WO2013054847A1 - R-t-b系焼結磁石及びその製造方法、並びに回転機 - Google Patents

R-t-b系焼結磁石及びその製造方法、並びに回転機 Download PDF

Info

Publication number
WO2013054847A1
WO2013054847A1 PCT/JP2012/076327 JP2012076327W WO2013054847A1 WO 2013054847 A1 WO2013054847 A1 WO 2013054847A1 JP 2012076327 W JP2012076327 W JP 2012076327W WO 2013054847 A1 WO2013054847 A1 WO 2013054847A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtb
sintered magnet
phase
crystal
based sintered
Prior art date
Application number
PCT/JP2012/076327
Other languages
English (en)
French (fr)
Inventor
多恵子 坪倉
石坂 力
加藤 英治
保 石山
信宏 神宮
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201280050510.9A priority Critical patent/CN103890867B/zh
Priority to DE112012004298.0T priority patent/DE112012004298T5/de
Priority to JP2013538569A priority patent/JP5949775B2/ja
Priority to US14/350,728 priority patent/US20140247100A1/en
Publication of WO2013054847A1 publication Critical patent/WO2013054847A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to an RTB-based sintered magnet, a manufacturing method thereof, and a rotating machine.
  • drive motors used in various fields are required to be smaller and lighter and to be more efficient.
  • a technique capable of further improving the magnetic characteristics of a sintered magnet used in a drive motor is required.
  • an RTB-based rare earth sintered magnet As a sintered magnet having high magnetic properties, an RTB-based rare earth sintered magnet has been conventionally used. This RTB-based sintered magnet has been attempted to improve the magnetic characteristics by using heavy rare earth metals such as Dy and Tb having a large anisotropic magnetic field HA . However, with the recent rise in prices of rare earth metal raw materials, it is strongly desired to reduce the amount of expensive heavy rare earth elements used. Under such circumstances, attempts have been made to improve the magnetic properties by refining the structure of the RTB-based sintered magnet.
  • the RTB-based sintered magnet is manufactured by a powder metallurgy method.
  • the manufacturing method by the powder metallurgy method first, the raw material is melted and cast to obtain an alloy flake containing an RTB-based alloy. Next, the alloy flakes are pulverized to prepare an alloy powder having a particle size of several ⁇ m to several tens of ⁇ m. Next, this alloy powder is molded and sintered to produce a sintered body. Thereafter, the obtained sintered body is processed into a predetermined dimension. In order to improve corrosion resistance, the sintered body may be plated as necessary to form a plating layer. In this way, an RTB-based sintered magnet can be obtained.
  • the strip casting method is a method of preparing alloy flakes by cooling a molten alloy with a cooling roll.
  • an attempt has been made to control the alloy structure by adjusting the cooling rate in the above-described strip casting method.
  • Patent Document 1 proposes to obtain an alloy flake composed of chill crystals, granular crystals, and columnar crystals having a predetermined particle size by strip casting.
  • HcJ coercive force
  • Br residual magnetic flux density
  • is a coefficient indicating the independence of crystal grains
  • HA represents an anisotropic magnetic field depending on the composition
  • N represents a local demagnetizing field depending on the shape, etc.
  • Ms is the main The saturation magnetization of the phase.
  • Ms represents the saturation magnetization of the main phase
  • represents the sintered density
  • ⁇ 0 represents the true density
  • f represents the volume ratio of the main phase
  • A represents the degree of orientation of the main phase.
  • H A , Ms and f depend on the composition of the sintered magnet
  • N depends on the shape of the sintered magnet.
  • the coercive force can be improved by increasing ⁇ in the above formula (I). From this fact, the coercive force can be improved by controlling the structure of the alloy powder used in the compact for sintered magnets. On the other hand, from the viewpoint of resource constraints and manufacturing cost, there is a demand for an RTB-based sintered magnet that can realize high magnetic properties without using heavy rare earth elements.
  • the present invention has been made in view of the above circumstances, and an RTB-based sintered magnet having a sufficiently excellent coercive force without using an expensive and rare heavy rare earth element, and its production It aims to provide a method.
  • the present inventors have made various studies focusing on the structure of the alloy flakes in order to improve the magnetic properties of the RTB-based sintered magnet. As a result, by miniaturizing the structure of the alloy flakes and improving the uniformity, the final structure of the RTB-based sintered magnet is refined and segregation of the R-rich phase is suppressed. Thus, it has been found that high magnetic properties can be stably obtained.
  • the present invention relates to an RTB system containing particles containing an R 2 T 14 B phase obtained by using an RTB alloy flake containing R 2 T 14 B phase crystal grains.
  • the RTB-based alloy flakes have crystal grains extending radially from crystal nuclei in a cross section along the thickness direction, and one of the crystal grains in a direction perpendicular to the thickness direction.
  • RTB-based sintered magnet having an average particle diameter of 0.5 to 5 ⁇ m of particles containing the R 2 T 14 B phase in the B-based sintered magnet and substantially free of heavy rare earth elements.
  • R represents a light rare earth element
  • T represents a transition element
  • B represents boron.
  • the RTB-based sintered magnet of the present invention uses an RTB-based alloy flake having the following structure as a raw material. That is, the shape of the R 2 T 14 B phase crystal grains contained in the RTB-based alloy flakes does not expand in the direction perpendicular to the thickness direction of the RTB-based alloy flakes. Variations in shape and width are sufficiently reduced. Usually, when the RTB-based alloy flakes are pulverized, the grain boundary phase such as the R-rich phase at the grain boundary of the R 2 T 14 B phase crystal grains is preferentially broken. For this reason, the shape of the alloy powder depends on the shape of the R 2 T 14 B phase crystal grains.
  • the crystal grains of the R 2 T 14 B phase in the RTB-based alloy flakes of the present invention have sufficiently reduced variations in shape and width.
  • a TB alloy powder is obtained. Therefore, by using such an RTB-based alloy flake, it is possible to obtain an RTB-based sintered magnet in which segregation of the R-rich phase is suppressed and the uniformity of the microstructure is improved. it can.
  • the present invention does not adopt a control method of simply refining the R 2 T 14 B phase crystal grains contained in the RTB-based alloy flakes, but the size of the R 2 T 14 B phase crystal grains.
  • the dispersion of the shape is suppressed to sharpen the distribution of the structure, and the coercive force of the finally obtained RTB-based sintered magnet is improved.
  • the above-mentioned RTB-based alloy flakes have the following formula (2) when the average value and the maximum value of the crystal grain length in the direction perpendicular to the thickness direction are D AVE and D MAX , respectively. And / or (3) is preferably satisfied. 1.0 ⁇ m ⁇ D AVE ⁇ 3.0 ⁇ m (2) 1.5 ⁇ m ⁇ D MAX ⁇ 4.5 ⁇ m (3)
  • Such RTB-based alloy flakes are fine and uniform in shape and size because the width of crystal grains of the R 2 T 14 B phase is sufficiently small and the variation in shape is sufficiently reduced.
  • RTB-based alloy powder having sufficiently improved properties can be obtained. This further improves the uniformity of the microstructure of the finally obtained RTB-based sintered magnet. Therefore, the coercive force of the RTB-based sintered magnet can be further improved.
  • the RTB-based alloy flakes of the present invention contain an R-rich phase in which the R content is higher than the R 2 T 14 B phase on a mass basis.
  • the ratio of the number of R-rich phases having a length in the direction perpendicular to the thickness direction of 1.5 ⁇ m or less is preferably 90% or more.
  • the R-rich phase is a phase having a higher content on the mass basis of R than the R 2 T 14 B phase.
  • the crystal grains in the RTB-based alloy flakes described above are dendritic crystals, and the average width of the dendritic crystals is 60 ⁇ m or less on at least one surface of the RTB-based alloy flakes.
  • the number of crystal nuclei of the shaped crystal is preferably 500 or more per 1 mm square.
  • This RTB-based alloy flake has a predetermined number or more of crystal nuclei per unit area on at least one surface.
  • Such dendrite-like crystals are suppressed from growing in the plane direction of the RTB-based alloy flakes. For this reason, the R 2 T 14 B phase grows in a columnar shape in the thickness direction.
  • An R-rich phase is generated around the R 2 T 14 B phase grown in a columnar shape, and this R-rich phase is preferentially broken during pulverization. Therefore, when the RTB-based alloy flakes having such a structure are pulverized, an alloy powder in a uniformly dispersed state can be obtained without segregating the R-rich phase as compared with the prior art. Therefore, by firing such an alloy powder, it is possible to obtain an RTB-based sintered magnet having a high coercive force by suppressing aggregation of R-rich phase and abnormal grain growth of crystal grains.
  • the present invention also provides a method for producing an RTB-based sintered magnet including particles containing an R 2 T 14 B phase, which includes a step of pulverizing, forming, and firing an RTB-based alloy flake.
  • the RTB-based alloy flakes in the cross section along the thickness direction, crystal grains extend radially from the crystal nucleus, and the length of one surface side of the crystal grains in the direction perpendicular to the thickness direction is long.
  • the average value of the thickness and the average value of the length on the other surface side opposite to the surface are D 1 and D 2 respectively, the following formula (1) is satisfied, and the average particle size of the particles is 0.
  • RTB-based sintered magnet having a thickness of 5 to 5 ⁇ m and substantially free of heavy rare earth elements.
  • R represents a light rare earth element
  • T represents a transition element
  • B represents boron.
  • an RTB-based alloy flake having the following structure is used as a raw material. That is, in the RTB alloy flakes, the shape of the R 2 T 14 B phase crystal grains does not expand in the direction perpendicular to the thickness direction of the RTB alloy flakes. In addition, the variation in width is sufficiently reduced. For this reason, RTB-based alloy powder with sufficiently reduced variation in shape and size can be obtained. By using such an RTB-based alloy powder, segregation of the R-rich phase is suppressed, the homogeneity of the microstructure is improved, and the RTB-based firing having a sufficiently high coercive force is achieved. A magnet can be obtained.
  • an RTB-based sintered magnet having a sufficiently excellent coercive force and a manufacturing method thereof without using an expensive and rare heavy rare earth element.
  • FIG. 1 is a perspective view showing a preferred embodiment of an RTB-based sintered magnet of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of an RTB-based sintered magnet according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged cross-sectional structure along the thickness direction of an alloy flake used for manufacturing the RTB-based sintered magnet of the present invention. It is a schematic diagram of the apparatus used for the strip casting method. It is an enlarged plan view which shows an example of the roll surface of the cooling roll used for manufacture of the alloy flakes of this invention.
  • FIG. 1 is a schematic cross section which shows an example of the cross-sectional structure of the roll surface vicinity of the cooling roll used for manufacture of the alloy flakes of this invention. It is a schematic cross section which shows an example of the cross-sectional structure of the roll surface vicinity of the cooling roll used for manufacture of the alloy flakes of this invention.
  • 2 is an SEM-BEI image (magnification: 350 times) showing an example of a cross section along the thickness direction of an alloy flake used for manufacturing an RTB-based sintered magnet.
  • 3 is an image (magnification: 100 ⁇ ) of one surface of an RTB-based alloy flake used for manufacturing the RTB-based sintered magnet of the present invention by a metallographic microscope.
  • 2 is a plan view schematically showing dendritic crystals contained in an RTB-based alloy flake used for manufacturing an RTB-based sintered magnet of the present invention.
  • 2 is an image (magnification: 1600 times) of a cross section of an RTB-based sintered magnet according to an embodiment of the present invention, taken with a metal microscope. Shows the particle size distribution of particles comprising R 2 T 14 B phase in the R-T-B based sintered magnet according to an embodiment of the present invention. It is the image (magnification: 1600 times) of the cross section in the conventional RTB system sintered magnet by a metal microscope. Shows the particle size distribution of particles comprising R 2 T 14 B phase in the conventional R-T-B based sintered magnet.
  • FIG. 2 is an image (magnification: 100 times) of one surface of an RTB-based alloy flake used in Example 1 with a metallographic microscope.
  • 3 is a metal microscope image (magnification: 100 times) of one surface of an RTB-based alloy flake used in Example 2.
  • FIG. 6 is a SEM-BEI image (magnification: 350 times) of a cross section along the thickness direction of an RTB-based alloy flake used in Example 5.
  • 3 is an image (magnification: 100 times) of one surface of an RTB-based alloy flake used in Comparative Example 1 with a metallographic microscope.
  • FIG. 4 is an image (magnification: 100 ⁇ ) of one surface of an RTB-based alloy flake used in Comparative Example 2 with a metallographic microscope.
  • 4 is an image (magnification: 100 times) of one surface of an RTB-based alloy flake used in Comparative Example 3 with a metallographic microscope.
  • 4 is a SEM-BEI image (magnification: 350 times) of a cross section along the thickness direction of an RTB-based alloy flake used in Comparative Example 3. It is a figure which shows the element map data which painted the triple point area
  • FIG. FIG. 10 is a diagram showing element map data in which a triple point region of an RTB-based sintered magnet of Comparative Example 5 is painted black.
  • FIG. 1 is a perspective view of the RTB-based sintered magnet of the present embodiment.
  • the RTB-based sintered magnet 100 contains R, B, Al, Cu, Zr, Co, O, C, and Fe, and the content ratio of each element is R: 26 to 35 mass%, B: 0.85 to 1.5 mass%, Al: 0.03 to 0.5 mass%, Cu: 0.01 to 0.3 mass%, Zr: 0.03 to 0.5 mass%, Co: 3 mass% % Or less (excluding 0% by mass), O: 0.5% by mass or less, and Fe: 60 to 72% by mass are preferable.
  • R represents a rare earth element
  • T represents a transition element.
  • R may be 25 to 37% by mass and B may be 0.5 to 1.5% by mass in the above-described content ratio.
  • the rare earth element refers to scandium (Sc), yttrium (Y), and lanthanoid elements belonging to Group 3 of the long-period periodic table.
  • lanthanoid elements include lanthanum (La) and cerium.
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho erbium
  • Tm thulium
  • Yb lutetium
  • the RTB-based sintered magnet 100 contains a light rare earth element, but does not substantially contain a heavy rare earth element.
  • the RTB-based alloy flakes having a specific structure are used as a raw material even if they do not substantially contain heavy rare earth elements, the uniformity of the structure is improved, High magnetic properties.
  • the RTB-based sintered magnet 100 preferably includes at least Fe as a transition element (T), and more preferably includes a combination of Fe and a transition element other than Fe.
  • transition elements other than Fe include Co, Cu, and Zr.
  • the RTB-based sintered magnet 100 may include a heavy rare earth element as an impurity derived from the raw material or an impurity mixed during manufacture.
  • the content thereof is preferably 0.01% by mass or less based on the entire RTB-based sintered magnet 100.
  • the upper limit of the content is 0.1% by mass as a range that hardly affects the purpose and effect of the present invention.
  • substantially free of heavy rare earth elements includes the case of containing heavy rare earth elements in an amount equivalent to impurities.
  • the RTB-based sintered magnet 100 contains about 0.001 to 0.5 mass% of inevitable impurities such as Mn, Ca, Ni, Si, Cl, S, and F in addition to the above-described elements. May be. However, the total content of these impurities is preferably less than 2% by mass, and more preferably less than 1% by mass.
  • the content of oxygen in the RTB-based sintered magnet 100 is preferably 300 to 3000 ppm, more preferably 500 to 1500 ppm, from the viewpoint of further increasing the magnetic properties.
  • the content of nitrogen in the RTB-based sintered magnet 100 is 200 to 1500 ppm, more preferably 500 to 1500 ppm.
  • the carbon content in the RTB-based sintered magnet 100 is 500 to 3000 ppm, and more preferably 800 to 1500 ppm.
  • the RTB-based sintered magnet 100 contains particles containing an R 2 T 14 B phase as a main component.
  • the average particle size of these particles is 0.5 to 5 ⁇ m, preferably 2 to 5 ⁇ m, more preferably 2 to 4 ⁇ m.
  • the RTB-based sintered magnet 100 contains particles having a small average particle size as a main component and has a fine structure.
  • the variation in particle size and shape of the particles is extremely small.
  • the RTB-based sintered magnet 100 not only contains particles having a small particle diameter, but also has little variation in particle diameter and shape, so that the uniformity of the structure is sufficiently improved. .
  • the RTB-based sintered magnet 100 of this embodiment has high magnetic characteristics.
  • the average particle size of the particles containing the R 2 T 14 B phase contained in the RTB-based sintered magnet 100 can be determined as follows. After the cut surface of the RTB-based sintered magnet 100 is polished, an image of the polished surface is observed using a metal microscope. Image processing is performed to measure the particle size of each particle, and the arithmetic average value of the measured values is taken as the average particle size.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged part of the cross section of the RTB-based sintered magnet of the present embodiment.
  • the crystal grains 150 in the RTB-based sintered magnet 100 preferably include an R 2 T 14 B phase.
  • the triple point region 140, than R 2 T 14 B phase, the content of R of mass contains a higher phase than R 2 T 14 B phase.
  • the average value of the area of the triple point region 140 in the cross section of the RTB-based sintered magnet 100 is an arithmetic average of 2 ⁇ m 2 or less, preferably 1.9 ⁇ m 2 or less. Further, the standard deviation of the area distribution is 3 or less, preferably 2.6 or less.
  • the area of the triple point region 140 is small. The variation in area is also small. For this reason, both Br and HcJ can be maintained high.
  • the average value of the area of the triple point region 140 in the cross section and the standard deviation of the area distribution can be obtained by the following procedure. First, the RTB-based sintered magnet 100 is cut and the cut surface is polished. An image of the polished surface is observed with a scanning electron microscope. Then, image analysis is performed to determine the area of the triple point region 140. The arithmetic average value of the obtained areas is the average area. The standard deviation of the area of the triple point region 140 can be calculated based on the area of each triple point region 140 and the average value thereof.
  • the rare earth element content in the triple point region 140 is preferably 80 to 99% by mass from the viewpoint of an RTB-based sintered magnet having sufficiently high magnetic properties and sufficiently excellent corrosion resistance. More preferably, it is 85 to 99% by mass or more, and still more preferably 90 to 99% by mass. From the same viewpoint, the rare earth element content in each triple point region 140 is preferably the same. Specifically, the standard deviation of the content distribution of the triple point region 140 in the RTB-based sintered magnet 100 is preferably 5 or less, more preferably 4 or less, and even more preferably 3 It is as follows.
  • R-T-B based sintered magnet 100 includes a dendrite-like crystal grains containing R 2 T 14 B phase, and a grain boundary region including a phase high content of R than R 2 T 14 B phase, the Provided, and is obtained by molding and firing a pulverized product of RTB-based alloy flakes having an average interval interval of 3 ⁇ m or less of the phase having a higher R content than the R 2 T 14 B phase in the cross section. Preferably there is.
  • Such an RTB-based sintered magnet 100 is obtained by using a pulverized product that is sufficiently fine and has a sharp particle size distribution. Therefore, the RTB is composed of fine crystal grains. A system sintered body is obtained.
  • the ratio of the phase having a higher R content than the R 2 T 14 B phase is present not in the pulverized product but in the outer peripheral portion, the R content is higher than that of the sintered R 2 T 14 B phase.
  • the dispersed state of the phase having a high amount tends to be good. For this reason, the structure of the RTB-based sintered body becomes finer and the uniformity is improved. Therefore, the magnetic properties of the RTB-based sintered body can be further enhanced.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged cross-sectional structure along the thickness direction of an RTB-based alloy flake used as a raw material for the RTB-based sintered magnet 100 of the present embodiment.
  • the RTB-based alloy flakes of this embodiment do not contain heavy rare earth elements, and R 2 T 14 B phase crystal grains 2 as the main phase and the R 2 T 14 B phase grain boundary phase are different in composition. 4 is contained.
  • the grain boundary phase 4 contains, for example, an R-rich phase.
  • the R-rich phase is a phase in which the content of R is higher than that of the R 2 T 14 B phase.
  • the RTB-based alloy flake has a crystal nucleus 1 on one surface. Then, the crystal grain 2 including the R 2 T 14 B phase and the grain boundary phase 4 are radially extended from the crystal nucleus 1 toward the other surface. The grain boundary phase 4 is precipitated along the grain boundary of the crystal grains 2 of the columnar R 2 T 14 B phase.
  • the RTB-based alloy flake used in this embodiment has a cross-section along the thickness direction as shown in FIG. 3 in which the R 2 T 14 B phase crystal grains 2 are perpendicular to the thickness direction. It grows substantially uniformly in the thickness direction (vertical direction in FIG. 3) without spreading much in the horizontal direction (FIG. 3). For this reason, the width of the crystal grain 2 of the R 2 T 14 B phase, that is, the length M in the left-right direction is smaller and the variation in the length M is smaller than that of the conventional RTB-based alloy flakes. Yes. Further, the width of the R-rich phase 4, that is, the length in the left-right direction is small, and the variation in the length is small.
  • the RTB-based alloy flake used in the present embodiment has crystal grains 2 in the direction perpendicular to the thickness direction of the RTB-based alloy flake, that is, in the left-right direction in FIG. of one mean value of the surface side of the length of the crystal grain 2 in average and the length of the other surface side (upper side) of the (lower), when the D 1 and D 2, respectively, the following equation (1) Fulfill. 0.9 ⁇ D 2 / D 1 ⁇ 1.1 (1)
  • D 1 , D 2 and D 3 are determined as follows. First, the cross section as shown in FIG. 3 is observed (magnification: 1000 times) by SEM (scanning electron microscope) -BEI (reflection electron image). Then, 15 fields of view are taken for each of the surface side, the other surface side, and the center of the RTB-based alloy flake. In such an image, a straight line is drawn at a position of 50 ⁇ m from one surface to the central portion, a position of 50 ⁇ m from the other surface to the central portion, and the central portion. These straight lines are substantially parallel to one surface and the other surface in a cross section as shown in FIG.
  • D 1 , D 2 , and D 3 can be obtained from the length of the straight line and the number of crystal grains 2 that the straight line crosses.
  • D 3 is an average value of the lengths of the crystal grains 2 at the center in the direction perpendicular to the thickness direction of the RTB-based alloy flakes in the cross section as shown in FIG.
  • D 2 / D 1 satisfies the above formula (1), variation in the width and shape of the crystal grains 2 in the thickness direction is small, and high uniformity
  • D 2 / D 1 preferably satisfies the following formula (4) and more preferably satisfies the following formula (5) from the viewpoint of further increasing the uniformity.
  • the lower limit value of D 2 / D 1 may be 1.0. 0.95 ⁇ D 2 / D 1 ⁇ 1.05 (4) 0.98 ⁇ D 2 / D 1 ⁇ 1.02 (5)
  • the RTB-based alloy flakes used in this embodiment can be manufactured by a strip casting method using a cooling roll, as will be described later.
  • R 2 T 14 B phase crystal nuclei 1 precipitate on the contact surface (casting surface) with the cooling roll.
  • the R 2 T 14 B phase crystal grains 2 grow radially from the cast surface side of the RTB-based alloy flake to the surface (free surface) side opposite to the cast surface. Therefore, in the RTB-based alloy flakes shown in FIG. 3, the lower surface is the casting surface.
  • D 1 is the average length of the crystal grain 2 of the casting surface
  • D 2 is the average length of the crystal grain 2 free side.
  • D 1 , D 2 and D 3 are, for example, 1 to 4 ⁇ m, preferably 1.4 to 3.5 ⁇ m, and more preferably 1.5 to 3.2 ⁇ m. If D 1 , D 2 , and D 3 are excessive, it tends to be difficult to sufficiently refine the alloy powder obtained by pulverization. On the other hand, RTB-based alloy flakes having an excessively small D 1 , D 2 , and D 3 while maintaining the shape of crystal grains generally tend to be difficult to manufacture.
  • the length of the average value and the maximum value respectively grains 2 to the thickness direction in the direction perpendicular to the D AVE and D MAX
  • D AVE is an average value of D 1 , D 2 , and D 3 obtained from the observation result of the above-described SEM-BEI image (magnification: 1000 times), and D MAX is one surface side, This is the value of the image in which the length of the crystal grain 2 is the maximum, out of a total of 45 images taken with 15 fields of view on the other surface side and the center part.
  • the above formula (2) defines that the size (width) of the crystal grain 2 is in a predetermined range
  • the above formula (3) shows that the variation in the size (width) of the crystal grain 2 is predetermined. It stipulates that it is within the range.
  • the RTB-based alloy flakes satisfying the formulas (2) and (3) have finer crystal grains 2 with sufficiently reduced variations in shape and size, finer shapes, and shapes and sizes. It is composed of an R-rich phase 4 with sufficiently reduced variation. Therefore, by using an alloy powder obtained by pulverizing such RTB-based alloy flakes, segregation of the R-rich phase is further suppressed, and the RTB-based sintering is further improved in the uniformity of the microstructure. A magnet can be obtained.
  • D AVE preferably satisfies the following formula (6).
  • D MAX satisfies the following formula (7).
  • DAVE preferably satisfies the following formula (8).
  • D MAX preferably satisfies the following formula (9). 1.5 ⁇ m ⁇ D AVE ⁇ 2.4 ⁇ m (8) 2.0 ⁇ m ⁇ D MAX ⁇ 3.0 ⁇ m (9)
  • the number ratio of the R-rich phase 4 whose length in the direction perpendicular to the thickness direction is 1.5 ⁇ m or less with respect to the entire R-rich phase 4 which is a phase having a high rare earth element concentration is preferably 90 % Or more, more preferably 93% or more, and still more preferably 95% or more.
  • a higher coercive force can be obtained.
  • An RTB-based sintered magnet can be obtained.
  • the width M of the columnar crystal grains 2 of the RTB-based alloy flakes having a cross section as shown in FIG. 3 is the temperature of the molten metal, the surface state of the cooling roll, the material of the cooling roll, the temperature of the roll surface, the cooling roll It can be adjusted by changing the rotation speed, cooling temperature, and the like.
  • the RTB-based sintered magnet 100 of the present embodiment can be manufactured by the following procedure.
  • the manufacturing method of the RTB-based sintered magnet 100 includes a melting step of preparing a molten alloy of the RTB-based alloy, and pouring the molten alloy on the roll surface of a cooling roll that rotates in the circumferential direction.
  • a forming step of forming an alloy powder to produce a formed body, and a firing step of firing the formed body to obtain an RTB-based sintered magnet is a melting step of preparing a molten alloy of the RTB-based alloy, and pouring the molten alloy on the roll surface of a cooling roll that rotates in the circumferential direction.
  • a raw material containing at least one kind of rare earth metal, rare earth alloy, pure iron, ferroboron, and these alloys and not containing a heavy rare earth element is introduced into a high-frequency melting furnace.
  • the raw material is heated to 1300 to 1500 ° C. to prepare a molten alloy.
  • FIG. 4 is a schematic view of an apparatus used in the cooling process of the strip cast method.
  • the molten alloy 12 prepared in the high frequency melting furnace 10 is transferred to the tundish 14.
  • molten alloy is poured from the tundish 14 onto the roll surface of the cooling roll 16 rotating at a predetermined speed in the direction of arrow A.
  • the molten alloy 12 comes into contact with the roll surface 17 of the cooling roll 16 and is removed by heat exchange.
  • crystal nuclei are generated in the molten alloy 12 and at least a part of the molten alloy 12 is solidified.
  • an R 2 T 14 B phase (melting temperature of about 1100 ° C.) is first generated, and then at least a part of the R rich phase (melting temperature of about 700 ° C.) is solidified.
  • These crystal precipitations are affected by the structure of the roll surface 17 with which the molten alloy 12 contacts.
  • the roll surface 17 of the cooling roll 16 it is preferable to use a roll having a concavo-convex pattern composed of a mesh-shaped concave portion and a convex portion formed by the concave portion.
  • FIG. 5 is an enlarged schematic view showing a part of the roll surface 17 in a planar shape.
  • the roll surface 17 is formed with a mesh-like groove, which forms a concavo-convex pattern.
  • the roll surface 17 is substantially divided into a plurality of first recesses 32 arranged at a predetermined interval a along the circumferential direction (direction of arrow A) of the cooling roll 16 and the first recesses 32.
  • a plurality of second recesses 34 that are orthogonal and parallel to the axial direction of the cooling roll 16 and arranged at a predetermined interval b are formed.
  • the 1st recessed part 32 and the 2nd recessed part 34 are substantially linear grooves, and have a predetermined depth.
  • a convex portion 36 is formed by the first concave portion 32 and the second concave portion 34.
  • the average value of the intervals a and b is preferably 40 to 100 ⁇ m. If this average value becomes too large, the number of crystal nuclei generated during cooling decreases, and it tends to be difficult to obtain crystal grains having a sufficiently small width M. On the other hand, it is not easy to form the concave portions 32 and 34 having an average value of 40 ⁇ m or less.
  • the surface roughness Rz of the roll surface 17 is preferably 3 to 5 ⁇ m, more preferably 3.5 to 5 ⁇ m, and further preferably 3.9 to 4.5 ⁇ m.
  • Rz becomes excessive the thickness of the flakes tends to fluctuate and the variation in cooling rate tends to increase.
  • Rz becomes excessively small the adhesiveness between the molten alloy and the roll surface 17 becomes insufficient.
  • the alloy flakes tend to peel off faster than the target time. In this case, the heat removal from the molten alloy does not proceed sufficiently, and the molten alloy moves to the secondary cooling section. For this reason, the alloy flakes tend to stick to each other in the secondary cooling section.
  • the surface roughness Rz in this specification is a ten-point average roughness, and is a value measured according to JIS B 0601-1994. Rz can be measured using a commercially available measuring device (Surf Test manufactured by Mitutoyo Corporation).
  • the angle ⁇ formed by the first recess 32 and the second recess 34 is preferably 80 to 100 °, more preferably 85 to 95 °.
  • FIG. 6 is a schematic cross-sectional view showing an enlarged cross section taken along line VI-VI in FIG. That is, FIG. 5 is a schematic cross-sectional view showing a part of the cross-sectional structure when the cooling roll 16 is cut by a plane passing through the axis and parallel to the axial direction.
  • the height h1 of the convex portion 36 is obtained as the shortest distance between the straight line L1 passing through the bottom of the first concave portion 32 and parallel to the axial direction of the cooling roll 16 and the apex of the convex portion 36 in the cross section shown in FIG. be able to.
  • the interval w1 between the convex portions 36 can be obtained as the distance between the apexes of the adjacent convex portions 36 in the cross section shown in FIG.
  • FIG. 7 is a schematic cross-sectional view showing an enlarged cross section along the line VII-VII in FIG. That is, FIG. 7 is a schematic cross-sectional view showing a part of the cross-sectional structure when the cooling roll 16 is cut along a plane parallel to the side surface.
  • the height h2 of the convex portion 36 is obtained as the shortest distance between the straight line L2 passing through the bottom of the second concave portion 34 and perpendicular to the axial direction of the cooling roll 16 and the apex of the convex portion 36 in the cross section shown in FIG. be able to.
  • the interval w2 between the convex portions 36 can be obtained as the distance between the apexes of the adjacent convex portions 36 in the cross section shown in FIG.
  • the average value H of the heights of the convex portions 36 and the average value W of the intervals between the convex portions 36 are obtained as follows.
  • the height h1 and the height h2 of the arbitrarily selected convex portion 36 are each measured at 100 points. At this time, only those whose heights h1 and h2 are 3 ⁇ m or more are measured, and those whose height is less than 3 ⁇ m are not included in the data.
  • the arithmetic average value of the measurement data of a total of 200 points is set as the average value H of the height of the convex portion 36.
  • the uneven pattern of the roll surface 17 can be prepared by processing the roll surface 17 with a short wavelength laser, for example.
  • the average value H of the heights of the convex portions 36 is preferably 7 to 20 ⁇ m. Thereby, the molten alloy can be sufficiently permeated into the recesses 32 and 34, and the adhesion between the molten alloy 12 and the roll surface 17 can be sufficiently increased.
  • the upper limit of the average value H is more preferably 16 ⁇ m and even more preferably 14 ⁇ m from the viewpoint of allowing the molten alloy to more fully penetrate the recesses 32 and 34.
  • the lower limit of the average value H is more preferable from the viewpoint of obtaining crystals of the R 2 T 14 B phase oriented more uniformly in the thickness direction of the alloy flakes while sufficiently increasing the adhesion between the molten alloy and the roll surface 17. Is 8.5 ⁇ m, more preferably 8.7 ⁇ m.
  • the average value W of the interval between the convex portions 36 is 40 to 100 ⁇ m.
  • the upper limit of the average value W is preferably 80 ⁇ m, more preferably 70 ⁇ m, and still more preferably from the viewpoint of obtaining a magnet powder having a small particle size by further reducing the width of the columnar crystals of the R 2 T 14 B phase. 67 ⁇ m.
  • the lower limit of the average value W is preferably 45 ⁇ m, more preferably 48 ⁇ m. As a result, an RTB-based sintered magnet having higher magnetic characteristics can be obtained.
  • the cooling roll 16 having the roll surface 17 as shown in FIGS. 5 to 7 since the cooling roll 16 having the roll surface 17 as shown in FIGS. 5 to 7 is used, when the molten alloy 12 is poured onto the roll surface 17 of the cooling roll 16, the molten alloy 12 is first convex. The part 36 is contacted. Crystal nuclei 1 are generated at the contact portions, and columnar crystals 2 of the R 2 T 14 B phase grow from the crystal nuclei 1 as a starting point. By generating a large number of such crystal nuclei 1 and increasing the number of crystal nuclei 1 per unit area, it is possible to suppress the columnar crystal 2 from growing along the roll surface 17.
  • the roll surface 17 of the cooling roll 16 has convex portions 36 having a predetermined height and arranged at predetermined intervals.
  • a large number of crystal nuclei 1 of the R 2 T 14 B phase are generated on the roll surface 17, and then columnar crystals 2 grow radially starting from the crystal nuclei 1.
  • the growth of the columnar crystal 2 in the thickness direction of the RTB-based alloy flake is promoted, and the R 2 T 14 B phase columnar crystal 2 having a small width and a small variation in width and shape,
  • the R-rich phase 4 is formed which is fine and has a sufficiently reduced variation in shape and size.
  • the cooling rate can be controlled, for example, by adjusting the temperature and flow rate of the cooling water flowing through the inside of the cooling roll 16. In addition, the cooling rate can be adjusted by changing the material of the roll surface 17 of the cooling roll 16.
  • the cooling rate is preferably from 1000 to 3000 ° C./second, more preferably from 1500 to 2500 ° C./second, from the viewpoint of suppressing the occurrence of heterogeneous phases while making the structure of the obtained alloy flakes sufficiently fine.
  • the cooling rate is less than 1000 ° C./second, the ⁇ -Fe phase tends to precipitate, and when the cooling rate exceeds 3000 ° C./second, chill crystals tend to precipitate.
  • a chill crystal is an isotropic fine crystal having a particle size of 1 ⁇ m or less. When a large amount of chill crystals are produced, the magnetic properties of the RTB-based sintered magnet finally obtained tend to be impaired.
  • secondary cooling may be performed by cooling with a gas blowing method or the like.
  • the secondary cooling method is not particularly limited, and a conventional cooling method can be employed.
  • the gas piping 19 which has the gas blowing hole 19a is provided, and the aspect which sprays the cooling gas from this gas blowing hole 19a to the alloy flakes deposited on the rotary table 20 rotating in the circumferential direction is mentioned.
  • the alloy flakes 18 can be sufficiently cooled.
  • the alloy flakes are recovered after being sufficiently cooled by the secondary cooling unit 20. In this way, an RTB-based alloy flake having a cross-sectional structure as shown in FIG. 2 can be manufactured.
  • the thickness of the RTB-based alloy flakes of this embodiment is preferably 0.5 mm or less, more preferably 0.1 to 0.5 mm.
  • the thickness of the alloy flake becomes too large, the structure of the crystal grains 2 becomes coarse due to the difference in cooling rate, and the uniformity tends to be impaired. Further, it becomes possible and the structure near the surface opposite (free surface) is different from the structure and the casting surface near the surface of the roll side of the alloy flake (casting surface), the difference D 1 and D 2 is increased tendency It is in.
  • FIG. 8 is an SEM-BEI image showing a cross section of the RTB-based alloy flake along the thickness direction.
  • FIG. 8A is a SEM-BEI image (magnification: 350 times) showing a cross section along the thickness direction of the RTB-based alloy flakes of this embodiment.
  • FIG. 8B is an SEM-BEI image (magnification: 350 times) showing a cross section of the conventional RTB-based alloy flake along the thickness direction.
  • the lower surface of the RTB-based alloy flake is a contact surface (cast surface) with the roll surface.
  • the dark color portion is the R 2 T 14 B phase
  • the light color portion is the R rich phase.
  • the conventional RTB-based alloy flakes have fewer R 2 T 14 B phase crystal nucleus precipitates than FIG. 8A.
  • the R 2 T 14 B phase crystal grows not only in the vertical direction but also in the horizontal direction. For this reason, the length (width) of the crystal grains of the R 2 T 14 B phase in the direction perpendicular to the thickness direction is larger than that in FIG. If the RTB-based alloy flakes have such a structure, it is impossible to obtain a fine alloy powder with excellent shape and size uniformity.
  • FIG. 9 is a metal microscope image (magnification: 100 times) of one surface of an RTB-based alloy flake. As shown in FIG. 9, one surface of the RTB-based metal flakes in the manufacturing method of the present embodiment is composed of a large number of petal-like dendritic crystals containing an R 2 T 14 B phase. FIG. 9 is a metal microscope image of the surface of the RTB-based alloy flake taken from the side having the crystal nucleus 1 in FIG.
  • FIG. 10 is a plan view schematically showing an enlarged dendrite-like crystal constituting one surface of the RTB-based alloy flake.
  • the dendrite-like crystal 40 has a crystal nucleus 1 in the center and filler-like crystal grains 2 extending radially from the crystal nucleus 1 as a starting point.
  • the width P of the dendrite-like crystal 40 is obtained as the maximum distance in the distance between the end portions of two different filler-like crystal grains 2. Usually, this width P is the distance between the ends of the two filler-like crystal grains 2 that are substantially opposed to each other with the crystal nucleus 1 therebetween.
  • the average value of the width P of the dendritic crystal 40 is determined as follows. In an image obtained by enlarging one surface of the metal foil piece 200 times with a metal microscope, 100 dendrite crystals 40 are arbitrarily selected, and the width P of each dendrite crystal 40 is measured. The arithmetic average value of these measured values is the average value of the width P of the dendritic crystal 40.
  • the average value of the width P of the dendritic crystal 40 is preferably 60 ⁇ m or less, and more preferably 25 to 60 ⁇ m.
  • the upper limit of the average value of the width P is preferably 55 ⁇ m, more preferably 50 ⁇ m, and even more preferably 48 ⁇ m. Thereby, the dendrite-like crystal 40 becomes small, and a finer alloy powder can be obtained.
  • the lower limit of the average value of the width P is preferably 30 ⁇ m, more preferably 35 ⁇ m, and still more preferably 38 ⁇ m. This further promotes the growth of the R 2 T 14 B phase in the thickness direction of the alloy flakes. Therefore, an alloy powder having a small particle size and a small variation in particle size can be obtained.
  • the surface of the RTB-based alloy flake shown in FIG. 9 has a larger number of crystal nuclei 1 per unit area on the surface than the surface of the conventional RTB-based alloy flake, and a dendrite-like crystal.
  • the width P of 40 is small.
  • the interval M between the filler-like crystal grains 2 constituting the dendritic crystal 40 is small, and the size of the filler-like crystal grains 2 is also small. That is, the surface of the RTB-based alloy flakes of this embodiment is composed of dendritic crystals 40 that are fine and have reduced size variations. Thus, the uniformity of the dendrite-like crystal 40 is greatly improved.
  • variations in the length S and the width Q of the filler-like crystal grains 2 on the surface of the RTB-based alloy flakes are greatly reduced.
  • the dendrite-like crystal 40 is continuous in one direction as a whole, forming a crystal group.
  • the average value of the aspect ratio (C2 / C1) of the crystal group is preferably 0.7. 1.0 to 1.0, more preferably 0.8 to 0.98, and still more preferably 0.88 to 0.97.
  • the width of the dendrite-like crystal 40 within the above-mentioned range, it is possible to obtain an alloy flake that is finer and in which the R-rich phase is uniformly dispersed. Therefore, an alloy powder having a small particle size and small variations in particle size and shape can be obtained.
  • the average aspect ratio in this specification is determined as follows. In an image obtained by enlarging one surface of a metal foil piece 200 times with a metal microscope, 100 crystal groups are arbitrarily selected, and the major axis length C1 and minor axis length C2 of each crystal group are respectively set. taking measurement. The arithmetic average value of the crystal group ratio (C2 / C1) is the average aspect ratio.
  • the number of crystal nuclei 1 of dendritic crystals is 500 or more per 1 mm square, preferably 600 or more, more preferably 700 or more. More preferably, it is 763 or more. Since a large number of crystal nuclei 1 are generated in this way, the size per crystal nucleus is reduced, and an RTB-based alloy flake having a fine structure can be obtained.
  • the RTB-based alloy flakes used in this embodiment may have at least one surface having the above-described structure. If at least one surface has the above-described structure, an alloy powder having a small particle size and an R-rich phase uniformly dispersed can be obtained.
  • the pulverization method in the pulverization step is not particularly limited.
  • the pulverization may be performed in the order of coarse pulverization and fine pulverization, for example.
  • the coarse pulverization is preferably performed in an inert gas atmosphere using, for example, a stamp mill, a jaw crusher, a brown mill, or the like.
  • hydrogen occlusion and pulverization may be performed after occluding hydrogen.
  • coarse pulverization an alloy powder having a particle size of about several hundred ⁇ m can be prepared.
  • the alloy powder prepared by coarse pulverization is finely pulverized using a jet mill or the like, for example, until the average particle diameter becomes 1 to 5 ⁇ m. Note that the pulverization of the alloy flakes is not necessarily performed in two stages of coarse pulverization and fine pulverization, and may be performed in one stage.
  • the part of the grain boundary phase 4 such as the R-rich phase of the alloy flakes is preferentially broken.
  • the particle size of the alloy powder depends on the interval between the grain boundary phases 4.
  • the alloy flakes used in the manufacturing method of the present embodiment have a smaller variation in the width of crystal grains of the R 2 T 14 B phase than in the prior art. An alloy powder with sufficiently reduced variation can be obtained.
  • the alloy powder is formed in a magnetic field to obtain a formed body. Specifically, first, the alloy powder is filled in a mold disposed in an electromagnet. Thereafter, the magnetic field is applied by an electromagnet to pressurize the alloy powder while orienting the crystal axes of the alloy powder. In this manner, molding is performed in a magnetic field to produce a molded body.
  • the molding in the magnetic field may be performed, for example, at a pressure of about 0.7 to 1.5 ton / cm 2 in a magnetic field of 12.0 to 17.0 kOe.
  • Firing process In the firing step, a molded body obtained by molding in a magnetic field is fired in a vacuum or an inert gas atmosphere to obtain a sintered body.
  • Firing conditions are preferably set as appropriate according to conditions such as composition, pulverization method, and particle size.
  • the firing temperature can be 1000 to 1100 ° C.
  • the firing time can be 1 to 5 hours.
  • the RTB-based sintered magnet obtained by the manufacturing method of the present embodiment uses a highly uniform alloy powder containing an R 2 T 14 B phase crystal and an R rich phase, it is more than conventional. A uniform RTB-based sintered magnet can be obtained. For this reason, according to the manufacturing method of the present embodiment, it is possible to manufacture an RTB-based sintered magnet having a sufficiently high coercive force while maintaining the residual magnetic flux density.
  • the aging treatment can be performed, for example, in two stages, and it is preferable to perform the aging treatment under two temperature conditions near 800 ° C. and 600 ° C. When an aging treatment is performed under such conditions, a particularly excellent coercive force tends to be obtained.
  • the RTB-based sintered magnet contains an R 2 T 14 B phase as a main phase and an R-rich phase as a different phase.
  • This RTB-based sintered magnet is obtained by using an alloy powder having a small variation in shape and particle size, so that the uniformity of the structure is improved and a sufficiently excellent coercive force is obtained. Have.
  • FIG. 11 is an image (magnification: 1600 times) of a cross section of the RTB-based sintered magnet of the present embodiment, taken with a metal microscope.
  • FIG. 12 is a view showing the particle size distribution of particles containing the R 2 T 14 B phase in the RTB-based sintered magnet of the present embodiment.
  • FIG. 13 is an image (magnification: 1600 times) of a cross section of a conventional RTB-based sintered magnet taken with a metal microscope.
  • FIG. 14 is a graph showing the particle size distribution of particles containing an R 2 T 14 B phase in a conventional RTB-based sintered magnet.
  • the RTB-based sintered magnet of this embodiment shown in FIGS. 11 and 12 has a finer structure than the conventional one, and the particle size and shape uniformity are improved. By having such a structure, even if Dy is not substantially included, high magnetic properties, particularly high coercive force, are realized.
  • FIG. 15 is an explanatory diagram showing the internal structure of the motor according to the preferred embodiment.
  • a motor 200 shown in FIG. 15 is a permanent magnet synchronous motor (SPM motor 200), and includes a cylindrical rotor 120 and a stator 130 disposed inside the rotor 120.
  • the rotor 120 includes a cylindrical core 122 and a plurality of RTB-based sintered magnets 110 so that N poles and S poles alternate along the inner peripheral surface of the cylindrical core 122.
  • the stator 130 has a plurality of coils 132 provided along the outer peripheral surface.
  • the coil 132 and the RTB-based sintered magnet 110 are arranged to face each other.
  • the RTB-based sintered magnet 110 has the same composition and structure as the RTB-based sintered body 100 described above.
  • the SPM motor 200 includes the RTB-based sintered magnet 110 according to the above embodiment in the rotor 120.
  • the RTB-based sintered magnet 110 has both high magnetic properties and excellent corrosion resistance at a high level. Therefore, the SPM motor 200 including the RTB-based sintered magnet 110 can continuously exhibit a high output over a long period.
  • the present invention is not limited to the above embodiment.
  • the above-mentioned RTB-based alloy flakes have crystal nuclei 1 of the R 2 T 14 B phase only on one side, but the crystal nuclei 1 are the same as the RTB-based alloy flakes. You may have also on the other surface. In this case, both surfaces have crystal nuclei 1 as shown in FIG. 3, and crystal grains 2 of the R 2 T 14 B phase extend radially from the respective crystal nuclei 1 along the thickness direction.
  • the RTB-based alloy flakes having crystal nuclei 1 on both sides can be obtained by a twin roll casting method in which the two cooling rolls having the above-mentioned uneven pattern are arranged and the molten alloy is poured between them. it can.
  • Example 1 Preparation of alloy flakes> Using the alloy flake manufacturing apparatus as shown in FIG. 4, the strip casting method was performed in the following procedure. First, raw material compounds of the respective constituent elements are blended so that the composition of the alloy flakes is the ratio (mass%) of the elements shown in Table 1, and heated to 1300 ° C. in the high-frequency melting furnace 10 to obtain RTB. A molten alloy 12 having a system composition was prepared. This molten alloy 12 was poured onto a roll surface 17 of a cooling roll 16 rotating at a predetermined speed through a tundish. The cooling rate of the molten alloy 12 on the roll surface 17 was 1800 to 2200 ° C./second.
  • the roll surface 17 of the cooling roll 16 includes a linear first recess 32 extending along the rotation direction of the cooling roll 16 and a linear second recess 34 orthogonal to the first recess 32. Had an uneven pattern.
  • the average height H of the convex portions 36, the average value W of the intervals between the convex portions 36, and the surface roughness Rz were as shown in Table 2, respectively. Note that a measurement device (trade name: Surf Test) manufactured by Mitutoyo Corporation was used for measuring the surface roughness Rz.
  • the alloy flakes obtained by cooling with the cooling roll 16 were further cooled by the secondary cooling section 20 to obtain alloy flakes having an RTB-based composition.
  • the composition of the alloy flakes was as shown in Table 1.
  • SEM-BEI images of a cross section along the thickness direction of the alloy flakes were taken for each of 15 fields of view on the casting surface side, the free surface side and the central portion, and a total of 45 SEM-BEI images (magnification: 1000). Times). Then, using these images, a straight line of 0.15 mm was drawn at a position of 50 ⁇ m from the casting surface to the central portion side, a position of 50 ⁇ m from the free surface to the central portion side, and a central portion, respectively. D 1 , D 2 and D 3 were determined from the length of this straight line and the number of crystal grains crossed by this straight line.
  • D 1 is the average value of the crystal grain length on the casting surface side in the direction perpendicular to the thickness direction
  • D 2 is the average value of the crystal grain length on the free surface side in the direction perpendicular to the thickness direction
  • D 3 is an average value of the lengths of the crystal grains in the center in the direction perpendicular to the thickness direction.
  • D MAX the value of the image in which the crystal grain length was the maximum was defined as D MAX .
  • the cast surface of the alloy flakes is observed with a metallographic microscope, the average value of the width P of the dendritic crystals, the ratio of the minor axis length C2 to the major axis length C1 of the dendritic crystal group (aspect ratio), The area occupancy of the R 2 T 14 B phase crystal with respect to the entire visual field, and the number of crystal nuclei of dendritic crystals per unit area (1 mm 2 ) were examined. These results are shown in Table 3.
  • the area occupancy of the R 2 T 14 B phase crystal is the area ratio of the dendritic crystal to the entire image in the metal microscope image on the casting surface of the RTB-based alloy flake.
  • dendritic crystals correspond to white portions.
  • the average value of the aspect ratio is an arithmetic average value of the ratio (C2 / C1) in 100 arbitrarily selected crystal groups.
  • Examples 2 to 6, Examples 15 to 17 By processing the roll surface of the cooling roll, the average value H of the convex portions, the average value W of the convex portion intervals, and the surface roughness Rz are changed as shown in Table 2, and the RTB-based alloy Except for changing the structure of the flakes as shown in Tables 2 and 3, RTB-based sintered magnets of Examples 2 to 6 and Examples 15 to 17 were produced and evaluated in the same manner as Example 1. Went. These results are shown in Table 3.
  • FIG. 16 is a metal microscope image (magnification: 100 times) of one surface of the RTB-based alloy flake used in Example 1.
  • FIG. 17 is a metal microscope image (magnification: 100 times) of one surface of the RTB-based alloy flake used in Example 2. From these metal microscope images, the RTB-based alloy flakes used in each example have dendritic R 2 T 14 B phase crystal grains on the surface, and many crystal nuclei are generated. It was confirmed that FIG. 16 shows the major axis length C1 and the minor axis length C2 of the crystal group of dendritic crystals. The ratio of C2 to C1 is the aspect ratio. Table 3 shows the arithmetic average value of this aspect ratio.
  • FIG. 18 is a SEM-BEI image of a cross section along the thickness direction of the RTB-based alloy flakes of Example 5 (magnification: 350 times).
  • FIG. 11 is an optical microscope image of a cross section of the RTB-based sintered magnet of Example 5
  • FIG. 12 is a graph showing the particle size distribution of R 2 T 14 B phase particles in the cross section. is there.
  • FIGS. 11 and 12 it was confirmed that the crystal grain size of the RTB-based sintered magnet of Example 5 was sufficiently small and there was little variation in the grain size and shape. This is because, as shown in FIG.
  • the RTB-based alloy containing R 2 T 14 B phase crystal grains in which the expansion in the direction perpendicular to the thickness direction is suppressed is due to the use of flakes. That is, by using such RTB-based alloy flakes, variation in the particle size and shape of the alloy powder obtained by pulverization is sufficiently small. A sintered magnet can be obtained.
  • Examples 7 to 14 and Examples 18 to 22 The roll surface of the cooling roll is processed, and the average value of the heights of the protrusions, the average value of the intervals between the protrusions, and the surface roughness Rz are changed as shown in Table 2, and the raw material is changed to change the alloy flakes.
  • the RTB-based sintered magnets of Examples 7 to 14 and Examples 18 to 22 were produced and evaluated in the same manner as in Example 1 except that the composition was changed as shown in Table 1. . These results are shown in Table 3.
  • Comparative Example 1 Except for changing the structure of the RTB-based alloy flake as shown in Tables 2 and 3 using a cooling roll having only a linear first recess extending in the roll rotation direction on the roll surface. In the same manner as in Example 1, an RTB-based alloy flake of Comparative Example 1 was obtained. These cooling rolls did not have the second recess. In addition, the average value H of the convex part height of these cooling rolls, the average value W of the convex part space
  • the cross-sectional structure in the vicinity of the roll surface was determined by observing with a scanning electron microscope on the cut surface when the cooling roll was cut along a plane parallel to the axial direction through the axis of the cooling roll.
  • the average value H of the heights of the convex portions is an arithmetic average value of the heights of 100 convex portions
  • the average value W of the intervals between the convex portions is a value obtained by measuring the interval between adjacent convex portions at 100 different points. Is the arithmetic mean of
  • Example 3 In the same manner as in Example 1, the alloy flakes of Comparative Example 1 were evaluated. In the same manner as in Example 1, the RTB-based sintered magnet of Comparative Example 1 was produced and evaluated. These results are shown in Table 3.
  • Example 2 Comparative Examples 2 and 3 Example 1 except that the roll surface of the cooling roll was processed and the average height H of the convex portions, the average value W of the convex portion intervals, and the surface roughness Rz were changed as shown in Table 2. Similarly, RTB-based sintered magnets of Comparative Examples 2 and 3 were produced and evaluated. These results are shown in Table 3.
  • FIGS. 19, 20, and 21 are images (magnification: 100 times) of one surface of the RTB-based alloy flakes used in Comparative Examples 1, 2, and 3 using a metallographic microscope.
  • FIG. 22 is an SEM-BEI image (magnification: 350 times) of a cross section along the thickness direction of the RTB-based alloy flake used in Comparative Example 3. From the images of the metallographic microscopes of FIGS. 19 to 21, no dendritic crystal grains are formed on the surface of the RTB-based alloy flakes used in the comparative example, or individual crystals are formed even if they are formed. It was confirmed that the crystal nuclei were large and non-uniform.
  • the RTB-based sintered magnets of Examples 1 to 22 have excellent coercive force even when they do not substantially contain heavy rare earth elements such as Dy, Tb, and Ho. Thus, it was confirmed to have a coercive force equivalent to that of Comparative Example 4 containing Dy.
  • FIG. 23 is a diagram showing element map data in which the triple point region is blacked out in the rare earth sintered magnet of Example 10.
  • FIG. 24 is a diagram showing element map data in which the triple point region of the RTB-based sintered magnet of Comparative Example 5 is painted black.
  • Example 4 image analysis was performed like Example 10, and the average value of the area of the triple point area
  • Example 10 has a higher RTc— A B sintered magnet was obtained. This is because the RTB-based sintered magnet of Example 10 not only has a fine grain size but also has a uniform grain size and shape, and therefore segregates in the triple point region. This is thought to be due to the suppression of
  • an RTB-based sintered magnet having a sufficiently excellent coercive force and a manufacturing method thereof without using an expensive and rare heavy rare earth element.
  • SYMBOLS 1 Crystal nucleus, 2 ... Crystal grain (columnar crystal), 4 ... Grain boundary phase (R rich phase), 10 ... High frequency melting furnace, 12 ... Molten alloy, 14 ... Tundish, 16 ... Cooling roll, 17 ... Roll surface 18 ... Alloy flakes, 19 ... Gas piping, 19a ... Gas blowing holes, 20 ... Tables, 32, 34 ... Recesses, 36 ... Projections, 40 ... Dendritic crystals, 100, 100 ... RTB-based sintering Magnet, 120 ... rotor, 122 ... core, 130 ... stator, 132 ... coil, 140 ... triple point region, 150 ... crystal grain, 200 ... motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)

Abstract

 R14B相の結晶粒を含有するR-T-B系合金薄片を用いて得られる、R14B相を含有する粒子を含むR-T-B系焼結磁石100であって、R-T-B系合金薄片は、厚み方向に沿った断面において、結晶粒が結晶核から放射状に延びており、厚み方向とは垂直な方向における結晶粒の一方の面側の長さの平均値及び当該面とは反対側の他方の面側の長さの平均値を、それぞれD及びDとしたとき、下記式(1)を満たし、粒子の平均粒径が0.5~5μmであり、重希土類元素を実質的に含有しないR-T-B系焼結磁石100である。 0.9≦D/D≦1.1 (1)

Description

R-T-B系焼結磁石及びその製造方法、並びに回転機
 本発明は、R-T-B系焼結磁石及びその製造方法、並びに回転機に関する。
 様々な分野で用いられる駆動モータは、設置スペース低減とコスト低減を図るため、小型化及び軽量化とともに効率を向上することが要請されている。このような要請に伴って、例えば駆動モータに用いられる焼結磁石の磁気特性を一層向上することが可能な技術が求められている。
 高い磁気特性を有する焼結磁石としては、従来からR-T-B系の希土類焼結磁石が活用されてきた。このR-T-B系焼結磁石は、異方性磁界Hの大きいDy及びTb等の重希土類金属を用いて磁気特性を向上することが試みられてきた。ところが、昨今の希土類金属の原料の価格高騰に伴って、高価な重希土類元素の使用量を低減することが強く望まれている。このような事情の中、R-T-B系焼結磁石の組織を微細化して磁気特性を改善することが試みられている。
 ところで、R-T-B系焼結磁石は、粉末冶金法によって製造される。粉末冶金法による製造方法では、まず、原料を溶解して鋳造し、R-T-B系合金を含む合金薄片を得る。次に、この合金薄片を粉砕して、数μm~数十μmの粒径を有する合金粉末を調製する。次に、この合金粉末を成形して焼結し、焼結体を作製する。その後、得られた焼結体を所定の寸法に加工する。耐食性を向上させるために、必要に応じて焼結体にメッキ処理を施してメッキ層を形成してもよい。このようにして、R-T-B系焼結磁石を得ることができる。
 上述の製造方法において、原料の溶解及び鋳造は、通常、ストリップキャスト法によって行う。ストリップキャスト法は、合金溶湯を冷却ロールで冷却して合金薄片を調製する方法である。R-T-B系焼結磁石の磁気特性の向上を目的として、上述のストリップキャスト法における冷却速度を調整して合金組織を制御する試みがなされている。例えば、特許文献1では、ストリップキャスト法によって、所定の粒径を有するチル晶、粒状結晶、及び柱状結晶からなる合金薄片を得ることが提案されている。
特許第3693838号明細書
 しかしながら、特許文献1のような合金薄片では、合金薄片を粉砕して得られる合金粉末の形状やサイズのばらつきが大きい。このような合金粉末を用いて焼結磁石を作製しても、合金粉末の形状や大きさが不均一であるため、磁気特性を大幅に向上することは困難である。このため、R-T-B系焼結磁石の磁気特性をさらに向上可能な技術を確立することが求められている。
 ここで、焼結磁石の保磁力(HcJ)及び残留磁束密度(Br)は、それぞれ下記式(I)、(II)で表わされる関係が成立する。
 HcJ=α・H-N・Ms   (I)
 Br=Ms・(ρ/ρ)・f・A  (II)
 式(I)中、αは結晶粒子の独立性を示す係数であり、Hは組成に依存する異方性磁界を示し、Nは形状等に依存する局所的反磁界を示し、Msは主相の飽和磁化を示す。また、式(II)中、Msは主相の飽和磁化を、ρは焼結密度を、ρは真密度を、fは主相の体積比率を、Aは主相の配向度をそれぞれ示す。これらの係数のうち、H、Ms及びfは、焼結磁石の組成に依存し、Nは焼結磁石の形状に依存する。上記式(I)から明らかなように、上記式(I)のαを大きくすれば保磁力を向上することができる。このことから、焼結磁石用の成形体に用いる合金粉末の構造を制御すれば、保磁力を向上させることができる。一方で、資源の制約や製造コストの観点から、重希土類元素を用いなくても高い磁気特性を実現することが可能なR-T-B系焼結磁石が求められている。
 本発明は、上記事情に鑑みてなされたものであり、高価で希少な重希土類元素を使用しなくても、十分に優れた保磁力を有するR-T-B系焼結磁石、及びその製造方法を提供することを目的とする。
 本発明者らは、R-T-B系焼結磁石の磁気特性の向上を図るため、合金薄片の構造に着目して種々検討を重ねた。その結果、合金薄片の組織を微細化するとともに均一性を向上することによって、最終的に得られるR-T-B系焼結磁石の組織が微細化されるとともにRリッチ相の偏析が抑制されて、高い磁気特性が安定して得られることを見出した。
 すなわち、本発明は、R14B相の結晶粒を含有するR-T-B系合金薄片を用いて得られる、R14B相を含有する粒子を含むR-T-B系焼結磁石であって、R-T-B系合金薄片は、厚み方向に沿った断面において、結晶粒が結晶核から放射状に延びており、厚み方向とは垂直な方向における結晶粒の一方の面側の長さの平均値及び前記面とは反対側の他方の面側の長さの平均値を、それぞれD及びDとしたとき、下記式(1)を満たし、R-T-B系焼結磁石におけるR14B相を含む粒子の平均粒径が0.5~5μmであり、重希土類元素を実質的に含有しないR-T-B系焼結磁石を提供する。但し、Rは軽希土類元素、Tは遷移元素、及びBはホウ素を示す。
  0.9≦D/D≦1.1    (1)
 本発明のR-T-B系焼結磁石は、原料として次の構造を有するR-T-B系合金薄片を用いている。すなわち、R-T-B系合金薄片に含まれるR14B相の結晶粒の形状がR-T-B系合金薄片の厚さ方向に垂直な方向に拡がっておらず、結晶粒の形状及び幅のばらつきが十分に低減されている。通常、R-T-B系合金薄片を粉砕する際、R14B相の結晶粒の粒界にあるRリッチ相などの粒界相が優先的に破断される。このため、合金粉末の形状は、R14B相の結晶粒の形状に依存する。本発明のR-T-B系合金薄片におけるR14B相の結晶粒は、形状及び幅のばらつきが十分に低減されているため、形状やサイズのばらつきが十分に低減されたR-T-B系合金粉末となる。したがって、このようなR-T-B系合金薄片を用いることによって、Rリッチ相の偏析が抑制されるとともに、微細構造の均一性が向上したR-T-B系焼結磁石を得ることができる。
 すなわち、本発明はR-T-B系合金薄片に含まれるR14B相の結晶粒を単に微細化するという制御手法を採るのではなく、R14B相の結晶粒のサイズ及び形状のばらつきを抑制して組織分布をシャープにし、最終的に得られるR-T-B系焼結磁石の保磁力を向上させるものである。
 上述のR-T-B系合金薄片は、上記断面において、厚み方向に垂直な方向における結晶粒の長さの平均値及び最大値をそれぞれDAVE及びDMAXとしたとき、下記式(2)及び/又は(3)を満たすことが好ましい。
  1.0μm≦DAVE<3.0μm    (2)
  1.5μm≦DMAX≦4.5μm    (3)
 このようなR-T-B系合金薄片は、R14B相の結晶粒の幅が十分に小さいうえに形状のばらつきも十分に低減されているため、微細で、形状及びサイズの均一性が十分に向上したR-T-B系合金粉末を得ることができる。これによって、最終的に得られるR-T-B系焼結磁石の微細構造の均一性がさらに向上する。したがって、R-T-B系焼結磁石の保磁力を一層向上することができる。
 本発明のR-T-B系合金薄片は、Rの含有量が質量基準でR14B相よりも高いRリッチ相を含有しており、上記断面において、Rリッチ相の全数に対し、厚み方向に垂直な方向における長さが1.5μm以下のRリッチ相の数の比率が90%以上であることが好ましい。これによって、一層微細でサイズの均一性が向上したR-T-B系合金粉末を得ることができる。したがって、最終的に得られるR-T-B系焼結磁石の保磁力をより一層向上することができる。なお、Rリッチ相とは、R14B相よりもRの質量基準の含有量が高い相である。
 上述のR-T-B系合金薄片における結晶粒はデンドライト状結晶であり、R-T-B系合金薄片の少なくとも一つの表面において、デンドライト状結晶の幅の平均値が60μm以下であり、デンドライト状結晶の結晶核の数が1mm四方当たり500個以上であることが好ましい。このR-T-B系合金薄片は、少なくとも一つの表面において、単位面積当たり所定数以上の結晶核を有する。このようなデンドライト状結晶は、R-T-B系合金薄片の面方向に成長することが抑制されている。このため、厚み方向にR14B相が柱状に成長している。柱状に成長したR14B相の周囲にはRリッチ相が生成しており、粉砕時にはこのRリッチ相が優先的に破断されることとなる。したがって、このような構造を有するR-T-B系合金薄片を粉砕すると、従来よりもRリッチ相が偏析することなく、均一に分散した状態の合金粉末を得ることができる。したがって、このような合金粉末を焼成することによって、Rリッチ相の凝集や結晶粒の異常粒成長が抑制され、高い保磁力を有するR-T-B系焼結磁石を得ることができる。
 本発明はまた、R-T-B系合金薄片を粉砕して成形し焼成する工程を有する、R14B相を含有する粒子を含むR-T-B系焼結磁石の製造方法であって、R-T-B系合金薄片は、厚み方向に沿った断面において、結晶粒が結晶核から放射状に延びており、厚み方向とは垂直な方向における結晶粒の一方の面側の長さの平均値及び当該面とは反対側の他方の面側の長さの平均値を、それぞれD及びDとしたとき、下記式(1)を満たし、粒子の平均粒径が0.5~5μmであり、重希土類元素を実質的に含有しないR-T-B系焼結磁石の製造方法を提供する。但し、Rは軽希土類元素、Tは遷移元素、及びBはホウ素を示す。
  0.9≦D/D≦1.1    (1)
 上述の製造方法では、原料として次の構造を有するR-T-B系合金薄片を用いている。すなわち、R-T-B系合金薄片は、R14B相の結晶粒の形状がR-T-B系合金薄片の厚さ方向に垂直な方向に拡がっておらず、結晶粒の形状及び幅のばらつきが十分に低減されている。このため、形状やサイズのばらつきが十分に低減されたR-T-B系合金粉末が得られる。このようなR-T-B系合金粉末を用いることによって、Rリッチ相の偏析が抑制されるとともに、微細構造の均一性が向上し、十分に高い保磁力を有するR-T-B系焼結磁石を得ることができる。
 本発明によれば、高価で希少な重希土類元素を使用しなくても、十分に優れた保磁力を有するR-T-B系焼結磁石、及びその製造方法を提供することができる。
本発明のR-T-B系焼結磁石の好適な実施形態を示す斜視図である。 本発明の好適な実施形態に係るR-T-B系焼結磁石の断面構造を模式的に示す断面図である。 本発明のR-T-B系焼結磁石の製造に用いられる合金薄片の厚さ方向に沿った断面の構造を拡大して示す模式断面図である。 ストリップキャスト法に用いられる装置の模式図である。 本発明の合金薄片の製造に用いられる冷却ロールのロール面の一例を示す拡大平面図である。 本発明の合金薄片の製造に用いられる冷却ロールのロール面近傍の断面構造の一例を示す模式断面図である。 本発明の合金薄片の製造に用いられる冷却ロールのロール面近傍の断面構造の一例を示す模式断面図である。 R-T-B系焼結磁石の製造に用いられる合金薄片の厚さ方向に沿った断面の一例を示すSEM-BEI画像(倍率:350倍)である。 本発明のR-T-B系焼結磁石の製造に用いられるR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 本発明のR-T-B系焼結磁石の製造に用いられるR-T-B系合金薄片に含まれるデンドライト状結晶を模式的に示す平面図である。 本発明の一実施形態に係るR-T-B系焼結磁石における断面の金属顕微鏡による画像(倍率:1600倍)である。 本発明の実施形態に係るR-T-B系焼結磁石におけるR14B相を含む粒子の粒径分布を示す図である。 従来のR-T-B系焼結磁石における断面の金属顕微鏡による画像(倍率:1600倍)である。 従来のR-T-B系焼結磁石におけるR14B相を含む粒子の粒径分布を示す図である。 本発明のモータの好適な実施形態における内部構造を示す説明図である。 実施例1で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 実施例2で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 実施例5で用いたR-T-B系合金薄片の厚さ方向に沿った断面のSEM-BEI画像(倍率:350倍)である。 比較例1で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 比較例2で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 比較例3で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。 比較例3で用いたR-T-B系合金薄片の厚さ方向に沿った断面のSEM-BEI画像(倍率:350倍)である。 実施例10の希土類焼結磁石において三重点領域を黒く塗りつぶした元素マップデータを示す図である。 比較例5のR-T-B系焼結磁石の三重点領域を黒く塗りつぶした元素マップデータを示す図である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。なお、各図面において、同一または同等の要素には同一の符号を付与し、重複する説明を省略する。
 図1は、本実施形態のR-T-B系焼結磁石の斜視図である。R-T-B系焼結磁石100は、R、B、Al、Cu、Zr、Co、O、C及びFeを含有し、各元素の含有割合が、R:26~35質量%、B:0.85~1.5質量%、Al:0.03~0.5質量%、Cu:0.01~0.3質量%、Zr:0.03~0.5質量%、Co:3質量%以下(但し、0質量%を含まず。)、O:0.5質量%以下、Fe:60~72質量%であることが好ましい。本明細書において、Rは希土類元素を示し、Tは遷移元素を示す。上述の含有割合におけるRは25~37質量%、Bは0.5~1.5質量%であってもよい。
 本明細書における希土類元素とは、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイド元素のことをいい、ランタノイド元素には、例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等が含まれる。このうち、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luは重希土類元素であり、Sc,Y,La、Ce、Pr、Nd、Sm及びEuは軽希土類元素である。
 本実施形態における、R-T-B系焼結磁石100は、軽希土類元素を含有するが、重希土類元素を実質的に含有しない。このように重希土類元素を実質的に含有しなくても、原料として特定の構造を有するR-T-B系合金薄片を用いていることから、組織の均一性が向上しており、十分に高い磁気特性を有する。
 R-T-B系焼結磁石100は、遷移元素(T)として、少なくともFeを含むことが好ましく、FeとFe以外の遷移元素とを組み合わせて含むことがより好ましい。Fe以外の遷移元素としては、Co、Cu及びZrが挙げられる。但し、R-T-B系焼結磁石100は、原料に由来する不純物、又は製造時に混入する不純物として重希土類元素を含んでもよい。その含有量は、R-T-B系焼結磁石100全体を基準として、好ましくは0.01質量%以下である。当該含有量の上限は、本発明の目的や効果に殆ど影響を及ぼさない範囲として、0.1質量%である。このように、本明細書において「重希土類元素を実質的に含有しない」とは、不純物程度の量の重希土類元素を含有する場合も含む。
 R-T-B系焼結磁石100は、上述の元素以外に、Mn、Ca、Ni、Si、Cl、S、F等の不可避不純物を、0.001~0.5質量%程度含有していてもよい。ただし、これらの不純物の含有量は、合計で2質量%未満であることが好ましく、1質量%未満であることがより好ましい。
 R-T-B系焼結磁石100における酸素の含有量は、磁気特性を一層高水準とする観点から、好ましくは300~3000ppmであり、より好ましくは500~1500ppmである。R-T-B系焼結磁石100における窒素の含有量は、同様の観点から、200~1500ppmであり、より好ましくは500~1500ppmである。R-T-B系焼結磁石100における炭素の含有量は、同様の観点から、500~3000ppmであり、より好ましくは800~1500ppmである。
 R-T-B系焼結磁石100は、主成分としてR14B相を含む粒子を含有する。この粒子の平均粒径は、0.5~5μmであり、好ましくは2~5μmであり、より好ましくは2~4μmである。このように、R-T-B系焼結磁石100は平均粒径が小さい粒子を主成分として含有しており、その構造が微細となっている。そのうえ、この粒子の粒径及び形状のばらつきが極めて小さくなっている。このように、R-T-B系焼結磁石100は単に粒径の小さい粒子を含有するのみならず、粒径及び形状のばらつきが少ないことから、構造の均一性が十分に向上している。このため、Rリッチ相などのR14B相とは異なる相の偏析も抑制されている。したがって、本実施形態のR-T-B系焼結磁石100は高い磁気特性を有する。なお、R-T-B系焼結磁石100に含まれるR14B相を含む粒子の平均粒径は次のようにして求めることができる。R-T-B系焼結磁石100の切断面を研磨した後、金属顕微鏡を用いて研磨した面の画像観察を行う。画像処理を行って、個々の粒子の粒径を測定し、測定値の算術平均値を平均粒径とする。
 図2は、本実施形態のR-T-B系焼結磁石の断面の一部を拡大して示す模式断面図である。
 R-T-B系焼結磁石100における結晶粒150は、R14B相を含むことが好ましい。一方、三重点領域140は、R14B相よりも、質量基準のRの含有割合がR14B相よりも高い相を含む。R-T-B系焼結磁石100の断面における三重点領域140の面積の平均値は、算術平均で2μm以下であり、好ましくは1.9μm以下である。また、その面積の分布の標準偏差が3以下であり、好ましくは2.6以下である。このように、R-T-B系焼結磁石100は、R14B相よりもRの含有量が高い相の偏析が抑制されているため、三重点領域140の面積が小さいうえに、面積のばらつきも小さくなっている。このため、BrとHcJの両方を高く維持することができる。
 断面における三重点領域140の面積の平均値及び面積の分布の標準偏差は、以下の手順で求めることができる。まず、R-T-B系焼結磁石100を切断し、切断面を研磨する。走査型電子顕微鏡によって、研磨した面の画像観察を行う。そして、画像解析を行って、三重点領域140の面積を求める。求めた面積の算術平均値が平均面積となる。そして、各三重点領域140の面積とそれらの平均値とに基づいて、三重点領域140の面積の標準偏差を算出することができる。
 三重点領域140における希土類元素の含有量は、十分に高い磁気特性を有するとともに十分に優れた耐食性を有するR-T-B系焼結磁石とする観点から、好ましくは80~99質量%であり、より好ましくは85~99質量%以上であり、さらに好ましくは90~99質量%である。また、同様の観点から、三重点領域140ごとの希土類元素の含有量は同等であることが好ましい。具体的には、R-T-B系焼結磁石100における三重点領域140の当該含有量の分布の標準偏差は、好ましくは5以下であり、より好ましくは4以下であり、さらに好ましくは3以下である。
 R-T-B系焼結磁石100は、R14B相を含むデンドライト状の結晶粒と、R14B相よりもRの含有量が高い相を含む粒界領域と、を備え、断面におけるR14B相よりもRの含有量が高い相の間隔の平均値が3μm以下であるR-T-B系合金薄片の粉砕物を成形し焼成して得られるものであることが好ましい。このようなR-T-B系焼結磁石100は、十分に微細で粒度分布がシャープな粉砕物を用いて得られるものであることから、微細な結晶粒で構成されるR-T-B系焼結体が得られる。また、R14B相よりもRの含有量が高い相が粉砕物の内部ではなく外周部に存在する割合が高くなるため、焼結後のR14B相よりもRの含有量が高い相の分散状態が良好になり易い。このため、R-T-B系焼結体の構造が微細になるとともに均一性が向上する。したがって、R-T-B系焼結体の磁気特性を一層高くすることができる。
 次に、本実施形態のR-T-B系焼結磁石100の原料として用いられるR-T-B系合金薄片について説明する。
 図3は、本実施形態のR-T-B系焼結磁石100の原料として用いられるR-T-B系合金薄片の厚さ方向に沿った断面構造を拡大して示す模式断面図である。本実施形態のR-T-B系合金薄片は、重希土類元素を含まず、主相としてR14B相の結晶粒2と、R14B相とは組成が異なる粒界相4を含有する。粒界相4は、例えばRリッチ相を含有する。Rリッチ相は、Rの含有量がR14B相よりも高い相である。
 図3に示すように、R-T-B系合金薄片は一方の表面に結晶核1を有している。そして、この結晶核1を起点としてR14B相を含む結晶粒2及び粒界相4が他方の表面に向けて放射状に伸びている。粒界相4は、柱状であるR14B相の結晶粒2の粒界に沿って析出している。
 本実施形態で用いられるR-T-B系合金薄片は、図3に示すような厚さ方向に沿った断面において、R14B相の結晶粒2が厚さ方向とは垂直な方向(図3の左右方向)にあまり拡がることなく、厚さ方向(図3の上下方向)に略均一に成長している。このため、従来のR-T-B系合金薄片に比べて、R14B相の結晶粒2の幅、すなわち左右方向の長さMが小さく、且つ長さMのばらつきが小さくなっている。また、Rリッチ相4の幅、すなわち左右方向の長さが小さく、且つその長さのばらつきが小さくなっている。
 本実施形態で用いられるR-T-B系合金薄片は、図3に示す断面において、R-T-B系合金薄片の厚み方向に垂直な方向、すなわち図3中の左右方向における結晶粒2の一方(下方)の表面側の長さの平均値及び他方(上方)の表面側の結晶粒2の長さの平均値を、それぞれD及びDとしたとき、下記式(1)を満たす。
  0.9≦D/D≦1.1    (1)
 本明細書において、D、D及びDは以下のように求められる。まず、図3に示すような断面のSEM(走査型電子顕微鏡)-BEI(反射電子像)による観察(倍率:1000倍)を行う。そして、R-T-B系合金薄片の一方の表面側、他方の表面側及び中央部において、それぞれ15視野ずつ断面の画像を撮影する。このような画像において、一方の表面から中央部側に50μmの位置、他方の表面から中央部側に50μmの位置、並びに中央部にそれぞれ直線を描く。これらの直線は、図3に示すような断面において、一方の表面及び他方の表面にほぼ平行である。この直線の長さとこの直線が横切る結晶粒2の数とから、D,D,Dを求めることができる。なお、Dは、図3に示すような断面において、R-T-B系合金薄片の厚み方向に垂直な方向における中央部の結晶粒2の長さの平均値である。
 本実施形態で用いるR-T-B系合金薄片は、D/Dが上記式(1)を満たすことから、厚さ方向における結晶粒2の幅及び形状のばらつきが小さく、高い均一性を有する。D/Dは、さらに均一性を高くする観点から、好ましくは下記式(4)を満たし、より好ましくは下記式(5)を満たす。なお、D/Dの下限値は1.0であってもよい。
  0.95≦D/D≦1.05    (4)
  0.98≦D/D≦1.02    (5)
 本実施形態で用いるR-T-B系合金薄片は、後述するように冷却ロールを用いたストリップキャスト法によって製造することができる。この場合、R-T-B系合金薄片は、冷却ロールとの接触面(鋳造面)にR14B相の結晶核1が析出する。そして、R-T-B系合金薄片の鋳造面側から鋳造面とは反対側の面(フリー面)側に向けてR14B相の結晶粒2が放射状に成長する。したがって、図3に示すR-T-B系合金薄片では、下方の表面が鋳造面となる。この場合、Dが鋳造面側の結晶粒2の長さの平均値となり、Dがフリー面側の結晶粒2の長さの平均値となる。
 D,D,Dは、例えば1~4μmであり、好ましくは1.4~3.5μmであり、より好ましくは1.5~3.2μmである。D,D,Dが過大になると、粉砕によって得られる合金粉体を十分に微細化するのが困難になる傾向にある。一方、結晶粒の形状を維持しつつD,D,Dが過小なR-T-B系合金薄片は、一般的に製造することが難しい傾向にある。
 本実施形態のR-T-B系合金薄片は、図3に示す断面において、厚み方向とは垂直な方向における結晶粒2の長さの平均値及び最大値をそれぞれDAVE及びDMAXとしたとき、下記式(2)及び/又は(3)を満たすことが好ましい。
  1.0μm≦DAVE<3.0μm    (2)
  1.5μm≦DMAX≦4.5μm    (3)
 本明細書において、DAVEは、上述のSEM-BEI像(倍率:1000倍)の観察結果から求めたD,D,Dの平均値であり、DMAXは、一方の表面側、他方の表面側及び中央部においてそれぞれ15視野ずつ撮影した計45枚の画像のうち、結晶粒2の長さが最大であった画像の値である。
 すなわち、上記式(2)は、結晶粒2のサイズ(幅)が所定の範囲にあることを規定しており、上記式(3)は、結晶粒2のサイズ(幅)のばらつきが所定の範囲内であることを規定している。式(2)及び(3)を満たすR-T-B系合金薄片は、一層微細で、且つ形状及びサイズのばらつきが十分に低減された結晶粒2と、一層微細で、且つ形状及びサイズのばらつきが十分に低減されたRリッチ相4で構成される。このため、このようなR-T-B系合金薄片を粉砕した合金粉末を用いることによって、Rリッチ相の偏析が一層抑制され、微細構造の均一性が一層向上したR-T-B系焼結磁石を得ることができる。なお、DAVE及びDMAXが小さくなり過ぎると、微粉砕時における超微粉が増加し、酸素量が増加する傾向にある。また、等軸晶であるチル晶が増加して、焼結磁石とした際に残留磁束密度(Br)が低下する傾向にある。
 一層微細で均一な構造を有するR-T-B系焼結磁石を得る観点から、DAVEは下記式(6)を満たすことが好ましい。同様の観点から、DMAXは下記式(7)を満たすことが好ましい。これによって、一層微細な構造を有するR-T-B系焼結磁石を得るとともに、R-T-B系合金薄片の製造の容易性も兼ね備えたR-T-B系合金薄片とすることができる。
  1.0μm≦DAVE≦2.4μm    (6)
  1.5μm≦DMAX≦3.0μm    (7)
 一層微細な構造を有するR-T-B系焼結磁石を得るとともにR-T-B系合金薄片の製造を容易にする観点から、DAVEは下記式(8)を満たすことが好ましい。同様の観点から、DMAXは、下記式(9)を満たすことが好ましい。
  1.5μm≦DAVE≦2.4μm    (8)
  2.0μm≦DMAX≦3.0μm    (9)
 図3に示す断面において、希土類元素濃度の高い相であるRリッチ相4全体に対し、厚み方向に垂直な方向における長さが1.5μm以下であるRリッチ相4の個数比率は好ましくは90%以上であり、より好ましくは93%以上であり、さらに好ましくは95%以上である。このように、R-T-B系合金薄片に含まれるRリッチ相4のうち、上記長さが1.5μm以下であるRリッチ相4の個数比率を高くすることによって、一層高い保磁力を有するR-T-B系焼結磁石を得ることができる。
 図3に示すような断面を有するR-T-B系合金薄片の柱状の結晶粒2の幅Mは、溶湯の温度、冷却ロールの表面状態、冷却ロールの材質、ロール面の温度、冷却ロールの回転速度及び冷却温度等を変えることによって調整することができる。
 本実施形態のR-T-B系焼結磁石100は、以下の手順によって製造することができる。R-T-B系焼結磁石100の製造方法は、R-T-B系合金の合金溶湯を調製する溶融工程と、合金溶湯を、円周方向に回転する冷却ロールのロール面に注いで合金溶湯を該ロール面によって冷却してR-T-B系合金薄片を得る冷却工程と、R-T-B系合金薄片を粉砕してR-T-B系の合金粉末を得る粉砕工程と、合金粉末を成形して成形体を作製する成形工程と、成形体を焼成してR-T-B系焼結磁石を得る焼成工程と、を有する。
(溶融工程)
 溶融工程では、例えば、希土類金属や希土類合金、純鉄、フェロボロン、及びこれらの合金の少なくとも一種を含み、重希土類元素を含まない原料を、高周波溶解炉に導入する。高周波溶解炉では、原料を1300~1500℃に加熱して合金溶湯を調製する。
(冷却工程)
 図4は、ストリップキャスト法の冷却工程に用いる装置の模式図である。冷却工程では、高周波溶解炉10で調製された合金溶湯12をタンディッシュ14に移送する。その後、タンディッシュ14から、矢印Aの方向に所定の速度で回転している冷却ロール16のロール面上に合金溶湯を注ぐ。合金溶湯12は冷却ロール16のロール面17に接触し、熱交換によって抜熱される。合金溶湯12の冷却に伴って、合金溶湯12には、結晶核が生成し合金溶湯12の少なくとも一部が凝固する。例えば、R14B相(溶解温度1100℃程度)がまず生成し、その後、Rリッチ相(溶解温度700℃程度)の少なくとも一部が凝固する。これらの結晶析出は、合金溶湯12が接触するロール面17の構造に影響される。冷却ロール16のロール面17には、網目状の凹部と該凹部で形成された凸部とからなる凹凸模様が形成されたものを用いることが好ましい。
 図5は、ロール面17の一部を平面状にして拡大して示す模式図である。ロール面17には、網目状に溝が形成されており、これが凹凸模様を形成している。具体的には、ロール面17は、冷却ロール16の円周方向(矢印Aの方向)に沿って、所定の間隔aで配列した複数の第1の凹部32と、第1の凹部32に略直交し、冷却ロール16の軸方向に平行に所定の間隔bで配列した複数の第2の凹部34とが形成されている。第1の凹部32及び第2の凹部34は、略直線状の溝であり、所定の深さを有する。第1の凹部32と第2の凹部34とによって、凸部36が形成される。
 間隔a,bの平均値は、好ましくは40~100μmである。この平均値が大きくなりすぎると、冷却時に生成する結晶核の数が少なくなり、幅Mが十分に小さい結晶粒を得ることが難しくなる傾向にある。一方、平均値が40μm以下の間隔を有する凹部32,34を形成するのは容易ではない。
 ロール面17の表面粗さRzは、好ましくは3~5μmであり、より好ましくは3.5~5μmであり、さらに好ましくは3.9~4.5μmである。Rzが過大になると薄片の厚みが変動して冷却速度のばらつきが大きくなる傾向にあり、Rzが過小になると合金溶湯とロール面17との密着性が不十分になり、ロール面から合金溶湯又は合金薄片が目標時間よりも早く剥離してしまう傾向にある。この場合、合金溶湯の抜熱が十分に進行せずに合金溶湯が二次冷却部に移動することとなる。このため、二次冷却部で合金薄片同士が張付く不具合が発生する傾向にある。
 本明細書における表面粗さRzは、十点平均粗さであり、JIS B 0601-1994に準拠して測定される値である。Rzは、市販の測定装置(株式会社ミツトヨ製のサーフテスト)を用いて測定することができる。
 第1の凹部32と第2の凹部34とがなす角度θは、好ましくは80~100°であり、より好ましくは85~95°である。このような角度θとすることによって、ロール面17の凸部36上に析出したR14B相の結晶核が、合金薄片の厚さ方向に向かって柱状に成長するのを一層促進することができる。
 図6は、図5のVI-VI線に沿った断面を拡大して示す模式断面図である。すなわち、図5は、冷却ロール16を、その軸を通り軸方向に平行な面で切断したときの断面構造の一部を示す模式断面図である。凸部36の高さh1は、図6に示す断面において、第1の凹部32の底を通り且つ冷却ロール16の軸方向に平行な直線L1と、凸部36の頂点との最短距離として求めることができる。また、凸部36の間隔w1は、図6に示す断面において、隣り合う凸部36の頂点間の距離として求めることができる。
 図7は、図5のVII-VII線に沿った断面を拡大して示す模式断面図である。すなわち、図7は、冷却ロール16を、側面に平行な面で切断したときの断面構造の一部を示す模式断面図である。凸部36の高さh2は、図7に示す断面において、第2の凹部34の底を通り且つ冷却ロール16の軸方向に垂直な直線L2と、凸部36の頂点との最短距離として求めることができる。また、凸部36の間隔w2は、図7に示す断面において、隣り合う凸部36の頂点間の距離として求めることができる。
 本明細書において凸部36の高さの平均値H、及び凸部36の間隔の平均値Wは次のようにして求める。レーザー顕微鏡を用いて、図6,7に示すような冷却ロール16のロール面17近傍の断面プロファイル画像(倍率:200倍)を撮影する。これらの画像において、任意に選んだ凸部36の高さh1及び高さh2をそれぞれ100点測定する。このとき、高さh1及びh2がそれぞれ3μm以上のもののみ測定し、3μm未満のものはデータに含めない。計200点の測定データの算術平均値を、凸部36の高さの平均値Hとする。
 また、同じ画像において、任意に選んだ凸部36の間隔w1及び間隔w2をそれぞれ100点測定する。このとき、高さh1及びh2がそれぞれ3μm以上のもののみを凸部36とみなして間隔を測定する。計200点の測定データの算術平均値を、凸部36の間隔の平均値Wとする。なお、走査型電子顕微鏡でロール面17の凹凸模様を観察することが困難である場合は、ロール面17の凹凸模様を複製したレプリカを作製し、当該レプリカの表面を走査型電子顕微鏡で観察して上述の測定を行ってもよい。レプリカの作製は、市販キット(ケニス株式会社製のスンプセット)を用いることができる。
 ロール面17の凹凸模様は、例えば短波長レーザーでロール面17を加工して調製することができる。
 凸部36の高さの平均値Hは、好ましくは7~20μmである。これによって、凹部32,34に合金溶湯を十分に浸透させて、合金溶湯12とロール面17との密着性を十分に高くすることができる。平均値Hの上限は、凹部32,34に合金溶湯を一層十分に浸透させる観点から、より好ましくは16μmであり、さらに好ましくは14μmである。平均値Hの下限は、合金溶湯とロール面17との密着性を十分に高くしつつ、合金薄片の厚さ方向により均一に配向したR14B相の結晶を得る観点から、より好ましくは8.5μmであり、さらに好ましくは8.7μmである。
 凸部36の間隔の平均値Wは、40~100μmである。平均値Wの上限は、R14B相の柱状結晶の幅を一層小さくして粒径の小さな磁石粉末を得る観点から、好ましくは80μmであり、より好ましくは70μmであり、さらに好ましくは67μmである。平均値Wの下限は、好ましくは45μmであり、より好ましくは48μmである。これによって一層高い磁気特性を有するR-T-B系焼結磁石を得ることができる。
 本実施形態では、図5~7に示すようなロール面17を有する冷却ロール16を用いていることから、合金溶湯12を冷却ロール16のロール面17に注いだ時に、合金溶湯12はまず凸部36に接触する。この接触部分に結晶核1が生成し、この結晶核1を起点として、R14B相の柱状結晶2が成長する。このような結晶核1を多数発生させて単位面積当たりの結晶核1の数を多くすることによって、柱状結晶2がロール面に17に沿って成長することを抑制することができる。
 冷却ロール16のロール面17は、所定の高さを有し且つ所定の間隔で配列した凸部36を有する。ロール面17に多数のR14B相の結晶核1が生成し、その後、結晶核1を起点として放射状に柱状結晶2が成長する。このとき、R-T-B系合金薄片の厚み方向への柱状結晶2の成長が促進されて、幅が小さく且つ幅及び形状のばらつきが小さいR14B相の柱状結晶2と、一層微細で、且つ形状及びサイズのばらつきが十分に低減されたRリッチ相4とが形成される。
 冷却速度は、例えば、冷却ロール16の内部を流通させる冷却水の温度や流量を調整することによって制御することができる。また、冷却速度は、冷却ロール16のロール面17の材質を変えて調整することもできる。
 冷却速度は、得られる合金薄片の組織を十分に微細にしつつ異相の発生を抑制する観点から、好ましくは1000~3000℃/秒であり、より好ましくは1500~2500℃/秒である。冷却速度が1000℃/秒未満になると、α-Fe相が析出し易くなる傾向にあり、冷却速度が3000℃/秒を超えるとチル晶が析出し易くなる傾向にある。チル晶とは、粒径が1μm以下の等方性の微細結晶である。チル晶が多量に生成すると最終的に得られるR-T-B系焼結磁石の磁気特性が損なわれる傾向にある。
 冷却ロールで冷却した後、ガスを吹き付ける方法等によって冷却する二次冷却を行ってもよい。二次冷却の方法は特に限定されるものではなく、従来の冷却方法を採用することができる。例えば、ガス吹き出し孔19aを有するガス配管19を設け、周方向に回転する回転式のテーブル20に堆積した合金薄片に、このガス吹き出し孔19aから冷却用ガスを吹き付ける態様が挙げられる。これによって、合金薄片18を十分に冷却することができる。合金薄片は、二次冷却部20で十分に冷却した後に回収される。このようにして、図2に示すような断面構造を有するR-T-B系合金薄片を製造することができる。
 本実施形態のR-T-B系合金薄片の厚みは、好ましくは0.5mm以下であり、より好ましくは0.1~0.5mmである。合金薄片の厚みが大きくなりすぎると、冷却速度の相違により、結晶粒2の組織が粗くなって均一性が損なわれる傾向にある。また、合金薄片のロール面側の面(鋳造面)付近の構造と鋳造面とは反対側の面(フリー面)付近の構造とが異なることとなり、DとDの差異が大きくなる傾向にある。
 図8は、R-T-B系合金薄片の厚み方向に沿った断面を示すSEM-BEIの画像である。図8(A)は、本実施形態のR-T-B系合金薄片の厚み方向に沿った断面を示すSEM-BEIの画像(倍率:350倍)である。一方、図8(B)は、従来のR-T-B系合金薄片の厚み方向に沿った断面を示すSEM-BEIの画像(倍率:350倍)である。図8(A),(B)において、R-T-B系合金薄片の下側の面がロール面との接触面(鋳造面)である。また、図8(A),(B)において、濃色部分がR14B相であり、淡色部分がRリッチ相である。
 図8(A)に示すように、本実施形態のR-T-B系合金薄片は、下方の表面に多数のR14B相の結晶核が析出している(図中、矢印参照)。そして、この結晶核から図8(A)の上方向、すなわち厚み方向に沿って、R14B相の結晶粒が放射状に伸びている。
 一方、図8(B)に示すように、従来のR-T-B系合金薄片は、R14B相の結晶核の析出数が図8(A)よりも少なくなっている。そして、R14B相の結晶は上下方向のみならず左右方向にも成長している。このため、厚み方向とは垂直な方向におけるR14B相の結晶粒の長さ(幅)が図8(A)よりも大きくなっている。R-T-B系合金薄片がこのような構造を有していると、微細で形状及びサイズの均一性に優れた合金粉末を得ることができない。
 図9は、R-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。本実施形態の製造方法におけるR-T-B系金属薄片の一表面は、図9に示すように、R14B相を含む多数の花弁状デンドライト状結晶で構成されている。図9は、図3の結晶核1を有する側から撮影したR-T-B系合金薄片の表面の金属顕微鏡による画像である。
 図10は、R-T-B系合金薄片の一表面を構成するデンドライト状結晶を拡大して模式的に示す平面図である。デンドライト状結晶40は、中心部に結晶核1と、この結晶核1を起点として放射状に延びるフィラー状の結晶粒2とを有する。
 デンドライト状結晶40の幅Pは、互いに異なる2つのフィラー状の結晶粒2の端部間距離における最大距離として求められる。通常、この幅Pは、結晶核1を介して略対向して存在する2つのフィラー状の結晶粒2におけるそれぞれの端部間距離となる。本明細書において、デンドライト状結晶40の幅Pの平均値は、次のとおりにして求められる。金属箔片の一表面を金属顕微鏡で200倍に拡大した画像において、100個のデンドライト状結晶40を任意に選択して、それぞれのデンドライト状結晶40の幅Pを測定する。これらの測定値の算術平均値が、デンドライト状結晶40の幅Pの平均値となる。
 デンドライト状結晶40の幅Pの平均値は、好ましくは60μm以下であり、より好ましくは25~60μmである。幅Pの平均値の上限は、好ましくは55μmであり、より好ましくは50μmであり、さらに好ましくは48μmである。これによって、デンドライト状結晶40が小さくなり、一層微細な合金粉末を得ることができる。幅Pの平均値の下限は、好ましくは30μmであり、より好ましくは35μmであり、さらに好ましくは38μmである。これによって、合金薄片の厚み方向へのR14B相の成長が一層促進されたものとなる。したがって、粒径が小さく且つ粒径のばらつきの小さい合金粉末を得ることができる。
 図9に示すR-T-B系合金薄片の表面は、従来のR-T-B系合金薄片の表面よりも、一表面における単位面積当たりの結晶核1の数が多く、且つデンドライト状結晶40の幅Pが小さい。そして、デンドライト状結晶40を構成するフィラー状の結晶粒2の間隔Mが小さく、フィラー状の結晶粒2の大きさも小さい。すなわち、本実施形態のR-T-B系合金薄片の表面は、微細で且つ大きさのばらつきが抑制されたデンドライト状結晶40で構成されている。このように、デンドライト状結晶40の均一性が大幅に向上している。また、R-T-B系合金薄片の表面におけるフィラー状の結晶粒2の長さS及び幅Qの大きさのばらつきも大幅に低減している。
 図9に示すように、R-T-B系合金薄片の一表面において、デンドライト状結晶40は全体として、一方向に連なっており、結晶群を形成している。この結晶群の長軸の長さをC1、該長軸に直交する短軸の長さをC2としたときに、結晶群のアスペクト比(C2/C1)の平均値は、好ましくは0.7~1.0であり、より好ましくは0.8~0.98であり、さらに好ましくは0.88~0.97である。このような範囲にあるアスペクト比とすることによって、デンドライト状結晶40の形状の均一性が向上し、合金薄片の厚み方向へのR14B相の成長が均一化される。また、デンドライト状結晶40の幅を上述の範囲に制御することによって、一層微細で且つRリッチ相が均一に分散した合金薄片を得ることができる。したがって、粒径が小さく、粒径及び形状のばらつきの小さい合金粉末を得ることができる。
 本明細書におけるアスペクト比の平均値は、次のとおりにして求められる。金属箔片の一表面を金属顕微鏡で200倍に拡大した画像において、100個の結晶群を任意に選択して、それぞれの結晶群の長軸の長さC1及び短軸の長さC2をそれぞれ測定する。この結晶群の比(C2/C1)の算術平均値がアスペクト比の平均値となる。
 R-T-B系合金薄片の一表面において、デンドライト状結晶の結晶核1の発生数は、1mm四方当たり500個以上であり、好ましくは600個以上であり、より好ましくは700個以上であり、さらに好ましくは763個以上である。このように結晶核1の発生数を多数含有することから、結晶核1一つあたりのサイズが小さくなり、微細な構造を有するR-T-B系合金薄片とすることができる。
 本実施形態で用いるR-T-B系合金薄片は、少なくとも一方の表面が上述の構造を有していればよい。少なくとも一方の表面が上述の構造を有していれば、粒径が小さくRリッチ相が均一に分散した合金粉末を得ることができる。
(粉砕工程)
 粉砕工程における粉砕方法は特に限定されない。粉砕は、例えば粗粉砕及び微粉砕の順番で行ってもよい。粗粉砕は、例えば、スタンプミル、ジョークラッシャー、ブラウンミル等を用いて、不活性ガス雰囲気中で行うことが好ましい。また、水素を吸蔵させた後、粉砕を行う水素吸蔵粉砕を行ってもよい。粗粉砕によって、粒径が数百μm程度である合金粉末を調製することができる。次に、粗粉砕で調製した合金粉末を、ジェットミル等を用いて、例えば平均粒径が1~5μmとなるまで微粉砕する。なお、合金薄片の粉砕は、必ずしも粗粉砕と微粉砕との2段階で行なう必要はなく、1段階で行ってもよい。
 粉砕工程では、合金薄片のRリッチ相などの粒界相4の部分が優先的に破断される。このため、合金粉末の粒径は、粒界相4の間隔に依存する。本実施形態の製造方法で用いる合金薄片は、図3に示すように従来よりもR14B相の結晶粒の幅のばらつきが小さいことから、粉砕によって粒径が小さく且つサイズ及び形状のばらつきが十分に低減された合金粉末を得ることができる。
(成形工程)
 成形工程では、合金粉末を磁場中で成形して成形体を得る。具体的には、まず、合金粉末を電磁石中に配置された金型内に充填する。その後、電磁石により磁場を印加して合金粉末の結晶軸を配向させながら合金粉末を加圧する。このようにして磁場中で成形を行って成形体を作製する。この磁場中成形は、例えば、12.0~17.0kOeの磁場中、0.7~1.5トン/cm程度の圧力で行えばよい。
(焼成工程)
 焼成工程では、磁場中成形によって得られた成形体を、真空又は不活性ガス雰囲気中で焼成して焼結体を得る。焼成条件は、組成、粉砕方法、粒度等の条件に応じて適宜設定することが好ましい。例えば、焼成温度を1000~1100℃、焼成時間を1~5時間とすることができる。
 本実施形態の製造方法によって得られるR-T-B系焼結磁石は、均一性の高いR14B相の結晶とRリッチ相を含む合金粉末を用いていることから、従来よりも均一なR-T-B系焼結磁石を得ることができる。このため、本実施形態の製造方法によれば、残留磁束密度を維持しつつ、十分に高い保磁力を有するR-T-B系焼結磁石を製造することができる。
 なお、上述の工程で得られたR-T-B系焼結磁石に対して、必要に応じて時効処理を施してもよい。時効処理を行うことによって、R-T-B系焼結磁石の保磁力をさらに高くすることが可能となる。時効処理は、例えば、2段階に分けて行うことができ、800℃近傍、及び600℃近傍の2つの温度条件で時効処理を行うと好ましい。このような条件で時効処理を行うと、特に優れた保磁力が得られる傾向にある。なお、時効処理を1段階で行う場合は、600℃近傍の温度とすることが好ましい。
 R-T-B系焼結磁石は、主相としてR14B相を、異相としてRリッチ相を含有する。このR-T-B系焼結磁石は、形状及び粒径のばらつきが小さい合金粉末を用いて得られたものであるため、組織の均一性が向上しており、十分に優れた保磁力を有する。
 図11は、本実施形態のR-T-B系焼結磁石における断面の金属顕微鏡による画像(倍率:1600倍)である。図12は、本実施形態のR-T-B系焼結磁石におけるR14B相を含む粒子の粒径分布を示す図である。一方、図13は、従来のR-T-B系焼結磁石における断面の金属顕微鏡による画像(倍率:1600倍)である。また、図14は従来のR-T-B系焼結磁石におけるR14B相を含む粒子の粒径分布を示す図である。図11,12に示す本実施形態のR-T-B系焼結磁石は、従来よりも構造が微細であり、粒子の粒径及び形状の均一性が向上している。このような構造を有することによって、Dyを実質的に含まなくても、高い磁気特性、特に高い保磁力を実現している。
 次に、上記の実施形態のR-T-B系焼結磁石110を備える回転機(モーター)の好適な実施形態について説明する。
 図15は、好適な本実施形態のモータの内部構造を示す説明図である。図15に示すモータ200は、永久磁石同期モータ(SPMモータ200)であり、円筒状のロータ120とこのロータ120の内側に配置されるステータ130とを備えている。ロータ120は、円筒状のコア122と円筒状のコア122の内周面に沿ってN極とS極が交互になるように複数のR-T-B系焼結磁石110とを有する。ステータ130は、外周面に沿って設けられた複数のコイル132を有する。このコイル132とR-T-B系焼結磁石110とは互いに対向するように配置される。R-T-B系焼結磁石110は、上述のR-T-B系焼結体100と同様の組成及び構造を有している。
 SPMモータ200は、ロータ120に、上記実施形態に係るR-T-B系焼結磁石110を備えている。このR-T-B系焼結磁石110は、高い磁気特性と優れた耐食性とを高水準で両立するものである。したがって、R-T-B系焼結磁石110を備えるSPMモータ200は、高い出力を長期間に亘って継続して発揮することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、上述のR-T-B系合金薄片は、一方の面のみにR14B相の結晶核1を有していたが、この結晶核1をR-T-B系合金薄片の他方の面にも有していてもよい。この場合、両面ともに図3に示すような結晶核1を有し、それぞれの結晶核1から厚み方向に沿ってR14B相の結晶粒2が放射状に延びることとなる。このように、両面に結晶核1を有するR-T-B系合金薄片は、上述の凹凸模様を有する2つの冷却ロールを並べ、これらの間に合金溶湯を流し込む双ロール鋳造法によって得ることができる。
 本発明の内容を、以下の実施例及び比較例を参照してさらに詳細に説明する。本発明は、以下の実施例に限定されるものではない。
(実施例1)
<合金薄片の作製>
 図4に示すような合金薄片の製造装置を用いて、次の手順でストリップキャスト法を行った。まず、合金薄片の組成が表1に示す元素の割合(質量%)となるように、各構成元素の原料化合物を配合し、高周波溶解炉10で1300℃に加熱して、R-T-B系の組成を有する合金溶湯12を調製した。この合金溶湯12を、タンディッシュを介して所定の速度で回転している冷却ロール16のロール面17上に注いだ。ロール面17上における合金溶湯12の冷却速度は、1800~2200℃/秒とした。
 冷却ロール16のロール面17は、冷却ロール16の回転方向に沿って延在する直線状の第1の凹部32と、該第1の凹部32に直交する直線状の第2の凹部34とからなる凹凸模様を有していた。凸部36の高さの平均値H、凸部36の間隔の平均値W、及び表面粗さRzは、それぞれ、表2に示すとおりであった。なお、表面粗さRzの測定には株式会社ミツトヨ製の測定装置(商品名:サーフテスト)を用いた。
 冷却ロール16による冷却で得られた合金薄片を、二次冷却部20でさらに冷却して、R-T-B系の組成を有する合金薄片を得た。この合金薄片の組成は、表1に示すとおりであった。
<合金薄片の評価>
 得られた合金薄片の厚さ方向に沿った断面のSEM-BEI画像を撮影した(倍率:350倍)。この画像から、合金薄片の厚みを求めた。この厚みは、表2に示すとおりであった。
 さらに、合金薄片の厚さ方向に沿った断面のSEM-BEIの画像を、鋳造面側、フリー面側及び中央部において15視野ずつ撮影し、計45枚のSEM-BEIの画像(倍率:1000倍)を得た。そして、これらの画像を用いて、鋳造面から中央部側に50μmの位置、フリー面から中央部側に50μmの位置、及び中央部にそれぞれ0.15mmの直線を描いた。この直線の長さとこの直線が横切る結晶粒の数とから、D,D及びDを求めた。
 なお、Dは厚み方向に垂直な方向における鋳造面側の結晶粒の長さの平均値、Dは厚み方向に垂直な方向におけるフリー面側の結晶粒の長さの平均値、及びDは厚み方向に垂直な方向における中央部の結晶粒の長さの平均値である。そして、D,D,Dの平均値DAVEを求めた。さらに、45枚の画像でそれぞれ求めた厚み方向とは垂直な方向における結晶粒の長さのうち、結晶粒の長さが最大であった画像の値をDMAXとした。これらの測定結果は表2に示すとおりであった。
 また、上述の45枚のSEM-BEIの画像を用いて、直線が横切るRリッチ相の全数に対する、当該直線上の長さが1.5μm以下であるRリッチ相の数の比率αを求めた。その結果は表2に示すとおりであった。
 合金薄片の鋳造面を金属顕微鏡で観察して、デンドライト状結晶の幅Pの平均値、デンドライト状結晶の結晶群の長軸の長さC1に対する短軸の長さC2の比(アスペクト比)、全視野に対するR14B相の結晶の面積占有率、及び単位面積当たり(1mm)におけるデンドライト状結晶の結晶核の発生数を調べた。これらの結果を表3に示す。なお、R14B相の結晶の面積占有率は、R-T-B系合金薄片の鋳造面における金属顕微鏡の画像における、画像全体に対するデンドライト状の結晶の面積比率である。図9において、デンドライト状結晶は白色部分に相当する。アスペクト比の平均値は、任意に選択された100個の結晶群における比(C2/C1)の算術平均値である。
<R-T-B系焼結磁石の作製>
 次に、合金薄片を粉砕して平均粒径が2.3~2.6μmの合金粉末を得た。この合金粉末を、電磁石中に配置された金型内に充填し、磁場中で成形して成形体を作製した。成形は、15kOeの磁場を印加しながら1.2トン/cmに加圧して行った。その後、成形体を、真空中、930~1030℃で4時間焼成した後、急冷して焼結体を得た。得られた焼結体に、800℃で1時間、及び、540℃で1時間(ともにアルゴンガス雰囲気中)の2段階の時効処理を施して、実施例1のR-T-B系焼結磁石を得た。
<R-T-B系焼結磁石の評価>
 B-Hトレーサーを用いて、得られたR-T-B系焼結磁石のBr(残留磁束密度)及びHcJ(保磁力)を測定した。測定結果を表3に示す。また、R-T-B系焼結磁石におけるR14B相を含む粒子の平均粒径を求めた。具体的には、R-T-B系焼結磁石の切断面を研磨した後、金属顕微鏡を用いて研磨した面の画像観察(倍率:1600倍)を行った。そして、画像処理を行って、個々の粒子の粒径を測定し、測定値の算術平均値を平均粒径とした。平均粒径の値を表3に示す。
(実施例2~6,実施例15~17)
 冷却ロールのロール面を加工して、凸部の高さの平均値H、凸部の間隔の平均値W、及び表面粗さRzを表2のとおりに変更し、R-T-B系合金薄片の構造を表2,3のとおりに変えたこと以外は、実施例1と同様にして実施例2~6及び実施例15~17のR-T-B系焼結磁石を作製し、評価を行った。これらの結果を表3に示す。
 図16は、実施例1で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。図17は、実施例2で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。これらの金属顕微鏡の画像から、各実施例で用いたR-T-B系合金薄片は、表面にデンドライト状のR14B相の結晶粒を有しており、その結晶核が多数生成していることが確認された。図16に、デンドライト状結晶の結晶群の長軸の長さC1と短軸の長さC2とを示す。このC1に対するC2の比が、アスペクト比である。表3には、このアスペクト比の算術平均値を示している。
 図18は、実施例5のR-T-B系合金薄片の厚さ方向に沿った断面のSEM-BEI画像である(倍率:350倍)。図11は、実施例5のR-T-B系焼結磁石の断面の光学顕微鏡による画像であり、図12は、当該断面におけるR14B相の粒子の粒径分布を示す図である。図11,12から明らかなように、実施例5のR-T-B系焼結磁石の結晶粒の粒径は十分に小さくかつ粒径及び形状のばらつきが少ないことが確認された。これは、図18に示すように、厚み方向に沿った断面において、厚み方向とは垂直な方向への拡がりが抑制されたR14B相の結晶粒を含むR-T-B系合金薄片を用いていることに起因している。すなわち、このようなR-T-B系合金薄片を用いることによって、粉砕によって得られる合金粉末の粒径及び形状のばらつきが十分に小さいことから、構造の均一性が向上したR-T-B焼結磁石を得ることができる。
(実施例7~14及び実施例18~22)
 冷却ロールのロール面を加工して、凸部の高さの平均値、凸部の間隔の平均値、及び表面粗さRzを表2のとおりに変更したこと、及び原料を変更して合金薄片の組成を表1のとおりに変更したこと以外は、実施例1と同様にして実施例7~14及び実施例18~22のR-T-B系焼結磁石を作製し、評価を行った。これらの結果を表3に示す。
(比較例1)
 ロール面に、ロールの回転方向に延在する直線状の第1の凹部のみを有する冷却ロールを用いてR-T-B系合金薄片の構造を表2,3のとおりに変えたこと以外は実施例1と同様にして比較例1のR-T-B系合金薄片を得た。これらの冷却ロールは第2の凹部を有していなかった。なお、これらの冷却ロールの凸部の高さの平均値H、凸部の間隔の平均値W、及び表面粗さRzは、次の通り求めた。すなわち、冷却ロールを、冷却ロールの軸を通り軸方向に平行な面で切断したときの切断面において、ロール面近傍の断面構造を走査型電子顕微鏡で観察して求めた。凸部の高さの平均値Hは、100個の凸部の高さの算術平均値であり、凸部の間隔の平均値Wは、隣り合う凸部の間隔を異なる100箇所で測定した値の算術平均値である。
 実施例1と同様にして、比較例1の合金薄片の評価を行った。そして、実施例1と同様にして比較例1のR-T-B系焼結磁石を作製し、評価を行った。これらの結果を表3に示す。
(比較例2,3)
 冷却ロールのロール面を加工して、凸部の高さの平均値H、凸部の間隔の平均値W、及び表面粗さRzを表2のとおりに変更したこと以外は、実施例1と同様にして比較例2,3のR-T-B系焼結磁石を作製し、評価を行った。これらの結果を表3に示す。
 図19,20,21は、比較例1,2,3で用いたR-T-B系合金薄片の一表面の金属顕微鏡による画像(倍率:100倍)である。図22は、比較例3で用いたR-T-B系合金薄片の厚さ方向に沿った断面のSEM-BEIの画像(倍率:350倍)である。図19~図21の金属顕微鏡の画像から、比較例で用いたR-T-B系合金薄片の表面には、デンドライト状の結晶粒が形成されていないか、又は形成されていても個々の結晶核が大きく且つ不均一であることが確認された。
(比較例4,5)
 原料を変更して合金薄片の組成を表1のとおりに変更したこと、及びロール面に、ロールの回転方向に延在する直線状の第1の凹部のみを有する冷却ロールを用いてR-T-B系合金薄片の構造を表2,3のとおりに変えたこと以外は、実施例1と同様にして比較例4,5のR-T-B系合金薄片を得た。これらの冷却ロールは第2の凹部を有していなかった。なお、これらの冷却ロールの凸部の高さの平均値H、凸部の間隔の平均値W、及び表面粗さRzは、比較例1と同様にして求めた。実施例1と同様にして、比較例4,5の合金薄片の評価を行った。そして、実施例1と同様にして比較例4,5のR-T-B系焼結磁石を作製し、評価を行った。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、実施例1~22のR-T-B系焼結磁石は、Dy,Tb,Hoなどの重希土類元素を実質的に含まなくても優れた保磁力を有しており、Dyを含む比較例4と同等の保磁力を有することが確認された。
[R-T-B系焼結磁石の構造分析]
(三重点領域の面積と標準偏差)
 実施例10のR-T-B系焼結磁石について、電子線マイクロアナライザ(EPMA:JXA8500F型FE-EPMA)を用いて元素マップデータを収集した。測定条件は加速電圧15kV、照射電流0.1μA、Count-Time:30msecとし、データ収集領域は、X=Y=51.2μm、データ点数は、X=Y=256(0.2μm-step)とした。この元素マップデータにおいて、まず、3つ以上の結晶粒に囲まれている三重点領域を黒く塗りつぶし、これを画像解析することにより、三重点領域の面積の平均値と当該面積の分布の標準偏差を求めた。図23は、実施例10の希土類焼結磁石において三重点領域を黒く塗りつぶした元素マップデータを示す図である。
 実施例5,実施例9,実施例11~14,実施例18~22,比較例4及び比較例5のR-T-B系焼結磁石について、実施例10のR-T-B系焼結磁石と同様に上記EPMAを用いて組織観察を行った。図24は、比較例5のR-T-B系焼結磁石の三重点領域を黒く塗りつぶした元素マップデータを示す図である。
 各実施例及び各比較例について、実施例10と同様にして画像解析を行い、三重点領域の面積の平均値と当該面積の分布の標準偏差を算出した。これらの結果を表4に示す。表4に示すとおり、各実施例のR-T-B系焼結磁石は各比較例よりも三重点領域の面積の平均値及び標準偏差が十分に小さくなっていた。この結果から、各実施例では、R14B相よりもRの含有量が高い相の偏析が十分に抑制されていることが確認された。
(三重点領域における希土類元素の含有量)
 EPMAを用いて、各実施例及び各比較例のR-T-B系焼結磁石の三重点領域における希土類元素の質量基準の含有量を求めた。測定は、10点の三重点領域において行い、希土類元素の含有量の範囲と標準偏差を求めた。これらの結果を表4に示す。
(酸素、窒素及び炭素の含有量)
 一般的なガス分析装置を用いて、各実施例及び各比較例のR-T-B系焼結磁石のガス分析を行って、酸素、窒素及び炭素の含有量を求めた。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3,4に示すように、実施例10と比較例5では同程度の平均粒径を有する合金粉末を用いているにもかかわらず、実施例10の方が高いHcJを有するR-T-B焼結磁石が得られた。これは、実施例10のR-T-B系焼結磁石の方が、結晶粒の粒径が細かいことのみならず、結晶粒の粒径や形状が揃っているために三重点領域の偏析が抑制されていることに起因していると考えられる。
 本発明によれば、高価で希少な重希土類元素を使用しなくても、十分に優れた保磁力を有するR-T-B系焼結磁石、及びその製造方法を提供することができる。
 1…結晶核、2…結晶粒(柱状結晶)、4…粒界相(Rリッチ相)、10…高周波溶解炉、12…合金溶湯、14…タンディッシュ、16…冷却ロール、17…ロール面、18…合金薄片、19…ガス配管、19a…ガス吹き出し孔、20…テーブル、32,34…凹部、36…凸部、40…デンドライト状結晶、100,100…R-T-B系焼結磁石、120…ロータ、122…コア、130…ステータ、132…コイル、140…三重点領域、150…結晶粒、200…モータ。

Claims (6)

  1.  R14B相の結晶粒を含有するR-T-B系合金薄片を用いて得られる、R14B相を含有する粒子を含むR-T-B系焼結磁石であって、
     前記R-T-B系合金薄片は、厚み方向に沿った断面において、
     前記結晶粒が結晶核から放射状に延びており、前記厚み方向とは垂直な方向における前記結晶粒の一方の面側の長さの平均値及び前記面とは反対側の他方の面側の長さの平均値をそれぞれD及びDとしたとき、下記式(1)を満たし、
     前記粒子の平均粒径が0.5~5μmであり、重希土類元素を実質的に含有しないR-T-B系焼結磁石。
      0.9≦D/D≦1.1    (1)
    (但し、Rは軽希土類元素、Tは遷移元素、及びBはホウ素を示す。)
  2.  前記R-T-B系合金薄片は、前記断面において、前記厚み方向とは垂直な方向における前記結晶粒の長さの平均値及び最大値をそれぞれDAVE及びDMAXとしたとき、下記式(2)及び(3)を満たす、請求項1に記載のR-T-B系焼結磁石。
      1.0μm≦DAVE<3.0μm    (2)
      1.5μm≦DMAX≦4.5μm    (3)
  3.  前記R-T-B系合金薄片は、Rの含有量が質量基準で前記R14B相よりも高いRリッチ相を含有しており、前記断面において、前記Rリッチ相の全数に対し、前記厚み方向とは垂直な方向における長さが1.5μm以下である前記Rリッチ相の数の比率が90%以上である、請求項1又は2に記載のR-T-B系焼結磁石。
  4.  前記R-T-B系合金薄片における前記結晶粒はデンドライト状結晶であり、
     前記R-T-B系合金薄片の少なくとも一つの表面において、前記デンドライト状結晶の幅の平均値が60μm以下であり、前記デンドライト状結晶の結晶核の数が1mm四方当たり500個以上である、請求項1~3のいずれか一項に記載のR-T-B系焼結磁石。
  5.  請求項1~4のいずれか一項に記載のR-T-B系焼結磁石を備える回転機。
  6.  R14B相の結晶粒を含有するR-T-B系合金薄片を粉砕して成形し焼成する工程を有する、R14B相を含有する粒子を含むR-T-B系焼結磁石の製造方法であって、
     前記R-T-B系合金薄片は、厚み方向に沿った断面において、
     前記結晶粒が結晶核から放射状に延びており、前記厚み方向とは垂直な方向における前記結晶粒の一方の面側の長さの平均値及び前記面とは反対側の他方の面側の長さの平均値をそれぞれD及びDとしたとき、下記式(1)を満たし、
     前記粒子の平均粒径が0.5~5μmであり、重希土類元素を実質的に含有しないR-T-B系焼結磁石の製造方法。
      0.9≦D/D≦1.1    (1)
    (但し、Rは軽希土類元素、Tは遷移元素、及びBはホウ素を示す。)
     
PCT/JP2012/076327 2011-10-13 2012-10-11 R-t-b系焼結磁石及びその製造方法、並びに回転機 WO2013054847A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280050510.9A CN103890867B (zh) 2011-10-13 2012-10-11 R‑t‑b系烧结磁体及其制造方法、以及旋转电机
DE112012004298.0T DE112012004298T5 (de) 2011-10-13 2012-10-11 Gesinterter R-T-B-Magnet und Verfahren zu seiner Herstellung sowie Rotationsmaschine
JP2013538569A JP5949775B2 (ja) 2011-10-13 2012-10-11 R−t−b系焼結磁石及びその製造方法、並びに回転機
US14/350,728 US20140247100A1 (en) 2011-10-13 2012-10-11 R-t-b sintered magnet and method for production thereof, and rotary machine

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-226042 2011-10-13
JP2011226042 2011-10-13
JP2011-226040 2011-10-13
JP2011226040 2011-10-13
JP2011-248980 2011-11-14
JP2011-248978 2011-11-14
JP2011248980 2011-11-14
JP2011248978 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013054847A1 true WO2013054847A1 (ja) 2013-04-18

Family

ID=48081895

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2012/076327 WO2013054847A1 (ja) 2011-10-13 2012-10-11 R-t-b系焼結磁石及びその製造方法、並びに回転機
PCT/JP2012/076346 WO2013054854A1 (ja) 2011-10-13 2012-10-11 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法
PCT/JP2012/076324 WO2013054845A1 (ja) 2011-10-13 2012-10-11 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法
PCT/JP2012/076310 WO2013054842A1 (ja) 2011-10-13 2012-10-11 R-t-b系焼結磁石及びその製造方法、並びに回転機

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2012/076346 WO2013054854A1 (ja) 2011-10-13 2012-10-11 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法
PCT/JP2012/076324 WO2013054845A1 (ja) 2011-10-13 2012-10-11 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法
PCT/JP2012/076310 WO2013054842A1 (ja) 2011-10-13 2012-10-11 R-t-b系焼結磁石及びその製造方法、並びに回転機

Country Status (5)

Country Link
US (4) US9607742B2 (ja)
JP (4) JP5880569B2 (ja)
CN (4) CN103875045B (ja)
DE (4) DE112012004260T5 (ja)
WO (4) WO2013054847A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置
WO2019220950A1 (ja) * 2018-05-17 2019-11-21 昭和電工株式会社 R-t-b系希土類焼結磁石用鋳造合金薄片
JP2020503686A (ja) * 2016-12-29 2020-01-30 北京中科三環高技術股▲ふん▼有限公司Beijing Zhong Ke San Huan Hi−Tech Co.,Ltd. 微粒子希土類合金鋳片、その製造方法、および回転冷却ロール装置
CN114342011A (zh) * 2019-09-05 2022-04-12 Abb瑞士股份有限公司 高电阻永磁体、它们的制备以及它们在电机中的应用

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305231A (ja) * 2005-05-02 2006-11-09 Tokai Ind Sewing Mach Co Ltd 刺繍ミシン及び刺繍スタート位置設定方法。
JP5880569B2 (ja) * 2011-10-13 2016-03-09 Tdk株式会社 R−t−b系合金薄片及びその製造方法、並びにr−t−b系焼結磁石の製造方法
CN105121682B (zh) 2013-03-29 2018-05-04 株式会社三德 R-t-b系磁体用原料合金及其制造方法
EP2985768B8 (en) * 2013-03-29 2019-11-06 Hitachi Metals, Ltd. R-t-b-based sintered magnet
JP2014223652A (ja) * 2013-05-16 2014-12-04 住友電気工業株式会社 希土類−鉄系合金材の製造方法、希土類−鉄系合金材、希土類−鉄−窒素系合金材の製造方法、希土類−鉄−窒素系合金材、及び希土類磁石
JP6314381B2 (ja) * 2013-07-23 2018-04-25 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置
ES2717445T3 (es) * 2013-08-12 2019-06-21 Hitachi Metals Ltd Imán sinterizado R-T-B y método para producir un imán sinterizado R-T-B
AU2014344917B2 (en) * 2013-11-05 2018-03-22 Ihi Corporation Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP6413302B2 (ja) * 2014-03-31 2018-10-31 Tdk株式会社 R−t−b系異方性磁性粉及び異方性ボンド磁石
JP6380738B2 (ja) * 2014-04-21 2018-08-29 Tdk株式会社 R−t−b系永久磁石、r−t−b系永久磁石用原料合金
US9755462B2 (en) * 2015-02-24 2017-09-05 GM Global Technology Operations LLC Rotor geometry for interior permanent magnet machine having rare earth magnets with no heavy rare earth elements
JP6582940B2 (ja) * 2015-03-25 2019-10-02 Tdk株式会社 R−t−b系希土類焼結磁石及びその製造方法
US10923256B2 (en) 2015-06-25 2021-02-16 Hitachi Metals, Ltd. R-T-B-based sintered magnet and method for producing same
CN105513737A (zh) 2016-01-21 2016-04-20 烟台首钢磁性材料股份有限公司 一种不含重稀土元素烧结钕铁硼磁体的制备方法
CN107527698B (zh) * 2016-06-20 2019-10-01 有研稀土新材料股份有限公司 一种热变形稀土永磁材料及其制备方法和应用
CN106298138B (zh) * 2016-11-10 2018-05-15 包头天和磁材技术有限责任公司 稀土永磁体的制造方法
CN108257751B (zh) * 2016-12-29 2021-02-19 北京中科三环高技术股份有限公司 一种制备细晶粒稀土类烧结磁体用合金铸片
CN108246992B (zh) * 2016-12-29 2021-07-13 北京中科三环高技术股份有限公司 一种制备细晶粒稀土类合金铸片的方法及旋转冷却辊装置
CN108257752B (zh) * 2016-12-29 2021-07-23 北京中科三环高技术股份有限公司 一种制备细晶粒稀土类烧结磁体用合金铸片
JP6863008B2 (ja) * 2017-03-30 2021-04-21 Tdk株式会社 R−t−b系希土類焼結磁石用合金およびr−t−b系希土類焼結磁石の製造方法
JP2021501560A (ja) 2017-11-24 2021-01-14 安徽美芝精密制造有限公司Anhui Meizhi Precision Manufacturing Co., Ltd. モータ用の永久磁石、それを有するロータアセンブリ、モータ及び圧縮機
CN107707051A (zh) * 2017-11-24 2018-02-16 安徽美芝精密制造有限公司 用于电机的永磁体和具有其的转子组件、电机及压缩机
JP6989713B2 (ja) * 2018-12-25 2022-01-05 ダイセルミライズ株式会社 表面に粗面化構造を有する希土類磁石前駆体または希土類磁石成形体とそれらの製造方法
WO2021048916A1 (ja) * 2019-09-10 2021-03-18 三菱電機株式会社 希土類磁石合金、その製造方法、希土類磁石、回転子及び回転機
JP7452159B2 (ja) 2020-03-24 2024-03-19 株式会社プロテリアル R-t-b系焼結磁石の製造方法
CN113593799B (zh) * 2020-04-30 2023-06-13 烟台正海磁性材料股份有限公司 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
JP7572286B2 (ja) 2021-03-30 2024-10-23 Tdk株式会社 電子顕微鏡の調整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260122A (ja) * 1996-03-19 1997-10-03 Hitachi Metals Ltd 焼結型永久磁石
WO2005095024A1 (ja) * 2004-03-31 2005-10-13 Santoku Corporation 希土類焼結磁石用合金鋳片の製造法、希土類焼結磁石用合金鋳片及び希土類焼結磁石
JP2006019521A (ja) * 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置
JP2006265609A (ja) * 2005-03-23 2006-10-05 Tdk Corp R−t−b系焼結磁石用原料合金及びr−t−b系焼結磁石の製造方法
JP2008264875A (ja) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd 希土類合金鋳造板及びその製造方法
JP2011210838A (ja) * 2010-03-29 2011-10-20 Tdk Corp 希土類焼結磁石及びその製造方法、並びに回転機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932143B2 (ja) * 1992-02-21 2007-06-20 Tdk株式会社 磁石の製造方法
DE69434323T2 (de) * 1993-11-02 2006-03-09 Tdk Corp. Preparation d'un aimant permanent
JP3693838B2 (ja) 1999-01-29 2005-09-14 信越化学工業株式会社 希土類磁石用合金薄帯、合金微粉末及びそれらの製造方法
JP4032560B2 (ja) * 1999-05-26 2008-01-16 日立金属株式会社 永久磁石用希土類系合金粉末の製造方法
EP1059645B1 (en) * 1999-06-08 2006-06-14 Shin-Etsu Chemical Co., Ltd. Thin ribbon of rare earth-based permanent magnet alloy
CN1220220C (zh) * 2001-09-24 2005-09-21 北京有色金属研究总院 钕铁硼合金快冷厚带及其制造方法
CN1255235C (zh) 2002-03-06 2006-05-10 北京有色金属研究总院 合金快冷厚带设备和采用该设备的制备方法及其产品
US7311788B2 (en) * 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7314531B2 (en) * 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet
JP4449900B2 (ja) * 2003-04-22 2010-04-14 日立金属株式会社 希土類合金粉末の製造方法および希土類焼結磁石の製造方法
US20050098239A1 (en) * 2003-10-15 2005-05-12 Neomax Co., Ltd. R-T-B based permanent magnet material alloy and R-T-B based permanent magnet
CN100400199C (zh) 2004-03-31 2008-07-09 株式会社三德 稀土类烧结磁铁用合金铸片及其制造方法和稀土类烧结磁铁
US20060165550A1 (en) * 2005-01-25 2006-07-27 Tdk Corporation Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
US8152936B2 (en) * 2007-06-29 2012-04-10 Tdk Corporation Rare earth magnet
JP5299737B2 (ja) * 2007-09-28 2013-09-25 日立金属株式会社 R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石
JP5303738B2 (ja) * 2010-07-27 2013-10-02 Tdk株式会社 希土類焼結磁石
JP5729051B2 (ja) * 2011-03-18 2015-06-03 Tdk株式会社 R−t−b系希土類焼結磁石
JP5880569B2 (ja) * 2011-10-13 2016-03-09 Tdk株式会社 R−t−b系合金薄片及びその製造方法、並びにr−t−b系焼結磁石の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260122A (ja) * 1996-03-19 1997-10-03 Hitachi Metals Ltd 焼結型永久磁石
WO2005095024A1 (ja) * 2004-03-31 2005-10-13 Santoku Corporation 希土類焼結磁石用合金鋳片の製造法、希土類焼結磁石用合金鋳片及び希土類焼結磁石
JP2006019521A (ja) * 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置
JP2006265609A (ja) * 2005-03-23 2006-10-05 Tdk Corp R−t−b系焼結磁石用原料合金及びr−t−b系焼結磁石の製造方法
JP2008264875A (ja) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd 希土類合金鋳造板及びその製造方法
JP2011210838A (ja) * 2010-03-29 2011-10-20 Tdk Corp 希土類焼結磁石及びその製造方法、並びに回転機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置
JP2020503686A (ja) * 2016-12-29 2020-01-30 北京中科三環高技術股▲ふん▼有限公司Beijing Zhong Ke San Huan Hi−Tech Co.,Ltd. 微粒子希土類合金鋳片、その製造方法、および回転冷却ロール装置
WO2019220950A1 (ja) * 2018-05-17 2019-11-21 昭和電工株式会社 R-t-b系希土類焼結磁石用鋳造合金薄片
JP2019199644A (ja) * 2018-05-17 2019-11-21 Tdk株式会社 R−t−b系希土類焼結磁石用鋳造合金薄片
JP7167484B2 (ja) 2018-05-17 2022-11-09 Tdk株式会社 R-t-b系希土類焼結磁石用鋳造合金薄片
CN114342011A (zh) * 2019-09-05 2022-04-12 Abb瑞士股份有限公司 高电阻永磁体、它们的制备以及它们在电机中的应用

Also Published As

Publication number Publication date
CN103875045B (zh) 2016-08-31
WO2013054842A1 (ja) 2013-04-18
JPWO2013054854A1 (ja) 2015-03-30
JP5880569B2 (ja) 2016-03-09
DE112012004260T5 (de) 2014-07-17
WO2013054854A1 (ja) 2013-04-18
JPWO2013054847A1 (ja) 2015-03-30
DE112012004298T5 (de) 2014-07-03
JPWO2013054842A1 (ja) 2015-03-30
CN103858185A (zh) 2014-06-11
US20140286815A1 (en) 2014-09-25
JPWO2013054845A1 (ja) 2015-03-30
JP6079633B2 (ja) 2017-02-15
US20140286816A1 (en) 2014-09-25
US9620268B2 (en) 2017-04-11
US20140308152A1 (en) 2014-10-16
CN103890867B (zh) 2017-07-11
CN103875046A (zh) 2014-06-18
US9607742B2 (en) 2017-03-28
CN103875046B (zh) 2016-10-05
JP5949775B2 (ja) 2016-07-13
US9613737B2 (en) 2017-04-04
US20140247100A1 (en) 2014-09-04
WO2013054845A1 (ja) 2013-04-18
CN103858185B (zh) 2017-05-03
CN103890867A (zh) 2014-06-25
CN103875045A (zh) 2014-06-18
DE112012004275T5 (de) 2014-07-10
DE112012004288T5 (de) 2014-07-31
JP5949776B2 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5949775B2 (ja) R−t−b系焼結磁石及びその製造方法、並びに回転機
EP2128290A1 (en) R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
EP1395381B1 (en) Centrifugal casting method und centrifugal casting apparatus
JPWO2009075351A1 (ja) R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
JP6005257B2 (ja) R−t−b系磁石用原料合金およびその製造方法
CN106319323B (zh) 一种烧结钕铁硼磁体用辅助合金铸片及其制备方法
KR101922188B1 (ko) 희토류 소결 자석용 원료 합금 주편 및 그 제조 방법
JP4879503B2 (ja) R−t−b系焼結磁石用合金塊、その製造法および磁石
EP1652606B1 (en) Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
WO2009125671A1 (ja) R-t-b系合金及びr-t-b系合金の製造方法、r-t-b系希土類永久磁石用微粉、r-t-b系希土類永久磁石、r-t-b系希土類永久磁石の製造方法
JP2019112720A (ja) R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石
JPH08176755A (ja) 希土類磁石用合金及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538569

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350728

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120042980

Country of ref document: DE

Ref document number: 112012004298

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840332

Country of ref document: EP

Kind code of ref document: A1