WO2013054883A1 - 研摩材スラリー及び研摩方法 - Google Patents
研摩材スラリー及び研摩方法 Download PDFInfo
- Publication number
- WO2013054883A1 WO2013054883A1 PCT/JP2012/076446 JP2012076446W WO2013054883A1 WO 2013054883 A1 WO2013054883 A1 WO 2013054883A1 JP 2012076446 W JP2012076446 W JP 2012076446W WO 2013054883 A1 WO2013054883 A1 WO 2013054883A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- abrasive slurry
- slurry
- manganese oxide
- abrasive
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 97
- 239000002002 slurry Substances 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 48
- 239000002245 particle Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 30
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 24
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 21
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 claims abstract description 16
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 15
- 150000002500 ions Chemical class 0.000 claims abstract description 7
- -1 manganate ions Chemical class 0.000 claims description 16
- 229910002601 GaN Inorganic materials 0.000 abstract description 14
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 abstract description 14
- 238000011156 evaluation Methods 0.000 description 17
- 239000000758 substrate Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000005259 measurement Methods 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(iii) oxide Chemical compound O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- CVMIVKAWUQZOBP-UHFFFAOYSA-L manganic acid Chemical compound O[Mn](O)(=O)=O CVMIVKAWUQZOBP-UHFFFAOYSA-L 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30625—With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
- B24B37/044—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02024—Mirror polishing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02527—Carbon, e.g. diamond-like carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Definitions
- the present invention relates to an abrasive slurry for polishing a high hardness material, and more particularly to a polishing technique capable of polishing a high hardness material such as silicon carbide or gallium nitride smoothly at high speed.
- power semiconductor elements called so-called power devices use silicon carbide, gallium nitride, diamond, etc. instead of silicon conventionally used as a substrate for the purpose of increasing the breakdown voltage and increasing the current. It has been proposed. Since these substrates made of silicon carbide or the like have a large band gap as compared with the silicon substrate, they can withstand higher voltages. The reason why the substrate made of silicon carbide, gallium nitride or the like has a high withstand voltage characteristic is considered to be derived from the fact that the atomic arrangement of atoms constituting silicon carbide or the like is denser than silicon.
- a substrate made of silicon carbide, gallium nitride or the like has a problem that it cannot be polished with a conventionally used polishing material because of its particularly high hardness.
- Silicon carbide or the like has a particularly high hardness because the atomic arrangement is dense as described above, and the hardness is Mohs hardness, which is about 9 for silicon carbide and gallium nitride and 10 for diamond. .
- materials having high hardness such as diamond and aluminum oxide have been used as polishing particles.
- polishing is performed using diamond or the like, only mechanical polishing proceeds, and defects and distortions are likely to occur in the substrate due to this, which may result in lack of device reliability. Such a tendency becomes more emphasized as the hardness of the substrate is higher.
- an oxidizing solution such as hydrogen peroxide, ozone or permanganic acid is added to abrasive particles such as silicon oxide or aluminum oxide as a polishing material for high hardness materials such as silicon carbide or gallium nitride.
- abrasive particles such as silicon oxide or aluminum oxide
- abrasive particles such as silicon oxide or aluminum oxide
- Patent Documents 1 to 3 Proposed products have been proposed. Further, by using a powder or liquid oxidizer together with chromium oxide, the polishing material (Patent Document 4) with enhanced polishing power, or by using abrasive particles of a specific shape, polishing power without adding an oxidizing solution. A polishing material having an improved surface area has also been proposed (Patent Document 5).
- Patent Documents 6, 7, and 8 Some materials that can be applied as abrasive particles or oxidizing agents have been proposed (Patent Documents 6, 7, and 8). Furthermore, for the polishing treatment of high hardness materials, there has been proposed a method in which manganese dioxide is disposed on the outermost layer by coating or the like on abrasive particles of silicon oxide or silicon carbide (Patent Document 9).
- the present invention is an abrasive slurry that can be polished smoothly at a high polishing speed and even with a high hardness material, and can be easily produced.
- the present invention provides an abrasive slurry that can be used.
- the present invention that solves the above problems is a high-hardness material comprising a slurry containing manganese oxide particles and manganate ions, the manganate ions in the slurry being 0.1% by mass or more, and a Mohs hardness of 8 or more
- the present invention relates to an abrasive slurry for polishing. Like the abrasive slurry of the present invention, when solid manganese oxide particles and manganate ions coexist in the slurry, they exhibit high polishing power even when polishing high hardness members such as silicon carbide and gallium nitride. To be.
- Mohs' hardness in the present invention refers to a standard of hardness expressed as an index of susceptibility to damage based on a standard material set in 10 levels from 1 to 10.
