WO2013054883A1 - 研摩材スラリー及び研摩方法 - Google Patents

研摩材スラリー及び研摩方法 Download PDF

Info

Publication number
WO2013054883A1
WO2013054883A1 PCT/JP2012/076446 JP2012076446W WO2013054883A1 WO 2013054883 A1 WO2013054883 A1 WO 2013054883A1 JP 2012076446 W JP2012076446 W JP 2012076446W WO 2013054883 A1 WO2013054883 A1 WO 2013054883A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive slurry
slurry
manganese oxide
abrasive
Prior art date
Application number
PCT/JP2012/076446
Other languages
English (en)
French (fr)
Inventor
龍一 佐藤
陽兵 丸山
小池 淳
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP12839614.0A priority Critical patent/EP2767568B1/en
Priority to US14/347,637 priority patent/US9318339B2/en
Priority to CN201280050088.7A priority patent/CN103890127B/zh
Publication of WO2013054883A1 publication Critical patent/WO2013054883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to an abrasive slurry for polishing a high hardness material, and more particularly to a polishing technique capable of polishing a high hardness material such as silicon carbide or gallium nitride smoothly at high speed.
  • power semiconductor elements called so-called power devices use silicon carbide, gallium nitride, diamond, etc. instead of silicon conventionally used as a substrate for the purpose of increasing the breakdown voltage and increasing the current. It has been proposed. Since these substrates made of silicon carbide or the like have a large band gap as compared with the silicon substrate, they can withstand higher voltages. The reason why the substrate made of silicon carbide, gallium nitride or the like has a high withstand voltage characteristic is considered to be derived from the fact that the atomic arrangement of atoms constituting silicon carbide or the like is denser than silicon.
  • a substrate made of silicon carbide, gallium nitride or the like has a problem that it cannot be polished with a conventionally used polishing material because of its particularly high hardness.
  • Silicon carbide or the like has a particularly high hardness because the atomic arrangement is dense as described above, and the hardness is Mohs hardness, which is about 9 for silicon carbide and gallium nitride and 10 for diamond. .
  • materials having high hardness such as diamond and aluminum oxide have been used as polishing particles.
  • polishing is performed using diamond or the like, only mechanical polishing proceeds, and defects and distortions are likely to occur in the substrate due to this, which may result in lack of device reliability. Such a tendency becomes more emphasized as the hardness of the substrate is higher.
  • an oxidizing solution such as hydrogen peroxide, ozone or permanganic acid is added to abrasive particles such as silicon oxide or aluminum oxide as a polishing material for high hardness materials such as silicon carbide or gallium nitride.
  • abrasive particles such as silicon oxide or aluminum oxide
  • abrasive particles such as silicon oxide or aluminum oxide
  • Patent Documents 1 to 3 Proposed products have been proposed. Further, by using a powder or liquid oxidizer together with chromium oxide, the polishing material (Patent Document 4) with enhanced polishing power, or by using abrasive particles of a specific shape, polishing power without adding an oxidizing solution. A polishing material having an improved surface area has also been proposed (Patent Document 5).
  • Patent Documents 6, 7, and 8 Some materials that can be applied as abrasive particles or oxidizing agents have been proposed (Patent Documents 6, 7, and 8). Furthermore, for the polishing treatment of high hardness materials, there has been proposed a method in which manganese dioxide is disposed on the outermost layer by coating or the like on abrasive particles of silicon oxide or silicon carbide (Patent Document 9).
  • the present invention is an abrasive slurry that can be polished smoothly at a high polishing speed and even with a high hardness material, and can be easily produced.
  • the present invention provides an abrasive slurry that can be used.
  • the present invention that solves the above problems is a high-hardness material comprising a slurry containing manganese oxide particles and manganate ions, the manganate ions in the slurry being 0.1% by mass or more, and a Mohs hardness of 8 or more
  • the present invention relates to an abrasive slurry for polishing. Like the abrasive slurry of the present invention, when solid manganese oxide particles and manganate ions coexist in the slurry, they exhibit high polishing power even when polishing high hardness members such as silicon carbide and gallium nitride. To be.
  • Mohs' hardness in the present invention refers to a standard of hardness expressed as an index of susceptibility to damage based on a standard material set in 10 levels from 1 to 10.
  • the high hardness material having a Mohs hardness of 8 or more include silicon carbide, gallium nitride, diamond and the like.
  • the abrasive slurry of the present invention exhibits a high polishing power because it is composed of metal element oxidizable particles capable of taking various oxidation numbers and the same metal element as that constituting the oxidizable particles.
  • ions with higher oxidizing power coexist in the slurry, and the microscopic / chemistry of the material to be polished between the oxidizing particles and ions in the slurry by fluctuation of the oxidation number of the metal atoms. This is thought to be because the reversible reaction that transforms into a form that exhibits more suitable polishing characteristics for a specific surface state is promoted.
  • the present inventors pay attention to manganese as a metal element causing this oxidation number fluctuation, and when using manganese oxide particles and manganate ions at the same time, it becomes an abrasive slurry that exhibits particularly high polishing power. And the present invention has been conceived.
  • the manganese oxide particles include manganese oxide (II) MnO, dimanganese trioxide (III) Mn 2 O 3 , manganese dioxide (IV) MnO 2 , trimanganese tetroxide Mn 3 O 4 and the like.
  • manganese dioxide having a high oxidizing power is suitable.
  • the manganate ion MnO 4 ⁇ , MnO 4 2 ⁇ , MnO 4 3 ⁇ , MnO 4 6 ⁇ , and the like can be applied, and a permanganate ion (MnO 4 ⁇ ) having particularly high oxidation performance is used. Is preferred.
  • the polishing slurry has a particularly high polishing power.
  • the manganate ion in the abrasive slurry of the present invention is 0.1% by mass or more. Even if it becomes 5.0 mass% or more, the further improvement of the polishing force in the initial stage of use is not seen, but when it exceeds 3.0 mass%, the ability of continuous use of the slurry tends to decrease. Therefore, the manganate ion in the abrasive slurry of the present invention is preferably 0.1% by mass to 3.0% by mass.
  • the content of manganate ions in the abrasive slurry can be measured by ion chromatography or absorptiometric analysis.
  • the manganese oxide particles in the abrasive slurry is preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more.
  • Such an abrasive slurry has a particularly high polishing power.
  • it is preferably 35% by mass or less, and particularly preferably 10% by mass or less.
  • the molar concentration ratio of manganate ions to manganese oxide in the abrasive slurry is preferably 0.01 or more, more preferably 0.2 or more.
  • the molar concentration of manganese oxide is calculated as the molar concentration by converting the weight of each manganese oxide particle, which is an abrasive particle, into a substance amount using the corresponding molecular weight, and then dividing by the solvent weight. For the manganate ion, the calculation was performed in the same manner as the molar concentration of manganese oxide with respect to the manganate ion supply substance.
  • the abrasive slurry is preferably neutral to alkaline, that is, pH 5.5 or higher, more preferably pH 7 or higher. More preferably, the pH is 5.5 to 10.5, and most preferably 7 to 10.
  • Manganate ions contained in the abrasive slurry of the present invention are generally known to exhibit high oxidation performance in acidic solutions, whereas manganese oxide particles that coexist with manganate ions are dispersed in an acidic state. This is because the state tends to be difficult to maintain and tends to agglomerate, and the agglomerated particles may scratch the object to be polished. In addition, in the case of high alkalinity, manganate ions are rapidly reduced to manganese oxide, so that high oxidation performance cannot be exhibited.
  • the abrasive slurry of the present invention is effective when polishing a high hardness material having a Mohs hardness of 8 or more. And even if it is a case where the abrasive slurry of this invention is used repeatedly, the grinding
  • the abrasive slurry of the present invention is not subjected to the polishing action by decomposition of the oxidizing liquid as in the prior art, but the action by the equilibrium of manganese ions and manganate ions from the manganese oxide particles is continued and the polishing treatment is performed. There is a feature. For this reason, the polishing treatment with high surface accuracy can be maintained for a long time not only by using the abrasive slurry only once (flowing) as in the prior art but also by using it repeatedly (circulating).
  • the abrasive slurry of the present invention is suitable for polishing a high hardness material having a Mohs hardness of 8 or more, for example, silicon carbide, gallium nitride, diamond, etc., and particularly suitable for polishing silicon carbide. .
  • abrasive slurry of the present invention even hard hard-to-cut materials such as silicon carbide and gallium nitride can be smoothly polished at high speed.
  • Correlation graph of manganate ion concentration and polishing rate The correlation graph of A / B value and polishing rate.
  • Example 1 Preparation of abrasive slurry: Fine powder of electrolytic MnO 2 (Mitsui Metal Mining Co., Ltd.) (D 50 0.30 ⁇ m, specific surface area 48.7 m 2 / g, crystallite diameter 2.0 nm, type ⁇ -MnO 2 , In Examples 2 to 10 and Comparative Examples 1 and 2 shown, 20 g and 980 g of pure water are mixed, and 9.8 g of KMnO 4 (manufactured by Wako Pure Chemical Industries, Ltd.) is added and stirred. Then, an abrasive slurry was prepared.
  • electrolytic MnO 2 Mitsubishi Metal Mining Co., Ltd.
  • the average particle diameter D 50 is that a 50% diameter in cumulative powers divided among separate volume based on the laser diffraction scattering method particle size distribution.
  • the average particle diameter D50 is measured by carrying out ultrasonic dispersion for 3 minutes in order to disperse the oxide particles before the measurement, and a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd .: LA -920).
  • the crystallite diameter is a numerical value obtained by measurement by the Scherrer method.
  • the specific surface area is a numerical value obtained by measurement by the BET method.
  • Polishing test Polishing was performed by the following procedure using the above abrasive slurry.
  • a polishing object a 2H or 3 inch diameter lapped 4H—SiC substrate was used. Polishing was performed on the Si surface of the substrate.
  • As a polishing apparatus a single-side polishing machine BC-15 manufactured by MT Corporation was used. SUBA # 600 manufactured by Nitta Haas was used as the polishing pad attached to the surface plate.
  • the rotation speed of the platen was set to 60 rpm, and the outer peripheral speed was set to 7163 cm / min.
  • the carrier rotation speed was set to 60 rpm, and the outer peripheral speed was set to 961 cm / min.
  • the load during polishing was 200 gf / cm 2 .
  • the supply amount of the abrasive slurry liquid was 200 mL / min.
  • the polishing time was 3 hours.
  • Evaluation after polishing was performed as follows.
  • the surface roughness Ra before and after polishing (JIS B0601) is measured by measuring the surface of the substrate with an atomic force microscope “Dimention 3100” (manufactured by Digital Instruments) and analyzing the measurement results using the software “Nanoscope 5V” of the company. I asked for it.
  • the polishing rate (nm / min) was calculated from the difference in mass of the substrate before and after polishing and the density of SiC (3.10 g / cm 3 ).
  • the evaluation results are shown in Table 1.
  • Example 2 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 29.4 g. The evaluation results are shown in Table 1.
  • Example 3 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 58.8 g. The evaluation results are shown in Table 1.
  • Example 4 40 g of fine powder of electrolytic MnO 2 and 960 g of pure water were mixed, and 9.6 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 5 The same operation as in Example 4 was performed, except that the amount of KMnO 4 added was 28.8 g. The results are shown in Table 1.
  • Example 6 The same operation as in Example 4 was performed except that the amount of KMnO 4 added was 57.6 g. The results are shown in Table 1.
  • Example 7 100 g of fine powder of electrolytic MnO 2 and 900 g of pure water were mixed, and 9.0 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 8 The same operation as in Example 7 was performed, except that the amount of KMnO 4 added was 27.0 g. The results are shown in Table 1.
  • Example 9 The same operation as in Example 7 was performed except that the amount of KMnO 4 added was changed to 54.0 g. The results are shown in Table 1.
  • Example 10 The same operation as in Example 7 was performed except that 180 g of NaMnO 4 was added instead of KMnO 4 . The results are shown in Table 1.
  • Example 11 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 4.9 g. The results are shown in Table 1.
  • Example 12 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 7.35 g. The results are shown in Table 1.
  • Example 13 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 9.8 g. The results are shown in Table 1.
  • Example 14 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was changed to 14.7 g. The results are shown in Table 1.
  • Example 15 The same operation as in Example 1 was performed except that the amount of KMnO 4 added was 19.6 g. The results are shown in Table 1.
  • Example 16 200 g of fine powder of electrolytic MnO 2 and 800 g of pure water were mixed, and 4.0 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 17 In Example 17, ⁇ obtained by pickling lithium manganate (LiMn 2 O 4 ) (manufactured by Mitsui Kinzoku Mining Co., Ltd.) in an HNO 3 solution having a concentration of 0.1 N at 95 ° C. for 120 minutes. Fine particles of MnO 2 (D 50 0.72 ⁇ m, specific surface area 16.0 m 2 / g, crystallite diameter 70 nm) were used as abrasive particles. 20 g of this ⁇ -MnO 2 and 980 g of pure water were mixed, and 29.4 g of KMnO 4 (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and stirred to prepare an abrasive slurry. Polishing evaluation similar to Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 18 Mn 2 O 3 (D 50 1.77 ⁇ m, specific surface area 4.0 m 2 / g, crystal, produced by baking the same electrolytic MnO 2 fine powder as in Example 1 at 800 ° C. The particle diameter was 9.7 nm). 20 g of this Mn 2 O 3 fine particle powder and 980 g of pure water were mixed, and 29.4 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 19 In Example 19, 20 g of fine powder (D 50 1.04 ⁇ m, specific surface area 4.9 m 2 / g, crystallite diameter 9.6 nm) of Mn 3 O 4 (Mitsui Metal Mining Co., Ltd.) and 980 g of pure water were mixed. Then, 29.4 g of KMnO 4 was added thereto and stirred to prepare an abrasive slurry. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 2 An abrasive slurry was prepared by mixing 150 g of fine powder of electrolytic MnO 2 and 850 g of pure water. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 3 An abrasive slurry was prepared by mixing 100 g of colloidal silica fine powder and 900 g of pure water. The same polishing evaluation as in Example 1 was performed using this abrasive slurry. The results are shown in Table 1.
  • Example 5 The same operation as in Example 16 was performed except that the amount of KMnO 4 added was changed to 0.8 g. The results are shown in Table 1.
  • the A value is the manganate ion concentration determined by the calculation method described in paragraph 0012 above, and the B value is the molar concentration of the manganese oxide particles. From the results in Table 1, when the 4H-SiC substrate was polished using the polishing slurry of the example containing manganese oxide particles and manganate ions, the polishing was compared with the polishing particles of colloidal silica of Comparative Examples 3 and 4. It was found that the rate was very high and high surface accuracy could be realized.
  • FIG. 1 shows a graph showing the correlation between the manganate ion concentration and the polishing rate
  • FIG. 2 shows a graph showing the correlation between the A / B value and the polishing rate.
  • the mark ⁇ is the result of Comparative Example 5
  • the mark ⁇ is the result of Examples 1-16.
  • the manganate ion concentration is 0.1% by mass or more in order to make the polishing rate 2 nm / min or more, and manganic acid to make the polishing rate 6 nm / min or more. It was found that an ion concentration of 0.3% by mass or more is necessary.
  • the polishing rate is as high as 2 nm / min or more, and when the polishing rate is 8 nm / min or more, the A / B value is 0. It was found that it was necessary to be 2 or more. Further, even if the A / B value exceeded 4.0, no further improvement in the polishing rate was observed. In Examples 17 and 18 and 19 with different abrasive particles, the behavior of the polishing rate according to the manganate ion concentration and the A / B value was the same.
  • Example 1 The evaluated abrasive slurries are Example 1, Example 3, Example 12, and Comparative Example 4.
  • each substrate was continuously polished for 2 hours using 5 or 10 lapped 4H-SiC substrates having a diameter of 2 inches using 1 kg of each abrasive slurry (total 10 hours). Or polishing for 20 hours).
  • the polishing conditions are the same as the polishing evaluation in Example 1 above.
  • the abrasive slurry was circulated at 200 mL / min. Table 2 shows the results.
  • the polishing rate tended to decrease with time. From this, it was found that the manganate ion concentration is particularly preferably 4.0% by mass or less when used for a long time. Further, it was found that the A / B value is particularly preferably 1.5 or less.
  • high-hardness difficult-to-cut materials such as silicon carbide and gallium nitride can be smoothly polished at high speed, and continuous polishing can be performed, so that efficient polishing of high-hardness difficult-to-cut materials is realized. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明は、炭化ケイ素や窒化ガリウム等の高硬度材料も、高い研摩速度で研摩可能な研摩材スラリーを提供する。本発明は、酸化マンガン粒子とマンガン酸イオンとを含有したスラリーからなり、モース硬度で硬度8以上の高硬度材料を研摩するための研摩材スラリーである。本発明は、スラリー中の酸化マンガン粒子が1.0質量%以上であることが好ましく、酸化マンガンが二酸化マンガンであることが好ましく、マンガン酸イオンが過マンガン酸イオンであることが好ましい。本発明の研摩材スラリーによれば、炭化ケイ素や窒化ガリウム等の高硬度の難削材も、高速に平滑研摩が可能となる。

Description

研摩材スラリー及び研摩方法
 本発明は、高硬度材料を研摩するための研摩材スラリーに関し、特に炭化ケイ素や窒化ガリウム等の高硬度材料を、高速かつ平滑に研摩できる研摩技術に関する。
 半導体デバイスのうち、いわゆるパワーデバイスと呼ばれる電力用半導体素子においては、高耐圧化や大電流化の目的で、基板として従来用いられてきたシリコンに代えて、炭化ケイ素、窒化ガリウム、ダイヤモンド等を用いることが提案されている。これら炭化ケイ素等からなる基板は、シリコン基板と比較して大きなバンドギャップを持つため、より高い電圧に耐えられるものとなる。炭化ケイ素や窒化ガリウム等からなる基板が高耐圧な特性を有するのは、炭化ケイ素等を構成する原子の原子配列が、シリコンに比べて密であることに由来すると考えられる。
 一方、炭化ケイ素や窒化ガリウム等からなる基板は、特に硬度が高いため、従来より用いられてきた研摩材では、ほとんど研摩できないという問題を有している。炭化ケイ素等は、上述のように原子配列が密であることから、特に硬度の高いものとなり、その硬度は、モース硬度で炭化ケイ素や窒化ガリウムは約9、ダイヤモンドは10という高硬度材料である。これら高硬度材料を研摩するには、研摩粒子としても、ダイヤモンド、酸化アルミニウム等、硬度の高い材料が用いられてきた。しかし、ダイヤモンド等を用いて研摩すると、メカニカルな研摩のみが進行し、そのことに起因して基板中に欠陥や歪みが生じやすくなり、デバイスの信頼性に欠けるおそれがある。このような傾向は、基板の硬度が高いほど、より強調されるものとなる。
 上記問題に対応すべく、炭化ケイ素や窒化ガリウムのような高硬度材料の研摩材料として、酸化ケイ素や酸化アルミニウム等の研摩粒子に、過酸化水素、オゾン、過マンガン酸等の酸化性溶液を添加したものが提案されている(特許文献1~3)。また、酸化クロムと共に粉末又は液体の酸化剤を用いることで、研摩力を高めた研摩材料(特許文献4)や、特定形状の研摩粒子を用いることで、酸化性溶液を添加することなく研摩力を高めた研摩材料も提案されている(特許文献5)。そして、研摩粒子や酸化剤として、適用し得る材料を提案したものもある(特許文献6、7、8)。さらに、高硬度材料の研摩処理のために、酸化ケイ素や炭化ケイ素の研摩粒子にコーティング等により二酸化マンガンを最表層に配したものも提案されている(特許文献9)。
特開2009-238891号公報 特開2010-182782号公報 特表2011-513991号公報 特開2001-205555号公報 特開2011-121153号公報 特開2000-160138号公報 特表2002-526594号公報 国際公開WO2010/120784号 米国特許出願公開第2010/0258528号明細書
 上記のように、多数の研摩材料が提案されているが、炭化ケイ素や窒化ガリウム等の高硬度材料は極めて難削であり、これら研摩材料を用いた場合でも、その研摩速度は、従来基板として用いられているシリコン等と比較して非常に遅いものであった。また、特許文献9のように、コーティング等により二酸化マンガンを最表層に配した砥粒に過マンガン酸を添加して研摩処理する場合、モース硬度6以下の砥粒を用いると高硬度材料を効率よく研摩処理できるものの、スラリーの研摩能力の経時劣化が避けられない。特に、長時間の使用、即ちスラリーを循環して連続使用する場合には不向きであることが指摘されている。かかる背景のもと、本発明は、高硬度材料であっても、高い研摩速度で、かつ平滑に研摩可能な研摩材スラリーであって、研摩材スラリーを容易に製造でき、スラリーの循環連続使用が可能な研摩材スラリーを提供するものである。
 上記課題を解決する本発明は、酸化マンガン粒子とマンガン酸イオンとを含有したスラリーからなり、スラリー中のマンガン酸イオンが0.1質量%以上であり、モース硬度で硬度8以上の高硬度材料を研摩するための研摩材スラリーに関する。本発明の研摩材スラリーのように、固体状の酸化マンガン粒子と、スラリー中にマンガン酸イオンが共存すると、炭化ケイ素や窒化ガリウム等の高硬度部材を研摩する場合にも、高い研摩力を発揮するものとなる。ここで、本発明における「モース硬度」は、1~10までの10段階に設定された標準物質を基準とし、傷つきやすさの指標として表された硬さの基準をいう。モース硬度で硬度8以上の高硬度材料としては、炭化ケイ素、窒化ガリウム、ダイヤモンド等が挙げられる。
 このように本発明の研摩材スラリーが高い研摩力を発揮するのは、様々な酸化数を取り得る金属元素の酸化性粒子とその酸化性粒子を構成する金属元素と同一の金属元素で構成される更に酸化力の高いイオンとがスラリー中に共存することで、その金属原子の酸化数揺動により、スラリー中の酸化性粒子とイオンとの間で、研摩される物質の微視的・化学的な表面状態に対してより好適な研摩特性を発揮する形態に変態する可逆反応が促進されるためと考えられる。そして、本発明者等は、この酸化数揺動を起こす金属元素としてマンガンに着目し、酸化マンガン粒子とマンガン酸イオンとを同時に用いた場合、特に高い研摩力を発揮する研摩材スラリーになることを見出し、本発明に想到したものである。
 本発明の研摩材スラリーにおいて、酸化マンガン粒子としては、酸化マンガン(II) MnO、三酸化二マンガン(III) Mn、二酸化マンガン(IV) MnO、四酸化三マンガン Mn等を適用することができ、特に酸化力が高い二酸化マンガンが好適である。また、マンガン酸イオンとしては、MnO 、MnO 2-、MnO 3-、MnO 6-等を適用することができ、特に高い酸化性能を持つ過マンガン酸イオン(MnO )が好適である。研摩材スラリー中に、二酸化マンガン(MnO)と過マンガン酸イオン(MnO )の両方を含む場合、特に研摩力の高いものとなる。
 本発明の研摩材スラリー中のマンガン酸イオンは0.1質量%以上である。5.0質量%以上になっても使用初期の研摩力のさらなる向上は見られない一方、3.0質量%を超えるとスラリーの循環連続使用の能力が低下する傾向となる。そのため、本発明の研摩材スラリー中のマンガン酸イオンは0.1質量%~3.0質量%であることが好ましい。ここで、研摩材スラリー中における、マンガン酸イオンの含有量は、イオンクロマトグラフ法や吸光光度分析法により測定できる。
 また、研摩材スラリー中の酸化マンガン粒子は1.0質量%以上であることが好ましく、2.0質量%以上が特に好ましい。かかる研摩材スラリーは、特に研摩力の高いものとなる。また、研摩材スラリーの取り扱い上、好適な流動性を確保するため、35質量%以下であることが好ましく、10質量%以下であることが特に好ましい。
 本発明においては、研摩材スラリーにおける、酸化マンガンに対するマンガン酸イオンのモル濃度比が0.01以上が好ましく、より好ましくは0.2以上の割合である。酸化マンガンのモル濃度とは、研摩粒子である各酸化マンガン粒子重量を、対応する分子量を用いて物質量換算した後、溶媒重量で除算し、モル濃度として算出したものである。マンガン酸イオンに対しても、マンガン酸イオン供給物質に対して上記酸化マンガンのモル濃度と同様に算出した。
 研摩材スラリーは、中性からアルカリ性、すなわち、pH5.5以上であることが好ましく、さらにはpH7以上が好ましい。より好ましくはpH5.5~pH10.5であり、さらにはpH7~10であることが最も好ましい。本発明の研摩材スラリーに含まれるマンガン酸イオンは、一般に酸性溶液中で高い酸化性能を発揮することが知られているが、その一方、マンガン酸イオンと共に共存する酸化マンガン粒子は、酸性では分散状態を維持しにくく凝集し易い傾向となり、凝集した粒子により研摩対象にキズをつけることもあるためである。また、高アルカリ性ではマンガン酸イオンが速やかに酸化マンガンに還元されてしまうため、高い酸化性能を発揮することができなくなる傾向となる。
 本発明の研摩材スラリーは、モース硬度で硬度8以上の高硬度材料を研摩する場合に有効なものである。そして、本発明の研摩材スラリーを繰り返し使用した場合であっても長時間の研摩処理が可能となる。本発明の研摩材スラリーは、従来のように酸化性液体の分解による研摩作用ではなく、酸化マンガン粒子からのマンガンイオンとマンガン酸イオンとの平衡による作用が継続されて、研摩処理が行われることに特徴がある。このため、従来のように1回のみ(かけ流し)での研摩材スラリーの使用のみならず、繰り返し(循環)で使用しても長時間にわたって、高い面精度の研摩処理を維持できる。
 以上のように、本発明の研摩材スラリーは、モース硬度で硬度8以上の高硬度材料、例えば、炭化ケイ素、窒化ガリウム、ダイヤモンド等の研摩に好適であり、特に炭化ケイ素の研摩に最適である。
 本発明の研摩材スラリーによれば、炭化ケイ素や窒化ガリウム等の高硬度の難削材も、高速に平滑研摩が可能となる。
マンガン酸イオン濃度と研摩レートの相関グラフ。 A/B値と研摩レートの相関グラフ。
 以下、本発明における最良の実施形態について説明する。
[実施例1]
研摩材スラリーの作製:電解MnO(三井金属鉱業社製)の微粒粉末(D50 0.30μm、比表面積48.7m/g、結晶子径2.0nm、種類γ-MnO、以下に示す実施例2~10、比較例1及び2についても同じ微粒粉末を研摩粒子として使用)20gと純水980gを混合し、これにKMnO(和光純薬社製)9.8gを加えて撹拌し、研摩材スラリーを作製した。尚、平均粒径D50はレーザー回折・散乱法粒子径分布における体積基準の積算分立における50%径のことである。この平均粒径D50の測定は、測定前に酸化物粒子の分散を行うために超音波分散処理を3分間実施し、レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA-920)を使用して測定した。また、結晶子径は、シェラー法による測定により得た数値である。また、比表面積はBET法による測定により得た数値である。
研摩試験:上記研摩材スラリーを用いて、以下の手順で研摩を行った。研摩対象は直径2インチまたは3インチのラッピングされた4H-SiC基板を用いた。研摩は基板のSi面に対して行った。研摩装置として、エム・エー・ティー社製片面研摩機BC-15を用いた。定盤に取り付ける研摩パッドには、ニッタ・ハース社製SUBA#600を用いた。定盤の回転数は60rpm、外周部速度は7163cm/minに設定した。またキャリア回転数は60rpm、外周部速度は961cm/minに設定した。また、研摩時の荷重は200gf/cmとした。研摩材スラリー液の供給量は200mL/minとした。なお、研摩時間は3時間とした。
研摩性能評価:研摩後の評価は、以下のように行った。研摩前後の表面粗さRa(JIS B0601)は、原子間力顕微鏡「Dimention3100」(Digital Instruments社製)により該基板の表面を測定し、同社のソフトウエア「Nanoscope 5V」を用いて測定結果を解析することで求めた。測定条件は、測定範囲=10μm×10μm、測定点512×512ポイント、スキャンレート=1Hzとした。また、研摩前後の基板の質量差とSiCの密度(3.10g/cm)とから研摩レート(nm/min)を算出した。この評価結果を表1に示す。
[実施例2]
KMnOの添加量を29.4gとした以外は、実施例1と同様の操作を行った。評価結果を表1に示す。
[実施例3]
KMnOの添加量を58.8gとした以外は実施例1と同様の操作を行った。評価結果を表1に示す。
[実施例4]
電解MnOの微粒粉末40gと純水960gを混合し、これにKMnO 9.6gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[実施例5]
KMnOの添加量を28.8gとした以外は実施例4と同様の操作を行った。結果を表1に示す。
[実施例6]
KMnOの添加量を57.6gとした以外は実施例4と同様の操作を行った。結果を表1に示す。
[実施例7]
電解MnOの微粒粉末100gと純水900gを混合し、これにKMnO 9.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[実施例8]
 KMnOの添加量を27.0gとした以外は実施例7と同様の操作を行った。結果を表1に示す。
[実施例9]
 KMnOの添加量を54.0gとした以外は実施例7と同様の操作を行った。結果を表1に示す。
[実施例10]
 KMnOの代わりに、NaMnOを180g添加した以外は実施例7と同様の操作を行った。結果を表1に示す。
[実施例11]
 KMnOの添加量を4.9gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
[実施例12]
 KMnOの添加量を7.35gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
[実施例13]
 KMnOの添加量を9.8gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
[実施例14]
 KMnOの添加量を14.7gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
[実施例15]
 KMnOの添加量を19.6gとした以外は実施例1と同様の操作を行った。結果を表1に示す。
[実施例16]
電解MnOの微粒粉末200gと純水800gを混合し、これにKMnO 4.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[実施例17]
 この実施例17では、マンガン酸リチウム(LiMn)(三井金属鉱業社製)を濃度0.1NのHNO溶液中にて、95℃、120分間酸洗することで得た、λ-MnOの微粒粉末(D50 0.72μm、比表面積16.0m/g、結晶子径 70 nm)を研摩粒子とした。このλ-MnO20gと純水980gを混合し、これにKMnO(和光純薬社製)29.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用い、実施例1と同様の研摩評価を行った。結果を表1に示す。
[実施例18]
 この実施例18では、実施例1と同じ電解MnOの微粒粉末を800℃にて焼成処理して生成されたMn(D50 1.77μm、比表面積4.0m/g、結晶子径9.7nm)を研摩粒子とした。このMn微粒粉末20gと純水980gを混合し、これにKMnO29.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[実施例19]
 この実施例19では、Mn4(三井金属鉱業社製)の微粒粉末(D50 1.04μm、比表面積4.9m/g、結晶子径9.6nm)20gと純水980gを混合し、これにKMnO29.4gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[比較例1]
電解MnOの微粒粉末40gと純水960gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[比較例2]
電解MnOの微粒粉末150gと純水850gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[比較例3]
コロイダルシリカの微粒粉末100gと純水900gを混合し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[比較例4]
コロイダルシリカの微粒粉末100gと純水900gを混合し、これにKMnO 9.0gを加えて撹拌し、研摩材スラリーを作製した。この研摩材スラリーを用いて、実施例1と同じ研摩評価を行った。結果を表1に示す。
[比較例5]
 KMnOの添加量を0.8gとした以外は実施例16と同様の操作を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、A値は上記段落0012に記載した算出方法により求めたマンガン酸イオン濃度、B値は酸化マンガン粒子のモル濃度である。表1の結果より、酸化マンガン粒子とマンガン酸イオンとを含有する実施例の研摩材スラリーを用いて4H-SiC基板を研摩した場合、比較例3、4のコロイダルシリカの研摩粒子に比べ、研摩レートが非常に高く、高い面精度を実現できることが判明した。
 また、表1に示した研摩粒子がMnOの結果(実施例1~16、比較例5)について、そのマンガン酸イオン濃度又はA/B値と、研摩レートとの関係を調べた。図1には、マンガン酸イオン濃度と研摩レートとの相関を調べたグラフを示しており、図2には、A/B値と研摩レートとの相関を調べたグラフを示す。図1及び図2において、●マークが比較例5の結果で、◆マークが実施例1~16の結果である。
 図1のグラフより、研摩レートを2nm/min以上とするには、マンガン酸イオン濃度が0.1質量%以上必要であることが、また研摩レートを6nm/min以上とするには、マンガン酸イオン濃度が0.3質量%以上必要であることが判った。また、図2のグラフより、A/B値は0.01以上であると研摩レートが2nm/min以上と高くなり、また、研摩レート8nm/min以上とするにはA/B値は0.2以上であることが必要であることが判明した。また、A/B値が4.0を超えても研摩レートのさらなる向上は見られなかった。研摩粒子が異なる実施例17及び18、19の場合においてもマンガン酸イオン濃度とA/B値による研摩レートの挙動は同様であった。
 次に、研摩材スラリーを循環使用をして研摩処理を行った結果について説明する。評価した研摩材スラリーは、実施例1、実施例3、実施例12、比較例4である。
 評価方法は、各研摩材スラリー1kgを用いて直径2インチのラッピングされた4H-SiC基板5或いは10枚を用いて各基板を2時間で連続的にSi面の研摩を行った(合計10時間或いは20時間研摩)。研摩条件は上記実施例1の研摩評価と同じである。また、研摩材スラリーは200mL/minで循環使用した。表2にその結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1と比較例4との10時間の研摩処理の結果より、循環して繰り返し使用しても、実施例1の研摩材スラリーでは研摩レートの低下は非常に小さいことが判明した。これに対して、比較例4の研摩材スラリーでは、循環して繰り返し使用をすると、10時間の繰り返し研摩処理の間に研摩レートが大きく低下し、安定した面精度を得ることもできなかった。
 また、実施例3、実施例12の結果から、マンガン酸イオン濃度が高くなると、時間経過ととともに研摩レートが低下する傾向が見られた。このことから、長時間の使用においては、マンガン酸イオン濃度は4.0質量%以下であることが特に好ましいことが分かった。また、A/B値については1.5以下であることが特に好ましいことが判明した。
 本発明によれば、炭化ケイ素や窒化ガリウム等の高硬度の難削材を高速に平滑研摩でき、連続した研摩処理も可能となるので、高硬度の難削材の効率的な研摩処理が実現できる。

Claims (11)

  1.  酸化マンガン粒子とマンガン酸イオンとを含有したスラリーからなり、スラリー中のマンガン酸イオンが0.1質量%以上であり、モース硬度で硬度8以上の高硬度材料を研摩するための研摩材スラリー。
  2.  スラリー中の酸化マンガン粒子が1.0質量%以上である請求項1記載の研摩材スラリー。
  3.  酸化マンガンが二酸化マンガンである請求項1または請求項2に記載の研摩材スラリー。
  4.  マンガン酸イオンが過マンガン酸イオンである請求項1~3のいずれか記載の研摩材スラリー。
  5.  高硬度材料が炭化ケイ素である請求項1~4のいずれか記載の研摩材スラリー。
  6.  スラリーのpHが5.5以上である請求項1~5のいずれか記載の研摩材スラリー。
  7.  スラリー中のマンガン酸イオンは0.1質量%以上4.0質量%以下である請求項1~6のいずれか記載の研摩材スラリー。
  8.  酸化マンガンに対するマンガン酸イオンのモル濃度比が0.01以上1.5以下である請求項1~7のいずれか記載の研摩材スラリー。
  9.  酸化マンガンに対するマンガン酸イオンのモル濃度比が0.2以上1.5以下である請求項1~8のいずれか記載の研摩材スラリー。
     
  10.  請求項1~請求項9いずれかに記載の研摩材スラリーを用いて、モース硬度で硬度8以上の高硬度材料を研摩する研摩方法。
  11.  研摩材スラリーを繰り返し使用して研摩する請求項10記載の研摩方法。
PCT/JP2012/076446 2011-10-13 2012-10-12 研摩材スラリー及び研摩方法 WO2013054883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12839614.0A EP2767568B1 (en) 2011-10-13 2012-10-12 Polishing slurry, and polishing method
US14/347,637 US9318339B2 (en) 2011-10-13 2012-10-12 Polishing slurry and polishing method
CN201280050088.7A CN103890127B (zh) 2011-10-13 2012-10-12 研磨剂浆料及研磨方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-225625 2011-10-13
JP2011225625 2011-10-13
JP2012018931 2012-01-31
JP2012-018931 2012-01-31

Publications (1)

Publication Number Publication Date
WO2013054883A1 true WO2013054883A1 (ja) 2013-04-18

Family

ID=48081929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076446 WO2013054883A1 (ja) 2011-10-13 2012-10-12 研摩材スラリー及び研摩方法

Country Status (5)

Country Link
US (1) US9318339B2 (ja)
EP (1) EP2767568B1 (ja)
JP (2) JPWO2013054883A1 (ja)
CN (1) CN103890127B (ja)
WO (1) WO2013054883A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161591A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC単結晶基板
WO2017138308A1 (ja) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 研摩スラリー及び研摩材
JP6280678B1 (ja) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 研摩液及び研摩方法
WO2018116521A1 (ja) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 研摩液及び研摩方法
JP2020527851A (ja) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. 硬質研磨粒子を用いない硬質材料研磨
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2024004750A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 研磨材スラリー及びその研磨方法
WO2024004752A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 SiC基板の製造方法、及びSiC基板研磨用研磨材スラリー
WO2024004751A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 研磨材スラリー及びその研磨方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072371A1 (ja) * 2014-11-07 2016-05-12 株式会社フジミインコーポレーテッド 研磨用組成物
JP6611485B2 (ja) 2014-11-07 2019-11-27 株式会社フジミインコーポレーテッド 研磨方法およびポリシング用組成物
JP6301571B1 (ja) * 2016-06-08 2018-03-28 三井金属鉱業株式会社 研摩液及び研摩物の製造方法
KR20210144694A (ko) 2019-03-27 2021-11-30 에이지씨 가부시키가이샤 산화갈륨 기판의 제조 방법 및 산화갈륨 기판용의 연마 슬러리

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160138A (ja) 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
JP2001205555A (ja) 1999-11-16 2001-07-31 Denso Corp メカノケミカル研磨方法及びメカノケミカル研磨装置
JP2002526594A (ja) 1998-09-24 2002-08-20 アライドシグナル・インコーポレイテッド 低誘電率材料のための酸化性研磨スラリー
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2009238891A (ja) 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2010182782A (ja) 2009-02-04 2010-08-19 Hitachi Metals Ltd 炭化珪素単結晶基板およびその製造方法
US20100258528A1 (en) 2009-04-13 2010-10-14 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
JP2011513991A (ja) 2008-03-05 2011-04-28 キャボット マイクロエレクトロニクス コーポレイション 水溶性酸化剤を用いた炭化ケイ素の研磨方法
JP2011122102A (ja) * 2009-12-11 2011-06-23 Kyushu Univ 炭化珪素の研磨液及びその研磨方法
JP2011121153A (ja) 2009-12-11 2011-06-23 Mitsui Mining & Smelting Co Ltd 研摩材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332831B1 (en) * 2000-04-06 2001-12-25 Fujimi America Inc. Polishing composition and method for producing a memory hard disk
DE60131080T2 (de) * 2000-05-31 2008-07-31 Jsr Corp. Schleifmaterial
US20030119316A1 (en) * 2001-12-21 2003-06-26 Micron Technology, Inc. Methods for planarization of group VIII metal-containing surfaces using oxidizing agents
US6884723B2 (en) * 2001-12-21 2005-04-26 Micron Technology, Inc. Methods for planarization of group VIII metal-containing surfaces using complexing agents
JP4187497B2 (ja) * 2002-01-25 2008-11-26 Jsr株式会社 半導体基板の化学機械研磨方法
US6918820B2 (en) * 2003-04-11 2005-07-19 Eastman Kodak Company Polishing compositions comprising polymeric cores having inorganic surface particles and method of use
JP4792802B2 (ja) * 2005-04-26 2011-10-12 住友電気工業株式会社 Iii族窒化物結晶の表面処理方法
JP2007088379A (ja) * 2005-09-26 2007-04-05 Fujifilm Corp 水系研磨液、及び、化学機械的研磨方法
KR20070088245A (ko) * 2006-02-24 2007-08-29 후지필름 가부시키가이샤 금속용 연마액
JP2008192930A (ja) * 2007-02-06 2008-08-21 Fujifilm Corp 金属研磨用組成物及びそれを用いた化学的機械的研磨方法
JP5317436B2 (ja) * 2007-06-26 2013-10-16 富士フイルム株式会社 金属用研磨液及びそれを用いた研磨方法
JP2009081200A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 研磨液
JP2009272380A (ja) * 2008-05-01 2009-11-19 Sumitomo Electric Ind Ltd Iii族窒化物結晶およびその表面処理方法、iii族窒化物積層体およびその製造方法、ならびにiii族窒化物半導体デバイスおよびその製造方法
CN101608098B (zh) * 2008-06-20 2013-06-12 安集微电子(上海)有限公司 一种用于金属化学机械抛光的抛光浆料及其用途
CN101684393B (zh) * 2008-09-26 2014-02-26 安集微电子(上海)有限公司 一种化学机械抛光浆料
JP4333820B1 (ja) * 2009-01-19 2009-09-16 住友電気工業株式会社 化合物半導体基板
JP5909845B2 (ja) * 2009-08-24 2016-04-27 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
US8828874B2 (en) * 2011-03-28 2014-09-09 Sinmat, Inc. Chemical mechanical polishing of group III-nitride surfaces

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526594A (ja) 1998-09-24 2002-08-20 アライドシグナル・インコーポレイテッド 低誘電率材料のための酸化性研磨スラリー
JP2000160138A (ja) 1998-12-01 2000-06-13 Fujimi Inc 研磨用組成物
JP2001205555A (ja) 1999-11-16 2001-07-31 Denso Corp メカノケミカル研磨方法及びメカノケミカル研磨装置
JP2008068390A (ja) * 2006-09-15 2008-03-27 Noritake Co Ltd 結晶材料の研磨加工方法
JP2011513991A (ja) 2008-03-05 2011-04-28 キャボット マイクロエレクトロニクス コーポレイション 水溶性酸化剤を用いた炭化ケイ素の研磨方法
JP2009238891A (ja) 2008-03-26 2009-10-15 Hitachi Metals Ltd SiC単結晶基板の製造方法
JP2010182782A (ja) 2009-02-04 2010-08-19 Hitachi Metals Ltd 炭化珪素単結晶基板およびその製造方法
US20100258528A1 (en) 2009-04-13 2010-10-14 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
WO2010120784A1 (en) 2009-04-13 2010-10-21 Sinmat, Inc. Chemical mechanical polishing of silicon carbide comprising surfaces
JP2011122102A (ja) * 2009-12-11 2011-06-23 Kyushu Univ 炭化珪素の研磨液及びその研磨方法
JP2011121153A (ja) 2009-12-11 2011-06-23 Mitsui Mining & Smelting Co Ltd 研摩材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767568A4
TADASHI HASEGAWA ET AL.: "Application of manganese slurry to CMP process of SiC substrate", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS KYUSHU SHIBU KOEN RONBUNSHU (KYUSHU SHIBU DAI 63 KI SOKAI KOENKAI), 2010, pages 95 - 96, XP008173554 *
TADASHI HASEGAWA ET AL.: "Sanka Manganese-kei Slurry o Mochiita SiC Tankessho Kiban no Seimitsu Kako", 2011 NENDO SEIMITSU KOGAKUKAI SHUNKI TAIKAI GAKUJUTSU KOENKAI KOEN RONBUNSHU, 1 September 2011 (2011-09-01), pages E33, XP008173555 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391148B2 (en) 2012-04-27 2016-07-12 Mitsui Mining & Smelting Co., Ltd. SiC single crystal substrate
WO2013161591A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC単結晶基板
US11015086B2 (en) 2016-02-09 2021-05-25 Mitsui Mining & Smelting Co., Ltd. Polishing slurry and polishing material
WO2017138308A1 (ja) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 研摩スラリー及び研摩材
JP6280678B1 (ja) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 研摩液及び研摩方法
WO2018116521A1 (ja) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 研摩液及び研摩方法
US11339309B2 (en) 2016-12-22 2022-05-24 Mitsui Mining & Smelting Co., Ltd. Polishing liquid and polishing method
JP2020527851A (ja) * 2017-07-10 2020-09-10 シンマット, インコーポレーテッドSinmat, Inc. 硬質研磨粒子を用いない硬質材料研磨
JP7254722B2 (ja) 2017-07-10 2023-04-10 インテグリス・インコーポレーテッド 硬質研磨粒子を用いない硬質材料研磨
WO2023054386A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2023054385A1 (ja) * 2021-09-30 2023-04-06 株式会社フジミインコーポレーテッド 研磨用組成物
WO2024004750A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 研磨材スラリー及びその研磨方法
WO2024004752A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 SiC基板の製造方法、及びSiC基板研磨用研磨材スラリー
WO2024004751A1 (ja) * 2022-06-27 2024-01-04 三井金属鉱業株式会社 研磨材スラリー及びその研磨方法

Also Published As

Publication number Publication date
EP2767568B1 (en) 2018-12-05
US20140242750A1 (en) 2014-08-28
CN103890127B (zh) 2015-09-09
JPWO2013054883A1 (ja) 2015-03-30
US9318339B2 (en) 2016-04-19
EP2767568A1 (en) 2014-08-20
JP2017071787A (ja) 2017-04-13
EP2767568A4 (en) 2015-10-07
JP6348560B2 (ja) 2018-06-27
CN103890127A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6348560B2 (ja) 研摩材スラリー及び研摩方法
TWI829662B (zh) 研磨用組成物及研磨方法
JP6694674B2 (ja) 研磨方法およびポリシング用組成物
JP6846339B2 (ja) 軟質コア複合粒子による硬質基板の研磨
TWI721144B (zh) 研磨用組成物
US20100307068A1 (en) Dispersion comprising cerium oxide and colloidal silicon dioxide
EP2121860B1 (en) Dispersion comprising cerium oxide and colloidal silicon dioxide
WO2008145482A1 (en) Dispersion comprising cerium oxide, silicon dioxide and amino acid
JPWO2016158328A1 (ja) 研摩材および研摩スラリー
JP2000160138A (ja) 研磨用組成物
Chen et al. The effect of surface polarity on the CMP behavior of 6H-SiC substrates
TW201739893A (zh) 研磨用組成物
CN114410226A (zh) 一种抛光液及其制备方法和应用
WO2013161591A1 (ja) SiC単結晶基板
TW201504412A (zh) 化學機械拋光(cmp)組成物
Zhang et al. Synthesis of Al2O3@ MnO2 composite abrasives and their chemical mechanical polishing performance on silicon carbide (SiC)
Cui et al. Unveiling the synergistic interaction: Investigating the enhanced mechanism of 4H–SiC chemical mechanical polishing with the addition of sodium silicate and manganese dioxide
TW201942320A (zh) 研磨用組合物
TW201219518A (en) A chemical mechanical polishing (CMP) composition comprising a specific heteropolyacid
WO2013179926A1 (ja) 研摩材スラリー
JP4159679B2 (ja) 研磨用組成物
CN117120564A (zh) 用于化学机械平坦化(cmp)的悬浮液和使用所述悬浮液的方法
JP2013163228A (ja) 研摩材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012839614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE