均値をLcとして求める。そして、(La+Lb+Lc)/3を分散相の平均分散径とした。
 上記の画像処理の方法としては、以下の手順で実施する。すなわち、各試料の透過型電子顕微鏡写真を、スキャナーにてコンピューターに取り込んだ。その後、専用ソフト(プラネトロン社製 Image Pro Plus Ver. 4.0)を用いて画像解析を行った。トーンカーブを操作することにより、明るさとコントラストを調整し、その後ガウスフィルターを用いて画像を得た。ここで、透過型電子顕微鏡写真のネガ写真を使用する場合には、上記スキャナーとして日本サイテックス社製 Leafscan 45 Plug-Inを用い、透過型電子顕微鏡のポジを使用する場合には、上記スキャナーとしてセイコーエプソン製 GT-7600Sを用いるが、そのいずれでも同等の値が得られる。
 [画像処理の手順及びパラメータ]:
・平坦化1回
・コントラスト+30
・ガウス1回
・コントラスト+30、輝度-10
・ガウス1回
・平坦化フィルター(平面化フィルターと表される場合がある):背景(黒)、オブジェクト幅(20pix)
・ガウスフィルター:サイズ(7)、強さ(10)。
 (6)破断伸度
 ASTM-D882(1997)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度を測定した。なお、サンプル数はn=5とし、また、フィルムの長手方向、幅方向のそれぞれについて測定した後、それらの平均値として求めた。
 (7)耐久性
 キズがフィルムの耐久性に与える影響を評価するため、まず、5cm×20cmの大きさのフィルム表面を、紙やすり(#800)を用いて面圧0.01MPaで10回こすりつけた後に耐湿熱性を評価する。こすられた後のフィルムを測定片の形状(1cm×20cm)に切り出した後、タバイエスペック(株)製プレッシャークッカーにて、温度125℃、相対湿度100%RHの条件下にて処理を行い、その後上記(6)項に従って破断伸度を測定する。なお、測定はn=5とし、また、フィルムの長手方向、幅方向のそれぞれについて測定した後、その平均値を破断伸度E1とする。また、処理を行う前のフィルムについても上記(6)に従って破断伸度E0を測定し、得られた破断伸度E0,E1を用いて、次の(f)式により伸度保持率を算出し、伸度保持率が50%となる処理時間を伸度半減期とする。
(f) 伸度保持率(%)=E1/E0×100。
 得られた伸度半減期から、フィルムの耐久性を以下のように判定した。
伸度半減期が65時間以上の場合:A
伸度半減期が55時間以上65時間未満の場合:B
伸度半減期が45時間以上55時間未満の場合:C
伸度半減期が35時間以上45時間未満の場合:D
伸度半減期が35時間未満の場合:E
 A~Cが良好であり、その中でもAが最も優れている。
 (8)バックシートの耐久性
 フィルムロールからフィルムを巻き出して金属ロールで搬送し、市販のポリエステル接着剤主剤LX703VLとポリイソシアネート硬化剤KR90(いずれも大日本インキ化学工業(株)製)を重量比で15:1に混合した接着剤(乾燥重量4g/m2 )を、フィルムの表面に塗布した。ついで、これと、ガスバリアフィルムであるアルミナ透明蒸着フィルム(東レフィルム加工(株)製バリアロックス(登録商標)、12μm厚)とをドライラミネートし、太陽電池用バックシートとし、当該シートを金属ロールで搬送し巻き取った。搬送中のキズがバックシートの耐久性に与える影響を評価するために、得られたシートを、紙やすりでこすりつけることをせずに上記(7)と同様の方法にてバックシートの耐久性を評価した。
伸度半減期が65時間以上の場合:A
伸度半減期が55時間以上65時間未満の場合:B
伸度半減期が45時間以上55時間未満の場合:C
伸度半減期が35時間以上45時間未満の場合:D
伸度半減期が35時間未満の場合:E
 A~Cが良好であり、その中でもAが最も優れている。
 (9)太陽電池パネルの耐久性
 (8)で得られた太陽電池用バックシート上にエチレン酢酸ビニル共重合樹脂(以下EVAと記載)シ-ト,太陽電池セル,および光透過性ガラス板を積層し、ラミネ-ト工程で加熱圧縮することによって一体化し太陽電池モジュ-ルを形成する。さらに、太陽電池モジュールを取り出し、太陽電池パネル用ラインのパネル投入工程に供給し、プライマー塗布工程において、アルミフレームとの接着面にプライマーを塗布する。続いて乾燥工程にてプライマーの乾燥時間として約1分間放置した後、搬出工程からフレーム用ライン側に搬出される。一方フレーム用ライン側では、組み立て済のアルミフレームを投入する。アルミフレームは太陽電池セルを配置した太陽電池モジュールの受光面と背設する面側を支持するための突片を有するとともに、前記太陽電池モジュールの端部全周に亙って設け得る形状で、かつ太陽電池モジュールの受光面側を開放状態とした構造を有する。続いて、プライマー塗布済の太陽電池モジュールを搬送し、パネル貼り合わせ工程にてプライマーを塗布したアルミフレームと太陽電池モジュールを載置する(太陽電池パネル接着工程)。最後に必要に応じてモール取り付け工程において、モールを取り付け太陽電池パネルを作製する。作製した太陽電池パネルの裏面に破れやヒビ割れがないことを確認し、太陽電池パネルを温度85℃、相対湿度85%RHの条件下にて3000時間処理を行い、裏面の外観と出力低下(JIS-C8913(1998))を下記で評価した。
 破れ、ヒビ割れがなく出力が低下しない(出力の低下量が、初期出力量に対して10%未満);A
 破れ、ヒビ割れが若干見られ、一部出力が低下をする(出力の低下量が、初期出力量に対して10%以上30%未満);B
 破れ、ヒビ割れが見られ、出力が大きく低下(出力の低下量が、初期出力量に対して30%以上50%未満);C
 破れ、ヒビ割れが大きく、出力がほとんどしない(出力の低下量が、初期出力量に対して50%以上80%未満);D
 破れ、ヒビ割れがひどく、出力しない(出力の低下量が、初期出力量に対して80%以上);E
 A~Cが良好であり、その中でもAが最も優れている。
 (参考例1)
 (ポリエステルチップα-1)
 ポリエステルチップα-1を以下の方法で製造した。
 テレフタル酸ジメチル100質量部とエチレングリコール64質量部とをエステル交換反応装置に仕込み、内容物を140℃の温度に加熱して溶解した。その後、内容物を撹拌しながら、酢酸カルシウム0.09質量部および三酸化アンチモン0.03質量部を加え、140~230℃の温度でメタノールを留出しつつエステル交換反応を行った。次いで、酢酸リチウム0.18質量部とリン酸トリメチルの5質量%エチレングリコール溶液を4.8質量部(リン酸トリメチルとして0.24質量部)添加した。エステル交換反応装置内の反応内容物の温度が230℃に達したら、反応内容物を重合装置に移行した。
 反応内容物を重合装置に移行後、反応系を230℃から290℃の温度にまで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度290℃と最終圧力0.1kPa到達までの時間はともに60分とした。最終温度と最終圧力に到達した後、2時間(重合を始めて3時間)反応させた。そこで反応系を、窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出し、直ちにカッティングして、ポリエステルチップα得た。また、得られたポリエステルチップαのガラス転移温度は80℃、冷結晶化温度は157℃、融点は255℃、固有粘度は0.52、カルボキシル末端量は15.0当量/tであった。
 ポリエステルチップαを160℃で6時間、真空下に置いて、ポリエステルチップαの乾燥および結晶化を行った。その後、これを220℃で8時間、真空下に置いて、固相重合せしめ、ポリエステルチップα-1を得た。得られたポリエステルチップα-1のガラス転移温度は82℃、冷結晶化温度は165℃、融点は255℃、固有粘度は0.85、カルボキシル末端量は10当量/tであった。
 (実施例1)
 ポリエステルチップα-1と表1に示される粒径を持つシリカを混合し、これらの混合物を溶融混練し、マスターペレットを作製した。ここで、マスターペレットにおけるシリカの濃度は10質量%である。
 ついで、このマスターペレットとポリエステルチップα-1を混合し、これらの混合物を180℃で3時間減圧乾燥し、280℃に加熱された押出機Eに供給し、Tダイ口金に導入した。ここで、マスターペレットとポリエステルチップα-1との混合物は、シリカの濃度が表1に記載のとおりになるよう混合して導入した。
 次いで、Tダイ口金内から、ポリエステルチップα-1とマスターバッチの溶融物をシート状に押出して溶融単層シートとし、当該溶融単層シートを表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化させて、未延伸フィルムを作製した。続いて、得られた未延伸フィルムを加熱したロール群で予熱した後、シリコンロール(表面硬度40°)の延伸ロールとシリコンロール(表面硬度40°)のニップロールを用いて、ニップ圧を0.1MPaに設定し、長手方向に90℃の温度で3.5倍MD延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の80℃の温度の予熱ゾーン(ノズル出風速3m/s、ノズル-フィルム間120mm)に導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.7倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで210℃の温度で10秒間の熱処理を施し、さらに210℃の温度で4%幅方向に弛緩処理を行った。次いで、冷却ゾーン(ノズル出風速15m/s、ノズル-フィルム間120mm)で均一に徐冷後、巻き取って、厚さ50μmの二軸延伸フィルム(ロール)を得た。得られたポリエステルフィルムの特性等を表1-1に示す。
 (実施例2~18、28~41、比較例1~18、28~30)
 ポリエステルフィルムの組成を表1-1,1-2,1-3,2に記載のように変更した以外は、実施例1と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表1-1,1-2,1-3,2に示す。ただし、原料として、添加物の種類、濃度を変更したマスターバッチを用いた。(実施例29~40の表2の濃度[質量%]の記載は、非相溶樹脂を含有する層の全体重量(ポリエステル+非相溶樹脂)に対する非相溶樹脂の配合濃度を表す。)
 (実施例19~27、比較例19~27)
 280℃に加熱された押出機Eに、参考例1で得られたポリエステルチップα-1のみを180℃で3時間減圧乾燥した後に供給しTダイ口金に導入したこと以外は、実施例1と同様の方法にて得られたポリエステルフィルムを得て、表1-1,1-2,1-3に記載の表面形状になるような金型用いたインプリント装置で成形した。得られたポリエステルフィルムの特性等を表1-1,1-2,1-3に示す。
 (実施例42~49、比較例31~32)
 ポリエステルフィルムの製膜条件を表3に記載の条件に変更すること以外は実施例5と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表3に示す。
 (実施例50~57、比較例33~34)
 ポリエステルフィルムの製膜条件を表3に記載の条件に変更すること以外は実施例14と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表3に示す。
(実施例58)
 ポリエステルチップα-1と表4に示される粒径を持つシリカを混合し、これらの混合物を溶融混練し、マスターペレットを作製した。ここで、マスターペレットにおけるシリカの濃度は10質量%である。
 次いで、このマスターペレットとポリエステルチップα-1を混合し、これらの混合物を180℃で3時間減圧乾燥し、280℃に加熱された押出機Eに供給し、Tダイ口金に導入した。ここで、マスターペレットとポリエステルチップα-1との混合物におけるシリカの濃度が表1に記載のとおりになるよう混合して導入した。
 また、参考例1で得られたポリエステルチップα-1を180℃で3時間減圧乾燥した後、これを280℃に加熱された押出機Fに供給し、Tダイ口金に導入した。
 押出機Eに供給された原料の溶融物と、押出機Fに供給された原料の溶融物を、Tダイ口金内で合流させて、押出機Eに供給された原料の溶融物と押出機Fに供給された原料の溶融物とを積層せしめ、Tダイ口金内から、シート状に押出して溶融積層シートとし、当該溶融積層シートを表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化させて、未延伸フィルム(積層フィルム)を作製した。未延伸フィルムの積層比は、A層(押出機Eに供給された原料から構成される層)/B層(押出機Fに供給された原料から構成される層)=1/4である。得られた未延伸シートを用いて、実施例1と同様の方法で二軸延伸フィルムを得た(なお、A層が設けられている側の表面を表面Aとし、B層が設けられている側の面を表面Bとする)。得られたポリエステルフィルムの特性等を表4-1に示す。
 (実施例59~75、比較例35~52)
 ポリエステルフィルムの組成を表4-1,4-2に記載のように変更した以外は、実施例58と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表4-1,4-2に示す。ただし、原料はポリエステルチップα-1および添加物を変更したマスターバッチを用いた。
 (実施例76~77、比較例53~55)
 ポリエステルフィルムの製膜条件を表5に記載の条件に変更すること以外は実施例5と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表5に示す。
 (実施例78~79、比較例56~58)
 ポリエステルフィルムの製膜条件を表5に記載の条件に変更すること以外は実施例14と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表5に示す。
 (実施例80~88)
 ポリエステルフィルムの組成を表6に記載のように変更した以外は、実施例1と同様の方法にてポリエステルフィルムを得た。得られたポリエステルフィルムの特性等を表6に示す。ただし、原料はポリエステルチップα-1および添加物を変更したマスターバッチを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表中の記号の意味は以下のとおりである。
COOH カルボキシル末端量
PCHT シクロヘキサジメチルエーテル
ABS アクリルブタジエンスチレン樹脂
PC ポリカーボネート樹脂
PEI ポリエーテルイミド樹脂
PET ポリエチレンテレフタレート
BaSO:硫酸バリウム
炭酸Ca:炭酸カルシウム
 本発明によれば、耐湿熱性に優れるポリエステルフィルムを提供することができ、その特長を生かして太陽電池用バックシート用フィルムとして好適に用いられる。

Claims (7)

  1. 少なくとも一方の表面のピークカウントSPc_L(400nm)が100個以上であり、SPc_H(4000nm)が10個以下であるポリエステルフィルムであって、カルボキシル末端量が0~25当量/tであるポリエステルフィルム。
  2. 粒径が2μm以上の粒子を含有する層を最外層に含む請求項1に記載のポリエステルフィルムであって、当該粒子の含有量が、粒径が2μm以上の粒子を含有する層のポリエステルに対して、0.1~5質量%である、ポリエステルフィルム。
  3. 前記粒子がアルミノケイ酸塩粒子である請求項2に記載のポリエステルフィルム。
  4. 分散径が500~3000nmである樹脂を含有する層を最外層に含む、請求項1~3のいずれかに記載のポリエステルフィルム。
  5. 太陽電池バックシートに用いられる請求項1~4のいずれかに記載のポリエステルフィルム。
  6. 請求項1~5のいずれかに記載のフィルムを用いた太陽電池バックシート。
  7. 請求項6に記載の太陽電池バックシートを用いた太陽電池。
PCT/JP2012/079972 2011-12-02 2012-11-19 ポリエステルフィルム、太陽電池バックシート、太陽電池 WO2013080827A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN4731CHN2014 IN2014CN04731A (ja) 2011-12-02 2012-11-19
JP2013506035A JP5331266B1 (ja) 2011-12-02 2012-11-19 ポリエステルフィルム、太陽電池バックシート、太陽電池
KR1020147013773A KR102017514B1 (ko) 2011-12-02 2012-11-19 폴리에스테르 필름, 태양 전지 백시트, 태양 전지
EP12852635.7A EP2787027A4 (en) 2011-12-02 2012-11-19 POLYESTER FOIL, SOLAR CELL BACK PAPER AND SOLAR CELL
CN201280058014.8A CN103946285B (zh) 2011-12-02 2012-11-19 聚酯膜、太阳能电池背板、太阳能电池
US14/360,484 US9530917B2 (en) 2011-12-02 2012-11-19 Polyester film, solar cell backsheet, and solar cell
SG11201402189RA SG11201402189RA (en) 2011-12-02 2012-11-19 Polyester film, solar cell backsheet, and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-264500 2011-12-02
JP2011264500 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013080827A1 true WO2013080827A1 (ja) 2013-06-06

Family

ID=48535289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079972 WO2013080827A1 (ja) 2011-12-02 2012-11-19 ポリエステルフィルム、太陽電池バックシート、太陽電池

Country Status (10)

Country Link
US (1) US9530917B2 (ja)
EP (1) EP2787027A4 (ja)
JP (2) JP5331266B1 (ja)
KR (1) KR102017514B1 (ja)
CN (1) CN103946285B (ja)
IN (1) IN2014CN04731A (ja)
MY (1) MY172054A (ja)
SG (1) SG11201402189RA (ja)
TW (1) TWI614291B (ja)
WO (1) WO2013080827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108504A (ja) * 2014-12-10 2016-06-20 東レ株式会社 二軸配向ポリエステルフィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017072B1 (fr) * 2014-01-31 2016-02-19 Toray Films Europ Film de polyester transparent multicouche, son procede de fabrication et son utilisation notamment dans les faces arrieres de panneaux photovoltaiques
WO2019065228A1 (ja) * 2017-09-26 2019-04-04 富士フイルム株式会社 磁気記録媒体用硬化剤、磁気記録媒体用組成物、磁気記録媒体および磁気記録媒体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305822A (ja) 2007-06-05 2008-12-18 Toray Ind Inc 太陽電池モジュール封止シート用フィルムおよび太陽電池モジュール封止シート
JP2010169869A (ja) 2009-01-22 2010-08-05 Mitsubishi Plastics Inc 離型フィルム用ポリエステルフィルム
JP2010175620A (ja) 2009-01-27 2010-08-12 Mitsubishi Plastics Inc 離型フィルム
WO2011052290A1 (ja) 2009-10-27 2011-05-05 東レ株式会社 ポリエチレンテレフタレート組成物、その製造方法およびポリエチレンテレフタレートフィルム
JP2011212857A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc 蒸着用二軸配向ポリエステルフィルムおよびガスバリアフィルム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051292A (en) * 1989-02-01 1991-09-24 Teijin Limited Biaxially oriented film of polyethylene-2,6-naphthalate
JPH02307788A (ja) * 1989-05-23 1990-12-20 Diafoil Co Ltd 感熱孔版印刷原紙用ポリエステルフィルム
JP2528215B2 (ja) * 1990-12-13 1996-08-28 帝人株式会社 磁気記録媒体用二軸配向ポリエステルフイルム
US5731071A (en) * 1992-04-16 1998-03-24 Teijin Limited Biaxially oriented polyester film
US5393716A (en) * 1992-09-25 1995-02-28 Ecc International Limited Process for producing anti-blocking compositions
DE69526638T2 (de) * 1994-08-30 2002-12-12 Toray Industries Biaxial orientierter polyesterfilm und dessen herstellungsverfahren
JP3544286B2 (ja) * 1996-08-01 2004-07-21 水澤化学工業株式会社 定形アルミノケイ酸塩及びその用途
US20010055674A1 (en) * 1999-07-05 2001-12-27 Joerg Hellman Multilayer, biaxially oriented polyester film, process for its production and its use as a magnetic tape film without a backing coating
US6761968B2 (en) * 2000-12-01 2004-07-13 Teijin Limited Biaxially oriented polyester film
US6783889B2 (en) * 2000-12-13 2004-08-31 Toray Industries, Inc. Polyester film and magnetic recording medium using the same
JP2002326330A (ja) * 2001-05-07 2002-11-12 Mitsubishi Polyester Film Copp 積層ポリエステルフィルム
JP2003191384A (ja) * 2001-12-26 2003-07-08 Mitsubishi Polyester Film Copp 離型フィルム用ポリエステルフィルム
GB0208506D0 (en) * 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
GB0505517D0 (en) * 2005-03-17 2005-04-27 Dupont Teijin Films Us Ltd Coated polymeric substrates
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
TWI414557B (zh) * 2006-06-30 2013-11-11 Toray Industries 熱可塑性樹脂組成物及其成形品
WO2009081492A1 (ja) * 2007-12-26 2009-07-02 Toray Industries, Inc. 反射シート用白色積層ポリエステルフィルム
JP2008068497A (ja) * 2006-09-13 2008-03-27 Mitsubishi Polyester Film Copp 積層二軸延伸ポリエテルフィルム
KR20100089814A (ko) * 2007-08-02 2010-08-12 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 코팅된 폴리에스테르 필름
GB0807037D0 (en) * 2008-04-17 2008-05-21 Dupont Teijin Films Us Ltd Coated polymeric films
DE102009009791A1 (de) * 2009-02-20 2010-08-26 Mitsubishi Plastics, Inc. Weiße, beschichtete Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung als Rückseitenabdeckung in Solarmodulen
JP5428467B2 (ja) * 2009-03-31 2014-02-26 東洋紡株式会社 太陽電池用積層ポリエステルフィルム
US8609264B2 (en) * 2009-05-15 2013-12-17 Toray Industries, Inc. Biaxially oriented polyester film and magnetic recording medium
WO2010140611A1 (ja) * 2009-06-05 2010-12-09 東レ株式会社 ポリエステルフィルム、積層フィルムおよびそれを用いた太陽電池バックシート、太陽電池
EP2476552A4 (en) * 2009-09-11 2013-04-10 Toray Industries POLYESTER FILM AND SOLAR CELL BACK PAGE AND SOLAR CELL WITH IT
JP5553619B2 (ja) 2010-01-15 2014-07-16 三菱樹脂株式会社 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP5901046B2 (ja) * 2010-02-19 2016-04-06 国立大学法人 千葉大学 OATP1B3mRNAの新規な選択的スプライシングバリアント
JP2011178866A (ja) * 2010-02-26 2011-09-15 Fujifilm Corp ポリエステルフィルム及びその製造方法、並びに太陽電池裏面封止用ポリエステルフィルム、太陽電池裏面保護膜及び太陽電池モジュール
JP5283648B2 (ja) * 2010-03-04 2013-09-04 富士フイルム株式会社 ポリエステルフィルム及びその製造方法、並びに太陽電池モジュール
US8893475B2 (en) * 2010-03-11 2014-11-25 Cummins Inc. Control system for doser compensation in an SCR system
JP5404521B2 (ja) * 2010-04-29 2014-02-05 三菱樹脂株式会社 深絞り成形同時転写用二軸延伸ポリエステルフィルム
JP5604994B2 (ja) * 2010-06-04 2014-10-15 東洋紡株式会社 レンズシート用ベースフィルム
US8658285B2 (en) * 2010-06-09 2014-02-25 Toray Plastics (America), Inc. Optically clear UV and hydrolysis resistant polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305822A (ja) 2007-06-05 2008-12-18 Toray Ind Inc 太陽電池モジュール封止シート用フィルムおよび太陽電池モジュール封止シート
JP2010169869A (ja) 2009-01-22 2010-08-05 Mitsubishi Plastics Inc 離型フィルム用ポリエステルフィルム
JP2010175620A (ja) 2009-01-27 2010-08-12 Mitsubishi Plastics Inc 離型フィルム
WO2011052290A1 (ja) 2009-10-27 2011-05-05 東レ株式会社 ポリエチレンテレフタレート組成物、その製造方法およびポリエチレンテレフタレートフィルム
JP2011212857A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc 蒸着用二軸配向ポリエステルフィルムおよびガスバリアフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787027A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108504A (ja) * 2014-12-10 2016-06-20 東レ株式会社 二軸配向ポリエステルフィルム

Also Published As

Publication number Publication date
SG11201402189RA (en) 2014-09-26
JP2013231197A (ja) 2013-11-14
KR102017514B1 (ko) 2019-09-03
MY172054A (en) 2019-11-13
CN103946285B (zh) 2016-07-06
TWI614291B (zh) 2018-02-11
EP2787027A4 (en) 2015-07-22
US20140352776A1 (en) 2014-12-04
JP6036589B2 (ja) 2016-11-30
EP2787027A1 (en) 2014-10-08
CN103946285A (zh) 2014-07-23
KR20140098088A (ko) 2014-08-07
IN2014CN04731A (ja) 2015-09-18
US9530917B2 (en) 2016-12-27
JP5331266B1 (ja) 2013-10-30
JPWO2013080827A1 (ja) 2015-04-27
TW201331277A (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
JP2023033345A (ja) 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途
JP5363176B2 (ja) 離型フィルム
JP6036589B2 (ja) ポリエステルフィルム、太陽電池バックシート、太陽電池
JP2010138261A (ja) 合わせガラス用ポリエステルフィルムおよびその積層体
WO2017169662A1 (ja) フィルムおよびそれを用いた電気絶縁シート、粘着テープ、回転機
JP2004269766A (ja) 二軸配向ポリエステルフィルム
JP3409771B2 (ja) ポリエステルフィルムとその製造方法
JP2004174788A (ja) 二軸配向積層ポリエステルフィルム
JP2010138024A (ja) 合わせガラス用ポリエステルフィルムおよび合わせガラス
JP2010138262A (ja) 合わせガラス用ポリエステルフィルムおよびその積層体
US20060177640A1 (en) Laminated film and method for producing same
JP2012107080A (ja) 二軸配向ポリエステルフィルム
WO2013018679A1 (ja) フィルムおよびその製造方法
JP2011184617A (ja) 二軸配向ポリエステルフィルム
JP2013164523A (ja) 光学機能フィルム用ポリエステルフィルム
JP2011192790A (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP2009214489A (ja) 積層二軸延伸ポリエテルフィルムの製造方法
JP3876508B2 (ja) ポリエステルフィルムおよびその製造方法
JP2004107471A (ja) 二軸配向ポリエステルフィルム
JP2013147616A (ja) ポリエステル組成物の製造方法およびそれを用いたポリエステル組成物とポリエステルフィルム
KR101375706B1 (ko) 이형필름용 폴리에스테르 기재필름 및 이의 제조방법
JP5533170B2 (ja) ポリエステル成形体の製造方法
JP6459457B2 (ja) 二軸配向ポリエステルフィルム
JP2005008740A (ja) 二軸配向ポリエステルフィルム
JP2015037097A (ja) 太陽電池保護膜用ポリエステルフィルムおよびそれからなる太陽電池保護膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013506035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852635

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012852635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852635

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147013773

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14360484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201403793

Country of ref document: ID