- the high hardness material having a Mohs hardness of 8 or more include silicon carbide, gallium nitride, diamond and the like.
- the abrasive slurry of the present invention exhibits a high polishing power because it is composed of metal element oxidizable particles capable of taking various oxidation numbers and the same metal element as that constituting the oxidizable particles.
- ions with higher oxidizing power coexist in the slurry, and the microscopic / chemistry of the material to be polished between the oxidizing particles and ions in the slurry by fluctuation of the oxidation number of the metal atoms. This is thought to be because the reversible reaction that transforms into a form that exhibits more suitable polishing characteristics for a specific surface state is promoted.
- the present inventors pay attention to manganese as a metal element causing this oxidation number fluctuation, and when using manganese oxide particles and manganate ions at the same time, it becomes an abrasive slurry that exhibits particularly high polishing power. And the present invention has been conceived.
- the manganese oxide particles include manganese oxide (II) MnO, dimanganese trioxide (III) Mn 2 O 3 , manganese dioxide (IV) MnO 2 , trimanganese tetroxide Mn 3 O 4 and the like.
- manganese dioxide having a high oxidizing power is suitable.
- the manganate ion MnO 4 ⁇ , MnO 4 2 ⁇ , MnO 4 3 ⁇ , MnO 4 6 ⁇ , and the like can be applied, and a permanganate ion (MnO 4 ⁇ ) having particularly high oxidation performance is used. Is preferred.
- the polishing slurry has a particularly high polishing power.
- the manganate ion in the abrasive slurry of the present invention is 0.1% by mass or more. Even if it becomes 5.0 mass% or more, the further improvement of the polishing force in the initial stage of use is not seen, but when it exceeds 3.0 mass%, the ability of continuous use of the slurry tends to decrease. Therefore, the manganate ion in the abrasive slurry of the present invention is preferably 0.1% by mass to 3.0% by mass.
- the content of manganate ions in the abrasive slurry can be measured by ion chromatography or absorptiometric analysis.
- the manganese oxide particles in the abrasive slurry is preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more.
- Such an abrasive slurry has a particularly high polishing power.
- it is preferably 35% by mass or less, and particularly preferably 10% by mass or less.
- the molar concentration ratio of manganate ions to manganese oxide in the abrasive slurry is preferably 0.01 or more, more preferably 0.2 or more.
- the molar concentration of manganese oxide is calculated as the molar concentration by converting the weight of each manganese oxide particle, which is an abrasive particle, into a substance amount using the corresponding molecular weight, and then dividing by the solvent weight. For the manganate ion, the calculation was performed in the same manner as the molar concentration of manganese oxide with respect to the manganate ion supply substance.
- the abrasive slurry is preferably neutral to alkaline, that is, pH 5.5 or higher, more preferably pH 7 or higher. More preferably, the pH is 5.5 to 10.5, and most preferably 7 to 10.
- Manganate ions contained in the abrasive slurry of the present invention are generally known to exhibit high oxidation performance in acidic solutions, whereas manganese oxide particles that coexist with manganate ions are dispersed in an acidic state. This is because the state tends to be difficult to maintain and tends to agglomerate, and the agglomerated particles may scratch the object to be polished. In addition, in the case of high alkalinity, manganate ions are rapidly reduced to manganese oxide, so that high oxidation performance cannot be exhibited.
- the abrasive slurry of the present invention is effective when polishing a high hardness material having a Mohs hardness of 8 or more. And even if it is a case where the abrasive slurry of this invention is used repeatedly, the grinding
- the abrasive slurry of the present invention is not subjected to the polishing action by decomposition of the oxidizing liquid as in the prior art, but the action by the equilibrium of manganese ions and manganate ions from the manganese oxide particles is continued and the polishing treatment is performed. There is a feature. For this reason, the polishing treatment with high surface accuracy can be maintained for a long time not only by using the abrasive slurry only once (flowing) as in the prior art but also by using it repeatedly (circulating).
- the abrasive slurry of the present invention is suitable for polishing a high hardness material having a Mohs hardness of 8 or more, for example, silicon carbide, gallium nitride, diamond, etc., and particularly suitable for polishing silicon carbide. .
- abrasive slurry of the present invention even hard hard-to-cut materials such as silicon carbide and gallium nitride can be smoothly polished at high speed.
- Correlation graph of manganate ion concentration and polishing rate The correlation graph of A / B value and polishing rate.
- Example 1 Preparation of abrasive slurry: Fine powder of electrolytic MnO 2 (Mitsui Metal Mining Co., Ltd.) (D 50 0.30 ⁇ m, specific surface area 48.7 m 2 / g, crystallite diameter 2.0 nm, type ⁇ -MnO 2 , In Examples 2 to 10 and Comparative Examples 1 and 2 shown, 20 g and 980 g of pure water are mixed, and 9.8 g of KMnO 4 (manufactured by Wako Pure Chemical Industries, Ltd.) is added and stirred. Then, an abrasive slurry was prepared.
- electrolytic MnO 2 Mitsubishi Metal Mining Co., Ltd.
- the average particle diameter D 50 is that a 50% diameter in cumulative powers divided among separate volume based on the laser diffraction scattering method particle size distribution.
- the average particle diameter D50 is measured by carrying out ultrasonic dispersion for 3 minutes in order to disperse the oxide particles before the measurement, and a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd .: LA -920).
- the crystallite diameter is a numerical value obtained by measurement by the Scherrer method.
- the specific surface area is a numerical value obtained by measurement by the BET method.
- Polishing test Polishing was performed by the following procedure using the above abrasive slurry.
- a polishing object a 2H or 3 inch diameter lapped 4H—SiC substrate was used. Polishing was performed on the Si surface of the substrate.
- As a polishing apparatus a single-side polishing machine BC-15 manufactured by MT Corporation was used. SUBA # 600 manufactured by Nitta Haas was used as the polishing pad attached to the surface plate.
- the rotation speed of the platen was set to 60 rpm, and the outer peripheral speed was set to 7163 cm / min.
- the carrier rotation speed was set to 60 rpm, and the outer peripheral speed was set to 961 cm / min.
- the load during polishing was 200 gf / cm 2 .
- the supply amount of the abrasive slurry liquid was 200 mL / min.
- the polishing time was 3 hours.
- Evaluation after polishing was performed as follows.
- the surface roughness Ra before and after polishing (JIS B0601) is measured by measuring the surface of the substrate with an atomic force microscope “Dimention 3100” (manufactured by Digital Instruments) and analyzing the measurement results using the software “Nanoscope 5V” of the company. I asked for it.
- the polishing rate (nm / min) was calculated from the difference in mass of the substrate before and after polishing and the density of SiC (3.10 g / cm 3 ).
- the evaluation results are shown in Table 1.
- Example 2 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 29.4 g. The evaluation results are shown in Table 1.
- Example 3 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 58.8 g. The evaluation results are shown in Table 1.
- Example 4 40 g of fine powder of electrolytic MnO 2 and 960 g of pure water were mixed, and 9.6 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 5 The same operation as in Example 4 was performed, except that the amount of KMnO 4 added was 28.8 g. The results are shown in Table 1.
- Example 6 The same operation as in Example 4 was performed except that the amount of KMnO 4 added was 57.6 g. The results are shown in Table 1.
- Example 7 100 g of fine powder of electrolytic MnO 2 and 900 g of pure water were mixed, and 9.0 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 8 The same operation as in Example 7 was performed, except that the amount of KMnO 4 added was 27.0 g. The results are shown in Table 1.
- Example 9 The same operation as in Example 7 was performed except that the amount of KMnO 4 added was changed to 54.0 g. The results are shown in Table 1.
- Example 10 The same operation as in Example 7 was performed except that 180 g of NaMnO 4 was added instead of KMnO 4 . The results are shown in Table 1.
- Example 11 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 4.9 g. The results are shown in Table 1.
- Example 12 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 7.35 g. The results are shown in Table 1.
- Example 13 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 9.8 g. The results are shown in Table 1.
- Example 14 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was changed to 14.7 g. The results are shown in Table 1.
- Example 15 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 19.6 g. The results are shown in Table 1.
- Example 16 200 g of fine powder of electrolytic MnO 2 and 800 g of pure water were mixed, and 4.0 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 17 In Example 17, ⁇ obtained by pickling lithium manganate (LiMn 2 O 4 ) (manufactured by Mitsui Kinzoku Mining Co., Ltd.) in an HNO 3 solution having a concentration of 0.1 N at 95 ° C. for 120 minutes. Fine particles of MnO 2 (D 50 0.72 ⁇ m, specific surface area 16.0 m 2 / g, crystallite diameter 70 nm) were used as abrasive particles. 20 g of this ⁇ -MnO 2 and 980 g of pure water were mixed, and 29.4 g of KMnO 4 (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred to prepare an abrasive slurry. Polishing evaluation similar to Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 18 Mn 2 O 3 (D 50 1.77 ⁇ m, specific surface area 4.0 m 2 / g, crystal, produced by baking the same electrolytic MnO 2 fine powder as in Example 1 at 800 ° C. The particle diameter was 9.7 nm). 20 g of this Mn 2 O 3 fine particle powder and 980 g of pure water were mixed, and 29.4 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 19 In Example 19, 20 g of fine powder (D 50 1.04 ⁇ m, specific surface area 4.9 m 2 / g, crystallite diameter 9.6 nm) of Mn 3 O 4 (Mitsui Metal Mining Co., Ltd.) and 980 g of pure water were mixed. Then, 29.4 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 2 An abrasive slurry was prepared by mixing 150 g of fine powder of electrolytic MnO 2 and 850 g of pure water. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 3 An abrasive slurry was prepared by mixing 100 g of colloidal silica fine powder and 900 g of pure water. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
- Example 5 The same operation as in Example 16 was performed except that the amount of KMnO 4 added was changed to 0.8 g. The results are shown in Table 1.
- the A value is the manganate ion concentration determined by the calculation method described in paragraph 0012 above, and the B value is the molar concentration of the manganese oxide particles. From the results in Table 1, when the 4H-SiC substrate was polished using the polishing slurry of the example containing manganese oxide particles and manganate ions, the polishing was compared with the polishing particles of colloidal silica of Comparative Examples 3 and 4. It was found that the rate was very high and high surface accuracy could be realized.
- FIG. 1 shows a graph showing the correlation between the manganate ion concentration and the polishing rate
- FIG. 2 shows a graph showing the correlation between the A / B value and the polishing rate.
- the mark ⁇ is the result of Comparative Example 5
- the mark ⁇ is the result of Examples 1-16.
- the manganate ion concentration is 0.1% by mass or more in order to make the polishing rate 2 nm / min or more, and manganic acid to make the polishing rate 6 nm / min or more. It was found that an ion concentration of 0.3% by mass or more is necessary.
- the polishing rate is as high as 2 nm / min or more, and when the polishing rate is 8 nm / min or more, the A / B value is 0. It was found that it was necessary to be 2 or more. Further, even if the A / B value exceeded 4.0, no further improvement in the polishing rate was observed. In Examples 17 and 18 and 19 with different abrasive particles, the behavior of the polishing rate according to the manganate ion concentration and the A / B value was the same.
- Example 1 The evaluated abrasive slurries are Example 1, Example 3, Example 12, and Comparative Example 4.
- each substrate was continuously polished for 2 hours using 5 or 10 lapped 4H-SiC substrates having a diameter of 2 inches using 1 kg of each abrasive slurry (total 10 hours). Or polishing for 20 hours).
- the polishing conditions are the same as the polishing evaluation in Example 1 above.
- the abrasive slurry was circulated at 200 mL / min. Table 2 shows the results.
- the polishing rate tended to decrease with time. From this, it was found that the manganate ion concentration is particularly preferably 4.0% by mass or less when used for a long time. Further, it was found that the A / B value is particularly preferably 1.5 or less.
- high-hardness difficult-to-cut materials such as silicon carbide and gallium nitride can be smoothly polished at high speed, and continuous polishing can be performed, so that efficient polishing of high-hardness difficult-to-cut materials is realized. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
研摩材スラリーの作製:電解MnO2(三井金属鉱業社製)の微粒粉末(D50 0.30μm、比表面積48.7m2/g、結晶子径2.0nm、種類γ-MnO2、以下に示す実施例2~10、比較例1及び2についても同じ微粒粉末を研摩粒子として使用)20gと純水980gを混合し、これにKMnO4(和光純薬社製)9.8gを加えて撹拌し、研摩材スラリーを作製した。尚、平均粒径D50はレーザー回折・散乱法粒子径分布における体積基準の積算分立における50%径のことである。この平均粒径D50の測定は、測定前に酸化物粒子の分散を行うために超音波分散処理を3分間実施し、レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA-920)を使用して測定した。また、結晶子径は、シェラー法による測定により得た数値である。また、比表面積はBET法による測定により得た数値である。
KMnO4の添加量を29.4gとした以外は、実施例1と同様の操作を行った。評価結果を表1に示す。
KMnO4の添加量を58.8gとした以外は実施例1と同様の操作を行った。評価結果を表1に示す。
電解MnO2の微粒粉末40gと純水960gを混合し、これにKMnO4 9.6gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
KMnO4の添加量を28.8gとした以外は実施例4と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を57.6gとした以外は実施例4と同様の操作を行った。結果を表1に示す。
電解MnO2の微粒粉末100gと純水900gを混合し、これにKMnO4 9.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
KMnO4の添加量を27.0gとした以外は実施例7と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を54.0gとした以外は実施例7と同様の操作を行った。結果を表1に示す。
KMnO4の代わりに、NaMnO4を180g添加した以外は実施例7と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を4.9gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を7.35gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を9.8gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を14.7gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
KMnO4の添加量を19.6gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
電解MnO2の微粒粉末200gと純水800gを混合し、これにKMnO4 4.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
この実施例17では、マンガン酸リチウム(LiMn2O4)(三井金属鉱業社製)を濃度0.1NのHNO3溶液中にて、95℃、120分間酸洗することで得た、λ-MnO2の微粒粉末(D50 0.72μm、比表面積16.0m2/g、結晶子径 70 nm)を研摩粒子とした。このλ-MnO220gと純水980gを混合し、これにKMnO4(和光純薬社製)29.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用い、実施例1と同様の研摩評価を行った。結果を表1に示す。
この実施例18では、実施例1と同じ電解MnO2の微粒粉末を800℃にて焼成処理して生成されたMn2O3(D50 1.77μm、比表面積4.0m2/g、結晶子径9.7nm)を研摩粒子とした。このMn2O3微粒粉末20gと純水980gを混合し、これにKMnO429.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
この実施例19では、Mn3O4(三井金属鉱業社製)の微粒粉末(D50 1.04μm、比表面積4.9m2/g、結晶子径9.6nm)20gと純水980gを混合し、これにKMnO429.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
電解MnO2の微粒粉末40gと純水960gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
電解MnO2の微粒粉末150gと純水850gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
コロイダルシリカの微粒粉末100gと純水900gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
コロイダルシリカの微粒粉末100gと純水900gを混合し、これにKMnO4 9.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
KMnO4の添加量を0.8gとした以外は実施例16と同様の操作を行った。結果を表1に示す。
Claims (11)
- 酸化マンガン粒子とマンガン酸イオンとを含有したスラリーからなり、スラリー中のマンガン酸イオンが0.1質量%以上であり、モース硬度で硬度8以上の高硬度材料を研摩するための研摩材スラリー。
- スラリー中の酸化マンガン粒子が1.0質量%以上である請求項1記載の研摩材スラリー。
- 酸化マンガンが二酸化マンガンである請求項1または請求項2に記載の研摩材スラリー。
- マンガン酸イオンが過マンガン酸イオンである請求項1~3のいずれか記載の研摩材スラリー。
- 高硬度材料が炭化ケイ素である請求項1~4のいずれか記載の研摩材スラリー。
- スラリーのpHが5.5以上である請求項1~5のいずれか記載の研摩材スラリー。
- スラリー中のマンガン酸イオンは0.1質量%以上4.0質量%以下である請求項1~6のいずれか記載の研摩材スラリー。
- 酸化マンガンに対するマンガン酸イオンのモル濃度比が0.01以上1.5以下である請求項1~7のいずれか記載の研摩材スラリー。
- 酸化マンガンに対するマンガン酸イオンのモル濃度比が0.2以上1.5以下である請求項1~8のいずれか記載の研摩材スラリー。
- 請求項1~請求項9いずれかに記載の研摩材スラリーを用いて、モース硬度で硬度8以上の高硬度材料を研摩する研摩方法。
- 研摩材スラリーを繰り返し使用して研摩する請求項10記載の研摩方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12839614.0A EP2767568B1 (en) | 2011-10-13 | 2012-10-12 | Polishing slurry, and polishing method |
US14/347,637 US9318339B2 (en) | 2011-10-13 | 2012-10-12 | Polishing slurry and polishing method |
CN201280050088.7A CN103890127B (zh) | 2011-10-13 | 2012-10-12 | 研磨剂浆料及研磨方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-225625 | 2011-10-13 | ||
JP2011225625 | 2011-10-13 | ||
JP2012018931 | 2012-01-31 | ||
JP2012-018931 | 2012-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054883A1 true WO2013054883A1 (ja) | 2013-04-18 |
Family
ID=48081929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076446 WO2013054883A1 (ja) | 2011-10-13 | 2012-10-12 | 研摩材スラリー及び研摩方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9318339B2 (ja) |
EP (1) | EP2767568B1 (ja) |
JP (2) | JPWO2013054883A1 (ja) |
CN (1) | CN103890127B (ja) |
WO (1) | WO2013054883A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161591A1 (ja) * | 2012-04-27 | 2013-10-31 | 三井金属鉱業株式会社 | SiC単結晶基板 |
WO2017138308A1 (ja) * | 2016-02-09 | 2017-08-17 | 三井金属鉱業株式会社 | 研摩スラリー及び研摩材 |
JP6280678B1 (ja) * | 2016-12-22 | 2018-02-14 | 三井金属鉱業株式会社 | 研摩液及び研摩方法 |
WO2018116521A1 (ja) * | 2016-12-22 | 2018-06-28 | 三井金属鉱業株式会社 | 研摩液及び研摩方法 |
JP2020527851A (ja) * | 2017-07-10 | 2020-09-10 | シンマット, インコーポレーテッドSinmat, Inc. | 硬質研磨粒子を用いない硬質材料研磨 |
WO2023054386A1 (ja) * | 2021-09-30 | 2023-04-06 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
WO2023054385A1 (ja) * | 2021-09-30 | 2023-04-06 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
WO2024004750A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | 研磨材スラリー及びその研磨方法 |
WO2024004752A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | SiC基板の製造方法、及びSiC基板研磨用研磨材スラリー |
WO2024004751A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | 研磨材スラリー及びその研磨方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016072371A1 (ja) * | 2014-11-07 | 2016-05-12 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
JP6611485B2 (ja) | 2014-11-07 | 2019-11-27 | 株式会社フジミインコーポレーテッド | 研磨方法およびポリシング用組成物 |
JP6301571B1 (ja) * | 2016-06-08 | 2018-03-28 | 三井金属鉱業株式会社 | 研摩液及び研摩物の製造方法 |
KR20210144694A (ko) | 2019-03-27 | 2021-11-30 | 에이지씨 가부시키가이샤 | 산화갈륨 기판의 제조 방법 및 산화갈륨 기판용의 연마 슬러리 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000160138A (ja) | 1998-12-01 | 2000-06-13 | Fujimi Inc | 研磨用組成物 |
JP2001205555A (ja) | 1999-11-16 | 2001-07-31 | Denso Corp | メカノケミカル研磨方法及びメカノケミカル研磨装置 |
JP2002526594A (ja) | 1998-09-24 | 2002-08-20 | アライドシグナル・インコーポレイテッド | 低誘電率材料のための酸化性研磨スラリー |
JP2008068390A (ja) * | 2006-09-15 | 2008-03-27 | Noritake Co Ltd | 結晶材料の研磨加工方法 |
JP2009238891A (ja) | 2008-03-26 | 2009-10-15 | Hitachi Metals Ltd | SiC単結晶基板の製造方法 |
JP2010182782A (ja) | 2009-02-04 | 2010-08-19 | Hitachi Metals Ltd | 炭化珪素単結晶基板およびその製造方法 |
US20100258528A1 (en) | 2009-04-13 | 2010-10-14 | Sinmat, Inc. | Chemical mechanical polishing of silicon carbide comprising surfaces |
JP2011513991A (ja) | 2008-03-05 | 2011-04-28 | キャボット マイクロエレクトロニクス コーポレイション | 水溶性酸化剤を用いた炭化ケイ素の研磨方法 |
JP2011122102A (ja) * | 2009-12-11 | 2011-06-23 | Kyushu Univ | 炭化珪素の研磨液及びその研磨方法 |
JP2011121153A (ja) | 2009-12-11 | 2011-06-23 | Mitsui Mining & Smelting Co Ltd | 研摩材 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6332831B1 (en) * | 2000-04-06 | 2001-12-25 | Fujimi America Inc. | Polishing composition and method for producing a memory hard disk |
DE60131080T2 (de) * | 2000-05-31 | 2008-07-31 | Jsr Corp. | Schleifmaterial |
US20030119316A1 (en) * | 2001-12-21 | 2003-06-26 | Micron Technology, Inc. | Methods for planarization of group VIII metal-containing surfaces using oxidizing agents |
US6884723B2 (en) * | 2001-12-21 | 2005-04-26 | Micron Technology, Inc. | Methods for planarization of group VIII metal-containing surfaces using complexing agents |
JP4187497B2 (ja) * | 2002-01-25 | 2008-11-26 | Jsr株式会社 | 半導体基板の化学機械研磨方法 |
US6918820B2 (en) * | 2003-04-11 | 2005-07-19 | Eastman Kodak Company | Polishing compositions comprising polymeric cores having inorganic surface particles and method of use |
JP4792802B2 (ja) * | 2005-04-26 | 2011-10-12 | 住友電気工業株式会社 | Iii族窒化物結晶の表面処理方法 |
JP2007088379A (ja) * | 2005-09-26 | 2007-04-05 | Fujifilm Corp | 水系研磨液、及び、化学機械的研磨方法 |
KR20070088245A (ko) * | 2006-02-24 | 2007-08-29 | 후지필름 가부시키가이샤 | 금속용 연마액 |
JP2008192930A (ja) * | 2007-02-06 | 2008-08-21 | Fujifilm Corp | 金属研磨用組成物及びそれを用いた化学的機械的研磨方法 |
JP5317436B2 (ja) * | 2007-06-26 | 2013-10-16 | 富士フイルム株式会社 | 金属用研磨液及びそれを用いた研磨方法 |
JP2009081200A (ja) * | 2007-09-25 | 2009-04-16 | Fujifilm Corp | 研磨液 |
JP2009272380A (ja) * | 2008-05-01 | 2009-11-19 | Sumitomo Electric Ind Ltd | Iii族窒化物結晶およびその表面処理方法、iii族窒化物積層体およびその製造方法、ならびにiii族窒化物半導体デバイスおよびその製造方法 |
CN101608098B (zh) * | 2008-06-20 | 2013-06-12 | 安集微电子(上海)有限公司 | 一种用于金属化学机械抛光的抛光浆料及其用途 |
CN101684393B (zh) * | 2008-09-26 | 2014-02-26 | 安集微电子(上海)有限公司 | 一种化学机械抛光浆料 |
JP4333820B1 (ja) * | 2009-01-19 | 2009-09-16 | 住友電気工業株式会社 | 化合物半導体基板 |
JP5909845B2 (ja) * | 2009-08-24 | 2016-04-27 | 東ソー株式会社 | 電解二酸化マンガン及びその製造方法並びにその用途 |
US8828874B2 (en) * | 2011-03-28 | 2014-09-09 | Sinmat, Inc. | Chemical mechanical polishing of group III-nitride surfaces |
-
2012
- 2012-10-12 JP JP2013538588A patent/JPWO2013054883A1/ja active Pending
- 2012-10-12 CN CN201280050088.7A patent/CN103890127B/zh active Active
- 2012-10-12 US US14/347,637 patent/US9318339B2/en active Active
- 2012-10-12 EP EP12839614.0A patent/EP2767568B1/en active Active
- 2012-10-12 WO PCT/JP2012/076446 patent/WO2013054883A1/ja active Application Filing
-
2016
- 2016-11-22 JP JP2016226583A patent/JP6348560B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002526594A (ja) | 1998-09-24 | 2002-08-20 | アライドシグナル・インコーポレイテッド | 低誘電率材料のための酸化性研磨スラリー |
JP2000160138A (ja) | 1998-12-01 | 2000-06-13 | Fujimi Inc | 研磨用組成物 |
JP2001205555A (ja) | 1999-11-16 | 2001-07-31 | Denso Corp | メカノケミカル研磨方法及びメカノケミカル研磨装置 |
JP2008068390A (ja) * | 2006-09-15 | 2008-03-27 | Noritake Co Ltd | 結晶材料の研磨加工方法 |
JP2011513991A (ja) | 2008-03-05 | 2011-04-28 | キャボット マイクロエレクトロニクス コーポレイション | 水溶性酸化剤を用いた炭化ケイ素の研磨方法 |
JP2009238891A (ja) | 2008-03-26 | 2009-10-15 | Hitachi Metals Ltd | SiC単結晶基板の製造方法 |
JP2010182782A (ja) | 2009-02-04 | 2010-08-19 | Hitachi Metals Ltd | 炭化珪素単結晶基板およびその製造方法 |
US20100258528A1 (en) | 2009-04-13 | 2010-10-14 | Sinmat, Inc. | Chemical mechanical polishing of silicon carbide comprising surfaces |
WO2010120784A1 (en) | 2009-04-13 | 2010-10-21 | Sinmat, Inc. | Chemical mechanical polishing of silicon carbide comprising surfaces |
JP2011122102A (ja) * | 2009-12-11 | 2011-06-23 | Kyushu Univ | 炭化珪素の研磨液及びその研磨方法 |
JP2011121153A (ja) | 2009-12-11 | 2011-06-23 | Mitsui Mining & Smelting Co Ltd | 研摩材 |
Non-Patent Citations (3)
Title |
---|
See also references of EP2767568A4 |
TADASHI HASEGAWA ET AL.: "Application of manganese slurry to CMP process of SiC substrate", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS KYUSHU SHIBU KOEN RONBUNSHU (KYUSHU SHIBU DAI 63 KI SOKAI KOENKAI), 2010, pages 95 - 96, XP008173554 * |
TADASHI HASEGAWA ET AL.: "Sanka Manganese-kei Slurry o Mochiita SiC Tankessho Kiban no Seimitsu Kako", 2011 NENDO SEIMITSU KOGAKUKAI SHUNKI TAIKAI GAKUJUTSU KOENKAI KOEN RONBUNSHU, 1 September 2011 (2011-09-01), pages E33, XP008173555 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9391148B2 (en) | 2012-04-27 | 2016-07-12 | Mitsui Mining & Smelting Co., Ltd. | SiC single crystal substrate |
WO2013161591A1 (ja) * | 2012-04-27 | 2013-10-31 | 三井金属鉱業株式会社 | SiC単結晶基板 |
US11015086B2 (en) | 2016-02-09 | 2021-05-25 | Mitsui Mining & Smelting Co., Ltd. | Polishing slurry and polishing material |
WO2017138308A1 (ja) * | 2016-02-09 | 2017-08-17 | 三井金属鉱業株式会社 | 研摩スラリー及び研摩材 |
JP6280678B1 (ja) * | 2016-12-22 | 2018-02-14 | 三井金属鉱業株式会社 | 研摩液及び研摩方法 |
WO2018116521A1 (ja) * | 2016-12-22 | 2018-06-28 | 三井金属鉱業株式会社 | 研摩液及び研摩方法 |
US11339309B2 (en) | 2016-12-22 | 2022-05-24 | Mitsui Mining & Smelting Co., Ltd. | Polishing liquid and polishing method |
JP2020527851A (ja) * | 2017-07-10 | 2020-09-10 | シンマット, インコーポレーテッドSinmat, Inc. | 硬質研磨粒子を用いない硬質材料研磨 |
JP7254722B2 (ja) | 2017-07-10 | 2023-04-10 | インテグリス・インコーポレーテッド | 硬質研磨粒子を用いない硬質材料研磨 |
WO2023054386A1 (ja) * | 2021-09-30 | 2023-04-06 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
WO2023054385A1 (ja) * | 2021-09-30 | 2023-04-06 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
WO2024004750A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | 研磨材スラリー及びその研磨方法 |
WO2024004752A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | SiC基板の製造方法、及びSiC基板研磨用研磨材スラリー |
WO2024004751A1 (ja) * | 2022-06-27 | 2024-01-04 | 三井金属鉱業株式会社 | 研磨材スラリー及びその研磨方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2767568B1 (en) | 2018-12-05 |
US20140242750A1 (en) | 2014-08-28 |
CN103890127B (zh) | 2015-09-09 |
JPWO2013054883A1 (ja) | 2015-03-30 |
US9318339B2 (en) | 2016-04-19 |
EP2767568A1 (en) | 2014-08-20 |
JP2017071787A (ja) | 2017-04-13 |
EP2767568A4 (en) | 2015-10-07 |
JP6348560B2 (ja) | 2018-06-27 |
CN103890127A (zh) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6348560B2 (ja) | 研摩材スラリー及び研摩方法 | |
TWI829662B (zh) | 研磨用組成物及研磨方法 | |
JP6694674B2 (ja) | 研磨方法およびポリシング用組成物 | |
JP6846339B2 (ja) | 軟質コア複合粒子による硬質基板の研磨 | |
TWI721144B (zh) | 研磨用組成物 | |
US20100307068A1 (en) | Dispersion comprising cerium oxide and colloidal silicon dioxide | |
EP2121860B1 (en) | Dispersion comprising cerium oxide and colloidal silicon dioxide | |
WO2008145482A1 (en) | Dispersion comprising cerium oxide, silicon dioxide and amino acid | |
JPWO2016158328A1 (ja) | 研摩材および研摩スラリー | |
JP2000160138A (ja) | 研磨用組成物 | |
Chen et al. | The effect of surface polarity on the CMP behavior of 6H-SiC substrates | |
TW201739893A (zh) | 研磨用組成物 | |
CN114410226A (zh) | 一种抛光液及其制备方法和应用 | |
WO2013161591A1 (ja) | SiC単結晶基板 | |
TW201504412A (zh) | 化學機械拋光(cmp)組成物 | |
Zhang et al. | Synthesis of Al2O3@ MnO2 composite abrasives and their chemical mechanical polishing performance on silicon carbide (SiC) | |
Cui et al. | Unveiling the synergistic interaction: Investigating the enhanced mechanism of 4H–SiC chemical mechanical polishing with the addition of sodium silicate and manganese dioxide | |
TW201942320A (zh) | 研磨用組合物 | |
TW201219518A (en) | A chemical mechanical polishing (CMP) composition comprising a specific heteropolyacid | |
WO2013179926A1 (ja) | 研摩材スラリー | |
JP4159679B2 (ja) | 研磨用組成物 | |
CN117120564A (zh) | 用于化学机械平坦化(cmp)的悬浮液和使用所述悬浮液的方法 | |
JP2013163228A (ja) | 研摩材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12839614 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538588 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012839614 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14347637 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |