WO2013065101A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2013065101A1
WO2013065101A1 PCT/JP2011/075073 JP2011075073W WO2013065101A1 WO 2013065101 A1 WO2013065101 A1 WO 2013065101A1 JP 2011075073 W JP2011075073 W JP 2011075073W WO 2013065101 A1 WO2013065101 A1 WO 2013065101A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
semiconductor chip
layer
circuit board
nanostructure
Prior art date
Application number
PCT/JP2011/075073
Other languages
English (en)
French (fr)
Inventor
谷江 尚史
寛 新谷
田中 直敬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/354,091 priority Critical patent/US20140252576A1/en
Priority to JP2013541494A priority patent/JP5870113B2/ja
Priority to EP11875240.1A priority patent/EP2775511B1/en
Priority to PCT/JP2011/075073 priority patent/WO2013065101A1/ja
Priority to TW101138060A priority patent/TWI523166B/zh
Publication of WO2013065101A1 publication Critical patent/WO2013065101A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/0214Structure of the auxiliary member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02145Shape of the auxiliary member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0501Shape
    • H01L2224/05011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0501Shape
    • H01L2224/05016Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05023Disposition the whole internal layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/05078Plural internal layers being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05088Shape of the additional element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05563Only on parts of the surface of the internal layer
    • H01L2224/05564Only on the bonding interface of the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0605Shape
    • H01L2224/06051Bonding areas having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/11444Manufacturing methods by blanket deposition of the material of the bump connector in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13011Shape comprising apertures or cavities, e.g. hollow bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29016Shape in side view
    • H01L2224/29017Shape in side view being non uniform along the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • H01L2224/301Disposition
    • H01L2224/3018Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/30181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/32105Disposition relative to the bonding area, e.g. bond pad the layer connector connecting bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/38Structure, shape, material or disposition of the strap connectors prior to the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40105Connecting bonding areas at different heights
    • H01L2224/40106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • H01L2224/40229Connecting the strap to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/4101Structure
    • H01L2224/4103Connectors having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/411Disposition
    • H01L2224/4112Layout
    • H01L2224/41175Parallel arrangements
    • H01L2224/41176Strap connectors having the same loop shape and height
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/8309Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a technique effective when applied to reduction of thermal stress and improvement of heat dissipation of a semiconductor device including a circuit board and a semiconductor chip mounted on the circuit board.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-287091
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-188209
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-298012
  • Non-Patent Document There is one.
  • Patent Document 1 states that “the bonding process method of connecting at low temperature and low load is adopted from the thermocompression bonding process where high temperature and high load are applied, and the thermal breakdown of semiconductor elements due to high temperature and circuit characteristics and interlayer film cracks due to high load.
  • a semiconductor device including a semiconductor element 1 in which metal bumps 3 are formed on a plurality of pad electrode portions 2 and a circuit mounting substrate 4 having wiring electrode portions 5 is provided.
  • the conductive elastic body 6 that is conductive and elastic is formed on the wiring electrode portion 5 of the circuit mounting board 4, and the semiconductor element 1 is mounted on the circuit mounting board 4 in a state where the metal bump 3 pierces the conductive elastic body 6.
  • a technique is described in which the metal bump 3 and the wiring electrode portion 5 are electrically connected and fixed by the adhesive layer 10 that is mounted and has an insulating property (see summary).
  • Patent Document 2 discloses a “semiconductor device suitable for suppressing a decrease in connection reliability due to thermal stress caused by a difference in thermal expansion coefficient between a semiconductor chip and a circuit board, and further realizing high-density mounting, and a manufacturing method thereof.
  • a micro conductive substrate and patterning technology are used to form a micro conductive connection part whose shape is controlled, and this is used to connect a semiconductor chip and a circuit board.
  • an electrode pad of a semiconductor chip is connected to an electrode pad of a circuit board via a conductive connection part having at least two bent parts and a curved part, and an insulating seal is provided between the two.
  • the conductive connection portion and the insulating sealing portion are deformed to reduce the thermal stress and improve the connection reliability.
  • Rukoto can ".
  • Patent Document 3 states that “there is no restriction on the heat resistance of the element material to be connected, there is no risk of deterioration of the function of the device or damage to the element due to stress, and the adjacent connecting portions are in contact with each other and short-circuited between adjacent electrodes.
  • the solid-state imaging device 10 includes a scanning circuit unit 12, a photoelectric conversion unit 14, a microspring 16, and a connection layer 18.
  • the spring 16 is formed in the shape of a tongue piece that is fixed at one end on the pixel electrode 30 with metal or the like and curved upward, and comes into contact with the photoelectric conversion unit side electrode 42 in a compressed state within an allowable range.
  • the electrode 30 and the photoelectric conversion unit side electrode 42 are electrically connected.
  • the connection layer 18 structurally connects the scanning circuit unit 12 and the photoelectric conversion unit 14 ”. .
  • Non-Patent Document 1 describes a manufacturing method and mechanical characteristics of a nanostructure layer used in the present invention.
  • thermal stress is generated due to a difference in thermal deformation of each member due to a temperature change.
  • the generated thermal stress increases, so it becomes a problem to prevent a decrease in reliability of the semiconductor product due to the thermal stress.
  • the semiconductor chip generates heat during the operation of the semiconductor product. If the heat generation temperature increases due to an increase in mounting density, the temperature rise of the semiconductor chip becomes conspicuous, and there is a concern that the efficiency of the semiconductor chip is reduced due to this temperature rise and the member is damaged by thermal stress. Therefore, the semiconductor mounting structure has a problem of suppressing temperature rise, that is, improving heat dissipation.
  • An object of the present invention is to provide a semiconductor mounting structure capable of realizing reduction of thermal stress and improvement of heat dissipation and a manufacturing method thereof.
  • One aspect of a semiconductor device includes a circuit board and a semiconductor chip mounted on the circuit board, and a diameter or a length of one side is less than 1 ⁇ m between the semiconductor chip and the circuit board.
  • a structure layer in which a plurality of structures having a cross-sectional shape are arranged in a planar shape is provided.
  • the thermal stress of the semiconductor device can be reduced by absorbing the thermal deformation difference of each member constituting the semiconductor device by the deformation of the structure.
  • the thermal resistance of the semiconductor device is reduced, and heat dissipation can be improved.
  • FIG. 1 is sectional drawing of the semiconductor device which is Embodiment 1 of this invention
  • (b) is an expanded sectional view which shows a part of the figure (a).
  • (A) is sectional drawing of the semiconductor device which is a comparative example of this invention
  • (b) is an expanded sectional view which shows a part of the figure (a).
  • (A) to (e) are an overall view and an enlarged end view showing a method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • (A), (b) is sectional drawing which shows the manufacturing method of the semiconductor device following FIG. (A), (b),
  • (c) is a figure explaining the effect of the semiconductor device which is Embodiment 1.
  • FIG. 1 is sectional drawing of the semiconductor device which is Embodiment 1 of this invention
  • FIG. 1 is sectional drawing of the semiconductor device which is Embodiment 1 of this invention
  • (b) is an expanded sectional view which shows a part of the figure (a).
  • (A) is
  • FIG. 7 is a plan view of the semiconductor device according to the second embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of FIG. (A), and (c) is a part of FIG. FIG.
  • FIG. 1 is a plan view of the semiconductor device according to the third embodiment of the present invention, and (b) is a cross-sectional view taken along the line BB of FIG. (A), (b), (c) is a figure explaining the effect of the semiconductor device which is Embodiment 2, 3.
  • FIG. It is a graph which shows the result of having calculated the temperature change when a semiconductor chip repeats heat_generation
  • (A), (b) is a top view which shows the manufacturing method of the semiconductor device which is Embodiment 2, 3 of this invention, (c), (d), (e) is Embodiment 2 of this invention.
  • FIGS. 15A to 15E are an overall view and an enlarged end view showing a method for manufacturing a semiconductor device following FIG. (A)
  • (b) is sectional drawing which shows the manufacturing method of the semiconductor device following FIG. (A) is a plan view of the semiconductor device according to the fourth embodiment of the present invention
  • (b) is a sectional view taken along the line CC of FIG.
  • Embodiment 5 of this invention It is sectional drawing of the nanostructure layer used in Embodiment 6 of this invention.
  • FIG. 1A is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention
  • FIG. 1B is an enlarged cross-sectional view showing a part of FIG. 1A.
  • the upper surface of the semiconductor chip 1 on which the diode element is formed is electrically connected to the conductive member 4 via the deformation absorbing layer 2a and the bonding layer 3a, and the lower surface is connected to the deformation absorbing layer 2b and the bonding member.
  • the mounting structure is electrically connected to the conductive member 5 through the layer 3b.
  • the current flowing from one of the pair of conductive members 4, 5 is rectified by the diode element in the semiconductor chip 1, and flows out from the other of the conductive members 4, 5 so as to function as a diode. It has become.
  • the semiconductor chip 1 is made of single crystal silicon having a diode function in a semiconductor manufacturing process (pre-process), and has dimensions of about 6 mm on a side and about 0.2 mm in thickness.
  • each of the deformation absorbing layers 2a and 2b sandwiching the semiconductor chip 1 is composed of three different layers stacked in the thickness direction (vertical direction in the figure). That is, as shown in FIG. 1B, each of the deformation absorbing layers 2a and 2b includes a nanostructure layer 7 disposed in the center in the thickness direction, and two plate layers 6 sandwiching the nanostructure layer 7, 8.
  • the nanostructure layer 7 has a substantially circular cross-sectional shape with a diameter of about 25 nm and an outer diameter of about 150 nm, an inner diameter of about 100 nm, and a pitch of about 50 nm. It has the structure arranged by.
  • the height of the nanostructure 9 is 10 ⁇ m, and its main material is copper (Cu).
  • each of the plurality of nanostructures 9 constituting the nanostructure layer 7 has a nano-order, that is, a spring shape having a size of 1 ⁇ m or less, the rigidity of the nanostructure layer 7 is reduced, so that the semiconductor device is configured.
  • the thermal stress resulting from the thermal deformation difference of each member to be absorbed can be absorbed by the deformation of the nanostructure layer 7.
  • the nanostructures 9 mainly made of copper having a high thermal conductivity in a dense shape on a plane the thermal resistance in the thickness direction of the nanostructure layer 7 is reduced.
  • the heat of the semiconductor chip 1 during operation is diffused well outside through the deformation absorbing layers 2a and 2b, so that the temperature rise of the semiconductor chip 1 can be suppressed.
  • the bonding layer 3a between the deformation absorbing layer 2a and the conductive member 4 and the bonding layer 3b between the deformation absorbing layer 2b and the conductive member 5 are both made of a solder material having a thickness of 50 ⁇ m.
  • the conductive members 4 and 5 are made of copper, and have a function as an electrode through which a current flows and a function as a heat radiating plate that releases heat generated in the semiconductor chip 1 to the outside.
  • the spring-shaped nanostructure 9 constituting the nanostructure layer 7 has one end fixed to the plate layer 6 and the other end fixed to the plate layer 8.
  • Each of the plate layers 6 and 8 is made of a flat metal thin film having a thickness of about 5 ⁇ m, and its main material is nickel (Ni).
  • the joint portion between the nanostructure layer 7 and the joint layers 3a and 3b becomes a flat surface. This facilitates the bonding between the nanostructure layer 7 and the bonding layers 3a and 3b, and can prevent the bonding layer 3a (or 3b) from flowing into the gap between the nanostructure layers 7 during bonding.
  • the plate layers 6 and 8 are made of nickel as a main material, so that the surface oxidation of the plate layers 6 and 8 during the manufacturing process of the semiconductor device can be prevented, so that the contact resistance due to the surface oxide layer is increased. Problems can be prevented.
  • nickel is used for the plate layers 6 and 8.
  • the time from the generation of the plate layer 8 to the provision of the bonding layers 3a and 3b is short, or when the semiconductor device is manufactured in a vacuum environment, etc.
  • copper can be used for the plate layers 6 and 8. Since copper has a higher thermal conductivity than nickel, in this case, the thermal resistance can be further reduced than when nickel is used.
  • FIG. 2A is a cross-sectional view of a semiconductor device which is a comparative example of the present invention
  • FIG. 2B is an enlarged cross-sectional view showing a part of FIG. 2A.
  • the semiconductor device (comparative example) shown in FIG. 2 has a structure in which the deformation absorbing layers 2a and 2b are removed from the semiconductor device of the present embodiment shown in FIG. They are connected only through the bonding layers 3a and 3b.
  • the thermal deformation difference between the conductive members 4 and 5 and the semiconductor chip 1 is large. Therefore, in the structure shown in FIG. 2, it is necessary to absorb the thermal deformation difference between the semiconductor chip 1 and the conductive members 4 and 5 by the bonding layers 3a and 3b arranged between them. Is required to be a thick material with low rigidity. Therefore, in the structure shown in FIG. 2, not only the materials that can be used as the bonding layers 3a and 3b are limited, but also the thermal resistance increases due to the increase in the thickness of the bonding layers 3a and 3b.
  • the thermal deformation difference between the semiconductor chip 1 and the conductive members 4 and 5 cannot be absorbed by the bonding layers 3a and 3b, the semiconductor chip 1 is broken or malfunctioned, the bonding layer 3a. There is concern that problems such as destruction of 3b may occur. Therefore, conventionally, the deformation absorption function is improved by forming the bonding layers 3a and 3b in a multilayer structure, or the thermal deformation difference between the semiconductor chip 1 and the conductive members 4 and 5 is reduced by resin sealing the whole.
  • Various structures have been proposed.
  • the deformation absorption layers 2 a and 2 b including the nanostructure layer 7 absorb the thermal deformation difference between the semiconductor chip 1 and the conductive members 4 and 5. Accordingly, a highly reliable mounting structure that can prevent defects such as cracking and malfunction of the semiconductor chip 1 and destruction of the bonding layers 3a and 3b without taking measures such as multilayering of the bonding layers 3a and 3b and resin sealing. Can be provided.
  • the deformation absorbing layers 2a and 2b absorb the thermal deformation of each member, it is not necessary to impart a deformation absorbing function to the bonding layers 3a and 3b.
  • the thickness of the bonding layers 3a and 3b can be reduced within the range where bonding is possible, so that the thermal resistance can be reduced as compared with the structure of FIG. 2 in which the bonding layers 3a and 3b are thickened to have a deformation absorbing function. It also has the feature.
  • the semiconductor chip 1 shown in FIG. A diode element is formed on the semiconductor chip 1 by a semiconductor manufacturing process (pre-process).
  • a plate layer 8 made of a nickel film is formed on the surface of the semiconductor chip 1 by vapor deposition.
  • the plate layer 8 can be formed by a plating method or the like instead of the vapor deposition method.
  • the metal layer can be used as the plate layer 8.
  • the copper atoms 33 are obliquely inclined with respect to this axis.
  • a nanostructure layer 7 composed of a large number of nanostructures 9 having a nano-order spring shape is formed on the surface of the plate layer 8.
  • the plate layer 6 is formed on the nanostructure layer 7.
  • the deformation absorbing layer 2 a including the plate layer 8, the nanostructure layer 7, and the plate layer 6 is formed on the surface of the semiconductor chip 1.
  • the deformation absorbing layer 2b composed of the plate layer 8, the nanostructure layer 7, and the plate layer 6 is formed on the back surface of the semiconductor chip 1 by performing the same procedure as described above. Is formed (FIG. 3E).
  • the semiconductor wafer 1 is diced to prepare the semiconductor chip 1 and then the deformation absorption layers 2a and 2b are formed on both surfaces of the semiconductor chip 1.
  • the deformation absorption layer is formed on both surfaces of the semiconductor wafer by the above procedure.
  • the semiconductor wafer 1 may be diced by dicing the semiconductor wafer. In this case, there is an advantage that the deformation absorbing layers 2a and 2b can be formed collectively on a large number of semiconductor chips 1 obtained from the semiconductor wafer.
  • it is necessary to take care not to damage the deformation absorbing layers 2a and 2b when dicing the semiconductor wafer it is desirable to select an appropriate method according to the dicing method.
  • the semiconductor chip 1, the bonding layer 3a, and the conductive member 4 in which the bonding layer 3b and the deformation absorbing layers 2a and 2b are formed on the conductive member 5 are overlapped in this order. Then, this laminated body is exposed to the environment more than the melting temperature of the solder material which comprises the joining layers 3a and 3b.
  • the deformation absorption layer 2a on the surface of the semiconductor chip 1 and the conductive member 4 are bonded via the bonding layer 3a, and the deformation absorption layer 2b and the conductive member 5 on the back surface of the semiconductor chip 1 are bonded via the bonding layer 3b. Be joined.
  • the laminate is fixed by the carbon bonding jigs 41a and 41b, thereby preventing the positional deviation between the members constituting the laminate. Further, at the time of bonding, the laminated body fixed by the bonding jigs 41a and 41b is accommodated in a reflow furnace and heated in a substantially vacuum environment, thereby causing unbonded portions and voids generated in the bonding layers 3a and 3b. Reduced.
  • the nanostructure layer 7 in which a large number of nanostructures 9 having a nano-order, that is, a spring shape with a dimension of less than 1 ⁇ m can be produced can be produced.
  • a semiconductor mounting structure having a difference can be realized.
  • FIG. 5A shows a conventional spring 10 having a micro-order dimension
  • FIG. 5B shows a nano-order spring 11 simply scaled down from the spring shown in FIG.
  • FIG. 5C shows nanostructure layers 7 of this embodiment in which nanostructures 9 having a nano-order spring shape are densely arranged.
  • each of the springs is considered as one needle on which the shear deformation acts, and the micro-order spring 10 is composed of one needle having a wire diameter of 10 ⁇ m and a nano-order spring.
  • the height of the needle (the thickness of the nanostructure layer 7) is the same value L.
  • the stress generated in the nanostructure layer 7 and the nano-order spring 11 is the same, but in the micro-order spring 10 having d 1000 times, a stress 1000 times is generated, and the prevention of the breakage is a problem.
  • thermal resistance (R) is expressed by the following equation.
  • the thermal resistance of the nano-structure layer 7 and the micro-order spring 10 is the same, but the thermal resistance of the nano-order spring 11 becomes 1000000 times, so the temperature rise of the semiconductor chip becomes remarkable.
  • the height L needs to be increased 32 times, and in this case, the thermal resistance is increased 32 times.
  • FIG. 6A shows a model for stress analysis of the nanostructure 9 of the present embodiment. Although the actual height of the nanostructure 9 is 10 ⁇ m, the height of 1500 nm is modeled here.
  • FIG. 6B shows an example of a deformation diagram and a stress distribution of the nanostructure 9 obtained by performing the stress analysis.
  • the dark colored part in FIG. 6 (b) is a part where the stress is large. It can be seen that the shear displacement is absorbed by the deformation of the entire spring, and that the stress at the upper and lower ends is larger than that at the center.
  • FIG. 7 is a graph showing the relationship between the amount of shear displacement (unit: ⁇ m) and the maximum stress (unit: MPa) obtained from the stress analysis.
  • FIG. 8 is a graph showing the relationship between the shear displacement amount (unit: ⁇ m) and the maximum stress (unit: MPa) in the nanostructure 9 having a height of 10 ⁇ m obtained from the result of FIG.
  • the largest shear displacement amount is in the vicinity of the end of the semiconductor chip 1.
  • the amount of shear displacement at this position is 8 when the distance from the center of the semiconductor chip 1 is 3 mm, the linear expansion coefficient of the semiconductor chip 1 is 3 ppm / ° C., the linear expansion coefficient of the conductive member is 17 ppm / ° C., and the temperature change is 200 ° C. 4 ⁇ m.
  • the maximum stress generated at a shear displacement of 8.4 ⁇ m is about 100 MPa, and the fatigue life satisfying the number of times required for the semiconductor device from the fatigue strength of the copper material It can be confirmed that
  • the fatigue strength of copper is described in “The Society of Materials, Science, Databook, On Fatty, Strength, Of Metallic Materials,” (1996), “Elsevier, Science”.
  • the thermal conductivity in the thickness direction of the nanostructure layer 7 is such that there is a space inside the nanostructure layer 7 (the volume occupancy of copper is small), and the heat conduction path is due to the helical structure of the nanostructure 9. By becoming long, it becomes smaller than the thermal conductivity of copper of a bulk material.
  • the ratio of the nanostructure 9 of the present embodiment to the volume of the nanostructure layer 7 is about 13%.
  • the thermal conductivity in the thickness direction of the nanostructure layer 7 is about 1/100 of the thermal conductivity of copper. This is a thermal conductivity of about 1/10 of the solder material used as the bonding layers 3a and 3b. Therefore, the thermal resistance of the nanostructure layer 7 having a thickness of 10 ⁇ m is equal to the thermal resistance of the solder layer having a thickness of 100 ⁇ m, and the thermal resistance of the nanostructure layer 7 does not become a significant problem. Further, as shown in the comparison between FIG. 1 and FIG. 2, in the semiconductor mounting structure of the present embodiment, the thickness of the bonding layers 3a and 3b can be reduced. Can be reduced by 100 ⁇ m or more, the overall thermal resistance can be reduced.
  • the semiconductor device of the present embodiment has sufficient fatigue strength and low thermal resistance.
  • FIG. 9A is a plan view of the semiconductor device according to the second embodiment of the present invention
  • FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A
  • FIG. It is sectional drawing which expanded a part of (b).
  • the semiconductor device has a structure in which a semiconductor chip 1 on which an IGBT (Insulated Gate Bipolar Transistor) is formed is mounted on a ceramic substrate 91.
  • a plurality of circuit patterns 92a, 92b, and 92c are formed on the upper surface of the ceramic substrate 91, and a metal pattern 93 is formed on the lower surface.
  • the ceramic substrate 91 is bonded to the upper surface of the base member 95 via a bonding material 94 disposed on the lower surface of the metal pattern 93.
  • a deformation absorbing layer 2b is formed on the lower surface of the semiconductor chip 1.
  • the semiconductor chip 1 is electrically connected to the circuit pattern 92a through a bonding layer 3b disposed on the lower surface of the deformation absorbing layer 2b.
  • an IGBT gate terminal 99a and an emitter terminal 99b are formed on the upper surface of the semiconductor chip 1.
  • a deformation absorbing layer 2a is formed on the gate terminal 99a, and a deformation absorbing layer 2c is formed on the gate terminal 99b.
  • the gate terminal 99a is electrically connected to one end of the gate terminal bonding member 97 via the bonding layer 3a disposed on the upper portion thereof, and the emitter terminal 99b is connected via the bonding layer 3b disposed on the upper portion thereof.
  • the emitter terminal joining member 96 is electrically connected to one end. Further, as shown in FIG. 9B, the other end of the gate terminal bonding member 97 is electrically connected to the circuit pattern 92a via the bonding material 98a, and the other end of the emitter terminal bonding member 96 is connected to the bonding material. It is electrically connected to the circuit pattern 92c through 98b.
  • each of the deformation absorbing layers 2a, 2b and 2c has the same structure as the deformation absorbing layers 2a and 2b of the first embodiment. That is, each of the deformation absorbing layers 2a, 2b, and 2c includes a nanostructure layer 7 and two plate layers 6 and 8 that sandwich the nanostructure layer 7.
  • the nanostructure layer 7 has a spiral shape. It has a structure in which a large number of nanostructures 9 are densely arranged. Further, by using copper having high thermal conductivity for the circuit patterns 92a, 92b, 92c, the emitter terminal joining member 96, and the gate terminal joining member 97, the thermal resistance between the semiconductor chip 1 and the outside is reduced. Yes.
  • the actual semiconductor device includes terminals for establishing electrical continuity between the circuit patterns 92a, 92b, and 92c and the outside, a case and lid for protecting the semiconductor device, and a semiconductor device.
  • a sealing gel for sealing is provided, these members have no influence on the function of the present invention, and thus illustration and description thereof are omitted.
  • the major difference from the first embodiment is that a plurality of terminals (gate terminal 99a, emitter terminal 99b) are provided on the upper surface of the semiconductor chip 1 in order for the semiconductor chip 1 to have a function as an IGBT. . Therefore, unlike the first embodiment, a plurality of deformation absorbing layers 2 a and 2 c are arranged on the upper surface of the semiconductor chip 1. Then, terminal joining members (gate terminal joining member 97 and emitter terminal joining member 96) having bottom surface dimensions substantially the same as the planar dimensions of the terminals (gate terminals 99a and emitter terminals 99b) are connected to the upper portions of the deformation absorbing layers 2a and 2c. As a result, the heat generated by the semiconductor chip 1 during operation can be effectively released not only from the lower surface side of the semiconductor chip 1 but also from the upper surface side.
  • the terminal joining members are not only large in length but also large in rigidity. Therefore, when the deformation absorbing layers 2a and 2c are not provided, the reliability of the bonding layer 3a is deteriorated due to a thermal deformation difference between the semiconductor chip 1 and the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96). Become. Therefore, in this case, a thin and rigid member such as a wire is generally used for electrical connection between the terminals (gate terminal 99a, emitter terminal 99b) and the circuit patterns 92a, 92b, and 92c. .
  • the thermal deformation difference between the semiconductor chip 1 and the terminal bonding member (the gate terminal bonding member 97 and the emitter terminal bonding member 96) is absorbed by the deformation absorbing layers 2b and 2c.
  • the thermal resistance between the semiconductor chip 1 and the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96) can be reduced.
  • the shape of the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96) is determined to be larger than the terminal having the smaller area (here, the gate terminal 99a). .
  • the present embodiment in order to prevent contact between the outer peripheral portion of the semiconductor chip 1 and the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96), as shown in FIG. In the outer periphery of the semiconductor chip 1, a certain gap L ⁇ b> 3 is provided between the terminal bonding members (the gate terminal bonding member 97 and the emitter terminal bonding member 96).
  • the height L2 of the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96) in the upper part of the semiconductor chip 1 is larger than the connection width L1 between the gate terminal bonding member 97 and the gate terminal 99a. It becomes the feature.
  • FIG. 10A is a plan view of the semiconductor device according to the third embodiment of the present invention
  • FIG. 10B is a cross-sectional view taken along the line BB of FIG.
  • the semiconductor device of the present embodiment has a structure in which the semiconductor chip 1 on which the IGBT is formed is mounted on the ceramic substrate 91 as in the semiconductor device of the second embodiment.
  • the difference is that the height of the terminal bonding members (the gate terminal bonding member 97 and the emitter terminal bonding member 96) in the upper part of the semiconductor chip 1 is made larger than the other portions.
  • the volume of the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96) in the vicinity of the semiconductor chip 1 is increased, the heat capacity of the terminal bonding member in the vicinity of the semiconductor chip 1 is increased. . Therefore, the temperature change of the semiconductor chip 1 when the semiconductor chip 1 is repeatedly operated and stopped can be reduced, more stable operation can be ensured, and the thermal fatigue life can be further improved. it can.
  • FIG. 11A is a partial cross-sectional view showing the structure of a comparative example that does not have the deformation absorbing layers 2b and 2c and the terminal bonding member (gate terminal bonding member 97, emitter terminal bonding member 96), and FIG. FIG. 11C is a partial cross-sectional view showing the structure of the third embodiment.
  • FIG. 11C is a partial cross-sectional view showing the structure of the third embodiment.
  • FIG. 12 shows the calculation result.
  • the amount of heat generated from the semiconductor chip 1 during heat generation is the same, but the temperature of the semiconductor chip 1 is greatly different depending on the structure. That is, the temperature of the semiconductor chip 1 at the end of heat generation was higher in the order of the structure of the comparative example, the structure of the second embodiment, and the structure of the third embodiment.
  • Fig. 13 shows the temperature change of each structure. While the temperature change amount of the structure of the comparative example is 36 ° C., the temperature change amounts of the structures of the second and third embodiments are 27 ° C. and 24 ° C., respectively, and 75% of the structure of the comparative example, respectively. , 67%. Thus, it was confirmed that the temperature change of the semiconductor chip 1 can be reduced by using the structure of the second embodiment or the third embodiment.
  • the semiconductor chip 1 shown in FIGS. 14A, 14B, and 14C is prepared.
  • a gate terminal 99a connected to the gate of the IGBT and an emitter terminal 99b connected to the emitter of the IGBT are formed on the upper surface of the semiconductor chip 1.
  • a collector terminal 144 connected to the collector of the IGBT is formed on the lower surface of the semiconductor chip 1.
  • the gate terminal 99a and the emitter terminal 99b are formed on the upper surface of the semiconductor wafer in the semiconductor manufacturing process (pre-process), and the collector terminal 144 is formed on the lower surface of the semiconductor wafer in the semiconductor manufacturing process.
  • a nanostructure layer 7 composed of a large number of nanostructures 9 having a nano-order spring shape is formed on the surface of the collector terminal 144 of the semiconductor chip 1.
  • the method for forming the nanostructure layer 7 is the same as the method described in FIG. 3C of the first embodiment, and the semiconductor chip 1 is placed with respect to an axis perpendicular to the collector terminal 144 in a substantially vacuum environment. While rotating, the copper atoms 33 are deposited from an oblique direction with respect to this axis.
  • the nickel layer 34 is deposited from above the nanostructure layer 7, so that the plate layer 6 is formed on the nanostructure layer 7. Form.
  • the deformation absorbing layer 2b composed of the collector terminal 144, the nanostructure layer 7, and the plate layer 6 is formed on the surface of the semiconductor chip 1.
  • FIG. 15A the front and back surfaces of the semiconductor chip 1 are inverted, and the surface on which the gate terminal 99a and the emitter terminal 99b are formed faces upward, and then as shown in FIG. 15B. Then, a mask 151 made of an insulating material is formed in a region excluding the surface of the emitter terminal 99a and the surface of the gate terminal 99b in the upper surface of the semiconductor chip 1.
  • the thickness of the mask 151 is the same as the thickness of the gate terminal 99a and the emitter terminal 99b.
  • the thickness of the mask 151 is different from the thickness of the gate terminal 99a and the emitter terminal 99b, the position accuracy of the deposited atoms is lowered when depositing the atoms constituting the nanostructure from an oblique direction in the next step. is there.
  • the copper atoms 33 are obliquely inclined with respect to this axis.
  • the nanostructure layer 7 composed of a large number of nanostructures 9 having a nano-order spring shape is formed on the surface of the gate terminal 99a and the surface of the emitter terminal 99b.
  • the nanostructure 9 is not formed on the surface of the mask 151 made of an insulating material.
  • the plate layer 6 is formed on the nanostructure layer 7. Form. At this time, the plate layer 6 is not formed on the surface of the mask 151 without the nanostructure 9.
  • the mask 151 on the upper surface of the semiconductor chip 1 is removed, whereby the deformation absorbing layer 2a composed of the gate terminal 99a, the nanostructure layer 7 and the plate layer 6, and the emitter terminal.
  • a deformation absorbing layer 2c composed of 99b, nanostructure layer 7 and plate layer 6 is formed.
  • the respective members are stacked and heated to a temperature equal to or higher than the melting point of the bonding layer 3 to thereby form the second embodiment or the second embodiment as shown in FIG. 3 semiconductor device is completed.
  • FIG. 17A is a plan view of the semiconductor device according to the fourth embodiment of the present invention
  • FIG. 17B is a cross-sectional view taken along the line CC of FIG.
  • the semiconductor device according to the present embodiment uses the semiconductor chip 1 on which the IGBT is formed as in the semiconductor devices according to the second and third embodiments.
  • the difference from the second and third embodiments is, for example, that of ceramic.
  • the circuit pattern 92a, 92b, 92c and the base member 95 are connected through a nanostructure layer 171 in which a plurality of nanostructures made of such an insulating material are arranged in a plane.
  • the base member 95 and the circuit patterns 92a, 92b, and 92c are insulated without using the ceramic substrate 91, the metal pattern 93, and the bonding material 94 used in the second and third embodiments. Can be secured.
  • the ceramic nanostructure layer 171 absorbs the thermal deformation difference between the base 91 and the circuit patterns 92a, 92b, and 92c, a highly reliable semiconductor device can be provided.
  • the nanostructure layer 7 used in the first embodiment has a structure in which nanostructures 9 having a spring shape are arranged in a plane, and the diameter of each nanostructure 9 is as follows. Are the same at the upper end, the center, and the lower end.
  • the nanostructure 9 used in the present embodiment is characterized in that the diameter of the central part is smaller than the diameters of the upper and lower ends as shown in FIG.
  • the nanostructure 9 having such a shape can be manufactured by changing the number of rotations of the semiconductor chip 1 in the process of manufacturing the nanostructure layer 7 shown in FIG. 3C of the first embodiment. it can.
  • the nanostructure layer 7 used in the first to fifth embodiments has a structure in which nanostructures 9 having a spring shape are arranged in a plane, whereas the nanostructure layer 7 according to the present embodiment. 20 has a structure in which columnar nanostructures 9 are arranged in a planar shape, as shown in FIG. In the nanostructure 9 having such a shape, the rotation speed of the semiconductor chip 1 is increased in the manufacturing process of the nanostructure layer 7 shown in FIG. It can be manufactured by connecting them.
  • the nanostructure 9 of the present embodiment has a lower deformation absorbing function than the nanostructures 9 of the first to fifth embodiments having a spring shape. However, since the heat capacity is larger than that of the nanostructure 9 having a spring shape, the thermal conductivity in the height direction is improved.
  • the volume occupancy of the nanostructure 9 can be increased as compared with the nanostructure layers 7 of the first to fifth embodiments, the thermal resistance and electrical resistance of the nanostructure layer 7 can be further reduced. Therefore, it is effective to use the nanostructure 9 of the present embodiment for a product that requires a further reduction in thermal resistance.
  • each of the nanostructures 9 has an inclination with respect to the opposing surface of the plate layer 6 and the plate layer 8.
  • the nanostructure layer 7 having the nanostructure 9 having such a shape can be manufactured by the following method.
  • a semiconductor chip 1 having a plate layer 8 formed on the upper surface is prepared, and then, as shown in FIG.
  • the copper atoms 33 are vapor-deposited from the oblique direction with respect to the upper surface of 8. At this time, the point that the atoms 33 are deposited without rotating the semiconductor chip 1 is a difference from the manufacturing method of the other embodiments. Therefore, in this embodiment, it is not necessary to give the vapor deposition apparatus the function of rotating the semiconductor chip 1.
  • the nickel layer 34 is deposited from above the nanostructure layer 7 to form the plate layer 6 on the nanostructure layer 7.
  • the nanostructure layer 7 of the present embodiment manufactured by the above method is not formed with the nanostructure 9 on part of the upper surface of the plate layer 8 or part of the lower surface of the plate layer 6. It should be noted that the electrical conductivity and thermal conductivity of the nanostructure layer 7 are slightly lowered as compared with the above-described form.
  • the nanostructure layer 7 of the present embodiment has a structure in which zigzag nanostructures 9 having different inclinations with respect to the upper surface of the plate layer 8 are arranged in a plane. .
  • the nanostructure layer 7 having the nanostructure 9 having such a shape can be manufactured by the following method.
  • a semiconductor chip 1 having a plate layer 8 formed on the upper surface is prepared.
  • the plate layer is formed in a substantially vacuum environment.
  • the copper atoms 33 are deposited from an oblique direction with respect to the upper surface of 8. At this time, as in the seventh embodiment, the atoms 33 are deposited without rotating the semiconductor chip 1.
  • the semiconductor chip 1 is rotated by 180 °, and copper atoms 33 are vapor-deposited from an oblique direction in the same procedure as described above. Thereafter, as shown in FIG. 24C, the nickel layer 34 is deposited from above the nanostructure layer 7, thereby forming the plate layer 6 on the nanostructure layer 7.
  • the semiconductor chip 1 is rotated only once. However, by repeating the work shown in FIG. 24B and the work shown in FIG. 24C as many times as necessary, the zigzag of the nanostructure 9 is obtained.
  • the shape can be controlled.
  • the manufacturing method of the present embodiment it is not necessary to always rotate the semiconductor chip 1 when the atoms 33 constituting the nanostructure 9 are deposited. Further, the problem of the seventh embodiment in which the nanostructure 9 is not formed on a part of the upper surface of the plate layer 8 or a part of the lower surface of the plate layer 6 can be solved. Furthermore, since the volume occupation rate of the nanostructures 9 can be increased as compared with the nanostructure layers 7 of the first to fifth embodiments, the thermal resistance and electrical resistance of the nanostructure layers 7 can be further reduced.
  • the semiconductor device of the present embodiment is characterized in that a plurality of nanostructure layers 7 are stacked with an intermediate plate layer 251 interposed therebetween.
  • FIG. 25 shows an example in which two nanostructure layers 7 are stacked. By alternately repeating the formation of the nanostructure layer 7 and the formation of the intermediate plate layer 25, three or more nanostructure layers are formed. 7 can be stacked.
  • the nanostructure 9 is not limited to one having a spring shape, and may be the nanostructure 9 as in the sixth to eighth embodiments.
  • the deformation absorbed by each nanostructure layer 7 is reduced to 1 / n, so that larger deformation can be absorbed.
  • the overall thermal resistance and electrical resistance of the nanostructure layer 7 are multiplied by n, it is desirable to select the number of nanostructure layers 7 to be laminated according to the required deformation absorption capacity, thermal resistance, and electrical resistance.
  • the semiconductor device has a structure in which a semiconductor chip 1 is flip-chip connected to the surface of a package substrate 263 as a circuit board, and the package substrate 263 and the semiconductor chip 1 are connected.
  • Each of the plurality of flip chip connecting portions to be electrically connected includes a nanostructure layer 7.
  • the nanostructure layer 7 is formed by arranging a plurality of structures made of a conductive material in a planar shape.
  • a plurality of chip-side lands 261 are provided on the front surface (lower surface in the figure) of the semiconductor chip 1.
  • a plurality of substrate-side lands 262 are provided in a region facing the chip-side land 261 on the upper surface of the package substrate 263.
  • the nanostructure layer 7, the plate layer 6, and the bonding layer 3 are provided between the chip side land 261 and the substrate side land 262. Further, the gaps between the plurality of flip chip connecting portions are filled with an underfill resin 264 that seals the flip chip connecting portions.
  • the nanostructure layer 7 is formed by densely arranging a plurality of nanostructures 9 having, for example, a spring shape in a planar shape.
  • the thermal deformation difference between the semiconductor chip 1 and the package substrate 263 can be absorbed by the nanostructure layer 7. Therefore, a highly reliable flip chip type semiconductor device can be provided.
  • the underfill resin 264 that seals the flip chip connecting portion with a thermal deformation absorbing function, so that the material selection range of the underfill resin 264 is widened. That is, as the material of the underfill resin 264, for example, a material having high filling property or high impact resistance at the time of sealing can be selected, and therefore, a more reliable flip chip type semiconductor device can be provided. Further, by providing the nanostructure layer 7 with a thermal deformation absorbing function, it is possible to select not to fill the gap between the flip chip connecting portions with the underfill resin 264.
  • the present invention can be applied to reduction of thermal stress and improvement of heat dissipation of a semiconductor device including a circuit board and a semiconductor chip mounted on the circuit board.

Abstract

 半導体装置は、半導体チップ1の上面を変形吸収層2aおよび接合層3aを介して導電部材4に電気的に接続し、下面を変形吸収層2bおよび接合層3bを介して導電部材5に電気的に接続した実装構造を有している。変形吸収層2a、2bのそれぞれは、厚さ方向の中央に配置されたナノ構造層7と、ナノ構造層7を挟む2層のプレート層6、8とで構成されている。ナノ構造層7は、1μm以下のサイズを有する複数のナノ構造体9を平面状に配置した構造を有しており、半導体装置を構成する各部材の熱変形差に起因する熱応力をナノ構造体9の変形によって吸収する。

Description

半導体装置およびその製造方法
 本発明は、回路基板と、この回路基板に実装された半導体チップとを備えた半導体装置の熱応力の低減ならびに放熱性の向上に適用して有効な技術に関する。
 本技術分野の背景技術として、特許文献1(特開2006-287091号公報)、特許文献2(特開2003-188209号公報)、特許文献3(特開2003-298012号公報、および非特許文献1がある。
 特許文献1には、「高温高荷重を負荷する熱圧着工程から、低温低荷重で接続させる接合プロセス工法を採用し、高温による半導体素子の熱的破壊や高荷重による回路特性や層間膜クラックの発生を防止する」という課題の解決手段として、「複数のパッド電極部2に金属バンプ3を形成した半導体素子1と、配線電極部5を有する回路実装基板4とを備えた半導体装置であって、回路実装基板4の配線電極部5上に導電性でかつ弾性を有する導電弾性体6を形成し、金属バンプ3が導電弾性体6を突き刺した状態で、半導体素子1を回路実装基板4に実装し、絶縁性を有する接着層10により金属バンプ3と配線電極部5とが電気的に接続固定される」という技術が記載されている(要約参照)。
 特許文献2には、「半導体チップと回路基板の熱膨張率差に起因する熱応力による接続信頼性の低下を抑制し、さらには高密度実装を実現するのに適した半導体装置とその製造方法を提供する」という課題の解決手段として、「微細加工を施した加工基板とパターニング技術により、形状を制御した微小な導電性接続部を形成し、これを用いて半導体チップと回路基板とを接続をする。半導体装置は、半導体チップの電極パッドが少なくとも2つ以上の屈曲部、湾曲部を有する導電性接続部を介して回路基板の電極パッドに接続し、かつ両者の間に絶縁性封止部が封入された構造となっている。この半導体装置では、熱応力が加わったときに導電性接続部分、及び絶縁性封止部分が変形することによって熱応力を緩和し接続信頼性を向上させることができる」という技術記載されている。
 特許文献3には、「接続する素子材料の耐熱性上の制約がなく、応力による装置の機能の劣化や素子の損傷のおそれがなく、隣り合う接続部が接触して隣り合う電極間の短絡を生じるおそれがない半導体装置およびその製造方法を提供する」という課題の解決手段として、「固体撮像素子10は、走査回路部12、光電変換部14、マイクロスプリング16および接続層18を有する。マイクロスプリング16は、金属等により画素電極30の上に一端が固着されるとともに上方に湾曲した舌片状に形成され、許容範囲内で圧縮された状態で光電変換部側電極42と接触し、画素電極30および光電変換部側電極42を電気的に接続する。接続層18は、走査回路部12および光電変換部14を構造的に接続する」という技術記載されている。
 非特許文献1には、本発明で使用するナノ構造層の製造方法ならびに力学的特性について記載されている。
特開2006-287091号公報 特開2003-188209号公報 特開2003-298012号公報
Sumigawa T. et. al., Disappearance of stress singularity at interface edge due to anostructured thin film, Engineering Fracture Mechanics 75 (2008) 3073-3083.
 回路基板に半導体チップを実装した構造は、異なる材料が組み合わされて用いられているため、温度変化によって各部材の熱変形の違いに起因する熱応力が発生する。半導体製品の使用環境の多様化によって、使用される温度域が拡大すると、発生する熱応力が大きくなるため、この熱応力による半導体製品の信頼性低下を防止することが課題となる。
 また、半導体製品の動作時には、半導体チップが発熱する。実装密度の増加によって発熱温度が高くなると、半導体チップの温度上昇が顕著となり、この温度上昇による半導体チップの効率低下や熱応力による部材の破損が懸念される。従って、半導体実装構造は、温度上昇の抑制、すなわち放熱性の向上が課題となる。
 本発明の目的は、熱応力の低減と放熱性の向上とを実現することのできる半導体実装構造およびその製造方法を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 本発明による半導体装置の一態様は、回路基板と、前記回路基板に実装された半導体チップとを備え、前記半導体チップと前記回路基板との間には、直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられているものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 半導体装置を構成する各部材の熱変形差を構造体の変形によって吸収することにより、半導体装置の熱応力を低減することができる。
 また、複数の構造体が平面状に配置された構造層を用いることにより、半導体装置の熱抵抗が小さくなり、放熱性を向上させることができる。
(a)は、本発明の実施の形態1である半導体装置の断面図、(b)は、同図(a)の一部を示す拡大断面図である。 (a)は、本発明の比較例である半導体装置の断面図、(b)は、同図(a)の一部を示す拡大断面図である。 (a)~(e)は、本発明の実施の形態1である半導体装置の製造方法を示す全体図および端部拡大図である。 (a)、(b)は、図3に続く半導体装置の製造方法を示す断面図である。 (a)、(b)、(c)は、実施の形態1である半導体装置の効果を説明する図である。 (a)、(b)は、実施の形態1のナノ構造体に発生する変形と応力を説明する図である。 応力解析から得られたナノ構造体のせん断変位量と最大応力との関係を示すグラフである。 図7の結果から求めた高さ10μmのナノ構造体におけるせん断変位量と最大応力との関係を示すグラフである。 (a)は、本発明の実施の形態2である半導体装置の平面図、(b)は、同図(a)のA-A線断面図、(c)は同図(b)の一部を拡大した断面図である。 (a)は、本発明の実施の形態3である半導体装置の平面図、(b)は、同図(a)のB-B線断面図である。 (a)、(b)、(c)は、実施の形態2、3である半導体装置の効果を説明する図である。 半導体チップが発熱と停止とを繰り返したときの温度変化を熱伝導解析で計算した結果を示すグラフである。 比較例の半導体装置と実施の形態2、3の半導体装置の温度変化量を示すグラフである。 (a)、(b)は、本発明の実施の形態2、3である半導体装置の製造方法を示す平面図、(c)、(d)、(e)は、本発明の実施の形態2、3である半導体装置の製造方法を示す全体図および端部拡大図である。 (a)~(e)は、図14に続く半導体装置の製造方法を示す全体図および端部拡大図である。 (a)、(b)は、図15に続く半導体装置の製造方法を示す断面図である。 (a)は、本発明の実施の形態4である半導体装置の平面図、(b)は、同図(a)のC-C線断面図である。 本発明の実施の形態1で用いるナノ構造層の断面図である。 本発明の実施の形態5で用いるナノ構造層の断面図である。 本発明の実施の形態6で用いるナノ構造層の断面図である。 本発明の実施の形態7で用いるナノ構造層の断面図である。 (a)、(b)、(c)は、本発明の実施の形態7で用いるナノ構造層の製造方法を示す全体図および端部拡大図である。 本発明の実施の形態8で用いるナノ構造層の断面図である。 (a)~(d)は、本発明の実施の形態8で用いるナノ構造層の製造方法を示す全体図および端部拡大図である。 本発明の実施の形態9で用いるナノ構造層の断面図である。 (a)は、本発明の実施の形態10である半導体装置の断面図、(b)は、同図(a)の一部を示す拡大断面図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。さらに、実施の形態を説明する図面においては、構成を分かり易くするために、平面図であってもハッチングを付す場合や、断面図であってもハッチングを省略する場合がある。
 (実施の形態1)
 図1(a)は、本発明の実施の形態1である半導体装置の断面図、図1(b)は、同図(a)の一部を示す拡大断面図である。
 本実施の形態の半導体装置は、ダイオード素子が形成された半導体チップ1の上面を変形吸収層2aおよび接合層3aを介して導電部材4に電気的に接続し、下面を変形吸収層2bおよび接合層3bを介して導電部材5に電気的に接続した実装構造を有している。この半導体装置は、一対の導電部材4、5の一方から流入する電流が半導体チップ1内のダイオード素子によって整流され、導電部材4、5の他方から流出することによって、ダイオードとしての機能を有するようになっている。
 上記半導体チップ1は、半導体製造プロセス(前工程)においてダイオード機能を持たせた単結晶シリコンからなり、その寸法は、1辺約6mm、厚さ約0.2mmである。
 半導体チップ1を挟む変形吸収層2a、2bのそれぞれは、厚さ方向(図の上下方向)に沿って積層された3種類の異なる層から構成されている。すなわち、変形吸収層2a、2bのそれぞれは、図1(b)に示すように、厚さ方向の中央に配置されたナノ構造層7と、ナノ構造層7を挟む2層のプレート層6、8とで構成されている。
 上記ナノ構造層7は、約25nmの直径を有する略円形の断面形状を持つ外径約150nm、内径約100nm、ピッチ約50nmのスプリング形状を備えたナノ構造体9を平面状に約170nmの間隔で配置した構造を有している。ナノ構造体9の高さは10μmであり、その主材料は銅(Cu)である。
 このように、ナノ構造層7を構成する複数のナノ構造体9のそれぞれがナノオーダ、すなわち1μm以下のサイズのスプリング形状を持つことにより、ナノ構造層7の剛性が小さくなるので、半導体装置を構成する各部材の熱変形差に起因する熱応力をナノ構造層7の変形によって吸収することができる。
 また、熱伝導率の高い銅を主材料とするナノ構造体9を平面状に密に配置することにより、ナノ構造層7の厚さ方向の熱抵抗が低減される。これにより、動作時の半導体チップ1の熱が変形吸収層2a、2bを通じて良好に外部に拡散するので、半導体チップ1の温度上昇を抑制することができる。
 上記変形吸収層2aと導電部材4との間の接合層3a、および変形吸収層2bと導電部材5との間の接合層3bは、いずれも厚さ50μmのはんだ材からなる。また、導電部材4、5は銅からなり、電流を流す電極としての機能と、半導体チップ1で発生した熱を外部に放出する放熱板としての機能を持っている。
 上記ナノ構造層7を構成するスプリング形状のナノ構造体9は、それぞれの一端がプレート層6に固定され、他端がプレート層8に固定されている。プレート層6、8のそれぞれは、厚さ約5μmの平坦な金属薄膜からなり、その主材料はニッケル(Ni)である。
 ナノ構造体9のそれぞれをプレート層6、8で固定することにより、ナノ構造層7と接合層3a、3bとの接合箇所が平坦な面となる。これにより、ナノ構造層7と接合層3a、3bとの接合が容易になると共に、接合時にナノ構造層7の隙間に接合層3a(または3b)が流れ込む不具合を防止することができる。
 また、プレート層6、8をニッケルを主材料として構成することにより、半導体装置の製造過程におけるプレート層6、8の表面酸化を防止できるため、この表面酸化層に起因する接触抵抗の増加などの不具合を防止することができる。
 本実施の形態では、プレート層6、8にニッケルを用いたが、例えばプレート層8の生成から接合層3a、3bを設けるまでの時間が短い場合や、半導体装置を真空環境で製造する場合など、製造過程でプレート層6、8の表面酸化が生じ難い場合には、プレート層6、8に銅を用いることもできる。銅はニッケルよりも熱伝導率が高いので、この場合は、ニッケルを用いた場合よりもさらに熱抵抗を低減することができる。
 このように、半導体チップ1と導電部材4、5との間にナノ構造層7を持った変形吸収層2a、2bを設けることが本発明の大きな特徴である。
 図2(a)は、本発明の比較例である半導体装置の断面図、図2(b)は、同図(a)の一部を示す拡大断面図である。
 図2に示す半導体装置(比較例)は、図1に示す本実施の形態の半導体装置から変形吸収層2a、2bを取り除いた構造になっており、半導体チップ1と導電部材4、5とが接合層3a、3bのみを介して接続されている。
 銅製の導電部材4、5とシリコン製の半導体チップ1は、線膨張係数が大きく異なるので、導電部材4、5と半導体チップ1との熱変形差は大きい。そのため、図2に示す構造では、半導体チップ1と導電部材4、5との熱変形差を、それらの間に配置された接合層3a、3bによって吸収する必要があり、接合層3a、3bには、厚く、かつ剛性の小さい材料であることが求められる。従って、図2に示す構造では、接合層3a、3bとして使用できる材料が制限されるだけでなく、接合層3a、3bの厚さの増加によって熱抵抗が大きくなってしまう。
 また、上記比較例のように、半導体チップ1と導電部材4、5との熱変形差を接合層3a、3bで吸収しきれない場合には、半導体チップ1の割れや動作不良、接合層3a、3bの破壊などの不具合が生じることが懸念される。そのため、従来は、接合層3a、3bを多層構造にすることによってその変形吸収機能を向上させたり、全体を樹脂封止することによって半導体チップ1と導電部材4、5との熱変形差を低減するなど、様々な構造が提案されている。
 一方、図1に示す本実施の形態の半導体装置では、半導体チップ1と導電部材4、5との熱変形差をナノ構造層7を備えた変形吸収層2a、2bが吸収する。これにより、接合層3a、3bの多層化や樹脂封止などの対策を施すことなく、半導体チップ1の割れや動作不良、接合層3a、3bの破壊などの不具合を防止できる高信頼な実装構造を提供することができる。
 また、図1に示す本実施の形態の半導体装置では、各部材の熱変形を変形吸収層2a、2bが吸収するため、接合層3a、3bに変形吸収機能を付与する必要がない。これにより、接合が可能な範囲で接合層3a、3bの厚さを薄くできるので、接合層3a、3bを厚くして変形吸収機能を持たせる図2の構造と比較して熱抵抗を低減できるという特徴も併せ持つ。
 次に、図3、図4を参照しながら、本実施の形態の半導体装置の製造方法について説明する。
 まず、図3(a)に示す半導体チップ1を用意する。この半導体チップ1には、半導体製造プロセス(前工程)でダイオード素子が形成されている。
 次に、図3(b)に示すように、蒸着法を用いて半導体チップ1の表面にニッケル膜からなるプレート層8を形成する。プレート層8は、蒸着法に代えてメッキ法などで形成することもできる。また、半導体製造プロセスで半導体ウエハの表面に金属層を設けた場合には、その金属層をプレート層8として利用することもできる。
 次に、図3(c)に示すように、略真空の環境下において、半導体チップ1をプレート層8に垂直な軸に対して回転させながら、この軸に対して斜め方向から銅原子33を照射して蒸着させることにより、プレート層8の表面にナノオーダのスプリング形状を有する多数のナノ構造体9からなるナノ構造層7を形成する。
 次に、半導体チップ1の回転を止めた後、図3(d)に示すように、ナノ構造層7の上方からニッケル原子34を蒸着することにより、ナノ構造層7の上部にプレート層6を形成する。ここまでの工程により、半導体チップ1の表面にプレート層8とナノ構造層7とプレート層6とからなる変形吸収層2aが形成される。
 次に、半導体チップ1の表裏面を反転させた後、上記と同様の手順を施すことにより、半導体チップ1の裏面にプレート層8とナノ構造層7とプレート層6とからなる変形吸収層2bを形成する(図3(e))。
 なお、上記の製造方法では、半導体ウエハをダイシングして半導体チップ1を用意した後、半導体チップ1の両面に変形吸収層2a、2bを形成したが、半導体ウエハの両面に上記の手順で変形吸収層2a、2bを形成した後、この半導体ウエハをダイシングして半導体チップ1を個片化してもよい。この場合は、半導体ウエハから得られる多数の半導体チップ1に一括して変形吸収層2a、2bを形成できる利点がある。ただし、半導体ウエハのダイシング時に変形吸収層2a、2bを破損しないように注意する必要があるので、ダイシングの方法に応じて適切な方法を選択することが望ましい。
 次に、図4(a)に示すように、導電部材5の上部に接合層3b、変形吸収層2a、2bが形成された半導体チップ1、接合層3aおよび導電部材4をこの順に重ね合わせた後、この積層体を接合層3a、3bを構成するはんだ材の溶融温度以上の環境下に曝す。
 これにより、半導体チップ1の表面の変形吸収層2aと導電部材4とが接合層3aを介して接合され、半導体チップ1の裏面の変形吸収層2bと導電部材5とが接合層3bを介して接合される。
 このとき、本実施の形態では、上記積層体をカーボン製の接合用治具41a、41bで固定することにより、積層体を構成する各部材相互間の位置ズレを防止した。また、上記接合時には、接合用治具41a、41bで固定された積層体をリフロー炉に収容し、略真空環境下で加熱することにより、接合層3a、3bの内部に生じる未接合部やボイドを低減した。
 その後、リフロー炉内を冷却し、積層体を接合用治具41a、41bから取り出すことにより、本実施の形態の半導体装置が完成する(図4(b))。
 上述した製造方法によれば、ナノオーダ、すなわち1μm未満の寸法のスプリング形状を有する多数のナノ構造体9を密に配置したナノ構造層7を作製することが可能となるので、従来技術と顕著な相違を有する半導体実装構造を実現することができる。
 次に、本発明の半導体実装構造の特徴について説明する。図5(a)は、従来技術であるマイクロオーダの寸法を有するスプリング10を示し、図5(b)は、同図(a)に示すスプリングを単純にスケールダウンしたナノオーダのスプリング11を示し、図5(c)は、ナノオーダのスプリング形状を有するナノ構造体9を密に配置した本実施の形態のナノ構造層7をそれぞれ示している。
 変形吸収層が吸収する変形は、主としてせん断変形であることから、スプリングのそれぞれをせん断変形が作用する1本の針と考え、マイクロオーダのスプリング10を線径10μmの針1本、ナノオーダのスプリング11を線径10nmの針1本、ナノ構造層7を線径10nmの針1000000(=1000×1000)本とモデル化した。針の高さ(ナノ構造層7の厚さ)はすべて同じ値Lとする。
 このとき、針に発生する最大応力(σmax)は次式で表される。
Figure JPOXMLDOC01-appb-M000001
(式中、Eは縦弾性率、dは線径、uは作用するせん断変位である)
 この式からナノ構造層7とナノオーダのスプリング11に発生する応力は同じであるが、dが1000倍のマイクロオーダのスプリング10では1000倍の応力が発生し、その破壊防止が課題となる。
 一方、熱抵抗(R)は次式で表される。
Figure JPOXMLDOC01-appb-M000002
(式中、λは材料の熱伝導率、nは本数である)
 この式から、ナノ構造層7とマイクロオーダのスプリング10の熱抵抗は同じであるが、ナノオーダのスプリング11では熱抵抗が1000000倍になるため、半導体チップの温度上昇が顕著になる。なお、マイクロオーダのスプリング10に発生する応力をナノ構造層7と同じにするためには、高さLを32倍にする必要があり、この場合には熱抵抗が32倍になる。
 これらのことから、半導体実装構造に求められる変形吸収と低熱抵抗とを両立する機能は、従来技術であるマイクロオーダのスプリング10やそれを単純にスケールダウンしたナノオーダのスプリング11では実現できず、本発明によってはじめて実現できる機能であることが分かる。
 図6(a)は、本実施の形態のナノ構造体9の応力解析用モデルを示している。ナノ構造体9の実際の高さは10μmであるが、ここでは、そのうちの1500nm分の高さをモデル化した。また、図6(b)は、応力解析を実施して得られたナノ構造体9の変形図と応力分布の一例を示している。
 図6(b)の色の濃い箇所が応力の大きい箇所である。せん断変位をスプリング全体の変形で吸収していること、および中央部と比較して上下両端部の応力が大きいことが分かる。
 図7は、応力解析から得られたせん断変位量(単位:μm)と最大応力(単位:MPa)との関係を示すグラフである。また、図8は、図7の結果から求めた高さ10μmのナノ構造体9におけるせん断変位量(単位:μm)と最大応力(単位:MPa)との関係を示すグラフである。
 本実施の形態の半導体装置において、せん断変位量が最も大きいのは半導体チップ1の端部近傍である。この位置でのせん断変位量は、半導体チップ1の中心からの距離3mm、半導体チップ1の線膨張係数3ppm/℃、導電部材の線膨張係数17ppm/℃、温度変化が200℃の場合に8.4μmである。
 図8から、高さ10μmのナノ構造体9の場合、せん断変位量8.4μmで発生する最大応力は約100MPaであり、銅材の疲労強度から、半導体装置に求められる回数を満足する疲労寿命であることが確認できる。なお、ここでの銅の疲労強度については、“The society of materials science, Databook on fatigue strength of metallic materials, (1996), Elsevier Science.”に記載されている。
 次に、熱伝導率に関して確認する。ナノ構造層7の厚さ方向の熱伝導率は、ナノ構造層7の内部に空間を持つ(銅の体積占有率が小さい)こと、およびナノ構造体9がらせん形状のために熱伝導経路が長くなることにより、バルク材の銅の熱伝導率よりも小さくなる。
 本実施の形態のナノ構造体9がナノ構造層7の体積に占める割合は約13%である。伝導経路の増加によって熱伝導性が1桁低下すると仮定すると、ナノ構造層7の厚さ方向の熱伝導率は、銅の熱伝導率の1/100程度となる。これは、接合層3a、3bとして使用するはんだ材の約1/10の熱伝導率である。従って、厚さ10μmのナノ構造層7の熱抵抗は、厚さ100μmのはんだ層の熱抵抗と同等であり、ナノ構造層7の熱抵抗が顕著な課題となることはない。さらに、図1と図2との比較で示したように、本実施の形態の半導体実装構造では、接合層3a、3bの厚さを小さくすることができるので、接合層3a、3bの厚さを100μm以上薄くすることができれば、全体の熱抵抗を低減することも可能である。
 以上のように、本実施の形態の半導体装置は、十分な疲労強度と低熱抵抗とを備えることが確認できた。
 (実施の形態2)
 図9(a)は、本発明の実施の形態2である半導体装置の平面図、図9(b)は、同図(a)のA-A線断面図、図9(c)は同図(b)の一部を拡大した断面図である。
 本実施の形態の半導体装置は、IGBT(Insulated Gate Bipolar Transistor)が形成された半導体チップ1をセラミック基板91上に実装した構造を有している。このセラミック基板91の上面には複数の回路パターン92a、92b、92cが形成されており、下面には金属パターン93が形成されている。セラミック基板91は、金属パターン93の下面に配置された接合材94を介してベース部材95の上面に接合されている。
 図9(c)に示すように、半導体チップ1の下面には変形吸収層2bが形成されている。半導体チップ1は、変形吸収層2bの下面に配置された接合層3bを介して回路パターン92aに電気的に接続されている。一方、半導体チップ1の上面には、IGBTのゲート端子99aとエミッタ端子99bとが形成されている。また、ゲート端子99aの上部には変形吸収層2aが形成されており、ゲート端子99bの上部には変形吸収層2cが形成されている。そして、ゲート端子99aは、その上部に配置された接合層3aを介してゲート端子接合部材97の一端に電気的に接続され、エミッタ端子99bは、その上部に配置された接合層3bを介してエミッタ端子接合部材96の一端に電気的に接続されている。さらに、図9(b)に示すように、ゲート端子接合部材97の他端は、接合材98aを介して回路パターン92aに電気的に接続され、エミッタ端子接合部材96の他端は、接合材98bを介して回路パターン92cに電気的に接続されている。
 図9には示さないが、上記変形吸収層2a、2b、2cのそれぞれは、前記実施の形態1の変形吸収層2a、2bと同一の構造で構成されている。すなわち、変形吸収層2a、2b、2cのそれぞれは、ナノ構造層7と、ナノ構造層7を挟む2層のプレート層6、8とで構成されており、ナノ構造層7は、らせん形状を備えた多数のナノ構造体9を密に配置した構造を有している。また、回路パターン92a、92b、92c、エミッタ端子接合部材96、およびゲート端子接合部材97には熱伝導率の高い銅を用いることにより、半導体チップ1と外部との間の熱抵抗を低減している。
 なお、実際の半導体装置は、図9に示した部材以外にも、回路パターン92a、92b、92cと外部との電気的導通を取るための端子、半導体装置を保護するケースや蓋、半導体装置を封止する封止ゲルなどを備えるが、これらの部材は、本発明の機能には影響がないので、図示および説明を省略する。
 前記実施の形態1との大きな相違点は、半導体チップ1がIGBTとしての機能を持つために、半導体チップ1の上面に複数の端子(ゲート端子99a、エミッタ端子99b)を設けている点である。そのため、実施の形態1とは異なり、半導体チップ1の上面に複数の変形吸収層2a、2cが配置されている。そして、変形吸収層2a、2cの上部に端子(ゲート端子99a、エミッタ端子99b)の平面寸法とほぼ同一の底面寸法を有する端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)を接続することにより、動作時の半導体チップ1の発熱を半導体チップ1の下面側からだけでなく、上面側からも有効に放出できる構造になっている。
 上記端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)は、長さが大きいだけでなく剛性も大きい。そのため、変形吸収層2a、2cを設けない場合は、半導体チップ1と端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)との熱変形差による接合層3aの信頼性低下が課題となる。従って、この場合、端子(ゲート端子99a、エミッタ端子99b)と回路パターン92a、92b、92cとの電気的接続には、ワイヤのような細くかつ剛性の小さい部材が用いられるのが一般的である。
 しかし、本実施の形態によれば、半導体チップ1と端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)との熱変形差が変形吸収層2b、2cによって吸収されるため、高い信頼性を確保できると共に、半導体チップ1と端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)との間の熱抵抗を低減することができる。
 なお、端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)の一部に断面積の小さい箇所があると、その位置が放熱経路の隘路となる。そこで、本実施の形態では、端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)の形状を、面積が小さいほうの端子(ここではゲート端子99a)よりも大きくなるように定めている。また、本実施の形態では、半導体チップ1の外周部と端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)との接触を防止するために、図9(c)に示すように、半導体チップ1の外周部では、端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)との間に一定の隙間L3を設けている。
 これらのことから、半導体チップ1の上部における端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)の高さL2は、ゲート端子接合部材97とゲート端子99aとの接続幅L1よりも大きくなることが特徴となる。
 (実施の形態3)
 図10(a)は、本発明の実施の形態3である半導体装置の平面図、図10(b)は、同図(a)のB-B線断面図である。
 本実施の形態の半導体装置は、前記実施の形態2の半導体装置と同じく、IGBTが形成された半導体チップ1をセラミック基板91上に実装した構造を有しているが、実施の形態2との相違点は、半導体チップ1の上部における端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)の高さを他の箇所よりも大きくしたことである。
 このようにした場合は、半導体チップ1の近傍における端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)の体積が大きくなるので、半導体チップ1の近傍における端子接合部材の熱容量が大きくなる。従って、半導体チップ1が動作と停止とを繰り返し行った場合の半導体チップ1の温度変化を少なくすることができ、より安定した動作を確保することができると共に、熱疲労寿命をさらに向上させることができる。
 次に、図11および図12を用いて実施の形態2、3の効果について説明する。図11(a)は、変形吸収層2b、2cおよび端子接合部材(ゲート端子接合部材97、エミッタ端子接合部材96)を有しない比較例の構造を示す部分断面図、図11(b)は、実施の形態2の構造を示す部分断面図、図11(c)は、実施の形態3の構造を示す部分断面図である。
 これらの構造において、半導体チップ1が発熱と停止とを繰り返したときの半導体チップ1の温度変化を熱伝導解析で計算した。なお、ベース部材95の下面に70℃の冷却水を流し、半導体チップ1の熱をベース部材95の下面側から放出させる条件とした。図12に計算結果を示す。
 いずれの構造においても、発熱時に半導体チップ1から発生する熱量は同じであるが、半導体チップ1の温度は、構造によって大きく異なった。すなわち、発熱終了時の半導体チップ1の温度は、比較例の構造、実施の形態2の構造、実施の形態3の構造の順で高かった。
 図13に各構造の温度変化量を示す。比較例の構造の温度変化量が36℃であるのに対して、実施の形態2、3の構造の温度変化量はそれぞれ27℃、24℃であり、比較例の構造に対してそれぞれ75%、67%と低減した。このように、実施の形態2や実施の形態3の構造を用いることで、半導体チップ1の温度変化を低減できることが確認できた。
 次に、図14~図16を用いて、実施の形態2、3の半導体装置の製造方法を説明する。
 まず、図14(a)、(b)、(c)に示す半導体チップ1を用意する。図14(a)に示すように、半導体チップ1の上面には、IGBTのゲートに接続されたゲート端子99aと、IGBTのエミッタに接続されたエミッタ端子99bが形成されている。また、図14(b)、(c)に示すように、半導体チップ1の下面には、IGBTのコレクタに接続されたコレクタ端子144が形成されている。ゲート端子99aおよびエミッタ端子99bは、半導体製造プロセス(前工程)で半導体ウエハの上面に形成され、コレクタ端子144は、半導体製造プロセスで半導体ウエハの下面に形成される。
 次に、図14(d)に示すように、半導体チップ1のコレクタ端子144の表面にナノオーダのスプリング形状を有する多数のナノ構造体9からなるナノ構造層7を形成する。ナノ構造層7の形成方法は、前記実施の形態1の図3(c)で説明した方法と同じであり、略真空の環境下において、半導体チップ1をコレクタ端子144に垂直な軸に対して回転させながら、この軸に対して斜め方向から銅原子33を蒸着させる。
 次に、半導体チップ1の回転を止めた後、図14(e)に示すように、ナノ構造層7の上方からニッケル原子34を蒸着することにより、ナノ構造層7の上部にプレート層6を形成する。ここまでの工程により、半導体チップ1の表面にコレクタ端子144とナノ構造層7とプレート層6とからなる変形吸収層2bが形成される。
 次に、図15(a)に示すように、半導体チップ1の表裏面を反転させ、ゲート端子99aおよびエミッタ端子99bが形成された面を上に向けた後、図15(b)に示すように、半導体チップ1の上面のうち、エミッタ端子99aの表面とゲート端子99bの表面とを除いた領域に絶縁材料からなるマスク151を形成する。
 このとき、マスク151の厚さをゲート端子99aおよびエミッタ端子99bの厚さと同じにすることが望ましい。マスク151の厚さとゲート端子99aおよびエミッタ端子99bの厚さが異なる場合、次の工程で斜め方向からナノ構造体を構成する原子を蒸着する際、蒸着される原子の位置精度が低下するためである。
 次に、図15(c)に示すように、略真空の環境下において、半導体チップ1をプレート層8に垂直な軸に対して回転させながら、この軸に対して斜め方向から銅原子33を蒸着させることにより、ゲート端子99aの表面およびエミッタ端子99bの表面にナノオーダのスプリング形状を有する多数のナノ構造体9からなるナノ構造層7を形成する。このとき、ナノ構造体9は、絶縁材料からなるマスク151の表面には形成されない。
 次に、半導体チップ1の回転を止めた後、図15(d)に示すように、ナノ構造層7の上方からニッケル原子34を蒸着することにより、ナノ構造層7の上部にプレート層6を形成する。このとき、プレート層6は、ナノ構造体9のないマスク151の表面には形成されない。
 次に、図15(e)に示すように、半導体チップ1の上面のマスク151を除去することにより、ゲート端子99aとナノ構造層7とプレート層6とからなる変形吸収層2a、およびエミッタ端子99bとナノ構造層7とプレート層6とからなる変形吸収層2cが形成される。
 次に、図16(a)に示すように、各部材を積層し、接合層3の融点以上に昇温することにより、図16(b)に示すように、実施の形態2または実施の形態3の半導体装置が完成する。このとき、接合前の各部材の位置ずれを防止するため、前記実施の形態1の製造方法と同様、接合用治具(図示せず)を用いて各部材を固定することが望ましい。
 (実施の形態4)
 図17(a)は、本発明の実施の形態4である半導体装置の平面図、図17(b)は、同図(a)のC-C線断面図である。
 本実施の形態の半導体装置は、前記実施の形態2、3の半導体装置と同じく、IGBTが形成された半導体チップ1を使用するが、実施の形態2、3との相違点は、例えばセラミックのような絶縁材料からなる複数のナノ構造体が平面状に配置されたナノ構造層171を介して回路パターン92a、92b、92cとベース部材95とを接続した点である。
 本実施の形態の実装構造によれば、実施の形態2、3で使用したセラミック基板91、金属パターン93および接合材94を用いることなく、ベース部材95と回路パターン92a、92b、92cの絶縁を確保することができる。
 また、ベース91と回路パターン92a、92b、92cとの熱変形差をセラミック製のナノ構造層171が吸収するので、信頼性の高い半導体装置を提供できる。
 (実施の形態5)
 図18に示すように、前記実施の形態1で用いたナノ構造層7は、スプリング形状を持ったナノ構造体9を平面状に配置した構造を有しており、各ナノ構造体9の直径は、上端部、中央部、下端部共に同一である。
 これに対し、本実施の形態で用いるナノ構造体9は、図19に示すように、中央部の直径が上下両端部の直径よりも小さいことが特徴である。このような形状を有するナノ構造体9は、実施の形態1の図3(c)に示したナノ構造層7の製造工程において、半導体チップ1の回転数を途中で変えることによって製造することができる。
 図6を用いて説明したように、スプリング形状を持ったナノ構造体9にせん断方向の強制変位が作用すると、ナノ構造体9の中央部よりも上下両端部でより大きな応力が発生する。従って、図19に示す本実施の形態のナノ構造体9を用いることにより、直径の小さいナノ構造体9の中央部でスプリングの剛性が低下し、この位置で吸収する変位が増加するため、ナノ構造体9の上下両端部で発生する最大応力を低減することができる。
 本実施の形態のナノ構造体9を実施の形態1~4と組み合わせて使用することにより、信頼性がさらに向上した半導体装置を提供できる。
 (実施の形態6)
 前記実施の形態1~5で用いたナノ構造層7は、スプリング形状を持ったナノ構造体9を平面状に配置した構造を有しているのに対し、本実施の形態のナノ構造層7は、図20に示すように、柱状のナノ構造体9を平面状に配置した構造を有している。このような形状を有するナノ構造体9は、実施の形態1の図3(c)に示したナノ構造層7の製造工程において、半導体チップ1の回転速度を大きくし、スプリングが上下方向に沿って繋がるようにすることで製造することができる。
 本実施の形態のナノ構造体9は、スプリング形状を持った実施の形態1~5のナノ構造体9に比べて変形吸収機能が低い。しかし、スプリング形状を持ったナノ構造体9に比べて熱容量が大きいので、高さ方向の熱伝導性が向上する。
 また、実施の形態1~5のナノ構造層7に比べてナノ構造体9の体積占有率を大きくすることができるため、ナノ構造層7の熱抵抗や電気抵抗のさらなる低減が可能である。従って、本実施の形態のナノ構造体9は、より熱抵抗低減が求められる製品に用いることが有効である。
 (実施の形態7)
 図21に示すように、本実施の形態のナノ構造層7の特徴は、ナノ構造体9のそれぞれがプレート層6とプレート層8との対向面に対して傾きを持っていることである。このような形状のナノ構造体9を有するナノ構造層7は、次のような方法で製造することができる。
 まず、図22(a)に示すように、上面にプレート層8が形成された半導体チップ1を用意し、続いて、図22(b)に示すように、略真空の環境下において、プレート層8の上面に対して斜め方向から銅原子33を蒸着させる。このとき、半導体チップ1を回転させずに原子33を蒸着させる点が他の実施の形態の製造方法との相違点である。従って、本実施の形態では、蒸着装置に半導体チップ1を回転させる機能を持たせる必要がない。
 その後、図22(c)に示すように、ナノ構造層7の上方からニッケル原子34を蒸着することにより、ナノ構造層7の上部にプレート層6を形成する。
 なお、上記の方法で製造される本実施の形態のナノ構造層7は、プレート層8の上面の一部やプレート層6の下面の一部にナノ構造体9が形成されないため、他の実施の形態に比べてナノ構造層7の電気伝導性や熱伝導性が若干低下する点に注意が必要である。
 (実施の形態8)
 図23に示すように、本実施の形態のナノ構造層7は、プレート層8の上面に対して異なる傾きを持ったジグザグ形状のナノ構造体9を平面状に配置した構造を有している。このような形状のナノ構造体9を有するナノ構造層7は、次のような方法で製造することができる。
 まず、図24(a)に示すように、上面にプレート層8が形成された半導体チップ1を用意し、続いて、図24(b)に示すように、略真空の環境下において、プレート層8の上面に対して斜め方向から銅原子33を蒸着させる。このとき、前記実施の形態7と同様、半導体チップ1を回転させずに原子33を蒸着させる。
 次に、図24(c)に示すように、半導体チップ1を180゜回転させ、上記と同様の手順で斜め方向から銅原子33を蒸着させる。その後、図24(c)に示すように、ナノ構造層7の上方からニッケル原子34を蒸着することにより、ナノ構造層7の上部にプレート層6を形成する。
 なお、ここでは、半導体チップ1を1回だけ回転させたが、図24(b)に示す作業と図24(c)に示す作業とを必要な回数だけ繰り返すことにより、ナノ構造体9のジグザグ形状を制御することができる。
 本実施の形態の製造方法によれば、ナノ構造体9を構成する原子33を蒸着する際に半導体チップ1を常時回転させる必要がない。また、プレート層8の上面の一部やプレート層6の下面の一部にナノ構造体9が形成されないという実施の形態7の問題点も解消できる。さらに、実施の形態1~5のナノ構造層7に比べてナノ構造体9の体積占有率を大きくすることができるため、ナノ構造層7の熱抵抗や電気抵抗のさらなる低減が可能である。
 (実施の形態9)
 図25に示すように、本実施の形態の半導体装置の特徴は、中間プレート層251を介して複数のナノ構造層7が積層されていることが特徴である。図25には、2層のナノ構造層7が積層された例を示したが、ナノ構造層7の形成と中間プレート層25の形成とを交互に繰り返すことにより、3層以上のナノ構造層7を積層することが可能である。また、ナノ構造体9は、スプリング形状を持つものに限定されず、実施の形態6~8のようなナノ構造体9であってもよい。
 本実施の形態のナノ構造層7をn段積層した場合には、各ナノ構造層7が吸収する変形が1/nに低減するため、より大きな変形を吸収できるようになる。一方、ナノ構造層7の全体の熱抵抗や電気抵抗はn倍になるため、求められる変形吸収能力、熱抵抗、電気抵抗に応じて積層するナノ構造層7の数を選定することが望ましい。
 (実施の形態10)
 図26に示すように、本実施の形態の半導体装置は、回路基板としてのパッケージ基板263の表面に半導体チップ1をフリップチップ接続した構造を有しており、パッケージ基板263と半導体チップ1とを電気的に接続する複数のフリップチップ接続部のそれぞれは、ナノ構造層7を備えている。ナノ構造層7は、導電材料からなる複数の構造体が平面状に配置されたものである。
 半導体チップ1の表面(図では下面)には、複数のチップ側ランド261が設けられている。また、パッケージ基板263の上面において、チップ側ランド261と対向する領域には、複数の基板側ランド262が設けられている。そして、チップ側ランド261と基板側ランド262との間には、ナノ構造層7、プレート層6および接合層3が設けられている。さらに、複数のフリップチップ接続部の隙間には、フリップチップ接続部を封止するアンダーフィル樹脂264が充填されている。ナノ構造層7は、例えばスプリング形状を備えた複数のナノ構造体9を平面状に密に配置したものである。
 本実施の形態によれば、複数のフリップチップ接続部のそれぞれにナノ構造層7を備えたことにより、半導体チップ1とパッケージ基板263との熱変形差をナノ構造層7によって吸収することができるので、信頼性の高いフリップチップ型半導体装置を提供することができる。
 また、本実施の形態によれば、フリップチップ接続部を封止するアンダーフィル樹脂264に熱変形吸収機能を持たせる必要が無くなるので、アンダーフィル樹脂264の材料選択の幅が広まる。すなわち、アンダーフィル樹脂264の材料として、例えば封止時の充填性や耐衝撃性が高い材料などを選定することができるので、より信頼性の高いフリップチップ型半導体装置を提供することができる。さらに、ナノ構造層7に熱変形吸収機能を持たせたことにより、フリップチップ接続部の隙間にアンダーフィル樹脂264を充填しない選択も可能である。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明は、回路基板と、この回路基板に実装された半導体チップとを備えた半導体装置の熱応力の低減ならびに放熱性の向上に適用することができる。

Claims (16)

  1.  回路基板と、前記回路基板に実装された半導体チップとを備えた半導体装置であって、
     前記半導体チップと前記回路基板との間には、直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられていることを特徴とする半導体装置。
  2.  前記半導体チップと前記構造層との間には、前記複数の構造体のそれぞれの一端が接続された第1プレート層が設けられ、
     前記回路基板と前記構造層との間には、前記複数の構造体のそれぞれの他端が接続された第2プレート層が設けられていることを特徴とする請求項1記載の半導体装置。
  3.  前記複数の構造体のそれぞれは、スプリング形状を有することを特徴とする請求項1記載の半導体装置。
  4.  前記複数の構造体のそれぞれは、両端部の外形が中央部の外形よりも大きいことを特徴とする請求項3記載の半導体装置。
  5.  前記複数の構造体のそれぞれは、ジグザク形状を有することを特徴とする請求項1記載の半導体装置。
  6.  前記複数の構造体のそれぞれは、前記第1プレート層と前記第2プレート層とが対向する面に対して斜め方向に延在していることを特徴とする請求項2記載の半導体装置。
  7.  前記複数の構造体のそれぞれは、前記第1プレート層と前記第2プレート層とが対向する面に対して垂直方向に延在していることを特徴とする請求項2記載の半導体装置。
  8.  前記第1プレート層と前記第2プレート層との間に配置された1または複数の中間プレート層を介して前記構造層が多段積層されていることを特徴とする請求項2記載の半導体装置。
  9.  回路基板と、前記回路基板に実装された半導体チップとを備えた半導体装置であって、
     前記半導体チップは、その主面と反対側の裏面が前記回路基板の上面と対向した状態で前記回路基板の上面に実装され、
     前記半導体チップの前記主面には、前記半導体チップに形成された素子に電気的に接続された1または複数の端子が形成され、
     前記端子には、導電性の接合部材が電気的に接続され、
     前記端子と前記接合部材との間には、直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられていることを特徴とする半導体装置。
  10.  前記半導体チップの前記主面には、少なくともゲート端子を含む複数の端子が形成され、
     前記ゲート端子に電気的に接続された前記接合部材の高さは、前記ゲート端子の直径または一辺の長さよりも大きいことを特徴とする請求項9記載の半導体装置。
  11.  前記ゲート端子に電気的に接続された前記接合部材の高さが最大となる位置は、前記半導体チップの上部にあることを特徴とする請求項10記載の半導体装置。
  12.  ベース部材と、前記ベース部材上に搭載された回路基板と、前記回路基板に実装された半導体チップとを備えた半導体装置であって、
     前記ベース部材と前記回路基板との間には、絶縁材料からなり、かつ直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられていることを特徴とする半導体装置。
  13.  回路基板と、前記回路基板に実装された半導体チップとを備えた半導体装置であって、
     前記半導体チップは、複数のフリップチップ接続部を介して前記回路基板上にフリップチップ接続されており、
     前記複数のフリップチップ接続部のそれぞれは、導電材料からなり、かつ直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層を含むことを特徴とする半導体装置。
  14.  主面と、前記主面とは反対側の裏面とを有する半導体チップを備え、
     前記半導体チップの前記主面には、直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられていることを特徴とする半導体装置。
  15.  回路基板と、前記回路基板に実装された半導体チップとを備え、
     前記半導体チップと前記回路基板との間には、直径または一辺の長さが1μm未満の断面形状を有する複数の構造体が平面状に配置されてなる構造層が設けられた半導体装置の製造方法であって、
     前記半導体チップの表面に斜め方向から原子を照射して蒸着させることにより、前記複数の構造体を形成する工程を含むことを特徴とする半導体装置の製造方法。
  16.  前記複数の構造体を形成する際、前記半導体チップをその表面に垂直な軸に対して回転させることにより、前記複数の構造体のそれぞれをスプリング形状にすることを特徴とする請求項15記載の半導体装置の製造方法。
PCT/JP2011/075073 2011-10-31 2011-10-31 半導体装置およびその製造方法 WO2013065101A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/354,091 US20140252576A1 (en) 2011-10-31 2011-10-31 Semiconductor Device and Manufacturing Method Thereof
JP2013541494A JP5870113B2 (ja) 2011-10-31 2011-10-31 半導体装置
EP11875240.1A EP2775511B1 (en) 2011-10-31 2011-10-31 Semiconductor device
PCT/JP2011/075073 WO2013065101A1 (ja) 2011-10-31 2011-10-31 半導体装置およびその製造方法
TW101138060A TWI523166B (zh) 2011-10-31 2012-10-16 半導體裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075073 WO2013065101A1 (ja) 2011-10-31 2011-10-31 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013065101A1 true WO2013065101A1 (ja) 2013-05-10

Family

ID=48191497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075073 WO2013065101A1 (ja) 2011-10-31 2011-10-31 半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US20140252576A1 (ja)
EP (1) EP2775511B1 (ja)
JP (1) JP5870113B2 (ja)
TW (1) TWI523166B (ja)
WO (1) WO2013065101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012188A1 (ja) * 2013-07-24 2015-01-29 株式会社日立製作所 接合構造およびそれを用いた半導体装置
JP2016079486A (ja) * 2014-10-21 2016-05-16 株式会社日立製作所 ナノオーダ構造体の製造方法および製造装置、並びにナノオーダ構造体を有する基板構造体
JPWO2014109014A1 (ja) * 2013-01-09 2017-01-19 株式会社日立製作所 半導体装置およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211619A1 (de) * 2017-02-08 2018-08-09 Siemens Aktiengesellschaft Verfahren zur elektrischen Kontaktierung und Leistungsmodul
CN110637366B (zh) * 2017-09-29 2022-12-06 日立金属株式会社 半导体器件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188209A (ja) 2001-12-18 2003-07-04 Nec Corp 半導体装置とその製造方法
JP2003298012A (ja) 2002-01-30 2003-10-17 Nippon Hoso Kyokai <Nhk> 半導体装置およびその製造方法
WO2005086218A1 (ja) * 2004-03-02 2005-09-15 Fuji Electric Holdings Co., Ltd. 半導体モジュールの製造方法
JP2006287091A (ja) 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007531243A (ja) * 2003-07-07 2007-11-01 ゲルコアー リミテッド ライアビリティ カンパニー ナノチューブ領域を用いて熱ヒートシンク作用を補助する電子デバイス及びその製造方法
JP2010219397A (ja) * 2009-03-18 2010-09-30 Fujitsu Ltd 電子部品及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411513B1 (en) * 1999-12-10 2002-06-25 Jacques Normand Bedard Compliant thermal interface devices and method of making the devices
JP3280954B2 (ja) * 2000-06-02 2002-05-13 株式会社東芝 回路モジュール及び回路モジュールを搭載した電子機器
JP4136845B2 (ja) * 2002-08-30 2008-08-20 富士電機ホールディングス株式会社 半導体モジュールの製造方法
DE102004048529B4 (de) * 2003-10-23 2014-07-03 Schaeffler Technologies Gmbh & Co. Kg Elektronisches Gerät mit Halbleiterchip, der über eine Lötmittelschicht mit einem metallischen Leiterteil flächig verbunden ist
US7408780B2 (en) * 2005-06-14 2008-08-05 International Business Machines Corporation Compliant thermal interface structure utilizing spring elements with fins
US7532475B2 (en) * 2006-03-30 2009-05-12 International Business Machines Corporation Semiconductor chip assembly with flexible metal cantilevers
US20080224327A1 (en) * 2007-03-13 2008-09-18 Daewoong Suh Microelectronic substrate including bumping sites with nanostructures
WO2008129525A1 (en) * 2007-04-23 2008-10-30 University College Cork - National University Of Ireland, Cork A thermal interface material
US20130021669A1 (en) * 2011-07-21 2013-01-24 Raydex Technology, Inc. Spectrally Tunable Optical Filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188209A (ja) 2001-12-18 2003-07-04 Nec Corp 半導体装置とその製造方法
JP2003298012A (ja) 2002-01-30 2003-10-17 Nippon Hoso Kyokai <Nhk> 半導体装置およびその製造方法
JP2007531243A (ja) * 2003-07-07 2007-11-01 ゲルコアー リミテッド ライアビリティ カンパニー ナノチューブ領域を用いて熱ヒートシンク作用を補助する電子デバイス及びその製造方法
WO2005086218A1 (ja) * 2004-03-02 2005-09-15 Fuji Electric Holdings Co., Ltd. 半導体モジュールの製造方法
JP2006287091A (ja) 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2010219397A (ja) * 2009-03-18 2010-09-30 Fujitsu Ltd 電子部品及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Databook on fatigue strength of metallic materials", 1996, ELSEVIER SCIENCE, article "The society of materials science"
See also references of EP2775511A4
SUMIGAWA T.: "Disappearance of stress singularity at interface edge due to anostructured thin film", ENGINEERING FRACTURE MECHANICS, vol. 75, 2008, pages 3073 - 3083

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014109014A1 (ja) * 2013-01-09 2017-01-19 株式会社日立製作所 半導体装置およびその製造方法
WO2015012188A1 (ja) * 2013-07-24 2015-01-29 株式会社日立製作所 接合構造およびそれを用いた半導体装置
JP2015026634A (ja) * 2013-07-24 2015-02-05 株式会社日立製作所 接合構造およびそれを用いた半導体装置
TWI549244B (zh) * 2013-07-24 2016-09-11 日立製作所股份有限公司 接合構造及使用彼之半導體裝置
JP2016079486A (ja) * 2014-10-21 2016-05-16 株式会社日立製作所 ナノオーダ構造体の製造方法および製造装置、並びにナノオーダ構造体を有する基板構造体

Also Published As

Publication number Publication date
EP2775511B1 (en) 2020-12-09
EP2775511A4 (en) 2015-09-09
JP5870113B2 (ja) 2016-02-24
TW201334129A (zh) 2013-08-16
TWI523166B (zh) 2016-02-21
JPWO2013065101A1 (ja) 2015-04-02
US20140252576A1 (en) 2014-09-11
EP2775511A1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP4551255B2 (ja) 半導体装置
KR101489325B1 (ko) 플립-칩 방식의 적층형 파워 모듈 및 그 파워 모듈의제조방법
TWI493610B (zh) Manufacturing method of semiconductor device
JP5870113B2 (ja) 半導体装置
JP2009260303A (ja) 熱交換装置
JP2010245383A (ja) 半導体装置および半導体装置の製造方法
WO2014109014A1 (ja) 半導体装置およびその製造方法
US9536855B2 (en) Semiconductor device and method of fabricating same
JP6084367B2 (ja) 半導体装置
JP2017034152A (ja) 電力用半導体装置
JP2006245076A (ja) 半導体装置
JP2007266150A (ja) 熱伝導性接合材、半導体パッケージ、ヒートスプレッダ、半導体チップ、及び半導体チップとヒートスプレッダとを接合する接合方法
JP6422736B2 (ja) パワーモジュール
JP2010525553A (ja) 半導体装置のバンプ構造
JP6881304B2 (ja) 半導体装置及び半導体装置の製造方法
JP5919692B2 (ja) 半導体装置および半導体装置の製造方法
JP6406996B2 (ja) 半導体装置
JP2016129254A (ja) 半導体装置
JP5150578B2 (ja) 半導体装置及びその製造方法
JP4417974B2 (ja) 積層型半導体装置の製造方法
JP2013175585A (ja) 積層型半導体装置
JP2008135536A (ja) 半導体モジュールおよびその製造方法
JP2009218390A (ja) 半導体装置およびその製造方法
JP2005064467A (ja) インターポーザ及びこれを用いた半導体装置
JP5434306B2 (ja) 半導体装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14354091

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011875240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE